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Abstract
Translational research requires data at multiple scales of biological organization. Advancements
in sequencing and multi-omics technologies have increased the availability of these data but
researchers face significant integration challenges. Knowledge graphs (KGs) are used to model
complex phenomena, and methods exist to automatically construct them. However, tackling
complex biomedical integration problems requires flexibility in the way knowledge is modeled.
Moreover, existing KG construction methods provide robust tooling at the cost of fixed or limited
choices among knowledge representation models. PheKnowLator (Phenotype Knowledge
Translator) is a semantic ecosystem for automating the FAIR (Findable, Accessible, Interoperable,
and Reusable) construction of ontologically grounded KGs with fully customizable knowledge
representation. The ecosystem includes KG construction resources (e.g., data preparation APIs),
analysis tools (e.g., SPARQL endpoints and abstraction algorithms), and benchmarks (e.g.,
prebuilt KGs and embeddings). We evaluate the ecosystem by surveying open-source KG
construction methods and analyzing its computational performance when constructing 12
large-scale KGs. With flexible knowledge representation, PheKnowLator enables fully
customizable KGs without compromising performance or usability.
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Background & Summary
The worldwide growth of biomedical data is exponential, with the volume of molecular data
alone expected to surpass more than four exabytes by 2025.1 Translational science requires
integrating data and knowledge at multiple scales of biological organization. Rapid advancements
in sequencing and multi-omics technologies have made tremendous amounts of diverse data
available for secondary use.2–5 Multimodal data capture different views and, when properly
combined, help characterize complex systems.6 Unfortunately, these data are highly distributed
and heterogeneous, can be difficult to access due to licensing restrictions, lack interoperability,
and often have inconsistent underlying models or representations, which limit most researchers
from fully utilizing them.7,8

Knowledge graphs (KGs) have frequently been used to systematically model and interrogate the
biology underlying complicated systems, organisms, and diseases.9 For example, Figure 1
provides a high-level overview of the main biomedical concepts needed to model our currently
accepted knowledge of the Central Dogma10 and expanded to include pathways, variants,
pharmaceutical treatments, and diseases. In the life sciences, KGs are usually constructed from a
wide range of data sources like Linked Open Data,11 ontologies, the scientific literature, data
derived from electronic health records, and multi-omics experiments.8,12 In the biomedical
context, nodes usually represent different kinds of biological entities like genes, proteins or
diseases, and edges (or triples) are used to specify different types of relationships that can exist
between a pair of nodes (e.g., “interaction”, “substance that treats”). Multiple definitions of KGs
have been proposed in the literature, all sharing the assumption that KGs are more than simple
large-scale graphs.13–15 Existing definitions are best summarized by Ehrlinger's and Wöb's (2016)
definition: "A knowledge graph acquires and integrates information into an ontology and applies
a reasoner to derive new knowledge".13 We provide an alternative definition and consider a KG a
graph-based data structure representing a variety of heterogeneous entities and multiple types
of relationships between them and serving as an abstract framework that is able to infer new
knowledge (as well as reveal and resolve discrepancies or contradictions) to address a variety of
applications and use cases.

KG construction is not a simple process, requiring significant data preprocessing or wrangling
before edge lists can be assembled. Fortunately, several methods have been developed to tackle
the primary challenges faced when constructing a KG, including: the integration or harmonization
of disparate resources (e.g., SPOKE16, RTX-KG217, Petagraph18, Bio2RDF19, and Hetionet20),
processing and formatting of structured data and KGs (e.g., Dipper21, the Knowledge Graph
Exchange [KGX]22), enhancement or extraction of relationships (e.g., Biomedical Knowledge
Discovery Engine [BioKDE]23, KG-COVID-1924) and evidence (e.g., PrimeKG25) from the literature,
and the exchange or sharing of constructed KGs (e.g., Network Data Exchange [NDEx]26, KGX22).
Recently, several frameworks like KG-HUB27, the Clinical KG [CKG]28, RTX-KG217, BioCypher29, and
the Knowledge Base Of Biomedicine (KaBOB)7 which provide all of the aforementioned
functionalities have been developed. While methods have been developed for each of the
processes or steps required to construct KGs, robust tools and resources to evaluate constructed
KGs are lacking.8 Traditionally, evaluation of constructed KGs has been task- or domain-specific
and largely limited to case studies16,17,20,24,25,28,29. Ideally, constructed KGs would be evaluated in
the same manner as other network science (e.g., community detection and link prediction
algorithms) and KG or node embedding methods using benchmarks like Zachary’s Karate Club
graph30, DBPedia31, and OpenBioLink32. KG benchmarks could be used to assess the
computational performance of KG construction methods and to evaluate the implications of
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different knowledge representations on specific tasks. To the best of our knowledge, there are no
existing benchmarks to systematically evaluate knowledge representation.

Tackling complex problems within the life sciences requires flexible knowledge representations.
An important limitation of existing KG construction methods is fixed or limited flexibility in the
way that knowledge is modeled. Within the biomedical domain, knowledge is typically modeled
in one of three ways (Figure 2), though the nomenclature used to describe these different
approaches differs widely in the literature. For simplicity's sake, we will refer to the three
different approaches as simple, hybrid, and complex. The first approach results in a simple graph
(Figure 2a). Simple graphs are the most common type of network used in the literature. Example
simple graphs include Zachary’s Karate Club graph30, Hetionet,20 and SPOKE.16 In these graphs,
entities are represented as nodes, and edges are used to model relationships between them.
These graphs usually lack formal semantics for the edges and nodes. Edges are often
semantically overloaded, for example ignoring the distinction between data (e.g., a protein
participating in a process) and metadata (e.g., the source of information about the protein’s
participation in that process). Simple graphs are usually straightforward to construct and can be
stored as key-value pairs resulting in small file sizes and modest memory. Disadvantages of
simple graphs include ad hoc semantics, which decreases interoperability, and a lack of clear
specification, making machine inference difficult. The second approach results in a hybrid or
property graph (Figure 2b). Example hybrid graphs include KG-COVID-1924, DisGeNET33,
OpenBioLink32, Petagraph18, the Monarch KG34, and Bio2RDF19. Hybrid graphs aim to model
entities and their relations using a mix of standard network representations and formal
semantics, usually the Resource Description Framework (RDF)35 and RDF Schema (RDFS)36.
Compared to simple graphs, standards-based hybrid graphs facilitate integration with other
resources37 and are more amenable to automated inference. They also provide faceted querying
as nodes and edges are typed. One cost of hybrid graphs is that they require substantially more
space to store than simple graphs. The third approach results in a complex graph, such as
KaBOB7, often built on the Web Ontology Language (OWL)38 standard (Figure 2c). Complex graphs
are more expressive, facilitating the generation of new knowledge via deductive inference.39 By
enforcing explicit semantics, OWL provides advantages over RDF/RDFS in the integration of large
biomedical data.40 Complex graphs are fully machine-readable, highly expressive, and, because
they are built on Description Logics,39 are able to leverage reasoners to verify their logical
consistency and do deductive inference. Unfortunately, complex graphs are very large, can be
difficult for humans to understand and have been shown to perform poorly on some inductive
inference tasks.41 To date, there are no existing KG construction methods that enable the
construction of multiple or alternative versions of the same KG utilizing different underlying
knowledge representations, making comparisons and benchmarking difficult.

To address the lack of relevant benchmarks and flexibility in knowledge representation, we
developed PheKnowLator (Phenotype Knowledge TransLator), a semantic ecosystem for
automating the FAIR (Findable, Accessible, Interoperable, and Reusable)42 construction of
ontologically grounded KGs with fully customizable knowledge representation. The ecosystem
consists of three components (Figure 3): (1) KG Construction Resources, which consist of tools to
download and process heterogeneous data and algorithms to construct custom KGs; (2) KG
Benchmarks, which consist of prebuilt KGs that can be used to systematically assess the effects
of different knowledge representations on downstream analyses, workflows, and learning
algorithms; and (3) KG Tools to analyze KGs, including Jupyter Notebook-based use cases and
tutorials, cloud-based data storage, application programming interfaces (APIs), and triplestores.
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We evaluate the PheKnowLator ecosystem by systematically comparing its components with
existing open-source KG construction software using a survey developed to assess the
functionality, availability, usability, maturity, and reproducibility of KG construction software. We
also assessed the computational performance of the ecosystem when used to construct 12
benchmark KGs designed to provide alternative representations for modeling the molecular
mechanisms underlying human disease.

Results
PheKnowLator is open-source and available through GitHub
(https://github.com/callahantiff/PheKnowLator) and PyPI (https://pypi.org/project/pkt-kg).
Important manuscript definitions are provided in Supplementary Table 1, acronyms are provided
in Supplementary Table 2, and PheKnowLator ecosystem resources are listed in Supplementary
Tables 3 and 4.

Evaluation
The PheKnowLator ecosystem was evaluated in two ways. First, publicly available software to
construct biomedical KGs was identified and systematically compared using a survey developed
to assess the functionality, availability, usability, maturity, and reproducibility of each method.
Second, the computational performance of the ecosystem was assessed when used to construct
12 benchmark KGs designed to provide alternative representations for modeling the molecular
mechanisms underlying human disease. The resources used for each task are listed in
Supplementary Table 4.

Systematic Comparison of Open-Source KG Construction Software
Open-source biomedical KG construction methods available on GitHub were identified and
compared to the PheKnowLator ecosystem. A survey was used to compare the methods for the
task of constructing biomedical KGs and consisted of 44 questions designed to assess five
criteria: KG construction functionality, maturity, availability, usability, and reproducibility
(Supplementary Table 5). Of the 1,905 repositories identified on GitHub, 231 contained course,
tutorial, or presentation material (i.e., manuscript reviews and slide decks), 278 were duplicate
or cloned repositories, 79 were KG applications or services, 60 were websites or resource lists,
and 1,253 were determined to be irrelevant (i.e., mislabeled, not biomedical, or not a KG
construction method). This initial list was supplemented with 11 methods identified through a
review article8. The final list included the 15 methods (Table 1 with additional details provided in
Supplementary Table 6): Bio2Bel,43 Bio2RDF,44 Bio4J,45 BioGrakn,46 the Clinical Knowledge Graph,47

COVID-19-Community,48 Dipper,21 Hetionet,49 IASiS Open Data Graph,50 KG-COVID-19,51 KaBOB,52

KGX,22 the Knowledge Graph Toolkit,53 ProNet,54 and the SEmantic Modeling machIne55. The
methods are visualized by date of GitHub publication in Figure 4a.

The average coverage score of the five assessment criteria was 3.93 (min=2.79, max=4.90). The
coverage of each assessment criterion by method is shown in Figure 4b. Examining the results by
assessment criteria revealed interesting patterns. KG Construction Functionality (Supplementary
Table 7): The majority of the methods (81.3%; n=13) included functionality to download data,
while 31.3% (n=5) were able to process free-text and 37.5% (n=6) were able to process clinical
data. Availability (Supplementary Table 8): Three-fourths of the methods (75%; n=12) were
written in Python and 18.8% (n=3) were written in a Java-based language. All of the methods but
one were licensed with GPL, MIT, or BSD-3. Usability (Supplementary Table 9): Sample data were
provided by 94.4% (n=17) of the methods, and 80% (n=14) provided tutorials via R Markdown or
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Jupyter Notebook. Maturity (Supplementary Table 10): On average, the number of commits per
year ranged from 17 to 1,000. Over half of the methods (68.8%, n=11) had been published, and
43.8% (n=7) provided collaboration guidelines. Reproducibility (Supplementary Table 11): Tools
to enable reproducible workflows and aid in installing the method were provided by 75% (n=12)
of the methods. Most often, these tools included Docker containers (n=6) and Jupyter or R
Notebooks (n=7), and more than 37.5% (n=6) of the methods used a dependency management
program like PyPI or CRAN.

While the PheKnowLator ecosystem was comparable to the other methods on the assessed
criteria, we found it to have three important differentiating factors relative to the other methods:
(i) tools to assess the quality of underlying ontologies; (ii) logging and documentation of
metadata including the KG construction process, the data downloaded, the processing steps
applied to each data source, and the node and edge types each source contributes to; and (iii)
customizable knowledge representation making it possible to take advantage of advanced
Semantic Web tools like description logic reasoners (which we have successfully applied in the
construction of KGs by the PheKnowLator ecosystem). The ability to generate multiple versions of
the same KGs enables the ecosystem to provide benchmark KGs, which can be used to evaluate
modeling decisions and to study the impact of knowledge representation on downstream
learning. PheKnowLator included all functionality in the five assessment criteria except for tools
to process clinical data, which only 37.5% (n=6) of the methods provided.

Human Disease Knowledge Graph Benchmark Comparison and Construction Performance
The PheKnowLator ecosystem enables users to fully customize KG construction by providing the
following parameters (described in detail in the Construct Knowledge Graphs section of
Component 1: Knowledge Graph Construction Resources in the Methods): knowledge model
(i.e., complex graphs using class- or instance-based knowledge models), relation strategy (i.e.,
standard directed relations or inverse bidirectional relations), and semantic abstraction (i.e.,
transformation of complex graphs into hybrid graphs) with or without knowledge model
harmonization (i.e., ensuring a hybrid KG is consistent with the class- or instance-based complex
graph it was abstracted from). These parameters enable 12 different versions or benchmarks of
each KG build. Descriptive statistics and computational performance of the PheKnowLator
ecosystem was assessed when used to build a large-scale heterogeneous KG designed to
represent the molecular mechanisms underlying human disease and its 12 associated benchmark
KGs (referred throughout the remainder of manuscript as the PKT [PheKnowLator] Human
Disease benchmark KGs).

Benchmark Comparison
Under the advice of domain experts (ALS, IJT, LH, and CJM), the PKT Human Disease benchmark
KGs were constructed from 12 OBO Foundry ontologies, 31 Linked Open Data sets, and results
from two large-scale molecular experiments (Supplementary Table 12). The knowledge
representation used for the build is shown in Supplementary Figure 1. A simplified overview of
this knowledge representation is provided in Figure 5, which highlights the connectivity between
the 12 OBO Foundry ontologies (Figure 5a) and their relationship to the primary node types. The
18 primary node types are listed in Table 2 (visualized in Figure 5b), and 33 primary edge types
are shown in Table 3. The primary node and edge types do not include all possible node and
edge types made available in the core set of 12 OBO Foundry ontologies, only those that are
explicitly modeled in our knowledge representation.

Descriptive statistics for the OBO Foundry ontologies, pre- and post-data quality assessment, are
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shown in Table 4 (and detailed statistics provided in Supplementary Table 13). Please note when
reporting results, we will refer to edges as triples but they both refer to node-relation-node
statements. The size of the ontologies varied widely with the Chemical Entities of Biological
Interest (ChEBI)56 containing the largest number of triples (n=5,190,458) and the Protein
Ontology (PRO; modified to exclude all non-human proteins)57 containing the most classes
(n=148,243). The Relation Ontology (RO)58 contained the fewest triples (n=34,901) and the
Sequence Ontology (SO)59 contained the fewest classes (n=2,569). The merged set of cleaned
OBO Foundry ontologies (i.e., core OBO Foundry ontologies; for additional detail on the ontology
cleaning process, please see the Component 1: Knowledge Graph Construction Resources section
of the Methods) contained 545,259 classes and 13,748,009 triples. Statistics for triples added to
the core OBO Foundry ontologies are listed by edge type in Table 5. The largest edge sets were
protein-protein (n=618,069 triples), transcript-anatomy (n=439,917 triples), and
disease-phenotype (n=408,702 triples). The smallest edge sets were biological process-pathway
(n=665 triples), gene-gene (n=1,668 triples), and protein-cofactor (n=1,961 triples).

Descriptive statistics for the 12 PKT Human Disease benchmark KGs are shown in Table 6. The
PKT Human Disease benchmark KGs constructed using the class-based knowledge model with
inverse relations and without semantic abstraction were the largest (13,803,521 nodes;
41,116,791 triples). All of the PKT Human Disease benchmark KGs built without semantic
abstraction, regardless of the knowledge model or relation strategy, contained two connected
components and three self-loops. All of the PKT Human Disease benchmark KGs were highly
sparse with the average density60 ranging from 2.16x10-7 to 3.50x10-7 and 3.03x10-7 to 3.40x10-7

for benchmark KGs constructed using class-based and instance-based knowledge models,
respectively. When applying semantic abstraction, the PKT Human Disease benchmark KGs
constructed using instance-based knowledge models (743,829 nodes; 4,967,391 to 9,624,232
triples) were on average larger than those constructed using the class-based knowledge models
(743,829 nodes; 4,967,427 to 7,629,599 triples). All PKT Human Disease benchmark KGs
constructed using the instance-based knowledge model with semantic abstraction, regardless of
the relation strategy employed, were larger, had a higher average degree, and contained more
self-loops when knowledge model harmonization was applied. The average density (6.68
standard relations; 10.26 inverse relations) and number of self-loops (445 standard and inverse
relations) did not differ for the PKT Human Disease benchmark KGs constructed using the
class-based knowledge model with semantic abstraction and when applying knowledge model
harmonization. The PKT Human Disease benchmark KGs constructed with semantic abstraction,
with and without knowledge model harmonization, are visualized in Figure 6.

Construction Performance
Performance metrics by KG construction step for each of the 12 PKT Human Disease benchmark
KGs are shown in Supplementary Figure 2. On average, Step 1 (Data Download) took 2.30
minutes (1.80-3.72 minutes) and used an average of 7.93 GB of memory (7.86-7.99 GB). Step 2
(Edge List Creation) took an average of 4.82 minutes to complete (4.80-4.87 minutes) and used
an average of 39.55 GB of memory (38.93-40.43 GB). Step 3 (Graph Construction) took an
average of 391.56 minutes (6.53 hours) to complete (265.98-615.92 minutes; 4.43-10.27 hours)
and used an average of 118.69 GB of memory (104.30-147.10 GB). On average, the PKT Human
Disease benchmark KGs constructed using class-based knowledge models took roughly the same
amount of time and used roughly the same maximum amount of memory as those constructed
using instance-based knowledge models. Additionally, regardless of the knowledge model, on
average, the PKT Human Disease benchmark KGs built using inverse relations and semantic
abstraction took longer to run and required more memory.
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Discussion
In this paper we have presented PheKnowLator, a semantic ecosystem for automating the FAIR
construction of ontologically grounded KGs with customizable knowledge representation. The
ecosystem includes KG construction resources, analysis tools (i.e., SPARQL endpoints and
cloud-based APIs), and benchmarks (i.e., prebuilt KGs in multiple formats and embeddings).
PheKnowLator enables users to build complex KGs that are Semantic Web-compliant and
amenable to automatic OWL reasoning, conform to contemporary graph standards, and are
importable by popular graph toolkits. By providing flexibility in the way KGs are constructed and
generating multiple types of KGs, PheKnowLator also enables the use of cutting-edge
graph-based learning and sophisticated inference algorithms. We demonstrated PheKnowLator’s
utility by comparing its features to 14 existing open-source KG construction methods and
through analyzing its computational performance when constructing 12 different large-scale
heterogeneous benchmark KGs. Comparing these methods to PheKnowLator revealed
similarities, but also highlighted important differentiating factors lacking in other systems,
namely: (1) tools to assess the quality of ontologies (which identify, repair, and document
syntactic and semantic errors); (2) logging and metadata documentation (which enable users to
quickly debug errors and ensures builds can be rigorously reproduced); and (3) customizable
knowledge representation and benchmarks (which enables users to empirically evaluate
modeling decisions and find the optimal knowledge model or representation for a particular
task). These differences highlight PheKnowLator’s ability to provide fully customizable KGs
without compromising performance or usability.

One of the biggest challenges to developing novel KG construction methods is properly verifying
and robustly validating the resulting KGs. Network-science-based algorithms and machine
learning methods typically used within the biomedical domain such as link prediction and
knowledge graph embedding are able to make use of well-established benchmarks like YAGO,61

DBPedia,62 and Wikidata,63 which are not specific to the biomedical domain. OpenBioLink32 was
developed as a benchmark for biomedical KGs, but is almost exclusively used for link prediction
tasks. While it might not be possible to create a universal benchmark to verify or validate
biomedical KG construction methods or biomedical KGs, development of trusted resources that
are not task-specific (e.g., entity prediction or node classification) would benefit the community.
The PheKnowLator ecosystem introduces a set of benchmarks to serve this purpose. These
benchmarks were specifically designed to enable two types of tasks: (1) the validation of tools
and algorithms designed to analyze KGs (e.g., link prediction algorithms and graph
representation learning methods); and (2) the validation and comparison of KGs built using
different underlying knowledge representations. The ability to empirically evaluate the pros and
cons of different knowledge modeling decisions is important when designing knowledge-based
systems8 and will become more important as more performant graph representation learning
methods are developed, especially with respect to explainability.64

PheKnowLator Applications and Use Cases
The majority of existing published KGs and KG construction software within the biomedical
domain rely on case studies as a form of evaluation.16,18,20,24,25,29 While we did not explicitly
include case studies as part of our validation, the PheKnowLator ecosystem has fostered
substantial collaborations and led to several publications. PheKnowLator benchmark KGs have
been used in applications of toxicogenomic mechanistic inference,65 to enable the exploration of
large-scale biomedical hypergraphs,66 and to facilitate deeper sub-phenotyping of pediatric rare
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disease patients.67 Recently, PheKnowLator was used to create a disease-specific KG that
combined ontology-grounded resources with literature-derived computable knowledge from
machine reading.68 The resulting KG was then used to identify causal features suitable for
addressing confounding bias. PheKnowlator has also been used to generate hypotheses for
potential pharmacokinetic natural-product/drug interactions, by facilitating the design and
implementation of a KG involving biomedical ontologies, natural-product-ontology extensions,
and machine reading from literature.69 Finally, the PheKnowLator ecosystem was recently
selected as the primary infrastructure to facilitate the development of a large-scale KG (denoted
RNA-KG) dedicated to the study and development of RNA-based drugs by integrating more than
50 public data sources.70,71 PheKnowLator is also the foundation for novel KG approaches in
microbiome research: The microbe-relevant KG Microbe-Gene-Metabolite Link (MGMLink) was
constructed by augmenting PheKnowLator with information on microbes from the integrated
database gutMGene. GutMGene relationships describing observed microbe-metabolite or
microbe-gene associations were introduced to the PheKnowLator knowledge base, enabling a
search space for mechanistic understanding of microbial influence on disease at the molecular
level.72

In addition to the use of the PheKnowLator KG construction software and benchmark KGs, the
ecosystem has also contributed to the development of novel tools and resources. Although
results are not yet available, PheKnowLator is currently included in the Continuous Evaluation of
Relational Learning in Biomedicine (https://biochallenge.bio2vec.net/) task. This task aims to
provide a means for evaluating prediction models as new knowledge becomes available over
time. Results from this task will provide insight into the usefulness of the PheKnowLator builds
and will be used to identify areas where the ecosystem can be improved. Additionally, subsets of
prebuilt PheKnowLator KGs have been used to help develop and evaluate novel cutting-edge
graph embedding AI tools (i.e., GRAPE73), including random-walk-based embedding methods for
extremely large-scale heterogeneous graphs using the PheKnowLator KG builds.74 In addition to
graph representation learning, prebuilt PheKnowLator KGs were used to prototype a novel
method for knowledge-driven mechanistic enrichment of ignorome genes (i.e., differentially
expressed genes which are associated with a disease experimentally but that have no known
association to the disease in the literature).75 When applied to preeclampsia, this method was
able to identify 53 novel clinically relevant and biologically actionable disease associations. The
NIH Common Fund Human BioMolecular Atlas Program (HuBMAP)76 needed to assemble a KG
based on its own preferred graph schema,77–79 with one focus being to maximize leverage of
external references among ontologies for translation. The PheKnowLator ecosystem tool
OWL-NETS41 is currently being used to implement ingestion of other operational ontologies
(whether in OWL or not) into HuBMAP and NIH Common Fund Cellular Senescence Network
(SenNet)80. PheKnowLator was also applied to methods in generating pathway diagrams using
biomedically relevant KGs.81 This novel approach was able to recapitulate existing figures
regarding neuroinflammation and Down Syndrome from literature with more detailed and
semantically consistent molecular interactions using PheKnowLator.82

Limitations and Future Work
The current work has several important limitations. First, it is important to point out that the
systematic comparison we performed of open-source KG construction methods on GitHub was
subjective, only included three researchers who are actively involved in the development of
PheKnowLator, and was originally performed in 2020. While the results were updated in 2021
and re-reviewed in 2023, it is possible that new methods might not have been included. Further,
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only a qualitative comparison was carried out that took into account each method’s GitHub and
associated publications. Ideally, a fair evaluation would be performed where each method would
be downloaded and compared when used to build a KG from the same set of data.
Unfortunately, this type of analysis requires significant resources and was not within the scope of
our analysis. Second, computational performance metrics were only computed over a single
build run due to the amount of resources required to build the KGs. While it is not expected that
the results for these metrics would significantly change, small deviations related to data provider
constraints with respect to accessing build data could result in different outcomes. Third, we
mention that the PheKnowLator ecosystem includes two types of benchmarks: KGs and
embeddings. Currently, embeddings are only available for one build (v1.0.0) because the size of
the generated KGs were quite small. Subsequent builds have resulted in KGs that are so large that
generating embeddings has not been feasible. Fortunately, the recent development of
performant embedding tools like GRAPE will enable us to provide embeddings for future builds.73

Fourth, while the ecosystem includes robust logging to monitor metadata and builds, it does not
formally integrate resources like the Bioregistry83 and BioLink84, which are becoming important
new KG standards.17,8527 Similarly, the PheKnowLator ecosystem relies heavily on OWLTools86 but
newer and more stable tools like ROBOT87 should be leveraged because it allows for the
integration of the OWL API and has improved Jena-based functionality. Fifth, as mentioned
above, validating very large KGs, like the ones produced by PheKnowLator, is challenging but
important. Additional validation of the PheKnowLator ecosystem, including the construction
tools and benchmarks is needed, especially with respect to the different KG builds it produces.
Finally, while we have worked hard to ensure that the ecosystem tools and infrastructure are
user-friendly, additional work is needed to simplify the inputs and make them more
machine-readable (e.g., converting input text files into configurable yaml files) and also develop
Graphical User Interfaces for supporting the users in all the steps of KG construction.

Methods
The PheKnowLator ecosystem
The PheKnowLator ecosystem was developed to provide a more comprehensive resource to aid
in the construction of KGs within the Life Sciences and consists of three components: (1) KG
Construction Resources; (2) Benchmark KGs; and (3) KG Tools. Each component is modular; all
features and elements can be replaced or extended as technology evolves or to fit a particular
use case. The PheKnowLator ecosystem resources are listed by component in Supplementary
Table 3.

Component 1: Knowledge Graph Construction Resources
This component is represented by the largest gray box in Figure 3 and consists of two elements:
(1) Process Data. Resources to process a variety of heterogeneous data; and (2) Construct KGs.
An algorithm that enables the construction of different types of heterogeneous KGs. The
resources that support these elements are detailed in the ecosystem Component 1: Knowledge
Graph Construction Resources section of Supplementary Table 3.

Process Data
This element consists of two features and was designed to help users download and prepare a
wide variety of heterogeneous data sources needed to construct KGs. The two primary features
of this component are: (i) Download and (ii) Preparation.
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Download
This feature has been configured to download two types of data: (i) ontologies (e.g., HPO,88 GO,89

and PRO57) and databases (i.e., a data source not represented as an ontology), which includes
Linked Open Data (e.g., Comparative Toxicogenomics Database,90 UniProt Knowledgebase,91

STRING92), data from molecular experiments (e.g., the Human Protein Atlas,93 the
Genotype-Tissue Expression Project94), and existing networks and KGs (e.g., Hetionet,20 the
Monarch KG95). Ontologies are downloaded using OWLTools86 (April 06, 2020 release) and
databases are downloaded using a custom-built API capable of processing a variety of file
formats (e.g., zip, gzip, tar) from different types of servers and APIs.

Preparation
A collection of tools were developed to help users perform a variety of tasks when preparing
data that will be used to construct a KG. This feature provides services to map different types of
identifiers (e.g., aligning gene identifiers from the Human Gene Nomenclature Committee
[HGNC] to96 Entrez Gene97 and Ensembl98), annotate concepts (e.g., convert strings of tissue
names from the Human Protein Atlas93 to Uber-Anatomy Ontology [Uberon]99 concepts), filter
data (e.g., identify variant-disease relationships from Clinvar100 with a specific type of
experimental validation), and process entity metadata (e.g., obtain PubMed identifiers for
exposure-outcome relationships from the Comparative Toxicogenomics Database90 and extract
synonyms and definitions for OBO Foundry ontology concepts). The Data Preparation Notebook
(Data_Preparation.ipynb101) illustrates some of these features. There are also features to assess
and repair the quality of OBO Foundry ontologies, which are known to be subject to a variety of
errors.102–104 The Ontology Cleaning Notebook (Ontology_Cleaning.ipynb105) includes detailed
descriptions and examples of the data quality checks.106 A report is generated after assessing the
quality of each ontology, which provides statistics before and after applying each check (a recent
report is available on Zenodo.107)

Construct Knowledge Graphs
This element consists of four features designed to facilitate the construction of large-scale
heterogeneous KGs. Together, these features comprise the core functionality of the
PheKnowLator KG construction algorithm (referred to as PKT-KG throughout the remainder of the
manuscript). The PKT-KG algorithm requires three input documents: (i) a list of one or more OBO
Foundry ontologies; (ii) a list of one or more databases; and (iii) edge list assembly instructions
(i.e., instructions for filtering input data sources and references to resources needed to normalize
concept identifiers). Additional information on each input is available on GitHub
(https://github.com/callahantiff/PheKnowLator/wiki/Dependencies). The four primary features
of this component are: (i) Edge List Construction, (ii) Ontology Alignment, (iii) Customize
Knowledge Representation, and (iv) Output Generation.

Edge List Construction
Using information in the edge list assembly instructions, the edge list construction procedure
merges data, applies filtering and evidence criteria, and removes unneeded attributes. To
automate this process, we have developed a universal file parser (and constantly update it with
procedures for parsing new file types) that currently processes over 30 distinct file types. Once
the edge lists are constructed, they are serialized in a JSON file.
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Ontology Alignment
OBO Foundry ontologies were selected because they represent canonical knowledge and exist
for nearly all scales of biological organization.108 PKT-KG assumes that every KG is logically
grounded109 in one or more OBO Foundry ontologies. This feature leverages OWLTools86 (April 06,
2020 release) to merge the ontologies into a single integrated core ontology.

Customize Knowledge Representation
To enable customization in the way that knowledge is represented when constructing a KG, three
configurable parameters are provided:

1. Knowledge Model. Following Semantic Web standards,110 PKT-KG defines a KG as
, where is the TBox and is the ABox. The TBox represents the taxonomy𝐾 = ⟨𝑇,  𝐴⟩ 𝑇 𝐴

of a particular domain.111,112 It describes classes, properties/relationships, and assertions
that are assumed to generally hold within a domain (e.g., a gene is a heritable unit of
DNA located in the nucleus of cells [Figure 7a]). The ABox describes attributes and roles
of instances of classes (i.e., individuals) and assertions about their membership in classes
within the TBox (e.g., A2M is a type of gene that may cause Alzheimer’s Disease [Figure
7b]).111,112 PKT KGs are logically grounded in one or more OBO Foundry ontology.109

Database entities (i.e., entities from a data source that is not an OBO Foundry ontology)
are added to the core OBO Foundry ontologies using either a TBox (i.e., class-based) or
ABox (i.e., instance-based) knowledge model. For the class-based approach, each
database entity is made a subclass of an existing core OBO Foundry ontology class (see
the “Class-based” section of Supplementary Table 14). For the instance-based approach,
each database entity is made an instance of an existing core OBO Foundry ontology class
(see the “Instance-based” section of Supplementary Table 14). Both approaches require
the alignment of database entities to an existing core OBO Foundry ontology class, which
is managed by a dictionary that is constructed using tools in the Process Data Element of
the Knowledge Graph Construction Resources component
(subclass_construction_map.pkl107 [PKT Human Disease KG v2.1.0 May 2021]).

2. Relation Strategy. PKT-KG provides two relation strategies. The first strategy is standard
or directed relations, through a single directed edge (e.g., “gene causes phenotype”). The
second strategy is inverse or bidirectional relations, through inference if the relation is
from an ontology like the RO (e.g., “chemical participates in pathway” and “pathway has
participant chemical”) or through inferring implicitly symmetric relations for edge types
that represent biological interactions (e.g., gene-gene interactions).

3. Semantic Abstraction. KGs built using expressive languages like OWL are structurally
complex and composed of triples or edges that are logically necessary but not
biologically meaningful (e.g., anonymous subclasses used to express TBox assertions with
all-some quantification). PKT-KG currently uses the OWL-NETS41 semantic abstraction
algorithm to convert or transform complex KGs into hybrid KGs. OWL-NETS v2.0113

includes additional functionality that harmonizes a semantically abstracted KG to be
consistent with a class- or instance-based knowledge model. For class-based knowledge
models, all triples containing rdf:type are updated to rdfs:subClassOf and for
instance-based knowledge models, all triples containing rdfs:subClassOf are updated to
rdf:type. For additional details, see OWL-NETS v2.0 documentation.113
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Output Generation
To ensure features of the Process Data element (KG Construction Resources component) are
transparent and reproducible, metadata are output for all downloaded
(downloaded_build_metadata.txt114) and processed (preprocessed_build_metadata.txt107) data,
including the details of the processing steps applied to each database (edge_source_list.txt107)
and OBO Foundry ontology (ontology_source_list.txt107). The PKT KG construction process is
logged extensively (data processing115 and KG construction115). PKT KGs, including node and
relation metadata, are output to a variety of standard formats. A description of all output file
types is available from Zenodo.116 Please note that all referenced metadata files are from PKT
Human Disease KG builds (v2.1.0 May 2021).

Component 2: Knowledge Graph Benchmarks
This component consists of prebuilt KGs that can be used to systematically assess the effects of
different knowledge representations on downstream analyses, workflows, and learning
algorithms (Figure 3). Current benchmarks and the features that support them are detailed in the
ecosystem Component 2: Knowledge Graph Benchmarks section of Supplementary Table 3.
Currently, the PheKnowLator ecosystem supports two types of benchmarks: (i) KGs and (ii)
embeddings.

Knowledge Graphs
The PKT Human Disease KG was built to model mechanisms of human disease, which includes
the Central Dogma and represents multiple biological scales of organization including molecular,
cellular, tissue, and organ. The knowledge representation was designed in collaboration with a
PhD-level molecular biologist (Supplementary Figure 1). The PKT Human Disease KG was
constructed using 12 OBO Foundry ontologies, 31 Linked Open Data sets, and results from two
large-scale experiments (Supplementary Table 12). The 12 OBO Foundry ontologies were
selected to represent chemicals and vaccines (i.e., ChEBI56 and Vaccine Ontology [VO]117,118), cells
and cell lines (i.e., Cell Ontology [CL]119, Cell Line Ontology [CLO]120), gene/gene product
attributes (i.e., Gene Ontology [GO]89,121), phenotypes and diseases (i.e., Human Phenotype
Ontology [HPO]88, Mondo Disease Ontology [Mondo]122), proteins, including complexes and
isoforms (i.e., PRO57), pathways (i.e., Pathway Ontology [PW]123), types and attributes of
biological sequences (i.e., SO59), and anatomical entities (Uberon99). The RO58 is used to provide
relationships between the core OBO Foundry ontologies and database entities. As shown in
Figure 5, the PKT Human Disease KG contained 18 node types (Table 2) and 33 edge types (listed
by relation in Table 3). Note that the number of nodes and edge types reflects those that are
explicitly added to the core set of OBO Foundry ontologies and does not take into account the
node and edge types provided by the ontologies. These nodes and edge types were used to
construct 12 different PKT Human Disease benchmark KGs by altering the Knowledge Model (i.e.,
class- vs. instance-based), Relation Strategy (i.e., standard vs. inverse relations), and Semantic
Abstraction (i.e., OWL-NETS (yes/no) with and without Knowledge Model harmonization
[OWL-NETS Only vs. OWL-NETS + Harmonization]) parameters. Benchmarks within the
PheKnowLator ecosystem are different versions of a KG that can be built under alternative
knowledge models, relation strategies, and with or without semantic abstraction. They provide
users with the ability to evaluate different modeling decisions (based on the prior mentioned
parameters) and to examine the impact of these decisions on different downstream tasks.
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Embeddings
A modified version of DeepWalk124 was used to create node embeddings for the v1.0.0 PKT
Human Disease benchmark KGs. Embeddings were trained using 128, 256, and 512 dimensions
(i.e., the length of the embedding), 100 walks (i.e., the number of paths generated for each
node), a walk length of 20 (i.e., the length or number of nodes included in each path), and a
sliding window length of 10 (i.e., the number of nodes to the right and left of the target node,
which are used as training data for the target node embedding).

The PKT Human Disease benchmark KGs are built monthly through GitHub Actions-scheduled
Cron jobs and implemented using dedicated Docker containers, which output data directly to the
PheKnowLator GCS Bucket (https://console.cloud.google.com/storage/browser/pheknowlator).
The PKT Human Disease benchmark KGs are archived through a dedicated Zenodo Community
(https://zenodo.org/communities/pheknowlator-benchmark-human-disease-kg).

Component 3: Knowledge Graph Tools
This component consists of tools to analyze and use KGs (Figure 3), which includes Jupyter
Notebook-based use cases and tutorials, cloud-based data storage, APIs, and triplestores. The
features that support these elements are detailed in the ecosystem Component 3: Knowledge
Graph Tools section of Supplementary Table 3. The Jupyter Notebooks are available on GitHub
and currently include tutorials on using OWL-NETS (OWLNETS_Example_Application.ipynb125),
querying an RDF KG (RDF_Graph_Processing_Example.ipynb126), and searching for paths between
two entities in a PKT Human Disease KG (Entity_Search.ipynb127). As before, data are publicly
available through the PheKnowLator GCS bucket and the PKT Human Disease benchmark KGs
Zenodo community. The PheKnowLator ecosystem includes a SPARQL Endpoint
(http://sparql.pheknowlator.com/). The Database Center for Life Science SPARQL proxy web
application128 is used as the front end and the data is served from a Blazegraph triplestore.129

Fair Data Principles
The PheKnowLator is built on the FAIR principles42 (Supplementary Figure 3).42 Findability.
Unique persistent identifiers are used for all data (i.e., downloaded, processed, and generated),
metadata (i.e., for all downloaded and processed resources, data quality reports, and logged
processes), and infrastructure (i.e., Docker containers, compute instances, and KG builds run via
GitHub Actions130 and the Google AI Platform131). All benchmark KGs are built using standardized
and persistent node and relation identifiers. Accessibility. All data (i.e., downloaded, processed,
and generated), constructed KGs, and metadata generated during the KG construction process,
are publicly available and accessible via RESTful API access to a dedicated GCS Bucket.
Additionally, all builds are versioned on GitHub, Google’s Container Registry,132 and DockerHub.133

Finally, PheKnowLator provides Jupyter Notebooks and automated dependency generation
scripts to improve the usability of its resources. Interoperability. The PheKnowLator is built on
Semantic Web standards, the KGs benchmarks and construction processes are grounded in OBO
Foundry ontologies, and, whenever possible, standard identifiers are assigned for all database
resources. Additionally, all constructed KGs and KG metadata are output to a variety of
standardized file formats like RDF/XML, N-Triples, JSON, and text files. Reusability. Benchmark
KGs builds are automated, containerized, and deployed through GitHub Actions workflows,
which makes the build process and resulting KGs consistent across versions. Semantic
Versioning134 is used for all code and documentation. The ecosystem is licensed (Apache-2.0135)
and all ingested data sources are described transparently on the ecosystem’s GitHub Wiki by
build version (https://github.com/callahantiff/PheKnowLator/wiki/Benchmarks-and-Builds).
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Evaluation
The PheKnowLator ecosystem was evaluated in two ways: (1) Systematic Comparison of
Open-Source KG Construction Software. Publicly available software to construct biomedical KGs
was identified and systematically compared using a survey developed to assess the functionality,
availability, usability, maturity, and reproducibility of each method. (2) Human Disease KG
Benchmark Comparison and Construction Performance. The computational performance of the
ecosystem was assessed when used to construct 12 benchmark KGs designed to represent the
molecular mechanisms underlying human disease. The resources used for each task are listed in
Supplementary Table 4.

Systematic Comparison of Open-Source KG Construction Software
A systematic comparison was performed to examine how the PheKnowLator ecosystem
compared to existing open-source biomedical KG construction methods available on GitHub. To
provide an unbiased comparison, no assumptions were made regarding a specific set of user
requirements. Instead, the goal of the comparison was to provide a detailed overview of existing
methods. A survey was constructed from five criteria (adapted from the evaluation methodology
of Babar et al.136) including: KG construction functionality, maturity, availability, usability, and
reproducibility. Example questions used to assess each criterion are provided in Supplementary
Table 5. The full set of survey questions (n=44) are available as a Google Form.137 Existing
open-source biomedical KG construction methods were identified by performing a keyword
search against the GitHub API. The following words were combined to form 31 distinct keyword
phrases, which were queried against existing GitHub repository descriptions and README
content: “biological“, “bio“, “medical“, “biomedical“, “life science“, “semantic”, “knowledge
graph“, “kg“, “graph“, “network”, “build“, “construction“, “construct“, “create“, “creation”. The
GitHub scraper is publicly available as a GitHub Gist and was run in May 2020.138 The systematic
comparison was completed in May 2020 (and updated in June 2021) by TJC with consultation
and oversight from WAB and LEH. The survey was scored out of a total score of five points, which
was derived as the sum of the ratio of coverage out of one point for each category: KG
Construction Functionality (10 questions); Availability (two questions); Usability (nine questions);
Maturity (five questions); and Reproducibility (six questions).

Human Disease Knowledge Graph Benchmark Comparison and Construction Performance
Performance metrics were evaluated when building the PKT Human Disease benchmark KGs
(v2.1.0 April 11, 2021; testing version not officially released), which included total runtime
(minutes) and minimum, maximum, and average memory use (GB). The PKT Human Disease
benchmark KGs (v2.1.0 May 1, 2021) were used to compare builds and produce descriptive
statistics. Statistics were calculated to help characterize each benchmark KG, which included
counts of nodes, edges or triples, self-loops, average degree, the number of connected
components, and the density. The semantically abstracted (with and without knowledge model
harmonization) PKT Human Disease benchmark KGs were visualized and examined for patterns.
The PKT Human Disease benchmark KGs are available through the PheKnowLator GCS and the
PKT Human Disease KG Zenodo Community (v2.1.0_01MAY2021).116

Technical Specifications
The PheKnowLator ecosystem resources, including data used to construct KGs and constructed
PKT Human Disease benchmark KGs, and code are listed by component in Supplementary Table
3. The PKT Human DIsease KG builds were visualized using Gephi139 (v0.9.2). The OpenOrd
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Force-Directed layout140 was applied with an edge cut of 0.5, a fixed time of 0.2, and trained for
750 iterations. To help with interpretation, nodes were colored according to node type. When
assessing computational performance, all PKT Human Disease KGs were constructed using
Docker (v19.03.8) on a Google Cloud Platform N1 Container-Optimized OS instance configured
with 24 CPUs, 500 GB of memory, and a 500 GB solid-state drive Boot Disk. PKT Human Disease
KG statistics were calculated using Networkx (v2.4).
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Data Availability
The PKT Human Disease KG data, metadata, logs, and KG files are publicly available through the
PheKnowLator GCS bucket (https://console.cloud.google.com/storage/browser/pheknowlator)
and are archived in the PKT Human Disease benchmark KGs Zenodo Community
(https://zenodo.org/communities/pheknowlator-benchmark-human-disease-kg). A detailed list
of all PKT Human Disease benchmark KGs is available on Zenodo
(https://zenodo.org/record/7030040/files/full_pheknowlator_build_files.json). Descriptions of
the data sources used to build the PKT Human Disease KG are available on the GitHub Wiki:
https://github.com/callahantiff/PheKnowLator/wiki/v2-Data-Sources#data-sources. The v2.1.0
PKT Human Disease benchmark KGs are available in the PheKnowLator GCS bucket
(https://console.cloud.google.com/storage/browser/pheknowlator/archived_builds/release_v2.1
.0/build_01MAY2021). The survey used to compare the open-source KG construction resources
available on GitHub is accessible from Zenodo (http://dx.doi.org/10.5281/ZENODO.5790040).

Code Availability
The PheKnowLator ecosystem coding resources are detailed in Supplementary Table 3 by
ecosystem component. The PKT-KG algorithm is publicly available through GitHub
(https://github.com/callahantiff/PheKnowLator) and PyPI (https://pypi.org/project/pkt-kg). The
SPARQL Endpoint deployment code and documentation are also available through GitHub:
https://github.com/callahantiff/PheKnowLator/tree/master/builds/deploy/triple-store#readme.
A list of the computational resources used to evaluate the PheKnowLator ecosystem is provided
in Supplementary Table 4. The code used to scrape the GitHub API is available as Gist
(https://gist.github.com/callahantiff/0ae1c00df9bec7228be3f6bda5466d73). The survey of
open-source KG construction tools is available on Zenodo
(http://dx.doi.org/10.5281/ZENODO.5790040). The v2.1.0 PheKnowLator code is available on
GitHub (https://github.com/callahantiff/PheKnowLator/releases/tag/v2.1.0) and from Zenodo
(https://zenodo.org/record/4685943).
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Table 1. Open Source Knowledge Graph Construction Methods.

Method GitHub repository

Bio2BEL https://github.com/bio2bel/

Bio2RDF https://github.com/bio2rdf

Bio4J https://github.com/bio4j/bio4j

BioGrakn https://github.com/graknlabs/biograkn

Clinical Knowledge Graph (CKG) https://github.com/MannLabs/CKG

COVID-19-Community https://github.com/covid-19-net/covid-19-community

Dipper https://github.com/monarch-initiative/dipper

Hetionet https://github.com/hetio/hetionet

iASiS Open Data Graph https://github.com/tasosnent/Biomedical-Knowledge-Integration

KG-COVID-19 https://github.com/Knowledge-Graph-Hub/kg-covid-19

Knowledge Base Of Biomedicine (KaBOB) https://github.com/UCDenver-ccp/kabob/tree/bg-integration

Knowledge Graph Exchange (KGX) https://github.com/NCATS-Tangerine/kgx

Knowledge Graph Toolkit (KGTK) https://github.com/usc-isi-i2/kgtk/

ProNet https://github.com/cran/ProNet

SEmantic Modeling machIne (SEMi) https://github.com/giuseppefutia/semi
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Table 2. PKT Human Disease Knowledge Graph Primary Node Types.

Node Universal Resource Identifier

Anatomical Entities http://purl.obolibrary.org/obo/UBERON

Biological Processes http://purl.obolibrary.org/obo/GO

Catalysts http://purl.obolibrary.org/obo/CHEBI

Cells http://purl.obolibrary.org/obo/CL

Cell Lines http://purl.obolibrary.org/obo/CLO

Cellular Components http://purl.obolibrary.org/obo/GO

Chemicals http://purl.obolibrary.org/obo/CHEBI

Cofactors http://purl.obolibrary.org/obo/CHEBI

Diseases http://purl.obolibrary.org/obo/MONDO

Genes http://www.ncbi.nlm.nih.gov/gene/

Molecular Functions http://purl.obolibrary.org/obo/GO

Pathwaysa http://purl.obolibrary.org/obo/PW
https://reactome.org/content/detail/R-HSA-

Phenotypes http://purl.obolibrary.org/obo/HP

Proteins http://purl.obolibrary.org/obo/PR

Sequencesb http://purl.obolibrary.org/obo/SO

Transcripts https://uswest.ensembl.org/Homo_sapiens/Transcript/Summary?t=ENST

Vaccinesb http://purl.obolibrary.org/obo/VO

Variants https://www.ncbi.nlm.nih.gov/snp/rs

Note: The node types listed above apply to the PKT Human Disease KG v2.1.0. The node types listed above do not include all of the
classes that exist in each Open Biological and Biomedical Ontology (OBO) Foundry ontology. The Cell Ontology is included with the
extended version of Uberon.
aTwo URIs are shown for pathways as the OBO Found ontology is the core ontology used to connect Reactome entities to the core set
of OBO Foundry ontologies.
bOBO node type. Includes all of the classes that are contained in the ontology even though they are not all explicitly listed here.

Acronyms: CL (Cell ontology); CLO (Cell Line Ontology); CHEBI (Chemical Entities of Biological Interest); GO (Gene Ontology); HPO
(Human Phenotype Ontology); MONDO (Mondo Disease Ontology); PKT (PheKnowlator); PRO (Protein Ontology); PW (Pathway

Ontology); SO (Sequence Ontology); VO (Vaccine Ontology); UBERON (Uber-Anatomy Ontology).
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Table 3. PKT Human Disease Knowledge Graph Primary Relations and Edge Types.

Relations Edge Types

participates in (RO_0000056)
has participant (RO_0000057)

chemical-pathway; gene-pathway; protein-biological process;
protein-pathway

has function (RO_0000085)
function of (RO_0000079)

pathway-molecular function; protein-molecular function

located in (RO_0001025)
location of (RO_0001015)

protein-anatomy; protein-cella; protein-cellular component;
transcript-anatomy; transcript-cella

has component (RO_0002180)b pathway-cellular component

has phenotype (RO_0002200)
phenotype of (RO_0002201)

disease-phenotype

has gene product (RO_0002205)
gene product of (RO_0002204)

gene-protein

interacts with (RO_0002434)c chemical-gene; chemical-protein

genetically interacts with (RO_0002435)c gene-gene

molecularly interacts with (RO_0002436)c
chemical-biological process; chemical-cellular component;
chemical-molecular function; protein-catalyst;
protein-cofactor; protein-protein

transcribed to (RO_0002511)
transcribed from (RO_0002510)

gene-transcript

ribosomally translates to (RO_0002513)
ribosomal Translation of (RO_0002512)

transcript-protein

causally influences (RO_0002566)
causally influenced by (RO_0002559)

variant-gene

is substance that treats (RO_0002606)
is treated by substance (RO_0002302)

chemical-disease; chemical-phenotype

causes or contributes to condition (RO_0003302)b
gene-disease; gene-phenotype; variant-disease;
variant-phenotype

realized in response to (RO_0009501)b biological process-pathway

Note: The primary relations and edge types listed above apply to the PKT Human Disease KG v2.1.0. These relations are added to the
core set of Open Biological and Biomedical Ontology Foundry ontologies.
aThe word “cell” above is used to represent cell lines from the Cell Line Ontology and cell types from the Cell Ontology.
bRelation Ontology concepts that do not have an inverse.
cRelations with symmetrical inverse relations.

Acronyms: PKT (PheKnowlator).

26



Table 4. Ontology Statistics Pre- and Post-Data Quality Assessment.

Ontology

Before Cleaning After Cleaning

Classes Triples Classes Triples

Cell Line Ontology 111,712 1,387,096 111,696 1,422,153

Chemical Entities of Biological Interest 156,098 5,264,571 137,592 5,190,485

Gene Ontology 62,237 1,425,434 55,807 1,343,218

Human Phenotype Ontology 38,843 884,999 38,530 885,379

Mondo Disease Ontology 55,478 2,313,343 52,937 2,277,425

Protein Ontologya 148,243 2,079,356 148,243 2,079,356

Pathway Ontology 2,642 35,291 2,600 34,901

Relation Ontology 116 7,970 115 7,873

Sequence Ontology 2,910 44,655 2,569 41,980

Uber-Anatomy Ontologyb 28,738 752,291 27,170 734,768

Vaccine Ontology 7,089 86,454 7,085 89,764

Core OBO Foundry ontologies (merged)c 548,947 13,746,883 545,259 13,748,009

Note: The numbers for the ontologies are calculated using the versions of the ontologies that include all imported ontologies
referenced by the primary ontology. This means that the counts of classes include all OWL classes used for logical definitions, not only
those that are explicitly part of the primary ontology’s namespace.
aThe Protein Ontology version references the human subset created for the PheKnowLator ecosystem.
bThe extended version of the Uber-Anatomy Ontology contains the Cell Ontology.
cConsistency was evaluated using the ELK reasoner. The reasoner was only applied to individual ontologies.
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Table 5. PKT Human Disease Knowledge Graph Descriptive Statistics by Primary Edge Type.

Edge Relation Subjects Objects
Standard
Relations

Inverse
Relations

chemical-disease substance that treats 4,289 4,494 167,681 335,362

chemical-genea interacts with 462 11,922 16,639 33,278

chemical-biological processa molecularly interacts with 1,338 1,569 287,068 574,136

chemical-cellular componenta molecularly interacts with 1,085 226 40,992 81,984

chemical-molecular functiona molecularly interacts with 1,105 200 25,385 50,770

chemical-pathway participates in 2,104 2,213 28,685 57,370

chemical-phenotype substance that treats 4,053 1,712 107,962 215,924

chemical-proteina interacts with 4,178 6,379 64,991 129,982

disease-phenotype has phenotype 11,620 9,714 408,702 817,404

gene-diseaseb causes or contributes to 5,031 4,420 12,717 ---

gene-genea genetically interacts with 247 263 1,668 3,336

gene-pathway participates in 10,371 1,809 104,906 209,812

gene-phenotypeb causes or contributes to 6,780 1,528 23,501 ---

gene-protein has gene product 19,327 19,143 19,534 39,068

gene-transcript transcribed to 25,529 179,870 182,736 365,472

biological process-pathwayb realized in response to 471 665 665 ---

pathway-cellular componentb has component 11,134 99 15,846 ---

pathway-molecular function has function 2,412 726 2,416 4,832

protein-anatomy located in 10,747 68 30,682 61,364

protein-catalysta molecularly interacts with 3,024 3,730 23,629 47,258

protein-cellc located in 10,045 125 73,530 147,060

protein-cofactora molecularly interacts with 1,584 44 1,961 3,922

protein-biological process participates in 17,527 12,246 137,812 275,624

protein-cellular component located in 18,427 1,757 81,602 163,204

protein-molecular function has function 17,779 4,324 68,633 137,266

protein-pathway participates in 10,852 2,468 117,182 234,364

protein-proteind molecularly interacts with 14,320 14,230 618,069 ---

transcript-anatomy located in 29,104 102 439,917 879,834

transcript-cellc located in 14,038 127 64,427 128,854

transcript-protein ribosomally translates to 44,144 19,200 44,147 88,294

variant-diseaseb causes or contributes to 13,291 3,565 37,861 ---

variant-gene causally influences 121,790 3,236 121,790 243,580

variant-phenotypeb causes or contributes to 1,822 371 2,470 ---

Please see Table 3 for Relation Ontology for inverse relations and identifiers.
aSymmetric relations were computationally inferred.
bThe Relation Ontology does not provide an inverse relation.
cThe word “cell” above is used to represent cell lines from the Cell Line Ontology and cell types from the Cell Ontology.
dThe data source already included symmetrical edges.
Acronyms: PKT (PheKnowlator).
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Table 6. PheKnowLator Human Disease Knowledge Graph Descriptive Statistics.

Knowledge
Model

Relation
Strategy

Semantic
Abstraction

Edges
(triples)

Nodes Relations Self-Loops
Average
Degree

aCore OBO
Foundry

ontologies
N/A N/A 4,044,658 1,399,756 847 3 2.89

Class-based

Standard
Relations

None 25,143,729 8,479,167 847 3 2.97

Semantic
Abstraction Only

4,967,427 743,829 294 445 6.68

Semantic
Abstraction +
Harmonization

4,967,429 743,829 293 445 6.68

Inverse
Relations

None 41,116,791 13,803,521 847 3 2.98

Semantic
Abstraction Only

7,629,597 743,829 301 445 10.26

Semantic
Abstraction +
Harmonization

7,629,599 743,829 300 445 10.26

Instance-based

Standard
Relations

None 21,770,455 8,479,167 847 3 2.57

Semantic
Abstraction Only

4,967,391 743,829 294 409 6.68

Semantic
Abstraction +
Harmonization

7,285,496 743,829 293 649 9.79

Inverse
Relations

None 24,432,633 8,479,167 847 3 2.88

Semantic
Abstraction Only

7,629,594 743,829 301 409 10.26

Semantic
Abstraction +
Harmonization

9,624,232 743,829 300 650 12.94

Note. Edges and triples are synonymous with respect to the results reported in this table.
aRelation Strategy and Semantic Abstraction information are not provided as this row of the table reports information on the core set
of merged ontologies.
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Figure 1. A Knowledge Representation of the Levels of Biological Organization Underlying Human Disease.

This knowledge graph provides a representation of our currently accepted knowledge of the Central Dogma expanded to include
pathways, variants, pharmaceutical treatments, and diseases.10 At a high level this knowledge graph represents anatomical entities like
tissues, cells, and bodily fluids containing genomic entities like DNA, RNA, mRNA, and proteins. DNA encodes genes that are processed
into mRNA and translated into proteins, which can interact with each other. Genes can also be altered by variants and may cause disease.
Finally, proteins also have molecular functions and participate in pathways and biological processes.

30

https://paperpile.com/c/yqG5qK/jd68


31



Figure 2. Types of Knowledge Graphs used in the Life Sciences.

This figure provides examples of three types of knowledge graphs that are typically used in the Life Sciences. All knowledge graphs are
modeling the Mondo concept ABCD syndrome (MONDO:0010895). (A) illustrates a simple graph-based representation where two nodes
are connected by an edge and nodes and edges are assigned attributes in the form of key-value pairs. (B) illustrates a hybrid or property
graph-based representation where edges are represented as sets of three nodes (each composed of a subject, predicate, and object)
called triples, often based on the RDF/RDFS standards. (C) illustrates a complex or OWL-graph-based representation where edges are
represented as triples and these representations are augmented with additional OWL expressivities such as domain or range restrictions
and description logic. Acronyms: HP (Human Phenotype Ontology); MONDO (Mondo Disease Ontology); OWL (Web Ontology Language);
RDF (Resource Description Framework); RDFS (Resource Description Framework Syntax); RO (Relation Ontology).
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Figure 3. The PheKnowLator Ecosystem.

This figure provides an overview of the PheKnowLator ecosystem.141 The ecosystem consists of three components as indicated by the gray
boxes: (1) Knowledge Graph Construction Resources, which consist of resources to download and process data and an algorithm to
customize the construction of large-scale heterogeneous biomedical knowledge graphs; (2) Knowledge Graph Benchmarks, which consist
of prebuilt KGs that can be used to systematically assess the effects of different knowledge representations on downstream analyses,
workflows, and learning algorithms; and (3) Knowledge Graph Tools to use knowledge graphs, cloud-based data storage, APIs, and
triplestores. Acronyms: NT (N-Triples file format); OWL (Web Ontology Language); PKL (Python pickle file format); SPARQL (SPARQL
Protocol and RDF Query Language).
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Figure 4. Open-Source Knowledge Graph Construction Methods - Survey Results.

This figure presents the open-source knowledge graph construction methods identified on
GitHub and the results of the survey assessment. (A) The final set of 16 knowledge graph
construction methods surveyed according to the year they were first published on GitHub. (B) A
chart of the methods evaluated in terms of the different survey categories. The survey was
scored out of a total score of five points, which was derived as the sum of the ratios of coverage,
each out of one point, for the five categories: KG Construction Functionality (10 questions);
Availability (two questions); Usability (nine questions); Maturity (five questions); and
Reproducibility (six questions). Acronyms: iASiS, Automated Semantic Integration of
Disease-Specific Knowledge; KaBOB, Knowledge Base Of Biomedicine; KG, (Knowledge Graph);
KGX (Knowledge Graph Exchange); KGTK (Knowledge Graph Toolkit); SEMi (SEmantic Modeling
machine).
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Figure 5. An Overview of the PKT Human Disease Mechanism Knowledge Graph.

This figure provides a high-level overview of the primary node and edge types in the PKT Human
Disease Mechanism knowledge graph. (A) illustrates the relationships between the core set of
Open Biological and Biomedical Ontology (OBO) Foundry ontologies when including their
imported ontologies (as of August 2022). (B) illustrates the edges or triples that are added to the
core set of merged ontologies in (A). Shared colors between (A) and (B) represent a single
resource. For example, chemicals, cofactors, and catalysts share the same color (maroon) and are
part of ChEBI. This is the same for the RO, which is represented in (B) as the black lines between
nodes. The green and yellow rectangles indicate data sources that are not from an OBO Foundry
ontology and the specific ontology used to integrate them with the core set of ontologies in (A).
For example, variant, transcript, and gene data are connected to the core ontology set via the SO.
Acronyms: CL (Cell ontology); CLO (Cell Line Ontology); ChEBI (Chemical Entities of Biological
Interest); GO (Gene Ontology); HPO (Human Phenotype Ontology); Mondo (Mondo Disease
Ontology); PRO (Protein Ontology); PW (Pathway Ontology); SO (Sequence Ontology); VO
(Vaccine Ontology); Uberon (Uber-Anatomy Ontology).
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Figure 6. The Impact of Knowledge Model Harmonization on the Semantically Abstracted PKT Human Disease Knowledge Graphs.

The figure visualizes the impact of knowledge model harmonization on the semantically abstracted PKT Human Disease benchmark
Knowledge Graphs. The top row of figures (A-D) were built using the class-based knowledge model varying: (A) standard relations
without harmonization; (B) standard relations with harmonization; (C) inverse relations without harmonization; (D) inverse relations with
harmonization. The bottom row of figures (E-H) were built using the instance-based knowledge model varying: (E) standard relations
without harmonization; (F) standard relations with harmonization; (G) inverse relations without harmonization; (H) inverse relations with
harmonization. Nodes are colored by type: anatomical entities (light blue), chemical entities (light purple), diseases (red), genes (purple),
genomic features (light green), organisms (yellow), pathways (dark green), phenotypes (magenta), proteins (dark blue), molecular
sequences (orange), transcripts (turquoise), and variants (light pink).
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Figure 7. Description Logics Approaches to Knowledge Modeling.

This figure provides a simple example of two approaches for modeling knowledge within a
Description Logics architecture. (A) The TBox includes classes (i.e., “Gene”, “DNA sequence”, and
“Cell nucleus”), properties (i.e., “located in” and “is a”), and the assertions between classes (i.e.,
“Gene is a DNA sequence” and “Gene located in Cell nucleus”). (B) The ABox includes instances
of classes (i.e., “Endothelin receptor type B”) represented in the TBox and assertions about those
instances (i.e., “Endothelin receptor type B, instance of, Gene” and “Endothelin receptor type B,
causes, ABCD syndrome”). Please note that this figure is a simplification and was inspired by
Figure 2 from Thessen et al. (2020)112.
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Supplementary Table 1. Important Definitions.

Concept Definition

Database
A data source not represented as an ontology, which can include Linked Open Data, data from experiments, clinical
data, and existing networks and knowledge graphs.

Edge
Observed connections between nodes. Edges or triples can also be thought of as node-relation-node statements (e.g.,
geneA - interacts with - geneB).

Graph
An undirected, unweighted network , where is the set of nodes and is the set of observed edges between𝐺(𝑁,  𝐿) 𝑁 𝐿
these nodes.

Knowledge Graph
A graph-based data structure representing a variety of heterogeneous entities (i.e., nodes) and multiple types of
relationships between them and serving as an abstract framework that is able to infer new knowledge to address a
variety of applications and use cases.

Knowledge Model

Within the PheKnowLator Ecosystem, there are two types of Knowledge Models that can be used when constructing a
knowledge graph: (i) class-based, in which, KGs are constructed using classes, with database entities connected to the
core set of merged ontologies as subclasses of existing ontology classes and (ii) instance-based, in which KGs are
constructed using instances, with database entities connected to the core set of merged ontologies as instances of
existing ontology classes).

Node
Entities or concepts, which are the subject of a knowledge graph. In the biomedical context, nodes usually represent
different kinds of biological entities like genes, proteins or diseases.

PKT Human Disease KG PheKnowLator Ecosystem benchmark knowledge graphs that represent the molecular mechanisms of human disease.

PKT-KG Phenotype Knowledge TransLator knowledge graph construction algorithm.

Relation
The relationship that connects two nodes in a triple or edge. Relations are used to specify different types of
relationships (e.g., interaction, substance that treats) that can exist between a pair of nodes.

Relation Strategy

Within the PheKnowLator Ecosystem, relations can be modeled in two ways when constructing a knowledge graph: (i)
Standard Relations (i.e., a unidirectional edge is used to connect a pair of nodes) and (ii) Inverse Relations (i.e.,
bidirectional edges created by inferring the inverse of relations from ontologies and implicitly symmetric relations like
gene-gene interactions).

Semantic Abstraction

Within the PheKnowLator Ecosystem, the OWL-NETS algorithm is used to decode semantically complex OWL-based
KGs into KGs that contain biologically meaningful information. Additionally, the Semantic Abstraction parameter, when
used with OWL-NETS, includes functionality that can harmonize a KG to a specific kind of Knowledge Model. See the
following link for more information: https://github.com/callahantiff/PheKnowLator/wiki/OWL-NETS-2.0.
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Supplementary Table 2. Acronyms used in the Manuscript.

Concept Definition

API Application Programming Interfaces

ChEBI Chemical Entities of Biological Interest Ontology

CL Cell Ontology

CLO Cell Line Ontology

FAIR Findable, Accessible, Interoperable, and Reproducible

GCS Google Cloud Storage

GB Gigabyte

GO Gene Ontology

HPO Human Phenotype Ontology

KG Knowledge Graph

Mondo Mondo Disease Ontology

OBO Open Biological and Biomedical Ontology

OWL Web Ontology Language

PheKnowLator Phenotype Knowledge TransLator

PKT PheKnowLator

PRO Protein Ontology

PW Pathway Ontology

RDF Resource Description Framework

RDFS Resource Description Framework Schema

RO Relation Ontology

SO Sequence Ontology

SPARQL SPARQL Protocol and RDF Query Language

Uberon Uber-Anatomy Ontology

VO Vaccine Ontology

XML Extensible Markup Language
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Supplementary Table 3. PheKnowLator Ecosystem Resources.

Resource URL

Ecosystem Component 1: Knowledge Graph Construction Resources

GitHub https://github.com/callahantiff/PheKnowLator

PyPI https://pypi.org/project/pkt-kg/

Docker Container pkt-kg: https://github.com/callahantiff/PheKnowLator/blob/master/Dockerfile

DockerHub https://hub.docker.com/repository/docker/callahantiff/pheknowlator

GitHub Actions https://github.com/callahantiff/PheKnowLator/blob/master/.github/workflows/build-qa.yml

Algorithm Dependencies https://github.com/callahantiff/PheKnowLator/wiki/Dependencies

Dependency Automation
Script

https://github.com/callahantiff/PheKnowLator/blob/master/generates_dependency_documents.py

Testing Suite https://github.com/callahantiff/PheKnowLator/tree/master/tests

Data Processing Jupyter
Notebooks

https://github.com/callahantiff/PheKnowLator/blob/master/notebooks/Data_Preparation.ipynb
https://github.com/callahantiff/PheKnowLator/blob/master/notebooks/Ontology_Cleaning.ipynb

Ecosystem Component 2: Knowledge Graph Benchmarks

Human Disease KG
Benchmark Details

https://github.com/callahantiff/PheKnowLator/wiki/Benchmarks-and-Builds

Zenodo Human Disease KG
Benchmark Builds Archive

https://zenodo.org/communities/pheknowlator-benchmark-human-disease-kg

GCS Human Disease KG
Benchmark Builds Archive

https://console.cloud.google.com/storage/browser/pheknowlator

Human Disease KG
Benchmark Builds

https://doi.org/10.5281/zenodo.7030039

Knowledge Graph Build Workflow Scripts

Build Documentation https://github.com/callahantiff/PheKnowLator/blob/master/builds

Docker Containers
https://github.com/callahantiff/PheKnowLator/blob/master/builds/Dockerfile.phases12
https://github.com/callahantiff/PheKnowLator/blob/master/builds/Dockerfile.phase3

GitHub Actions
https://github.com/callahantiff/PheKnowLator/blob/master/.github/workflows/kg-build-part1.yml
https://github.com/callahantiff/PheKnowLator/blob/master/.github/workflows/kg-build-part2.yml

Build Requirements https://github.com/callahantiff/PheKnowLator/blob/master/builds/build_requirements.txt

Build Utilities https://github.com/callahantiff/PheKnowLator/blob/master/builds/build_utilities.py

Build Logging
GCP: https://github.com/callahantiff/PheKnowLator/blob/master/builds/job_monitoring.py
pkt-kg: https://github.com/callahantiff/PheKnowLator/blob/master/builds/logging.ini

Phase 1 Build Scripts
https://github.com/callahantiff/PheKnowLator/blob/master/builds/phases1_2_entrypoint.py
https://github.com/callahantiff/PheKnowLator/blob/master/builds/build_phase_1.py
https://github.com/callahantiff/PheKnowLator/blob/master/builds/data_to_download.txt

Phase 2 Build Scripts

https://github.com/callahantiff/PheKnowLator/blob/master/builds/phases1_2_entrypoint.py
https://github.com/callahantiff/PheKnowLator/blob/master/builds/build_phase_2.py
https://github.com/callahantiff/PheKnowLator/blob/master/builds/data_preprocessing.py
https://github.com/callahantiff/PheKnowLator/blob/master/builds/ontology_cleaning.py

Phase 3 Build Scripts
https://github.com/callahantiff/PheKnowLator/blob/master/builds/build_phase_3.py
https://github.com/callahantiff/PheKnowLator/blob/master/builds/phase3_log_daemon.py
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Resource URL

Ecosystem Component 3: Knowledge Graphs Tools

Zenodo Community https://zenodo.org/communities/pheknowlator-ecosystem

GCS Bucket https://console.cloud.google.com/storage/browser/pheknowlator

Jupyter Notebooks

https://github.com/callahantiff/PheKnowLator/blob/master/main.ipynb
https://github.com/callahantiff/PheKnowLator/blob/master/notebooks/OWLNETS_Example_Application.ipynb
https://github.com/callahantiff/PheKnowLator/blob/master/notebooks/RDF_Graph_Processing_Example.ipynb
https://github.com/callahantiff/PheKnowLator/blob/master/notebooks/Tutorials/entity_search/Entity_Search.ipynb

SPARQL Endpoint http://sparql.pheknowlator.com/

aGithub Notebook Directory:https://github.com/callahantiff/PheKnowLator/blob/master/notebooks/.

Acronyms: GCP (Google Cloud Platform); GCS (Google Cloud Storage); KG (knowledge graph); PKT (PheKnowlator); PKT-KG (PheKnowLator knowledge graph
construction software).
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Supplementary Table 4. PheKnowLator Ecosystem Evaluation Resources.

Resource URL

Survey of Open Source KG Construction Software

GitHub Scraper https://gist.github.com/callahantiff/0ae1c00df9bec7228be3f6bda5466d73

Survey http://dx.doi.org/10.5281/ZENODO.5790040

PKT Human Disease KGs

PKT-KG Zenodo Release https://zenodo.org/record/4685943#.YvLai-zML0s

PyPi Release https://pypi.org/project/pkt-kg/2.1.0/

Build Documentation https://github.com/callahantiff/PheKnowLator/builds/README.md

Data Source
Descriptions

https://github.com/callahantiff/PheKnowLator/wiki/v2-Data-Sources#data-sources

GCS Bucketa https://console.cloud.google.com/storage/browser/pheknowlator/archived_builds/release_v2.1.0/build_01MAY2021

Zenodo Archive https://zenodo.org/communities/pheknowlator-benchmark-human-disease-kg

GitHub Actions
Workflows

https://github.com/callahantiff/PheKnowLator/.github/workflows/kg-build-part1.yml
https://github.com/callahantiff/PheKnowLator/.github/workflows/kg-build-part2.yml

Docker
https://github.com/callahantiff/PheKnowLator/builds/Dockerfile.phases12
https://github.com/callahantiff/PheKnowLator/builds/Dockerfile.phase3

Data Sources https://github.com/callahantiff/PheKnowLator/builds/data_to_download.txt

PKT-KG Input
Dependenciesa

https://zenodo.org/record/7026644/files/edge_source_list.txt
https://zenodo.org/record/7026644/files/ontology_source_list.txt
https://zenodo.org/record/7026644/files/resource_info.txt

Build Metadataa

https://zenodo.org/record/7026640/files/downloaded_build_metadata.txt
https://zenodo.org/record/7029940/files/edge_source_metadata.txt.zip
https://zenodo.org/record/7029940/files/ontology_source_metadata.txt.zip
https://zenodo.org/record/7026644/files/preprocessed_build_metadata.txt

Ontology QC Reporta https://zenodo.org/record/7026644/files/ontology_cleaning_report.txt

Build Logsa,b
https://zenodo.org/record/7029940/files/pkt_builder_phases12_log.log.zip
https://zenodo.org/record/7029940/files/pkt_build_log.log.zip

Data FIlesa
Original Data: https://zenodo.org/record/7026640
Processed Data: https://zenodo.org/record/7026644

KG Filesa

Class-based Knowledge Model
Standard Relations without Semantic Abstraction: https://zenodo.org/record/7029958
Standard Relations with Semantic Abstraction: https://zenodo.org/record/7029954
Inverse Relations without Semantic Abstraction: https://zenodo.org/record/7029942
Inverse Relations with Semantic Abstraction: https://zenodo.org/record/7029922

Instance-based Knowledge Model
Standard Relations without Semantic Abstraction: https://zenodo.org/record/7029942
Standard Relations with Semantic Abstraction: https://zenodo.org/record/7029940
Inverse Relations without Semantic Abstraction: https://zenodo.org/record/7029946
Inverse Relations with Semantic Abstraction: https://zenodo.org/record/7029920

aGCS data: https://console.cloud.google.com/storage/browser/pheknowlator/archived_builds/release_v2.1.0/build_01MAY2021.
bBuild logs are found in each of the knowledge graph directories on GCS and the Zenodo Community for PKT Human Disease KG builds
(https://zenodo.org/communities/pheknowlator-benchmark-human-disease-kg). The link provided is for the Instance-based Knowledge Model with Standard
Relations and semantic Abstraction.

Acronyms: GCS (Google Cloud Storage); KG (knowledge graph); PKT-KG (PheKnowLator knowledge graph construction algorithm); QC (quality control).
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Supplementary Table 5. Open-Source Knowledge Graph Construction Methods Survey Criteria.

Criteria Description Example Questions

Construction Functionality

An assessment of how well the method
covers the steps needed to construct a
knowledge graph from downloading and
processing data and building edge lists to
generating and outputting a KG

Is there functionality to download data?

Can multiple types of KGs be constructed?

Is preprocessing or filtering performed as part of the
construction process?

Maturity
An assessment of the level, stage or
development phase of a method

Is a versioning system in place?

Have many releases been made?

Are procedures in place to enable collaboration?

Availability
An assessment of the openness of a method
and the ease of obtaining a copy of the
method

Is the method licensed?

What type of license is used?

Usability
An assessment of the efforts put in place to
ensure that a user, with reasonable technical
skills, could use the method

Is there a Wiki, Read the Docs, or GitPage associated with
the method?

Are there examples of how to use the method?

Reproducibility

An assessment of whether or not the method
provides tools or resources to help reproduce
the KG construction process and maintain the
code base

What tools are provided to help enable reproducibility (e.g.,
Docker container, Jupyter Notebook, R Markdown)?

Does the repository include any form of testing?

Note. The survey questions were adapted from http://dx.doi.org/10.1109/aswec.2004.1290484.
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Supplementary Table 6. Open-Source Knowledge Graph Construction Methods.

Method GitHub Repositorya Publication DOI Primary Goal or Objective (from GitHub)b Method Validation
Most Recent

Repository Interactionc

Bio2BEL bio2bel/ 10.1101/631812v1

Bio2BEL uses the Biological Expression Language as a
common schema for integrating a wide variety of
biomedical databases including causal, correlative, and
associative relationships between entities on the
molecular, process, cellular, systems, and population
levels

N/A Within the last month

Bio2RDF bio2rdf 10.1016/j.jbi.2008.03.004
Bio2RDF is an open-source project that uses Semantic
Web technologies to build and provide the largest
network of Linked Data for the Life Sciences

Examined impact of four
transcription factors in
Parkinson's disease

Within the last week

Bio4J bio4j/bio4j 10.1101/016758
Bio4j aims to offer a platform for the integration of
semantically rich biological data using typed graph
models

Tool use demonstration;
no formal biological
validation

> 1 year

BioGrakn graknlabs/biograkn 10.1007/978-3-319-61566-0_28

BioGrakn is based on GRAKN.AI, which is a deductive
database in the form of a knowledge graph, allowing
complex data modelling, verification, scaling, querying
and analysis

Illustrative queries
spanning precision
medicine, text mining,
and disease

Within the last month

Clinical Knowledge
Graph (CKG)

MannLabs/CKG 10.1101/2020.05.09.084897

Clinical Knowledge Graph is a platform with twofold
objectives: 1) build a graph database with experimental
data and data imported from diverse biomedical
databases and 2) automate knowledge discovery
making use of all the information contained in the
graph

Biomarker studies to
demonstrate CKG use for
clinical decision-making

Within the last month

COVID-19-
Community

covid-19-net/covid-19-community NA
The COVID-19-Community is a community effort to
build a Neo4j knowledge graph that links heterogenous
data about COVID-19

Tool use demonstration Within the last week

Dipper monarch-initiative/dipper NA
Dipper is a Python package to generate RDF triples from
common scientific resources

Tool use demonstration Within the last week

Hetionet hetio/hetionet 10.7554/eLife.26726
Hetionet is a hetnet — network with multiple node and
edge (relationship) types — which encodes biology.
Hetnet was designed for Project Rephetio

Predicted the probability
of treatment for 209,168
compound–disease pairs

Within the last year

iASiS Open Data
Graph

tasosnent/Biomedical-Knowledge-Integration arXiv:1912.08633
iASiS is a framework to automatically retrieve and
integrate disease-specific knowledge into an up-to-date
semantic graph

Examined use with lung
cancer, dementia, and
Duchenne Muscular
Dystrophy

Within the last 6
months
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Method GitHub Repositorya Publication DOI Primary Goal or Objective (from GitHub)b Method Validation
Most Recent

Repository Interactionc

KG-COVID-19 Knowledge-Graph-Hub/kg-covid-19 NA

KG-COVID-19 is a flexible framework to ingest,
integrate, and remix biomedical data to produce KGs for
COVID-19 response. The framework can be applied to
other problems in which siloed biomedical data must
be quickly integrated for different biomedical research
applications, including for future pandemics

Tool use demonstration Within the last week

Knowledge Base
Of Biomedicine

(KaBOB)
UCDenver-ccp/kabob 10.1186/s12859-015-0559-3

KaBOB is a knowledge base of semantically integrated
data. The system introduces five processes for semantic
data integration including making explicit the
differences between biomedical concepts and database
records, aggregating sets of identifiers denoting the
same biomedical concepts across data sources, and
using declaratively represented forward-chaining rules
to take information that is variably represented in
source databases and integrating it into a consistent
biomedical representation

Constructed a
multi-species KG

Within the last year

Knowledge Graph
Exchange (KGX)

NCATS-Tangerine/kgx NA
KGX is a library and set of command line utilities for
exchanging Knowledge Graphs that conform to or are
aligned to the Biolink Model

Tool use demonstration Within the last month

Knowledge Graph
Toolkit (KGTK)

usc-isi-i2/kgtk/ arXiv:2006.00088

KGTK is a data science-centric toolkit to represent,
create, transform, enhance and analyze KGs. KGTK
represents graphs in tables and leverages popular
libraries developed for data science applications,
enabling a wide audience of developers to easily
construct KG pipelines for their applications

Demonstrated
functionality using
Wikidata, DBpedia, and
ConceptNet

Within the last week

ProNet cran/ProNet NA

ProNet provides functions for biological network
construction, visualization and analyses, including
topological statistics, functional module clustering, and
GO-profiling

Examined H1N1
IAV-human
protein-protein
interactions

> 1 year

SEmantic
Modeling machIne

(SEMi)
giuseppefutia/semi 10.1016/j.softx.2020.100516

SeMi (SEmantic Modeling machIne) is a tool to
semi-automatically build large-scale Knowledge Graphs
from structured sources such as CSV, JSON, and XML
files

Validated using
advertising data

Within the last 6
months

PheKnowLator PheKnowLator 10.1101/2020.04.30.071407

PheKnowLator (Phenotype Knowledge Translator) is a
novel framework and fully automated Python 3 library
explicitly designed for optimized construction of
semantically-rich, large-scale biomedical KGs

Built and compared 12
benchmark KGs including
construction performance

Within the last week

aAll GitHub URLs begin with the following prefix: https://github.com/.
bWhenever possible, descriptions of methods and tools were copied verbatim from the associated GitHub site, documentation, and/or manuscript.
cThe most recent repository interaction was documented at the time of completing the survey, which was May 2020 (updated in June 2021).

Acronyms: KG (Knowledge Graph).
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Supplementary Table 7. Open-Source Knowledge Graph Construction Survey - Functionality.

Method
Download

Functionality
Edge list

Functionality
Construction
Functionality

Multiple KG
Types

Other KG Construction Functionality
Process

Ontology Data

Process
Linked Open

Data

Process
Experimental

Data

Process
Clinical Data

Data Processing
Limits

Bio2BEL Yes Yes Yes Yes
The entire PyBEL ecosystem tools are all available for
all graphs generated by Bio2BEL

Yes Yes Yes Yes No

Bio2RDF Yes Yes Yes Yes
Talend RESTful API; community ontology mappings;
SPARQL query repository

Yes Yes Yes Yes No

Bio4J Yes Yes Yes Yes Titan, Angulillos API Yes Yes No No No

BioGrakn No No Yes Yes
Provides different types of API clients (Java, Python,
Node.js) and a Grakn Workbase

No Yes Yes Yes No

Clinical Knowledge
Graph (CKG)

Yes No Yes No
Data preparation (filtering, imputation, formattin);
data analysis (dimensionality reduction, visualization,
hypothesis testing)

Yes Yes Yes No No

COVID-19-
Community

Yes Yes Yes No Neo4J Browser No Yes No Yes No

Dipper Yes Yes Yes Yes
SciGraph RESTful API
Build KGs with evidence and provenance

Yes Yes Yes No No

Hetionet Yes No Yes No
Neo4J Browser
Creates permuted KGs

Yes Yes Yes Yes No

iASiS Open Data
Graph

Yes Yes Yes No Biomedical Harvesters; MedKnow Yes Yes No Yes No

KG-COVID-19 Yes Yes Yes No Leverages BioLink Yes Yes No No No

Knowledge Base
Of Biomedicine

(KaBOB)
Yes Yes Yes Yes Blazegraph Yes Yes No No No

Knowledge Graph
Exchange (KGX)

Yes Yes Yes Yes
KG verified to confirm to the Biolink model, summary
statistics

Yes Yes Yes No No

Knowledge Graph
Toolkit (KGTK)

Yes Yes Yes Yes
Data cleaning module, processes other KGs, KG
querying modules, summary statistics, node
embeddings

No Yes No No No

ProNet No Yes Yes No KG visualization; enables topological analyses No Yes Yes No No

SEmantic
Modeling machIne

(SEMi)
No Yes Yes Yes

Semantic type detector; weighted graph generator;
semantic model builder and refiner; link predictor

Yes Yes No No No

PheKnowLator Yes Yes Yes Yes
Data download and preprocessing tools; ontology
quality control tools; export node metadata; property
graphs; SPARQL Endpoint

Yes Yes Yes No No

Note. For scoring, 1 point was awarded for an answer of “Yes” and for the presence of other KG construction functionality.

Acronyms: KG (Knowledge Graph).
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Supplementary Table 8. Open-Source Knowledge Graph Construction Survey - Availability.

Method Open Source License Operating Systems Coding Languages External Dependencies

Bio2BEL Yes MIT
Linux, Windows, Mac OSX,
Cloud-based systems and/or

architectures
Python, SQL

Bioregistry, PyOBO, Bioversions, various
other standard Python packages

Bio2RDF Yes
MIT

Apache 2.0
CC0-1.0

Linux, Windows, Mac OSX
Java, JavaScript,

Shell, OWL
Virtuoso, GIT

Bio4J No AGPL-3.0
Linux, Windows, Mac OSX,
Cloud-based systems and/or

architectures
Java, Scala Angulillos, AWS EC2/S3, Titan

BioGrakn No None
Linux, Windows, Mac OSX,
Cloud-based architectures

Python, Java,
Node.js

GraknLabs, Maven

Clinical Knowledge
Graph (CKG)

Yes MIT Linux, Windows, Mac OSX Python Java SE Runtime, Neo4j, R, Python 3.6

COVID-19-Community No MIT Linux, Windows, Mac OSX Python, Shell Neo4J, Anaconda

Dipper No BSD-3 Linux, Windows, Mac OSX Python, TSQL

Hetionet Yes CC0 Linux, Windows, Mac OSX Python, Shell Docker, Neo4J

iASiS Open Data
Graph

No Apache 2.0 Linux, Windows, Mac OSX Python, Java
MongoDB, UMLS, ReVerb, MetaMap,

SemRep, YAJL, Neo4J

KG-COVID-19 Yes BSD-3 Linux, Windows, Mac OSX Python KGX, BioLink

Knowledge Base Of
Biomedicine (KaBOB)

Yes GPL Linux, Windows, Mac OSX
Groovy, Clojure,

Shell
Docker, Maven

Knowledge Graph
Exchange (KGX)

Yes BSD-3 Linux, Windows, Mac OSX Python Docker, BioLink

Knowledge Graph
Toolkit (KGTK)

Yes MIT Linux, Windows, Mac OSX Python Anaconda, mlr

ProNet Yes GPL (>=2) Linux, Windows, Mac OSX R BioGrid, GO

SEmantic Modeling
machIne (SEMi)

Yes GPL Linux, Windows, Mac OSX
Python,

JavaScript, Shell
Anaconda, Node.js (11.15.0), Java, Maven,

Elasticsearch

PheKnowLator Yes Apache 2.0
Linux, Windows, Mac OSX,
Cloud-based systems and/or

architectures
Python, Java, Shell OWL Tools

Note. For scoring, 1 point was awarded for an answer of “Yes” and for the presence of a license.
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Supplementary Table 9. Open-Source Knowledge Graph Construction Survey - Usability.

Method README
Wiki, Docs, or

GitPage
Example Use Tutorials Install Tools

Method Use
Resources

Sample Data
Handles Different

Sized Data
Output Types

Adoption
Indicators

Bio2BEL Yes Yes Yes No
PyPI

Maven
None Yes Yes

NetworkX, Cytoscape, text files,
n-triples, Biological Expression
Language, several IO formats

Yes

Bio2RDF Yes Yes Yes No None None Yes Yes Virtuoso dump, OWL, nq Yes

Bio4J Yes Yes Yes Yes AWS S3
Angulillos API

Titan
Yes Yes Titan Yes

BioGrakn Yes Yes Yes Yes None Grakn Clients Yes Yes Grakn KG output types Yes

Clinical Knowledge
Graph (CKG)

Yes Yes Yes Yes Docker
Jupyter Notebook

Docker
Yes Yes Neo4j Yes

COVID-19-
Community

Yes No Yes Yes Jupyter Notebook Jupyter Notebooks Yes Yes Neo4J, CSV Yes

Dipper Yes Yes Yes Yes PYPI Jupyter Notebooks Yes Yes TTL, Neo4J, TSV Yes

Hetionet Yes Yes Yes Yes Jupyter Notebook
Jupyter Notebook

Docker
Yes Yes JSON, Neo4J, TSV, and Matrix Yes

iASiS Open Data
Graph

Yes Yes Yes No None None No Yes JSON, CSV, Neo4J, MongoDB Yes

KG-COVID-19 Yes Yes Yes Yes None None Yes Yes RDF, TSV Yes

Knowledge Base
Of Biomedicine

(KaBOB)
Yes Yes Yes Yes Docker Docker Yes Yes RDF/XML Yes

Knowledge Graph
Exchange (KGX)

Yes Yes Yes Yes
PyPI

Docker
None Yes Yes

OWL or RDF/XML, NetworkX, text
files, n-triples files, tar, csv,
graphML, TTL, JSON, RQ, RSA

Yes

Knowledge Graph
Toolkit (KGTK)

Yes Yes Yes Yes
Jupyter Notebook

Docker
Jupyter Notebook

Docker
Yes Yes n-triples files, JSON, Neo4J, GML Yes

ProNet No Yes Yes Yes CRAN R Markdown Yes Yes R data frame object (rda) No

SEmantic
Modeling machIne

(SEMi)
Yes Yes Yes No PyPI None Yes Yes

OWL or RDF/XML files, graph, json,
TTL

No

PheKnowLator Yes Yes Yes Yes
PyPI

Jupyter Notebook
Docker

Jupyter Notebook
Docker

Yes Yes
RDF/XML, NetworkX, a text files,
n-triples, JSON

Yes

Note. For scoring, 1 point was awarded for an answer of “Yes” and for the presence of tools to run and install the method.
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Supplementary Table 10. Open-Source Knowledge Graph Construction Survey - Maturity.

Method Multiple Releases Release Count Method Published
Collaboration
Encouraged

Collaboration
Procedures

Bio2BEL Yes 1 Yes Yes Yes

Bio2RDF Yes 2 Yes Yes No

Bio4J Yes 100 Yes No Yes

BioGrakn Yes 1 Yes No No

Clinical Knowledge
Graph (CKG)

No 0 Yes Yes Yes

COVID-19-Community No 0 No Yes Yes

Dipper Yes 4 No No No

Hetionet No 1 Yes Yes No

iASiS Open Data Graph No 0 Yes No No

KG-COVID-19 No 0 No Yes Yes

Knowledge Base Of
Biomedicine (KaBOB)

No 1 Yes No No

Knowledge Graph
Exchange (KGX)

No 0 No No No

Knowledge Graph
Toolkit (KGTK)

Yes 3 Yes Yes Yes

ProNet Yes 1 Unclear No No

SEmantic Modeling
machIne (SEMi)

No 0 Yes No No

PheKnowLator Yes 1 Yes Yes Yes

Note. For scoring, 1 point was awarded for an answer of “Yes” and for the presence of at least one release.

13



Supplementary Table 11. Open-Source Knowledge Graph Construction Survey - Reproducibility.

Method Reproducibility Tools Install Services Deployment Services
Maintainability

Measures
Well-Documented

Codebase
Actively Used Issue

Tracker

Bio2BEL CLI Tool Yes No Yes Yes Yes

Bio2RDF None No No No Yes Yes

Bio4J
AWS S3 Titan
distribution

No Yes No Yes Yes

BioGrakn Grakn Tools Yes Yes No Yes Yes

Clinical Knowledge Graph (CKG)
Jupyter Notebook

Docker
No No No Yes Yes

COVID-19-Community Jupyter Notebooks No No No Yes Yes

Dipper Jupyter Notebook Yes Yes No Yes Yes

Hetionet
Jupyter Notebook

Docker
No No No Yes Yes

iASiS Open Data Graph None Partial No No Yes Yes

KG-COVID-19 None Yes Yes Yes Yes Yes

Knowledge Base Of Biomedicine
(KaBOB)

Docker Yes Yes No Yes Yes

Knowledge Graph Exchange (KGX)
Jupyter Notebook

Docker
Yes Yes No Yes Yes

Knowledge Graph Toolkit (KGTK)
Jupyter Notebook

Docker
Yes Yes Yes Yes Yes

ProNet R Markdown No No No Yes No

SEmantic Modeling machIne
(SEMi)

None Yes Yes No Yes Yes

PheKnowLator
PyPI

Docker
Jupyter Notebook

Yes Yes Yes Yes Yes

Note. For scoring, 1 point was awarded for an answer of “Yes” and for the presence of at least one reproducibility tool.
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Supplementary Table 12. PKT Human Disease Knowledge Graph Resources.

Resource Provider Filename

OBO Foundry Ontologies

Chemical Entities of Biological Interest
(ChEBI)

ChEBI http://purl.obolibrary.org/obo/chebi.owl

Cell Ontology (CL)a CL http://purl.obolibrary.org/obo/uberon/ext.owl

Cell Line Ontology (CLO) CLO http://purl.obolibrary.org/obo/clo.owl

Gene Ontology (GO) GO http://purl.obolibrary.org/obo/go.owl

Human Phenotype Ontology (HPO) HPO http://purl.obolibrary.org/obo/hp.owl

Mondo Disease Ontology (Mondo) Mondo http://purl.obolibrary.org/obo/mondo.owl

Pathway Ontology (PW) PW http://purl.obolibrary.org/obo/pw.owl

Protein Ontology (PRO) PRO http://purl.obolibrary.org/obo/pr.owl

Relations Ontology (RO) RO http://purl.obolibrary.org/obo/ro.owl

Sequence Ontology (SO) SO http://purl.obolibrary.org/obo/so.owl

Uber-Anatomy Ontology (Uberon) Uberon http://purl.obolibrary.org/obo/uberon/ext.owl

Vaccine Ontology (VO) VO http://purl.obolibrary.org/obo/vo.owl

Edge Data Sources

chemical-disease; chemical-phenotype CTD CTD_chemicals_diseases.tsv

chemical-gene; chemical-protein CTD CTD_chem_gene_ixns.tsv

chemical-biological process;
chemical-cellular component;
chemical-molecular function

CTD CTD_chem_go_enriched.tsv

gene-pathway CTD CTD_genes_pathways.tsv

chemical-pathway Reactome ChEBI2Reactome_All_Levels.txt

biological processes-pathway;
pathway-cellular component;
pathway-molecular function

Reactome gene_association.reactome

protein-pathway Reactome UniProt2Reactome_All_Levels.txt

disease-phenotype HPO phenotype.hpoa

gene-disease; gene-phenotype DisGeNET Curated_gene_disease_associations.tsv

gene-gene Gene MANIA COMBINED.DEFAULT_NETWORKS.BP_COMBINING.txt

gene-protein; gene-transcript;
transcript-protein

PheKnowLator bCustom build files

protein-anatomy; protein-cell;
transcript-anatomy; transcript-cell

HPA
GTEx

bproteinatlas_search.tsv.gz
GTEx_Analysis_2017-06-05_v8_RNASeQCv1.1.9_gene_median_tpm.gct

protein-biological process; protein-cellular
component; protein-molecular function

GO goa_human.gaf

protein-pathway Reactome UniProt2Reactome_All_Levels.txt

protein-protein STRING 9606.protein.links.v11.0.txt

variant-gene; variant-disease;
variant-phenotype

ClinVar variant_summary.txt

protein-catalyst; protein-cofactor UniProt uniprot-cofactor-catalyst.tab (cquery)

15



Resource Provider Filename

Curation, Identifier Mapping, and Filtering Data

MeSH to ChEBI
MeSH
CheBI

mesh2021.nt
names.tsv

DOID, OMIM, Orphanet, ICD9, ICD10,
UMLS, MeSH to Mondo and HP

DisGeNET
HPO

Mondo

disease_mappings.tsv
database cross-references and synonyms

Ensembl, HGNC, Gene Symbol to Entrez
STRING, UniProt to PR
Gene Symbol, Entrez, HGNC to Ensembl

HGNC
Ensembl
Entrez
PRO

UniProt

hgnc_complete_set.txt
Homo_sapiens.GRCh38.102.gtf.gz
Homo_sapiens.GRCh38.102.uniprot.tsv.gz
Homo_sapiens.GRCh38.102.entrez.tsv.gz
Homo_sapiens.gene_info.gz
promapping.txt
uniprot_identifier_mapping.tab (cquery)
bgenomic_typing_dict.pkl

Tissues (string names) to Uberon
Cell types (string names) to CL and CLO

PheKnowLator dzooma_tissue_cell_mapping_04JAN2020.xlsx

Reactome to PW
Reactome
ComPath

ReactomePathways.txt
gene_association.reactome
ChEBI2Reactome_All_Levels.txt
Compath_canonical_pathway_mappings.txt
kegg_reactome.csv

genes, transcripts, and variants to SO PheKnowLator bgenomic_sequence_ontology_mappings.xlsx

Human PRO identifiers PRO human_pro_classes.html (cquery)

Note. Sources are reported for the v.2.1.0 knowledge graphs (built May 2021). The full URLs are provided here:
https://github.com/callahantiff/PheKnowLator/blob/549e6e1e882e9ea579508ae24a90e64d962deb8c/builds/data_to_download.txt. The files for each source are
provided in the PheKnowLator GCS Bucket (https://console.cloud.google.com/storage/browser/pheknowlator/archived_builds/release_v2.1.0/build_01MAY2021) and
the PKT Human Disease KG Zenodo Community (v2.1.0_01MAY2021; https://zenodo.org/communities/pheknowlator-benchmark-human-disease-kg). The Wiki
provides a description of each source and it’s licensing: https://github.com/callahantiff/PheKnowLator/wiki/v2-Data-Sources#data-sources.
aThe Cell Ontology is included with the extended version of Uberon.
bCustom files built from processing the HGNC, ensembl, Entrez, PR, STRING, and UniProt data. See data_preprocessing.py in the builds directory or the
Data_Preparation.ipynb Jupyter Notebook in the Notebook directory on GitHub for more details.
cSee https://github.com/callahantiff/PheKnowLator/blob/549e6e1e882e9ea579508ae24a90e64d962deb8c/builds/data_to_download.txt to obtain the full queries.
dManual annotation file built using Zooma (https://www.ebi.ac.uk/spot/zooma/).

Acronyms: CL (Cell ontology); CLO (Cell Line Ontology); ChEBI (Chemical Entities of Biological Interest); CTD (Comparative Toxicogenomics Database); DOID (Human
Disease Ontology); GCS (Google Cloud Storage); GO (Gene Ontology); HGNC (Human Gene Nomenclature Committee); HPO (Human Phenotype Ontology); HPA
(Human Protein Atlas); ICD (International Classification of Diseases); MeSH (Medical Subject Headings); Mondo (Mondo Disease Ontology); OMIM (Online Mendelian
Inheritance in Man); PKT (PheKnowlator); PRO (Protein Ontology); PRO (Protein Ontology); PW (Pathway Ontology); SO (Sequence Ontology); VO (Vaccine Ontology);
Uberon (Uber-Anatomy Ontology); UMLS (Unified Medical Language System.
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Supplementary Table 13. Application of Data Quality Checks to OBO Foundry Ontologies.

Statisticsa CLO ChEBI GO HPO Mondo PROb PW RO SO Uberon VO Mergedc

Pre-Processed Statistics

Edges 1,387,096 5,264,571 1,425,434 884,999 2,313,343 2,079,356 35,291 7,970 44,655 752,291 86,454 13,746,883

Classes 111,712 156,098 62,237 38,843 55,478 148,243 2,642 116 2,910 28,738 7,089 548,947

Individuals 41 0 0 0 18 0 0 5 0 0 165 195

Object Properties 116 10 9 231 331 12 1 604 50 242 232 847

Annotation Properties 192 37 53 257 119 11 19 106 41 284 97 656

Connected Components 7 1 2 1 1 3 1 3 1 2 5 8

Data Quality Check Errors

Value Errors 1 0 0 0 0 0 0 0 0 0 0 0

Identifier Errors 0 0 0 0 0 0 0 0 0 0 2 2

Deprecated Entities 2 18,506 6,430 304 2,305 0 42 11 341 1,570 0 0

Obsolete Entities 13 0 0 0 0 0 0 1 0 0 0 0

Punning 16 0 0 0 0 0 0 0 0 0 0 8

Consistencyd Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes ---

Semantic Heterogeneity --- --- --- --- --- --- --- --- --- --- --- 7

Identifier Alignment --- --- --- --- --- --- --- --- --- --- --- 23,624

Post-Processed Statistics

Edges 1,422,153 5,190,485 1,343,218 885,379 2,277,425 2,079,356 34,901 7,873 41,980 734,768 89,764 13,748,009

Classes 111,696 137,592 55,807 38,530 52,937 148,243 2,600 115 2,569 27,170 7,085 545,259

Individuals 33 0 0 0 17 0 0 5 0 0 165 188

Object Properties 112 10 9 231 330 12 1 594 50 238 232 846

Annotation Properties 187 37 53 257 119 11 19 106 41 284 97 656

Connected Components 7 1 2 1 1 3 1 3 1 2 5 8

Note. The OBO Foundry ontologies reported above apply to the PKT Human Disease KG v2.1.0. The extended version of Uberon used in this graph imports the full version of the Cell Ontology.
aThe numbers for the ontologies are calculated using the versions of the ontologies which include all imported ontologies referenced by the primary ontology. This means that the counts of classes include all Web Ontology
classes used for logical definitions, not only those that are explicitly part of the primary ontology’s namespace.
bThe PRO version references the human (NCBITaxon_9606) subset created for the PheKnowLator ecosystem.
cMerged represents all of the OBO Foundry ontologies merged into a single ontology.
dConsistency was evaluated using the ELK reasoner. The reasoner was only applied to individual OBO Foundry ontologies.
Acronyms: OBO (Open Biological and Biomedical Ontologies); CLO (Cell Line Ontology); ChEBI (Chemical Entities of Biological Interest); GO (Gene Ontology); HPO (Human Phenotype Ontology); Mondo (Mondo Disease
Ontology); PRO (Protein Ontology); PW (Pathway Ontology); RO (Relation Ontology); SO (Sequence Ontology); Uberon (Uber-Anatomy Ontology); VO (Vaccine Ontology).
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Supplementary Table 14. PheKnowLator Knowledge Modeling Approaches.

Example: Add <<EDNRB, Causes, ABCD syndrome>> to an ontologically-grounded knowledge graph.

Challenge: EDNRB is not currently represented in an ontology. ABCD syndrome is a class in the Human Phenotype Ontology, and is
included in the knowledge graph.

Solution: Gene is a class in the Sequence Ontology and can be used to add EDNRB to the knowledge graph using two different
strategies.

Instance-based Knowledge Model (ABox) Class-based Knowledge Model (TBox)

EDNRB, rdfs:subClassOf, Gene
EDNRB, rdf:type, owl:Class

UUID1, rdf:type, EDNRB
UUID1, rdf:type, owl:NamedIndividual

UUID2, rdf:type,ABCD syndrome
UUID2, rdf:type, owl:NamedIndividual

UUID1, Causes, UUID2

EDNRB, rdfs:subClassOf, Gene
EDNRB, rdf:type, owl:Class

UUID1, rdfs:subClassOf, EDNRB
UUID1, rdfs:subClassOf, UUID2
UUID2, rdf:type, owl:Restriction
UUID2, owl:someValuesFrom, ABCD syndrome
UUID2, owl:onProperty, Causes

Note. UUID1 and UUID2 are blank nodes or existential variables.162 Pink highlighting is used for the EDNRB gene instance, yellow highlighting is used
for the gene class, and green is used for the ABCD syndrome class.

Acronyms: EDNRB (endothelin receptor type B); OWL (Web Ontology Language); RDF (Resource Description Framework); RDFS (Resource
Description Framework Syntax).
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Supplementary Figure 1. Human Disease Mechanism Graph Knowledge Representation.

This figure illustrates the knowledge representation used to construct the human disease mechanisms knowledge graphs. The purple box represents
experimental data and the blue box contains the molecular mechanisms created by integrating Open Biological and Biomedical (OBO) Foundry ontologies (gold
and green). Edges between the ontologies are created by integrating other data sources that are not part of an OBO Foundry ontology (solid black lines). Dashed
lines represent relationships that are inferred from the Relation Ontology and dotted lines represent relationships that exist between imported ontologies.
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Supplementary Figure 2. PKT Human Disease Knowledge Graph Construction - Computational Performance.

This figure illustrates the (A) log runtime and (B) log max memory use (GB) performance for each build step with respect
to the different build parameterizations or benchmarks provided by the PheKnowLator ecosystem. The ecosystem
enables users to fully customize KGs generated by the Graph Construction build step through the following parameters:
knowledge model (i.e., complex graphs constructed using class- or instance-based knowledge models), relation strategy
(i.e., standard directed relations or inverse bidirectional relations), and semantic abstraction (i.e., transformation of
complex graphs into hybrid graphs). The Data Download and Edge List Creation steps are the same regardless of how the
Graph Construction step is parameterized. Computational performance was determined using an unreleased build (April
11, 2021) while testing the v.2.1 release.
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Supplementary Figure 3. The PheKnowLator Ecosystem on FAIR Principles.

The PheKnowLator Ecosystem is built on the FAIR principles of Findability, Accessibility, Interoperability, and Reusability.13

Findability. Use of unique persistent identifiers for all downloaded and processed data, Docker containers, and compute
instances and generation of metadata, reports, and logs. Accessibility. All resources are accessible via RESTful API access
to a dedicated Google Cloud Storage Bucket, all builds are versioned, and Jupyter Notebooks are used to improve the
usability of the Ecosystem resources. Interoperability. Built on Semantic Web standards, grounded in Open Biological and
Biomedical Foundry ontologies, and adoption of standard identifiers for all resources. Reusability. Builds are automated,
containerized, and deployed through GitHub Actions workflows, resources, scripts, and workflows are versioned using
Semantic Versioning, the Ecosystem is licensed, and licensing constraints are enforced for all ingested data.
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