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Abstract 
 
As with most solid tumor malignancies, CRC possess more than one major histological 

subtype that likely generate disparate immune responses. The heterogeneity in the immune 

cell response to CRC highlights the need to develop novel immune diagnostics that could 

predict the risk of disease relapse and devise a secondary strategy to address that risk. The 

purpose of this study was to prospectively provide a clear description of the patient-specific 

immune landscape present in CRC to target the dominant immune suppressive factors within 

a given tumor that may improve response rates while ushering in the age of personalized 

therapies for cancer patients. We described a functional interplay between neutrophils and 

CD8+ T cells that impacts on tumor immune escape and relapse. Specifically, we showed 

that tumor infiltrating neutrophils expressing high levels of CD15 interact with CD8+ T 

effector memory cells skewing them to produce GZMK, associated with tumor progression 

in CRC patients. Our fundings identify a unique immune signature, which might inform 

therapeutic decision making, possibly leading to new immunotherapeutic targets. 
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Introduction 
 

1. Colorectal Cancer and its classification 
 

Colorectal cancer (CRC) is the third most common cancer worldwide with a high morbidity 

rate and poor prognosis. The five-year survival rate for patients with advanced CRC is 

around 14%, and metastasis occurs in more than 50% of patients with CRC1–3.  

CRC progresses from normal to atypical to carcinoma that includes the formation of 

precancerous polyps, which can subsequently develop into malignant invasive cancer CRCs. 

The inactivating mutations of the APC gene is detected in ~80% of the cases4–6, resulting in 

β-catenin stabilization and increased WNT signaling, leading to intestinal hyperplasia. 

Subsequent mutations in other cancer driver genes such as KRAS, TP53 and SMAD4 result 

in the transformation to carcinoma7. Despite these commonly detected alterations, the 

heterogeneity of the disease at genetic and molecular levels determines a different outcome 

and patient-dependent response to the therapies. 

The Tumor-Node-Metastasis (TNM) classification, which classifies the extent of spread 

of cancer (Table 1), has been until now the main prognostic assessment tool for CRC patients 

8. However, even with favorable TNM staging, 30-40% of surgically resected CRC relapse, 

leading to metastasis formation and poor prognosis2,3. These data suggest that the accuracy 

of prognostic assessments using TNM classification is not conclusive, especially for stage II 

and III CRC, calling for more effective patient stratification able to predict clinical outcome 

and, eventually, therapy response. 
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Table 1 Definition of Tumor-Node-Metastasis (TNM). 9 

           

Multiple molecular subtypes and accumulation of various genetic alterations characterize 

the CRC TME10, generating high interpatient heterogeneity and making genomic approaches 

alone unable to conclusively delineate unique prognostic biomarkers. 

CRC patients can be classified based on hypermutable phenotype. A deficient DNA 

mismatch repair (dMMR) activity is associated with a portion of CRC patients, leading to 

microsatellite instability (MSI) within cancer cells, as opposed to microsatellite stable (MSS) 

tumors. The MSS subtypes occupy a large proportion (85%) of CRC cases, whereas the 

dMMR/MSI patients account for only approximately 15% of all CRC patients11. Gryfe et al. 

demonstrated in a cohort of 607 CRC patients that MSI predicts favorable outcomes12. The 

mechanism by which MSI might influence prognosis has been underscored by Mlecnik et 

al., who demonstrate that a high frequency of frameshift mutations leads to increased 

neoantigen load, which favors immune cell infiltration within the tumor and effective 

antitumor response13. MSI CRC tumors display indeed high T cell infiltration, which has 

been reported as a valid prognostic too 14–22. Nevertheless, MSI-CRC has higher expression 

of co-inhibitory receptors, such as PD1 (programmed cell death protein 1), CTLA4 

(cytotoxic T lymphocyte-associated antigen 4) and LAG3 (Lymphocyte-activation gene 3), 



 12 

providing a potential explanation of why MSI CRC tumors are not rejected - despite high T 

cell infiltration23. On the other hand, they further suggest that blockade of specific 

checkpoints might be efficacious for the treatment of the MSI subset of colorectal cancer. In 

this regard, a complete remission in an entire cohort of rectal cancer patients has been 

recently demonstrated24. Thus, the diagnosis of MSI is now considered a positive prognostic 

factor for the efficiency of PD1 therapy, which has been approved as a therapeutic strategy 

to potentiate endogenous CTLs both within the TME and in periphery with the aim of 

counteracting tumor metastasis25.  

Several large CRC studies have demonstrated that T cell intratumoral abundance is 

significantly associated with better prognosis, even after adjusting for stage, lymph node 

count, and molecular biomarkers, including microsatellite instability26–28.  

Thus, beyond MSI status, quantification of cytotoxic and memory T cells within TME is an 

indicator of tumor recurrence and survival demonstrating that tumor progression is not 

merely caused by genetic alterations as the TME composition also plays a central role15.  

The evidence of endogenous immune system’s intervention in the pathogenesis of the 

disease prompts a more complete characterization of the immune component of the TME 

and introduced the concept of “immunoscore” to quantify T cell infiltrate within solid 

tumors15,29–31. Immunoscore has become a useful prognostic marker in several solid tumors, 

including but not limited to CRC14,16,30 , holding a stronger prediction value for survival than 

the TNM staging16,30,32. 

The most exhaustive classification of CRC patients is based on four Consensus Molecular 

Subtypes (CMSs) with peculiar molecular and clinical features. CMS1 contains MSI tumors 

with high mutational burden, which results in consistent CTL and Th1 CD4+ T cells immune 

infiltration. CMS2 (canonical) is the most common subtype and presents an epithelial 

differentiation, with a significant WNT and MYC pathways signaling activation. CMS3 is 

mainly characterized by a metabolic dysregulation due to KRAS mutation33–35. CMS4 is 

characterized by a strong TGFβ signaling, stromal invasion and neo-angiogenesis, which 

correlates with increased tumor aggressiveness and worst clinical outcome.10 The CMS4, 

which includes a large portion of CRC cases, present a stromal origin, with a huge 

component of cancer-associated fibroblasts (CAFs), and correlates with increase tumor 

aggressiveness and worst clinical outcome. Interestingly this subtype of cancer presents a 

pro-inflammatory immune phenotype associated with unfavorable prognosis and high C-X-

C Motif Chemokine Ligand 12 (CXCL12), also known as stromal cell-derived factor 1 

(SDF-1) expression levels 10. The classification in one of the 4 CMS subtypes defines not 

only a cellular phenotype but could also predict the response to the therapy36.  
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Figure 1. Consensus Molecular Subtypes (CMSs) classification.  
Clear definition based on diffusion (Percent of total), histological features (Potential precursor lesion), cellular 
processes involved in the development (Pathways and programs), driving genetic alterations (Selected 
molecular features), peculiarity of the tumor microenvironment (Microenvironment) and prognosis 
characteristics (Clinical features) 37 
 

Since the transcriptomic and molecular classification of colorectal cancer is strongly 

associated with different immune and stromal contextures, the novel classifications of CRC 

tumors are based on the relationships between the phenotype of cancer cells and the 

corresponding immune and stromal profile of its microenvironment, potentially identifying 

the most appropriate treatments, including novel immunotherapies. 

   

2. Heterogeneity of CRC TME 
 

Recent studies of tumor-infiltrating immune cell populations in CRC and other tumor types 

provide evidence for a highly heterogeneous makeup of immune cell infiltrates, and this 

heterogeneity is likely to form a determining factor in therapy outcome38–45.  

The development of new single cell technologies gave rise to many studies characterizing 

the heterogeneity of immune infiltrate in different types of cancer, including CRC, and shade 
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light on the tumor immune microenvironment (TIME). Three classes of TIME have been 

described: infiltrated–excluded (I–E), infiltrated–inflamed (I–I) and infiltrated-TLS (I-

TLS)46. I–E TIME is largely populated by immune cells but the number of CTLs is scarce 

in the tumor core with low activation and cytotoxic activity13. Here, the presence of other 

immune cells engaging long-lasting interactions with CTLs mediate lymphocyte trapping 

and dysfunction. For instance, it has been shown that macrophages limit anti-PD-1 treatment 

efficacy by dampening CD8+ T cell ability to reach the TME47. This study suggested that 

strategies able to reduce macrophage-mediated T cell exclusion may increase tumor 

immunosurveillance and the efficiency of immunotherapies. I–I TIME are classified as “hot” 

tumors because of their high infiltration of immune cells and, in particular, CTLs with high 

expression of activation markers, effector molecules - such as IFNg and GZMb- as well as 

checkpoint inhibitors. Importantly, the higher expression of co-inhibitory receptors in CTLs 

within this type of TIME correlates with a better response to immunotherapy48. A peculiar 

type of TIME is the I-TLS where the immune infiltrate is able to aggregate in a well-defined 

architecture and give rise Tertiary Lymphoid Structures (TLS), with a composition similar 

to lymph nodes, with B cells, dendritic cells (DC) and Treg cells. 

 
Figure 2. Tumor immune microenvironment (TIME) subtypes. 
A. infiltrated-excluded: cytotoxic T cells (CTLs) express low levels of inflammatory cytokines (IFNg and 
Gzmb) and are excluded from the tumor core due to their interaction with tumor associated macrophages 
(TAMs). B. infiltrated-inflamed: immune cells penetrate the tumor core and CTLs express both inflammatory 
molecules and inhibitory receptors (PD-1), accompanied by the expression of checkpoint inhibitors by cancer 
cells (PD-L1). C. infiltrated-TLS: present high CTLs infiltration and tertiary lymphoid structures (TLSs) of B 
cells and Dendritic Cells (DC). 46 
 

Thus, immune cell function and type of TIME are key for an anti-tumor response, in which 

the type, abundance and location of tumor infiltrating immune cells influence survival in 

many types of cancer, included CRC32,49–51. Nevertheless, in the TME there are few 

functional TILs and many immunosuppressive cells, mainly consisting of T regulatory cells 

(Tregs), Myeloid derived suppressor cells (MDSCs), and tumor associated macrophages 

A B C
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(TAMs), infiltrated in the TME, which influence TIL functionality and impact on clinical 

outcome. 

In the last decade, a huge effort has been made with the aim of characterizing the tumor 

infiltrate and dissecting the role of the immune system in tumor progression.  

The prospective study of non-small cell lung cancer (NSCLC) patients TRACERx 

(TRAcking non-small cell lung Cancer Evolution through therapy [Rx]), by integrating new 

single cell technologies, has led to a better understanding of cancer evolution52 and 

highlighted the existence of peculiar crosstalks between cancer and immune cells that deeply 

impact T cell activity within the tumor. Many other pioneering studies have allowed a deep 

comprehension of the immune infiltrate heterogeneity thanks also to the development of new 

single cell technologies. 

 
3. CD8+ T cells and anti-tumor response  

 

CTLs play a pivotal role in cancer immunity and cytotoxic CD8+ T cells have been 

associated with favorable prognosis in several types of solid tumors53,54, including 

CRC21,22,32.  

CD8+ T cells recognize cancer cells through the T cell receptor (TCR) and differentiate into 

cytotoxic T cells (CTLs), whose primary role is to kill the target cell with remarkable 

precision and efficiency.  Once conjugated to a target cell, the cytotoxic secretory granules 

traffic to the immunological synapse and release a cargo of deadly proteins, including 

perforin (PRF), granzymes (GZMs) and granulysin1 (GNLY), into the synaptic cleft; 

ultimately leading to apoptosis of target cells55,56.  

While the GZMB activity is well established, the activity of other GZMs is still under 

investigation57. Recent works demonstrate a role of GZMA in chronic inflammation leading 

to CRC in an AOM/DSS mouse model of cancer development58. Likewise, GZMK has been 

associated with different processes, like tissue damage, inflammatory process and aging59,60.  

Interestingly, CD8+ GZMK+ populations have been described in different type of tumors and 

associated with a pre-dysfunctional state61–63. However, the role of CD8+ GZMK+ 

populations in anti-tumor response has just recently begun to be elucidated. 

 

a. CD8+ T cells and tumor reactivity 
 

A high Tumor Mutational Burden (TMB) leads to high neoantigen load and is often 

associated with a stronger anti-tumor immune response since it could favor cancer cell 

recognition by CTLs. The prognostic significance of TMB status in predicting response to 
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immunotherapies corroborates this hypothesis. TCR specific CD8+ TILs able to reside in the 

TME are the main responsible for a better clinical outcome and ICB response64,65. T cells 

with a tissue-resident memory phenotype contribute to immunosurveillance and are 

associated with improved prognosis40. However, in the TME, the recurrent TCRs associated 

with cancer antigens reactivity are mainly detected on effector and dysfunctional T cell and 

are underrepresented on memory T cells, likely limiting a long-lasting anti-tumor 

response40,44,45,65,66. 

Tumor reactive CD8+ T cells are identified by the co-expression of CD103 and CD3967. 

These cells have a tissue-resident memory phenotype, express high levels of exhaustion 

markers and are associated with improved overall survival67. However, not all tumor-

infiltrating T cells are specific for tumor antigens. Instead, human tumors are highly 

infiltrated by CD39neg CD8+ T cells, which recognize a wide range of epitopes unrelated to 

cancer and lack hallmarks of chronic antigen stimulation at the tumor site, supporting their 

classification as bystanders 64,68,69. Bystanders CD8+ T cells comprised viral reactive T cells 

recalled in the TME by inflammatory molecules and chemokines such as CXCL9 and 

CXCL1069,70, and CCL5.71 The role of these cells in cancer development is still 

controversial. In patients with stage III melanoma treated with adjuvant immunotherapy a 

low ratio between tumor reactive and bystanders T cells increase the probability of 

recurrence69,72,73.  However, in vivo studies in mice have demonstrated a possible beneficial 

role of reactivation of Virus-specific T cells enriched in the TME in cancer 

immunotherapy74. The implications of bystander T cells in tumors are only at the beginning 

to be understood, however, their characteristics like abundance in the TME, lack of 

exhaustion, specificities to common pathogens, and innate-like killing capabilities could 

open new opportunities towards the development of new immunotherapeutic protocols. 

 

b. CD8+ T cell dysfunction in solid tumors 
 

Recent studies of tumor-infiltrating immune cell populations in melanoma and other tumor 

types provide evidence for a highly heterogeneous profile of immune cell infiltrates, and this 

heterogeneity is likely to form a determining factor in therapy outcome39,42,43,63,75,76. Within 

the heterogeneous tumor microenvironment, T cells make up a considerable part of the 

immune infiltrate. The intratumoral T cell compartment comprises naïve-like, effector, 

memory, and regulatory T cells (Treg). In addition, a subset of CD8+ T cells that has acquired 

a state of “dysfunction” or “exhaustion” is frequently observed. Such dysfunctional T cells 

are characterized by a loss of classical CD8+ T cell effector functions, such as cytotoxicity 
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77–79. In addition, the dysfunctional T cells in human tumors display a unique T cell cytokine 

secretion signature40,41,63,80,81.  

The role and predictive potential of T cells with different levels of expression of exhaustion 

markers is still debated. In murine models, T cells with high expression of markers of T cell 

exhaustion appear refractory to reinvigoration by PD-1 blockade 82–86.  

During the progression of the disease, the persistent exposure to neoantigens induces a 

dysfunctional state in antigen specific CD8+ and CD4+ T cells79,87. 

 

 
Figure 3. Mechanism leading to T cells dysfunction and impaired anti-cancer response. 
The drivers of T cells dysfunction include: (1) the suboptimal priming of CD8+ T cells which could take place 
in lymph nodes or in tertiary lymphoid structures (TLSs) within the tumor, (2) continuous antigen exposure, 
thus T cells receptor (TCR) triggering, (3) in combination with factors present in the tumor microenvironment 
(TME) such as cytokines and metabolic conditions such as hypoxia, glucose deprivation, low pH and lipids 
accumulation. 81 
 

On the other hand, the pressure operated by the immune cells in the early stage of cancer 

development often limits neoantigens presentation by cancer cells, leading to the impairment 

in CTLs response, poor disease-free survival and a low sensibility to checkpoint blockade88. 

Importantly, immune cells, despite their primary role in anti-cancer intervention, operate a 

pressure on tumor cells which modify their immunogenicity. This process called “cancer 

immunoediting” eventually leads to the emergence of tumor cells which have acquired the 

ability to circumvent immune recognition and ultimately promote tumor progression and 

resistance to immunotherapies89. 
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In the last decade, the discovery of T cell checkpoint molecules expressed on the surface of 

CD8+ T cells-like PD1and CTLA4 led to the breakthrough discovery of the use of immune 

checkpoint blockade (ICB) to reinvigorate CTLs cytotoxic response within the TME. ICBs 

have completely rewired cancer therapy demonstrating unprecedented clinical results in 

different types of cancer90,91, remarking the fundamental role of CTLs in anti-tumor 

response.  

Recently, studies integrating scRNAseq with TCR analysis have shed light on different 

populations of dysfunctional CD8+ T cells, have allowing to predict not only responsiveness 

to ICBs but also to dissect whether specific CTLs subsets were equally involved in mediating 

tumor control92. These studies have provided insight on the T cell dysfunction process. T 

cells within solid tumors experienced a progressive transition in their transcriptional profile 

by down-regulating proliferation and effector functions’ related genes, while upregulating 

expression of checkpoints inhibitors such as TIGIT, PDCD1, LAG3, and CXCL13 as well 

as transcription factors (TF) associated with dysfunctional signatures66. However, the 

proportion and the phenotype of exhausted cells is variable among different type of cancer 

and even interpatient39,44,66. Thus, the higher complexity of intratumoral CD8+ T cell 

postulates the need of new and sophisticated approaches for patient stratification that will 

help to further understand the functional states and dynamics of T cells in cancer, and their 

impact on clinical outcome45.  

 

 
Figure 4. Progressive dysfunctional state of CD8+ T cells during tumor progression. 
Representation of the progressive dysfunctional state developed by CD8+ T cells during tumor development. 
Naïve-like cells has been described in different type of solid tumor and normally differentiated in a functional 
cytotoxic state. However, into the tumor is common the development of a pre-dysfunctional state which 
progressively evolve in a final dysfunctional state. During this process there is an increase in inhibitory 
receptors expression, an increase up CXCL13 and a decrease in the proliferation capacity of the cells. 81 
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Another important factor driving T cell dysfunction is the metabolic composition of the 

TME93–95 .Cancer cells harbor different TME composition which can reshape the 

functionality of immune cells and hamper their anti-tumor response. An increasing body of 

evidence suggests that nutrients availability in the TME has a key influence on immune 

responses. For example, depletion of glucose and tryptophan and accumulation of lactate in 

the TME suppresses anti-tumor immunity96–101. Nevertheless, glucose is a key factor for 

immune cells metabolism and aberrant aerobic glycolysis (Warburg effect) of tumor cells 

affects glucose availability dumping the CTLs responses and contributes to the recruitment 

of immune suppressive myeloid cells (MDSCs) into the tumor104–106. Another common 

metabolic alteration in the TME is increased lipid accumulation93,97,100,102. The peculiar 

tumor milieu influences function and retention of the different types of infiltrating immune 

cell, often posing obstacles to CD8+ T cells, while favoring immunosuppressive cells103–105. 

These data demonstrate a cell specific modulation operated by the TME metabolic 

composition and its role in remodeling the immune heterogeneity within solid tumors.  

Finally, factors - such as age, gender, nationality, diet, metabolism, microbiome alteration 

and lifestyle- are able to modulate the immune heterogeneity within tumors.  

This complex network is still far from being completely elucidated; thus, a higher 

comprehension of the TME landscape at single cell level in a large cohort of patients will be 

informative to develop a more precise diagnostic and prognostic score towards personalized 

medicine. 

 
4. CD8+ T cells crosstalk with tumor immune compartment  

 

As is the case with many solid tumor malignancies, CRC is a very heterogeneous disease 

comprised of multiple unique histologic subtypes that harbor distinct molecular signatures. 

In this scenario, it’s conceivable that the immune cell populations will differ by CRC 

subtype, if not from case to case.  

The presence of various immune cell populations has previously been suggested as a 

potential modifier of CD8+ T cell activity in tumors 42,46  

 

a. CD4+ T cells 
 

CD4+ T cells regulate anti-tumor responses by providing help to CTLs activation in the 

TME106. However, CD4+ T cells in the TME are often skewed toward a Treg differentiation 

state and play a pro-tumoral role by suppressing CD8+ T cells activity. Tumor cells can 

promote CD4+ T cell differentiation into Treg by inducing dendritic cells to produce TGFb, 
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which is fundamental for Treg differentiation and survival107. Moreover, FOXP3+ Treg cells 

are recruited to the TME by different chemotactic molecules such as CCL17, CCL22, CCL5, 

CCL6, CCL28 and IL10, that can be produced by TAMs, MDSCs and cancer cells107,108. 

The accumulation of FOXP3high Treg cells in the TME suppresses the activity of CTLs either 

by contact-mediated mechanisms, or via IL2 depletion109,110 or through the release of 

suppressive soluble molecules like TGFβ and IL35111–113.       

 

 
Figure 5. Mechanisms of immunosuppression operated by Treg. 
Regulatory T (Treg) cells constitutively express the IL2 receptor subunit-α (CD25) which binds with the high-
affinity IL2, thus reducing the availability of this cytokine to effector T (Teff) cells. Treg cells also constitutively 
express cytotoxic T lymphocyte antigen 4 (CTLA-4), which binds to CD80 and CD86 on antigen-presenting 
cells (APCs), thereby transmitting suppressive signals and reducing their capacity to activate Teff cells. 
Furthermore, CTLA-4 binds, with a higher affinity than CD28, the CD80 and CD86, thus competing with 
Teff cells. Treg cells are also producers of immunosuppressive cytokines, such as IL10, IL35 and transforming 
growth factor-β (TGFβ), which can downregulate the activity of APCs and Teff cells, moreover the release of 
granzymes and perforin that can directly kill other immune cells. Ultimately, the release of large amounts of 
ATP, which is converted by CD39 and CD73 to adenosine, an immunosuppressive signal for Teff cells and 
APCs. 114 
 

Abundant Treg cell infiltration into tumors is associated with poor clinical outcomes in 

various types of cancers115,116. However, the role of Treg cells is controversial in CRC, where 

FOXP3+ T cell infiltration has been associated also with better prognosis. In particular, 

CRCs infiltrated by FOXP3low T cells showed significantly better prognosis than those with 

a predominant FOXP3hi Treg cell infiltration28,115–120.  

Another particular subset of Treg cells identified as FOXP3−CD4+ T cells are the so-called 

Tr1 cells, found enriched in tumor and metastasis. These cells are endowed with suppressing 
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activity, and their presence in CRC and NSCLC TME is correlated with disease 

progression121. 

In all, these studies findings suggest a complex heterogeneity in the intratumoral Treg 

compartment, composed by different subsets with tissue-specific functions and precise 

immunoregulatory mechanisms that can be exploited in immunotherapeutic approaches. 

 

b. B cells 
 

An important role in anti-tumor immune response is played by B cells present both in the 

tumor and in draining lymph nodes122. Indeed, several studies demonstrate that their 

presence and functionality correlate with better prognosis and improve response to 

immunotherapy in lung cancer123, melanoma124,125, pancreatic adenocarcinoma126 

sarcoma127 and CRC128. Plasma cells within the tumor are able to produce a large amount of 

antibodie driving antibody-dependent cellular cytotoxicity (ADCC) and phagocytosis, 

which in turn facilitate antigen presentation by dendritic cells to lymphocytes. These 

functions are important components in anti-cancer response, however their direct role in 

shaping T cells response is still under investigation.   

B cells can present antigens to CD8+ and CD4+ T cells reinforcing their cytotoxic cancer 

specific response129. Their APC function provides an alternative immunotherapeutic 

approach to enhance T cells response. Indeed, B cells are less responsive than DCs to 

inhibitory molecules present in the TME, such as IL10, TGFb and VEGF and are easily 

isolated from peripheral blood (PB), expanded and activated in vitro, for their in vivo 

application122. For several years B cells were considered in relation to the humoral immune 

response but recently a more complex scenario has highlighted their function in cancer 

response and kicked off the development of new strategies of cancer immunotherapy. In the 

TME, indeed, B cells are able to generate TLSs130131, peculiar lymphoid structures within 

solid tumors that favor maturation and isotype switching of tumor-specific B cells and the 

recall and clonal expansion of T cells 132–134.  
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Figure 6. Tertiary Lymphoid structure (TLS) within tumors. 
TLS within tumors present a CD3+ T cell rich zone containing dendritic cells (DCs), fibroblastic reticular cells 
(FRCs) and a CD20+ B cell zone with a germinal center, plasma cells, antibodies forming immune complexes 
with tumor antigens and follicular DCs (FDCs). CD8+ cytotoxic effector T cells and B cells generated within 
the TLSs can operate direct cancer cell killing, antibody-dependent cellular cytotoxicity (ADCC) mediated by 
macrophages and other phagocytic cells and local complement activation. Moreover the central memory T 
and B cells generated in TLSs circulate and protect against metastasis and tumor recurrence. 130 
 
Recent studies demonstrated better prognosis in early-stage CRC with associated TLSs and 

an increase in B cells infiltrate and TLSs formation in responders to ICB immunotherapy 

compared with non-responders125,134. This analysis supports a positive role of B cells and 

TLSs in anti-cancer response and paves the way for the application new targets of 

intervention in solid tumors.   

 

c. Dendritic cells 
 

CD8+ T cells anti-tumor response starts with the recognition through T-cell receptor (TCR) 

of tumor antigens presented by MHC-I on the tumor cells and MHC-II on the surface of 

antigen-presenting cells (APCs), such as macrophages, DCs and B cells. The sensing 

operated by APCs leads to the activation of CD8+ T cells, which starts biochemical signals 

aiming to generate an effective and precise target-cell killing51,135.  

DCs are specialized APCs presenting antigens through MHC-II to naïve CD8+ T cells. 

However, CD103+ (DC2) have been recently identified as a DCs subset able to also promote 

proliferation of both naïve and differentiated effector CD8+ T cells in the tumor 
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microenvironment (TME), sustaining CTLs activity by the release of GM-CSF 

(Granulocyte-macrophage colony-stimulating factor) and FLT3L (Fms Related Receptor 

Tyrosine Kinase 3 Ligand)136. DCs activity is directly dependent from the TME, where the 

presence of immunosuppressive soluble molecules can affect their differentiation and 

function137,138. Among them, IL6 produced by tumor cells, TAMs and some type of 

neutrophils reduced the maturation and migration of DCs in certain type of solid 

tumors139,140. IL10, released by cancer cells as well as immune cells, induced the conversion 

of immunogenic canonical DCs into tolerogenic DCs, leading to reduced T cell priming and 

induction of apoptosis in CD8+ T cells141,142. VEGF and TGFb have also been found to 

inhibit DCs maturation and to take part to the immunosuppressive milieu of the TME. 

Furthermore, DCs in the TME increase the expression of inhibitory molecules such as PDL1 

and PDL2, galectin 9, CD80/CD86 and CD155, leading to further impairment of CD8+ T 

cells function and taking part as putative target of ICB therapy137,143.   

As major sentinels in the TME, DCs play a pivotal role in cancer immunotherapy. Seventeen 

clinical trials using DC based therapies have shown promising results alone or in 

combination with other therapies144. 

 
Figure 7. Dendritic cells (DCs) molecules regulating CD8+ T cells activity. 145 
 

 

d. Macrophages 
 

Macrophages are a subset of myeloid cells exhibiting APC functions. Two main classes of 

macrophages have been described: classically activated macrophages (M1) and alternatively 

activated macrophages (M2). The polarization towards M1, mostly driven by IFNγ, TNFα 

and lipopolysaccharide (LPS), is defined by the expression of CD68, CD86 and CD80, 
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accompanied by the secretion of TNFα, IL1β, IL12, CXCL9, CXCL10 and NOS2 

production. M1 macrophages play an important role as pro-inflammatory cells inducing a 

Th1 response146. In contrast, the polarization towards M2, promoted by IL4 and IL13, is 

characterized by the expression of CD163, CD204 and CD206 and is mainly playing an 

immunosuppressive function147. This last subset has been defined TAMs and often 

associated to tumor progression, metastasization and immunotherapy resistance 148–150. 

However, single cell technologies have shed light on the heterogeneity of M1 and M2 

populations148,151 and recent clinical studies have demonstrated that macrophages are 

accompanied by different prognostic value since they play different roles in cancer 

progression depending on the specific tissue. Usually, M2-like macrophages enrichment is 

associated with worst prognosis in melanoma152, breast,153 lung154,155 and gastric cancer156.  

On the contrary, peculiar CD14+CD2+LY75+ macrophages have been associated with better 

survival in patients with melanoma157 and, independently from the polarization state, better 

prognosis is correlated with macrophages infiltration in colorectal cancer158. Additionally, 

TAMs influence the PDL1 and PD1 expression on tumor and CD8+ T cells, respectively. 

Indeed, TAMs-derived TNFa positively correlated with PDL1 expression in cancer cells in 

pancreatic cancer (PDAC)159, as well as TAM-derived IL6 was able to induce an 

upregulation of PD1 on CD8 T cells and correlate with worst prognosis in lung cancer160.   

As major sentinels in the TME, both DCs and macrophages play a pivotal role in cancer 

immunotherapy. Seventeen clinical trials using DC based therapies have shown promising 

results alone or in combination with other therapies144. On the other side, more than 100 

clinical trials have been developed using macrophage-targeting agents152, with the aim of 

reducing the number of TAMs and/or inducing a repolarization from M2 to M1 with anti-

tumor activity.   

 

e. Granulocytes 
 

The interaction between T cells and granulocytes has been poorly investigated so far, 

especially in the context of cancer biology due to their short lifetime and technical challenges 

to analyze their phenotype ex vivo. Eosinophils, composing 1-5% of the total leukocytes in 

the blood, have been found enriched in many types of tumors, including CRC, melanoma, 

lung cancer, and recently they have been reported to play a role in enhancing of CD8+ T cells 

infiltration, thus reducing cancer progression161–164. Interestingly the local tumor irradiation 

causes eosinophils infiltration, further supporting the cytotoxic T lymphocyte recruitment 

and better response to immunotherapy in non-small cell lung cancer (NSCLC) and 

nasopharyngeal carcinoma NPC patients165. However, in another study, eosinophils 
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expressing CD16 were described as immunosuppressive since they inhibit T cell function by 

releasing the immunoregulatory protein galectin-10166. Thus, further studies are needed to 

better understand their role on anti-tumor immunity. 

Myeloid-derived suppressor cells (MDSCs) are pathologically activated cells with potent 

immunosuppressive activity. According to their origin from the granulocytic or monocytic 

myeloid cell lineages two major groups of MDSCs are described: the 

granulocytic/polymorphonuclear MDSCs (PMN-MDSCs) and monocytic MDSCs (M-

MDSCs), respectively. However, their differentiation from neutrophils and monocytic cells 

is controversial. In particular, PMN-MDSCs are described as a differentiation state coming 

from immature neutrophils released from the bone marrow prematurely due to the 

emergency hematopoiesis taking place during infection, inflammation and cancer167. 

MDSCs/immature neutrophils are detected in the circulation and within the TME of cancer 

patients and are recognized by GIEMSA staining.  

 

Figure 8. Neutrophils phenotype during maturation.  
Schematic representations and images of the morphology of human neutrophils during different maturation 
stages. Myelocytes mature into metamyelocytes, banded neutrophils, and finally into mature segmented 
neutrophils. Neutrophils may also assume an hypersegmented nuclear shape, with more than 4 nuclear lobes 
in particular conditions. 
 
However, there is no clear evidence of specific markers to address their identity by flow 

cytometry or differentially expressed genes while their definition is mostly related to their 

functional profile (arginase-I, ROS, NOS and IL10 production)168. Thus, PMN-MDSCs 

could be classified as a precise differentiation state of neutrophils in pathological conditions, 

included cancer, with a peculiar immunosuppressive role. 
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f. Neutrophils 
 

Neutrophils are one of the major effector cells of the innate immune system accounting for 

50-70% of the total human leukocytes in the circulation and represent a first line defense in 

infection and acute inflammation. It is well known that they accumulate in the TME of solid 

tumors recruited by pro-inflammatory chemokines and cytokines. 

A lot of work has been done to investigate the neutrophils phenotype in the TME, however 

the short lifetime of these cells hampers a deep phenotypical and functional characterization. 

Even if the application of genetically engineered mouse models has been fundamental to 

understanding neutrophils dynamic in tumor progression, the difference in lifetime and 

phenotype across species reduces the possibility to exploit mouse models for their functional 

characterization in relationship with human diseases. For these reasons, understanding their 

impact in cancer development required a huge effort in clinical studies.  

The definition of neutrophils as phagocytic cells able to release granules’ content (lytic 

enzymes) and Reactive Oxygen Species (ROS) has been changing in a more complex 

interpretation accompanied by their ability to interact and prime others immune 

components169. They release soluble molecules, participating in the design of a cytokines 

fingerprint of the TME in defined time and space. Several studies employing scRNAseq 

analysis and MPFC have highlighted that neutrophils can assume multiple phenotype and 

function169–171. In this context, neutrophils take part as new putative targets not only for 

prognostic purposes but most importantly for new therapeutic approaches. 

 

i. Neutrophils in solid tumor 
 

Neutrophils infiltrating the TME of solid tumor can exert a dual role in cancer progression 

with a combination of anti-tumoral and pro-tumoral effects169,170,172. However, the data 

collected with the advent of high-throughput genomic technologies and the possibility to 

integrate different clinical studies collected established a negative correlation between the 

Tumor-Associated Neutrophils (TANs) and the probability of survival173. Nevertheless, 

TANs, due to their ability to kill cancer cells, can directly participate in anti-cancer 

responses. They form immunological synapses with cancer cells through the Complement 

Receptor 3 (CR3), composed of CD11b and CD18 and kill cancer cells by the release of 

Nitric Oxide (NO)174. Factors such as granulocyte colony-stimulating factor (G-CSF), CXC-

chemokine ligand 8 (CXCL8), CXC-chemokine ligand 5 (CXCL5) and CC-chemokine 

ligand 2 (CCL2), lipopolysaccharide (LPS) and interferon β (IFNβ) promote an oxidative 

burst and the release of hydrogen peroxide (H2O2) in neutrophils lead to cancer death175. 
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Moreover, the expression of the immunoglobulin G (IgG) Fc receptors (Fcγ receptor (FcγR)) 

and the IgA Fc receptor (FcαRI) on their surface mediates antibody-dependent cellular 

cytotoxicity (ADCC) to eliminate antibody-opsonized cancer cells by the ingestion of their 

plasma membrane in a process called trogoptosis176.  

One of the main actions played by neutrophils in primary immune response is the extrusion 

of DNA and histones dressed up with granules of proteolytic cytotoxic enzymes such as 

myeloperoxidase (MPO) and pro-inflammatory-associated proteins; this process give rise to 

Neutrophils Extracellular Trap (NET) formation. NET was firstly discovered in response to 

bacteria and operates a trap for pathogens by exposing them to cytotoxic factors. 177 

  

 
Figure 9. Neutrophils in anticancer response. 
Neutrophils play different anti-tumor activity. Through the antibody dependent cytotoxicity (ADCC) can 
interact and kill cancer cells. They can release effector molecules such as reactive oxygen species (ROS) Nitric 
Oxide (NO), Hydrogen peroxide (H2O2), Neutrophils elastase (NE) and Myeloperoxidase (MMP9) and kill 
cancer cells by phagocytosis. Moreover, the Neutrophils Extracellular Trap (NET) mediate the direct interact 
with trap cancer cells and deliver effector molecules.  (Created with BioRender.com) 
 

 

NET has been reported to increase tumor growth and facilitate metastasization driven by 

CAF-derived Amyloid β in melanoma178, G-CSF released by cancer cells in lung179,TGFb 

in gastric cancer 180 and CCDC25 expression on the surface of cancer cells in CRC and breast 

cancer181. Moreover, NET has been linked to neo-angiogenesis VEGF-mediated, 

extracellular matrix (ECM) degradation by Matrix metallopeptidase 9 (MMP9) and 

neutrophil elastase (NE), and tumor cells extravasation (through IGF-1) favoring metastasis 

formation182. Moreover, transforming growth factor-β receptor (TGFβR) accumulated in the 

TME is able to induce in neutrophils reactive oxygen species (ROS) production and NO 

release further cooperating in tissue damage175,183.  
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An increase of proteins related to degranulation have been shown to induce cell growth in 

both human and mouse models of lung cancer. The release of NET, prostaglandin E2 (PGE2) 

and hepatocyte growth factor (HGF) induces proliferation of pre-neoplastic and cancer 

cells174,184,185. 

Interestingly, a role of neutrophils in fuel cancer cells with lipids was recently described by 

Peishan et al., suggesting a neutrophils role as “energetic reservoir” and their intervention in 

the metabolic complexity within the tumor186.  

Several studies have demonstrated the direct contribution of TANs to promote tumor 

progression, but, it has also been demonstrated that the accumulation of neutrophils in distal 

tissue from the original tumor site generates a favorable niche to micro-metastasis 

colonization187,188.  

All these data suggest a more complex profile instead of the classical poor plastic vision of 

neutrophils and led to applied single cell technologies for their characterization in human to 

shed light on the phenotype of progenitor granulocytic cells within the bone marrow, 

dissecting the maturation process189, and their heterogeneity in the circulation as well as 

within the TME. In this regard, Montaldo et. al demonstrated a clear modulation of 

neutrophils phenotype in different conditions, including cancer, completely overcoming the 

concept of neutrophils as a unique population after the release from the bone marrow171. 

In this contest the crosstalk between neutrophils and CD8+ T cells is still controversial.  

 

ii. Neutrophils-T cells interaction 
 

Neutrophils are able to cooperate in cancer immunity toward a fine-tuned network of 

interaction with other immune cells. Their release of cytokines in the TME participates in 

the recall and activation, suppression or differentiation state of other immune cells. However, 

among the innate compartment, neutrophils represent one of the major T cell suppressor 

populations. In this complex scenario, the crosstalk between neutrophils and CD8+ T cells is 

still controversial. 

Activated neutrophils in head-and-neck cancer or mammary carcinoma were able to inhibit 

T cell proliferation through ROS production and degranulation after direct contact. This 

resulted in change in morphology, mitochondrial dysfunction and adenosine triphosphate 

depletion in T cells and dump T cells proliferation, revealing the detrimental role of activated 

neutrophils on T cells190.  Same results were observed in neutrophils isolated from mice 

colon tumors. The depletion of neutrophils in CRC tumor-bearing mice leads to reduction of 

cancer mass together with higher T cell infiltration, supporting the immunosuppressive role 

of neutrophils. Neutrophils release MMP9 in the TME which activates the precursor form of 
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TGFb turning off CTLs response191.  In a pioneering study, Eruslanov et al. demonstrated a 

feedback loop between neutrophils and CD8+ T cells. In early-stage human lung cancer 

CD66b+ CD15high CXCR2+ CXCR4+ neutrophils have been demonstrated to be enriched and 

active within the TME and their ability to promote T cell proliferation in vitro and their 

cytotoxic activity has been proven. On the other side, T cells are able to increase the viability 

of neutrophils in vitro. Interestingly the crosstalk between neutrophils and T cells has been 

demonstrated to take place in a contact-dependent mechanism.  

ROS and NO, released by activated neutrophils in the TME, negatively modulate the activity 

of others immune components, resulting in immunosuppression on the T cells 

compartment175,192. Interestingly, the interaction between CXCR1 and CXCR2 and their 

ligands induce NET formation. NET, in turn, protects tumor cells from CTL and NK 

cytotoxicity generating a mechanical barrier and prevent the immunological synapsis 

formation193. Moreover, NET was found to positively correlate with Treg cells, further 

suggesting its pro-tumoral role in hepatocellular carcinoma194.   

Although several studies suggest that tumor associated neutrophils suppress the anti-tumor 

activity of infiltrating T lymphocytes, data are still scattered and frequently controversial.  

The interaction between neutrophils and gamma delta (γδT) T cells showed both pro- and 

anti-tumorigenic properties, based on the TME composition. The release of IL10 and 

arginase by neutrophils and IL17 by γδT cells have been shown to induce 

immunosuppression of T cells cytotoxic activity leading to cancer progression in breast 

cancer192. Instead, NETosis, together with the ROS and NOS produced by neutrophils and 

GZMs and PRFs by γδT cells, have been found as key factors for tumor cells lysis195. In lung 

cancer, the interferon-γ (IFNγ) and granulocyte–macrophage colony-stimulating factor 

(GM-CSF) promote the differentiation of immature neutrophils into APC-like cells and 

trigger CD4+ and CD8+ T cells activity196. Moreover, their ability to acquire an APC-like 

phenotype has been also demonstrated in draining lymph nodes of head and neck cancer 

improving patients’ prognosis197.  

The crosstalk between CTLs and neutrophils has been also demonstrated by the 

colocalization within the TME, noticing that their physical interaction is an important player 

in cancer immunity. Governa et al. demonstrate that neutrophils are able to induce a central 

memory phenotype in CD8+ T cells in vitro, with an increase in CD69 expression and IFNg 

release, through the interaction of CD11b and CD54/ICAM1 on neutrophils198. Further 

studies are necessary to clarify the role played by neutrophils in the complexity of the TME 

and their intervention in cancer progression.  
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5. Multiomics approaches to dissect tumor heterogeneity 
 

Several studies have managed to deeply immune-profile at single cell level different type of 

cancers. The application of different technologies such as scRNAseq, MPFC, cytometry by 

time of flight (Cytof) and multiplex immunofluorescence (mIF) not only have identified new 

immune populations completely renewing the idea of heterogeneity in the TME but allow to 

perform a single cell analysis even starting from limited amount of sample, crucial for 

application in human studies.  

The first tools used for transcriptomic analysis in immunological studies were based on 

microarrays targeted RNA. This technique allows the identification of a specific selected 

transcript even with a very low expression of it and starting from a low amount of material199. 

Nowadays, the targeted RNA transcriptomics has been developed and with the application 

of BD Rhapsody Express system it is possible to detect target RNA analysis at single cell 

level. 

For several years an incredible number of studies took advantage from the bulk-RNA 

sequencing. However, this tool has difficult application in immunological characterization 

of complex sample, like tumors, where it is impossible understand the ownership of a 

specific differentially expressed genes (DEG) identified200. To overcome this limitation, an 

enrichment of the population of interest by FACS-sorting or magnetic isolation is necessary 

but challenge due to the small amount of material and the low abundance of the immune 

populations within the TME. The advent scRNAseq has completely renewed the cancer 

immunology. The possibility to analyze the transcriptional profile at single cell level has 

given rise in the last decade to an incredible amount of new data about cell differentiation 

and function, with the discovery of immune subpopulations and mechanistic information. 

These results have paved the way for the dissection of the huge tumor immune heterogeneity 

and most importantly for a fast and scientific relevant translation in clinical applications.  

The antigen specificity of the lymphocytes within the TME is another important feature to 

be elucidated in order to predict the response to the therapy and the patient prognosis. Both 

with bulk analysis and single cell technologies we can obtain the clonotype of T and B cells 

using specific oligonucleotides. Despite the cost of the single cell analysis, it allows to obtain 

matched information about the clonotype and the complete transcriptional profile of the 

cells.201 

A second branch of interest for immunological studies is dissecting the epigenetic profile of 

the immune cells. scATACseq (single cell Assay for Transposase-Accessible Chromatin 

using sequencing)202,203 is the prominent techniques in the field, however scChIP–seq (single 

cell chromatin immunoprecipitation sequencing)204, scHi-C-seq (single cell high‐throughput 



 31 

chromosome sequencing) 205,206 and several other techniques are emerging on the scene to 

dissect the epigenetic regulation of immune cells in differentiation processes, in adaptation 

within different tissue and pathological condition, included cancer. 

On the other side, the proteomic analysis is fundamental to complete the immune-profiling 

and get functional information. Continuous improvement in flow cytometry is now allowing 

to analyze up to 40 antigens simultaneously with the advantage to get quantitative 

information. Together with scRNAseq, MPFC is the main applied technique to generate 

immune-profiling in patients derived samples and has generated important results not only 

to understand biological processes but, most importantly, to discover new therapeutic 

targets.207 Nevertheless, in the last decade, the development of CyTOF allows the detection 

of up to 45 proteins simultaneously, which has represented an important achievement for 

functional immunological studies208. Indeed, the use of heavy metal isotopes avoids the 

background associated with fluorescent antibodies used for flowcytometry and limits the 

high rates of autofluorescence. 

Finally, technologies like mIF (multiplexed immunofluorescence imaging) for proteins 

detection and RNAScope (RNA in situ hybridization) for the in situ analysis of the 

transcriptome, top up the lack of localization information and resolution by integrating 

proteomics and transcriptomics profiling with the localization in the tissue209. 

The continuous development of these technologies generates an incredible amount of data 

at single cells level in complex samples leading to the development of new tools of analysis. 

Thus, new and sophisticated bioinformatics algorithms have been developed to generate 

computational analysis able to explore the complexity of the sample, discover new 

populations together and get information regarding the relationships, which associate and 

differentiate each other’s. t-distributed Stochastic Neighbor Embedding ((t-SNE)210 and 

Uniform Manifold Approximation and Projection (UMAP)211 are techniques of dimensional 

reduction and are fundamental for the visualization of complex samples. However, to dissect 

the heterogeneity of the samples it is necessary to define specific populations characterized 

by a common proteomic/transcriptional profile (clusters). To reach this aim additional 

machine learning techniques compute the similarity toward neighborhood events and, after 

the construction of a network of connections, algorithms detect the density of neighborhood 

events with a peculiar profile and define clusters.  

Focusing our attention on the analysis of MPFC, after a well-defined workflow of 

preprocessing212, repository available algorithms are applied to generate exploratory analysis 

of the samples. It is important to highlight that the number of clusters could be fixed by the 

researcher (FlowSOM)213 or detected by the algorithm in an unbiased way (Phenograph)214. 

The PhenoGraph algorithm allows to identify multiple and unexpected clusters 
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independently from the number of events associated by a common profile but only based on 

the level of similarity between two group of cells. A fundamental point to take into account 

when performing this kind of analysis is to avoid that large clusters obscure the presence of 

rare populations, which is important feature to utilize this approach for the detection of new 

cell type in heterogeneous human derived sample such as cancer specimens. New 

algorithms, such as PhenoGraph for MPFC, are optimized to maintain a good separation of 

small populations even if the number of clusters is unbiased. To validate the ability of the 

algorithms to detect real cell populations is good practice to identify the same cell phenotype 

using the manual gating strategy. This procedure is always recommended after the 

identification of a new population by computational analysis to confirm and refine the profile 

of the novel cells.  

The combination of multiple techniques is a potent tool to dissect immune heterogeneity 

within and across small samples derived from cancer patients.  

In this study, we combined several techniques to dissect the composition of the TME, mainly 

focusing on the crosstalk between neutrophils and CD8+ T cells and its impact on anti-tumor 

response and clinical outcome. 

Methods 
 

1. Ethics approval for the research  
 

The European Institute of Oncology (IEO) Institutional Review Board (protocol n. 

R1083/19-IEO 1149) approved the use of patients derived sample collected from patients 

diagnosed with CRC. All the patients enrolled in the study were non-metastatic and 

treatment-naïve at the time of surgical resection. The collection of peripheral blood from 

healthy donors has been approved by the IEO’s Ethical Committee (registered as IEO 1781) 

and all the donors provided written informed consent in accordance with the Declaration of 

Helsinki.  

Mice were housed and bred in a specific-pathogen-free animal facility and treated in 

accordance with the European Union Guideline on Animal Experiments. Animal handling 

and experimental protocols were reviewed and approved by the Institutional Animal Care 

and Use Committee of The Jackson Laboratory under the protocol number AUS#17027.  

For mouse experiments, we used C57BL/ 6J male mice of 10 weeks in each experiment. The 

number of biological replicates was indicated in the respective figure legends. 215 
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2. Cell lines  

Caco-2 were obtained from American Type Culture Collection (ATCC). HT-29 MTX cells 

were a gentle gift from Dr. Monteleone (University of Rome Tor Vergata, Italy). Caco-2 

were cultured in flasks in Eagle’s minimal essential medium (EMEM, Merck) supplemented 

with FBS, HEPES, sodium pyruvate, non-essential amino acids, L-Glutamine. HT- 29 MTX 

were cultured in DMEM supplemented with FBS and HEPES. For co-culture experiments, 

Caco-2 and HT-29 MMTX were cultured in Caco-2 medium. Human Microvascular 

Endothelial Cells (HMEC-1) were obtained from Center for Disease Control and Prevention 

(CDC) of Atlanta. HMEC-1 were cultured in collagen-coated flasks in MCBD 131 medium 

supplemented with FBS, HEPES, Hydrocortisone and human epidermal growth factor 

(EGF). MC38 cell line was a gift from Dr. Chih- Hao Chang lab at The Jackson Laboratory. 

MC38 cells were maintained in DMEM supplemented with 10% fetal bovine serum (FBS). 

Cells were cultured in a humidified environment at 37 °C in 5% CO2. 215 

 
3. Tissue dissociation and cells isolation 

 

Primary tumors (T) and normal adjacent tissue (NAT, collected at 10cm from the tumor site) 

were collected just after surgery. One fraction was collected for histological assays, and one 

was reduced into single-cell suspension.  

Firstly, a mechanical dissociation was performed by cutting the sample using tweezers and 

scalpel in 1 ml of ice-cold PBS. The dissociated tissue was transferred into a 15ml Falcon 

tube on ice where liquid and solid parts of the samples were separated by 10 minutes 

sedimentation at 1 g. The interstitial fluid (InF), the liquid part of the tissue, was collected 

and used freshly or stored at -80°C. While the solid part of the tissue was enzymatically 

digested with 20μg/ml DNAse (Sigma-Aldrich) and 2mg/ml collagenase (Merck) for 30 

minutes at 37°C to obtain a single cell suspension. The single cell suspension was then 

filtered through 100μm and 70μm cell strainers and washed in Hank's Balanced Salt Solution 

(HBSS) without Ca2+ and Mg2+. Cells were either stained for MPFC or FACS-sorting, 

further processed for scRNAseq or frozen in liquid nitrogen according to standard 

procedures for future used.  

For the isolation of peripheral blood mononuclear cells (PBMCs), a density-gradient 

separation from peripheral blood (PB) was performed. PB was diluted in 1:1 ratio with PBS 

and gently layered on top of Ficoll solution in a 1:1 ratio. After centrifugation at 300g for 30 

min at room temperature (RT), PBMCs were collected, washed, counted and stained for 

MPFC or employed for CD8+ T cells isolation. Aliquots of PBMCs were cryopreserved in 
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freezing media composed by FBS supplemented with 10% dimethyl sulfoxide (DMSO). 

CD8+ T cells were isolated from PBMCs by negative magnetic separation using the Miltenyi 

CD8+ T Cell Isolation Kit Human following the manufacturer’s instruction. 

Human polymorphonuclear leukocytes (PMNs) enriched pellet was diluted with 20 ml of 

PBS and a 3% dextran solution in HBSS was added in a 1:1 ratio. After 30 min at 1g at RT 

the supernatant was collected and washed, and red blood cell lysis was performed according 

to manufacturer’s instruction (Red Blood Cell Lysis Solution, Mylteni). 

Bone marrow (BM) derived mouse neutrophils were purified through positive selection. 

Briefly mice legs were collected, and the bone isolated then cut at the extremities. The BM 

was extracted by flushing into the cavity of the bone. After washing Ly6G+ cells were 

enriched by the anti-Ly6G magnetic beads (Miltenyi Biotech) according to the manufacturer 

instructions. 

Mouse CD8+ T cells were isolated from spleen and lymph nodes. After mechanically 

dissociation and filtering to obtain a single cell suspension, cells were washed and treated 

with ACK to remove the erythrocytes. After counting CD8+ T cells are enriched by negative 

magnetic separation using the Miltenyi CD8+ T Cell Isolation Kit Mouse following the 

manufacturer instructions.  

Mice tumors were collected and cut using tweezers and scalpel. The single cell suspension 

was obtained by enzymatic digestion with 1,5 mg/ml collagenase, 0,75 mg/ml hyaluronidase 

and 0,1mg/ml Dnase I in RPMI 10% FBS for 1h at 37°C. Cell suspension was filtered 

through 100μm and 70μm cell strainers, washed, counted, and stained for MPFC or FACS-

sorting.  

Sorting/isolation efficiency and yield of isolated human and mouse immune populations 

were checked by FACS, and we obtained a purity around 90 ±10%). 
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4. Multiparametric flow cytometry (MPFC) and sorting 
 

High-dimensional flow cytometry was performed on tumor (T), normal adjacent tissue 

(NAT) and peripheral blood (PB) with conjugated antibodies shown in the following table.  

 

 
Table 2. List of antibodies applied for the multiparametric flow cytometry analysis. 
Adapted from Tiberti et al. 

 

Marker Fluorophore Manufacturer Cat. # Dilution
CCR7 BV421 BD 562555 1:100
CD10 APCR700 BD 659120 1:100
CD11b BV786 BD 740965 1:100
CD11C APC R700 BD 566610 1:100
CD127 APCR700 BD 565185 1:100
CD14 BV421 BD 565283 1:100
CD15 APC BD 551376 1:100
CD16 BV650 BD 563692 1:100
CD19 BV650 BD 563226 1:100
CD206 APC BD 550889 1:100
CD25 PE-CF594 BD 562403 1:100
CD3 BB700 BD 566575 1:100
CD33 BV421 BD 562854 1:100
CD39 PECF594 BD 563678 1:100
CD4 BV605 BD 562658 1:100
CD45 APCH7 BD 560178 1:100
CD45Ra FITC BD 555488 1:100
CD66b PE BD 561650 1:100
CD68 BV421 BD 564943 1:100
CD69 APCCY7 BD 560912 1:100
CD69 APC BD 555533 1:100
CD8 BV605 BD 564116 1:100
CD8 BV786 BD 563823 1:500
CD80 PE BD 557227 1:100
CTLA4 BV421 BD 562743 1:100
CXCR2 BV421 BD 744195 1:100
CXCR2 FITC BioLegend 320704 1:100
CXCR4 PECY7 BD 560669 1:100
GRZK PE Santa Cruz Biotechnology sc-56125 1:100
HLA-DR BV605 BD 562845 1:100
LAG3 PE BD 565616 1:100
Fixable Viability Stain 510 BD 564406 1:100
PD1 BV650 BD 564104 1:100
TCR γ/δ PE-CF594 BD 562511 1:100
TIM3 BB515 BD 565568 1:100
TCRgd PerCP-Cy5.5 BioLegend 331224 1:10
NKG2A FITC Miltenyi 130-113-568 1:100
CD39 APC-H7 BioLegend 328226 1:50
TIGIT APC BioLegend 372706 1:50
CD25 BV786 BD 741035 1:600
CCR7 BV711 BD 566602 1:20
OX40 BV650 BD 563658 1:20
CD161 BV605 Biolegend 339916 1:10
CD27 BV570 BioLegend 302825 1:20
CD11b BV510 Biolegend 301334 1:10
PD1 BV480 BD 566112 1:20
CD103 BV421 BioLegend 350214 1:100
CD8 BUV805 BD 564912 1:200
CD28 BUV737 BD 564438 1:10
HLADR BUV661 BD 565073 1:100
CD4 BUV615 BD 624297 1:400
CD45RA BUV563 BD 565702 1:100
CD3 BUV496 BD 564809 1:20
CD69 BUV395 BD 564364 1:100
CD45 PE-Cy7 Biolegend 3.04016E+11 1:2500
CD56 PE-CY5.5 eBioscience 35-0567-42 1:20
CD127 PE-CY5 eBioscience 15-1278-42 1:20
CX3CR1 PECF594 Biolegend 341624 1:50
GZMB APC-R700 BD 560213 1:600
GZMK PE Santa Cruz sc-56125 1:200
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Single-cell suspensions were stained fresh or after thawing in pre-warmed RPMI with 10% 

FBS. Cells were washed in staining buffer (PBS with 2%FBS and 2mM EDTA) and 

incubated for 30 min at 4°C with surface antibody cocktail in staining buffer, washed in 

staining buffer, fixed and permeabilized using Fixation/Permeabilization Solution Kit (BD). 

When necessary, cells are stained intracellularly for 2h at 4°C with antibody cocktail in 

permeabilization solution. To acquire samples FACSymphony A5 or FACSCelesta BVYG 

equipped with FACSDiva version 8.0.1 were used. Compensation Beads (Ultracomp, 

Thermofisher) were used for single-stained controls for electronic compensation.  

CD8+ T cell subsets and neutrophils populations were sorted to high purity using FACSAria 

III (BD Bioscience) with the application of single staining controls on the same tissue and 

fluorescence minus one (FMO) control for the fundamental markers of the sorted 

populations. CD8+ T cells were simulated 3 h with PMA (20 ng/ml), ionomycin (1ug/ml) 

and GolgiPlug protein-transport inhibitor (brofeldin A, 1:1000) to evaluate ex vivo cytokines 

production. 

Software FlowJo v10 (TreeStar) was utilized to analyze and visualize all the FCS files 

generated.  

 

5. MPFC data analysis 
 

The large amount of data obtained from CRC patients derived T, NAT and PB required 

computational analysis to reduce the complexity of the samples and dissect the heterogeneity 

of the infiltrate. The Phenograph algorithm214 was applied to compute the similarity toward 

neighborhood events.  

Briefly after compensation and isolation of singlet, LD negative, CD4-, CD3+, CD8+ T cells, 

CD8 analysis was performed on 3000 events per sample and all concatenated by the 

“cytof_exprsMerge function”. In the first iteration of the algorithm, K value (the number of 

nearest neighbors identified), was set to 100. FlowJo version 10 (FlowJo) was utilized to 

generate and visualize the dimensional reduction by Uniform Manifold Approximation and 

Projection (UMAP) and t-distributed stochastic neighbor embedding (tSNE). The under-

represented clusters (<0.5%) were discarded from the analysis.  

The balloon plots generated a further meta-clustering classification by the interpolation of 

the MFI and the frequency of each marker per cluster and was performed using the ggplots2 

R package.  

Euclidean distance and Ward-linkage methods via cytofkit package were applied to generate 

hierarchical meta-clustering of Phenograph generated clusters based on age, gender and 

stage of disease. 
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6. Immunohistochemistry (IHC), Immunofluorescence (IF), and GIEMSA 
staining 

Slides (5 μm) from formalin-fixed paraffin embedded (FFPE) samples were stained after 

deparaffinization by heating 30 min at 55°C and rehydration in consequent steps of 5 min 

within in order: Xylene (3 times), ETOH 100% (2 times), EtOH 95%, EtOH 70%, EtOH 

50% 5 min and ddH2O. Heat-induced antigen retrieval (citrate buffer pH 6 or 9, 

Thermofisher) was performed with the application of the microwave. For IHC 3% H2O2 

incubation was used to block endogenous peroxidase activity. Slides were incubated ON at 

4 °C with mouse anti-human CD66b antibody (BioLegend, 305102, 1:100 for both IHC and 

IF), anti-human CD8 (Invitrogen, 53-0008-82, 1:100), rabbit anti-human GZMK 

(Invitrogen, LS-C119554-50, 1:100), rabbit anti-human E-Cadherin (Abcam, Ab1416, 

1:100), rat anti-human Ki67 (eBioscience, SolA15, 1:200), rabbit anti-human EPCAM 

(Abcam, Ab32394, 1:400), mouse anti-human SDF-1 (R&D, MAB350, 1:100), anti-human 

αSMA (Abcam, Ab8211, 1:200) in a blocking solution composed of 3% BSA, 5% goat 

serum (Invitrogen, 10000 C) and 0.1% Triton in PBS. After 30 min of incubation with HRP-

secondary antibody and Aminoethyl Carbazole (AEC) + High Sensitivity Substrate 

Chromogen (Dako) for IHC or fluorophore-conjugated antibodies (Invitrogen, goat anti- 

mouse 488; Invitrogen, goat anti-rabbit 647; Invitrogen, goat anti-rabbit 488; Invitrogen, 

goat anti-mouse 555; 1:500; Invitrogen, goat anti-rat 555, all 1:500 for 1h at RT) for IF, 

slides were mounted and acquired by using Aperio for IHC or SP8 confocal microscope 

(Leica) for IF, respectively. GIEMSA staining was performed on neutrophils freshly isolated 

from PB or FACS-sorted from tumors after cytospin on the surface of glass slides at 300 

RPM 4 min following manufacturing instruction for the staining with methylene blue, azure 

B and eosin (Hemacolor, Sigma).  

7. Imaging analysis 
 
For quantification of GZMK signal on human colorectal cancers, sections were labeled with 

DAPI, anti-GZMK, anti-CD66b and Alexa Fluor 488-conjugated anti-CD8 primary 

antibodies and images captured with a Nikon CSU-W1 spinning disk (Nikon Europe BV) 

using a 40×/1.15 NA water immersion objective lens (pixel size 0.1625 × 0.1625 um2). For 

the tumor area identification, previews of tissue sections on the DAPI channel were acquired 

with a 10×/0.3 NA dry objective lens. Inside the tumor areas, 3 to 4 regions were randomly 

chosen for the acquisition with a 40×/1.15 NA water immersion objective lens. Each region 

was made of 12 adjacent tiles covering a total area >4mm2 per tissue section. 
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The quantification of the GZMK signal in CD8+ cells was done with a custom-made Fiji 

macro103. Briefly, images were pre-processed with denoising and background subtraction, 

and nuclei were segmented on the DAPI channel with the plugin StarDist104, using the built-

in model Versatile (fluorescent nuclei) and the intensity parameters, including “mean 

intensity” and “raw integrated density”, of CD8, GZMK and CD66b fluorescence were 

quantified in a band of thickness 1μm around each nucleus. 

CD8+ cells were identified from the database by setting criteria on the intensity parameters 

of the specific fluorescence. Particularly, a cell was considered as positive for CD8 

fluorescence channel if its “raw integrated density” was above a threshold value, set by the 

comparison in images of the “raw integrated density” values of cells expressing CD8 

fluorescence and the “raw integrated density” of cells expressing only autofluorescence 

signal. The same procedure described above was used for the detection of CD66b positive 

cells. Differences between two groups were calculated by unpaired, two-tailed Student’s t 

test. The analysis of GZMK fluorescence in CD8+ cells lying in the proximity of a neutrophil 

(CD66b+) was performed as follows: the distance between a CD8+ cell and its nearest 

neutrophil was computed per each field of view. Only distances below 10 μm were 

considered to select pairs of CD8+ cell-neutrophil that were close to each other. The mean 

intensity of GZMK fluorescence in CD8+ cells close to neutrophils was compared to the 

GZMK mean intensity of cells close to neutrophils that were not positive for CD8. 

In order to evaluate the expression of GZMK of CD8+ cells in relation to their distance from 

a neutrophil, we performed the computation of lymphocytes and neutrophils distances in 

Tumor Area. The distances of CD8+ cells from each neutrophil were calculated in each 

acquired image using an R script and these distances were filtered with a min function in 

order to consider the «nearest» neutrophil per each CD8+ cell. For the analysis, we 

considered only distances <10μm (Touching) and between 10 and 20 μm (Near).  

For the quantification of SDF-1 in cells positive for αSMA, human colorectal cancers 

sections labeled with DAPI, anti-SDF-1, anti-αSMA, and anti-EPCAM primary antibodies, 

and captured with a Nikon Eclipse Ti widefield microscope (Nikon Europe BV) using a 

20×/0.75 NA dry objective lens (pixel size 0.32 × 0.32 μm2). For the tumor area’s 

identification, previews of tissue sections were acquired with a 4×/0.2 NA dry objective lens. 

Inside the tumor areas, regions were randomly chosen for the acquisition with 20×/0.75 NA 

dry objective lens for a total acquired area >35 mm2 per tissue section. 

The quantification of SDF-1 signal in αSMA+ cells was done with Qupath v. 0.2.3105 

through a custom-made script. Briefly, cell nuclei were detected on DAPI channel with the 

StarDist extension and a cell expansion of 1 um was applied in order to measure fluorescence 

in the cytoplasmic/membrane cell’s area. For the nuclei segmentation with StarDist, a 
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custom model was trained and tested using the StarDist (2D) network in 

ZeroCostDL4Mic106: a training dataset was generated by the manual annotation of nuclei 

in QuPath and labeled images were exported for the deep-learning training; the model’s 

training and quality control assessment were performed with the StarDist (2D) notebook. 

For the detection of pixels positive for αSMA staining, a pixel classifier was created with 

the QuPath’s function Create thresholder and the quantification of the positive area inside 

each segmented cell was added as a measurement parameter in the detection’s results table. 

Other two-pixel classifiers in the red and far-red channels were similarly created to be used 

in the statistical analysis step. The expression of SDF-1 was quantified as the mean intensity 

of the corresponding fluorescence signal in the band around the nucleus. 

Cells with an area > 3 μm2 (estimated as the 10% of the area of a band created around a 

nucleus with area size 46 μm2) of pixels classified as positive for αSMA were considered as 

αSMA+. Cells overlapping with red blood cells were discarded from the analysis.215 

 

8. In vitro CD8+ T Cells and Neutrophils co-culture and treatment with 
Interstitial fluid (InF)  

 

After isolation, CD8+ T cells were stimulated with plate-bound anti-human CD3 (2mg/mL) 

and anti-human CD28 (2mg/mL) for 6h. After activation, CD8+ T cells and freshly isolated 

neutrophils were co-cultured at different ratio in complete RPMI-1640 media after washing 

of CD8+ T cells to remove the anti-human CD3 and anti-human CD28 antibodies in order to 

avoid Anti-body-dependent cellular cytotoxicity (ADCC) of neutrophils on CD8+ T cells and 

analyzed at different timepoints.  

To evaluate the effect of T and NAT interstitial fluid (InF), both CD8+ T cells and neutrophils 

were cultured in 96well plates and treated with InF in a ratio of 1:3 with the cell media for 

24 and 2 hours, respectively. In the control, the 1/3 of the media is substituted with PBS. 

After incubation time, cells were stained for MPFC and analyzed.  

 

9. In vitro GZMK and SDF-1 treatment  
 

HT-29 and CACO2 cells were cultured in transwells in 1:9 ratio (CACO2:HT-29) for 16 

days and the media was changed every two days. After 16 days of culture, trans-epithelial 

electrical resistance (TEER) was measured to assess the epithelial formation. Cells were 

treated with rHu-GZMK (Enzo Life Sciences) 10µM for 24h with or without the GZMK 

inhibitor (PRO-328 100nM, Prospec).  
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For treatment of neutrophils, freshly PMNs from PB of HD were treated with SDF-1 100 

ng/ml (R&D biosystems) and analyzed at different time points and with different assays as 

indicated in the results and relative figures. 

 
10. Neutrophils migration assay 

 

Custom-made microfluidic device in Polydimethylsiloxane (PDMS) was used to perform a 

migration assay of neutrophils isolated from PB of HD. It was composed by three parallel 

channels separated by two lines of pillars. A collagen matrix solution (composed by a mix 

of PBS 10x, NaOH 1N, 8.04 mg/ml rat tail Collagen type I and RPMI culture medium) was 

injected in the central channel of the microfluidic chip, incubated at 37°C and hydrated by 

injecting culture medium into the lateral channels.  

 
Figure 10. Schematic overview of neutrophils migration-on-Chip. 
Microfluidic chip with an immune cells channel (700μm wide, 1.1 cm long and 150μm high) and a 
chemoattractant channel (700μm wide, 1.1cm long and 150μm high) separated by extracellular matrix (ECM) 
(1300μm wide, 1.1 cm long and 150μm high). Trapezoidal micropillars (bases 270 and 60μm, height 190μm, 
spacing 120μm, pillar height 150μm) confine ECM in the central region were used for motility assay. In time-
lapse experiments, migrating neutrophils invading the ECM channel, were counted. 
 
The right channel of the device was injected with purified human neutrophils (3x106/ml) 

from healthy donor labeled with calcein-AM (1:1000, Invitrogen), Hoechst 33342 (1:10,000, 

Euroclone) and DRAQ7 (1:1000, Vinci-Biochem). In order to have neutrophils lying at the 

interface between lateral channel and collagen gel the chips were incubated at 37°C for 20 

min on an angled surface. Invasion of neutrophils in the collagen gel was evaluated through 

time lapse experiments performed using Nikon Eclipse Ti (3 fields for chip, 1 image every 

2.30 min for 4 h at 10x magnification) following addition of chemoattractant solutions or 
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culture medium to the left channel. Interstitial fluid from patient’s tissues, purified CXCL6 

(400 ng/ml), SDF-1 (100ng/ml) and IL8 (100 ng/ml) (R&D biosystems) were added to the 

system and the number of migrating cells was analyzed using imagej version 2.0. 

 

11. Neutrophils gelatinase assay 
 

DQ gelatin (molecular Probes, 100ug/ml final concentration) was used to measure gelatinase 

activity from a triplicate of HD-derived PB isolated neutrophils with or without SDF-1 

treatment (100 ng/ml). Neutrophils were incubated with DQ gelatin and every 15 min the 

fluorescent output was measured at room temperature on GloMax Discover microplate 

reader (Ex=~495nm, Em=~515nm) Promega Instrument) and corrected for background. 

Internal calibration curve was generated using Clostridium histolyticum collagenase (0.15 

U/ml).215 

 

12. Neutrophils adhesion assay  
 

To label the cells, freshly neutrophils isolated from PB of HD were stained with Calcein-

AM (1:1000, Invitrogen) and Hoechst 33342 (1:10,000, Euroclone) for 20 min at 37°C.  

Stained cells were incubated in RPMI media with or without SDF-I (100 ng/ml) for 1 h at 

37°C in a 96-well on a monolayer of HMEC1. Before to proceed with the acquisition of the 

images, two washes with PBS were performed to remove non-adherent cells. The images of 

three fields for each well collected at the EVOS microscope (EVOS FL Cell Imaging 

System) at 4x magnification were analyzed. Calcein positive neutrophils were counted to 

calculate the number of adherent neutrophils using ImageJ version 2.0.0. 

 

13. In vivo animal experiments  
 
C57BL/6J were subcutaneously injected with 1 × 106 MC38 cells per mouse. When the 

tumor reaches the volume of <1cm3 and >1cm3 mice were euthanized to evaluate CD8+ T 

cells and neutrophils frequency and phenotype during progression.  

The neutrophils enrichment in mice were obtained by intraperitoneal injection (i.p.) of G-

CSF (2.5μg/mouse) daily from the day 16 after tumor injection as previously described186. 

Mice were euthanized for analysis at day 22. 

The depletion of neutrophils in vivo was obtained by i.p. of anti-Ly6G (clone 1A8, Bio X 

Cell) and anti-rat mouse IgG2a, Kappa immunoglobulin (clone MAR 18.5, Bio X Cell) or 

isotype controls (for anti-Ly6G and for anti-rat mouse IgG2a). Mice were treated with anti-
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Ly6G or isotype daily (day 0-20) via i.p., (25 μg/mouse) for day 0–6, and 50 μg/mouse for 

day 7–18; while anti-rat mouse IgG2a or isotype was administrated every other day, i.p., (50 

μg/mouse), i.p.for the combo injection days, injection of anti-rat IgG2a first, and 2 h later, 

do the injection of anti-Ly6G186. Mice were euthanized for analysis at day 20.  

The treatment with SDF-1 inhibitor (ADM3100) was performed by i.p. of ADM3100 (1 

mg/kg) at day 5, 7, 9, 11 after tumor injection. Mice were euthanized for analysis at day 13. 

All mouse experiments were conducted in agreement with requirements permitted by our 

ethical committee.  

The day of analysis, primary tumors were collected and dissociated to a single cell 

suspension as previously described and used for the analysis.  

 

14. Bead-based multiplexed ELISA 

Multiplexed ELISA on InF from matched T and NAT fresh tissues were performed on a 

Luminex 200 platform (Luminex Inc.,) using custom kits of pre-mixed antibody-coated 

beads (R&D System Inc., MN). The custom designed panel included the following analytes: 

CCL11_eotaxin, CCL13_MCP4, CCL17_TARC, CCL2_MCP1, CCL22_MDC, 

CCL26_EO- TAXIN3, CCL5_RANTES, CCL8_MCP2, CD25_IL2Ra, CX3CL1_FRAC- 

TALKINE, CXCL1_GROa, CXCL10_IP10, CXCL11_ITAC1, CXCL13_BLC_ BCA1, 

CXCL4_PF4, CXCL5_ENA78, CXCL6_GCP2, EGF, IFNγ, GMCSF, HGF, IL10, 

IL1ra_IL1F3, IL7, IL8_CXCL8, TRAIL, VEGFA, IL1b_IL1F2, IL5, IL6, IL17F, IL22, 

IL23, TNFα, LXSAHM-01, CCL3_MIP1a, CCL4_MIP1b, FGFbasic_FGF2, GCSF, 

IL1a_IL1F1, IL2, IL4, IL12 p70, IL13, IL15, IL17/ IL17A, CXCL12_SDF1, TGFb1, 

TGFb3. The assay was performed based on manufacturer recommendations. Briefly, 50μl 

of samples together with kit standards were added to each well in duplicate and incubated 

with the diluted Microparticle Cocktail at 4 °C, on a shaker at 850 rpm overnight (ON). 

Unbound soluble molecules were removed by washing the plate, then the Biotin-Antibody 

Cocktail specific to the analytes of interest was added to each well for 1h at RT. After 

washing, into the wells the Streptavidin-Phycoerythrin conjugated was added and incubate 

30 min at RT. After the final washing steps, the microparticles are resuspended in the kit 

buffer for reading on a Luminex 200 platform. Upon centering and scaling using the scale 

function in R (SD from mean pg/mL), the outputs (pg/mL) were statistically analyzed and 

visualized in R. To generate the heatmap of expression the Complex- Heatmap package was 

applied. Soluble molecule concentrations were associated with the CD15high neutrophils 

frequency by Spearman correlation and visualized using the corrplot package.  
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15. Single cell RNA sequencing (scRNAseq)  
 

T and NAT single cells suspension was counted and resuspended in PBS without Ca2+ and 

Mg2+ with 0.04% BSA. Approximately 2,000 cells/μl from each sample were used for the 

analysis. Briefly, using a Chromium Single Cell 3′ v2 Reagent Kit (10x Genomics) every 

sample were loaded into one channel of Single Cell Chip A. Cells are captured and lysate 

and complementary DNA was synthesized and amplified over 14 cycles according to the 

manufacturer’s protocol (10x Genomics). From 50ng amplified cDNA the library was 

prepared and sequenced with the NovaSeq 6000 System (Illumina). An average sequencing 

depth of at least 50,000 reads per cell was obtained for each sample.  

The cells are captured into droplets through the formation of a water-in-oil emulsion through 

microfluidic devices. Cells are captured lysed with a lysis buffer and specifically barcoded 

during the reverse transcription. Barcoded cDNAs are synthesized with specific index from 

thousands of cells in parallel. After reverse transcription cDNAs from different cells are 

pooled by breaking the droplets and amplified. and then sequencing libraries are prepared. 

The pooling of cDNA increases the throughput because thousands of cells can be sequenced 

in a single library resulting in a faster protocol and lower cost.  

 

16. RNA sequencing 
 

The RNA sequencing (RNAseq) of CD8+ T cells after coculture was performed after the 

isolation of 1*106 CD8+ T cells with Miltenyi CD8+ T Cell Isolation Kit Human. For 

transwell epithelial model of intestine treated with rHu-GZMK, cells were detached and 

wash with PBS before to proceed with RNA extraction. The RNA was extracted by the RNA 

easy mini kit (quiagen). The RNA concentrations after extraction were determined using 

Thermo Scientific NanoDrop 2000 spectrophotometer and the quality assessed by 2100 

Bioanalyzer Instrument.  

 
17. RNA data analysis219 

RNA data were analysed as reported in Tiberti et al., 2022. Briefly,single cells data analysis 

was performed on samples from 11 patients (for each one NAT and T were sequenced). The 

results were aligned using Cellranger count v. 3.1 on human genome hg38 and only droplets 

with a minimum number of unique molecular identifiers (UMI) were considered as “cells” 

by the Cellranger program.  
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Based on total cells in each patient and the distribution of each patient’s cells within groups 

identified by UMAP, we excluded patients 3 patients for further analyses. Thus, 52316 cells 

were processed. 215 Clustering analysis of the single cell data were performed using Seurat 

v. 3R package216. UMAP was generated from the first principal components of the PCA 

based on the expression of the most variable genes and normalized to identify cell 

populations and/or sub-populations. The different clusters were identified using nearest 

neighbor clustering (SNN) with the function “FindClusters” of the Seurat package. For the 

Pseudotime analysis was applied Monocle v. 3 217.  

 
18. Survival analysis methods 219 
 
RNA data were analysed as reported in Tiberti et al., 2022. To investigate the interplay of 

immune cytolytic activity and neutrophils infiltration on overall (OS) and disease-free 

survival (DFS), we interrogated the colon adenocarcinoma cohort (COAD) of The Cancer 

Genome Atlas (TCGA), and we performed a Kaplan–Meier analysis. The cytolytic activity 

index was quantified calculating geometric mean of granzymes and perforin expression and 

samples were split according to the Maximally Selected Ranks Statistics cutoff. Neutrophils 

and GZMKhigh cell subtype relative abundance was obtained by running CIBERSORTx112 

with a validated leukocyte gene signature matrix (LM22) on RNAseq data of COAD 

samples. Samples were divided into two groups according to the presence or absence of 

CD8+ T cells cells expressing “high” or “low” values of GZMK. The GZMKhigh cells 

identified were used to build a gene signature able to discriminate the two cell sub-

populations. The survival tables obtained from TCGA-COAD and TCGA-LUAD were used 

to ran Kaplan-Meier analysis, by using “survival” and “survminer” packages.  

We used Cox Proportional-Hazards Model for investigating the association between the risk 

of relapse of CRC patients and predictor variables. Cox regression model was chosen 

because it works for both quantitative predictor variables and for categorical variables and 

allows to assess simultaneously the effect of several risk factors on survival time 

(multivariate analysis). The analysis was performed on 209 CRC from TCGA-COAD public 

dataset looking at infiltration of CD8 GZMK-high cells, sex, age and stage of the tumor. 

 

19. Statistics and Data visualization.  
 

The statistics analyses were performed using Prism version 8.4.2 (GraphPad) or R software 

version 4.0.2. Significance p value was set at P < 0.05, unless otherwise specified and the 

tests used for each specific analysis are indicated in the figure legend. 
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Results 
 

1. Immune-profile in non-metastatic CRC patients 
 

Although CRC is considered a ‘’hot’ tumor where infiltrating CD8+ T cells are an 

independent positive prognostic factor, the tumor infiltrate is highly heterogeneous.  

In this scenario, it’s of pivotal importance to decode the interplay between different cell 

compartments at the tumor site and their impact on the clinical outcome.      

Here, we combined multiparametric flow cytometry (MPFC), multiplex enzyme-linked 

immunosorbent assay (ELISA), single cell RNA sequencing (scRNAseq) and confocal 

microscopy imaging together with in vitro and in vivo functional studies, to characterize the 

heterogeneity of the immune infiltrate within and across CRC patients. We profiled      

peripheral blood (PB), tumor (T) and normal adjacent tissue (NAT >10 cm from tumor 

tissue) from a cohort of 46 treatment-naïve early-stage CRC patients (8th ed. AJCC stages 

I, II and III) undergoing surgical resection. (Figure 11) 

 
Figure 11. Study design. 
Analysis of Tumor tissue (T), Normal Adjacent Tissue (NAT), and Peripheral Blood (PB) of non-metastatic 
CRC patients (n = 46) with multiomics techniques. (Created with BioRender.com) 
 

Details for all the patients involved in the study -age, gender, stage at first diagnosis, Body 

Mass Index (BMI), site of primary tumor, tumor type, relapse and MSI/MSS classification- 

are summarized in Table 3. 
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Table 3. Characteristics of CRC patients. 
Indication of Age, Gender, Stage at first diagnosis, Body Mass Index (BMI), Site of primary tumor, and Tumor 
type are shown for the cohort of this study.  
Adapted from Tiberti et al. 

 
 

2. CRC TME is mainly infiltrated by CD8+ effector memory T (TEM) cells 
 

CD8+ T cells infiltration is considered as a positive prognostic factor in many solid tumors, 

including CRC21,22,32. However, independently of the grade of T cell infiltration, over a third 

of early CRC patients’ relapse. Interrogating a TCGA database of non-metastatic CRC 

patients with a cytolytic CD8+ T cell transcriptional signature failed to significantly stratify 

CRC patients (Figure 12). This evidence suggests the CD8+ anti-tumor immune response is 

somehow “leaky” and mechanisms behind immune evasion in CRC patients need to be 

further elucidated.     

 

Count Frequency (%)
Total of patients 46 100
Relapse (2 years) 4 8.7
MSI 6 13

<50 2 4.4
50-70 23 50
>70 21 45.6

F 21 45.6
MSI 25 54.4

I 12 26.1
II 16 34.8
III 18 39.1

Normal 19 41.3
Overwight 15 32.6
Obese 7 15.2
NA 5 10.9

Left 20 43.5
Right 24 52.2
Medium Transverse Colon 2 4.3

Adenocarcinoma 43 93.5
Mucinous adenocarcinoma 3 5.5

Tumor type

Study Cohort

Age

Gender

Stage firs diagnosis

BMI

Site of primary tumor
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Figure 12. Cytolytic activity is not able to predict Overall survival (OS) in early-stage colorectal cancer 
(CRC) patients. 
Kaplan-Meyer analysis of the association of cytolytic activity with disease free survival (DFS) on the TCGA-
COAD cohort (n=284). High infiltration of cytotoxic cells is indicated in red, low infiltration in turquoise. The 
table shows the ‘number at risk’ subjects.  
Adapted from Tiberti et al. 

                

In our cohort, CD3+ T cells were enriched in T compared to NAT across all CRC patients 

(Figure 13 panel A); while B cells (identified as CD45+, CD3-, CD19+) were 

underrepresented (Figure13 panel B). In the T, the composition of CD3+ T cells was mainly 

characterized by conventional CD4+ T helper (Th) cells (52% ± 10) and CD8+ T cells (28.5% 

± 9), followed by Treg (10% ± 4.5), and Tγδ (3.5% ± 2.5) (Figure13 panel C). 

 

 
Figure 13. T lymphocytes are the main component of CRC infiltrate. 
Quantification of B cells (n=19) within CD45+ cells in Tumor (T) and normal adjacent tissue (NAT). Box and 
whisker plot indicates Min to Max value. *, P < 0.05; paired t test. B. CD3+ T Lymphocytes frequency within 
CD45+ in T compared with NAT (n=29). Box and whisker plot indicates Min to Max value. ***, P < 0.001; 
paired Wilcoxon test. C. UMAP representation of concatenated CD3+ T cells from T sample with bar plot 
quantification. Cytotoxic CD8+ T cells (blue), Th CD4+ (purple), Treg CD4+ (pink) and Tγδ cells (orange) 
distribution (n=29). Dot plot indicates Min to Max value. ***, P < 0.001; paired t test.  
Adapted from Tiberti et al. 

 

To gain further insights into the diversity occurring specifically in the CD8+ T cell 

compartment, we applied high dimensional flow cytometry and designed a multiparametric 

panel that includes memory and effector differentiation markers (CD45RA, CCR7, CD27, 

CD28, CD127, CX3CR1, CD161), activation markers (OX40, CD25, HLA-DR), inhibitory 

receptors (PD1 and TIGIT), tissue residency and tumor reactivity markers (CD69, CD103 

0 1 2 3 4 5Years

0 1 2 3 4 5

115
136

89
102

51
58

29
24

20
15

14
9

Number at risk

C
yt

ol
yt

ic
 a

ct
iv

ity

1.00

0.75

0.50

0.25

0.00

Su
rv

iv
al

 p
ro

ba
bi

lit
y

Cytolytic activity high low

p = 0.12

Years

U
M
AP
1

UMAP2T NAT
0

10

20

30

40

50

%
 B

 c
el

ls
 

✱

T NAT
0

20

40

60

80

100

%
 C

D
3+

✱✱✱

CD8 CD4 Th     CD4 Treg   Tgd
0

20

40

60

80

100

%
 W

ith
in

 C
D

3+

✱✱✱

✱✱✱

✱✱✱
A B C



 48 

and CD39) and effector molecules (GZMB and GZMK). The list of all the analyzed markers 

is included in Table 4. 

 

 
Table 4. Multiparametric flow cytometry panel. 
List of the markers with the corresponding Fluorophore and dilution. 
 
Based on the expression of CCR7 and CD45Ra, we were able to discriminate between               

Naïve cells (TN; CCR7+, CD45RA+), central memory cells (TCM; CCR7+, CD45RA-), 

effector memory cells (TEM; CCR7-, CD45RA-) and effector cells re-expressing CD45RA 

(TEMRA; CCR7-, CD45RA+). In accordance with previous studies22, the majority of 

intratumoral CD8+ T cells were composed by TEM cells (74.3%± 16.5) (Figure 14 panel A-

B). Moreover, based on the differential expression of CD27 and CD28, we further 

characterized the TEM cell population in EM1 (CD27+, CD28+), EM2 (CD27+, CD28-), EM3 

(CD27-, CD28-) and EM4 (CD27-, CD28+) 218, showing that EM3 and EM4 T cells, 

representing effector-like and memory-like phenotypes, respectively, were  the most 

represented CD8+ T cells subtypes in T (Figure14 panel C-D). 

Marker Fluorophore Dilution
TCRgd PerCP-Cy5.5 1:10
NKG2A FITC 1:100
CD39 APC-H7 1:50
TIGIT APC 1:50
CD25 BV786 1:600
CCR7 BV711 1:20
OX40 BV650 1:20
CD161 BV605 1:10
CD27 BV570 1:20
CD11b BV510 1:10
PD1 BV480 1:20
CD103 BV421 1:100
CD8 BUV805 1:200
CD28 BUV737 1:10
HLADR BUV661 1:100
CD4 BUV615 1:400
CD45RA BUV563 1:100
CD3 BUV496 1:20
CD69 BUV395 1:100
CD45 PE-Cy7 1:2500
CD56 PE-CY5.5 1:20
CD127 PE-CY5 1:20
CX3CR1 PECF594 1:50
GZMB APC-R700 1:600
GZMK PE 1:200
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Figure 14. CD8+ T cells within colorectal cancer (CRC) tumor are mainly effector memory cells (TEM). 
A-C. UMAP Representation of concatenated CD3+ T cells from tumor (T) sample with bar plot quantification. 
A. Naïve T cells (TNAIVE, light green), central memory T cells (TCM, dark green), effector memory T cells (TEM, 
dark blue), effector memory cells re-expressing CD45RA (TEMRA, light blue) distribution (n=31). Bars indicate 
mean ± s.e.m. ***, P < 0.001; paired t test. B. Representative dot plot of CD45RA and CCR7 expression within 
CD8+ T cells in peripheral blood (PB), normal adjacent tissue (NAT) and T. C. Effector memory T cells 
subtypes (EM1-4) (n=31). Bars indicate mean ± s.e.m. ***, P < 0.001; paired t test. D. Representative dot plot 
of CD28 and CD27 expression within CD8+ TEM within the T.  
Adapted from Tiberti et al. 

 

Interestingly, only a minority of intratumoral CD8+ T cells were TEMRA, a phenotype 

associated with a terminally differentiated phenotype. In accordance, when we analyzed the 

expression of PD1, LAG3, TIM3 and CTLA4 only low frequencies of CD8+ T cells (~1.5%) 

co-express more than one exhaustion marker, a trait associated with an exhausted phenotype 

(Figure 15 panel A). Indeed, within the PD1+ population, CD8+ T cells were still expressing 

markers (i.e. CD69, CD25 and GZMB) indicative of an “activated” and “functional” 

phenotype (Figure 15 panel B).  

 

 
Figure 15. CD8+ T cells within colorectal cancer (CRC) are not exhausted. 
A. Venn diagram of exhaustion markers frequencies within CD8+ in the tumor (T, n=34). B. Frequency of 
CD69+, CD25+ and GZMB+ within PD1+ and PD1- cells in T (n=34). Violin plot indicates Min to Max value. 
***, P < 0.001; paired t test.  
 

These data prompted us to speculate that CRC relapse could be explained by other 

mechanisms rather than the canonical T cell exhaustion.            
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3. The TME of CRC is infiltrated by two main CD8+ T cell populations 
identified by differential expression of CD39 and GZMK 

 
To dissect the heterogeneity of CD8+ T cells in the three different compartments analyzed, 

we adopted the PhenoGraph algorithm. Overall, tSNE revealed that the CD8+ T cell profile 

was substantially distinct at single-cell levels in the PB, NAT and T compartments (Figure 

16 panel A). Accordingly, unbiased hierarchical clustering also separated PB, NAT and T 

samples, independently from other factors like patient’s age, gender or tumor stage (Figure 

16 panel B). 

We were able to identify a total of 20 clusters (CL 9 and 16 were excluded because the 

number of cells was underrepresented; <0.5%) based on the interpolation between the mean 

fluorescence intensity (MFI) of the fluorophores analyzed and the frequency of the positive 

population detected for each marker (Figure 16 panel C). 

 

 
Figure 16. Clustering analysis reveals high heterogeneity among CD8+ T cells in early-stage colorectal 
cancer (CRC) patients within different compartments. 
A. tSNE representation of clusters identified by the PhenoGraph algorithm of concatenated CD8+ T cells (3,000 
cells/sample) from peripheral blood (PB, n = 22), normal adjacent tissue (NAT, n=17) and tumor (T, n=34). B. 
Hierarchically meta-clustering of CRC patients derived samples based on PhenoGraph identified clusters using 
Ward’s minimum variance method. For all the sample is explicated, in order Sample type, Grade, Sex, Age. 
C. Mean frequencies of the 20 clusters of CD8+ T cells identified by the unsupervised clustering analysis 
(n=34). Bars indicate mean ± s.e.m. 
Adapted from Tiberti et al. 

 
 

Multiple clusters that were characterized by lack of expression of residency markers (CD69, 

CD103) were mostly enriched in PB compared to NAT and T. Specifically, CL3 is annotated 

as TN (naïve cells) and characterized by high levels of CD45RA, CCR7 and CD127 

expression and lack of expression of activation markers (such as CD25, CD69, PD1, CD39). 

CL1, 5 and 18 were annotated as TEMRA due to high CD45RA and low CCR7 expression, 

general lack of expression of memory/activation markers along with high level of the 
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cytolytic molecule GZMB. CL6 is annotated as TCM (central memory) and characterized by 

expression of several memory markers (CCR7, CD127, CD27, CD28) but absence of 

activation and cytotoxic markers such as GZMB and GZMK. Two other clusters (CL8 and 

CL11) were instead enriched in T and NAT compared to PB, indicating that they were colon-

specific CD8+ T cell subsets and were annotated as TRM (tissue-resident memory T cells) 

since they displayed high expression of markers of memory (CD127 and CD28) and 

residency (CD69 and CD103). These two colon-specific TRM subsets expressed intermediate 

levels of CD161 and are enriched mainly in NAT. A different cluster is CL19 represented 

by CD161high mucosal associated invariant T cells (MAIT)219, cells equally represented in 

PB, NAT and T. Importantly, 4 different clusters, namely CL4, CL12, CL14 and CL20, were 

specifically and significantly enriched in T compared with PB. CL 4, 14 and 20 formed a 

meta-cluster of TEM cells characterized by CD45RA-, CCR7int, CD28high, CD27low 

expression pattern with a peculiar high expression of GZMK. These cells showed variable 

expression levels of activation markers and GZMB, low levels of PD1 and lack of tumor 

reactivity and residency (assessed by CD39 and CD69 - CD103 expression, respectively69. 

Conversely, CL12 identified T cells with a phenotype reminiscent of tumor reactive T cells 

(Treact)67,75,220–222, displaying increased expression of markers of residency (CD69 and 

CD103) and tumor-reactivity (CD39). Importantly CL4 and CL12 are significantly enriched 

in T compared with NAT while CL14 and 20 are equally distributed between T and NAT 

(Figure 17 panel A-B, Figure 18). 

 
Figure 17. CD8+ T cells phenotype is described by 18 clusters. 
A. Balloon plot of the average expression levels and frequencies of 18 selected markers within the 18 clusters 
analyzed (n=34). B. tSNE representation of Mean fluorescence expression (rMFI) of positive events for the 
marker indicated.  
Adapted from Tiberti et al. 
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Figure 18. CD8+ T cells clusters are differentially distributed across tissues.   
Cluster representation in different tissues: PB, NAT, T. Bars indicate mean ± s.e.m. *, P < 0.05; **, P < 0.01; 
***, P < 0.001; two-way Anova. Clusters are annotated as effector memory T cells (TEM) GZMK+, NKG2D+, 
CD39+, Effector Memory CD45RA+ (TEMRA), Tissue resident memory T cells (TRM), mucosal associated 
invariant T (MAIT), Naïve T cells (TN), central memory T cells (TCM) and exhausted T cells (TEX).  Adapted from 
Tiberti et al. 

 

We decided to focus our attention on CL4 and CL12 because they were significantly 

enriched in T compared with both NAT and PB. These two clusters are composed by TEM 

mainly distinguished by the expression of CD39 and GZMK. While CL12 expresses high 

levels of CD39 and low GZMK, CL4 expresses low levels of CD39 and high levels of 

GZMK (Figure 19 panel A-B). 

 
Figure 19. Colorectal cancer (CRC) is mainly infiltrate by two clusters of CD8+ TEM characterized for 
the differential expression of CD39 and GZMK. 
A. Balloon plot of the average expression levels and frequencies of markers of differentiation, residency, 
memory, cytotoxicity, tumor reactivity, activation and exhaustion in clusters identified as enriched in tumor 
(T, n=34). **,P < 0.01; ***, P < 0.001; two-way Anova.  B. Bar plot of CD39pos GZMK- and CD39neg GZMKhigh 
frequency within Cluster 4 (CL4) and Cluster 12 (CL12), respectively (n=34). Bars indicate mean ± s.e.m. ***, 
P < 0.001; paired t test.  
Adapted from Tiberti et al. 
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We confirm the above finding by adopting a classic manual gating strategy. The majority of 

intra-tumoral TEM were CD39- with a strong expression of GZMK (Figure 20 panel A-B). 

 

 
Figure 20. Colorectal cancer (CRC) is mainly infiltrate by CD39- GZMKhigh CD8+ effector memory T 
cells (TEM). 
A. Representative contour plot and relative quantification of CD39neg and CD39pos frequency within CD8+ TEM 
(n=34). Box and whisker plot indicates Min to Max value. ***, P < 0.001; paired Wilcoxon test. B. 
Representative contour plot and relative quantification of CD39neg and CD39pos frequency within GZMKhigh 
CD8+ TEM.  
Adapted from Tiberti et al. 

 

Of note, the expression of CD69 and CD103, as tissue resident markers, by the CD39- TEM 

population excluded that these cells were derived from blood contamination (Figure 21 panel 

A-B). Despite the low level of CD39, GZMKhigh cells enriched in TME present a peculiar 

activation profile with high expression of activation markers (CX3CR1, HLA-DR, and 

CD28) and GZMB and low expression of exhaustion markers (PD1 and TIGIT) (Figure 21 

panel C).  

 
Figure 21. CD39- GZMKhigh CD8+ TEM are resident activated cells. 
A-B. Representative histogram and quantification of CD103 (A) and CD69 (B) frequency within CD39neg 
CD8+ TEM within tumors (T, n=34) and peripheral blood (PB, n=18). Box and whisker plot indicates Min to 
Max value. ***, P < 0.001; paired t test. C. CD25, CD39, CD103, CD127, CD161, CX3CR1, GZMB, HLADR, 
PD1, TIGIT, CD28, CD27 frequencies within GZMKhigh and GZMKlow CD8+ TEM. Bars indicate mean ± 
s.e.m. ***, P < 0.001; paired Wilcoxon test.  
Adapted from Tiberti et al. 
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We next FACS-sorted CD39- and CD39+ CD8+ TEM cells from the CRC tumors and 

confirmed that CD39- CD8+ T cells produced significantly higher levels of GZMK (Figure 

22 panel A), while retained the ability to produce IFNγ, TNFα and GZMB compared to their 

CD39+ counterparts (Figure 22 panel B). These results confirmed an active state of these 

cells excluding a differentiation toward an exhausted phenotype. This overall “activated” 

profile differentiated them from the recently described “exhausted-like” GZMK+ CD8+ T 

cells45,62,223. 

 

 
Figure 22. CD39- CD8+ TEM have a high cytotoxic activity. 
A. GZMKhigh frequency within FACS sorted CD39- and CD39- CD8+ TEM from tumor (T) tissue (n=4).  Box 
and whisker plot indicates Min to Max value. **, P < 0.01; paired t test. B. Frequency of GZMB, IFNγ and 
TNFα cells within sorted CD39- and CD39- CD8+ TEM from T (n=4). Bars indicate mean ± s.e.m. *, P < 0.05; 
paired t test.  
Adapted from Tiberti et al. 
 

In conclusion, we reported that the TME of resectable CRC patients was highly infiltrated 

by a unique GZMKhigh CD8+ TEM cell population, characterized by a low CD39 expression. 

 

4. GZMK expression correlates with a distinct transcriptional program in 
CD8+ TEM 

 
To better characterize infiltrating GZMKhigh CD8+ TEM cells and assess their prognostic 

value, paired T and NAT tissues from 8 HN patients were analyzed by scRNAseq. We were 

able to collect a total of 52316 cells. The mean number of reads per cell were 94183 

(min:37500; max:235694) with a median number of genes detected per cell of 3779 

(min:1433; max:5392). The scRNAseq was performed on the total live cells obtained after 

the digestion of the sample to allow the simultaneous characterization of cancer cells and 

immune cells associated with the      tumor. All the CD45+ cells have been detected and 

reflects the proportion detected by flow cytometry. However, the number of cells per 

population is low, impairing our capability to analyze the neutrophil population even if we 

were able to detect their representation in the tissue. (Figure 23) 
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Figure 23. Single cell RNA sequencing (scRNAseq) analysis confirm the high abundance of T cells within 
the tumor (T). 
Uniform manifold approximation and projection (UMAP) projection of all the cells analyzed by scRNAseq. 
Colors represent different cell types. 
 

We focus our analysis on the 8523 cells composing the T/NK clusters and we generated a 

new UMAP in which we were able to distinguish seven T cell subtypes (Cluster 5 has been 

excluded because underrepresented) (Figure 24 panel A). The cluster 1 was enriched in the 

expression of CD4 while clusters 3 and 4 were enriched in CD8+ T cells and in line with our 

FACS data GZMK expressing cells were mostly included in CD8+ clusters 3 and 4 (Figure 

24 panel B-C), confirming results from our phenotypic analysis. 
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Figure 24. GZMK is mainly expressed by the CD8+ T cells cluster. 
A. UMAP projection of cells from the T/NK cluster in of 8 patients. Colors represent the Shared Nearest 
Neighbor (SNN) identified meta clusters. B. Expression level of indicated T cell markers is shown. C. Violin 
plots showing the expression of indicated T cells selected genes for each cluster.  
Adapted from Tiberti et al. 
 

We focused our attention on the two clusters enriched in CD8+ T cells and we were able to 

identify eleven sub-clusters which we manually annotated with curated gene-sets based on 

literature66. Most of the cells are represented by CD8+ T cells while a small fraction of CD4+ 

TEM and FOXP3 expressing Treg, CD40LG positive mucosal associated invariant T (MAIT), 

Tγδ Co-expressing of TRDC and TRGC1 and NK cells distinguished for the expression of 

AKR1C3, CXC3R1, FCER1G, NKG7 and PRF1 were detected. In the CD8+ compartment 

we were able to identify naïve-like T cells (Naive_like) detected for the expression of IL7R, 

CCR7 and SELL and T exhausted cells (TEX) defined for the expression of CTLA-4, PDCD-

1, CXCL13, HAVCR2, ENTPD1 and LAYN. As expected, and in line with previous data, 

the main population detected is composed by CD8+ TEM cells characterized by high 

expression of GZMK. In line with previous results CD8+ TEM cells represent a different T 

cells population in respect to CD8+ TEX. (Figure 25) 

 

0.0

0.5

1.0

1.5

2.0

0 1 2 3 4 6
Identity

Ex
pr

es
si

on
 L

ev
el

0
1
2
3
4
6

CD4

0

1

2

0 1 2 3 4 6
Identity

Ex
pr

es
si

on
 L

ev
el

0
1
2
3
4
6

CD8A

0

1

2

3

0 1 2 3 4 6
Identity

Ex
pr

es
si

on
 L

ev
el

0
1
2
3
4
6

GZMK

−4

0

4

−5.0 −2.5 0.0 2.5 5.0 7.5
UMAP_1

U
M
AP

_2

0.0
0.5
1.0
1.5
2.0

CD4CD4

−4

0

4

−5.0 −2.5 0.0 2.5 5.0 7.5
UMAP_1

U
M
AP

_2

0.0
0.5
1.0
1.5
2.0
2.5

CD8ACD8

−4

0

4

−5.0 −2.5 0.0 2.5 5.0 7.5
UMAP_1

U
M
AP

_2

0

1

2

3

GZMKGZMK

−6

−3

0

3

6

−2.5 0.0 2.5 5.0
UMAP_1

U
M
AP

_2

0
1
2
3
4
6

−6

−3

0

3

6

−2.5 0.0 2.5 5.0
UMAP_1

U
M
AP

_2

0
1
2
3
4
6

A B

C



 57 

 
Figure 25. CD8+ T are mainly effector memory cells TEM expressing GZMK. 
A. Uniform manifold approximation and projection (UMAP) of CD8+ T cells selected clusters. Colors represent 
different T cell subtypes. Key genes used for manual annotation are indicated. B. Balloon plot showing the 
expression of selected markers for each manually annotated T cell subtype indicated in A. The size of the 
bubble represents the fraction of cells with at least one Unique Molecular Identifier (UMI) for a specific gene, 
while the color indicates the median of the scaled normalized expression. C. Bar plot represents the number of 
cells in each subtype.  
Adapted from Tiberti et al. 
 
 

In addition, we excluded all the cells with a signature specific of non CD8 subtypes and we 

performed a pseudotime analysis to understand the relationship within the populations 

previously identified. Despite the low number of cells, it has been possible recapitulate at 

least in part the clusters obtained in the previous UMAP (Figure 26 panel A) and CD8_Tem 

cells were closer to Naive-like T cells suggesting a different differentiation trajectory as 

compared with both terminally differentiated effectors cells (Tte) as well as Tex cells (Figure 

26 panel B). 
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Figure 26. Pseudotime analysis describes CD8+ effector memory (TEM) T cells in between naïve and 
terminally differentiated/exhausted cells. 
A. Uniform manifold approximation and projection (UMAP) of CD8+ T cells specific clusters. Colors represent 
different T cell subtypes. Key genes used for manual annotation are indicated. B. Monocle pseudotime analysis 
of the CD8+ T cell subtypes identified in figure 25 and reported in panel A. The pseudotime line connects the 
indicated T cell subtypes.  
 

CD8_Tem expressing high levels of GZMK, presented lower cytotoxic potential compare 

with Tte and NK cells (padj= 0.005) and were not impaired in proliferation. Moreover, 

CD8_Tem had low expression of lymphocyte activation and migration signatures and high 

cell-cell adhesion signatures. (Figure 27) 

 

 

 

Figure 27. CD8+ effector memory (TEM) cells are characterized by cytolytic and alloreactive signatures. 
A. Uniform manifold approximation and projection (UMAP) of CD8+ T cells cluster showing the expression 
of Cytolysis and Allograft-rejection signatures and regulation of T cell proliferation and activation, Leukocyte 
cell-cell adhesion and Myeloid leukocytes migration.  
Adapted from Tiberti et al. 
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The GZMKpos cells in the Tem cluster expressed the same amount of TNFα of GZMKneg, in 

line with FACS data and confirming their cytotoxic potential and their identity from Tex 

cells. (Figure 28) 

 
Figure 28. GZMK CD8+ effector memory (TEM) cells express also TNFα. 
A. GZMK and TNFα quantification within GZMKneg and GZMKpos cells within all CD8+ T cells identified by 
single cell RNA sequencing (scRNAseq). B. GZMK and TNFα quantification within GZMKneg and GZMKpos 
cells within CD8_Tem cells.  
Adapted from Tiberti et al. 

 

Analyzing the transcription factors (TF) within CD8_Tem’s differentially expressed genes 

(DEGs), we found three annotated TF with an important role in CD8+ T cells differentiation. 

The first one is RORA, downregulated in the Tem cluster, which is well known to be 

associated with effector function and cytotoxicity activity rather than memory differentiation 

patterns224. This downregulation is flanked by the upregulation of AP162, inducer of 

cytotoxic differentiation in CD8+ T cells and recently associated with deficiency in the 

suppression of CD8+ T cells response leading to excessive cytotoxic function and tissue 

damage225. (Figure 29) 

 

 
Figure 29. Peculiar transcription factors (TF) are drivers for the cytotoxic phenotype of GZMK CD8+ 
effector memory (TEM) cells. 
Violin plots of RORa, HUNB and HOPX expression level within different T cells subtypes. In order: 
CD4_Tem, CD8_Tem, CD8_Tem-PD1, HLADR_CD8, MAIT, Naïve_like, NK, CD8_Tex, Tgd, CD8_Tte, 
Treg. 
Adapted from Tiberti et al. 

 

In conclusion we identified GZMKhigh CD8+ TEM cells as the main population within T cells 

infiltrate, and their transcriptional and functional profile corroborated the MPFC analysis. 

These cells present high cytotoxic function and alloreactive signature suggesting their 

potential role in cancer progression. 
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5. The transcriptional signature of GZMK+ CD8+ TEM predicts prognosis in 
CRC patients 

 

We wondered if the GZMKhigh CD8+ TEM cells identified may predict the risk of 

encountering secondary events in CRC patients and, potentially, in other types of cancer.  

To address this question, we used the CD8_Tem genes set obtained by scRNAseq and tested 

as a predictor clinical outcome in CRC. By querying publicly available CRC datasets on 

TCGA we found a significant correlation with genes upregulated in CD8_Tem and worst 

prognosis in patients with early-stage CRC (Figure 30 panel A). Instead, none of the 

transcriptional profile of other tested lymphocyte resulted into an efficient stratification, 

neither peculiar populations of CD8 (CD8_HLADR, CD8_PD1, Tte, Tex) nor other type of 

lymphocytes (CD4_Tem, MAIT, Treg, NK) (Figure 30 panel B-I).  

To investigate the association between the risk of relapse of CRC patients and the most 

common predictor variables, we applied a Cox Proportional-Hazards Model. Firstly, we 

performed the univariate analysis separately looking at infiltration of CD8 GZMK-high 

cells, sex, age and stage of the tumor for 209 CRC cases from TCGA-COAD cohort. From 

this analysis it emerges that both sex and stage are associated with the risk of relapse with 

males having a higher risk of relapse compared to women and stage I showing a lower risk 

compared to higher stages of the tumor (stage II, III, IV), while the association with age is 

not significant. The CD8 GZMK-high cells infiltration is correlated with high Hazard Ratio 

(HR) even if do not reach the statistical significance and is consistent to what observed in 

the Kaplan-Meier plot, with higher infiltration of these cells being associated with a higher 

chance of relapse (HR = 570). (Figure 30 panel J) Then, we combined these predictors into 

a multivariate model and observed a similar trend. Sex and stage were still associated with 

risk of relapse, while we observed a decrease in the significance after adjusting for other 

confounders. Finally, the infiltration of CD8 GZMK-high cells the same trend as in the 

univariate analysis even after adjusting for other confounders (HR = 370), still failing to be 

significant. (Figure 30 panel K) 
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Figure 30. CD8+ effector memory (TEM) expressing GZMK predict Overall survival (OS) in early-stage 
colorectal cancer (CRC) patients. 
A-I. Kaplan-Meyer analysis of the association of different cell type abundance with disease free survival (DFS) 
on the TCGA-COAD cohort (n=284). In A CD8_Tem, in B HLADR_CD8, in C CD8_Tem_PD1, in D Tte, in 
E Tex, in F CD4_Tem, in G MAIT, in H Tgd, in I NK. High infiltration is indicated in red, low infiltration in 
turquoise.  J-K. Cox Proportional-Hazards univariate (J) and multivariate (K) analysis (n=209). 
Adapted from Tiberti et al. 

 

Of note, GZMK+ CD8_Tem signature was able to predict clinical outcome also in the lung 

adenocarcinoma (LUAD) in the TCGA dataset, extending its prognostic value to other type 

of tumor beyond CRC (Figure 31).       

 

 

Figure 31. CD8+ effector memory (TEM) expressing GZMK predict Overall survival (OS) in lung 
adenocarcinoma patients. 
Kaplan-Meyer analysis of the association of CD8_Tem cell subtype’ abundance with overall survival (OS) on 
the TCGA-LUAD cohort (n= 295). High infiltration is indicated in red, low infiltration in turquoise. The table 
shows the ‘number at risk’ subjects.  
Adapted from Tiberti et al. 

 

In summary, the transcriptional and functional profile of tumor-infiltrating immune cells led 

to an effective stratification of the patients and can predict the risk of encountering secondary 

events in CRC patients and, potentially, in other types of cancer. 
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6. GZMK produced by infiltrating CD8+TEM is associated with early 
relapse in CRC 

 

In our cohort of patients, 4 out of 46 patients experienced early-relapse. We thus profiled the 

tumor of these relapsed patients, and we found an increase in GZMK production in CD8+ T 

cells (Figure 32 panel A) and in particular an increase in the CD39- GZMKhigh TEM CD8+ T 

cells population (Figure 32 panel B) as well as in CL4 (Figure 32 panel C).  

 

 

 
Figure 32. CD39- GZMKhigh CD8+ TEM are accumulated within tumor (T) of colorectal cancer (CRC) 
patients which experienced early-relapse. 
A. GZMKhigh frequency within non-relapsed (non-Rel, n=27) and relapsed (Rel, n=4) patients’ tumor (T). Box 
and whisker plot indicates Min to Max value. *, P < 0.05; unpaired t test. B. GZMKhigh frequency within non-
Rel (n=27) and Rel (n=4) T. Box and whisker plot indicates Min to Max value. *, P < 0.05; unpaired t test. C. 
tSNE visualization of tumor CD8+ T cells of early-relapsed patients (n=4, Rel in light blue). D. CL4 frequency 
within non-Rel (n=27) and Rel (n=4) T. Box and whisker plot indicates Min to Max value. *, P < 0.05; unpaired 
t test.  
Adapted from Tiberti et al. 

 
 

Overall, our data support a model where GZMKhigh CD8+ T cell promote relapse in CRC 

patients. 

Of note, as already demonstrated by the manual gating strategy, the TEM CD39- GZMKhigh 

population present also high levels of GZMB in line with a super cytotoxic potential (Figure 

33 panel A-B). Interestingly, while the GZMK production is peculiar to relapse patients 

compared with blood, we don’t observe the increase in GZMB production in our cohort of 

patients in CD8+ TILs compared with PB. Indeed, the GZMB production in TEM in CRC 

patients is still high in the circulation, supporting a main role of GZMK in CRC progression. 
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Figure 33. GZMB is not subject to remodulation within the tumor. 
A. Representatives contour plots of GZMB and GZMK expression in peripheral blood (PB) and tumor (T) of 
early-relapsed (Rel) patients. B. Box plot of GZMB+ cells frequency in PB and T of Rel patients (n=4). Box 
and whisker plot indicates Min to Max value. paired t test.  
Adapted from Tiberti et al. 
 
 
 
 
 
 
 

7. CRC tumors are highly infiltrated by neutrophils 
 

Among the infiltrating immune cell populations analyzed, in T compared to NAT, we 

reported no significant differences in DC (defined as CD45+, CD3-, CD19-, CD11c+),  lower 

proportion of conventional NK cells (defined as CD3-, CD56+) and an enrichment in 

macrophages (defined as CD45+, HLADR+, CD14+) - albeit they were present at low 

frequencies - as well as in neutrophils (identified as CD45+, CD56-, CD11b+, HLA-DR-, 

CD66b+ cells with an intermediate to low expression of CD33)226,227(Figure 34 panel A). 

Neutrophils were significantly enriched in T compared to NAT both in terms of frequencies 

as assessed by FACS (10± 20% of the total CD45+ cells in T versus 2± 10% in NAT) (Figure 

34 panel B-C) and density as assessed by IHC for CD66b (Figure 34 panel D). 
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Figure 34. Neutrophils are strongly enriched within colorectal cancer (CRC). 
A. Quantification of dendritic cells (DC) (n=20), macrophages (n=27) and NK cells (n=22) within CD45+ cells 
in Tumor (T) and normal adjacent tissue (NAT). Box and whisker plot indicates Min to Max value. ***, P < 
0.001; paired t test. B. Frequency of tumor infiltrating neutrophils defined as CD45+, CD11b+ HLADR-, CD56, 
CD66b+ within CD45+ immune compartment in T compared with NAT samples in CRC patients (n=27). Box 
and whisker plot indicates Min to Max values. ***, P < 0.001; paired t test. C. Flow cytometric gating strategy 
for the identification of CD15high tumor infiltrating neutrophils. D. Representative immunohistochemistry 
images and quantification of CD66b+ cells in paired T and NAT tissues (n=13). Scale bar 100µm. Box and 
whisker plot indicates Min to Max value. **, P < 0.01; paired t test.  
Adapted from Tiberti et al. 
 
 

Due to the lack of an effective definition of the role of neutrophils in CRC progression and 

their debated function in shaping T cell functionality, we decided to focus our attention on 

their characterization.  

 

8. CRC patients can be stratified based on the abundance of CD15high 
neutrophils in the TME 

 

We next evaluated the expression of CD15 on neutrophils, also known as Lewis x or Lex, 

which is a marker for neutrophils differentiation and activation and has been shown to 

modulate neutrophils function within TME168,169. Interestingly, in our cohort of CRC 

patients, we identified two subgroups of patients based on the abundance of neutrophils 

expressing high level of CD15: patients with low CD15high neutrophils (LN, frequency <50% 

with 31,1% incidence in our cohort) and patients with high CD15high neutrophils (HN, 
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frequency >50% with 68,9% incidence in our cohort) (Figure 35 panel A-D). The cut-off 

used for the classification of tumors as LN or HN (50%) has been extrapolated from the 

distribution of frequencies across patients of CD15high neutrophils (Figure 35 panel F) -

identified based on CD15 MFI (Figure 35 panel E)- and matches the minimum value 

between the two picks highlighted in the bimodal distribution. Of note, the differential 

abundance of CD15high neutrophils is maintained not only in the CD45+, CD56-, CD11b+, 

HLA-DR-, CD66b+ population but also in the total infiltrate (CD45+) (Figure 35 panel C), 

confirming not only a change in neutrophils phenotype in this group of patients but also their 

enrichment in the TME. The expression of CD15 was specifically modulated within the 

TME. Indeed, CD15high neutrophils were found at similar frequencies in both PB and NAT 

of LN and HN patients (Figure 35 panel G), suggesting a tumor-specific downregulation of 

CD15 by neutrophils infiltrating LN tumors.       

 

 
Figure 35. Neutrophils’ CD15 expression is modulated within the tumor microenvironment (TME). 
A. Representatives contour plots of CD15 expression in low (LN) and high neutrophils (HN) patients. B. Box 
plot of CD15high cells frequency in LN and HN patients within CD66b+ neutrophils (n=8 LN and n=19 HN). 
Box and whisker plot indicates Min to Max value. ***, P < 0.001; unpaired t test. F. C. Box plot of CD15high 
cells frequency in LN and HN patients within CD45+ cells (n=8 LN and n=19 HN). Box and whisker plot 
indicates Min to Max value. *, P < 0.05; unpaired t test. D. Quantification of CD15 MFI within CD15low and 
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CD15high neutrophils (n=22). Box and whisker plot indicates Min to Max value. ***, P < 0.001; paired t test. 
E. Representative histogram of CD15 expression on neutrophils in tumor (T) and normal adjacent tissue (NAT) 
within LN and HN patients. F. Density plot of CD15high neutrophils within the CRC cohort (n=27). Black lines 
represent the mode and anti-mode of the distribution. G. Quantification of CD15high neutrophils within T, NAT, 
and Peripheral Blood (PB) of LN (n=9) and HN (n=17) patients and PB of healthy donors (HD) (n=15). Bars 
indicate mean ± s.e.m. *, P < 0.05; ***, P < 0.001; paired and unpaired t test.  
Adapted from Tiberti et al. 

 
 

Since CD15 is a distinguishing marker for human neutrophil169, to demonstrate that CD15low 

cells were neutrophils, we FACS-sorted CD15high and CD15low from PB and T and examined 

their morphology by GIEMSA staining, which confirmed a multi-lobed nuclei and granular 

cytoplasm typical of neutrophils. (Figure 36) 

 

 
Figure 36. Neutrophils can lose CD15 expression. 
Representatives Giemsa staining of CD15low and CD15high neutrophils sorted from peripheral blood (PB) and 
tumor (T), respectively. 
Adapted from Tiberti et al. 

 
 

9. CD15high neutrophils accumulating in HN tumors hold a N2-like pro-
tumoral phenotype 

 

To better define the maturation/activation status of CD15high and CD15low neutrophils, we 

first analyzed the expression of CD10, a marker discriminating between mature and 

immature, as well as immunosuppressive from immunostimulatory neutrophil 

populations228. Both CD15high and CD15low neutrophils expressed CD10, with the CD15high 

neutrophils displaying higher levels of CD10 compared with their CD15low counterpart. 

(Figure 37 panel A) Thus, we speculate that intra-tumoral CD15high neutrophils were mature 

neutrophils with a plausible tumor-promoting activity. Accordingly, CD15high compared to 

the CD15low neutrophil compartment displayed significantly higher CXCR2+CXCR4+ 

double positive cells (Figure 37 panel B), typical of N2-like tumor-promoting neutrophils169. 

Likewise, HN tumors were significantly enriched in CXCR2+CXCR4+ neutrophils (Figure 

38 panel C).  Of note, the frequencies of aged neutrophils (defined as CXCR4+CXCR2-)169 

were comparable between CD15high and CD15low neutrophils as well as in HN and LN 

tumors (Figure 37 panel D-E). On the other hand, the expression of CXCR2 and CXCR4 

CD15highCD15low
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was not modulated in PB, NAT nor PT, confirming the unique role of the TME in recruiting 

and modulating the phenotype of infiltrating neutrophils (Figure 37 panel F). 

To further support the pro-tumorigenic role of CD15high neutrophil population, we analyzed 

the production of Reactive Oxygen Species (ROS) from neutrophils, in view of its pro-

tumorigenic attribute183,229. We observed that neutrophils from HN tumors produce higher 

levels of ROS compared with LN patients. (Figure 37 panel G) 

 

 

 
Figure 37. CD15high neutrophils present an N2-like phenotype. 
A. Frequency of CD10+ cells within CD15low and CD15high neutrophils (n=28). Box and whisker indicate Min 
to Max value. ***, P < 0.001; unpaired t test. B. Box plot of CXCR4+ CXCR2+ frequency within CD15low and 
CD15high neutrophils (total n=19). Box and whisker plot indicate Min to Max value. ***, P < 0.001; paired 
Wilcoxon test. C. Box plot of CXCR4+ CXCR2+ frequency within low (LN) and high neutrophils (HN) patients 
(n=7 LN and n=11 HN). Box and whisker plot indicates Min to Max value. ***, P < 0.001; Mann-Whitney 
test. D. Frequency of CXCR4+ CXCR2- within CD15low and CD15high neutrophils (n=18). Box and whisker 
plot indicates Min to Max value. paired t test. E. Frequency of CXCR4+ CXCR2- within LN (n=6) and H (n=6) 
patients. Box and whisker plot indicates Min to Max value. Unpaired t test.  F. Quantification of CXCR4+ 
CXCR2+ neutrophils within tumor (T) and normal adjacent (NAT) of LN (n=7) and HN (n=10) patients. Bars 
indicate mean ± s.e.m. *, P < 0.05; ***, P < 0.001; paired and unpaired t test. G. Bar plot representation of 
total ROS (tROS) MFI within neutrophils of LN and HN patients’ tumor (n=11). Box and whisker plot indicates 
Min to Max value. *, P < 0.01; unpaired t test.  
Adapted from Tiberti et al. 

 

Overall, these data revealed that CRC patients can be stratified based on the abundance of a 

CD15high neutrophil population, which might have tumor promoting functions.         

 

10. CD15high neutrophils are retained in the TME of HN CRC tumors   

During an inflammatory response, “aged” neutrophils fail to return to the bone marrow and 

instead rapidly migrate to the site of inflammation230. Thus, we wonder if the identified 

CD15high neutrophils were “aged” neutrophils. However, CXCR4+CXCR2- “aged” 

LN HN
0

20

40

60

80

100

%
 C

XC
R

4+  
C

XC
R

2-

CD15low CD15high
0

20

40

60

80

100

%
 C

X
C

R
4+  

C
X

C
R

2+

✱✱✱

LN HN
0

20

40

60

80

100

%
 C

XC
R

4+  
C

XC
R

2+

✱✱

CD15low CD15high
0

20

40

60

80

100

%
C
D
10

✱✱✱

LN HN LN HN
0

20

40

60

80

%
 C

XC
R

4+  
C

XC
R

2+

NATT

✱✱✱

✱

LN HN
0

10000

20000

30000
M

FI
 tR

O
S

✱

CD15low CD15high
0

20

40

60

80

100

%
 C

X
C

R
4+  

C
X

C
R

2-

A B C D

E F G



 69 

neutrophils were similarly represented between HN and LN patients (Figure 37 panel E), 

suggesting that limited recirculation of “aged” neutrophils is not the main mechanism 

driving CD15high neutrophils accumulation in HN patients. Neutrophil homeostasis in 

peripheral tissues is also regulated by macrophage-dependent clearance230–236. Indeed, the 

frequencies of macrophages within the TME anti-correlate with the abundance of CD15high 

neutrophils and was significantly lower in HN compared to LN (Figure 38), suggesting that 

lower clearance by macrophages in HN tumors might contribute to higher abundance of 

neutrophils.      

 

 
Figure 38. A different clearance characterized high (HN) and low (LN) neutrophils patients. 
A. Pearson correlation between CD15high neutrophils and macrophages (n=28) B. Frequency of macrophages 
within LN (n=9) and HN (n=19) patients. Box and whisker plot indicates Min to Max value. **, P < 0.01; 
unpaired t test. 
Adapted from Tiberti et al. 

 

Finally, other important players responsible for neutrophil recirculation are soluble 

molecules released in the TME by cancer cells, normal cells closely associated to the tumoral 

tissue and rewired to cooperate in cancer progression and different components of the 

immune compartment. Thus, we hypothesized that the presence of a differential distribution 

of soluble factors between LN and HN patients might impact on neutrophil dynamics. Thus, 

we exposed neutrophils freshly isolated from PB of healthy donors (HD) to interstitial fluid 

(InF) collected from LN and HN patients. We first noticed that, upon exposure to HN InF, 

neutrophils retain higher CD15 expression, confirming an active role of the TME in 

modulating neutrophil functions (Figure 39 panel A).  

Moreover, when we performed a time lapse experiment using a 3D collagen matrix on a 

custom-made microfluidic device, surprisingly, we registered a lower motility of neutrophils 

exposed to HN InF compared to those exposed to LN InF. This result suggested that the 

higher intra-tumoral abundance of CD15high neutrophils could be likely ascribed to their 

increased retention rather than augmented recruitment into the TME. (Figure 39 panel B) 
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Figure 39. Soluble components of the tumor microenvironment (TME) favor neutrophils retention into 
the tumor of high neutrophils (HN) patients. 
A. Fold change of CD15 expression within neutrophils from healthy donors treated with interstitial fluid (InF) 
from low (LN, n=8) or high (HN, n=12) neutrophils patients. Box and whisker plot indicates Min to Max value. 
*, P < 0.05; unpaired t test. 
B. Representative brightfield images and quantification of neutrophils motility assay on the microfluidic 
device. Interstitial Fluid (InF) of T from HN and LN patients was tested on healthy donors (HD) derived 
neutrophils. Bar plot of number of migrating neutrophils on chip upon stimulation with IF from HN (N=6) and 
LN (N=5) patients. Scale bar 100µm. *, P < 0.05; Mann-Whitney test. Box and whisker plot indicate Min to 
Max value.   
Adapted from Tiberti et al. 

 
 

Therefore, we employed Luminex platform to screen a custom panel of 49 inflammatory 

soluble factors in the InF of T and NAT from CRC patients. Among the 33 molecules that 

gave consistent measurable results, we did not find any significant association with 

demographics or tumor grade. Nevertheless, a subset of these factors was significantly 

correlated with CD15 expression in neutrophils. In particular, CD15high neutrophils were 

positively correlated with IL17E/IL25237–239, which has been shown to be an important driver 

of inflammation in gut239. Indeed, it promotes expression of IL4, IL5 and IL13, which cause 

epithelial cell hyperplasia and hypertrophy in the gastrointestinal tract and production of 

CXCL1, CXCL10 and CXCL1, which are chemokines important for neutrophils 

recruitment237. As a matter of fact, CXCL1, CXCL10, IL4 and IL13 were positively 

correlated with CD15high neutrophils.  

Moreover, HN tumors harbor higher levels of several soluble factors playing a key role in 

polarizing neutrophils toward a pro-tumorigenic N2-like phenotype. For instance, CD15 

expression was significantly correlated with EGF, G-CSF, IL10 and TGFb3, which have 

been all associated with pro-tumoral functions175,240–245.  (Figure 40) 

All these data supported a specific role for HN TME in driving neutrophil polarization 

toward N2-like functional state and favoring their retention at the tumor site.  
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Figure 40. High neutrophils (HN) patients present a peculiar pro-tumoral milieu. 
A. Heatmap showing the abundance of soluble molecules derived from InF of tumor (T) and normal adjacent 
tissue (NAT) (n=54). Soluble molecules are clustered by Ward’s minimum variance method and samples by 
Euclidean distance. Tissue type, tumor grade, sex, age and Microsatellite Instability (MSI) status are indicated 
for all the samples. B. Spearman correlation between soluble molecules in T InF and CD15high neutrophils 
(n=5).  
Adapted from Tiberti et al. 

 
 

11. Stromal cell-derived factor 1 (SDF-1) reshape the functional state of 
infiltrating neutrophils, promoting their differentiation and retention 
within the TME 

 

Among all the detected factors, the C-X-C motif chemokine 12, also known as stromal cell-

derived factor 1 (SDF-1), was of particular interest due to its role in promoting neutrophil 

trafficking and retention at inflammatory site through its binding to CXCR4246,247. Indeed, 

the expression of CXCR4, in concert with CXCR2, was found to be highly expressed on 

CD15high neutrophils compared to their CD15low counterpart, as well as in HN compared to 

LN tumors (Figure 40 panel B-C). Accordingly, imaging analysis confirmed the 

accumulation of SDF-1 in HN tumors, as assessed by a larger number of αSMA+ cancer-

associated fibroblasts (CAFs) expressing high levels of SDF-1(Figure 41).  
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Figure 41. Cancer-associated fibroblasts (CAFs) produce stromal cell-derived factor 1 (SDF-1) in high 
neutrophils (HN) patients. 
A-B. Representative confocal microscopy images and quantification of SDF-1 and SDF-1 in A and SDF-1 
within aSMA+ cells in B on FFPE tumor tissues from low neutrophils patients (LN, n=4) and HN (n=5). DAPI 
in blue, aSMA in green, SDF-1 in red. Scale bar 100µm. ***, P < 0.001; unpaired t test. Violin plots indicate 
Min to Max value.  
Adapted from Tiberti et al. 

 
 
To fully understand the role of SDF-1 in shaping neutrophils profile, we treated HD derived 

neutrophils with SDF-1. SDF-1, compared to untreated controls, induced higher frequency 

of CXCR2+CXCR4+ double positive cells (Figure 42 panel A), elevated level of tROS 

(Figure 42 panel B) and increased gelatinolytic activity (Figure 42 panel C) compared to 

untreated controls, partially reproducing the in vivo observed phenotype. Moreover, upon 

SDF-1 treatment, we detected an increase in CD62L expression (Figure 42 panel D) in line 

with the hypothesis that SDF-1 induced a more active status248.  

 

 
Figure 42. Stromal cell-derived factor 1 (SDF-1) induces an N2-like phenotype in neutrophils. 
A. Frequency of CXCR4+ CXCR2+ cells in healthy donors (HD) derived neutrophils treated with SDF-1 versus 
control medium (CTR, n=8).  Bars indicate mean ± s.e.m. *, P < 0.05; paired t test. B. Geometric mean of total 
ROS (tROS) MFI within HD fresh-isolated neutrophils treated with SDF-1 versus CTR (n=9). Bars indicate 
mean ± s.e.m. ***, P < 0.001; paired t test. C. Gelatinase activity assay on HD freshly isolated neutrophils 
treated with SDF-1 for 2h, 6h and 24h (n=3). Bar plot representation of fold change over untreated control. 
Bars indicate mean ± s.e.m. **, P < 0.01; ***, P < 0.001; paired t test. D. CD62L MFI in neutrophils isolated 
from HD peripheral blood (PB) treated with SDF-1 or CTR (n=9). Bars indicate mean ± s.e.m. *, P < 0.05; 
paired t test.  
Adapted from Tiberti et al. 
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Moreover, SDF-1 improved neutrophil adhesion to micro-endothelial cells (Figure 43 panel 

A) and maintained cell stillness (Figure 43 panel B), supporting a role for SDF-1 in 

promoting neutrophil retention in HN tumors. On the contrary, cytokines - like CXCL6, IL8 

- that anti-correlated with CD15 expression and were predominant in LN tumors, showed a 

pro-migratory effect (Figure 43 panel B). 

 

 
Figure 43. Stromal cell-derived factor 1 (SDF-1) induces neutrophils retention within the tumor. 
A. Quantification of adherent neutrophils on endothelial cells after 2 hours treatment with SDF-1 versus control 
medium (CTR, n=6). Bars indicate mean ± s.e.m. **, P < 0.01; paired t test. B. Representative images and 
quantification of migrating neutrophils on microfluidic device upon stimulation with CXCL6 (400 ng/mL) 
(n=10), IL8 (100 ng/ml) (n=2), SDF-1 (100 ng/ml) (n=4) or culture medium for 4h (CTR, n=8). Scale bar 
100µm. Bars indicate mean ± s.e.m. ***, P < 0.001; unpaired t test.  
Adapted from Tiberti et al. 

 
 

All together, these data indicate that, in HN tumors, elevated levels of SDF-1induce changes 

in the functional state of neutrophils, favoring CD15high neutrophil retention and 

accumulation.    

 

12. CD15high neutrophils abundance directly correlates with GZMK 
expression of CD8+ T cells 

 

Multiple reports suggest that tumor-associated neutrophils (TANs) represent a significant 

fraction of the inflammatory cells in the TME of many types of cancers, and they have been 

shown to influence effector T cell functions in animal models and humans169,249–251. 

However, evidence on how TANs affect anti-tumor CD8+ T cell response are still sparse and 

often contrasting. Likewise, the stratification of non-metastatic CRC patients in the TCGA 

database was not effective when combining neutrophils to the cytolytic CD8+ T cell 

transcriptional signature (Figure 44). Thus, how neutrophils regulate CD8+ T cell activity is 

still an open question.  

 

CTR SDF1
0

1

2

3

4

A
dh

er
en

t c
el

ls
 

Fo
ld

 c
ha

ng
e

✱✱

CTR

SDF-1

CXCL6

T0 4h
100 µm 100 µm 100 µm 100 µm

CXCL6 IL-8 SDF-1 CTR
0

20

40

60

M
ig

ra
tin

g 
C

el
ls

✱✱✱

✱✱✱

A B



 74 

 
Figure 44. Neutrophils and CD8+ T cells infiltrate do not predict the overall survival per se. 
Association of cytolytic activity and neutrophils’ signature interplay on disease free survival (DFS) in a 
Kaplan-Meier analysis on the TCGA-COAD cohort. Based on the presence or absence of neutrophils and high 
or low level of cytolytic activity signatures samples were divided into four groups: no neutrophils infiltration 
+ high cytolytic activity in red, no neutrophils infiltration + low cytolytic activity in green, neutrophils 
infiltration + high cytolytic activity in turquoise, neutrophils infiltration + low cytolytic activity in violet. Under 
the survival curves is shown the ‘number at risk’ table.  
Adapted from Tiberti et al. 

 
 

Here, we sought to determine if intratumoral TAN-CD8+ T cell crosstalk could be detected 

in CRC and if this might impact CD8+ T cell differentiation toward a GZMKhighCD39neg TEM 

phenotype. Therefore, we assessed the association of CD15high TANs with specific CD8+ T 

cell subsets inside the TME. Pearson correlation analysis revealed that frequencies of intra-

tumoral CD15high were positively correlated with the frequencies of GZMKhigh CD8+ TEM 

cells (Figure 45 panel A). In line with an increased frequencies of CXCR2+CXCR4+ 

neutrophils in HN TME and within CD15high cells, GZMKhigh CD8+ TEM cells were also 

positively correlated with CXCR2, CXCR4 and CXCR2+CXCR4+ neutrophils (Figure 45 

panel B-D). These correlations suggested us a possible specific crosstalk between intra-

tumoral neutrophils and GZMKhigh CD8+ TEM cells.  
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Figure 45. CD15high neutrophils correlate with GZMK expression in CD8+ TEM. 
A-B. Pearson correlation between GZMKhigh CD8+ TEM within the tumor (T) and CD15high (A, n=22), CXCR2+  
(B, n=20), CXCR4+ (C, n=20) and CXCR4+ CXCR2+ neutrophils (D, n=20).   
Adapted from Tiberti et al. 

 
 

The correlation with GZMKhigh CD8+ T cells was extremely specific, since no other 

correlation was found between CD15high neutrophils and any other differentiation (Figure 46 

panel A-B), exhaustion or activation marker of CD8+ T cells (Figure 46 panel C). 

 

 
Figure 46. CD15high neutrophils have no effect on phenotypic markers on CD8+ TEM. 
A. Frequency of Naïve (TNAIVE), Central Memory (TCM), Effector Memory (TEM) and Effector Memory 
CD45RA+ (TEMRA) within CD8+ TEM in tumor of low (LN, n=6) and high (HN, n=10) neutrophils patients. 
Lines graph indicates mean ± s.e.m. unpaired t test. B. Frequency of EM1, EM2, EM3, EM4 CD8+ T cells in LN 
(n=6) and HN (n=10) patients. Lines graph indicates mean ± s.e.m. unpaired t test. C. Frequency of CD69+, 
CD127+, HLADR+, PD1+, CD161+, CD25+ cells within CD8+ TEM cells in LN (n=6) and HN (n=10) patients. 
Box and whisker plot indicates Min to Max value. unpaired t test.    
Adapted from Tiberti et al. 

 
 

Looking at other T cell compartments, we found a low expression of GZMK by conventional 

CD4+ T cells and no correlation between the frequency of GZMKhigh CD4+ T cells and 

CD15high neutrophils (Figure 47 panel A) neither a differential abundance between the HN 

and LN patients was detected (Figure 47 panel B). Interestingly, Tgd cells also showed high 

production of GZMK and correlated with CD15high neutrophils (Figure 47 panel C-D).  
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Figure 47. CD15high neutrophils induce GZMK expression within Tgd while CD4+ TEM are not affected. 
A. Contour plot and quantification in LN (n=6) and HN (n=10) patients of GZMKhigh frequency within CD4+ 
TEM. Box and whisker plot indicates Min to Max value. unpaired t test. B. Pearson correlation between 
frequency of GZMKhigh CD4+ TEM and CD15high neutrophils (n=15). C. Contour plot and quantification in LN 
(n=6) and HN (n=10) patients of GZMKhigh frequency within Tgd. Box and whisker plot indicates Min to Max 
value. unpaired t test. D. Pearson correlation between frequency of GZMKhigh Tgd and CD15high neutrophils 
(n=15).  
Adapted from Tiberti et al. 

 

The differential abundance of GZMK within CD8+ T cells in HN patients compared with 

LN was independently confirmed by FACS (Figure 48 panel A) and quantitative confocal 

imaging, which both highlighted that the expression of GZMK within CD8+ T cells is higher 

in HN patients compared with LN (Figure 48 panel B). 

 

 
Figure 48.  High neutrophils (HN) patients accumulate GZMKhigh CD8+ TEM. 
A. Representative contour plot and quantification of GZMKhigh CD8+ TEM cells in low neutrophils (LN, n=7) 
and HN (n=14) patients. Box and whisker plots indicate Min to Max value. **, P < 0.01; unpaired t test. B. 
Representative image and quantification of GZMK Mean Fluorescence Intensity (MFI) in CD8+ T cells in LN 
(n=8) and HN (n=9) tumors. Scale bar 10µm. Bars indicate mean ± s.e.m. ***, P < 0.001; unpaired t test.  
Adapted from Tiberti et al. 
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In line with the negative correlation between macrophages and the frequency of CD15high 

neutrophils, we found a negative correlation between macrophages and GZMKhigh CD8+ TEM 

cells (Figure 49 panel A), while no relation was detected between GZMKhigh CD8+ TEM and 

others innate components such as DC (Figure 49 panel B) and NK cells (Figure 49 panel C) 

quantified by flow cytometry. Notably, the negative correlation between Treg cells 

(identified as CD25+, CD127-)252 and GZMKhigh CD8+ TEM (Figure 49 panel D) deserves 

further investigation; also in light of the recently identified immunosuppressive CD4+ 

EOMES+ Tr1-like subset also characterized by the expression of GZMK121. 

 

 
Figure 49. GZMK expression within CD8+ TEM is negatively correlated with macrophages and Treg 
abundance in colorectal cancer (CRC). 
Pearson correlation between GZMKhigh CD8+ TEM and macrophages in A (n=20), DC in B (n=9), NK in C 
(n=11) and Treg in D (n=16) within CD45+.  
Adapted from Tiberti et al. 

 
 

In agreement with previous reports62,224,225, GZMK+CD8+ T cells were detected - albeit at 

low frequencies - in the peripheral blood of HD and CRC patients as well as in NAT at the 

same extent. However, intratumor CD8+ TEM cells expressing higher levels of GZMK were 

specifically and significantly accumulated only in HN T compared to their corresponding 

NAT, which supports the idea that the GZMK+ immune signature we found is tumor-

specific. (Figure 50) 

 
Figure 50. GZMK expression is specifically upregulated in CD8+ TEM within tumors (T). 
A. Quantification of GZMKhigh CD8+ TEM cells within low (LN, n=7) and high (HN, n=8) neutrophils patients 
in T, normal adjacent tissue (NAT) and peripheral blood (PB). Box and whisker plot indicates Min to Max 
value *, P < 0.05; **, P < 0.01; paired and unpaired t test.  
Adapted from Tiberti et al. 
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All these data suggested us a specific cross talk between neutrophils and CD8+ T cells able 

to modulate the phenotype of these cells in the TME.  

 

13. Neutrophil/CD8+ T cell interaction influences tumor control in an in 
vivo mouse model of CRC 

 

Next, we employed the in vivo syngeneic MC38 mouse model of colon cancer to validate, 

on an immune-competent system, the correlation between the abundance of neutrophils and 

GZMKhighCD8+ T cells observed on patients, proof that the interaction is conserved across 

species and address causality.  

We subcutaneously injected 1*106 MC38 cells and tumors were collected when they reached 

~ 500 mm3 (< 1 cm3) or ~ 1000 mm3 (> 1 cm3). In accordance with the idea that GZMKhigh 

CD8+ T cells can have an impact on anti-tumor immunity, we found that tumor progression 

positively correlated with intratumoral frequencies of GZMKhigh CD8+ T cells (Figure 51 

panel A) and CD11b+, Ly6g+, CXCR2+ neutrophils (Figure 51 panel B), validating results 

observed in CRC patients. Interestingly CXCR2 is expressed during neutrophils maturation 

at the promyelocyte stage in mice and lost during aging. Thus, the more neutrophils in the 

TME present a mature phenotype and increase their functionality, the more they express 

CXCR2253.       

 
Figure 51. GZMK expression correlates with tumor growth in in vivo syngeneic MC38 mouse model of 
colon cancer. 
A. Quantification of Pearson correlation between GZMKhigh CD8+ T cells within tumor (T) of MC38 tumor 
bearing mice and tumor size (n=22). B. Pearson correlation between CXCR2+, Ly6G+ neutrophils within T of 
MC38 tumor bearing mice and tumor size (n=22).  
Adapted from Tiberti et al. 

 
 

To further confirm the role of neutrophils in promoting GZMK production by CD8+ T cells, 

we increased intra-tumoral neutrophils infiltration by treating MC38 syngeneic mouse model 

of CRC with Granulocyte colony-stimulating factor (G-CSF), according to previous 

described protocols186. As expected, we detected an increase in CD45+, CD11b+, Ly6g+ 

neutrophils (Figure 52 panel A) and in their expression of CXCR2 within the tumor (Figure 
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52 panel B), followed by an increase in the GZMKhigh CD39- population (Figure 52 panel 

C), as we described in humans. 

 

 
Figure 52. G-CSF-induced neutrophils enrichment within the tumor (T) favor GZMKhigh CD39- T cells 
accumulation. 
A. Quantification of Tumor Associated Neutrophils (TAN) within T of MC38 syngeneic mouse model of 
colorectal cancer (CRC) with or without (CTR) Granulocyte colony-stimulating factor (G-CSF) treatment. 
Bars indicate mean ± s.e.m. unpaired t test.  B. Quantification of CXCR2+ TAN within T of MC38 CRC model 
in CTR versus G-CSF treatment. Bars indicate mean ± s.e.m.; ***, P < 0.001; unpaired t test. C. Quantification 
of GZMKhigh CD39- CD8+ T cells within T of MC38 CRC model in CTR versus G-CSF treatment. Bars indicate 
mean ± s.e.m.; *, P < 0.05; unpaired t test. 
 

The association between tumor size, a higher infiltration of GZMKhigh CD8+ T cells and 

CXCR2+ neutrophils (Figure 51 panel B), suggested us not only a specific crosstalk between 

these cell types, but also an important role in tumor progression. To address this hypothesis, 

we depleted neutrophils using anti-Ly6g antibody treatment daily from day 0 after tumor 

injection to 20, as described by Boivin et al254. Together with a decrease in the tumor 

associated neutrophils (Figure 53 panel A), we detected a decrease in tumor growth (Figure 

53 panel B) and in GZMK expression by CD8+ T cells (Figure 53 panel C). 

 

 
Figure 53. Neutrophils depletion improve tumor control and reduces CD8+ T cells’ GZMK expression. 
A. Quantification of Tumor Associated Neutrophils (TAN) within T of MC38 syngeneic mouse model of 
colorectal cancer (CRC) with or without (CTR, n=7) aLy6g (-Ly6G, n=7) treatment. Bars indicate mean ± 
s.e.m. **, P < 0.01; Mann-Whitney test.  B. Tumor weight of CTR (n=5) versus -Ly6G MC38 (n=6) CRC 
model. Bars indicate mean ± s.e.m.; *, P < 0.05; unpaired t test. C. Quantification of GZMKhigh CD8+ T cells 
within T of MC38 CRC model in CTR (n=5) versus -Ly6G (n=5). Bars indicate mean ± s.e.m.; *, P < 0.05; 
Mann-Whitney test.   
Adapted from Tiberti et al. 
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Additionally, based on the above results showing SDF1-dependent recruitment of neutrophil 

in HN tumors, we decided to prove if SDF-1 inhibition might counteract the GZMKhigh CD8+ 

T cells, thus dumping tumor growth. Mice were systemically treated with AMD3100, a SDF-

1 inhibitor (1mg/kg for 4 injections at day 5, 7, 9 and 11 after tumor injection) and immune 

infiltrate and tumor growth was assessed (Figure 54 panel A). AMD3100-treated mice 

showed a drastic reduction of the tumor growth which (Figure 54 panel B) was accompanied 

by a huge increase in the amount of CD8+ T cells infiltration in the tumor (Figure 54 panel 

C), as previously reported in literature. Interestingly, we reported here that AMD3100-

treated mice experienced a significant decrease in mature (CXCR2+ CXCR4-)/immature 

(CXCR2- CXCR4+) neutrophils ratio (Figure 54 panel D-E) followed by a decrease in the 

CD39- GZMK+ population (Figure 54 panel F) which we have correlated with worst clinical 

outcome in humans.  

 
Figure 54. CXCR4 inhibitor (ADM3100) control tumor growth by increasing CD8+ T cells infiltrate and 
reducing GZMKhigh CD39- CD8+ T cells. 
A. Experimental design.  B. Growth curves of MC38 tumor bearing mice treated (n=5) and untreated (CTR, 
n=4) with ADM3100. Lines plot indicates mean ± s.e.m. unpaired t test. C-F. Quantification of CD8+ T cells 
(C), CXCR2-CXCR4+ (D), CXCR2+CXCR4- (E) neutrophils, and GZMKhigh CD39- CD8+ T cells (F) within 
tumor (T) of ADM3100 (n=5) and CTR (CTR, n=4). Box and whisker plot indicates Min to Max value; **, P 
< 0.01; *, P < 0.05; unpaired t test. 
 

Thus, these results pinpointed an important role for SDF-1 in contributing to CRC relapse 

by causing neutrophils accumulation and thus favoring interaction with CD8+ T cells, which 

in turn are skewed to produce high levels of GZMK.      
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14.  Direct neutrophil/CD8+ T cell interaction is required for skewing CD8+ 
T cell to produce high levels of GZMK 

 

Having found evidence of an association between TAN and GZMKhigh CD8+ TEM also in a 

clinically relevant mouse model of CRC, we queried if neutrophils were directly involved in 

inducing a GZMKhigh phenotype by co-culturing CD8+ T cells with neutrophils. When 

neutrophils were added to the culture, the frequencies of GZMKhigh CD8+ T cells increased 

compared with CD8+ T cells alone from mice (Figure 55 panel A) and from humans (Figure 

55 panel B). These data demonstrated that skewing of CD8+ T cells toward a GZMKhigh 

phenotype can result from direct crosstalk between neutrophils and CD8+ T cells. We have 

also demonstrated that the direct contact between neutrophils and CD8+ T cells is required 

in order to have the maximal effect on GZMK production. Indeed, GZMK levels in CD8+ T 

cells are dramatically reduced when we performed the co-culture experiment using transwell 

(Figure 55 panel B). Moreover, the expression of GZMK in CD8+ T cells in coculture with 

neutrophils is higher as compared with freshly isolated CD8+ T cells (Figure 55 panel B) 

supporting that, despite we noticed a small decrease in the viability of CD8+ T cells in 

coculture (Figure 56 panel C), the enrichment of GZMKhigh cells is not the result of a positive 

selection operated by neutrophils. Of notice, the coculture of CD8+ T cells with neutrophils 

induces an increase in TEM cells with high expression of GZMK (Figure 55 panel D).  

Importantly, using the mouse system, we were able to dissect that GZMK production in 

CD8+ T cells is induced in a stronger manner by neutrophils isolated from tumors compared 

both with BM derived neutrophils and PB derived neutrophils in mice (Figure 55 panel A).  

To further validates the role of TME in this contest, we treated CD8+ T cells with InF of 

CRC patients and we found a decrease in GZMK production in NAT compare with T (Figure 

55 panel E), suggesting a role of soluble component present within T in the basal level of 

GZMK expression, while the NAT play an immunomodulatory role. 
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Figure 55. Neutrophils increase the basal production of GZMK in CD8+ T cells by direct contact in 
culture. 
A. Quantification of GZMK expression within murine CD8+ T cells as mean fluorescence intensity (MFI) after 
24h of culture alone or in contact with mouse Bone Marrow (BM) derived neutrophils or tumor associated 
neutrophils (TAN) isolated from the tumor (T) of MC38 CRC model in a 1:1 ratio. Bars indicate mean ± s.e.m.; 
***, P < 0.001; *, P < 0.05; paired t test. B. Quantification of GZMK frequency within freshly isolated CD8+ 
T cells from healthy donors (HD) peripheral blood (PB) and after 24h of culture alone or in contact with PB 
derived neutrophils in a 1:1 and 1:10 ratio in contact and 1:1 ration in transwell. Bars indicate mean ± s.e.m.; 
*, P < 0.05; paired t test. C. Viability quantification of CD8+ T cells after 24h of culture alone or with 
neutrophils (1:1) Bars indicate mean ± s.e.m.; *, P < 0.05; paired t test. D. Frequency of GZMKhigh central 
memory (CM), naïve, terminally effector (EFF) and effector memory (EM) T cells within CD8+ T cells after 
24h of culture alone or with neutrophils (1:1) Bars indicate mean ± s.e.m.; *, P < 0.05; 2 way ANOVA. E. 
Frequency of GZMK in CD8+ T cells after 24h of culture with Interstitial fluid (InF) of tumor (T) and normal 
adjacent tissue (NAT). **, P < 0.01; paired t test.   
Adapted from Tiberti et al. 

 

Finally, despite the low number within human derived CRC sample, we were able to FACS-

sort tumor infiltrating neutrophils from CRC patients and co-culture them with CD8+ T cells 

derived from PB of the same patient overnight, followed by the phenotypic analysis. 

Remarkably, neutrophils isolated from tumors present a higher capacity to induce GZMK in 

CD8+ T cells in comparison with matched neutrophils derived from PB of the same patient 

(Figure 56 panel A). Furthermore, to get a deep understanding of the impact of tumor 

infiltrating neutrophils on CD8+ T cell we FACS-sorted CD15high and CD15low CD66b+ 

neutrophils. We reported that the CD15high population induced high GZMK production from 

CD8+ T cells as compared with the CD15low counterpart (Figure 56 panel B). 
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Figure 56. CD15high neutrophils present within the tumor (T) induces higher production of GZMK in 
CD8+ T cells compared with peripheric neutrophils and the CD15low counterpart. 
A. Quantification of GZMK expression within CD8+ T cells overnight (O/N) culture alone or in contact with 
peripheral blood (PB) derived neutrophils or tumor derived neutrophils (NEU T) isolated from 3 CRC patients 
in a 1:1 ratio. Bars indicate mean ± s.e.m. paired t test. B. Quantification of GZMK frequency within isolated 
CD8+ T cells from CRC patients PB after ON culture with tumor-derived neutrophils CD15low and CD15high 
respectively in a 1:1 ratio. Bars indicate mean ± s.e.m. paired t test.  
Adapted from Tiberti et al. 

 
 

Overall, these data support a model where the direct interaction between neutrophils and 

CD8+ T cells skewed CD8+ T cells toward GZMKhigh cells.   

To further validate the crosstalk between neutrophils and CD8+ T cells and the capability of 

neutrophils to induce GZMK production in these cells, we analyzed the distance between 

CD66b+ neutrophils and CD8+ T cells GZMK+ directly on HN and LN tumors. We found 

that      the production of GZMK is higher in CD8+ T cells close to neutrophils compared 

with other surrounding cell types (Figure 57 panel A). Likewise, the level of GZMK is higher 

in CD8+ T cells closer to neutrophils compared with the more distant ones (Figure 57 panel 

B).   

 

 
Figure 57. Neutrophils modulate GZMK within CD8+ T cells in a contact mediated manner. 
A. Representative confocal images and relative quantification of GZMK MFI in CD8+ (in Green) and CD8- 
(no CD8) cells within a 10μm distance from neutrophils (identified with CD66b+, in red). Scale bar 5μm. **, 
P < 0.01; unpaired t test. B. Representative confocal images and normalized quantification of GZMK MFI in 
CD8+ (Green) within 10μm (Touching, n=161) or between 10 and 20μm (Near, n=203) from neutrophils 
(CD66b+, in red). Yellow dotted lines represent 20μm (left) and 10μm (right). Scale bar 10μm. *, P < 0.05; 
unpaired t test.   
Adapted from Tiberti et al. 
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These data corroborate once again the existence of a specific crosstalk between CD8+ T cells 

and neutrophils, which results in GZMK production by CD8+ T cells. 

 

15. The GZMK produced by infiltrating CD8+ TEM promotes relapse by 
reducing E-Cadherin expression in CRC tumors 

 

We decided to understand the direct effect of GZMK on an in vitro model of intestine 

epithelium. To do this, we cocultured CACO2 and HT39 cell lines in a ratio 1:7 in a transwell 

device to allow the multilayer formation and the polarization of the epithelium. After 12 

days of culture, we coculture CD8+ T cells and neutrophils isolated from HD PB on the 

epithelium and we observed a strong modulation in E-Cadherin (E-Cad) expression255,256 

(Figure 58 panel A), without affecting the cell viability (Figure 58 panel B). This result 

suggested the development of an epithelial to mesenchymal transition process facilitating 

the tissue damage and metastasization. 

 

 
Figure 58. Coculture of CD8+ T cells and neutrophils induce a decrease in E-Cadherin (E-Cad) in an 
intestinal epithelial model. 
A. Representative images and quantification of E-Cad expression on CACO-HT29 epithelial model on 
transwells in presence of neutrophils (NEU), CD8+ T cells (CD8) or neutrophils/CD8 (1:1 ratio) isolated from 
healthy donors (HD) peripheral blood (PB) for 24h (n=2). Multicolor confocal imaging. DAPI blue, E-Cad in 
green. Scale bar 50µm. Bars indicate mean ± s.e.m. *, P < 0.05; paired t test. B. Frequency of death cells within 
NEU, CD8 and 1:1. Bars indicate mean ± s.e.m. *, P < 0.05; paired t test.  
Adapted from Tiberti et al. 

 
 

To confirm the role of GZMK in this process we treated the transwell with or without 

rGZMK and we observed a strong decrease in E-Cad (Figure 59). 
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Figure 59. GZMK is responsible for E-Cadherin (E-Cad) decrease in intestinal epithelial model. 
Representative images and quantification of E-Cad expression on CACO-HT29 epithelial model on transwells 
in treated with PBS (CTR) or recombinant active human GZMK, with (GZMK+INHIBIT) or without (GZMK) 
the PRO-321 GZMK’s inhibitor Bikunin for 24h. DAPI blue, E-Cadherin green, n=10. Scale bar 100µm. Bars 
indicate mean ± s.e.m. ***, P < 0.001; paired t test.  
Adapted from Tiberti et al. 

 
Additionally, rGZMK induced a remodulation in the transcriptional profile of our intestinal 

epithelial model. Pathways involved in increase cell proliferation, DNA damage response 

and chromatin remodeling are strongly upregulated, suggesting us a progression toward an 

epithelial mesenchymal transition (EMT), which needs to be confirmed and investigated 

with further studies. (Figure 60). 

 
Figure 60. GZMK modulate transcriptional profile of an intestinal epithelial model. 
Reactome pathways upregulated after treatment of CACO-HT29 epithelial model on transwells in treated with 
recombinant active human GZMK in respect to control with only media for 24h.  
Adapted from Tiberti et al. 

 

All these data support the pro-tumoral effect of GZMK produced by CD8+ TEM into the TME 

of CRC patients. Remarkably, in line with the enrichment of GZMKhigh CD8+ TEM in HN 

patients, we detected a downregulation in E-Cad in their tumoral tissue (Figure 61). 
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Figure 61. HN patients present lower E-Cadherin (E-Cad) expression. 
Representative images and quantification of E-Cad expression by multicolor confocal imaging on FFPE 
sections within low (LN, n=5) and high (HN, n=12) neutrophils patients. DAPI blue, E-Cad green, n=10. Scale 
bar 100µm. Box and whisker plot indicates Min to Max value; *, P < 0.05; unpaired t test.  
Adapted from Tiberti et al. 

 
 
All these data support the development of a pro-metastatic TME and high risk of relapse in 

HN CRC patients. 
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Discussion 
 

The tumor immune microenvironment is an important prognostic determinant in CRC. Here, 

we showed that tumor infiltrating neutrophils expressing high levels of CD15 interact with 

CD8+ T effector memory cells skewing them to produce GZMK, associated with tumor 

progression in CRC patients. 

CRC possesses multiple histological subtypes that generate disparate immune responses257. 

However, genomic approaches alone were unable to translate them into solid prognostic 

biomarkers. While limiting the efficacy of therapy, immune heterogeneity offers an 

opportunity to develop novel diagnostics based on patient-specific immune biomarkers, 

instead. There have been recent attempts to profile the immune cell content of CRC and 

other solid tumor malignancies using transcriptional profiling data and Immune 

histochemistry (IHC)258–260. Although informative, transcriptional signatures have not been 

clearly demonstrated to infer immune cell content, nor are they capable of delineating unique 

immune cell subtypes that require multiple markers to be identify. Alternatively, IHC 

provides critical information regarding the spatial relationships between immune and cancer 

cells, but only captures a small area of tumor and might not reliably represent tumor 

heterogeneity. Our study, instead, has provided a multilayered description of the immune 

landscape by combining scRNAseq profiling and MPFC to estimate the heterogeneity of 

immune cells within and across CRC patients while also obtaining functional information.  

Currently, the prognostic value of immune cell infiltration is not conclusive, especially 

regarding neutrophils261. We provide evidence that neutrophils are the most abundant innate 

cell population infiltrating the tumor bed in early- stage CRC, revealing that CRC patients 

can be stratified based on high (HN) or low (LN) CD15high neutrophil infiltration. Pro-

tumorigenic roles have been ascribed to neutrophils across different tumor types262,263, 

including promotion of angiogenesis and immunosuppression170,227, but it is not clear 

whether distinct neutrophil populations gather the tumor or if phenotypic changes occur 

inside the TME. Also, the few functional studies available have led to conflicting 

conclusions on the impact of neutrophils on antitumor T cell responses196,198,264. Our data 

supports the idea that neutrophils undergo phenotypic changes specifically within the TME. 

The majority of neutrophils in patient matched normal-adjacent tissues (NAT) and peripheral 

blood (PB) are characterized by CD15high expression. Importantly, there are no differences 

in the expression of CD15 on PB-derived neutrophils from healthy donors (HD) and CRC 

patients. Once neutrophils are recruited to the site of inflammation, they are fated to 

programmed cell death, which is paralleled by downregulation of specific receptors, 

including CD15265. Our data show that also neutrophils recruited to the TME are subjected 
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to the same fate. Indeed, neutrophils gathering LN tumors significantly down-regulate CD15 

compared to matched NAT and PB, likely to limit potentially harmful consequences of 

prolonged neutrophil activation. On the contrary, in HN tumors neutrophils maintain a high 

level of CD15 expression, likely remaining activated. This is consistent with the pro-tumoral 

phenotype exerted by CD15high neutrophils, which have higher frequency of 

CXCR2+CXCR4+ and produce more total Ros (tROS) compared with CD15low, in agreement 

with N2 type neutrophils175,253. Likewise, exposure of neutrophil to the interstitial fluid (InF) 

from HN tumors pushes CD15 expression, implying that the TME has a direct role in 

polarizing neutrophils toward a CD15high state. Moreover, InF from HN, differently from 

LN, did not foster neutrophil migration, suggesting that there might be some soluble factors 

in the HN TME which promote neutrophils retention, rather than increasing their recruitment 

to the tumor. 

Neutrophils are recalled early to the site of inflammation, where they can provoke tissue 

damage if inappropriately retained266. To avoid it, neutrophils that migrate into tissues 

progressively lose CD15 and are phagocytosed by resident tissue macrophages 267. Since HN 

tumors displayed an inverse correlation between macrophages and CD15 surface expression 

on neutrophils, we can speculate that the accumulation of CD15high neutrophils in HN tumors 

might be due, at least in part, to inefficient clearance, as previously demonstrated in other 

tumor contexts268. M2 macrophages have a proven role in establishing an 

immunosuppressive TME; thus analysis to deeply characterize M1 or M2 macrophage 

phenotype in correlation with neutrophil abundance and GZMKhighCD8+ T cells in the CRC 

TME deserve further investigation. 

On the other hand, SDF-1/CXCR4 signaling plays an important role in the retention of 

neutrophils at inflammatory sites269. Likewise, SDF-1 levels in CRC patients correlates with 

frequency of CD15high neutrophils and, in vitro, with increased adhesion and release of 

TME’s remodeling factors rather than driving chemotaxis. Overall, these data indicate that 

intratumoral high levels of SDF-1 promote neutrophil retention in HN tumors, favoring their 

accumulation.  

Data presented here showed that most of the tumor infiltrating CD8+ T cells preserve their 

effector functions, while only a minority expressed co-inhibitory receptors, suggesting that 

other mechanisms besides canonical “T cell exhaustion” might contribute to the failure of 

tumor control in early CRC patients. Neutrophils can influence CD8+ T cell-mediated 

responses, however, results of different studies are controversial and 

debated169,186,196,198,249,250,264. We reported that the direct crosstalk between neutrophils and 

CD8+ T cells leads to increased GZMK expression, which correlates with tumor relapse. 

Strikingly, the predominance of GZMKhigh CD8+ TEM cells in CRC patients that encountered 
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an early relapse suggested their detrimental role in favoring CRC progression.  Indeed, 

GZMKhigh CD8+ TEM cell signature was effective in stratifying patients by overall survival 

(OS) in CRC and also lung carcinoma, supporting the hypothesis of GZMKhigh CD8+ TEM 

cells contributing to the establishment of a pro-tumoral TME. Further studies would be 

needed to address if CD8+ T cells recruited to the tumor and skewed toward a GZMKhigh 

phenotype impacts neutrophil turnover and phenotype inside the tumor. 

GZMK can be expressed by other cell types, including NK cells, plasma cells, mast cells, 

macrophages and fibroblasts, where its role has not been explored, yet. However, we have 

carefully evaluated the expression of GZMK by other identified T cell subpopulations by 

testing their association with the disease-free survival (DFS) in the external TCGA cohort, 

confirming that only the CD8_Tem-GZMK subpopulation is associated with a worse clinical 

outcome. These results imply that GZMK cannot be considered as an independent prognostic 

marker on CRC and that the increased risk of relapse is intimately linked to the presence of 

the CD8 Tem-GZMK subpopulation. It would be interesting to further investigate the 

regulation of GZMK expression in other cell types and its impact on tumor progression, 

eventually. 

Nevertheless, it’s worth to note that looking at the CD4 compartment, we found that 

conventional CD4+ T cells produce low amounts of GZMK without any significant 

correlation with neutrophils abundance. As opposed, we detected a negative correlation 

between Treg cells and CD15high neutrophils, which deserves further investigation. In light 

of the recently identified immunosuppressive CD4+ GZMK+ EOMES+ Tr1-like subset121 , it 

would be interesting to better profile the heterogeneity of the Treg compartment and address 

their role in relation to LN and HN status. 

GZMK+ CD8+ T cell subpopulations have been recently identified and described as pre-

dysfunctional44,45,60,223. However, the here identified GZMKhigh CD8+ T cell population 

harbored lower expression of co-inhibitory receptors, higher levels of activation markers and 

effector molecules like GZMB, compared to the GZMK- counterpart, indicative of a 

functional and active phenotype. Moreover, their abundance in the TME was independent of 

tumor stage and aging, thus suggesting that these GZMKhigh CD8+ TEM cells are distinct from 

the one recently identified45,60.  

Tumor-specific CD8+ T cells could be distinguished from virus-specific CD8+ T cells based 

on the expression of specific surface protein, in particular CD39 and PD175,223, which have 

previously been associated with antitumor responses69,222. It is worth it to emphasize that the 

GZMKhigh CD8+ TEM cell population enriched in HN lacked CD39 expression, suggesting 

that they are not specifically directed towards tumor associated antigens 64,69 but rather 

towards irrelevant antigen75. The enrichment of CD39- virus-specific CD8+ T cells in the 
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TME is well described67, however their contribution on cancer progression is yet to be 

underscored.  Since they have been previously associated with inflammatory disease270,271, 

the high proportion of GZMKhigh CD39neg CD8+ TEM cells found in early CRC patients raises 

the possibility that they might mediate a cross-reactive response and favors cancer 

progression. Indeed, our transcriptomic analysis supports this model revealing that 

GZMKhigh CD8+ TEM cells harbor a peculiar alloreactive-like signature that might be 

controlled by RORA, JUNB and HOPX. In particular, RORa, which is down regulated 

specifically in the CD8 TEM subset, has been previously associated with effector function 

and cytotoxicity rather than memory272. On the other hand, the regulation of JUNB (which 

is a subunit of the AP-1 transcription complex together with FOS) and HOPX (which is a 

homeodomain-only cofactor involved in AP-1 function) go in opposite directions, in 

agreement with the role played by HOPX in inhibiting AP-1 expression both in nonlymphoid 

and, most importantly, immune cells. Indeed, work from Flavell's lab has demonstrated that 

Hopx-dependent downregulation of Fos and Jun expression upon rechallenge with an 

antigen under immunogenic conditions maintained Treg in a state of nonproliferation known 

as anergy273. In CD8+ T cells, this state of unresponsiveness can develop either in absence 

or following activation in the presence of co-stimulation, like on cells responding to a tumor. 

Anergy has been linked to mechanisms of suppression of acute T cell responses induced 

under strongly immunogenic conditions274 where it downregulates and prevents 

immunopathologic damage to the tissue in which it occurs275. Therefore, the antithetical 

regulation of JUNB and HOPX is consistent with a persistent acute activation in CD8+ TEM, 

which may lead to tissue damage. Our study suggests that this might be due to the release of 

GZMK. 

On the other hand, having found that the crosstalk between neutrophils and CD8+ T cells is 

fundamental for the skewing toward a GZMKhigh cell population, it would be worth 

investigating if neutrophils directly mediate the “bystander” activation of CD8+ T cells.  

The notion that GZMK is only a cytotoxic molecule have been challenged by evidence 

indicating that it might actually promote inflammation and tissue damage57,276. This relates 

to its activity as extracellular protease and ability to promote epithelial-to-mesenchymal 

transition (EMT) by remodeling components of the extracellular matrix276. In line with this, 

compared to LN, HN CRC tumors showed reduced expression of E-Cadherin, which is a 

feature of EMT and tumor malignancy, establishing a potential link between infiltration of 

GZMKhigh CD8+ TEM, tumor progression and relapse. It is well established that cytotoxic 

CD8+ T cells are correlated with immunosurveillance and favorable prognosis. However, 

our study highlights the limitation of predicting clinical outcomes based on a CD8+ T cell's 

broad cytotoxic signature. Instead, different cytotoxic molecules might have diverse impacts 
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on tumor progression and combining signatures that match their specific expression with 

CD8+ T differentiation state could be instrumental to better stratify patients. 

The association between neutrophil and CD8+ T cells identifies a unique immune signature 

in CRC patients, which might inform therapeutic decision making for standards as well as 

new immunotherapeutic strategies. Neoadjuvant checkpoint blockade therapy achieves deep 

or complete response in patients with mismatch-repair-deficient and mismatch-repair-

proficient early colon cancer24. These data open new opportunities for the treatment of 

inoperable CRC patients, as well as the potential to modify surgical practices toward less-

radical resections. Our study supports the hypothesis that clinical outcome could tightly 

correlate with the crosstalk between innate and adaptive immune response at the tumor site. 

We posit that quantitative and qualitative analysis of the tumor immune infiltrates may serve 

as an effective approach to maximize ICB outcome, reduce the risk of toxicity in subjects 

that wouldn't benefit from the treatment and, overall, improve patient management while 

positively impacting the abatement cost for the health system. For instance, we speculate 

that in HN tumors, ICB-based therapies might potentially exacerbate the tumor promoting 

effect of GZMKhigh CD8+ T cells in view of their alloreactive signature.  

In conclusion, our data support the relevance of neutrophils in the regulation of CD8+ T cells 

infiltrating CRC tumors and improve CRC stratification based on which we could anticipate 

prognosis and/or response to ICB treatment.  

This study demonstrates that functional information resulting from the crosstalk of CD8+ T 

cells with different components of the immune contexture and the stroma might implement 

the prognostic value of current biomarkers, which are mostly based on limited phenotypic 

or transcriptional CD8+ T cell characteristics and a possible prediction of response to the 

therapy.  
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Conclusions 
 
Tumor infiltrating CD8+ T cells have emerged as a major determinant to establish prognosis 

in several solid tumors, including colorectal cancer (CRC). However, tumor contexture is 

highly heterogeneous and understanding how the interplay between different immune cell 

compartments impacts on the clinical outcome is still in its infancy. Here, we combined 

multiparametric flow cytometry (MPFC), multiplex enzyme-linked immunosorbent assay 

(ELISA), single cell RNA sequencing (scRNAseq) and confocal microscopy imaging to 

dissect the immune heterogeneity within the tumor microenvironment (TME). In a 

prospective cohort of early-stage non metastatic CRC patients, we describe a novel CD8+ T 

effector memory population, which is characterized by high levels of Granzyme K 

(GZMKhigh CD8+ TEM) and correlated with CD15high tumor infiltrating neutrophils.   

We provide both in vitro and in vivo evidence of the role of stromal cell-derived factor 1 

(CXCL12/SDF-1) in driving functional changes on neutrophils at the tumor site shaping 

them toward an N2-like pro-tumoral phenotype, promoting their retention and increasing 

crosstalk with CD8+ T cells.   

As a consequence of the interaction with neutrophils, CD8+ T cells are skewed towards a 

CD8+ TEM phenotype, producing high levels of GZMK, which in turn contributes to 

remodeling the tumor microenvironment.   

The following decrease in E-Cadherin expression is a well-known trait of malignancy, 

supported by the correlation of GZMKhigh CD8+ TEM and neutrophils with both tumor 

progression in a mouse model of colon carcinoma and early relapse in CRC patients.   

Additionally, we generated by scRNAseq profiling a gene signature for GZMKhigh CD8+ 

TEM which was associated with worse prognosis on the Cancer Genome Atlas Colon 

Adenocarcinoma (TCGA-COAD) dataset, confirming effective stratification on an 

independent cohort of CRC patients and correlating GZMKhigh CD8+ T cell signature to poor 

clinical outcome.   

Overall, our results describe a new GZMKhigh CD8+ TEM population in early-stage CRC 

tumors as a hallmark of worst clinical outcome, driven by the interaction with neutrophils, 

which could implement current patient stratification and be targeted by novel therapeutics.  
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Graphical model. 
The frequency of CD15high neutrophils in the tumor identifies High (HN) and Low (LN) neutrophil subgroups 
of non-metastatic resectable CRC patients (1). Elevated SDF-1 levels in HN tumors remodel the functional 
state of infiltrating neutrophils in an N2-like pro-tumoral phenotype (2), promoting their retention (3) and 
activation (4) at the tumor site. The contact-mediated interaction with CD15high neutrophils (5) skewed effector 
memory CD8+ T cells (TEM) to produce high levels of Granzyme K (GZMK) (6), which in turn remodels the 
tumor microenvironment (TME) by decreasing E-Cadherin expression in the tissue and fostering epithelial to 
mesenchymal transition (EMT) (7). Created with BioRender.com.  
Adapted from Tiberti et al. 
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