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Introduction 

There have been three successful ERME Topic Conferences (ETCs) on the topic Mathematics 
Education in the Digital Age (MEDA). The first event (ETC 5, September 2018 in Copenhagen) was 
inspired by the contributions to the Thematic Working Groups 15 and 16 in the CERME 10 in Dublin, 
highlighting the diversity of research at that time and its overlaps with other TWG themes. It was an 
interdisciplinary, multifaceted collaboration that brought together participants who would normally 
attend a range of CERME Thematic Working Groups to provide the opportunity for further in-depth 
discussion and debate. The successful experience, which involved intensive communication and 
collaboration during the Conference, resulted in collegial work towards a publication of a post-
conference book “Mathematics Education in the Digital Age. Learning, Practice and Theory” in the 
ERME Series published at Routledge in 2021. Inspired by the contributions to the Thematic Working 
Groups 15 and 16 in the last CERME 11 in Utrecht and CERME 12, and the success of the ETC 10 
MEDA 2 organized in September 2020 (which was held online, hosted in Linz), a third edition of the 
conference (ETC 13 MEDA 3, September 2022 in Nitra) offered the opportunity for further in-depth 
discussion and debate. Two special issues within the journals ZDM – Mathematics Education and 
International Journal of Research in Undergraduate Mathematics Education are in preparation for 
publication, based on the works presented and discussed at MEDA3. 

Teaching, learning and assessment practices within all phases of mathematics education have 
dramatically changed due to the impacts of global pandemics and the increasing dependences on 
digital technologies across education systems.  Meanwhile, the field has witnessed significant 
changes in research foci regarding the diverse applications of digital technologies; from supporting 
active engagement in rich STEM activities to enabling new assessment practices, communication, 
and collaboration opportunities. More than ever before, it seems that intensive research is now needed 
on the wide spectrum of roles that technologies play in mathematics education at all phases.  

Alongside, rapid developments in Artificial Intelligence (AI) technologies are poised to impact 
education in, as yet, unseen ways. There is a lack of timely and responsive research that can grasp, 
document, and acknowledge the positive and negative impacts of digital technologies with respect to 
its potential to both innovate, and seek to address existing and emerging educational and societal 
challenges within the context of mathematics education.  

‘New Digital Experiences and Perspectives in Mathematics Education’ is a theme that captures the 
goals for MEDA 4, which is a natural continuation of the three previous MEDA conferences, which 
offered a space for discussing future directions in the research in mathematics education post-
pandemic, and in the age of Artificial Intelligence.  

Informed by the call for papers, we received theoretical, methodological, empirical or developmental 
papers and poster proposals in relation to the following three main conference themes:  

Theme 1: Mathematics educators’ practices, teacher education and professional learning  

- Shared virtual/hybrid spaces and resources for teacher education and professional learning; 
- Formative and summative assessment in remote and hybrid conditions at all levels of education; 
- Teachers’ experiences and practices in STEM contexts, with Artificial Intelligence, or 

regarding the promotion of computational thinking. 
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Theme 2: Design, implementations and evaluations of digital resources and environments  

- Design and implementation of resources with emerging technologies such as 3D printers, 
Virtual Reality, and Augmented Reality; 

- Applications of Learning Management Systems, Learning Analytics and Artificial Intelligence 
in practices, assessment and design of resources;  

- Impact of emerging technologies on curriculum transformation in STEM contexts, or regarding 
the promotion of computational thinking within mathematics education. 

Theme 3: Students’ experience and learning with digital technologies  

- Impact of digital technologies on students’ engagement, learning and assessment; 
- Development and investigation of students’ learning with emerging technologies; 
- Role of technologies in developing mathematical competencies in STEM contexts;  
- Integration of Artificial Intelligence technologies within formal, high-stakes examination and 

assessment systems. 

All of the submitted papers and posters were peer-reviewed by two academics (selected from the 
authors who had submitted academic work to the conference) and one member of the International 
Program Committee.  

Fifty-two papers and twenty-three posters were accepted to be presented at the conference and are 
included in the conference proceedings.  

The poster session was organised in collaboration with the museum MuMA (Museo della 
Matematica) of the Department of Mathematics, University of Bari Aldo Moro.  

Four invited plenary talks also offered participants opportunities to reflect and discuss the topics. The 
respective abstracts are provided below. 

Plenary 1: Transformation of mathematics education environments by digital resources (by Birgit 
Pepin) 

The increase in technology and digitalization (e.g., in schools, universities) and the advent of more 
and more access to Digital Resources (DRs) raises high expectations to be able to better educate 
students with the use of educational technology and DRs because of their perceived affordances. 
However, education practitioners and technology developers not only suggest new opportunities 
but also warn of their constraints, and of the problematic issues associated with their (development 
and) use. In this presentation, referring to chapters in the Handbook of Digital Resources in 
Mathematics Education, I take up particular issues that in my view need special attention when 
considering the transformation of mathematics education learning environments by DRs. 
Moreover, I discuss the (likely) influence of recent resources such as ChatGPT on the learning 
process. 

 
Plenary 2: Augmented reality to discover the derivative. A dialogue crossing the perspectives of 
semiotic bundles and embodied instrumentation (by Ferdinando Arzarello and Paul Drivers) 
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Digital technology offers exciting opportunities to the learning and teaching of mathematics. Still, 
the math education research community is struggling to identify theoretically founded and research 
informed ways to best benefit from these opportunities. As for the theoretical foundations, different 
perspectives have been offered. In this duo-presentation, we will address the notions of semiotic 
bundles and embodied instrumentation to analyse a short videoclip of a student using augmented 
reality technology to explore the notion of derivative. The differences, similarities and affordances 
of each of the two approaches will be discussed and some possible theoretical and practical 
outcomes that these perspectives offer will be pointed out. 

 
Plenary 3: The prevalence and use of emerging technologies in the thematic working group on 
“Mathematics in the context of STEM education” at CERME (by Behiye Ubuz) 

“Mathematics in the context of STEM Education” thematic working group (TWG26) was 
introduced in the 11th Congresses of the European Society for Research in Mathematics Education. 
Science, Technology, Engineering and Mathematics (STEM) education merges a variety of 
subjects in the fields of science, technology, engineering and mathematics to solve real world 
problems. In this study, my goal was to engage in a qualitative content analysis of all papers (n = 
38) and posters (n = 12) that have been presented in TWG26 in the last three Congresses of the 
European Society for Research in Mathematics Education (CERME) to identify the prevalence and 
application of emerging technologies within the landscape of STEAM Education through asking a 
main question: “What is “T” in STEAM representing?” together with some sub-questions. I adopt 
a broad definition of STEAM education in this study since a movement towards STEAM was 
fuelled in this group, where “A” represents the arts and humanities. 

 
Plenary 4: Aligning AI with MathEd Values and Practices (by Manolis Mavrikis) 

In an era where artificial intelligence (AI) is increasingly hyped, it is important to learn from the 
past and align the design and use of AI with our core values and practices in mathematics education. 
This talk explores the intersection of AI and MathEd, going beyond the generative AI hype to 
research-based AI approaches that can support the teaching and learning of K-12 mathematics. 
Drawing on several research projects, I will highlight the potential of intelligent support in fostering 
mathematical meaning making in constructionist, exploratory learning. I will also discuss how AI 
and learning analytics can be utilised as ‘teacher assistant’ tools, highlighting the benefits and 
challenges faced by educators. I will conclude with insights and practical recommendations for 
educators, researchers, and ‘edtech’ developers working at the intersection of AI and MathEd, and 
invite the audience to contribute to ongoing work towards achieving alignment. 

 

More than thirty early-career researchers submitted their work to the conference and the award of 
“best paper” was given to three best papers by an early career researcher, one per each theme of the 
conference.  

The following two specific activities for early-career researcher participants were included in the 
program. 
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Workshop 1: "Giving a Talk" - an Art in itself! (by Hans-Georg Weigand) 

Presenting one's own research results or other (scientific) findings, i.e. "Giving a Talk", is a 
recurring part of everyday life for scientists of all ages. Presenting a talk professionally is an art 
that needs to be learnt. There are rules and principles that at least make it easier to get started with 
this art. This workshop will use positive and negative examples, especially in connection with 
Power Point Presentations, to establish and discuss general principles that are fundamental for a 
successful presentation. Participants can and should also bring - short or parts of - own 
presentations, that will be constructively evaluated during the workshop. 

 
Workshop 2: How to establish professional connections? (by Michal Tabach) 

One of the aims of international conferences is meeting researchers with similar research interests. 
We will use this workshop to increase the chances of creating such connections, by a structured 
activity. To this end, we aimed at having two rounds of small group discussions. In every round, 
each participant will provide a concise description of his research focus in 3 min. Then, some more 
time will be devoted to questions and answers among the small group members. 

 
The variety of contributions to the MEDA4 conference highlight the challenge to describe and 
understand better new ways of working with new or newly interpreted concepts like digital 
competences, digital resources, digital design or computational thinking in the era of Artificial 
Intelligence. The MEDA4 conference and its accompanying proceedings mark a step forward in 
furthering human understanding of the complex and diverse interrelationship between mathematics 
(and STEM) education and the new digital technologies.  

 

      The Organising Committee 
        Hans-Georg Weigand, Alison Clark-Wilson, Eleonora Faggiano, Michal Tabach 
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Contributions per themes 

Theme 1: 3, 5, 8, 11, 12, 13, 16, 17, 24, 27, 30, 31, 36, 39, 43, 46, 49, 58, 59, 64, 69, 71  

Theme 2: 2, 3, 6, 11, 13, 15, 18, 19, 20, 21, 23, 25, 29, 32, 38, 39, 42, 44, 45, 48, 53, 54, 55, 56, 57, 

60, 61, 62, 63, 65, 66, 67, 68, 70, 72, 74 

Theme 3: 1, 4, 7, 8, 9, 10, 14, 19, 22, 26, 28, 33, 34, 35, 36, 37, 38, 40, 41, 44, 47, 50, 51, 52, 53, 56, 

61, 62, 63, 66, 67, 68, 69, 72, 73, 74, 75 

Best paper award 

Theme 1: The role of teachers’ knowledge and the use of different technologies in the classroom, by 
Maria do Carmo Botelho and Helena Rocha  

Theme 2: Feedback from E-textbook as a Resource for Mathematics Teachers to Re-design, by Ismael 

Almahdi and Osama Swidan 

Theme 3: Dialectical chatbots: AI-driven debate in mathematical education, by Amedeo Matteucci, 
Francesco Saverio Tortoriello, Ilaria Veronesi 
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Matlab LiveScprit for promoting high-level problem solving processes 
in engineering students  

Giovannina Albano1, Agnese Ilaria Telloni2  

1University of Salerno, Italy; galbano@unisa.it  
2University of Macerata, Italy; agnese.telloni@unimc.it  

In this study, we compare engineering students’ problem solving processes when they face linear 

algebra tasks in a pen and pencil environment and Matlab LiveScript environment. By a qualitative 

research method, we investigate if and how the devolution of computations to the software allows 

students to focus on significant aspects of the problem solving process, shifting from the procedures 

to strategic and communicative aspects. The results suggest that the tool promotes an aware view of 

the problem solving process at different levels, depending on students’ knowledge and competency.  

Keywords: engineering, Matlab, linear algebra, problem solving processes, shift of attention  

Conceptual background and research question  
Recent research investigated the potential of using domain-specific software in teaching mathematics 
to engineering students (Kanwal, 2018, van der Wal et al., 2017, 2019, Pepin et al., 2021). This paper 
sets in this mainstream and is part of a wider research (Albano et al., 2023, Albano & Telloni, 2023) 
concerning the educational opportunities of making engineering freshmen solve tasks using the 
Matlab LiveScript. Matlab is a software widely used by engineers, both in training and work. The 
LiveScript environment allows to combine code and text and produce justified problem solving 
processes (PSP), leaving the software to perform the computations. We chose to focus on engineering 
freshmen because typically these students have an operational view of Mathematics and perceive the 
correctness of the procedures as the core of the discipline (Jaworski, 2012). Moreover, we submitted 
them tasks of linear algebra because this subject requires combining conceptual and procedural 
understanding, and acquiring a structural vision of the mathematical objects (Stewart et al., 2019, 
Turgut, 2023). The general hypothesis underlying our research is that this approach should favor the 
emergence of a high-level view of PSP, i.e. as a sequence of conceptual steps, where the procedures 
are managed as objects, in a “black-box” fashion, without going into their details. This should be 
linked to students’ shifts of attention (Mason, 1998), from procedural aspects to strategical and 
communicational ones. To test the hypothesis, we organized our course of Linear Algebra so that 
students were assigned weekly tasks that became the subject of collective discussion during the 
lectures. During the course, the students have been introduced to the use of Matlab LiveScript, being 
guided to move from paper and pencil resolution to Matlab LiveScript one. The final exam has been 
designed coherently with the organization of the course. Together with the exam, the students have 
been provided with a survey to collect their perceptions about the use of Matlab LiveScript to solve 
problems. The students’ answers confirmed our hypotheses about the possible shifts of attention 
(Albano & Telloni, 2023), i.e.: shift toward the theory: the students describe their use of Matlab 
highlighting the opportunity to focus on theoretical aspects; shift toward the solving strategy: the 
students describe their use of Matlab highlighting the opportunity to focus on thinking about the 
overall solving strategy of the problem; shift toward the reasoning: the students describe their use of 
Matlab highlighting the opportunity to concentrate on the reasoning needed to identify how to proceed 
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in the PSP from the procedural point of view; shift toward the justification: the students describe their 
use of Matlab highlighting the opportunity to focus on the explanation to justify the procedural steps 
of the PSP. In this study, we investigated if the shifts of attention arising from the students’ answers 
to the survey also emerge from their solving processes, i.e. if on average the students’ perception 
corresponds to their way of solving the tasks. We analyzed the students’ PSP relying on revised 
Polya’s steps of problem solving. In particular, we referred to: strategic planning, justifying (referring 
to the theoretical results underlying procedures), performing (carrying out the plan), interpreting, and 
verifying (checking correctness). Our specific research question is (RQ) Do the previous shifts of 
attention declared by the students emerge from their PSP? 

Methodology  
The study involved 101 Computer Engineering freshmen, attending a course in Linear Algebra. In 
the first phase of the course, the students could solve the tasks and upload a photo of their solving 
process; in the central part of the course, they were asked to solve the task in a Moodle text-box, so 
that they would be forced to explain their PSP verbally; finally, in the last part of the course, they 
should solve the tasks by using the Matlab LiveScript, so that all the computational load was left to 
the software and the students could focus on the strategy or monitoring of the PSP. At the final exam, 
each student has been required to solve in Moodle platform three open-ended questions (selected 
among those in Table 1), two reporting in a Moodle text-box the solving process done in PP 
environment, and one sharing the solving process in ML environment. All the tasks have the same 
premise: Solve the following task in a correct, complete, clear, and effective way, progressively 

explaining the solving process and justifying it by means of appropriate theoretical references. This 
premise is the same as proposed in all the assignments provided to the students during the course.  

Table 1. The tasks submitted to the students 

TASK PP1. Let us consider the following linear system:  

 
a) find for which values of h in R the solution space W is a vector 

subspace of R5;  

b) for the values in a), establish if u=(1,-3,2,0,1)  belongs to W;  

c) for the values in a), compute the dimension and a basis of W⊥. 

TASK ML1. Let f: R5→R7 be the homomorphism such that:   

f(−1,2,0,1,3)=(2,8,−7,−8,−1,−5,−14)  

f(−3,0,3,−2,−1)=(−9,−7,19,−10,−6,8,−10)  

f(0,2,3,−2,1)=(−4,7,10,−2,3,−2,−1)  

f(−1,−2,0,−1,0)=(−7,−3,9,−3,−2,−3,−8)  

f(0,3,−3,2,−3)=(16,−8,−25,−1,−10,20,14)  

a) Establish if the linear closure of f exists and if it is unique;   

b) in case of existence, compute f(3,5,0,−2,1). 

TASK PP2. Let f be the homomorphism having the following matrix 
as canonical associated matrix  

 
For the value of h such that f is not surjective, find the dimension 
and a cartesian representation of (Imf)⊥. 

TASK ML2. Let f: R7→R5 be the homomorphism such that:  

f(x,y,z,t,l,m,n)=(x-2y+4z-3t-l-4m,-y+2z-3t-l-4m-
2n,2x+2y+4z-2t-2m+2n,-y+2z+3t-l+2m+4n,-2x+y-2z+3t-
l+2m)  

a) Compute the dimension and a basis of Imf. 

b) Compute an orthonormal basis of Imf, starting from the 
basis computed in a). 

The students are familiar with the given tasks. They are essentially based on the management and the 
interpretation of basic operations on matrices and linear systems. The PP tasks and the ML tasks 
differ for the size of the data, which in the second case are difficult to handle manually. We made 
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this choice to foster the students’ awareness of the Matlab LiveScript potential and to make them 
focus on strategic and communicative aspects. We analyzed the students’ productions in the first 
exam session by using a qualitative research method, consisting in a content analysis guided by the 
possible shifts of attention when students move from PP environment to ML environment. The 
researchers separately analyzed the students’ productions, identifying the structure of the PSP and 
those excerpts that highlight some shifts of attention and other relevant themes. Among the latter 
ones, communicative and metacognitive aspects arose, together with an unusual use of the software 
to check the correctness of the procedures. Then the researchers compared and discussed their 
analysis, reaching an agreement.   

Data analysis  
We analyze some paradigmatic cases, showing the structure of the PSP, in tune with Rott et al. (2021), 
and the emerging shifts of attention. Two cases are extensively described, and some further excerpts 
are presented to show additional features. Let us consider the productions of Toni, who is a low-
medium achiever, on the basis of the mark obtained at the final exam: his PSP in the PP environment 
is essentially the execution of procedures (Figure 1), not always justified. Moreover, the PSP is not 
concluded: Toni does not obtain the final solution to the problem, probably because he does not 
interpret the outcomes of the procedures. His protocol suggests that all his resources and efforts are 
devoted to the computations.     

 
Figure 1. Scheme of Toni’s PSP of task PP1 and corresponding excerpt 

 

 
Figure 2. Scheme of Toni’s PSP of task ML1 and examples of corresponding excerpts  

Toni’s PSP in the ML environment is very different (Figure 2): at the beginning, the student clarifies 
the aim of the PSP, identifying the strategy to solve the problem. The general plan develops in the 
execution of a sequence of steps justified by the underlying theory. Finally, the outcomes of the 
computations are interpreted in light of the problem’s request. The final sentence, answering the 
question, linguistically reproduces the general plan initially declared. Toni’s PSP in the ML 
environment is more complete and effective. Indeed, the student initially plans the PSP, passing from 
the mere implementation of procedural steps to the fruitful integration of the goal of the PSP with the 
theoretical justification and the computations (Figure 2). The comparison between the two PSP 



                          Proceedings of the 17th ERME Topic Conference MEDA4, 3-6 September 2024, Bari, Italy                          ISBN 978-88-6629-080-3

  
4 

suggests that the opportunity to leave the computations to the software allows the student a) to focus 
not on the calculations, but on the consequences of the calculations for the goal; and b) to pay 
attention to the planning (shift toward the strategy) and the theory (shift toward the theory).   

Let us consider the productions of Paolo, who is a high achiever for the mark obtained in the final 
exam. He solves the given problem in PP environment through different cycles of local planning and 
the execution of computations theoretically justified (Figure 3). In the PSP, the interpretation of the 
computations in light of the request is not always explicit (we indicate this fact with a dotted line for 
the “interpret” step in Figure 3).  

 
Figure 3. Scheme of Paolo’s PSP of task PP2 and examples of corresponding excerpts 

 

Figure 4. Scheme of Paolo’s PSP of task ML2 and examples of corresponding excerpts  

The structure of Paolo’s PSP in the ML environment is similar to that in the PP environment, except 
for two aspects: 1) a new phase appears in the PSP, when the correctness of the results is not trivial; 
we call it “verify” since it aims at guaranteeing the correctness of the obtained result (Figure 4 and 
Table 2, second column); 2) the interpretation of the outcomes of the computations is always explicit; 
moreover, the theoretical justification underlying the procedures is more accurate and outspoken 
(Figure 4). Aspect 1) suggests an aware use of the tool at disposal, allowing easy verifications, which 
are not possible in the PP environment. Aspect 2) suggests that the release of calculations allows 
Paolo to focus on the justifications and implications of the procedures rather than on the procedures 
themselves. This contributes to a view of the PSP as a sequence of high-level steps, essentially 
characterized by the goal (local plan), the motivation (justify) for the procedures, and the 
consequences for the set problem (interpret). The communication of the PSP is clearer and more 
detailed than that in the PP environment: in particular, the student enriched his PSP with remarks and 
comments on the code lines to make the algorithm understandable for the reader (Table 2). In the 
Remark in column 1 of Table 2, Paolo provides pieces of information emerging from the 
computations, even if they are not required from the problem, e.g. concerning the injectivity of the 
function. Moreover, in column 2, he points out that he verifies that the found vectors of the 
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orthonormal basis are orthogonal (Table 2). The structure of the PSP does not significantly change, 
but the ML environment reveals more awareness and it seems that the devolution of procedures to 
the tool induces the student’s shifts toward the theory and the justification.  

Table 2. Remark and comments in Paolo’s PSP in ML environment 

Remark: f is not surjective since the dimension of Im(f) is not 
equal to that of the codomain and it is not injective,  since, 
for the dimension theorem, the dimension of  Ker(f) is 4 

% verification of the computations  

  
% it is expected to be 0 

In some cases, we observe a shift toward the theory at a higher level. Indeed, some students do not 
just only accurately justify the procedural steps but use the theoretical results as an a-priori guarantee 
of confidence in the results. An example of this aspect is the PSP of Luca, who facing the task ML2, 
wrote: “To find an orthonormal basis from that found at the previous step (it always exists for spaces 

with finite dimension for Gram-Schmidt’s Theorem), we use the proof of such theorem as an 

algorithm to calculate the basis”. Then Luca implemented the Gram-Schmidt orthonormalization and 
he did not need to verify the computations, since for him the correctness of the result is a consequence 
of the proof of the theorem. In this case, the PSP and the comments by the student suggest the logical 
priority of the theoretical result on the outcomes of the computations. Namely, the safety that from a 
basis we can always constructively obtain an orthonormal one is more important than the actual 
vectors of that basis. Another example in this sense is the PSP by Giorgio, who similarly to Paolo and 
Luca shifted toward the theory but used the theory itself to deeply justify the interpretation of the 
computations which he was going to do. Facing the task ML1, he stated that the dimension of the 
vector subspace Im(f) is equal to the rank of an associated matrix, then he proceeded to prove this 
statement: “The dimension of Im(f) is equal to the rank of A, where A is the canonical matrix 

representing the homomorphism. This [is] because we know, from the dimension theorem, that 

dim(R7)=dim(Ker(f))+dim(Im(f)). But dim(Ker(f))=#unknowns-rk(A) (from its Cartesian 

representation), hence dim(Ker(f))=7-rk(A), where A is the canonical matrix representing the 

homomorphism. Hence, by substitution: dim(R7)=7-rk(A)+dim(Im(f)) → dim(Im(f))=rk(A).”   

Let us now consider the PSP of Pietro, who is a low-achiever student. The PSP in the PP environment 
is the mere execution of procedures, without theoretical justification, which ends with the 
interpretation of the outcomes (Figure 5). 

 
Figure 5. Scheme of Pietro’s PSP of task PP1 and examples of corresponding excerpts  

Pietro’s solving process in the ML environment is essentially different (Figure 6): at the beginning, 
the student clarified the aim of the PSP, identifying the general plan. Then he implemented procedures 
previously justified and then interpreted toward the solution of the problem. The reduction of the 
cognitive load for the computation seems to allow the student to shift toward the reasoning, giving 
for each procedural step adequate justification and interpretation. In some cases, the students’ PSP in 
the ML environment does not simply reproduce the PSP in PP environment, but deeply exploits the 
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potential of the tool. We just observed this fact from the prototypical behaviour of Paolo, who added 
the “verify” phase to his PSP, induced by the potential of Matlab. Another example of this 
phenomenon is the case in which the choice of the procedures to be implemented to achieve a specific 
goal is tailored to the environment where the problem is solved.   

 
Figure 6. Scheme of Pietro’s PSP of task ML2 and examples of corresponding excerpts  

Let us compare the procedures that Patrizia and Daniele used in facing task ML2 to extract linearly 
independent column vectors from a matrix to form a basis.  

Table 3. Two procedures to extract linearly independent column vectors in ML environment 

Since the dimension of Imf is 3, a basis will be formed from 3 
independent vectors. In particular, let us see what are the linearly 
independent columns by reducing the matrix to an echelon matrix:   

[…] * […]  

 
The columns containing a pivot are those linearly 
independent. Hence the basis is formed by: 

The rank is 3, hence I have a basis formed 
by 3 vectors. I take 3 column vectors {c1, 
c2, c4} and I verify the rank by using the 
function rank.  

 
The rank is still 3, hence, being these 
vectors some generators of Imf, they 
form a basis of Imf. I can  deduce that 
dim(Imf)=3 and that B Imf={c1,c2,c4}. 

In the first column of Table 3, we have the procedure implemented by Patrizia. She proceeds like she 
would do in a PP environment, applying the operations needed to reduce the matrix to echelon form 
to identify the linearly independent vectors and choosing the columns corresponding to pivots.  
Although she does not perform computations, the only list of the needed commands takes one page 
and a half. In the second column of Table 3, we have the procedure implemented by Daniele to 
achieve the same goal. He chooses to compute the rank of the submatrix containing columns 1, 2 and 
4, displaying the mastery of the characterization of the rank of a matrix as the number of its linearly 
independent rows/columns. His procedures take a few lines. The comparison between the PSP 
suggests different levels of awareness of the mathematical meanings involved, bringing to a different 
exploitation of the potential of the tool. Indeed, Patrizia makes computations for choosing the linearly 
independent vectors, whilst Daniele chooses the expected number of linearly independent vectors 



Proceedings of the 17th ERME Topic Conference MEDA4, 3-6 September 2024, Bari, Italy                      ISBN 978-88-6629-080-3 

  
7 

and then uses the computations to verify the appropriateness of the choice. In the second case, the 
potential of the tool is highly exploited (i.e. use of the built-in function “rank” of Daniele versus a 
long list of separated commands reproducing PP operations of Patrizia). Also from a linguistic point 
of view, Patrizia searches “what are the linearly independent columns”, as they were the only ones 
(and actually the applied procedure produces a unique set); whilst, Daniele writes “I take 3 column 

vectors”, suggesting his awareness of the fact that it is not the uniqu ze choice.  

Final remarks  
In this paper, we analyzed the students’ PSP in PP and ML environments to highlight possible shifts 
of attention from computations to other aspects of problem solving. These shifts of attention emerged 
in a previous study focused on the students’ perception of the use of Matlab LiveScript to solve 
problems (Albano & Telloni, 2023). As an answer to our research question, the comparison between 
the students’ productions in PP and ML environments made evident all the expected shifts of 
attention:   
- toward the theory: the students, like Paolo, Luca and Giorgio, focus on the theoretical results 

underlying the procedural steps, rather than on the computations; this happens at different levels, 
according to the students’ competencies and mastery of the subject and the tool;  

- toward the solving strategy: the release of computations induces a better overall view of the PSP 
and typically students, like Paolo, clarify their plan to solve the problem before executing 
procedures;  

- toward the reasoning: students, like Pietro, pay more attention to the logical reasons supporting the 
procedures to be implemented;  

- toward the justification: students, like Paolo and Giorgio, communicate their PSP more effectively, 
displaying the PSP as a sequence of connected and justified high-level steps.   

Besides, further findings come out. Most students, like Toni and Pietro, change their approach to the 
problem, passing from the mere execution of procedures, possibly justified, to a richer and more 
complete structure of PSP, including planning and interpretation of the outcomes of the computations 
in light of the problem to be solved. Moreover, in some cases, a new phase of PSP appears, that is the 
“verification” of the results, when not trivial, which is made possible by the software. Other students, 
like Paolo, do not significantly change their approach but enrich their PSP with theoretical 
justifications and interpretations of computations. Moreover, often in the ML environment, the order 
between the “perform” and “justify” steps is reversed with respect to the typical PSP in PP 
environment. Indeed, the students, like Luca, seem to give more importance to the theory 
guaranteeing the correctness of the results, whatever they are, rather than on the results themselves.  
In some sense, it seems they move forward the typical view of an expert mathematician. Various new 
issues emerge that are induced by the exploitation of the tool linked to the student’s knowledge. First, 
differing from what happens for the PP tasks, in the ML environment the students are willing to verify 
the correctness of their results, when not trivial, by fruitfully integrating the exploitation of the 
potential of the tools and their theoretical knowledge. As just remarked, a new phase appears within 
the PSP, as in the case of Paolo (Figure 4), and this improvement can be considered a monitoring 
activity on the solving process, which is a crucial aspect of the success of the PSP. Second, some 
students behave differently in the two environments, not simply reproducing in the ML environment 
the procedures they would do in the PP environment, but saving resources by exploiting in-built 
functions, as in the case of Daniele. Finally, we would point out a remarkable opportunity of the tool 
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from the designer and tutor perspective: as emerged from the data analysis, making students solve 
mathematical tasks within the Matlab LiveScript under the described conditions allows the teacher to 
pursue at a time individualization and personalization of learning (Shemshack & Spector, 2020). 
Indeed, it enables some students, typically low-achievers, to reach common minimal formative goals, 
i.e. the awareness of the PSP as a sequence of directed and justified steps; on the other hand, it induces 
other students, typically high-achievers, to go behind, acquiring a view of PSP which is typical of an 
expert mathematician, who smartly integrates internal and external resources toward the goal. In other 
terms, the same tool allows the remediation for some students (i.e. individualization, as the 
opportunity to tailor didactical strategies to enable all the students to reach the same goals) and the 
promotion of excellence (i.e. personalization, as the differentiation of didactical strategies, paths, and 
goals). In this sense, the tool should steer the student in each phase of his/her learning path.   
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To contribute to the need for more prepared professionals to face the increasing challenges of modern 

societies, universities should find strategies that provide college students with 21st century skills that 

are necessary to solve real world problems. Computational thinking is a cognitive process that 

requires problem-solving skills, and also can help learning mathematics, often accused of being 

responsible for the lack of professionals in STEM areas. This paper research computational thinking 

dimensions used by college students from two math courses of a Portuguese University in the context 

of a project aimed to calculate the annual percentage rate of charge, using STEM contents. With a 

qualitative methodology using an interpretive approach, and based on documental analysis applied 

to projects developed by the students, it is concluded that the project promoted several dimensions of 

computational thinking in the students as stated in the literature. 

Keywords: Computational thinking, college students, mathematics education, interdisciplinarity, 

STEM. 

Introduction 
In modern societies with complex and increasing challenges, it is crucial to prepare students to the 
real-world and future careers (Tedre & Denning, 2022). In fact, more and stronger skills are required 
to solve real-life problems, and digital technology has a relevant role in this matter (Shute et 
al., 2017). Computational Thinking (CT) is critical, since it is a cognitive process that is related to the 
capability of solving problems, designing, projecting and understanding the human behaviour (Shute 
et al., 2017; Wing, 2006). In addition, it is expected that students, in particular undergraduates in 
STEM (Science, Technology, Engineering and Mathematics) bachelor courses have an 
interdisciplinary knowledge related to several subject matters (Costa et al., 2023). Moreover, CT can 
be applied to various fields requiring problem-solving skills, namely to help learning mathematics 
(Barr & Stephenson, 2011; Lu et al., 2022; Wing, 2014). 

This paper aims to research CT in college students in the context of a project proposed to students 
with the goal of developing a function to calculate the APR (Annual percentage rate of charge) using 
data on the financial costs involved in a credit agreement (EPCEU, 2008), applying the bisection 
method (Burden and Faires, 2011). The APR project was implemented with students from the 
discipline of Numerical Analysis of two Maths bachelor courses (Maths and Applied Maths) of a 
Portuguese university in Lisbon. The teacher intended to implement an interdisciplinary approach to 
solve a mathematical problem to better prepare students to real world applications. Since CT is related 
to problem solving skills, to guide the study the following research question is raised: 

What dimensions of CT are used by maths students when solving the APR project? 
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Because there is lack of research in higher education related to CT (Lu et al., 2022), in particular 
pedagogical experiences in math courses that help teachers implement this approach in the classroom, 
we believe our work is an important contribution for the literature in this matter. Specially because 
this is an opportunity to innovate mathematics teaching in math courses, which is not usual in 
Portugal. Indeed, higher education organizations have the responsibility to prepare their students for 
the labor market (McGunagle & Zizka, 2020). With this in mind, this research represents an effort to 
prepare college students, in particular from STEM courses, for the professional challenges that await 
them when they finish their courses, where CT and 21st century skills are crucial in this direction. 

Theoretical framework and literature review 
The literature states that students have shortage of skills in STEM fields and that students’ difficulties 
with maths contribute to the problem of insufficient STEM graduates (Beswick & Fraser, 2019). 
Thus, it is crucial to find approaches to tackle these issues, notably by highlighting the role of maths 
in STEM, namely in what concerns real world applications (Costa et al., 2023; Stohlmann, 2018). 

Usually, mathematical disciplines in higher education are taught traditionally, with contents lectured 
by the teacher mainly based in theoretical constructs (McGunagle & Zizka, 2020). However, it is 
recommended to resort to approaches such as problem-based learning as they enable students to 
develop skills like creativity, logical and critical thinking, and CT, which are essential to meet the 
growing challenges of modern societies (Costa et al., 2019; Costa et al., 2023; de Vere, 2009; Wing, 
2014). Programming is related to CT that involves reasoning with analytical and algorithmic 
approaches (Grover & Pea, 2018; Wing, 2006). In this context, mathematics and computer science 
are linked through algorithms with sequences of instructions created in a structured way and 
respecting various steps to fulfil objectives (Albuquerque, 2022; Barr &Stephenson, 2011).  

There are several definitions of CT (Barr & Stephenson, 2011), but in this paper, we will use the 
framework of Grover and Pea (2018), who consider CT concepts and practices. The CT concepts are: 
logic and logical thinking, algorithms and algorithmic thinking, patterns and pattern recognition, 
abstraction and generalization, evaluation, and automation. The CT practices are problem 
decomposition, creating computational artefacts, testing and debugging, iterative refinement 
(incremental development), collaboration and creativity. 

Tedre and Denning (2022) present an historical overview from CT for beginners until a more 
professional perspective and claim that CT is important to understand the increasing technological 
world and therefore brings social benefits, namely helps to prepare students to future careers. 
Moreover, it is critical to implement CT across disciplines and various areas of learning, as well as 
to provide teachers with resources to help them develop this approach (Barr & Stephenson, 2011). 

Thus, examples that highlight this approach can be helpful in this direction. Jong and Jeuring (2020) 
present an overview of interventions used to teach CT in higher education. They conclude that most 
interventions are targeted at students in Computer Science and Teacher Education. Our study stands 
out from this one because the APR project was implemented in math courses where CT is not taught 
to students. But, because solving the project requires problem-solving skills, we research what 
dimensions of CT are developed by the students. 
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Methodology 
To answer the research question, we used a qualitative methodology with an interpretive approach 
and participant observation (Cohen et al., 2018). Data was collected from the projects developed and 
delivered by the students, as well as from participant observation by the math course teacher during 
the development of the project. Documental analysis was carried out based on the projects, seeking 
to assess their feedback and learning, in particular identifying CT dimensions as stated in Grover and 
Pea (2018). Triangulation of the data was carried out together with the authors of this article, and 
several meetings were held to cross-check the perceptions of the authors, in order to achieve the 
greatest possible accuracy in interpreting the data. 

The participants in this study are 129 students of the discipline of Numerical Analysis from second 
grade of Maths and Applied Maths courses of a Portuguese university in Lisbon, who carried out the 
project in the academic year 2022/23. The students had two weeks to work in groups of three, and 
delivered 43 projects. From those, we selected a few that are representative of full marks and others 
that did not achieve all objectives of the project. 

Data analysis and discussion 
This section is organized in two subsections. In a first stage the APR project delivered to students is 
presented, and in a second stage discussion is focused in CT used by students to solve the project. 

The project delivered to students 

A 4 page file was delivered to students with instructions to develop the project. The problem was 
described: in consumer credit advertising, the European Union legislation imposes the display of the 
annual percentage rate of charge (APR) (EPCEU, 2008). The work consists in producing several 
Octave (software) functions that can be combined to compute the APR from the data defined by a 
credit agreement. Some examples are given to be used as test cases for debugging. The APR is defined 
as the solution of an equation that relates specified financial flows between creditor and consumer 
(drawdowns, repayments and payments of charges). These payments are made on certain dates. The 
European directive that specifies the APR states that the rate is the solution X of the equation: 

!"!(1 + &)"#!
$

!%&

= 0, 

where "! represents the amounts of financial flows (the sign is used to define if the consumer is 
paying or receiving) and where +! represents the times at which these flows occur, expressed in years 
(or fractions). For this work, data was modelled as a pair of vectors: a vector with the moments when 
financial flows occur, and a vector with the signed values of those flows. As many credit agreements 
involve a certain number of periodic payments (for example, monthly payments) with a fixed amount, 
students were asked to also consider part of the flows to be defined by four parameters: the fixed 
value of the payments, the number of payments, the moment of the first payment and the fixed time 
interval between payments. The parameters should be used to generate the adequate values of "! and 
+! and append them to the respective vectors. This subtask can be solved through an algorithm (using 
a cycle, for example) or through vector operations in Octave. Part of the decomposition of the problem 
is already given, as three functions must be programmed by students: a function that receives all data 
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for some credit agreement and returns the computed APR, a function to apply the bisection method 
to a given function and a function that implements the function defined by the APR (EPCEU, 2008) 

,(&) = !"!(1 + &)"#!
$

!%&

	. 

A numerical method like the bisection method may be applied in a general and abstract situation, 
provided that we have a continuous computable real function and the extremes of an interval where 
the function is defined but changes its sign. Therefore, the students are asked to implement a general 
version of the method using as arguments only an Octave function, the extremes of the interval and a 
tolerance to be used as a stopping criterion. A consequence of this is that the function , must be 
defined as an independent function. The students were asked to implement , as an anonymous Octave 
function, using the vectors with the values of "! and +!. The APR function then calls the bisection 
function with the adequate arguments and returns the result given by the bisection method.  

Each groups of 3 students should deliver Octave .m files with all the code they produced and a written 
report in a pdf file. The report should describe the development of the work, the tests that were 
executed and the results of the tests. The criteria for the assessment were given to students. There 
were three criteria related to the coding products (the code should be fully operational, should follow 
the specifications given, and should include inline comments) and four criteria related to the written 
report on the work (scientific correction, clarity of the text, organization, and inclusion of references). 

Analysis of the projects developed by students 

In this subsection, we had in account the reports developed and delivered by students and discuss the 
dimensions of CT used by students in the APR project. Most groups used the test cases included in 
the assignment. Some groups did not try different tests and sometimes missed some of the 
specifications. Other groups presented a discussion of the implementation of the algorithms in the 
project. As not all the algorithms were specified in the assignment, some groups developed their 
creativity on algorithms, and described the details in the report. 

The code 

Most groups achieved almost all the objectives of the assignment. Students created algorithms to 
perform some small tasks and coded them. The most common fails were operational fails (syntax 
errors and programs that freeze), and algorithmic errors (in the creation of the vectors with the values 
of "! and +!, and in the control of the bisection method when the middle of the interval is a root of 
the function). Below are some code examples relating to the bisection method. 

The code from the bisection cycle (figures 1 to 3) illustrates different levels of development of CT in 
students. Group 1 codes exactly what was asked as the while cycle continues if r>=tol therefore 
implementing a stopping criterion that can be expressed as r<tol, and checks if an exact solution was 
found: f(x)==0. Group 2 ignores that the criterion should be in the argument space and instead checks 
if the image of the last estimate is larger than the tolerance. Group 3 does not check if an exact solution 
is found which may lead to situations where the cycle never stops and uses a strict inequality for the 
while control which is not completely correct. This reveals that although almost all groups delivered 
code that worked in many situations, several groups did not fully understand the logic of the control 
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of the execution or did not consider all the possible paths of the execution of the algorithm that was 
implemented, even when that had been explicitly asked for. 

 
Figure 1: The bisection cycle: group 1 

Figure 2: The bisection cycle: group 2 

 

Figure 3: The bisection cycle: group 3 

Although almost all students were able to use logical thinking in the control of the while cycle, only 
some of the students fully understood the logical implications of the specifications on the code to be 
produced. From the algorithmic point of view some students implemented only a simpler version of 
the bisection algorithm, while others developed the code to include all the cases that were described 
in the specifications.  

The concepts and practices of CT 

From the point of view of the concepts of CT, logical thinking was present in the control of the 
computational flow, especially in the bisection method and most of the students were able to use it. 
The algorithmic thinking was present, and students needed to be creative to generate the vectors with 
the times and financial flows. A possible approach to generate the vectors was to recognize a pattern 
and use Octave vector operations. This is illustrated in figure 4. 

 

Figure 4: Completing the time and flow vectors with the periodic payments data 

A combined logical and algorithmic thinking challenge was to properly control the case when the 
root of the function is exactly at the middle point of the interval and several groups did not control 
for this situation, as was seen before. The main abstractions were already given in the assignment, 



                          Proceedings of the 17th ERME Topic Conference MEDA4, 3-6 September 2024, Bari, Italy                          ISBN 978-88-6629-080-3

  
14 

namely the use of vectors for the data and the use of a function to implement the bisection method. 
The evaluation was specifically requested in the assignment by giving test cases and asking for a 
written report, and the automation was the main goal of the project.  

The practices of CT were already embedded in the assignment. The decomposition was implicit in 
the request to implement three different functions. Computational artifacts were some of the products 
that students should deliver, together with the report, and some tests were explicitly requested. An 
iterative refinement was not explicitly asked but it naturally occurs, as it was easier to start by 
implementing the case without the periodic payments and only later add this possibility. The 
collaboration was implicit as this was a group project. 

In summary, most students were able to solve the problem posed in the project creating code to 
respond to the proposed tasks. During the execution of the project, several students asked for 
clarifications on the specifications of the code to be developed. Students verbally expressed that they 
were excited about working with a real-life problem and that this is a way of observing the importance 
of maths. One of the students noticed that the APR has a formal definition that, from the mathematical 
point of view, is the same as the definition of the internal rate of return of an investment. This shows 
critical thinking, which is one dimension of CT. In fact, several dimensions of CT as defined in 
Grover and Pea (2018) were observed in the project developed by students. 

Conclusions 
The project delivered to students includes a real-life problem that requires analytical and 
computational approaches, which are related to CT (Grover & Pea, 2018; Wing, 2006, 2014). In 
addition, students were able to use mathematics in a programming context, and to develop almost all 
of the CT dimensions as described in Grover and Pea (2018), namely abstraction, logical and 
algorithmic thinking, decomposition, automation, and evaluation. For example, logical thinking was 
present in the control of the computational flow, and algorithmic thinking was also present (Figures 
1 to 3). Also, pattern recognition was needed to generate the vectors, as illustrated in Figure 4. 
Moreover, several mathematical contents were used such as Bolzano’s theorem and the bisection 
method. Indeed, to develop the APR project that was proposed in two Maths bachelor courses of a 
Portuguese university, the students revealed problem-solving skills and developed several dimensions 
of CT (Barr & Stephenson, 2011; Lu et al., 2022; Wing, 2014). 

Several students verbally expressed that they were excited with this approach that made them use 
mathematics and programming to develop the project, which means that the implementation of this 
approach besides developing CT in students, also contributes for their motivation to learn. Thus, it is 
recommended to keep developing this approach in higher education, which is not usual in Portugal. 
In fact, according to Barr and Stephenson (2011), it is critical to implement CT across disciplines and 
to provide teachers with resources to help them develop this approach. 

Finally, it is concluded that the project promoted CT and 21st century skills in the students because 
they showed creativity and were able to work in groups and to develop different computational 
artifacts to effectively solve a real-life problem. Despite some projects did not fully accomplish all 
the goals, all the students used most of the CT dimensions as required, which are critical to correspond 
to the increasing complexity of the modern world (Costa et al., 2023; Jong & Jeuring, 2020; Wing, 
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2014). In fact, CT is important to understand the increasing technological world and thus it contributes 
for the preparation of future careers (Tedre & Denning, 2022). 

However, there are some limitations regarding this study. In the future, and in similar projects, we 
intend to conduct interviews with some students to better understand their performance in the 
development of the project. Also, more studies should be conducted with students from other 
universities, namely it would be interesting to compare results from CT dimensions used by math 
students and engineering students.  
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It is common to find reports on how teachers use e-textbooks. However, reports on teachers as 

designers of e-textbooks are less common. This study focuses on a middle school teacher who 

participated in a professional development course to design a chapter of an e-textbook. We analyzed 

the decisions made by the teacher using Schoenfeld's Resources, Orientations, and Goals framework 

and how this framework influenced his design decision-making. Semi-structured interviews and 

observations of the teacher in his classes were used to collect data. We discuss how the teacher can 

use feedback from the e-textbook to modify the chapter content. Our findings suggest that feedback 

from the e-textbook helps the teacher become more aware of their resources, orientations, and goals 

during the design process, which in turn impacts the design decisions of teachers who participate in 

the e-textbook design process. 

Keywords: Teacher as designer, E-textbook, Feedback, Decision- making. 

Introduction 
In this paper, we are examining how teachers design and redesign e-textbooks, as well as the role of 
feedback in the redesign process. E-textbooks can vary in the level of interaction they offer to users. 
According to Pepin et al. (2016), there are four types of e-textbooks: a) scanned PDF versions of 
printed textbooks, b) PDF books with hyperlinks, c) interactive e-textbooks with tasks and linked 
interactive objects, and d) evolving e-textbooks, which allow teachers to author and modify content. 
They can also provide the teachers with feedback, such as a summative analysis of students' academic 
performance. Our study used evolving e-textbooks to observe the teachers' design and redesign 
processes. 

The flexibility of the evolving e-textbooks may allow teachers to redesign and customize the content 
for their students. Involving teachers in this process can lead to modifying the content and structure 
of their e-textbooks to better meet the educational needs of their students (Trouche et al., 2018). 
Additionally, the feedback provided by e-textbooks can give teachers insights into their students' 
learning processes and challenges. This feedback may include statistics on students' performance, 
such as the number of exercises completed and academic achievements. Hence, our premise is that 
the feedback that the teachers receive can help them redesign their e-textbooks based on their 
understanding of the students' progression. 

In this contribution, we aim to identify how the feedback that e-textbooks provide may change the 
teachers’ decisions regarding the design of their e-textbooks. To do this, we utilized Schoenfeld's 
(2010) decision-making framework (DMF) to track a teacher's process of designing and redesigning 
a chapter aimed at teaching triangle properties and the calculation of their areas. Schoenfeld's 
framework comprises three interconnected elements: Resources, Orientation, and Goals, which 
inform the decisions teachers make. By taking these elements into account during the design and 
redesign of e-textbooks, we hope to gain a better understanding of how teachers adjust e-textbooks 
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and the reasons behind these changes. We are particularly interested in the impact of feedback 
provided by e-textbooks on teachers' decision-making processes when it comes to revising 
mathematical content in a chapter. 

The study was guided by two research questions: 

1. What are the resources, orientations, and goals, initially expressed by the teacher when designing 
a chapter in an e-textbook? 

2. How do the initial resources, orientations, and goals of teachers change after receiving feedback 
from the e-textbook?  

Feedback in an E-textbook 
Digital learning environments are capable of collecting data about students' learning, which can be 
used to adjust the learning path and help teachers make informed choices and decisions. One of the 
most prevalent features of e-textbooks is the ability to provide feedback on students' solutions (Brnic 
et al., 2024; Rezat, 2021). In this paper, we are referring to Hattie and Timperley's definition of 
feedback, which is defined as "information provided by an agent (e.g., teacher, peer, book, parent, 
self, experience) regarding aspects of one's performance or understanding" (Hattie & Timperley, 
2007, p. 81). According to them, the information conveyed to the feedback receivers is meant to bring 
about change by highlighting discrepancies between the actual and intended performance. 

Feedback is considered a crucial factor in teaching and is often viewed as a benefit of e-textbooks. 
After working with an e-textbook in class, teachers can receive information about their students' 
solutions (Rezat, 2021). This feedback from e-textbooks can be used by teachers to assess their 
students' progress and adjust their teaching objectives accordingly. Therefore, when designing an e-
textbook, teachers should consider how their designs are adjusted to the students who learn by e-
textbook. We hypothesized that the feedback obtained from an e-textbook through the automatic 
elaboration of students' solutions can enable teachers to discuss, reflect, and consider their design 
from alternate perspectives and make informed decisions. 

Resources, Orientations, and Goals Framework 
This study is guided by Schoenfeld’s (2010) decision-making framework (DMF), which illustrates 
how a teacher's resources, orientations, and goals are linked to the decisions they make. According 
to this framework, teachers make decisions in order to accomplish their desired goals. Schoenfeld 
(2010) suggested that understanding a teacher's decision-making process involves identifying their 
resources, orientations, and goals. Therefore, a teacher's decision-making is influenced by these three 
factors: 

1. Resources: primarily their knowledge, but also the tools available to them. 
2. Orientations: these are beliefs, values, and preferences that guide their decisions. 
3. Goals: these are often selected based on their orientation and the resources available to 

them.  
Resources refer to not only materials and tools but also the knowledge possessed by a teacher, such 
as their familiarity with specific classroom routines, their past experiences with how students will 
respond to particular teaching methods, and their understanding of the importance of time 
management. Orientation, on the other hand, encompasses a teacher's beliefs, values, preferences, 
and disposition, which influence how they interpret and react to situations, including the setting and 
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prioritization of their pedagogical goals. According to Schoenfeld (2010), a teacher's goals are 
something they strive to achieve, and are often influenced by the resources available to them. 

When designing an e-textbook, the teacher's beliefs, attitudes, and confidence in using resources will 
likely influence the design considerations. This is because the teacher's goals will be a part of the 
design process. In routine situations, decision-making processes are automated. However, in the 
design of an e-textbook, the teacher's decision-making may be updated, especially after receiving 
feedback. Since designing an e-textbook involves making several decisions, such as selecting 
resources, types of mathematical content, and representations, the decision-making framework has 
the potential to provide insights about their decisions. 

Methodology 
This report is about a small part of a larger research project that aims to explore the role of teachers 
as designers of e-textbooks. The project involved a 30-hour professional development course, held 
once a week for two months, that guided teachers on how to design e-textbooks. It was the first time 
these teachers were involved in the process of designing an e-textbook. In this case study, we focus 
on a middle school teacher named Abbas, who volunteered to participate in the research project. 
Abbas demonstrated seriousness during the professional development course and agreed to 
implement the material he designed in his classrooms. Additionally, Abbas identified himself as a 
teacher who integrates digital tools into his classes. We followed him during both the design process 
and the implementation of what he designed in the classroom. Abbas is 26 years old with five years 
of experience teaching mathematics at a middle school. He teaches 7th and 8th grades. The classroom 
was located in southern Israel and consisted of 7th-grade (age 12-13) high-ability mathematics 
students in a low socioeconomic environment. All the students in the class were native Arabic 
speakers. It was the first time the students were studying using an e-textbook designed by the teacher, 
who specifically chose this class for the new teaching experience. 

Data collection and analysis 
The data was obtained by conducting interviews with a teacher and observing the design process in 
the classroom. The interviews were conducted to gather information about the decision-making 
process that the teacher used after implementing a lesson. During the interviews, the teacher described 
his experience of the lesson and explained the reasoning behind certain design decisions. 
Furthermore, the teacher was asked to create a new task in an e-textbook for future lessons and to 
provide an explanation for the new design. The interviews were transcribed and coded using 
Schoenfeld's framework to identify the decisions that influenced the teacher's design process. The 
observations were focused on the teachers' design of e-textbooks. The data from the observation was 
recorded, transcribed, and annotated with descriptions of the teachers' decision-making processes 
during the design process. 
After collecting the data, we analyzed it using Schoenfeld's (2010) DMF. We looked for instances 
where the teacher's responses mentioned resources, orientations, or goals. We identified resources 
when the teacher mentioned things like the curriculum, their knowledge of technology, or their 
teaching experience. We inferred the teacher's orientation when they described a particular classroom 
environment as being helpful for learning. Finally, we identified the teacher's goals from their 
comments. Sometimes, the teacher stated a specific outcome they wanted to achieve in their lesson. 
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Findings 
In this section, we will discuss the outcomes of Abbas' DMF before he receives any feedback. To 
explain this, we will describe a case in which Abbas was involved as a designer of a chapter in an e-
textbook. We then present our findings that demonstrate how Abba's design was affected by receiving 
feedback from an e-textbook. 

Table 1:  Selected data about Abbas's initial DMF 

Resources Orientations Goals 

R1: Teacher's understanding of 

students' motivation for exploring 

triangle properties and their 

seriousness in solving geometrical 

tasks. 

R2: Teacher recognition that most 

of the students in this class excel 

in mathematics. 

R3: Teacher awareness that the 

students are familiar with using 

the GeoGebra tool to solve and 

explore geometrical shapes. 

O1: He believes that most of his 

students are capable of solving most 

of the geometrical tasks he has 

designed. 

O2: He believes that designing 

tasks in an e-textbook with the 

GeoGebra tool adds value to 

teaching and learning geometry. 

O3: He believes that interacting 

with GeoGebra in the e-textbook 

enriches students' geometrical 

thinking and their mathematical 

skills.   

O4: He believes that the ten tasks he 
designed in the e-textbook 
correspond to the level of the 
students in the class. 

 

G1: To offer appropriate tasks 

to help students explore 

triangle properties using 

GeoGebra. 

G2: To make the geometry 

lesson interesting and 

engaging for students. 

G3: Provide the students with 

tasks to calculate the area of a 

triangle. 

G4: Providing students with 
challenging geometrical tasks 
that promote critical thinking 
and the application of 
problem-solving skills. 

 

 

In the first interview, the teacher reflected on the considerations that guided him in the initial design. 
The following transcript illustrates the teacher’s orientation and the resources that are available to 
him.  

The tasks that include digital tools are supposed to help students’ thinking during the solution of 

the geometric tasks. 

I want to try to combine tasks with GeoGebra, which was introduced during the course 

(professional development course), so that my students will explore properties... using GeoGebra. 

These utterances suggest that the resources available to Abbas referred to e-textbook affordance, 
which enables the design of geometric tasks that utilize digital tools, such as GeoGebra applets. 
Abbas's orientation was that incorporating digital tools into the chapter may enhance the students' 
thinking, which may help the students improve their problem-solving skills. In his own words, he 
identified himself as a teacher who effectively incorporates technology into his teaching methods. 
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Thus, his goal is to provide his students with mathematical tasks incorporating GeoGebra, aiming at 
helping them to explore geometrical properties and to develop thinking skills.  

In the second phase, Abbas teaches his classroom with the chapter he designed for a 45-minute lesson. 
During this experiment, Abbas received feedback from the e-textbook platform. The feedback 
includes correct and incorrect solutions (green or red pattern, respectively), items the students 
completed (gray pattern) or did not (gray pattern with forbidden icon), and items that the student did 
not solve at all (white pattern), The numbers in the first row correspond to the item numbers. A green 
check mark indicates that the student has opened all the items, while a gray circle indicates that the 
student has not. 

 
Figure 1: Feedback that the teacher received through automatic processing of the students’ solutions.  

Abbas reviewed the feedback from his e-textbooks and noticed that some of his students did not 
complete the tasks he had assigned. In the interview, he mentioned his desire to create a limited 
number of tasks in the revised chapter, saying, "I want them to solve everything." However, he 
observed from the feedback that many of the tasks remained unanswered. 

Abbas shared his insights about this feedback with the other teachers who were participating in the 
professional development course. Following the discussion, he re-designed the chapter, trying to put 
the insights he received from the feedback into action. Abbas revised the design of the chapter by 
deleting some of the items and using different wording for the remaining items. Moreover, he 
alternated open items with multiple-choice or true/false items.  

 I thought it [receiving feedback] was good … because it shows what your students solved and 
what was difficult for them during the lesson.   

In addition, he says:  

 I saw it [feedback] several times…you can see here that the students did not solve some of the 
questions; perhaps they found using the technological tools difficult. 
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The feedback the teacher receives is considered a significant resource that leads to a change in the 
teacher's knowledge about his students. It seems that this resource has influenced the teacher's 
orientation as he mentioned, "Perhaps they found using the GeoGebra tool difficult." It seems that 
the shift in the teacher’s orientation causes him to adjust his goal. This was reflected in the decisions 
he made regarding the re-design of the chapter in the e-textbook. The modification of the resources, 
orientations, and goals are summarized in Table 2.  

Table 2: Abbas's DMK follows stage 2  

Resources Orientations Goals 

R1: Abbas experience in redesigning 

the chapter after the implementation 

in the classroom. 

R2: Abbas awareness of the 

students' limitations in using the 

GeoGebra tool.   

R3: Abbas experience in redesigning 

the chapter after discussing the 

feedback he received with 

colleagues. 

 

O1: He believes in the 

importance of preparing students 

to know how to use the 

GeoGebra tool. 

O2: He believes that 

mathematical content should not 

be too conceptually heavy for his 

students. 

O3: He empathizes with 
struggling students who take 
time to learn to use e-textbooks, 
and they didn't complete most of 
the tasks. 

 

G1:  Assigning multiple 

assignments related to the topics 

covered in previous lessons. 

G2: Providing hints and 

explanations to help students with 

geometry-related tasks. 

G3: Designing tasks for students 

that closely resemble those in the 

printed book they use. 

 

 

The following transcript aims to illustrate the new resources, orientations, and goals that emerged 
after Abbas discussed with his colleagues the feedback received from the e-textbook platform.       

The objective of my design is to enable the student to understand the content of the lesson and 

solve some tasks correctly. In my opinion, this is better than designing several tasks that the 

students might not be able to solve most of them. 

The feedback Abbas received from the e-textbook platform changed his mind about the ability of his 
students. After the discussion he conducted with his colleagues, Abbas argued that “in my opinion, 
this is better than designing several tasks that the students might not be able to solve most of them.” 
This utterance suggests that Abbas gained new knowledge about his students' abilities, which led him 
to change the design of the tasks in the chapter. The ideas of Abbas's colleagues that emerged during 
the discussion about this feedback were resources that affected Abbas’s decision to reduce the number 
of items. This change also affected Abbas’s goals, which emphasized that he needed to provide the 
students with explanations and hints so that they could help them when needed.  

 The change in Abbas’s orientation is reflected in the fact that he re-designed the chapter by choosing 
topics from the curriculum and a limited number of tasks. He believes that his role as a designer of 
the e-textbook is to adjust the mathematical contents to the students' intellectual level.  

 



Proceedings of the 17th ERME Topic Conference MEDA4, 3-6 September 2024, Bari, Italy                      ISBN 978-88-6629-080-3 

  
23 

Final remarks 
This paper focused on the teacher's decision-making as he designed a chapter in an e-textbook for 
teaching geometry. In the first round of design, the teacher’s goal was to enable his students to solve 
all the items successfully. His orientation was that the tasks he designs are apt to the student's 
mathematical level. In fact, after reading carefully the feedback received from the e-textbook 
platform, Abbas's knowledge about the ability of his students has changed. As a result of these 
changes, Abbas redesigned his chapter by providing more explanations and hints to facilitate its 
reading and understanding of the items.     

This case has shown that feedback received from the e-textbooks platform has prompted Abbas to 
change his DMF. The re-design of the chapter was not based on spontaneous decisions but rather a 
consequence of conscious and deliberate decisions made by the teacher as a result of observing and 
discussing the feedback with his colleagues.   

By means of this case study, the use of the feedback received from the e-textbook platform for post-
implementation discussion may assist the teachers who designed the e-textbook in becoming aware 
of their design process. The teacher’s design decisions in terms of resources, orientations, and goals 
add richness to understanding his design process. It seems that teachers can benefit from the potential 
of e-textbooks in the context of design; the fact that they offer immediate feedback suggests that the 
effectiveness of this feature can support the teachers' roles as designers of e-textbooks when they 
refer to its content; this is particularly relevant because the design process is considered challenging 
for teachers. The findings of this study thus join the initial evidence on the effectiveness of features 
of e-textbooks in motivating and helping teachers in the design process (Pepin et al., 2016).  Finally, 
it is worth mentioning that this study focused on one teacher with a specific cultural background. The 
results discussed here are firmly related to the teacher's background. Hence, a deep and extensive 
research study is needed to enrich our understanding of the role of feedback on decision-making 
regarding the design of e-textbooks.  
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This study explores a learning environment that involves tasks designed by exploiting a digital artifact 

called digital Tracer.  Such an artifact enables an embodied design of tasks that may prompt a 

covariational perspective on (functional) relationships traditionally taught by adopting a static 

approach. The paper aims to investigate how peers work together with the digital Tracer (what can 

be called an intercorporeal functional dynamic system) in order to solve some tasks elaborated with 

an embodied design. Employing the framework of embodied instrumentation, the preliminary 

analysis presented in this study examines a group of three university students, one of whom acted as 

an observer, while solving tasks that required them to follow two given traces (a broken line and a 

circumference) using the digital Tracer. 

Keywords: Embodied instrumentation, covariation, intercorporeal functional dynamic system, 

Tracer. 

Introduction 
The ability to interpret the graphical representation of a function or a curve is a fundamental goal in 
mathematics that should be developed from the last years of primary school. However, this is far from 
easy for students, especially if they should understand such graphs as a representation of “a continuum 
of states of covarying quantities” (Saldanha & Thompson, 1998, p. 305) as it might happen in the 
conceptualization of dynamic situations. Indeed, the points on the graph should be understood as a 
covariation between the co-varying quantities, mathematically representable as an abscissa and an 
ordinate, which might be in a relation of functional dependence. 

In this paper, we investigate the potentialities of a digital-embodied design involving the use of an 
artifact named digital Tracer to approach covariational reasoning, realized within a multi-touch 
dynamic geometry environment. Such an artifact displays a Cartesian plane with two bars that can be 
moved using the touch of fingers. By moving these bars, users can move and control their intersection 
point to draw or trace lines in the given plane, engaging their bodies in the activity.  

Literature in Mathematics Education has shown how perceptuomotor integration in solving tasks can 
benefit mathematical learning and understanding (e.g., Nemirovsky et al., 2013). In order to 
incorporate embodied learning experiences with the digital Tracer into educational contexts, the five 
design principles (DPs) of Palatnik et al. (2023, pp. 7-8), which we briefly recall here, can be 
considered. DP1: Involve students’ bodies in the learning process, either through perception-based 
design artifacts or action-based design; DP2: Offer immediate sensorimotor interactions with artifacts 
through which create stable forms of engagement with the environment and promote mathematical 
understanding through various means of communication, including verbal and nonverbal language; 
DP3: Attend to the semiotic sensitivity of the design by reflecting on the signs included in artifacts 
that can be produced by students or teachers while solving the task and their relationship with 
mathematical knowledge, as well as how students interpret and attribute meanings to these signs; 
DP4: Include a variety of semiotic registers and artifacts that potentiate mathematical perception 
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and discourse, recognizing that learning and mathematics understanding happens when learners are 
able to convert between different semiotic registers and to treat within one register; DP5: Foster 

multimodal engagement and “languaging” by integrating various modes of communication, such as 
speech, gestures, and drawings, into the learning process, acknowledging that learning new concepts 
often involves discovering new ways of acting in the environment and participating in cultural 
discourse. The five principles are reminiscent of Papert’s constructionism (1980), according to which 
learning and understanding are more effective through hands-on experience with technologies and 
through the exploration of individuals. Indeed, the interaction with the environment plays a central 
role, and scaffolding is used to support learning. 

This research aims to investigate the efficacy of an embodied design of tasks, elaborated with the 5 
DPs in mind, using the digital Tracer, for supporting a covariational perspective. This exploratory 
study allows us as researchers to describe the process of resolution of a small group of university 
students involved in the experiment, by adopting embodied instrumentation as the theoretical 
framework, and to evaluate the embodied design of the tasks. 

Theoretical framework: Embodied instrumentation 
The theoretical framework of embodied instrumentation stems from a radical embodied perspective 
(Shvarts et al., 2021): learning can only happen through the body, and such a body meets the 
affordances of the environment (Gibson, 1986) including various digital tools, culturally-established 
artifacts, and even other individuals acting as observers. Body potentialities help to perceive the 
affordances of the environment and then act on them. Perception and action are connected in loops 
driven by intentionality and oriented towards the anticipation of the environment’s affordances. 
Fulfilling the intentionality, an individual (brain and body) and an artifact form what is called body-

artifact functional system (Shvarts et al., 2021). When solving a mathematical task, a body-artifact 
functional system activates action-perception loops to recognize and act on mathematical affordances 
of cultural artifacts, leading to the emergence of stabilized behaviors. But what about when more than 
one individual is involved in the resolution of a task? Shvarts and Abrahamson (2020) refer to a 
student and a teacher as forming an intercorporeal functional dynamic system (IFDS), in which one 
student is a sub-system. When individuals are engaged in a coupled coordination of motor actions, 
various attentional anchors (Abrahamson & Sanchez-Garcia, 2016), i.e. foci of attention, may pop 
up as new perceptual structures and then contribute to stable performances. Within an IFDS, the two 
bodies attune to perform a common action and work together toward the resolution and 
conceptualisation of a mathematical task. The construct of embodied instrumented covariation 
(Bagossi, 2022) has already been introduced to condense the idea that a bodily-sensorial experience 
by using an interactive multimodal technology may mediate the elaboration of an intuitive idea of 
covariation enabling the learners to perceive the mathematical processes. How such an instrumented 
approach that integrates bodily involvement and coordination can aid in understanding covariational 
relationships, specifically learning about variations that occur simultaneously, is still scarcely 
explored. In light of the theoretical framework outlined and the insights coming from an explorative 
study like ours, the research question we are willing to focus on can be formulated as: How does an 
intercorporeal functional dynamic system engage with the digital Tracer to explore covariational 
relationships? 
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The digital Tracer 
The digital Tracer (Figure 1) is the corresponding 
digital version of the physical Tracer (made of a 
wooden panel and two moving bars) introduced in 
Ferretti et al. (2024). Inspired by the mechanism of 
the game Etch A Sketch, the digital Tracer is an 
artifact conceived using the dynamic geometry 
software GC/htlm5, an updated version of Geometric 
Constructor, one of the free dynamic geometry 
software used in Japan since 1989 and developed by 
Prof. Y. Iijima. It is compatible with both iPad and 
Android tablets and supports multi-touch interaction. The digital Tracer consists of two perpendicular 
axes (black lines in Figure 1), two points (A and B) belonging to these lines, and the two bars of the 
Tracer represented by other lines (brown lines in Figure 1) that pass through these points and are 
perpendicular to the previous lines. By dragging points A and B, it is possible to control the point of 
intersection of the bars so that it can follow a specific path. By activating the “Trace” command, 
clicking on the fourth lowest button placed at the bottom of the screen, the intersection point of the 
bars will leave a colored trace when moved. The digital Tracer can be used by a single user, but in 
our experiment, as we will explain in more detail, we had the students work in pairs on the screen 
showing the digital Tracer. To describe a given curve or function, A should be moved simultaneously 
with B, because it is through the combination of these movements that the trace is left on the path or 
not. In order to move the intersection point along the given path when there are two users, it is 
essential that they coordinate their movements. 

Method 
Embodied design with the Tracer 

We designed three tasks involving the use of the physical and digital Tracer:   

1. Follow four given traces (in pairs and then individually): steps, a broken line, a circumference, 
and a parabola (see Figures 2a and 2b). 

2. Reproduce the trace (in pairs): two broken lines with different slopes and two parabolas with 
different widths. 

3. Produce two parallel lines (in pairs). 

Such mathematical tasks meet those embodied design principles outlined by Palatnik et al. (2023). 
Indeed, students’ bodies are involved in the learning process (DP1) through the movement of the two 
bars by means of their arms or fingers and the attunement made possible by the eye-hand coordination 
of the bodies involved. It offers sensorimotor interaction with the Tracer (DP2) through the movement 
of the two bars. The result of such interaction can be made visible by using a marker with the physical 
Tracer or by activating the Trace option on the digital Tracer (DP3). The formulation of the tasks 
mainly relies on the graphical register, but students are also invited to elaborate verbally on their 
actions (DP4), hence the activity fosters languaging (DP5). Eventually, we believe that the 
multimodal engagement prompted by such an embodied design is coherent with the mathematical 

Figure 1: The digital Tracer  
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content of the activities. In fact, through the movement of the bars and the resulting intersection, 
students can feel the co-variation of the two bars, which may be associated with variables x and y. 

 
Figure: 2a. Broken line trace; 2b. Circumference trace 

Case study: participants 

In this paper, we focus on a case study involving three students from a Master degree program in 
Mathematics, Anna, Bea, and Chiara. During the experiment, the researcher gave the students three 
tasks, initially executed using the physical Tracer, and then performed with the digital Tracer. In what 
follows we will focus on the resolution in pairs of task 1 where students were asked to follow the 
traces of a broken line and a circumference (Figures 2a and 2b): this intentionality determines the 
assembly of the IFDS that we will analyze. During the experiment, Anna and Bea worked in pairs to 
solve the tasks using the digital Tracer: these three elements form the IFDS we are willing to 
investigate (Figure 3). Concerning the affordances of the environment we should consider that the 
two students had previously worked with the physical Tracer to solve the same tasks. Moreover, 
Chiara acted as an external observer who sometimes prompted some reflections at the end of the task. 

 
Figure 3: Intercorporeal functional dynamic system and environment’s affordances. From left to 

right, Anna, Bea, and Chiara 

Data collection and analysis 

The entire experiment (90 minutes more or less) was videorecorded. In this contribution, a 
preliminary analysis of two episodes is presented to outline some considerations related to our 
research question. The episodes were analyzed qualitatively by focusing on the key elements of the 
embodied instrumentation framework: intentionality (Which is the aim of the IFDS?); bodily 
experience (Which embodied attunements between people emerge? Which attentional anchors 
emerge within the IFDS? Which action-perception loops emerge?); stabilized behaviors (Which 
stable techniques are adopted by the IFDS when using the digital Tracer?); conceptualization (Which 



 

 

Proceedings of the 17th ERME Topic Conference MEDA4, 3-6 September 2024, Bari, Italy                      ISBN 978-88-6629-080-3 

  
29 

verbal formalizations are elaborated by the IFDS when solving the task?). The qualitative analysis of 
the two selected episodes was conducted through descriptive coding based on the four elements 
previously outlined. The authors analyzed the episodes independently and discordant interpretations 
were discussed and revised until reaching an agreement. 

Results 
Episode 1: Broken line 

The two students were requested to follow the given trace of a broken line, and this is the goal they 
try to achieve by leaving a nice trace (intentionality). The legacy of the two girls’ use of the physical 
Tracer is evident. In fact, they immediately know that one of them will have to consider only one bar 
and therefore point A and the other will consider the other bar and, therefore, point B (intentionality). 

 
Figure: 4a. Chiara attuning with the IFDS; 4b. Different behaviors of Anna and Bea while moving the 

bars; 4c. Final trace produced 

Their bodies attune to perform this action by positioning their finger on the screen and adjusting their 
posture. Even Chiara who is not involved in performing actions with the Tracer attunes herself, so 
becoming part of the IFDS (Figure 4a). Having tacitly agreed on the points to be moved by each of 
them (and this derives from their previous experience with the physical Tracer, in which Anna moved 
the abscissa bar and Bea the ordinate bar) (stabilized behavior), the two girls silently and with 
concentration perform the movements. Anna and Bea agree on the starting point (bottom left of the 
broken line), and after positioning the intersection point of the two bars in that extreme, they start 
moving the two bars, and they direct their attention to the intersection point of the two bars (bodily 

experience). While Anna moves her finger along the x-axis, the finger of Bea tends to follow the 
curve and does not stay strictly along the axis, as can be observed in Figure 4b (bodily experience). 
The hand-eye coordination is evident: each person observes the trace progressively left by the 
intersection point, while simultaneously moving points A and B on the axes with their index fingers 
(another stabilized behavior with which they move the points). Only at the end, they hint a smile, a 
little bitterly, an expression that can be observed even on Chiara’s face: they have finished this 
performance, but the result is not optimal (Figure 4c). Anna says “the first trait ... um ... I can hardly 
see because I put my finger on it” (meaning that she did not have a full view of the line to trace 
because her hand and wrist partially covered the line - bodily experience).   

Episode 2: Circumference 

In this episode, Anna and Bea work together to trace the given circumference, and they agree on 
starting from the lowest point of the circumference and moving in a counterclockwise sense 
(intentionality). Anna perceives a lack of fluidity in tracing the circumference, especially comparing 
the previous experience she had with Bea with the physical Tracer. When approaching the extreme 
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right point of the circumference, she perceives from the left blue trace (Figure 5a) that she is 
mistakenly progressing in the positive direction of the x-axis (bodily experience), and the two girls’ 
attunement is interrupted (Figure 5b). Hence, a disruption of the IFDS happens, which is made evident 
by a joint laugh of the girls breaking the tension of the previous coordination. Anna says, “Before, I 
was used to stopping when we had to change direction, I’m not used to doing everything in one go”, 
and again: “I’m not used to changing direction quickly” (conceptualization). These different 
behaviors emerge even though both students are directing their attention to the intersection point 
rather than on their fingers (intentionality and bodily experience). Bea is the first who observes that 
she and Anna behaved differently: “We do two completely different things: you [Anna] always keep 
your finger in the same place, I on the other hand, I don't know why, but with my finger, I follow the 
progression [of the trace] a bit” (conceptualization on the stabilized behavior). Anna reacts by saying, 
“I always keep my finger on the same point because first I go in one direction and then I have to 
change; I move within a very small range.” Throughout this dialogue, the eyes of the three girls, even 
those of Chiara who is silent, all look at the tablet screen and follow the finger movements on it. 
Chiara has an attentive and focused gaze; sometimes she smiles, and this is a tacit confirmation of 
agreement with the colleagues’ statements (bodily experience). 

 
Figure: 5a. Final trace produced by Anna and Bea; 5b. Disruption of the IFDS  

Discussion 
The intentionality of the IFDS is strongly focused on drawing the traces as precisely as possible. 
Attention remains concentrated on responding to this intentionality: Anna and Bea do not look at their 
hands as they follow the trace, nor at the colored trace that gradually emerges with their movements. 
Rather, they look at the trace assigned to them. While performing the tasks, Anna and Bea attune and 
engage in loops of action-perception in which they go back and forth, move together, and stop, 
elaborating on stabilized behaviors. However, little conceptualisation emerges. In previous 
experiments, in which we had first involved primary school children (Ferretti et al., 2024) and then 
school teachers in training, free observations and then conceptualisation of the lived experience 
spontaneously emerged. In this experimentation with undergraduate mathematics students, we 
realized that conceptualisation does not naturally arise, but rather needs to be stimulated. The 
embodied design should certainly provoke some initial insights, but then a reflective stage is needed 
to trigger conceptualization (Alberto et al., 2022). Considering the qualitative nature of the tasks here 
proposed, such a reflective stage could be achieved through open questions, warmed up by a 
researcher or a teacher, asking for the what, how and why of the sensory-motor experience.  

It is worth drawing attention to another aspect of our environment. Shvarts and Abrahamson (2020), 
define the IFDS as consisting of a student, working with an artifact, and a tutor. We, on the other 
hand, have two peers, Anna and Bea, interacting simultaneously with the artifact. Notably, Anna and 
Bea in enacting their actions with the artifact do not speak. They feel and act. Then, in our 
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environment, there is also Chiara. She has the role of observer but becomes somehow part of the 
IFDS: she attunes, nods, smiles, and follows with her gaze all the movements of her colleagues. 
Moreover, at the end of the performance of tracing the circumference, all three burst out laughing: all 
three knew how tense they were in their effort to trace the circumference as smoothly as possible. 

Final remarks 
The IFDS proves to be a valid construct for investigating how the digital Tracer can be used to explore 
covariational relationships. Indeed, the interactivity of an artifact like the Tracer may help the learner 
give meaning to functions, or relationships, as dynamic entities, as opposed to a static view of 
functions supported by the other approaches to functional thinking, such as the correspondence one. 
Moreover, a specific task design such as the one proposed here may support a smooth image of 
change, in contrast to a chunky one: indeed, the focus is on the sensorial perception of the variations 
of the quantities at stake, favouring a qualitative approach. However, retrospectively analyzing the 
videos, we realized that the university students created windows for conceptualization, but the 
proposed task design did not allow full use of them. Even though in this paper we present two episodes 
focused on the digital Tracer, the whole sequence allows for a comparison between the physical and 
digital Tracers and for reasoning as to which of the two artifacts has more potential to achieve the 
goal of the task. For example, when Anna and Bea observe their failure in making a smooth trace 
with the digital Tracer, we could have explicitly asked them to compare their experience with the one 
previously had with the physical Tracer: the concepts of smoothness and approximation might have 
come out more. Therefore, we reiterate that conceptualisation needs to be triggered and more could 
be done in the design to prompt a reflection on covariational aspects. We believe that such an 
embodied approach may help students not only perceive, given the different speeds with which one 
can move the bars, what variation means, but also conceptualize the given trace as a dynamic object. 
In this way, it is possible to see the covariation between A and B not only as a result of the 
coordination of the two users’ actions, expressed as a colored trace, but also to feel and perceive the 
covariation through the bodies and their movements’ coordination. Eventually, our embodied task 
design, elaborated to support the conceptualization of covariational relationships, focuses on a 
qualitative approach so far. Hence, a quantitative stage (Alberto et al., 2022) could be introduced to 
reinforce the idea of covariation between quantities, for example by inserting a grid in the digital 
Tracer. These will be points of future reflection. 
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This paper proposes principles (CERICS: Creativity, Explicit PCK, Reflection, Investigate student 

thinking, Collaboration, and Self-efficacy) for professional development (PD) aimed at increasing 

teachers’ PCK for teaching mathematics with technology, specifically general purpose tools such as 

CAS or dynamic geometry systems. Given the ubiquity of technologies and affordances for teaching 

and learning, principles to underpin PD may support design, evaluation, and research of PD 

programs.  

Keywords: Technology, mathematics teachers, professional development, PCK 

Introduction 
Worldwide considerable resources have been devoted to mathematics teacher PD. For example, 
National Council of Teachers of Mathematics institutes (USA)1, National Centre for Excellence in 
the Teaching of Mathematics PD (UK)2 and technology focused PD through departments of education 
and private providers. This range of structures is also present in our countries, Germany and Australia. 
One example, the Deutsches Zentrum für Lehrkräftebildung Mathematik (DZLM)3 is a nationwide 
organization in Germany run by a formal consortium of universities collaborating with government 
to deliver, and conduct research about, mathematics teacher PD. There are several motivations for 
teachers to undertake PD related to teaching mathematics with technology. These include:  

• curriculum documents that include references to technology (e.g., VCAA, n.d.)  
• teachers’ desire to develop pedagogical content knowledge to take advantage of the new 

opportunities that technologies offer for teaching and learning (e.g., Thurm & Barzel, 2020) 
• assessment or examinations that allow technology use  (e.g., Wiliam & Stacey, 2013) 

The place of technologies in curriculum documents varies, with several countries (or states) 
referencing technologies (or technology). For example, the mathematics curriculum in Victoria, 
Australia states what students should do with technology (e.g., “find percentages of quantities and 
express one quantity as a percentage of another, with and without digital tools”; VCAA, n.d.). Similar 
statements exist in some German curricula. An implication is that teaching should support students’ 
understanding of mathematics and their ability to use technology to do mathematics.  

In addition to curricula obligations, the intention to use digital tools can be impacted by teachers’ 
perceptions about what it means to teach and learn mathematics with such tools (Pierce & Ball, 2009). 
Technologies can impact the epistemic value of techniques (Artigue, 2002), with Dick (2008) 

 
1 http://www.nctm.org/Conferences-and-Professional-Development/Institutes/ 

2 https://www.ncetm.org.uk/ 

3 German Centre of teacher education in mathematics, www.dzlm.de 
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stressing the need for cognitive fidelity of technologies so they are “illuminating mathematical 
thinking processes [rather] than simply arriving at “black box” final results as efficiently as possible” 
(p. 337). Rethinking teaching with technologies is not new, with Pierce and Stacey (2010) suggesting 
teachers “re-balance emphasis on skills, concepts, applications” (p.6), alongside other pedagogical 
opportunities. The process of instrumental genesis (Artigue, 2002), where a teacher learns to use 
technologies and has their work shaped by such tools, can support teachers to use technologies to 
achieve pedagogical outcomes. Given instrumental genesis can take time and teacher perceptions 
play a role in uptake of technology, the evolution of pedagogy is complex, and PD is needed. 

PD on technologies and mathematics: Recent findings 
Teacher PD to improve teaching and learning mathematics with technologies has been reported 
extensively. For example, Thurm et al. (2024) reviewed research on PD for teaching mathematics 
with digital technology from 2010 – 2021, resulting in the need for consolidated PD principles to 
realize good PD programs. The review noted a wide range of different use and explication of 
principles. The need for collaboration was a key principle for PD across several studies, with Mouza 
et al. (2014) promoting learning-by-design where teams address pedagogical problems through 
technology solutions and Ratnayake et al. (2020) proposing teachers collaborate to design tasks and 
share learning. Emergent design principles call for technology tasks that present lesson “hiccups” for 
teachers, followed by consideration and practice of possible classroom responses (Clark-Wilson & 
Noss, 2015); this can result in teachers dealing in-the-moment with occurrences in lessons, with 
Pierce et al. (2011) noting that technologies can be idiosyncratic and work differently to pen-and-
paper maths. Reiten (2021) noted that teacher development of mathematics content knowledge for 
teaching should also be a consideration for PD. Thurm et al. (2024) reported the need for 
consideration of the TPACK model by Mishra & Koehler (2006), highlighting the principle that PD 
should consider the interplay between content knowledge, pedagogy and technology to build 
teachers’ competences. Stressing authentic experiences (e.g. Mouza et al, 2014), supported the 
principle of trialing and reflecting, and that PD should be over time. In addition, teachers’ perceptions 
play a role in uptake of technology in teaching (Pierce and Ball, 2009). Thus, active learning, 
connections between theory and practice and providing opportunities for reflection are important. 

Goldsmith, Doerr and Lewis (2014), in a review of 106 refereed journal articles from the mid-eighties 
to 2008, reported that teacher learning “is often incremental, nonlinear, and iterative, proceeding 
through repeated cycles of inquiry outside the classroom and experimentation inside the classroom” 
(p. 20). This supports learning fostered through PD programs where the external learning (i.e., groups 
of teachers meet with a PD provider) is integrated with phases where teachers are involved in trialing 
new approaches in the classroom (e.g., Thurm & Barzel, 2020). Integral to this is the necessity to 
reflect on classroom implementation and student learning and to incorporate this reflection into 
subsequent external learning phases. 

Internationally there have been studies on the effectiveness of general PD programs (e.g. Timperley 
et al., 2007). A meta-study of literature (Barzel & Selter, 2015) provided the basis for the DZLM 
principles for PD in mathematics:  

• competence-orientation (e.g. aims focussed on mathematics CK and PCK; aims clearly 
articulated to teachers) 
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• participant-orientation (e.g. cater for different teacher expertise and beliefs; foster teachers’ 
active participation in sessions) 

• various instruction formats (e.g. multi-day programs where teachers implement new ideas in 
classes between sessions; individual work and presentations within a session) 

• stimulating cooperation (e.g. promote group work within sessions and professional learning 
teams between and after sessions) 

• fostering reflection (e.g. on tasks, classroom arrangements, student solutions and teacher self-
reflection) 

• case-relatedness (e.g. use of videos of classrooms and sample student work)  

PD related to teaching mathematics with technologies should follow the same principles; however, 
there are extra dimensions to be considered related to teaching with technology.  

• Development of a teacher’s individual technological skills and knowledge (e.g., Mishra & 
Koehler, 2006) 

• Pedagogical considerations associated with teaching with technologies (e.g., Pierce & Stacey, 
2010) 

Both dimensions should be intertwined in each phase of the PD process. In both cases, selection of 
tasks and the features of good tasks to promote development of good practices are crucial.  

Given the rapid change in technologies over the last two decades, PD should be focused on adaptable 
principles and be responsive to new opportunities that we cannot even imagine in the current climate. 
We now propose principles for teacher PD related to technologies and mathematics that may guide 
conceptualisation, evaluation or research of PD programs for teaching mathematics with technology. 

Methodology 
On the basis of Thurm et al. (2024), we have elaborated on missing principles in teacher professional 
development for teaching mathematics with technology. The CERICS principles (refer to Table 1) 
were developed using an iterative process by the two authors, each of whom has more than two 
decades of experience in research-based design, delivery and evaluation of PD programs. Theme 
analysis (Strauss & Corbin, 1990) informed the approach used to identify principles within the 
framework. The approach is outlined below. 

Stage 1: First we discussed and documented initial drafts of key principles and approaches for PD 
with technology, based on experience and literature (see above).  

Stage 2: To refine the list each author made individual lists of key aspects of PD programs designed. 
Two examples of key aspects are “Learn technology in the context of a topic which is relevant to the 
participants….curriculum documents provide guidance here” and “Mix tasks, features and PCK-
reflection from the very beginning”.  

Stage 3: The authors discussed the lists to clarify any phrases and to determine where use of terms 
was different in the cultural context of the two authors.   

Stage 4: Phrases were placed in clusters aligned with the initial drafts of key principles developed in 
stage 1. Any phrases that did not fit into a cluster were collected and reconsidered separately, with 
the clusters being reworded where required.  
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Stage 5: The draft principles were analysed for clarity and completeness by a third mathematics 
education researcher with decades of experience in conceptualising and developing PD. 

Overview of the CERICS Principles 
Table 1: CERICS - Principles for Professional Development for Teaching Mathematics with 

Technology 

Focus Principle  

Creativity Promote teachers’ creativity in the design of lessons and /or assessments that 
balance technology, pen-and-paper and mental strategies  

Explicit PCK Make pedagogical content knowledge for teaching mathematics with 
technology explicit 

Reflection Plan focused reflection by teachers on the role and impact of technology 

Investigate student 
thinking 

Include discussions of classroom scenarios and/or student work samples to 
highlight affordances and constraints of technology  

Collaboration Plan for interaction and exchange between teacher participants to share 
pedagogical approaches and experiences of teaching with technology 

Self-efficacy Reduce teachers’ anxiety about using technology and promote their risk 
taking in use of technology   

 

Creativity - Promote teachers’ creativity in design of lessons with technology 

As teachers create tasks and lessons they need an appreciation that technologies have a place 
alongside pen-and-paper (p&p) and mental strategies in mathematics classrooms. At different times, 
and in different situations, it is beneficial to use (or not use) technologies. PD sessions must develop 
insight into an appropriate balance between technologies, p&p and mental strategies, which is 
unlikely to be an equal share for each. This can be achieved through careful selection of activities 
that highlight the power of technologies, p&p and mental strategies for different purposes. 
Considerations such as this focus teachers’ attention on finding a balance to optimize students’ 
understanding of mathematics. Discussion of features of carefully selected examples can highlight 
features of examples to enrich mathematics classes. Development of creativity involves teachers 
being able to identify general principles for teaching from examples and to create specific examples 
from general principles. This can be achieved by having teachers adapt new ideas and tasks from a 
PD session to achieve a given goal or for use in their own teaching practice. PD sessions should 
encourage creativity, to help teachers to explore and experiment in their teaching. 

Explicit PCK - Make PCK for teaching mathematics with technology explicit 

Having technology present will not necessarily affect the teaching and learning of mathematics; 
appropriate pedagogical approaches are essential for change. PD should focus on the influence, 
benefits and constraints of the use of technologies for teaching and learning mathematics, rather than 
just teach technical skills. Learning of technical skills should be targeted at the appropriate level for 
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the specific teachers participating in the PD. For novices start with an instructional phase on technical 
skills so that teachers develop some familiarity and confidence with syntax whilst starting to reflect 
on implications for teaching. Initial tasks should be designed to show the benefit of the technology 
and to promote discussion of pedagogical advantages; this can provide a model for teachers to use 
with students in learning technologies. For experts there is scope to start with consideration of PCK, 
rather than technical skills. Teachers should critique pedagogical approaches and compare different 
pedagogical use of digital technologies. They should identify affordances and limitations of use of 
technologies for teaching and for developing students mathematical understanding.  

Reflection - Reflection by teachers on the role and impact of technology 

This principle relates to two aspects of reflection by teachers when learning to use and to teach with 
technology; PD formally plan to address both and that research findings are discussed with teachers. 
Firstly, teachers should be encouraged to reflect on the displays produced by a technology; this builds 
knowledge of conventions, limitations, and issues that students might face (e.g. Pierce, et al, 2011). 
The second aspect of reflection relates to identification of pedagogical issues; this can encourage 
consideration of new teaching approaches, as well as rethinking the role of technologies in teaching 
and learning (e.g. Clark-Wilson et al., 2014). The following examples elaborate this principle. 

Limitations of technologies: Include examples to highlight limitations of the technology. Raise 
teachers’ awareness that it is useful to investigate limitations of a particular technology. For example, 
an applet to scaffold student learning of ‘do the same to both sides’ to solve equations might be 
programmed so that it is only possible to use whole numbers, rather than fractions or decimals. 

Syntactical requirements: Technology syntax may be different to p&p mathematics. For example, 
there can be challenges posed through conventions in variable naming using multiple representations 
with CAS (Pierce et al, 2011). Discussion can help teachers make links between mathematical work 
and syntax requirements, informing pedagogical decisions. Teacher reflection on syntactical 
constraints can help teachers to predict potential classroom difficulties related to programming, rather 
than mathematical understanding. 

Expect unexpected displays: Reflection on unexpected or interesting technology displays can prompt 
teacher learning. Examples where unexpected results occur prompt discussion of the need to expect 
the unexpected and can prompt teachers to include such discussion in their own classes to make links 
between p&p maths and technology displays. 

Pedagogical reflection: Planning for reflection should be included in all aspects of PD to highlight 
technical and pedagogical considerations that arise as technology is used (e.g., consideration of 
functional and pedagogical use of technologies in discovery work). Pedagogical choices about when, 
where and how technologies should be used provides impetus for teacher reflection, as well as 
consideration of the role of technologies in tasks, assessment and for learning mathematics.  

Investigate student thinking - Include discussions of classroom scenarios and/or student work 
samples  

Integrating cases of sample student work and classroom scenarios enables the benefits and constraints 
of technologies to be visible and concrete (Thurm, et al., 2023).  Consideration of sample student 
work and classroom scenarios assists teachers in anticipating typical situations and supports them in 
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dealing with the challenges in learning to teach with a new technology. Student work samples, either 
pen-and-paper or screen-captured through technology, can initiate discussions about PCK and show 
that the range of solutions is extended with technologies available. Classroom scenarios, through 
video of real classes or via simulations of virtual classrooms, can support understanding and 
development of teaching approaches and classroom interactions to highlight the specific complexities 
of teaching with technologies. These resources promote discussion of responses to given scenarios, 
assisting teachers to be prepared to react appropriately in different situations.  

Collaboration � Plan for interaction and exchange between teacher participants to share pedagogical 
approaches and experiences of teaching with technology 

One characteristic of effective PD is to foster collaboration during, after and between sessions (e.g., 
Gräsel et al., 2007). For PD related to technology in mathematics this can be achieved by initiating 
teamwork when designing lessons and assessments. Drawing on teachers’ experiences by asking 
them to share and discuss interesting examples, as well as assist each other to address technical or 
pedagogical questions and ideas can promote collaboration and reduce teachers’ anxiety.  

Self-efficacy - Reduce teachers’ anxiety about using technology and promote their risk taking 
in use of technology   

PD should empower teachers to develop their technical expertise and ability to consider pedagogical 
issues associated with learning to teach with technologies, and improve their self-efficacy (Thurm & 
Barzel, 2020). Fundamental to this is that teachers are not anxious about learning to use, or teach 
with, technologies. Anxiety of novices can be reduced if unexpected displays are not seen as 
problematic, but instead as interesting to discuss (Thurm & Barzel, 2020). Emphasise that teachers’ 
knowledge of mathematics helps to understand and navigate technologies, including idiosyncrasies 
of syntax (Pierce, et al., 2011), and that teaching with tools does not require memorization of key 
sequences. Encourage teachers to implement a small activity with their students as a starting point, 
to build confidence in using technologies more extensively. This principle relies on the previous 
principle of collaboration, as discussing classroom trials will provide support for PD participants. 

Concluding remarks 
This paper proposes, CERICS, which provides principles for teacher PD related to teaching 
mathematics with technologies. As discussed previously, CERICS builds on principles for effective 
PD outlined in the literature, but endeavours to show the special nature of PD where technologies are 
concerned. For example, the interplay between technologies, pen-and-paper and mental strategies is 
a unique consideration to PD for teaching mathematics with technologies. 

One goal of CERICS is to capture the complexity of PD related to teaching mathematics with 
technologies; this PD requires much more than just the teaching of syntax or provision of lessons for 
participants to use with their classes. If teachers are to develop the PCK to incorporate technologies 
into their teaching, then we propose the need for considerable reflection and discussion about the role 
of technologies in teaching and learning mathematics, as well as the impact of technology availability 
on task design. We believe CERICS will provide useful principles for PD designers and researchers 
endeavoring to design or critique PD programs. 
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Mathematical modelling (MM) aims to investigate and explore real-world situations. It can be 

supported by digital tools in various ways, for example by the provision of communication and 

feedback functionalities. Since these functionalities are provided by most learning platforms, one 

might expect that these tools facilitate MM teaching and learning. However, this is not the case, as 

learning platforms hardy offer rich and complex MM tasks. Against this background, this paper 

presents the ASYMPTOTE system as an exemplary learning platform and examines how it can 

support MM activities. Our analysis shows that ASYMPTOTE provide functionalities to enhance the 

student’s work at a whole as well as multiple modelling steps of MM tasks. Considering that several 

of the discussed functionalities can also be found in other learning platforms, we conclude that these 

tools can generally support MM – as far as learning platforms provide rich and complex MM tasks. 

Keywords: ASYMPTOTE system, intelligent tutoring systems, learning platforms, mathematics 

education, mathematical modelling. 

Introduction 
Mathematical modelling (MM) is characterized as “solving real world problems by means of 
mathematics” (Blum, 2015, p. 77). This competency describes the ability of students to apply their 
mathematical knowledge in order to deal with real-world situations (Blum, 2015; Niss & Højgaard, 
2019). In doing so, MM aims to show the relevance of learning mathematics (Siller et al., 2023) and 
paves the way to linked mathematics education to other STEM disciplines (Goos et al., 2023). 

Despite the huge potential of MM, the integration of MM into mathematics lessons is reported in the 
literature as a major challenge for teachers and students: teachers experience a number of issues 
related the preparation, conduct or evaluation of MM activities, such as the selection of MM tasks, 
appropriate interventions on the student’s work process as well as its formative assessment 
(Borromeo Ferri & Blum, 2010). Also for the learners, a variety of issues are well-known in literature, 
e.g., dealing with the openness of MM tasks, finding an appropriate model of the real-world situation 
and validating the calculated solution (Klock & Siller, 2020). In view of the named issues of teaching 
and learning, it is not surprising that several authors claim the high potential of supporting MM 
activities by the means of digital technology (e.g., Cevikbas et al., 2023; Siller et al., 2023). In this 
paper, we aim to investigate how digital learning platforms can support the teaching and learning of 
MM. To this end, the ASYMPTOTE system is presented and examined as an example.  

Digital Support of Mathematical Modelling 
Based on the work of Blum and Leiss (2007), the process of MM is commonly depicted as an 
idealized cycle of seven steps that have to be taken in order to solve a real-world problem (see 
Figure 1, black numbers). Starting with the understanding a real situation, one constructs a situation 
model. By its simplifying and structuring and its mathematization, i.e., its transfer from the rest of 
the world to the world of mathematics, a mathematical model is set up. After working mathematically. 
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the mathematical results are interpreted, validated and exposed in the light of the given real-world 
situation (Blum and Leiss, 2007).  

 
Figure 1: The MM cycle by Blum and Leiss (2007) and the support of MM steps by digital technology 

according to Cevikbas et al. (2023); Figure adapted from Cevikbas et al. (2023, p. 4) 

In their literature reviews, Cevikbas et al. (2023) highlight that the MM steps can be supported 
digitally in various ways (see Figure 1, red activities). For example, digital technology might help to 
investigate the given real-world situation. In addition, it can support visualizing the given data as well 
as the mathematical results. Further, experiments and simulations can be carried out with digital tools, 
while mathematical calculations can be outsourced to technology. Lastly, the control and validation 
function can be taken over by digital tools, giving students an idea of their result’s correctness.  

Table 1: Categories of digital technology for MM activities based on Siller et al. (2023) 

Aim Category Example Support of 
MM 

Extension of 
mathematical 

capacities 

digital resources specific 
to mathematics 

Computer algebra systems & 
dynamic geometry software 

Calculation 
Visualization 

Control 

digital resources not 
specific to mathematics 

Spreadsheets Calculation 
Visualization 

Access to extra-
mathematical 
knowledge 

digital resources for 
communication and 

information gathering 

Encyclopedia & platforms 
providing communication 

and feedback functionalities 

Investigation 
Visualization 

Control 

digital resources for 
simulated, virtual and 

augmented worlds 

Digital simulations & virtual 
reality applications 

Experimentation 
Visualization 
Simulation 

Facing the huge variation of digital tools that might support MM, Siller et al. (2023) differentiate 
digital technologies from an instrumental perspective. In a first place, they distinguish the aim of the 
technology use, namely to extend mathematical capacities or to access extra-mathematical 
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knowledge. In a second place, the functionality of the digital technology is used to form four 
categories in view of MM. These are summarized in Table 1. 

Methods and Research Question 
Based on the previous considerations, it can be assumed that digital tools are in general conducive to 
MM education. However, recent publications such as Cevikbas et al. (2023) and Siller et al. (2023) 
do not explicitly focus on learning platform. To make an initial contribution to the role of these digital 
tools for the teaching and learning of MM, we raise the following research question: To what extent 

can digital learning platforms support mathematical modelling (MM)?  

To answer this question, we first take a look at learning platforms in general and argue how learning 
platforms in general can support MM activities. Secondly, we present the ASYMPTOTE system as 
an exemplary learning platform and describe how MM activities can be prepared, implemented, and 
evaluated with this particular tool. 

In this paper, learning platforms, such as (intelligent) tutoring systems, are understood as digital tools 
that provide an interactive learning environment, in which students process digital tasks by the help 
or adaptive support and feedback (Thurm & Graewert, 2022; Steenbergen-Hu & Cooper, 2013).  

Mathematical Modelling and Learning Platforms 
As outlined by Siller et al. (2023), digital technology can support MM activities in multiple ways. 
For example, digital tools can facilitate communication and information gathering (Siller et al., 2023). 
This support can, hypothetically, be provided by most digital learning platforms. 

In view of the modelling cycle by Blum and Leiss (2007) and the possibilities to support MM steps 
(cf.  Cevikbas et al., 2023; Siller et al, 2023), digital learning platforms can support the students’ MM 
activities as follows: For investigating a real situation, a learning platform can provide information 
on the particular topic of the MM task, e.g., by storing or linking information such as texts or videos 
or data sets. In view of visualizing data, illustrative diagrams, tables or videos can be offered. The 
control and validation of MM results can be supported by learning platforms by the provision of 
feedback on the student’s task process and the calculated solution. In addition, support by the 
embedding of tools for calculations, simulations and experimentations, such as spreadsheets or 
dynamic geometry software, is well imaginable for learning platforms in order to extent students’ 
mathematical capabilities (cf. Siller et al, 2023). 

Based on these considerations, one can assume that learning platforms provide promising 
functionalities to support MM. However, as stated by Thurm and Graewert (2022), current learning 
platforms hardly offer any MM tasks: In a study on the three German-speaking learning platforms 
Anton, bettermarks and Mathegym, the authors investigated 106 tasks on the multiplication of 
fractions as well as the Pythagorean theorem. 15 % of the 106 tasks analyzed showed a reality-based 
situation but could be solved by only one solution step. Only three more tasks demanded for a 
multiple-step processing, while not a single task demanded for the development of an appropriate 
mathematical model or the validation of the model.4 In view of this situation, we aim to exemplarily 

 
4 In particular, the selection of the topics does not seem to effect this result: A wide range of MM tasks is offered in the 

literature for the Pythagorean Theorem (e.g., Rellensmann, & Schukajlow, 2017). 
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illustrate how digital learning platforms can support MM activities. In order to do so, we present the 
ASYMPTOTE system in the following. 

Mathematical Modelling and the ASYMPTOTE System 
ASYMPTOTE stands for Adaptive Synchronous Mathematics Learning Paths for Online Teaching 
in Europe. It is the acronym of both an Erasmus+ Strategic Partnership (2021–2023; www.asymptote-
project.eu) and the resulting learning platform developed in view of Covid-19 pandemic. The 
ASYMPTOTE system contains two components, namely a web portal for teachers and a mobile app 
for students: the web portal enables teachers to select or create samples of tasks, a so-called learning 
graph. Via a smartphone app, students can access the learning graph (cf. Barlovits et al., 2022).  

 
Figure 2, left side: The structure of the learning graph “Jeans & Water”; right side: Processing the 

support task “Jeans & Water (guided)” in the ASYMPTOTE app 

An ASYMPTOTE learning graph contains several main tasks (yellow) that are arranged as a linear 
sequence. For each main tasks, both support tasks (green) and challenge tasks (purple) can be added: 
Whereas the support tasks provide related tasks on a lower level and can be seen as further guidance 
or repetition of contents, challenge tasks provide related tasks on a more difficult level. They aim to 
further encourage students who solved the related main task. Based on this categorization of tasks, 
the ASYMPTOTE system proposes students to work on tasks on a more appropriate level depending 
on their performance in a previous task, i.e., a basic form of adaptivity is implemented (cf. Plass & 
Pawar, 2020). Simultaneously, the system only advises to students and thus promotes self-regulated 
learning (cf. Greene et al., 2011). An exemplary learning graph is shown in Figure 2 (left side).  

Besides this guidance through the learning graph and its different task categories, the ASYMPTOTE 
app (smartphone/tablet for Android and iOS each) contains several functionalities that support 
students in solving the tasks. The app displays the task formulation and, if applicable, a picture related 
to the task. Students can recall up to three hints for each task and enter their solution to receive 
immediate feedback on its correctness (see Figure 2, right side).  

The students’ progress on the learning graph can be monitored by the teacher via the so-called Digital 
Classroom. This includes the logging of the students’ interaction with the app, such as the use of hints 
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and the entered solution. In addition, a student-teacher-chat for text, audio and video messages is 
provided. For more information on the ASYMPTOTE system, we refer to Barlovits et al. (2022).  

Task Example “Jeans & Water” 

In order to demonstrate the realization of MM in ASYMPTOTE, the task example "Jeans & Water" 
is presented below, which deals with the immense water consumption of global jeans production. 
This MM task is pre-structured in the learning graph shown Figure 2 (left side). It can be accessed 
via the ASMYPTOTE app by entering the code g34928. The task is formulated as follows: 

Wearing jeans is part of our everyday lives. However, the production of jeans is a major consumer 

of fresh water. Estimate the amount of fresh water needed for the global production of jeans per year. 

Find a meaningful comparison to illustrate the amount of water.  

This task can clearly be divided into two parts. Part (a) aims at calculating and estimating the water 
consumption of the global jeans production. In view of the modelling cycle by Blum and Leiss (2007), 
this part aims in particular to simplify, structure and mathematize a real situation. Part (b) asks for 
finding a meaningful comparison to illustrate the amount of fresh water used by the global jeans 
production. In doing so, it aims at facilitating students to interpret and expose their mathematical 
results in reality. Both parts of the task are represented in the learning graph. We provide a free and 
a guided version for the two parts each, which can be accessed by the students on their own choice. 
This allows students to independently decide if they want to conduct the process in the free version 
of part (a) or the guided version of part (b). 

On a contextual level, the guided version of part (a) offers support by three content-specific hints. 
They contain links to different websites giving information about the number of jeans produced per 
year (hint 1) as well as the water consumption per jeans (hint 2). In addition, hint 3 emphasizes as 
content-specific strategy is to handle the varying information from the different websites, namely to 
average the information found on the websites, e.g. in relation to the number of jeans produced per 
year. The first and second hints thus focus on the simplifying and structuring as well as 
mathematizing, while the third hint refers to step of working mathematically, i.e., to the inner-
mathematical calculation process in order to derive a mathematical result. On the other hand, the free 

version of part (a) only provides a strategic hint as proposed by Schukajlow et al. (2015), namely to 
research relevant data on the internet. Here, neither specific assumptions nor inner-mathematical 
procedures for deriving a mathematical result from the given real situation are proposed.  

For part (b), the free version only asks for finding a meaningful comparison. Here, related to 
Schukajlow et al. (2015) only the strategic hint to interpret this comparison in the real situation, i.e., 
the task’s context, is given. The guided version of part (b) proposes a specific comparison, namely, 
to compare the yearly fresh water consumption of the global jeans production and of private 
households in the European Union. In the learning graph, this is guided step-by-step by two support 
tasks (see Figure 2, left side). They offer links for online recherche (daily private water consume in 
the EU), indicate relevant information (number of households in the EU), and provide context-related 
information on how to deal with the relevant data. It leads to the surprising result that with 24 trillion 
liters per year, the global jeans production consumes approximately consumes as much water as all 
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private households of the European Union!5 The guided version thus paves the way to interpret the 
results a part (a) by illustrating the almost unimaginably large consumption of fresh water in global 
jeans production using a concrete and tangible real-world example. 

To expose the gained knowledge and to critically reflect on it, the learning graph includes two further 
tasks (see Figure 2, left side). The first one aims at a global perspective, as it asks to connect the 
calculated results with the United Nation’s (2015) Sustainable Development Goals of clean water 

and sanitation as well as responsible consumption and production. The second raises the question 
“What can we do?” to focus on personal and emotional engagement with the mathematical results.  

Mathematical Modelling and ASYMPTOTE 

In the given task example, ASYMPTOTE can support MM in multiple ways: With a reference to 
Cevikbas et al. (2023) as well as Siller et al. (2023), it can be stated that the presentation of the task 
formulation together with a picture can introduce and investigate the real situation, which is the 
starting point of the MM cycle (cf. Blum & Leiss, 2007). In addition, the investigation of the task’s 
context is supported by the hints. They either provide references on specific websites [part (a), guided 
version] or propose internet research on a strategic level [part (a), free version]. 

Furthermore, the ASYMPTOTE app supports students in controlling their mathematical results by 
two functionalities. Firstly, the answer validation checks the students’ mathematical results on a 
numerical level. Secondly, the sample solution allows students to compare their assumptions, their 
mathematical work process as well as real-world interpretation of the mathematical results with a 
possible solution. Lastly, the learning platform ASYMPTOTE allows to store an image of students’ 
notes in the Digital Classroom. This also can be seen as contribution of the tool for the visualization 
of the mathematical results in order to control, validate and debrief them in a plenary discussion with 
the teacher. Furthermore, the conduct and debriefing of MM tasks carried out with ASYMPTOTE is 
supported by the tool as the teacher can monitor the students’ work process on the task in real-time. 

The learning graph structure enables students to either apply on a solution strategy to a specific model 
[parts (a) and (b), guided versions] or to develop an own strategy and model [parts (a) and (b), free 
version]. For the guided versions, the ASYMPOTE learning graph pre-structures the mathematical 
process [part (a) and (b), guided version]. It particular addresses lower-achieving students by proving 
the needed guidance in dealing with the open-ended MM task. With the free versions, the learning 
graph allows the use of different models of the students’ choice but still does not accept arbitrary 
results since the students’ solution is automatically validated by the ASYMPTOTE app based on a 
pre-defined interval of suitable answers. In doing so, it particularly facilitates higher-achieving 
students to work independently on the given MM task. Regardless of whether students choose to work 
on the free or guided parts, they are encouraged by the structure of the learning graph to undergo the 
idealized modelling cycle (cf. Blum and Leiss, 2007) as described above. In particular, the task places 
emphasis on the MM steps of simplifying and structuring, mathematizing, and interpreting. 

 
5 To enable effective debriefing in class – especially in view of the free version of part (b) – students are asked to upload 

an image of their calculations via the chat tool. Thus, their results are stored in the ASYMPTOTE Digital Classroom. 
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Discussion 
Recent research underlines the potential of digital tools for mathematical modelling (MM), e.g., by 
collaboration and feedback functionalities (cf. Siller et al., 2023). On the one hand, most learning 
platform offer such functionalities, while on the hand current learning platforms hardly offer 
MM tasks (Thurm & Graewert, 2021). Facing this situation, this paper examined from a theoretical 
perspective in how far these digital tools can support MM teaching and learning. 

To do so, we designed and analyzed the MM task “Jeans & Water” in the example of the learning 
platform ASYMPTOTE. Our results show that the ASYMPTOTE system – as other learning 
platforms – could provide various digital supports for MM activities, such as visualizing, 
investigating and controlling (cf. Cevikbas et al., 2023; Siller et al., 2023). Particularly, the 
controlling of MM results can be outsourced to learning platforms, e.g., to functionalities such as 
answer validation, hints and sample solutions. Furthermore, the case of ASMYPOTE indicates that 
learning platforms may contribute (i) to support students in completing the idealized modelling cycle 
of Blum and Leiss (2007) and (ii) to promote internal differentiation in MM tasks in order to students 
to work at their own performance level. 

Based on these considerations, we see ASYMPTOTE as one example of a learning platform that can 
promote students’ MM processes from a theoretical perspective. However, an empirical validation of 
this hypothesis, e.g. by case studies, is required and an open task for future research. Lastly, we 
highlight the role of an appropriate task design and availability as one sufficient condition for the 
successful use of learning platforms as ASYMPTOTE for the teaching and learning of MM.  
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Students' beliefs about mathematics include static (schema and formalism) and dynamic (application 

and process) aspects and influence students’ motivation, emotions, and learning. Students often hold 

static beliefs, which emphasize the memorization of symbols and procedures and potentially hinder 

learning. We investigated how students’ beliefs developed from beginning to end of an app-based 

outdoor program, which connects mathematical concepts with real life. Twenty-six fifth and sixth 

graders participated in the outdoor program for 6 months. A qualitative content analysis of students’ 

drawings of how they viewed mathematics before and after the program revealed a reduction in the 

schema aspect. No significant developments were observed in the application and process aspects, 

although a trend toward everyday applications and less emphasis on exact solutions emerged. Thus, 

outdoor interventions, supported by digital tools, might foster more nuanced mathematical beliefs in 

young learners. 

Keywords: Beliefs; Outdoor learning; Digital tools; Mathematics 

Introduction 
Students' beliefs about mathematics contribute to their learning, motivation, and enjoyment of the 
subject (Gattermann et al., 2012; Østergaard, 2024; Roesken et al., 2011). Formed early in life, these 
beliefs act as a filter through which students process new experiences and information (Østergaard, 
2022). Existing research has indicated that middle school students’ beliefs are often limited to static 
beliefs about mathematics (e.g., they emphasize calculations and memorization) and thus overlook 
dynamic aspects of mathematics (e.g., applying math in everyday life; Østergaard, 2024). 
Consequently, there is a need to further explore which learning experiences might contribute to 
diversifying students' beliefs (Østergaard, 2022). In this study, we investigated whether participating 
in an app-based outdoor mathematics intervention would contribute to students’ beliefs about 
mathematics (possibly by increasing their dynamic beliefs about mathematics). 

Theoretical Background 
Beliefs about mathematics 

Beliefs have not been clearly defined in mathematics education (e.g., Di Martino & Zan, 2011; 
Furinghetti & Pehkonen, 2002; Østergaard, 2022), but some commonalities can be identified across 
the various definitions (e.g., Furinghetti & Pehkonen, 2002; Hannula et al., 2012): Beliefs are mental 
constructs that reflect a student's enduring subjective understanding of and emotions regarding a 
particular object or concept (e.g., mathematics). Importantly, these convictions might not always be 
grounded in objective reasoning or verifiable evidence (Pehkonen, 1998). According to Grigutsch et 
al. (1998), beliefs about mathematics (or world views) refer to four aspects of mathematics: The 
schema aspect focuses on the rules and procedures applied in mathematics, the formalism aspect 
focuses on the use of logical and precise thinking in mathematics, the application aspect focuses on 
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the usefulness of mathematics in everyday life, and the process aspect stresses the importance of 
mathematics as a method for considering, understanding, and solving problems. Whereas the schema 
and formalism aspects emphasize mathematics as a static body that needs to be deciphered (i.e., static 
beliefs), the application and process aspects emphasize mathematics as a body that is constantly 
created and evolving (i.e., dynamic beliefs). 

Middle school students’ beliefs about mathematics 

Previous research on students’ beliefs about mathematics at an early age (e.g., in middle school) has 
indicated that students predominantly hold static beliefs about mathematics (e.g., Grigutsch et al., 
1998; Grootenboer & Marshman, 2016, Østergaard, 2022). For example, Halverscheid and Rolka 
(2011) asked fifth and sixth graders to make a drawing of what mathematics is to them, reporting that 
drawings were dominated by a view of mathematics that emphasizes numbers and calculations. Such 
a view is of concern, as perceiving mathematics as a static set of symbols, rules, and procedures to 
memorize might impede students' learning and enjoyment (Østergaard, 2024). Conversely, viewing 
mathematics as a dynamic and applicable system is positively related to performance, enthusiasm, 
and a positive self-concept in mathematics (e.g., Gattermann et al., 2012). As beliefs can be formed 
by learning experiences (Grootenboer & Marshman, 2016), and beliefs that result from repeated 
experiences have been found to be rather enduring (Østergaard, 2024), research is needed on the best 
ways to develop and sustain middle school students’ beliefs about mathematics. Previous research 
indicates that outdoor math activities support dynamic beliefs, such as the application aspect 
(Jablonski, 2023), and that digital tools can be used to help students apply mathematics to the real 
world (Jablonski et al., 2023). 

An app-based outdoor mathematics program 

We report on a 15-hr extracurricular outdoor mathematics program, conducted across a 6-month 
period, for fifth- and sixth-grade students. The program was aimed at connecting mathematical 
concepts with real-life scenarios by asking students to develop a math trail through their hometown 
(Schoenherr, 2024). During math trails, students visit a certain number of places where they can 
perceive mathematics in the environment or answer and ask mathematical questions (Barbosa et al., 
2022). For example, students walk around the city looking for symmetrical objects and create the task 
of identifying the types of symmetry in the church’s ornament. Students implemented the tasks in the 
BIPARCOURS app and played tasks developed by peers using their tablets (Schoenherr, 2024). Since 
students were unfamiliar with the app, they received prior instruction and support when needed. 

The BIPARCOURS app (Bildungspartner NRW, 2015) played a crucial role in guiding students through 
the process of creating and testing tasks for the math trail. For task creation, the BIPARCOURS creator 
serves as a user-friendly interface that guides students through the process of task development. It 
provides templates for various task formats, including free-text answers, multiple-choice questions, 
and scale estimation tasks. Students are prompted to input information and attach photographs of real-
world objects relevant to the tasks they are creating. Figure 1 illustrates parts of the step-by-step 
process, illustrating how students can input information, attach relevant images, and design tasks with 
different formats. Importantly, the app requires students to determine the criteria for rating different 
solutions, adding a critical thinking element to the task creation process. Once the tasks are created, 
they are consolidated into a cohesive math trail. This math trail can then be experienced by users 
through the BIPARCOURS app on their smartphones or tablets as depicted in Figure 2. In summary, the 
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BIPARCOURS app provided a structured and interactive environment for students to independently 
create, refine, and test math tasks. Its browser-based creator facilitates the creation of real-world tasks, 
and the app itself allows students to engage with the tasks in the real-world context. 

 

Figure 1: Design interface of the BIPARCOURS creator (Schoenherr, 2024) 

 
Figure 2: Quiz interface of the BIPARCOURS app (Schoenherr, 2024) 

Research questions and expectations 

In this study, we investigated the following research question: How do students’ static and dynamic 
beliefs about mathematics develop from the beginning to the end of the outdoor mathematics 
program? On the basis of prior research and the design of the app-based outdoor mathematics 
program, we expected that, initially, students would predominantly report the schema and formalism 
aspects of mathematics beliefs but that students’ schema and formalism beliefs would then decrease 
and that application and process beliefs would increase from before to after the program. 

Method 

Participants and procedure 

Participants were the same participants included in Schoenherr (2024). A total of 26 fifth- and sixth-
grade students (18 boys, 8 girls, mean age = 10.85, SD = 0.73) voluntarily participated in the after-
school outdoor mathematics program and were present when pre- and posttesting took place. Before 
the program began, consent was obtained from the children’s legal guardians for the use of the data 
for research purposes. In the first and last sessions of the app-based outdoor math program, we 
assessed students’ mathematical beliefs.  



                          Proceedings of the 17th ERME Topic Conference MEDA4, 3-6 September 2024, Bari, Italy                          ISBN 978-88-6629-080-3

  
52 

Instruments 

Following Halverscheid and Rolka (2011), we asked students to draw a picture of how they see 
mathematics and to provide a brief written explanation of their drawing. Then, we applied a 
qualitative content analysis with a deductive-inductive procedure to the drawings and explanations 
(Mayring, 2022), expanding prior research by taking a related belief system (Grigutsch et al., 1998). 
One third of the drawings were independently double-coded by two trained coders. The intercoder 
reliability indicated substantial agreement between coders (Cohen’s κ > .74). We coded the presence 
(code = 1) and absence (code = 0) of subaspects of schema, formalism, application, and process 
aspects, which were extrapolated from the data, as follows. 

The static schema aspect focuses on the rules and algorithms that are applied in mathematics 
(Grigutsch et al., 1998; Østergaard, 2022), including the aspects of incoherence (e.g., arbitrary 
arrangement of symbols and objects), focus on procedures (e.g., depiction of computations and 
algorithms), and distance (e.g., lack of everyday references). The static formalism aspect focuses on 
the internal consistency of mathematics and the importance of logical and precise thinking in 
mathematics. Its sub-aspects are general quality (e.g., attempts to use proofs as a means of deriving 
new results within the system), completeness (e.g., a mathematics text book that provides a complete 
summary of the mathematics to be learned), and a focus on accuracy and precision (e.g., question 
marks and check marks for correct solutions). The dynamic application aspect refers to the usefulness 
of mathematics in everyday life and is composed of the sub-aspects utility (e.g., mathematics as useful 
for describing real-world phenomena, e.g., finance), everyday life (e.g., the relevance of mathematics 
in present and future everyday life, e.g., career opportunities), and diversity (e.g., making connections 
between different mathematical domains, e.g., algebra and geometry). The dynamic process aspect 
emphasizes mathematics as a method that can be applied to understand, investigate, and solve 
problems, including the sub-aspects idea (i.e., highlighting the roles of ideas and invention in 
mathematics), dynamics (e.g., changing representations of one object), and freedom (e.g., viewing 
mathematics on a metalevel). As one example, code 1 was given to the left drawing in Figure 4 in the 
schema aspects incoherence, procedure, and distance, and code 0 in all other aspects. 

Results 
To answer the research question, we present quantitative findings on how students’ beliefs developed 
from before to after the program and illustrate these in depth by presenting typical and atypical student 
drawings. Paired t tests indicated that, as expected, the schema aspect decreased from before to after 
the program with a small effect size, t(24) = 2.29, p = .031, d = 0.458. Contrary to our expectations, 
no differences were found for the formalism aspect, t(24) = -0.78, p = .444; the application aspect, 
t(24) = -1.56, p = .131; or the process aspect, t(24) = -1.81, p = .083. Still, regarding the sub-aspects, 
our findings suggest that the formalism sub-aspect of accuracy decreased, and the application aspect 
of relevance in everyday life increased (Figure 3). 
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Figure 3: Mean values on the belief scales before (circles) and after (squares) the program 

We illustrate these findings with a typical student: Before the program began, the student 
predominantly held static beliefs about mathematics, as represented in a disconnected collection of 
numbers, symbols, operations, calculations, and geometric shapes (as illustrated in the left part of 
Figure 4). After the program, the schema and formalism aspects were still present, but other aspects 
were added (e.g., connections between mathematics and everyday life) via verbal expressions (e.g., 
“Math is part of life”) and by referring to the context of money and the symmetry of a manhole cover 
(as illustrated in the right part of Figure 4). 

We rarely identified the process aspect in students’ drawings; however, a few students emphasized 
this aspect of mathematics in particular. One student drew a blank sheet of paper and added verbally 
that “math is a blank sheet of paper because there are always new ways to design it and new things 
to discover” (as shown in the left part of Figure 5) and another student illustrated the various forms 
that mathematical ideas can take in our brains (as shown in the right part of Figure 5). 

 
Figure 4: Drawings made by one student before (left) and after (right) the program 
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Figure 5: Exemplary student drawings illustrating dynamic beliefs about mathematics 

Discussion 
Our aim was to describe students’ mathematical beliefs and examine how students’ beliefs develop 
from before to after an app-based outdoor mathematics program. Our analysis of students’ drawings 
revealed that, before the program, students most often expressed the schema aspect, followed by the 
formalism aspect. These findings mean that, initially, the students had more static than dynamic 
beliefs about mathematics, that is, they saw mathematics as an incoherent collection of rules, 
algorithms, and calculations that have a deductive-logical and formal structure. The dynamic 
character of mathematics (e.g., the application and process aspects of mathematics) were seldom 
present in students’ drawings. Most students did not mention how mathematics is present in their 
everyday lives or that doing mathematics involves inductive and creative processes. Although this 
result might be biased by the methodological limitation that static aspects are more easily represented 
by drawing, it is in line with previous findings (Østergaard, 2024; Halverscheid & Rolka, 2011). In 
future research, the analysis of student drawings should be supplemented with questionnaires or 
interviews to describe the beliefs of young learners as comprehensively as possible. 

Comparing students’ drawings from before and after the app-based outdoor mathematics program 
showed that the schema and formalism aspects were still predominant in students’ drawings. 
However, as expected, the schema aspect was less present in students’ drawings after the program. 
One explanation is that beliefs built on repeated experiences are rather enduring, but they can be 
complemented by new beliefs that arise after new experiences (Østergaard, 2024). Another 
explanation is that, by the end of the program, students included more application-related 
representations in their drawings, believing these were what the educators expected (i.e., the didactic 
contract effect). Contrary to our expectations, participating in the outdoor program did not result in a 
statistically significant increase in the application aspect in students’ drawings, although a trend could 
be seen. Future studies should use larger sample sizes to investigate the effects of outdoor 
mathematics programs on students’ beliefs with higher statistical power. Still, in our analysis of sub-
aspects, accuracy (i.e., a sub-aspect of formalism) was reduced, and the everyday application aspect 
of mathematics increased from before to after the program. One hypothesis is that participating in the 
app-based outdoor program helped students realize that mathematics is connected to their everyday 
lives and that, beyond unconnected symbols, rules, and algorithms that result in exact solutions, 
different methods and solutions exist. The use of the BIPARCOURS app to create and play the tasks 
games from the math trail may have contributed to this develop in beliefs through its technical 
requirements. For example, the application aspect was present because students were asked to upload 
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a photograph of the real-world object that their math task referred to. As another example, the 
assumption that mathematics is always precise and exact was challenged because students had to 
discuss and create a rating scale to rate different solutions to a problem rather than indicating only 
one correct solution. 

Given the design of this study—particularly the lack of control group—the results need to be 
interpreted with caution. We cannot rule out other explanations for the developments in students’ 
beliefs (e.g., their regular math class). But the current study contributes to the existing body of 
research on students’ beliefs about mathematics, and the findings support the hypothesis that learning 
experiences, such as from the app-based outdoor mathematics program, can contribute to diversifying 
students’ beliefs (Østergaard, 2022). Future research should use experimental study designs with 
follow-up tests to investigate whether curricular outdoor math learning experience can equally 
contribute to diversifying students’ beliefs and whether changes in students’ beliefs are enduring 
beyond the program. Regarding the design of the outdoor program, more research is needed on the 
specific app features, which are beneficial for students’ learning and their beliefs about mathematics.  

To conclude, the current study suggests that the outdoor mathematics program helped students 
develop more diverse beliefs about mathematics, and these beliefs were reflected in their drawings of 
how they see mathematics. The effects can be traced back to the design of the outdoor learning 
activities and the specific opportunities the BIPARCOURS app provided for students in developing and 
playing the tasks from their math trail. 
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The use of AI tools in the professional development of teachers is evolving into an important part of 

education. Despite growing interest, there is a gap in understanding how AI, specifically ChatGPT, 

can support mathematics teachers, for example, when posing problems of varying degrees of 

difficulty. This study aims to explore how interactions with ChatGPT assist pre-service mathematics 

teachers (PSTs) in posing problems of various levels of difficulty. Five PSTs were asked to create one 

easy, moderate, and difficult problem based on a given problem. The interactions with ChatGPT were 

exploratively analyzed using qualitative methods. The analysis identified three themes (collaboration, 

pedagogical content knowledge, and support in formulation), offering initial insights into nuances of 

lesson planning and contributing to our understanding of human-AI interaction in education.  

Keywords: problem posing, ChatGPT, Large Language Models, pre-service teacher 

Introduction 
AI is becoming more important in education, ranging from simple use in lessons to complex 
mathematical problem-solving. One specific use of AI in teacher education can be in supporting 
teachers in lesson planning (Karaman & Goksu, 2024). Traditionally, when planning lessons, teachers 
aim to provide tasks of different levels of difficulty for students. This activity can be described as 
problem posing, that is, the process of formulating new tasks based on a given task or mathematical 
structure. Despite its importance, problem posing is complex and creatively demanding, especially 
for PSTs (Baumanns & Rott, 2024) as they often solve problems but are unfamiliar with posing them. 
To mitigate these challenges, collaboration, such as pair work, can foster a richer brainstorming 
process and a broader array of ideas (Wang et al., 2022). 

Current developments in AI enable this kind of collaboration through a dialogical exchange.  
ChatGPT is an AI-based chatbot that fairly accurately understands and generates human language 
usind an advanced large language model (LLM). Insights into ChatGPT’s impact on supporting 
teachers in lesson preparation (Karaman & Goksu, 2024) and task development (Küchemann et al., 
2023) are at early stages of both research and teaching. However, a significant gap in understanding 
how these technologies influence the specific skill of mathematical problem posing remains. 

Therefore, this study aims to delve into the potential of ChatGPT as a supportive tool for pre-service 
mathematics teachers, specifically in the context of problem posing for middle school students. By 
analyzing the interactions between these PSTs and ChatGPT in modifying and extending a given 
problem, we aim to determine the extent to which this AI tool can stimulate creative ideas, activate 
pedagogical content knowledge, and facilitate formulating tasks of various difficulty levels. By 
focusing on this nuanced aspect of lesson planning, the study endeavors to shed light on the practical 
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applications of ChatGPT in educational settings, thereby contributing to a deeper understanding of 
its role in enhancing the quality of teaching and learning of mathematics. 

Theoretical Background 
ChatGPT in teacher education 

ChatGPT enables a human-like dialogic exchange with an AI, as it understands and generates human 
language. As Spannagel (2023) pointed out, this dialogic exchange exemplifies the concept of 
distributed cognition (Salomon, 1993). The perspective of distributed cognition understands 
cognitive processes as spread across a network of interactions that may involve both humans and 
artifacts. In practical terms, when a teacher uses ChatGPT to plan a lesson, they are in a cognitive 
partnership with the AI, each contributing to the task interactively. 

The use of LLM in educational settings is currently being discussed intensely and controversially due 
to the challenges they present (Buchholtz et al., 2023, Whalen & Mouza, 2023). Findings from a 
systematic review show that ChatGPT is considered a fundamental educational support for improving 
teaching and learning (Montenegro-Rueda et al., 2023). However, the quality of LLMs’ output differs 
greatly, e.g., regarding the correctness of mathematical problem solutions. Plevris et al. (2023) found 
that performance decreases for more complex mathematical and logic tasks, while simpler tasks such 
as arithmetic or algebraic expressions are more often solved correctly. Therefore, the respective AI-
generated outputs should always be checked carefully. Regarding lesson planning, Karaman and 
Goksu (2024) observed in a control group design study that students’ achievements increased 
significantly in mathematics lessons taught according to lesson plans developed with ChatGPT. 
Therefore, ChatGPT might be useful for teachers in planning their lessons. 

Problem Posing 

Problem posing from a teacher-oriented perspective refers to “an accomplishment that consists of 
constructing a problem that satisfies the following three conditions: (a) it somehow differs from the 
problems that appear in the resources available to the teacher; (b) it has not been approached by the 
students; and (c) it can be used in order to fulfill teaching needs that otherwise could be difficult to 
fulfill” (Klinshtern et al., 2015, p. 463). Studies on problem posing often used tasks that explicitly 
require either generating new problems or reformulating given ones. A problem-posing task consists 
of a situation and a prompt. Problem-posing situations can be differentiated between unstructured and 
structured situations (Baumanns & Rott, 2021). In structured situations, people are given an initial 
task on which problem posing should be based. This study focuses on structured situations and uses 
the following initial task: “How many divisors does the number 60 have?” Problem-posing prompts 
are the trigger initiating problem-posing activities (Cai et al., 2023). Prompts can lead problem posing 
in various directions. For example, “pose a math problem” gives fewer constraints than “pose a 
problem for a math contest.” In this study, we want the participants to pose one easy, one moderate, 
and one difficult problem. 

Küchemann et al. (2023) compared the use of ChatGPT to classical textbooks when pre-service 
physics teachers are asked to develop text-based physics tasks (i.e., problem posing). They found no 
difference in task correctness between students using a textbook or ChatGPT. However, textbook 
users achieved better clarity and meaningful contexts. Both groups adjusted task difficulty but 
struggled with providing enough specific information.  
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Despite these insights in physics education, qualitative insights into the nuances of PSTs’ interactions 
with ChatGPT in the context of mathematical problem posing still need to be addressed. Based on 
this gap, the following research question arises: What aspects of interaction are evident when pre-

service mathematics teachers collaborate with ChatGPT in the problem-posing process? 

Methods 
Participants, Problem-Posing Task, and Data Collection 

Five pre-service middle school and mathematics teachers working in specialist provisions in their 
early Bachelor’s program from Germany participated in the study. The participants were asked to 
take part in the study voluntarily. Pre-service mathematics teachers were chosen because, as future 
teachers, they are not fully qualified yet and, therefore, are suitable for preparing them for their future 
profession, especially in the context of posing problems for their learners (Baumanns & Rott, 2024). 

The data collection included an instruction video that explained problem posing and how to use 
ChatGPT. The video informed the participants that they were asked to pose one easy, one medium, 
and one difficult problem while using ChatGPT based on a given problem. The video ended with a 
link to a website with a predefined prompt that all participants entered into ChatGPT 3.5:  

Your task, ChatGPT, is to act as a supportive assistant, helping me develop ideas for adapting the difficulty level of 

mathematical task for middle school students. Instead of proposing your own ideas, ask me targeted questions that 

encourage me to think about different aspects and approaches. Start with the problem ‘How many divisors does the 

number 60 have?’ and ask me about possible ways to modify or extend this problem to adjust the difficulty level. Your 

questions should aim to utilize my creativity and professional knowledge to enhance the student’s learning process. 

Remember to only provide hints to me and not to pose your own tasks. The conversation ends only when I have decided 

on an easy, a moderate, and a difficult problem. Once I have made these decisions, you should end the conversation 

with the word ‘END’. 

Your first response should be: ‘Got it! Let’s begin. How could we adjust the problem “How many divisors does the 

number 60 have?” to make it easier for middle school students?’ 

Fig 1: Prompt used for ChatGPT to initiate problem posing (translated from German) 

The PSTs‘ were given just the first prompt so that every interaction with ChatGPT started the same 
way. In previous tests, a free choice of the starting prompt (e.g., “I need to pose an easy, a moderate, 
and a difficult problem based on the following problem: How many divisors does the number 60 
have?” to make it easier for middle school students?) resulted in ChatGPT simply posing three tasks 
without real problem-posing process or interaction being created. This prompt contains the given task 
“How many divisors does the number 60 have?” from which new problems ought to be posed. 
Therefore, we used a structured problem-posing situation. The task for the participants was to pose 
one easy, one moderate, and one difficult problem. ChatGPT automatically starts with: “How could 
we adjust the problem to make it easier for middle school students?”  

After the participants had posed three problems, ChatGPT ended the conversation with “END.” This 
marks a clear beginning and end to the interactions for research. The participants shared their 
conversation with ChatGPT with the authors. ChatGPT does not contain any log data that allows 
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statements to be made about the exact time the participants used ChatGPT. However, after about 20 
minutes, the authors asked the participants to formulate their final thoughts. 

Data Analysis 

We employed a Grounded Theory approach to explore the potential of ChatGPT in assisting pre-
service mathematics teachers in posing problems for middle school students. Grounded Theory, as 
articulated by Clarke (2007), emphasizes the systematic analysis of qualitative data to uncover key 
forms of action of participants within a specific context. This approach is particularly suited to our 
study, aiming to generate insightful concepts and theoretical frameworks rooted in empirical 
evidence. Following Strauss and Corbin (1990), data analysis is structured around three core 
procedures: open, axial, and selective coding. Open coding aims to break down the conversations 
between each participant with ChatGPT and categorize the data. Axial coding aims at making 
connections between the categories. Selective coding aims at selecting core categories and relating 
them to other categories. In this study, we focus on open coding, in which we specifically coded 
which goal the PSTs pursued using ChatGPT in problem posing. This approach led to three aspects 
of interaction which we refer to as themes. 

Results 
Three themes have emerged from the qualitative analysis regarding the research question: (1) 
Collaboration, (2) Pedagogical Content Knowledge (PCK), and (3) Support in Formulation. We 
develop the themes along selected transcript excerpts from the interaction between the PSTs and 
ChatGPT. In these transcripts, P labels the prompts of the respective PST.  

Theme 1: Collaboration 

The collaboration between PSTs and ChatGPT emerged as a theme, characterized by the mutual use 
of collaborative language and an interactive exchange of ideas. Inclusive language is notably 
facilitated through the consistent use of the first-person plural form (“we”) by ChatGPT (e.g., 
“ChatGPT: Do you have any ideas on how we can make the question about the divisor of 15 a bit 
more challenging?”), which served to create a sense of collaboration in the joint problem-posing 
process. On their end, participants occasionally mirrored this collaborative language, suggesting ideas 
with statements like, “P4: We could ask specifically about the prime factors.” However, it was 
observed that participants often adopted a more general or impersonal stance in their contributions, 
using phrases such as, “P2: One could consider how many divisors the number 30 has?” This may be 
rooted in the German language, which often uses “one”, whereas in English “you” would be used. 

Furthermore, participants showed interest in collaborative dialogue with ChatGPT, often resembling 
a natural conversational flow: 

1 ChatGPT How could we use this idea to create a task for middle school students that 
focuses on the divisors of 60 while reducing the level of difficulty? 

2 P3 Do you have any ideas? 
3 ChatGPT Of course! How about asking students to find the divisors of 60 by first 

identifying the divisors of 30 and then understanding how these can be 
combined with the divisors of 2? This could take the process step by step. 
What do you think about this? 

4 P3 Yes, I think that’s a good idea. So now the students first look at which 
numbers have to be multiplied to get to 30. 
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Turn 2 and the last question in turn 3 reflect an informal yet personal and dialogic interaction, 
illustrating the participants’ openness to consider ChatGPT as a collaborative partner. 

Theme 2: Pedagogical Content Knowledge (PCK) 

An essential theme identified in the study was the discussion of Pedagogical Content Knowledge 
(PCK). ChatGPT attempted participants to draw upon their PCK. For instance, ChatGPT proposed 
that students could explore the divisors of 30, prompting to formulate questions to encourage 
investigation: “ChatGPT: Students could start by finding the divisors of 30 by investigating which 
numbers can be multiplied by 2 to get 30. What question could we ask to emphasize this aspect and 
encourage this specific learning process?” However, these prompts of ChatGPT are often not picked 
up by the participants. In almost all cases, there is no in-depth exchange on PCK. 

On the other hand, the participants actively ask ChatGPT for a didactic assessment of students’ 
knowledge, for example, by asking: “P5: How much do middle school students normally already 
know about the divisors of a number?” However, ChatGPT’s response, “Good consideration! To 
adjust the difficulty level, we could use the student’s prior knowledge,” did not address the 
participants’ question. Another example in this regard is: 

1 ChatGPT […] How could we adapt the problem “How many divisors does the number 
60 have?” to make it easier for middle school students? 

2 P2 You could ask how many prime factors the 60 has. Would this be suitable for 
middle school? 

3 ChatGPT Good consideration! That could indeed be an adjustment. Now, how could 
we further modify the problem to make it more moderate for middle school 
students? 

4 P2 I have no idea. 
5 ChatGPT No problem! Instead of asking for the number of prime factors, how about 

asking students to identify the prime factors of 60? This could be a step-by-
step approach. What do you think? 

5 P2 That‘s a good idea. Then the children can work out the divisors of 60 step by 
step. 

ChatGPT does not answer P2’s question in turn 2. Instead, it only commended P2’s posed problem. 
This indicates a potential improvement regarding the prompt entered into ChatGPT in this study that 
may hinder ChatGPT from bringing in its own ideas. This also hindered the collaboration (see 
theme 1) between ChatGPT and the participants, as ChatGPT did not help PSTs make informed 
decisions based on PCK.  

The participants' active engagement with the idea of scaffolding students' learning is evident in their 
didactic assessments in response to ChatGPT’s suggestions. When ChatGPT proposed a step-by-step 
approach to identifying the prime factors of 60, P2 acknowledged the value of this method for 
facilitating understanding. 

Theme 3: Support in formulation 

Another theme that emerged was supporting formulation. This theme encapsulates the dual role of 
ChatGPT in facilitating the process of refining and adapting task formulations to meet pedagogical 
objectives. On one hand, participants often sought ChatGPT’s assistance to simplify the language of 
their tasks. Requests such as “P4: We could put it in simpler language” and “P3: I think the question 
is too difficult, can you put it in simpler terms” indicate a conscious effort by the PSTs to make 
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problems more accessible to students. However, ChatGPT does not always achieve this simplification 
as intended, as the following example shows: 

1 ChatGPT How about the question: “Express the number 60 as a product of prime factors 
with the usage of powers, if possible.” […] 

2 P3 I think the question is too difficult, can you put it in simpler terms. 
3 ChatGPT Of course! How about the question: “Write the number 60 as the product of 

two numbers, where one of the numbers is a power of 2 and the other is 
divisible by 2.” 

On the one hand, it can be argued whether the second formulation is simpler. We should add that the 
German-language output uses unusual words (e.g., “Expressiere […]”). On the other hand, ChatGPT 
not only tries to formulate the task more simply but also changes its content considerably. Instead of 
asking for the general prime factorization, the focus is now on a very specific decomposition. 

Conversely, ChatGPT itself played a proactive role in challenging the PSTs to formulate tasks that 
meet specific criteria: “ChatGPT: How could we guide students to identify the prime numbers that 
divide the number 120? Think about how we could formulate the question to subtly encourage this,” 
and challenges to increase the difficulty level, like “ChatGPT: Do you have any ideas on how we 
could formulate this to challenge the students?” This theme was also identified because formulating 
the task is an elementary part of problem posing. 

Discussion & Conclusion 
This exploratory study, with a limited sample size of five pre-service mathematics teachers, aims to 
explore the potential of ChatGPT as support for problem posing for PSTs. This limited sample size 
also underscores the need for a cautious interpretation of the findings.  

In our qualitative analysis, three themes emerged from the interactions between PSTs and ChatGPT. 
Collaboration was a theme, where both ChatGPT and participants utilized collaborative language, 
engaging in an interactive idea exchange. ChatGPT’s consistent use of “we” fostered a sense of 
partnership, although participants sometimes retained a more impersonal tone. This theme 
underscores the cognitive partnership ChatGPT may enable in terms of the concept of distributed 
cognition (Salomon, 1993). Although collaboration is not problem-posing specific per se, this topic 
suggests that ChatGPT has the potential for pair work that can be beneficial for problem-posing 
outcomes (Wang et al., 2020). 

Pedagogical Content Knowledge (PCK) emerged as another theme. ChatGPT aimed to activate 
participants’ PCK by formulating questions to encourage students’ investigation. However, the 
participants often did not engage deeply with these prompts, indicating a missed opportunity for 
richer pedagogical discussions. Despite attempts to inquire about students’ knowledge levels, 
responses from ChatGPT sometimes lacked direct answers, suggesting a need for improved prompt 
engineering (chtcht et al., 2023) to better utilize ChatGPT’s potential in activating PCK. 

The third theme, Support in Formulation, highlighted ChatGPT’s dual role in assisting teachers to 
refine and adapt problem statements. Participants sought ChatGPT’s support in simplifying task 
language, reflecting an effort to make problems more accessible. Yet, the effectiveness of these 
simplifications varied, with ChatGPT occasionally altering the problem’s content significantly. 
Additionally, ChatGPT proactively challenged teachers to craft problems that met specific 



 

 

Proceedings of the 17th ERME Topic Conference MEDA4, 3-6 September 2024, Bari, Italy                      ISBN 978-88-6629-080-3 

  
63 

educational objectives, indicating its utility in encouraging thoughtful task formulation as an integral 
part of the problem-posing process (Baumanns & Rott, 2022). 

One of the notable challenges in the interactions between participants and ChatGPT were instances 
where ChatGPT failed to directly answer participants’ queries. This highlights the critical importance 
of prompt engineering (Schorcht et al., 2023)—for the design of our study and also for the participants 
using ChatGPT. Prompt engineering becomes crucial in educational contexts when we want to 
consider LLMs as genuine partners of a cognitive network (Salomon, 1993). Furthermore, the 
absence of specific training for the participants on how to leverage ChatGPT’s capabilities may have 
contributed to an underutilization of the tool’s potential. This aligns with findings from the systematic 
review of Montenegro-Rueda et al. (2023), indicating a gap in harnessing the full educational benefits 
of LLMs due to a lack of user familiarity and proficiency. Training PSTs to effectively use ChatGPT 
could enhance the quality of their problem-posing tasks. In this context, the differentiation between 
artifacts and instruments hinges on the process of instrumental genesis, where artifacts, like ChatGPT, 
undergo transformation by users into instruments, reflecting their strategies and educational 
objectives in their cognitive network (Guin & Trouche, 2002). 

Despite these challenges, the study provides valuable preliminary insights into the application of 
ChatGPT in mathematics education, particularly in the realm of problem posing. The interactions 
between PSTs and ChatGPT suggest that AI can play a supportive role in stimulating pedagogical 
content knowledge and enhancing creating ideas for lesson planning. There is potential for future 
research to build upon the findings of this study. A control group design study with a bigger sample 
could provide a more robust insight for evaluating ChatGPT’s impact on problem-posing skills 
among pre- and in-service mathematics teachers. By comparing outcomes between groups with and 
without access to ChatGPT or with and without training in the use of ChatGPT, we could assess the 
tool’s effectiveness in improving the quality of posed problems and its utility in teacher education. 
Such research could significantly contribute to our understanding of AI’s role in enhancing 
educational practices and supporting teacher professional development in the digital age.  
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This study explores the integration of mathematics and visual arts through "function art" within the 

STEAM education framework. Utilizing GeoGebra software, 335 students from Grades 8 to 12 in the 

Philippines participated in an online webinar, resulting in the creation of 235 function art pieces. 

The analysis identified quadratic, linear, and sine/cosine functions as the predominant choices for 

symmetry, straight lines, and waves, respectively. These findings align with constructionist 

principles, emphasizing the significance of foundational functions and practical considerations in art 

creation. Function art presents a promising avenue for engaging students in meaningful 

mathematical exploration while nurturing artistic expression. Nonetheless, further research is 

necessary to evaluate its impact on learning within the STEAM context. 

Keywords: STEAM education, function art, GeoGebra, math-art integration, constructionism 

Introduction  
The studies on the integration of Science, Technology, Engineering, Arts, and Mathematics (STEAM) 
have been increasing in the past decade (Li et al., 2020). However, many of such integrated studies 
have been dominated by science and engineering (Martín‐Páez et al., 2019), and mathematics and 
arts have been marginalized (Lajevic, 2013).  The purpose of this study is to give more attention to 
the integration of these two disciplines in the context of STEAM learning. It also aims to investigate 
the unexplored territory of integrating mathematics and visual art using “function art.” 

Function art is defined as “art constructions whose components include graphs or parts/segments of 
graphs of mathematical functions” (Bautista et al., in press). We selected functions because of their 
rich mathematical properties. Firstly, they allow the exploration of variable relationships, domains, 
ranges, and symmetry. Secondly, working with functions in art enables students to perform 
transformations, viewing functions as objects rather than individual points. Lastly, functions offer 
multiple representations (Bautista et al., 2023), fostering inventiveness and deepening comprehension 
of fundamental concepts (Yerushalmy, 1991).  

In our study, we utilized GeoGebra, a freely available mathematics software, to create function art 
constructions by plotting function graphs. GeoGebra integrates Algebra, Geometry, Calculus, and 
spreadsheets into a single package. We selected GeoGebra due to its accessibility, being cost-free and 
compatible with major operating systems and usable across various devices. 

Literature Review  
Earlier studies asked students to create art constructions, but none of those studies defined that 
activity. Those studies were mainly non-empirical. Among the 17 journal articles we examined 
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(Bautista et al., forthcoming), 15 presented descriptive accounts of the implementation process. 

Fan Disher (Disher, 1995) asked students to use grid paper to draw a picture, analyze the curves 
within these pictures, and determine their corresponding equations. Notably, during the period of this 
study, graphing applications had not gained widespread popularity. Subsequent studies such as those 
conducted by (Lee, 2002) and (Black, 2011) continued to use grid papers for similar activities. In 
contrast, an adaptation of Disher’s study incorporated graphing calculators (Avila, 2013). The 
challenge associated with manual graphing, as highlighted by Avila (2013, p.7), involves the 
laborious task of checking functions one by one—an issue alleviated using graphing calculators.  

Several notable studies have explored the use of digital images to teach mathematical concepts such 
as slope and symmetry (Sharp, 2007), tracing outlines of animals to link mathematics and biology 
(Barry, 2021), and using function graphs to draw letters (Rebholz, 2017).  

In the studies mentioned above, constant and linear functions are commonly utilized for drawing 
straight lines, while quadratic functions are favored for creating curves. Notably, students often 
employ the quadratic function in vertex form, represented as f(x) = a(x - h)2 + k. Additionally, some 
students incorporate absolute value functions into their artwork (e.g. (Avila, 2013). Beigie's study 
(Beigie, 2014) stands out for its diverse range of functions, including linear, quadratic, and radical 
functions, as well as conic sections and inequalities to generate colors within regions. Remarkably, 
none of these studies are dedicated to exploring the quantitative measures of functions employed by 
learners in the creation of art through the application of mathematical concepts. The quantification of 
the frequency of these functions can prove instrumental in elucidating patterns, identifying trends, 
and cultivating a more profound comprehension of the descriptive narratives. This research endeavors 
to fill this void by systematically identifying and tallying the various functions utilized by learners in 
their artistic endeavors. 

The study presented in this paper is an extension of the study conducted by Bautista et al. (in press). 
While that study focused on Grade 11 students, ours included samples from Grades 8 to 12. Our aim 
is to address the gap identified in the existing non-empirical studies mentioned earlier. The 
investigation endeavors to elucidate the nuanced levels of familiarity, exposure, and depth of 
knowledge and understanding exhibited by learners concerning diverse categories of functions. 

Theoretical Framework 
Constructionism, as defined by Papert (Papert, 1980), serves as a theoretical framework for our study 
on function art. This framework, rooted in constructivism (Piaget, 1970), offers valuable insights into 
the learning process, particularly in the context of creating and enhancing mathematical artwork. 

Constructionism emphasizes the notion that learning is most effective when students are actively 
involved in the creation of meaningful artifacts and knowledge.  In the context of function art, 
students actively experiment with mathematical functions, investigate different transformations, 
combine functions with other elements, and apply principles of symmetry and reflection (Bautista, in 
press). These hands-on experiences enable students to internalize mathematical concepts in a tangible 
way. As they actively create, manipulate, and experiment with these functions, students are not 
merely passive recipients of knowledge; they become active constructors of their understanding, a 
key feature of constructionist learning.  
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To further delve into the integration of mathematics and visual art in STEAM education, we now 
pose our research question: How do students utilize mathematical functions, specifically linear, 
quadratic, and trigonometric functions, in the creation of function art using GeoGebra software, and 
what are their underlying strategies and rationales? 

Methodology  
Our research methodology was influenced by the constructionist framework. We have designed our 
study to involve students actively in the process of creating mathematical art constructions and 
exploring the underlying graphs or parts/segments of graphs of mathematical functions. This 
methodology aligns with constructionism's emphasis on experiential learning and the creation of 
meaningful artifacts (Papert, 1980). 

Sampling and Intervention 

We employed a purposive sampling technique (Patton, 2014) to select 335 students from Grades 8 to 
12 across 4 schools in the Philippines. The selection criteria ensured that students had access to 
technology, allowing them to actively participate in the study. This must be taken into careful 
consideration because many of the students in the Philippines do not have gadgets or a good internet 
connection.  

The intervention involved a 2.5-hour online webinar conducted in each school by the first author via 
video conferencing software. It covered an introduction to GeoGebra's graphical user interface, 
tutorials on plotting graphs, a review of function transformations, discussions on defining domains 
of functions, and a demonstration of creating function art. Following the webinar, students were given 
a month to create artwork using GeoGebra. We encouraged them to use mathematical functions, but 
it was not mandatory. After completing their art construction, they uploaded them to their GeoGebra 
accounts and submitted the artwork's URL via Google Form. We surveyed a subset of students about 
the functions they used and interviewed some for clarification, using these insights to corroborate our 
findings. 

Data Analysis  

Initially, we collected 335 artworks, but 48 were excluded due to the absence of functions, and 18 
duplicates were filtered out, resulting in 269 unique pieces. Initially, we considered removing 
artworks with fewer than 5 functions, but intriguing artworks with as few as 2 functions led us to 
adjust our criteria. As a result, artworks containing only a single function were excluded, totaling 34 
such artworks. After these selection procedures, our final sample consisted of 235 function art pieces 
for analysis. The distribution of artworks by grade level is as follows: Grade 8 - 32 (13.6%), Grade 9 
- 26 (11.1%), Grade 10 - 13 (5.5%), Grade 11 - 144 (61.3%), and Grade 12 - 20 (8.5%). While the 
sample's disparity per grade level is noted, we included all applets to enrich the dataset. 

In our data analysis, we adopted a convergent design mixed-methods approach (Creswell & Creswell, 
2018) to gain a comprehensive understanding of how students employed mathematical functions and 
associated strategies in their work. For the quantitative part, we tallied the type and number of 
functions used in each artwork using GeoGebra's Algebra and Graphics views. For qualitative 
analysis, we used the survey data about some students' preferred functions and their reasons for 
selecting them.  
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For quantitative data, we used content analysis and applied a systematic coding procedure inspired 
by Krippendorff (2018) to delve deeper by identifying and categorizing the distinct types of functions 
used in each artwork. While coding for function types is inherently explicit, given the vastness of the 
dataset, we employed Cohen’s Kappa test to ensure both the accuracy and consistency of the codes. 
The calculated Cohen’s Kappa value of 0.956 signifies a substantial level of agreement between the 
coders.  Since classifications of functions are clear and explicit, all disagreements were effectively 
resolved. 

In categorizing functions, we strategically grouped them to gain a comprehensive understanding of 
how students use them in their artwork.  We considered multiple factors, including the mathematical 
properties of functions, their alignment with the curriculum, and insights gathered from our literature 
review. For instance, despite linear, quadratic, and polynomial functions all falling under 
polynomials, we distinguished them due to their introduction in different grade levels. These 
considerations led to the creation of nine distinct categories of functions: absolute value, constant, 
linear, quadratics, other polynomials, radical, sine/cosine, exponential/logarithm, and other functions. 
This categorization of functions and examining the individual artwork helped us understand how 
students used functions and GeoGebra in creating their artwork, showcasing the active role of 
students in constructing their understanding of mathematical concepts within the framework of 
constructionism. 

Results 
In what follows, we discuss the results of our analysis. We examined the number and type of functions 
students used in their artwork and how they utilized them in creating their artwork. 

Number and Type of Functions 

Figure 1 illustrates the categories of functions and the number of applets containing them. Notably, 
the quadratic function emerged as the predominant choice among the artworks, followed by linear 
function, and then by the combination of sine and cosine functions. Specifically, 129 (54.9%) 
artworks featured quadratic, 111 (47.2%) incorporated linear functions, and 93 (39.6%) utilized sine 
function, cosine function, or both.    

Among the 235 artworks examined, a total of 8,453 functions were identified. There are 4,320 
(51.1%) linear functions, 1,791 (21.1%) quadratic functions, and 681 (8.1%) are combinations of sine 
and cosine functions. Other polynomial functions accounted for 432 (5.1%), followed by constant 
functions at 344 (4.1%). 

 
Figure 1: Number of applets that use functions. 
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The maximum number of functions observed in a single artwork was 400, whereas the minimum was 
2. As mentioned in the Methodology section, the initial intention was to incorporate artworks with 
more than 5 functions; however, we found many intriguing pieces that contained only two functions. 
Consequently, the only exclusion criterion applied was artworks with only one function. The average 
number of functions per artwork is 35.9. Note that 198 of these artworks have fewer than 50 functions, 
while only 26 have more than 100 functions. 

The Most Popular Functions 

In this section, we discuss the three most popular functions that students used and how students used 
them in their artwork. These are quadratic, linear, and sine/cosine functions. Figure 2 shows an 
example of the artwork that uses these functions: linear for straight lines, and quadratic and sine 
functions for curves. 

 
Figure 2: Sample artwork that uses linear, quadratic, and sine functions. 

The quadratic function is contained in 129 (54.9%) artworks. Among these artworks, 101 used the 
vertex form f(x) = a(x - h)2 + k,  58 used the general form f(x) = ax2 + bx + c, and 30 used both. 
Additionally, 28 of the artworks exclusively used quadratic functions.  

Many of the artworks used quadratic functions for symmetric curves. Out of the total 129 artworks 
that used quadratic functions, 56 of them utilized it to create at least one symmetric curve. Most of 
these artworks used the form f(x) = ax2 and f(x) = ax2 + k to exhibit symmetry with respect to the y-
axis. In other cases, students graphed curves on one side of the y-axis and then applied reflection 
across the y-axis to achieve symmetry. It is also worth noting that there were symmetric curves in 
these artworks whose axis of symmetry is not the y-axis. Achieving this type of symmetry is most 
challenging, requiring a higher level of mathematical knowledge. 

Despite our intention to encourage students to use linear functions to create straight line segments, a 
substantial number of them opted to use the “Line segment” tool of GeoGebra. There are 138 artworks 
with line segments, 119 with linear functions, and 68 with constant functions. Furthermore, several 
artworks combine two or three of these mathematical objects, with 26 artworks incorporating all three 
in their designs. Some students diligently used linear functions whenever feasible. They used linear 
functions for slanted lines, constant functions for horizontal line segments, and reserving the Line 
segment tool exclusively for creating vertical lines. 

The sine and cosine functions were also popular among students appearing in 93 (39.6%) artworks. 
There were 66 artworks that used sine, 56 used cosine, and 29 used both. Out of this total number of 
artworks containing sine or cosine, 26 used sine or cosine functions at least once for symmetric 
curves. Students also used these functions to depict waves, edges of objects (e.g. flags, dresses), as 
well as movement (e.g. swooshing of a flying object). 
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Students’ Explanation of their Choice of Functions 

In our survey, we asked students to identify the mathematical functions they utilized prominently and 
explain their choices. Respondents who selected quadratic, linear, and sine/cosine functions cited 
reasons such as aesthetic appeal, ease of use and manipulation, suitability for the artwork, and 
efficiency. Below are some of their specific responses. 

Diane: “I used quadratic function the most because it was easy to plot and move.” 
Albert: “Quadratic functions mainly because the graph of a parabola has been very useful 

in tracing the curves of the image I used as a reference.” 
Charles:  “The linear function is the most used function in my artwork because all of the 

equations are linear and straight lines, so I did not use curve edges…” 
Mia:  “I used the linear function the most because it was the easiest function for me.” 
Freya:  “Trigonometric functions. My art composed several layers of ocean.” 
Gina:  “I used the function sin, because it was useful for curves.” 

In summary, the quantitative analysis reveals that the students' most popular functions were linear, 
quadratic, sine, and cosine functions. These functions not only appeared in the highest number of 
artworks but were also utilized extensively within each artwork. Specifically, quadratic, sine, and 
cosine functions were primarily employed to craft symmetric curves, whereas sine and cosine 
functions found popularity in representing waves and simulating motions. 

Discussion 
The study's findings, which reveal quadratic, linear, and sine/cosine functions as the most popular 
among students for function art, resonate with the constructionist notion that learning is most effective 
when students are actively involved in creating meaningful artifacts and knowledge. This suggests 
that students gravitate towards functions they know and find easy to use and emphasizes the practical 
factors influencing their choices in art creation. Educators should note this preference, as it 
underscores the importance of teaching these foundational functions within a constructionist 
framework, enabling students to express mathematical concepts confidently through art. 

The widespread use of quadratic functions, particularly in their vertex form f(x) = a(x - h)² + k, 
suggests a strong recognition of their unique advantages. These functions facilitate the creation of 
symmetric curves and align with students' artistic intentions in connecting mathematical concepts 
with visual aesthetics. This preference aligns with prior research by Avila (2013) and Beigie (2014) 
that emphasize the pedagogical significance of fostering students' proficiency in manipulating 
function parameters. Therefore, educators can strategically integrate teaching methods that emphasize 
the vertex form to empower students to explore and manipulate functions with greater flexibility. 

The second most popular function used by the participants of this study is the linear function, which 
differs from the findings of Bautista (in press) where sine/cosine functions ranked second. This 
variation could be attributed to differences in sample composition: they analyzed Grade 11 students' 
artwork, while our study involved Grade 8 students who had learned only linear functions and 
exclusively used them. 

Lastly, sine and cosine functions also enjoyed popularity among the students. These functions were 
commonly utilized for achieving symmetry in artwork, while others employed them for more 
specialized purposes, such as representing waves and creating a sense of movement. 

The three most popular functions mentioned above were further substantiated by the responses 
obtained from the student survey regarding their preferred functions for use. Students consistently 
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find these three functions easy to understand and graph, with linear and quadratic functions standing 
out in particular. This aligns with prior research that has indicated that students tend to encounter 
fewer challenges when graphing and manipulating linear and quadratic functions (Baker et al., 2001). 

Conclusion 
This study aimed to investigate the use of functions in the creation of function art and to delineate the 
strategies used by students in this creative process. Our findings highlight the prominence of linear, 
quadratic, sine, and cosine functions among students as the most favored choices for their artistic 
endeavors. 

The implications drawn from our study suggest that function art can serve as a valuable project for 
students to develop their skills in utilizing functions and their properties. However, it is important to 
acknowledge a limitation in our approach; we did not measure the direct impact of function art on 
student learning. To address this gap, a structured experimental study could be designed and 
conducted to assess the benefits of integrating function art into the learning process. 

This episode is chosen to answer the first research question by describing the development and 
evolution of the instrumental genesis. It shows how ChatGPT became an instrument to foster the 
discussion. More precisely we discuss this episode to show the emergence and evolution of the artifact 
to support the activity and the gradual formation and evolution of schemes for using the instrument 
in practice.  
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Literature and our experience provide evidence for the motivating effect of real-life STEAM projects. 

This study tries to unveil factors that may explain this effect. This study is based on a case study 

involving two lower secondary school classes engaged in a house modelling project including the 

stages: drawing the plans, modelling and 3D printing the house and putting the activity in the context 

by networking with another school and a local company. Data were collected from questionnaires, 

interviews and classroom observations to study students’ motivation, and the results of the Austrian 

National Competency Test (IKM Plus)6 are considered to refer to changes in learning results. Data 

analysis shows that working in teams, having more time to work on a meaningful task, and creativity 

seem to be the most important. The results of IKM Plus show a significant increase in comparison 

with the Austrian national average, however, defining the reasons needs further research. 

Keywords: Motivation, 3D - printing, modelling, meaningful task, collaboration.  

Introduction  
In the literature, numerous studies provide evidence that the STEAM (Science, Technology, 
Engineering, Art, Mathematics) approach can increase students’ motivation (El Bedewy et al., 2022; 
Liljedahl & Zager, 2021; Ulbrich et al., 2020) and enhance learning (Conradty & Bogner, 2020; 
Suryaningsih et al., 2022). Conradty and Bogner (2020) claim that creativity in STEAM tasks can be 
beneficial for motivation. Suryaningsih et al. (2022) found that STEAM activities referring to 
everyday life can enhance motivation. In this paper, we will define further factors that may make 
STEAM tasks motivating and beneficial for students’ learning. Research showed that cooperative 
learning may increase students’ motivation to learn (van Tran, 2019), and STEAM activities are 
cooperative. The research focus regarding STEAM activities and their motivating effects was more 
on real-life reference and creativity. There seems to be a research gap concerning STEAM activities 
from the social aspect, that is, if STEAM tasks are motivating as they are cooperative tasks. We intend 
to find factors increasing motivation by analysing students’ self-reports. 

Theoretical Framework  
As this study focuses on a project-based STEAM task and its motivating effect on students, we rely 
on project-based learning (PBL) concerning the task design and on Self Determination Theory (SDT) 

 
6 The Austrian National Competency Test, IKM Plus, is carried out by the Institut des Bundes für Qualitätssicherung im 

österreichischen Schulwesen. You can read more about the guidelines on the onlineplatform: 

https://www.iqs.gv.at/themen/nationale-kompetenzerhebung/onlineplattform-ikm-plus. 
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while studying students’ motivation. Shin and colleagues (Shin et al., 2021) define PBL as students 
participating in science practices in collaborative activities and actively constructing a tangible 
product over a longer time. PBL activities have five key features: (1) a driving question to be solved; 
(2) students exploring the question; (3) collaboration among students and teachers; (4) students’ self-
management and scaffolding by teachers and technology; (5) students creating a tangible product 
(Krajcik & Blumenfeld, 2006). These features underpin our task design as described in the following 
section. Krajcik and Blumenfeld (2005) also stated that students learn by doing and claimed that 
students benefit twofold: they get a more thorough understanding, and their motivation increases as 
they develop a positive attitude towards mathematics. SDT is an approach to human motivation. To 
be motivated means that one is moved to act. Ryan and Deci (2000) differentiate between intrinsic 
and extrinsic motivation depending on the source of motivation. The first comes from the person and 
his curiosity, whereas the second has external reasons. Intrinsic motivation has a positive impact on 
learning outcomes and students’ creativity (Ryan & Deci, 2000); hence it raised educators’ interest. 
However, as Ryan and Deci claim, extrinsic motivation can result not only in resentment but also in 
willingness and acceptance of values, which educators may benefit from. This willingness may 
increase engagement meaning time and effort put into solving a problem. This may result in the 
enjoyable feeling of success, which may change extrinsic motivation into intrinsic motivation as 
students want to experience success again. Thus, we aim to motivate students by raising their 
curiosity. However, we also hope to reinforce this motivation by increased engagement originating 
from PBL as the project-based STEAM activities require more time and in-depth inquiry, hence 
increased engagement. For the scope of this study, we define motivation as readiness to participate 
in an activity. Researchers at MIT also studied the role of motivation, interest and positive affect 
concerning learning (Picard et al., 2004) and found that positive affect can enhance the learning effect. 
Framed by the depicted theories, PBL and SDT, the following research questions guide our study: 

RQ1: What factors seem to increase students’ motivation while working on a STEAM task designed 
following the 5 features of PBL? 

RQ2: How does the depicted STEAM task affect students’ mathematical competencies? 

The two questions are of different natures; hence we need different methods. 

Methods 
This mixed-method research is built on a case study focusing on the 5 features of PBL. To study 
students’ motivation and answer the first question, we collected data from self-reports via 
questionnaires, focus groups, and observations. We apply grounded analysis, as we define the 
motivating effects based on the data. Further, to answer the second question, we refer to the results 
of the informal competence test IKM Plus to study changes in students’ achievement. IKM Plus is 
carried out yearly in Grades 3, 4, 7 and 8 in Austria starting in 2022. The study started in 2022, in the 
school year 2022/23 and stretched over more than a year. The last phase, printing some of the models, 
took place the next school year, at the beginning of 2024 as the involved teacher needed to gain 
experience with 3D printing and the school received the printers just in January. 

The Project 

The project was carried out in two Grade 7 classes involving 48 students starting in 2022. Students 
had to design the house of their dreams in smaller groups. The task design followed the 5 features of  
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PBL: (1) students learned about the problem and had to draw a plan; (2) students explored the problem 
by designing a model using cardboard paper and modelling by Tinkercad (Figure 1); (3) students 
worked in groups and we collaborated with another school and a local company to learn about 3D-
printing (Figure 2) at small scale and the industrial use of 3D-printing; (4) students used Tinkercad 
to design a more detailed model; (5) students built their houses using various materials and we 3D-
printed one of the models. As we needed to gain experience with 3D-printing and access to a 3D 
printer, this last step was carried out at the beginning of 2024. The learning aim was to practice 
measuring, proportions, scaled drawing, and enhance spatial imagination. During the whole project, 
students worked in teams, they could select the team members and had no limitations on what kind 
of a house they should design.  

   

Figure 1: Cardboard and Tinkercad models       

     

Figure 2: 3D-printing: workshop, visiting a local company, the printed model 

Data Collection 

To answer the first research question, in 2022 we collected data in both participating classes 
containing 48 Grade 7 students using a questionnaire based on a 5-point Likert scale and some open-
ended questions. We aimed to receive feedback on more projects in general and the open-ended 
questions served to shed light on students’ likes and dislikes. Some questions focused on perceived 
usefulness and the learning effect of the projects. We observed students’ engagement in project 
activities, and how elaborate the models were. Students received the questionnaires right after 
completing the houses and participating in the 3D-printing workshop. A year later, after 3D-printing 
one of the models, we collected data from the same two classes containing only 43 students as some 
left the school. We again used a questionnaire based on a 5-point Likert scale and open-ended 
questions. This time, the questions were more specific and focused on the house modelling project. 
The open-ended questions aimed to detect any changes in students’ views. We also interviewed a 
group of students selected based on the elaborateness of their models as an indicator of their 
engagement and motivation. 

To answer the second research question, we use data collected by the Austrian informal competence 
test, IKM Plus. The test is carried out as a new curriculum was to be introduced in Austria in 
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September 2024 to get an overview of the current state of the competencies in German, Mathematics 
and English and to study how students’ competencies develop. All students in Grades 4, 7 and 8 were 
tested in 2022 and 2023. This is an informal competence test, carried out online and providing 
feedback online both to the students and the teachers. The feedback contains a comparison between 
the students in the class and the Austrian average. As the involved classes were tested in two 
consecutive years, we learned about the students’ development from one year to the other compared 
with the Austrian average which helps us to conclude the possible effects of the project.  

Results 
First, studying the first research question, we present the data collected with the questionnaires. In 
2022, 48 students received the questionnaire, and 33 filled it in. The first six questions were based on 
a 5-point Likert scale and aimed at students' general views, and whether they considered the project 
interesting and beneficial for their learning: 54,5% of the students found the projects interesting, and 
only 15,1% of the students found it not interesting. To define the factors enhancing motivation, the 
open-ended questions are more relevant. Only 20 students answered the open-ended questions and 
even they answered with just one or two words. The open-ended questions aimed to learn about 
students’ likes and dislikes and if they had any suggestions. Table 1 shows the analysis of students’ 
answers. We counted how often some specific aspect was mentioned and put the related references 
under the same category marking them with the same colour. For instance, the three references: eating 
a pizza, watching a film, and sleeping in the school seem to refer to social aspects. Frequencies in 
Table 1 highlight that the social aspects were mentioned 17 times in total, and thus seem to be the 
most important. Working in teams was second, and this is also a social aspect. The third most frequent 
factor was presenting the results and no time constraints. The students also praised that they could 
decide what they wanted to work on and with whom, as the following excerpt from one of the 
students’ answers shows, we will refer to him by the nickname Dave: 

I especially liked that I could decide what I wanted to do and how I wanted to do it. I really enjoyed 
not having to build a boring house, but I could create whatever I wanted to. (Dave) 

Based on our observations, technology implementation seems to increase students’ motivation. For 
instance, using Tinkercad for modelling and learning about 3D-printing made students communicate 
more as they started cooperating and looking for solutions. Students also seemed interested during 
the visit to the local company. More than half of the class had never seen a 3D printer before and 
were amazed by the size of the robot used in the industry. To answer the first research question, these 
factors enhancing motivation seem to be the most important: spending time together and working in 
teams, having enough time, and working on an interesting problem. Considering the recency effect, 
the next school year, both classes filled in a similar questionnaire. This time the questions were more 
specific and focused on the house modelling project to learn about students’ retrospective views. 

43 students received the questionnaire, and 41 students completed it. The first questions focused on 
general interest, and the later ones on the perceived learning effect. Table 2 shows a comparison of 
the answers received in 2022 and 2024.  
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Table 1: Frequency of students’ likes and dislikes in 2022 

Likes Dislikes 

Aspects Frequency Aspects Frequency 

So
ci

al
 

Pizza 5  

17 
Workload 

PresenEng 3 
6 

Film 6 A lot of work 3 

Sleeping in the school 6 
Inconveniences 

Too liLle room 1 
4 

 Working in groups 5 Too liLle Eme 3 

 PresenEng our results 2  Everything was fine 6 

 Free choice of topic 2    

Table 2: Students’ general views on the project in 2022 and 2024 

 
Here, we present just the most general questions as these are relevant to the first research question. 
The answers show that an even bigger part of the students, 63,4%, remembered the project as 
interesting. The open-ended questions were aimed at students’ likes and dislikes again, and we looked 
at the frequencies again. Table 3 shows the analysis. Compared to the previous year, the answers 
were more detailed and showed different patterns. We marked similar aspects and synonyms with the 
same colour and defined categories. For instance, designing, creativity, constructing and being an 
architect may be one category as they all refer to creating. We also interviewed a group of students 
selected based on their engagement in the project activities. Transcribing the recordings and the 
qualitative analysis are still in progress, therefore we would quote just from one student already 
referred to as Dave as his sentences seem to reflect the possible clusters represented in Table 3: 

Dave:  I thought it was just great that we could build the house with friends, that we were 
allowed to use whatever materials we wanted, on whatever scale we wanted, that 
we really had free rein with all the work, that it was really about the basic plans that 
we designed beforehand. I find it very interesting how you go from design to 
product. 

Based on Table 3 considering the frequencies both under the aspects likes and dislikes, along with 
Dave’s sentences, students may be more engaged if they have a creative problem where they can 
realise their own ideas and they work preferably in teams. Among dislikes, they mentioned visiting 
the 3D-printing company, but they argued that it was due to the fact they were not actively involved 
in creating during the visit. This aspect was not formulated in the questionnaire in 2022 yet. 
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Table 3: Frequency of students’ likes and dislikes 2024 

Likes Dislikes 

Aspects Frequency Aspects Frequency 

CreaEng 

Designing, using your own 

ideas 

9 

40 

 Visit at the 3D-prinEng company 

as not interacEve 

4  

CreaEvity 17  Not enough work with 3D-prinEng 2  

ConstrucEng the house 12 

Technical 

problems 

Tinkercad: didn’t work someEmes 3 

11 
Being an architect 2 Work in group was difficult. 4 

 Working in groups 14 Transport of the model 3 

Interest 
Fun 8 

10 
Scales were difficult 1 

Not the usual lesson 2  Everything was fine 10  

 Using Tinkercad 3   Too liLle Eme 1  

Real-life 
3D-prinEng company 2 

3 
    

3D-prinEng real-life. 1     

Time also seems an important factor. In 2022, students referred to no time constraint as a positive 
aspect, in 2023 they referred to lack of time as a negative aspect. This implies that having enough 
time allows them to work without pressure which may enable them to create. Summing up our results, 
working in groups and the social aspects, having room for creativity and the freedom to decide how 
and what to create and having enough time may increase engagement and motivation. 

To answer the second question, we study the results of the IKM Plus test. Starting in 2022, all Austrian 
students in Grades 3 and 4 at primary schools, and Grades 7 and 8 at secondary schools participate in 
a competence check, IKM Plus to provide students, teachers and the government with feedback about 
the current stand of students’ competencies in German, Mathematics and English. The two classes 
participated in the first test round as Grade 7 students and a year later in the second one as Grade 8 
students. Hence, we can compare the results from the two years and may find some tendencies. 
Because of the lack of space and since the results are similar, we compare the results of one of the 
experimental groups participating in the project with the Austrian national average, which we 
consider a very big control group as it involves all Austrian students at the same type of school and 
the same age. We compare how the results evolved from the year 2022 to 2023, that is, the results 
before the project and after the project. Figure 3 shows that the mathematical competencies of one of 
the experimental classes improved from 168 to 188 points, as opposed to the Austrian national 
average of the same school type (AHS in the diagram) which improved from 160 to 172 points. Three 
students achieved the available maximum of 220 points and only four had scores below the Austrian 
national average. Further, we present the results of one of the students who was the most motivated 
and engaged considering all phases of the project. We already referred to him as Dave when we 
quoted his written feedback and an excerpt from his interview. In 2022, he scored 173 competency 
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points and 208 points in 2023. The class’s results improved by 20 points, the Austrian national 
average improved by 12 points, and Dave’s by 35 points. 

   
Figure 3: Feedback gained from the IKM Plus competency test carried out in 2022 and 2023. 

What the reasons for this difference in improvement are, requires more thorough analysis. This is 
beyond the scope of this study; however, it is planned to be studied in future papers. One reason may 
be that the class, especially Dave, were more engaged in the house-building project and in other 
projects too. This increased engagement resulted in increased motivation, hence in a significant 
increase in the competency test results. Based on these results, in response to the second question, it 
seems that project-based STEAM activities can enhance learning and result in higher test scores. 

Discussion and Conclusion 

Plenty of case studies can be found in the literature about the motivating effect of STEAM activities 
where real-life reference seems to be the crucial factor (Ulbrich et al., 2020) as also mentioned in the 
literature review. There are even ones where architecture and modelling buildings are the focus (El 
Bedewy et al., 2022) just as in our project. However, our findings show that the social aspects and 
creativity seem to be the most important factors. Liljedahl and Zager found that if you give students 
a task that really makes them think, then they start working out of curiosity and this resembles Dave’s 
words. They also showed that working in teams has a motivating effect (Liljedahl & Zager, 2021), 
just like van Tran (2019) in his work on cooperative learning. These findings seem to agree with ours. 
As Picard and her colleagues (Picard et al., 2004) showed, positive emotions and motivation enhance 
learning, and the presented IKM Plus test results seem to support this. Additionally, we found that 
project-based STEAM activities as cooperative activities enhance motivation drawing on the social 
aspects and the longer and deeper student engagement. One of the 5 features describing PBL is 
students managing the problems and teachers just providing scaffolding. This feature underpinned 
the task design and was praised by the students as shown in Table 3 and Dave’s words. Dave’s 
example shows that increased engagement can turn into intrinsic motivation, and this can enhance 
learning. 

To answer the research questions, we found the social aspects, creativity, free choice of topic and 
enough time to create as the most important factors to increase motivation. We also found that this 
increased motivation may result in higher achievements as shown by the IKM Plus competency test 



                          Proceedings of the 17th ERME Topic Conference MEDA4, 3-6 September 2024, Bari, Italy                          ISBN 978-88-6629-080-3

  
80 

results. As we are aware that motivation is the result of a large variety of factors, we will look further 
into the role of freedom and time to create, and which other factors can also be of importance.  
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The use of mathematical competencies in education has gained considerable attention, especially 

over the last two decades. This paper outlines a study that explores the integration of programming 

used to enhance students' engagement with mathematical competencies. The study introduces a 

teaching session wherein students program physical robots, with a primary emphasis on generalizing 

the programs of the robots using mathematics. Our results show the importance of the teacher to ask 

questions that focus the discussion on mathematics, and we demonstrate how removing the robots 

prompts the students to communicate their ideas and reasoning.  Our conclusion asserts that teaching 

sessions which emphasize mathematical competencies within the framework of programmable robots 

hold the potential to foster student engagement with respect to these mathematical competencies. 

Keywords: Mathematical competencies, Mathematics education, programming, robots. 

Introduction 
Over the past decade, programming has been introduced into education in many countries (Balanskat 
& Engelhardt, 2014). In the Nordic countries, programming is mainly introduced as an integrated part 
of traditional school subjects (Bocconi et al., 2018). In the Norwegian curriculum, the main 
responsibility for teaching programming is placed in the subject of mathematics, starting in primary 
school (Kunnskapsdepartementet, 2020). It is specified in the mathematics curriculum that the 
students shall learn programming, but its relation to mathematics is not explicit, and the practical 
implementation is left to the teachers. Thus, knowledge about good teaching practices when teaching 
programming in mathematics is needed. 

Many studies have established the connection between programming, computational thinking and 
algorithmic thinking skills (Weintrop et al., 2016), and studies investigate how mathematical topics  
can be learned by using programming (Misfeldt & Ejsing-Duun, 2015).  The literature review by 
Forsström & Kaufmann (2018) identify three themes for the justification of programming in 
mathematics: motivation, student performance in mathematics, and the collaboration between 
students and changed role of the teacher. In this paper our focus is slightly different. Our main interest 
is on developing the mathematical competencies of the students, and programming is the setting in 
which we choose to do so. 

There exist many theoretical frameworks for understanding the core of what mathematics is. Niss and 
Højgaard (2019) define eight mathematical competencies in the KOM-framework. The definitions of 
these competencies are made to capture the essence of mathematics, independent of the level of the 
person doing mathematics. These competencies were important in the creation of the framework for 
the PISA survey and Turner et.al. (2013) have created operational definitions of the competencies to 
analyse the difficulty of PISA items. We can also find these ideas in the Norwegian mathematics 
curriculum, described as the “core-competencies” of mathematics: exploration and problem solving, 
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modelling and applications, reasoning and argumentation, representation and communication, 
abstraction and generalization, and mathematical fields of knowledge (Kunnskapsdepartementet, 
2020) (The Norwegian curriculum uses the term “core-elements”, but we have decided to use the 
term core-competencies). 

In this paper we describe a teaching session developed in the research project “Programming for 
developing mathematical competencies”. In this project, the teaching sessions are developed in an 
iterative design process in collaboration between researchers and teachers, and the teaching sessions 
are tested in classroom experiments. In previous work, five teacher actions that promote mathematical 
competencies are suggested based on this design process (Brandsæter & Berge, 2024), and in the 
current paper we focus on three of the suggested teacher actions: (1) Simplify needed syntax and 
remove non-mathematical elements, (2) disable the run-command, and (3) remove obvious 
representations and open up problem to new representations, and ask the research question: How are 

students exposed to mathematical competencies when a teacher implements actions designed to 

promote students’ work on mathematical competencies? 

Theoretical framework 
In the analysis we use part of the theoretical framework developed by Brandsæter and Berge (2024), 
which is mainly based on the MEG item-difficulty coding framework (Turner et.al., 2013), the 
competencies in the KOM-framework (Niss & Højgaard, 2019), and the Norwegian curriculum, see 
Table 1. This study is limited to three of the core competencies. 

Table 1: Framework for analysing work on mathematical competencies (Brandsæter & Berge, 2024) 

Competence Indication 

Exploration 

and 

problem solving 

a) Search for patterns and relationships (Norwegian Ministry of Education and 

Research, 2019, p. 2). 

b) “[S]electing or devising, as well as implementing, a mathematical strategy to solve 

problems arising from the task or context” (Turner et al., 2013).  

c) Use problem solving strategies (Pólya, 1990. 

d) Develop a method in an unknown situation (Eriksen & Vos, 2022). 

Reasoning 

and argumentation 

a) Present a “logically rooted thought processes that explore and link problem elements 

so as to make inferences from them” (Turner et al., 2013). 

b) Check a justification that is given (Turner et al., 2013). 

c) Provide a justification of statements (Turner et al., 2013). 

d) Make claims and conjectures. 

Representation and 

communication 

a) Interpret representations (Turner et al., 2013). 

b) Translate between representations (Turner et al., 2013). 

c) Make use of given representations (Turner et al., 2013). 

d) Select or devise representations to capture the situation or to present one’s work 

(Turner et al., 2013). 

e) Evaluate the choice of representation (Niss & Højgaard, 2019). 

Methods 
We study the implementation of a teaching session where the student group was In-service Teacher 
Students (ITS) attending a course in programming and digital tools for mathematics teachers, grade 
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1-10, with little to no experience with programming before taking this course. The ITSs have a teacher 
education from higher education, but not necessary a specialization in mathematics. The session took 
2x45 minutes over two days and the ITSs were randomly divided into groups of two or three ITSs. 

The teaching session is built around the Sphero Indi robot, a small electric toy car that can be given 
instructions by placing coloured tiles on the ground. When the robot drives over a coloured tile it 
reads the colour and performs the corresponding instruction. Thus, the programming of the robot is 
done by placing tiles on the ground and the physical placement of the tiles defines the program. This 
allows for an intuitive programming of the robots, mostly eliminating syntax errors. We say mostly, 
because inaccuracy in the placement of the tiles or the initial orientation of the robot do sometimes 
cause the program to not run as intended (the robot misses one of the tiles causing the program to 
“crash”). We have chosen this robot due to its simplicity in use, making it easy to get started and the 
syntax (coloured tiles) is intuitive for any age group in schools. The teaching session is divided into 
three tasks, and the goal for each task is to elicit different mathematical competencies. The teaching 
session starts by an introduction of the robots that shows how to start the robot by placing it on a 
green tile, and that it stops when it drives over a red tile. 

Task 1: In the first task, the ITSs are given a green, a red and a yellow tile, and are asked “what does 
the yellow tile do?”. The task is meant as an introduction to the robots and how they are programmed, 
and it may at first glance seem like a trivial task. The yellow tile reduces the speed of the car, however, 
the speed difference between the initial speed and the speed set after driving over a yellow tile is quite 
small and not easy to see with bare eyes. This task targets the core competence exploration and 

problem solving, and it aims for the ITSs to use a systematic exploration of the yellow tile and to use 
mathematical relationships between, speed, distance, and time to design an experiment to test their 
hypothesis. 

Task 2: The second task given to the ITSs is to “create a track that makes the robot drive on for as 
long as possible”. One solution to this task involves creating a loop that makes the robot run infinitely 
long. Getting the idea of creating a loop is not the challenging part of this task, as we will see later. 
The main focus of this task is that the ITSs, while cooperating in the groups to design a track, get 
experience and skills relevant for developing representation and communication. 

Task 3: In the final task, the ITSs study different loops that use different number of tiles and 
investigate how this relates to the sum of the robots’ rotations. In collaboration with the teacher 
educator, the ITSs shall formulate and investigate the claim: “In a loop, the sum of the robot’s rotation 
is always a multiple of 360 degrees”. The task aims to give the ITSs experience with conjecturing, 
making statements and justifying about something that is always true, focusing on the core 
competencies reasoning and argumentation.  

One of the authors of the paper was the teacher educator in the session, while the three other authors 
attended as observers. During the group work, each observer observed one group of ITSs and wrote 
a log of his/her observations. The logs include both descriptive and reflexive notes. The collected 
data from the three observers are combined and synchronized based on time stamps, allowing us to 
compare situations from the different groups. This is used to identify episodes where the teacher 
educator took an action to direct the ITSs work towards the mathematical competencies aimed for in 
the task. 
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The collected data is analysed qualitatively by identifying episodes where the ITSs are working on 
the core competence of the given task. We indicated (sub-)competencies in square brackets, in the 
results, based on the analytical framework in Table 1, e.g., [3a] indicate interpreting a representation. 

Results and discussion 
Simplify needed syntax and remove non-mathematical elements  

All tasks involve elements where the ITSs can explore both the robots and mathematics. Nevertheless, 
the connection to mathematics was not always apparent to the ITSs, and in several instances the 
connections to mathematics were only made after direct questions from the teacher educator. This is 
exemplified through a sequence where the ITSs are working on the first task: “What does the yellow 
tile do?”. In this task the teacher educator simplified the syntax by removing all tiles but the yellow 
(slow down), green (start) and red tile (stop) (the full set consisted of 8 different colours). During the 
group work, the three ITS groups that were observed took slightly different approaches to the given 
problem. The first group explored the yellow tile in an unsystematic way, the second group tried 
systematically the different colours and combinations of colours [1c]. Both groups concluded that all 
the yellow tile did was to make a sound and flash yellow, even if they at some point in their discussion 
mentioned that perhaps the robot also decreased its speed. The third group first made a hypothesis 
that they proceeded to test by using the robot. By doing multiple runs with and without the yellow 
tile, they concluded that the robot slowed down, based on observations with their naked eyes.  

When the teacher educator gathered all groups for a joint discussion, he first asked the ITSs if they 
knew what the yellow tile does. The first ITS to respond said that it makes a sound, but when the 
second ITS said that he thought that it slows down, the first ITS agreed but was not sure. The 
discussion continued as follows: 

Teacher educator: Are you sure that the tile makes the car slow down? [To ITS 2] 
ITS 2:    Mmmm, I think so.  
Teacher educator:  What can we do to figure that out? How can we be sure?  
ITS 3:  With a stopwatch? 
Teacher educator: With a stopwatch! Others? 
ITS 4:   Test with the tiles? 

In the last suggestion the ITS proposed to compare one robot that runs over a yellow tile with one 
robot that does not run over a yellow tile [1d]. This involves a direct comparison of the speed of the 
robots to test if the yellow slowed down the robot. The first suggestion of using a stopwatch implies 
an indirect comparison between the speed of the robots [1d]. Here, a natural experimental setup is to 
measure the time used over the same distance. This may be a way to give an intuitive relation between 
time, speed, and distance. 

Note that none of the observed groups took initiative themselves to use mathematics to reason why 
their solution was correct, they were satisfied with “seeing” that the robot “probably” slowed down.  
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Figure 1: Illustration of the sketches made by the ITS to represent two different tracks. Here, lines are 

used to indicate the indented path of the robot, and sharp corners represent blue or pink tiles. 

Thus, simplifying the syntax to only investigate the yellow tile was not sufficient. In addition, the 
teacher educator had an important role to make the ITSs reason and justify their claims. To make the 
ITSs continue their exploration in a systematic way, the teacher educator asked what the ITSs could 
do to be sure what the yellow tile does. This was sufficient to prompt the ITSs to propose several 
methods for how they could show that the yellow tile slowed down the robots [1d]. 

Disable the run-command 

In the next part of the session, two new tiles were introduced; a pink and a blue tile that makes the 
robot rotate 90 degrees to left and right respectively. With a set of tiles at their disposal (1 green 
(start), 1 red (stop), 1 yellow (slow down), 4 pink (left turn) and 4 blue (right turn)), the ITSs were 
asked to “create a track that makes the robot drive on for as long as possible”. The goal of this task is 
to facilitate development of reasoning and argumentation competence. We know that students` use 
of unsystematic trial-and-error might have a negative impact on their formulation of mathematical 
arguments when engaging in programming (Kaufmann & Stenseth, 2021). Therefore, to provide 
mathematical reasoning and communication, the teacher educator after a while reduced the 
opportunities for the trial-and-error method in this activity by removing the robots (disabling the run-

command). 

When the robots were removed from the ITSs they started to use a variety of different strategies to 
evaluate their tracks. Pointing with fingers (or just with the eyes) and saying the instructions out loud 
were used by all observed groups [3d]. Objects such as unused tiles were also used to represent the 
robot and the ITSs would “drive” these objects through the tracks by moving them manually. One 
group additionally made use of pen and paper to represent the tracks, as illustrated in Figure 1, and 
used this representation when discussing feasible loops [3b,3d]. 

When the groups had access to the robots, we often observed that one group member laid out the tiles 
and then immediately ran the track with the robot without discussing it with the other group members. 
In addition, we observed that the ITSs spent a lot of time adjusting the tiles’ position, sighting the 
initial angle of the robot, and handling other technical issues with the robots. When the robots were 
removed, we observed that the ITSs more actively explained how they thought the robot would drive 
in the proposed track [2c]. 

This didactical choice is of course not without pitfalls. Removing the robots do not completely 
remove trial-and-error approaches as it is easy to visualize the track and adjust the tiles “on the fly”. 
Trial-and-error methods where the ITSs did not communicate or explicitly reason were still observed 
in all groups. Another issue is that when the robots are removed, this also removes the feedback from 
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the robots, exemplified by one group’s first attempt of making a loop. This attempt was not successful, 
as the robot would not follow the track they expected (see track in Figure 2). After they had placed 
the tiles, the following sequence took place: 

ITS 1: Right, right, right, right [points at the blue tiles]. 
ITS 2:  Theoretically, it will drive for infinity. 

The first ITS pointed at the four blue tiles when arguing for the loop [2a,2d]. Neither of the ITSs 
realized the error of the track, and they proceeded to try out more complicated tracks. Here, the 
teacher educator has an important role. A technique used by the teacher educator to make the ITSs 
catch such mistakes as presented above, was to ask the ITSs to pretend to be the robot and walk the 
track themselves. This action keeps the run-command disabled, however, it provides the ITSs a 
method to self-evaluate the tracks and provide feedback to themselves.  

Remove obvious representations and open up problem to new representations 

When the third task was presented, the ITSs had become familiar with the behaviour of the robots. 
This task started by asking the ITSs if it is possible to make loops where the sum of rotations are 
different than 0 and 360 degrees. To promote the use of other representations, the teacher educator 
took away both the robots and the tiles from the ITSs, which removed the tiles as a representation 
for the track. While working on task 3, the ITS used both degrees and number of tiles as a unit for 
rotation [3c] and translated between them [3b]. They also represented a left and right rotation as 
negative and positive rotation [3c]. Removing the tiles caused all four groups to create representations 
of the tracks in the form of drawings [3d], see Figure 1 for examples. Up to this point only one group 
had explicitly used drawings to represent the tracks, and all groups had extensively been manipulating 
the physical tiles in their discussion. However, while removing the robots and the tiles did make the 
students use drawings to represent the tracks, they struggled to make progress on the task. The teacher 
educator intervened the work to help the ITSs. The teacher educator “walked the path” shown in 
Figure 3 on the floor and asked: 

Teacher educator:  How many degrees did I turn? 
ITS:   720 degrees. 
Teacher educator:  Can I make a loop with another number of degrees? 
ITS:  Yes, 1080, 1440 and so on, by turning multiple times before returning to the 

start. 

Figure 2: An example of a track created by the 

ITSs. The dashed blue line shows the path the 

robot will take, while the dashed orange line 

indicates the intended path 

Figure 3: Example of a loop with 720 

degrees turns before returning to the start 
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Here, the teacher educator by the act of walking around introduced the ITSs to the idea that rotation 
can represent a dynamic measurement (not only a static) [3c], and one ITS made the initial claim that 
it is possible to make any multiple of 360 [2d]. In the continued work, the ITS struggled to argue for 
why the sum of the rotations in a loop must be multiple of 360 degrees. Two of the groups formulated 
algebraic expressions that did not help them in justifying the claim [1b,3d]. 

Concluding remarks 
In this paper, we discuss the observations of a teaching session with a group of ITSs. We investigate 
how the ITSs work on mathematical competencies when the teacher educator uses three of the teacher 
actions suggested by Brandsæter and Berge (2024).  

Trial-and-error approaches may have a negative impact on the mathematical reasoning of students 
(Kaufmann & Stenseth, 2021), and removing the robots from the ITSs in this study aimed at reducing 
the trial-and-error approaches. However, simply removing the robots was not sufficient to promote 
reasoning and argumentation among the ITS, it was necessary for the teacher educator to ask 
questions such as “why do you think … happened?”, “how can you be sure?”, “how do you know?”, 
to make the students justify and reason about their claims. Removing the possibility of immediately 
running a program is also a key component of the PRIMM (predict, run, investigate, modify make)-
methodology (Sentance et al., 2019) where the students shall predict what a computer code does 
before running it. It is important to keep in mind that disabling the run-command, is not something 
we think a teacher should always do. This choice should be evaluated by several factors, and maybe 
most importantly the goal of the teaching session. 

Misfeldt and Ejsing-Dunn (2015) points to the importance of the teacher to focus on mathematical 
concepts and on the didactical principles used by the teacher when using programming to learn 
mathematics. The three teacher actions investigated in this paper did initially prompt students to work 
on mathematical competencies, but the actions were not sufficient by themselves. The teacher 
educator had an important role direct the attention of the students towards mathematical competencies 
during the ITSs work. 

In this work we have observed ITSs experiences concerning the mathematical competencies 
exploration and problem solving, reasoning and argumentation, and representation and 
communication through the indicators presented in Table 1. While we found indications for work on 
all these competencies, we do not investigate to what extent or level each competence is exercised. 
Thus, in further works one should investigate in more depth each mathematical competence, e.g., by 
using the four levels of the MEG framework (Turner et al., 2013). In addition, expansion of the study 
to other mathematical competencies (Niss & Højgaard, 2019) should be done. 
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The focus of this study is to examine the extent to which generative AI (GenAI) can be used as a tool 

in mathematics teachers’ professional development. In particular, we discuss a preliminary case 

study in which 37 primary and lower secondary school teachers were invited to explore the potential 

of ChatGPT to promote mathematical discussion in their classrooms. The study is framed by the well-

known Mishra and Koehler’s TPACK Model. Results show how when teachers are involved in 

formulating prompts to be given to ChatGPT and in interpreting its feedback, they can develop 

Technological Content Knowledge and Technological Pedagogical Knowledge. Further insight is 

required to deepen how teachers can be helped to integrate them and build their TPACK. Moreover, 

results call for the need to investigate if teachers who acquire proficiency in using GenAI in their 

teaching will impact their students’ proficiency in using GenAI in their learning.   

Keywords: Generative Artificial Intelligence, teachers’ professional development, Technological 

Pedagogical Content Knowledge (TPACK) Model 

Introduction 
In the rapidly evolving landscape of education, the advent of GenAI has opened up new possibilities. 
In the realm of mathematics education, it offers opportunities to foster the design and implementation 
of dynamic and interactive learning environments. However, the potential of GenAI in this context 
remains largely untapped, and its role in teacher professional development is still an emerging area 
of research. This paper explores an innovative approach to professional development (PD) for 
mathematics teachers, focusing on the use of generative artificial intelligence (GenAI), specifically 
ChatGPT, as a tool to enhance classroom discussions and pedagogical strategies.  

Our study is framed by the well-known TPACK model (Mishra & Koehler, 2006; Mishra et al., 2023), 
a comprehensive framework that encapsulates the complex interplay of knowledge teachers require 
for effective technology integration in their teaching. We aim to answer the following research 
question: How could the exploration of GenAI’s potentials and limits, through the production of 
prompts and interpretation of feedback, enhance teachers’ Technological Pedagogical Content 
Knowledge?   

To answer this question, we present and discuss a preliminary case study involving primary and lower 
secondary school Italian teachers who were invited to explore the potential of ChatGPT in their 
classrooms. This PD intervention aimed to let teachers investigate how the use of GenAI could 
promote mathematical discussion. A problem given during the National Standardized Assessment 
test was used as a launch pad for the investigation.   

We have found that by producing prompts and interpreting feedback teachers are engaged in 
enhancing their TCK and TPK. Further insight is required to deepen how teachers can be helped to 
integrate them and build their TPACK. The early results invite us to reflect on how using ChatGPT 
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or other artificial intelligence systems is challenging for 21st-century teachers. Even the shortcomings 
of ChatGPT, such as the fact that answers to questions can be wrong, can become subject matter for 
a critical thinking exercise. It seems, however, that only conscious use of this technology that takes 
into account the teacher’s Technological Knowledge, Content Knowledge and Pedagogical 
Knowledge can result in effective teaching practices.  

To contribute to the research on the use of AI in education and teacher professional development, our 
results finally call for the need to further investigate the potential impact of teachers’ proficiency in 
using GenAI on their students’ learning experiences. 

Theoretical Framework 
The teacher’s role is fundamental in helping students construct mathematical meanings (Simon et al., 
1999; Capone et al., 2023). For this reason, in this study, many complex aspects related to the use of 
intersections between Technological knowledge, Pedagogical knowledge and Content knowledge in 
teaching were taken into account. This paper referred to the Technological Pedagogical Content 
Knowledge (TPACK) framework, based on Shulman’s (1986) construct of Pedagogical Content 
Knowledge, conceived to define the elements that can characterize teaching when supported by 
technologies without neglecting the pedagogical aspects and the specific teaching contents of the 
discipline. In particular, we refer to Mishra and Koehler’s model, (2006) in which the authors describe 
how teachers need specific types of knowledge to use technology creatively and effectively in their 
teaching. The TPACK framework posits that achieving successful technology integration in 
education goes beyond expertise in specific content, pedagogical strategies, or technology 
individually. Instead, it emphasizes the necessity of a dynamic synthesis of all three knowledge bases. 
These components exist in a state of “creative tension”, wherein alterations in one realm influence 
the other two.  

With the advent of GenAI, the educational landscape faces novel challenges, raising profound 
inquiries about the essence of learning and the essential knowledge teachers must possess for 
effectiveness. GenAI also introduces a profound shift in the landscape of education, challenging 
conventional roles held by teachers. With their capacity to provide extensive expertise across various 
subjects, their adaptable generative abilities, and their capability to mimic human behaviour and 
communication, GenAI prompts a reassessment of the traditional teacher-student dynamic. 
Consequently, this paper employs the TPACK framework to delve into the essential knowledge that 
teachers require to seamlessly incorporate GenAI tools into their teaching methodologies (Mishra et 
al., 2023). 

In the canonical version of the TPACK diagram (Figure 1) there are four main areas (or forms of 
knowledge) related to technology. They are Technological Knowledge (TK) as well as in the 
overlapping spaces that constitute Technological Content Knowledge (TCK), Technological 
Pedagogical Knowledge (TPK) and, of course, Technological Pedagogical Content Knowledge 
(TPACK). Additionally, though not explicitly mentioned, technology can have a significant impact 
on Contextual Knowledge (XK). 
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Figure 1: The Canonical TPACK diagram (Mishra et al., 2023) 

Our exploration unveils several direct implications for integrating GenAI into education, particularly 
concerning the TPACK framework. Following Mishra and colleagues, our focus initially lies on how 
TPACK evolves within this new educational environment, encompassing the utilization of 
technological tools for teaching across diverse subject matters. Furthermore, our interest is in how 
teachers must innovate and adapt, developing novel pedagogical approaches to accommodate these 
advancements while acknowledging the presence of non-human social agents in the learning 
environment, which has traditionally been human-centric. Although these technological agents may 
outperform humans in certain areas, teachers must continually experiment and refine their teaching 
methods in response to ongoing technological advancements and changes. 

Methods 
In this paper, we refer to a case study in which 37 primary and lower secondary school teachers were 
invited to explore the potential of ChatGPT to promote mathematical discussion in their classrooms. 
They were particularly interested in exploring such a potential, especially because they declared they 
did not have any kind of experience in the use of GenAI but were aware of the growing interest and 
use by the students. 

The PD intervention, which lasted approximately only one hour, was designed to engage teachers in 
producing prompts and analysing feedback. For this purpose, we showed them a problem coming 
from the Italian National Standardized Assessment test for 5th grade (see Figure 2).  

Figure 2: Translation of Task 11, Mathematics INVALSI test Grade 05, 2013 (Faggiano et al., 2022) 

The problem was particularly interesting for at least three reasons: 1) when it was submitted in 2013, 
only 40.9% of grade-five Italian students succeeded in giving a correct answer and only 31.7% were 
able to describe the way to find the answer; 2) primary students’ answers to the problem reveal their 
comprehension/non-comprehension of the multiplicative structures, however, since middle school 
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upwards, the most common way to approach this problem is proportional reasoning (Arzarello, 2018; 
Arzarello & Ferretti, 2021); 3) a recent study proved the difficulty of teachers to recognize as correct 
mixed solving approaches and to make use of this kind of problems into their teaching (Faggiano et 
al., 2022). 

Teachers were asked to describe how they solved the problem and how they thought their students 
would do it. Then, they were invited to explore how ChatGPT could solve the problem and if its 
feedback could be used to enhance mathematical discussions with their students. 

The PD intervention was audio-recorded and transcribed, and the chat on ChatGPT was saved. To 
ensure the reliability of the data analysis, the authors independently coded the excerpts. We sought 
terms and sentences teachers said, interpreting them as referring to different kinds of knowledge 
according to the TPACK Model. Then, we discussed the analytical processes that each of us 
performed and identified the most interesting transcript and part of the chat, that were translated into 
English for the purpose of this paper. 

Results 
When asked to describe how they solved the problem, most of the primary teachers said that they had 
multiplied five (the number of groups of four to make 20 placemats) times six (the number of balls 
of yarn to make 4 placements), while most of the lower secondary school teachers considered the 
proportionality between the number of placemats and the number of balls of yarn. Very few of the 
teachers multiplied by 20 the number of balls of yarn required to make a placemat (1.5).  

The interaction with ChatGPT started with a simple prompt: “Find possible solutions to the following 

problem…”. Reading the feedback some of the teachers replied: “students are better!”. They felt the 
need to ask ChatGPT to come up with a solution that could be suitable and understandable for primary 
school students and agreed to submit the following prompt: “How would you explain this to a primary 

school student?”. The answer received from GenAI was a story to describe the problem at stake. 
However, there was no final solution, and, above all, there was a mistake in the interpretation of the 
text. Below we provide a translation of the ChatGPT’s answer: 

Imagine that Thomas' grandmother is crocheting placemats, and she has a pile of balls of yarn 

next to her. Each time she makes a placemat, she takes a certain number of balls of yarn. 

Now, Grandma told Thomas that to make 4 placemats, she uses 6 balls of yarn. So, if we want to 

know how many balls of yarn are needed to make more placemats, we can imagine it like this: 

Imagine that Grandma has a total of 6 balls of yarn in the pile. She takes them and makes a 

placemat. Then, she takes 6 more balls of yarn and makes another placemat. She continues like 

this until she makes 4 placemats in total. 

Now, if we want to know how many balls of yarn are needed to make 20 placemats, we can simply 

imagine Grandma repeating the same process over and over until she has made 20 placemats in 

total. Thus, she will use more balls of yarn than she used to make only 4 placemats. 

So, to know how many balls of yarn are needed for 20 placemats, we have to imagine Grandma 

using more balls of yarn than before. 

I hope this explains the concept more simply. 
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Initially, the story proposed by ChatGPT was consistent with the problem, but in the underlined part 
of the excerpt it can be seen that there is then an error in the modelling, related to the interpretation 
of the text: “Grandma has a total of 6 balls of yarn in the pile. She takes them and makes a placemat”, 
and not four placemats. In examining the story, the teachers easily spotted the inconsistency, pointing 
out the discrepancy between the initial text of the problem and the reinterpretation made by ChatGPT 
to make its answer more appropriate to the students’ level. However, ChatGPT’s subsequent 
considerations (“we can simply imagine Grandma repeating the same process over and over until she 

has made 20 placemats”; “we have to imagine Grandma using more balls of yarn than before”) were 
correct but did not result to answer the problem. The teachers then explicitly asked ChatGPT what 
the answer was and then could verify that the error did not compromise the result. Indeed, the 
feedback was:  

If we want to know how many balls of yarn are needed to make 20 placemats, we can multiply the 

number of balls per placemat (1.5) by the number of placemats (20). So, Grandma will need 30 

balls of yarn to make 20 placemats. 

Later, at the prompt given by the teachers to point out the mistake (“You probably made a mistake. 

You told me that Grandma uses six balls of yarn to make a placemat”) ChatGPT lost his bearings, 
failing to identify the mistake and continuing to make further mistakes: 

You are right, I apologize for the inconsistency. If Grandma uses six balls of yarn to make a 

placemat, we need to recalculate the correct answer. 

If Grandma uses 6 balls of yarn to make a placemat, we can calculate how many balls of yarn are 

needed to make 20 placemats by multiplying the number of balls per placemat (6) by the number 

of placemats (20). So, Grandma will need 120 balls of yarn to make 20 placemats. Thank you for 

pointing this out. 

The following excerpts report some of the teachers’ comments to this feedback:  

A: It’s lost the track, it’s out.  

B: It thinks the error is in the last calculation made.  

C: Because it is a machine, it only gives an interpretation of natural language.  

D: You have to make the kids understand that depending on how you ask the question it can lead 

you astray and if you don’t realise the error you take it for granted. 

Discussion 
This episode shows, first of all, how thanks to this activity, teachers can realise the limits and potential 
of the used tool and acquire a specific technological competence (TK) recognising that these are alien 
intelligence (Warr et al., 2023), dissimilar from human intelligence: “Because it is a machine, it only 

gives an interpretation of natural language”. This is in tune with what Mishra and colleagues claim:  

GenAI’s vast knowledge base and its ability to work, tirelessly, with complex concepts in 
sophisticated ways, combined with its propensity to hallucinate have led some to suggest that the 
best way of thinking of these technologies is as if it were a “smart, drunk intern”. (Mishra et al., 
2023, p.8) 
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Moreover, this episode highlights the need to possess in-depth Content Knowledge (CK) to recognise 
errors made, in this case relating to the interpretation of the text and its modelling. We consider worth 
of note to emphasise that, in accordance with the TPACK Model, CK is independent of the use of 
GenAI. In fact, ChatGPT errors are also widespread among students and, as shown also by some 
recent studies (Spagnolo et al., 2024), teachers are not always able to distinguish ChatGPT’s errors 
from those made by pupils. However, to critically analyse the feedback received and recognise any 
errors made by the AI, teachers are required to develop adequate Technological Content Knowledge 
(TCK), and the proposed example demonstrates how the activity was effective in this regard: “It’s 

lost the track, it’s out”; “It thinks the error is in the last calculation made”. 

On the other hand, good pedagogical knowledge (PK) is also necessary for error to become a teaching 
resource. Here again, we consider it important to emphasise that PK does not depend on the use of 
GenAI. However, to promote discussions from errors, teachers need to develop adequate 
Technological Pedagogical Knowledge (TPK), and the proposed example demonstrates how the 
guided interaction with ChatGPT was effective in this regard: “You have to make the kids understand 

that … if you don’t realise the error you take it for granted”. 

These initial results therefore show how exploratory activities of this kind can help teachers go 
beyond statements such as “These tools inhibit the brain, they are dangerous”, according to which 
GenAI can only be a limiting factor for students’ cognitive development. With this PD intervention, 
they could enhance their TCK and TPK, which are fundamental for using GenAI critically in 
mathematics teaching. In accordance with the TPACK Model, finally, if only TCK is possessed, it 
might be difficult for the teacher to understand how to effectively integrate the use of ChatGPT with 
its potential and limits in educational practice, reducing student engagement in the learning process. 
On the other hand, without knowledge of the content, i.e. with the TPK alone, the teacher may not be 
able to assess the accuracy and relevance of the answers provided by ChatGPT and fall into error 
compromising the quality of the teaching intervention. 

Conclusions 
The motivation behind this research is the storm caused in the educational world after the launch of 
Open AI's ChatGPT. We were influenced by the workings and functioning of ChatGPT, so we were 
curious to explore our knowledge and understanding regarding it and other chatbots, like Google 
Bard AI. In particular, our focus has been on teaching, because we believe that any innovation in 
education starts with the teacher and his or her professional development. In the attempt to answer 
our research question (How could the exploration of GenAI’s potentials and limits, through the 
production of prompts and interpretation of feedback, enhance teachers’ Technological Pedagogical 
and Content Knowledge?), we developed a PD intervention with primary and lower secondary school 
teachers. We showed that exploratory activities involving the use of ChatGPT can be highly useful 
in gaining an in-depth understanding of the system’s potentialities and, consequently, developing 
technological knowledge (TK). In addition, such activities prompt the development of technological 
pedagogical knowledge (TPK) by understanding how GenAI can be effectively integrated into the 
teaching environment, exploiting ChatGPT mistakes as teaching resources. Finally, the critical 
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analysis of the feedback provided by GenAI promotes reflection on the best ways to use this 
technology in the classroom, developing teachers’ technological content knowledge (TCK).  

However, in order to effectively integrate this knowledge and move on to technological, pedagogical 
and content knowledge (TPACK), a next step involving the design, testing and analysis of specific 
teaching interventions involving GenAI is required. This process would allow teachers to develop a 
deeper understanding of the interactions between technology, pedagogy and content, facilitating the 
integration of GenAI into educational practice in an effective and meaningful way.  

We acknowledge that our discussion has some limits: it was based only on a single one-hour 
intervention, and it is not a systematic investigation. This initial experimentation does not provide us 
with results such that we can propose a definitive and structural solution to the use of GenAI in 
classroom practices, nor do we feel able to definitively extol or condemn its use for teaching purposes. 
However, it does allow us some reflections that take into account the theoretical framework adopted. 
In order to use ChatGPT effectively, as has been the case with other technologies in mathematics 
teaching, it is essential for the teacher to have a combination of Content Knowledge (CK), 
Pedagogical Knowledge (PK) and Technological Knowledge (TK). 

Without content knowledge, the teacher may not be able to assess the accuracy and relevance of 
ChatGPT’s responses to the specific learning objectives of the disciplinary content. This could 
compromise the quality of the teaching intervention, as the teacher would not be able to discern 
whether the information provided is correct or relevant. On the other hand, technological content 
knowledge allows the teacher to identify, as in the present case, where ChatGPT is wrong. This is 
where pedagogical knowledge comes in. The teacher not only needs to recognize the error but also 
to use the error as a possible resource to foster change. Through orchestrated discussions, for example, 
the teachers can provide the students with opportunities to learn by discovery, as well as new creative 
opportunities. However, for the teachers to develop adequate knowledge for proper classroom use of 
GenAI, they must be able to recognize its limitations in interpreting language. On the other hand, 
without technological knowledge, the teachers may not be able to effectively integrate ChatGPT into 
the teaching and learning process. They may lack an understanding of how to take full advantage of 
the technology’s potentialities and limits to enhance the students’ learning experience, thereby 
reducing their involvement in the educational process. 

Ultimately, a balanced combination of content knowledge, pedagogical knowledge and technological 
knowledge is essential to fully exploit the potential of tools such as ChatGPT in the educational 
environment, ensuring effective and engaging learning for students. Results show how when teachers 
are involved in formulating prompts to be given to ChatGPT and in interpreting its feedback, they 
can develop Technological Content Knowledge and Technological Pedagogical Knowledge. Further 
insight is required to deepen how teachers can be helped to integrate them and build their TPACK. 
Moreover, results call for the need to investigate if teachers who acquire proficiency in using GenAI 
in their teaching will impact their students’ proficiency in using GenAI in their learning.   
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The use of information technology, related applications, and open-source software is essential not 

only for industry and practice but also for the education purposes of future engineers and teachers. 

Mathematics plays an indispensable role in this respect, both in the form of creating a logical 

structure of algorithms in programming and in the context of developing mathematical and logical 

thinking. We describe the possibilities of using the open-source software GeoGebra and its online 

environment in the university education of future mechanical engineers and secondary school 

mathematics teachers, mentioning opportunities and pitfalls of creating virtual 3D models of straight-

line helicoids in GeoGebra and their consequent 3D printing. We present the main results of a case 

study that reflects the implementation of STEM elements in geometry education by creating virtual 

3D models in GeoGebra and their subsequent 3D printing. 

Keywords: GeoGebra; 3D models; visuospatial abilities; implementing 3D printing; straight-line helicoids. 

Introduction 
In the 21st century, we are facing a considerable surge in the development of information technology, related 
applications, and open-source software. Most people use these technologies as valuable work, learning and 
entertainment tools. To use them effectively and efficiently in their studies and to prepare students for 21st-
century work, undergraduates must also be digitally literate and understand critical concepts in computer 
science. Students must understand that computer science combines theoretical principles and application 
skills. They need to think algorithmically, in other words, to think computationally and solve problems in 
other subjects and areas of their lives (Dagiene & Stupuriene, 2016). 

Visuospatial abilities are considered to be one of the basic abilities of an individual in addition to reading, 
writing and arithmetic (Mulligan, 2015). The importance of visuospatial abilities for individuals is 
undisputed and well-documented in many studies (e.g., Battista, 1999; Molnár, 2009). Acquiring 
competencies in spatial perception, visualization, and the ability to imagine positional relationships among 
objects is by no means only valid for correctly answering a few problems related to school geometry. These 
competencies have been shown to be of fundamental value in many areas of human activities, including 
scientific thinking and industrial applications (Castro-Alonso & Uttal, 2019). Visuospatial abilities are a 
prerequisite to successfully studying all industrial technology and engineering programs (Sorby & 
Baartmans, 1996) because technical graphics and design are essential parts of the core curricula for these 
areas (MCTM, 2000). Also well-known is that the ability to imagine spatial transformations supports 
mental arithmetic operations (Hubbard et al., 2005). At the same time, it has become apparent in recent 
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years that an increasing number of students have problems visualizing a correct and appropriate image of 
a spatial object based on a plane drawing. This also applies to students in engineering degree programs at 
universities. 

Current research also indicates that targeted training can strengthen and develop visuospatial abilities (e.g., 
Uttal et al., 2013). Indeed, many studies have shown that the simultaneous use of real models and computer 
simulations leads to better development of students’ visuospatial abilities and a deeper insight into the 
subject matter (Hobson et al., 2010). To combine both areas - the use of real models and computer 
simulations, together with the active involvement of students in teaching, the possibilities of 3D printing 
can be used very effectively. Proper use of its aspects in teaching geometry leads to a better understanding 
of geometry, the development of students’ visuospatial abilities, and an increase in their mathematical and 
abstract thinking (e.g. Dilling & Witzke, 2020; Dilling & Vogler, 2021; Ng & Ye, 2022).  

The aim of this work is to analyze and exemplify the possibilities, benefits, and feasibility of using 
GeoGebra in the higher education of future mechanical engineers and secondary school mathematics 
teachers in the modeling and 3D printing of straight-line helicoids. These types of surfaces are common 
in various engineering applications and are sufficiently sophisticated to be used as a prototype for a whole 
class of content. Straight-line helicoids also cause difficulty in challenging the students’ visualization. It 
is difficult for students to form correct images of these types of surfaces or even to model them using the 
software. To increase students’ visuospatial abilities, we use the interactive virtual 3D graphical models 
created in GeoGebra simultaneously with 3D-printed models of these surfaces. 

The described and similar dynamic applets and 3D-printed models are used in teaching geometry for 
mechanical engineering students and future secondary school mathematics teachers at the Technical 
University of Liberec (TUL). This is not only to improve their visuospatial abilities but also for their 
future profession in the context of STEM. 

Virtual 3D model creation and 3D printing education at TUL 
One part of the preparation for mathematics teacher students is the course “Geometric Software”, and for 
mechanical engineering students, the course “Constructive Geometry”. The contents of these courses are 
similar. Both groups of students study the basic knowledge and principles of analytic geometry in three-
dimensional space, Monge projection, and differential geometry of curves and surfaces. Given geometry's 
small hourly allowance, other effective teaching tools are needed. Therefore, we use dynamic geometry 
software GeoGebra and 3D-printed models, especially when teaching more demanding topics, such as 
helicoidal surfaces, in the context of STEM education to develop students’ mathematical and geometrical 
competencies. Based on our experience so far, but also in several published studies, it seems that students 
develop correct ideas about, for example, different types of straight-line helicoids when they perceive 
them as manipulable 3D real models rather than only as 2D static or dynamic representations (e.g., Corum 
& Galofalo, 2015; Huleihil, 2016).  

Understanding the basic properties and principles of straight-line helicoids is difficult for mathematics 
teacher students and mechanical engineering students. This is because, in addition to a good level of spatial 
imagination, knowledge of various areas of mathematics (e.g., differential calculus of functions of one and 
two variables) and geometry (e.g., analytic geometry in space, vector functions, differential geometry of 
curves and surfaces) is required for the study of straight-line helicoids, which can be considered as complex 
spatial objects. Suppose the students can create in their imagination the correct images of the different types 
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of straight-line helicoids, their axial or normal planar cut sections, tangent planes, etc. In that case, they will 
understand much better how to proceed in their constructions and what to calculate in their calculations. 
These conclusions are based on more than twenty years of teaching experience on helicoidal surfaces at TUL.  

In addition, ten students used GeoGebra to create dynamic applets based on generated surfaces of different 
types, which are part of the shared GeoGebra Book platform (e.g., https://www.geogebra.org/m/s8wwh6fn).  
In a further step, mathematics teacher students create suitable didactic aids from virtual 3D models, which are 
printed on a 3D printer and used in the lessons as teaching aids. In this way, students acquire mathematical 
competencies and the ability to implement information technology and 3D prints in mathematics education.  

Setting 3D virtual models of straight-line helicoids in GeoGebra 
The open-source software GeoGebra has different types of object inputs. There are three possible object 
inputs suitable for setting virtual 3D models of straight-line helicoids: 

• generating virtual 3D models of helicoids by using the input command; 
• drawing objects directly either in the 2D drawing windows or in the 3D graphics window using 

the tools of the software; 
• creating 3D virtual models of helicoids by animating a straight-line or parts of it. 

In this paper, we will present our experience creating virtual 3D models of straight-line helicoids using 
their respective parametric equations. The creation of virtual 3D models of cyclic helicoids and their 
normal and axial intersections is described in Bímová & Břehovský (2023). 

The parametric equations of straight-line helicoids can generally be written in the form 

x = ρ × cos w + u × sin (φ – w) × sin ϕ, 
y = ρ × sin w + u × cos (φ – w) × sin ϕ, 

z = e × b × w + u × cos ϕ 

in which for the particular parameters, it is true that 

- u ∈ I ⊂ (– ¥, + ¥) is the parameter of u-curves (straight-lines) of the given straight-line helicoid; 
- w ∈ J ⊂ (– ¥, + ¥) is the parameter of w-curves (helices) of the straight-line helicoid; 
- φ ∈ á0, 2πñ is the magnitude of the deviation of the orthogonal projection p1 of the creating line p 

into the coordinate plane (xy) and the tangent t of the circle k at point A (while the circle k lies on 
the rotating cylindrical surface of a helix s generated by a given helical motion of the point A ∈ p);  

- ϕ ∈ á0, πñ is the magnitude of the deviation of the straight-line p and the axis z of the right-
handed Cartesian coordinate system; 

- ρ is the distance of the point A ∈ p from the axis o ≡ z of the given helical motion;  
- b is the reduced pitch of the given helical motion; 
- ε = 1 determines the right- and ε = – 1 the left-handedness of the corresponding helicoid. 

The case study was conducted in the context of Geometry Software training with ten mathematics teacher 
students in two phases. In the first phase, students created dynamic applets of virtual 3D models of straight-
line helicoids. In the second phase, these students created the files needed to 3D print the created models. 
The essence of the case study was to observe and record the work, interactions and reactions of the students, 
who can collaborate or consult each other's designs while creating the applets. The aim of the case study 
was to receive direct feedback on the proposed learning activities and to gain a framework of their 
effectiveness in teaching straight-line helicoids and their potential for developing students' visuospatial 
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abilities. Let us mention some of their reactions and comments from the first part of the case study: 
Student 1: If we link sliders with the corresponding parameters that appear in the parametric 

equations of the straight-line helicoids, they will dynamically change the parameter 
values of the particular helicoid. 

Student 2: Yes, it is true. Then, by moving the sliders of the respective parameters, the graphical 
visualization of the virtual 3D model of the straight-line helicoid in the 3D graphics 
window and the values of the parameters in the parametric equations in the 2D drawing 
window simultaneously change. 

Student 3: For which kinds of parameters should I use the sliders? There seem to be seven 
different parameters in the parametric equations. 

Student 1: Let’s link the parameters ρ, b, and ε. 
Student 3: And what about the values of the deviations, φ and ϕ? Where should I insert them? 
Student 4: It is easy, insert them into the command “Surface(<Expression>,<Expression>, 

<Expression>,<Parameter Variable 1>,<Start Value>,<End Value>,<Parameter Variable 
2>, <Start Value>,<End Value>)” as parameter variable 1 and 2 in the input line. 

Student 3: Great, thank you. 
Student 5: It is super to see how changes in the values of each parameter affect the design or shape of 

the 3D virtual model of the straight-line helicoid. I can imagine the helicoids more vividly. 
Student 6:  Let’s have a look. Setting the appropriate values of the deviations, φ and ϕ, creates 

certain types of straight-line helicoids. I have a better idea about the individual kinds 
of straight-line helicoids now. 

Student 7: That is perfect, that we can immediately see the feedback on the effect of changing the 
parameters on the type of straight-line helicoids. I can distinguish much better between the 
generating curve and the trace curve. The creation of the dynamic applet helped me a lot. 

The preview of the dynamic applet created for the right-handed orthogonal closed straight-line helicoid 
is shown in Figure 1. In this applet, the settings of each parameter are placed in the lower right corner. 

 
Figure 1: Dynamic applet of the right-handed orthogonal closed straight-line helicoid 

Generating planar intersections is helpful in some technical practices or constructions, so students are 
asked to create them in their produced dynamic applets. Although GeoGebra includes the Intersect Two 
Surfaces tool, unfortunately, this tool does not work at all for plotting axial and normal planar intersections 
of straight-line helicoids. This fact prompts students to create appropriate intersection curves in their 
minds, using their visuospatial abilities. The hint for the normal planar intersection of the oblique closed 
straight-line helicoid is shown in Figure 3 (parts a and b), and the hint for the axial planar intersection of 
the oblique open straight-line helicoid is shown in Figure 3 (parts c and d). 
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a) b) c) d) 

Figure 2: Planar intersections of right-handed oblique straight-line helicoids 

GeoGebra displays spatial constructions in its 3D graphics window, which is a two-dimensional 
representation. Students often struggle to imagine particular straight-line helicoids as physical objects 
from these 2D representations. GeoGebra contains a unique tool for creating a representation for anaglyph 
glasses to show the scene in the 3D graphics window. Using anaglyph glasses, students can view the 
generated virtual 3D models of the individual helicoids “spatially”. Figure 3 shows four different types of 
straight-line helicoids in the anaglyph version. 

    

Figure 3: Four different types of right-handed straight-line helicoids (anaglyph version)  

3D printing of models of straight-line helicoids created in GeoGebra 
Once students are familiar with creating virtual 3D models of straight-line helicoids, they can gradually 
generate the files needed to 3D print the created models. If they want to 3D print real models from the created 
virtual 3D models, they need to open the files with the virtual 3D models of straight-line helicoids in GeoGebra 
Classic 6. In this version of GeoGebra, virtual models can be saved in stereolithographic files (*.stl), which 
can be opened in software that generates files for the actual 3D printing, such as the PrusaSlicer software. 

Let us mention some comments of mathematics teacher students from the second phase of the case study 
in which they inserted the created virtual 3D models of straight-line helicoids into PrusaSlicer software: 

Student 1: Oh, I let the reference plane be visible in the file. Come here and look at what has 
happened. The supports are generated after slicing not only for the model of the 
straight-line helicoid but also for the reference plane. 

Student 2: I made a similar mistake. I let the axis of the straight-line helicoid be visible in the 
file. The axis stands on the virtual printing bed, but the model of the straight-line 
helicoid “flies in the air”. I must make corrections in the original file. 

Student 3: Is it necessary? You can cut the axis with the special PrusaSlicer software tool. 
Student 2: I think it is better to take out the axis from the helicoid model and print it separately. 
Student 4:  Do it in the PrusaSlicer. It will be quicker. 
Student 2:  I tried to do it, but it didn’t work. The model behaves as one unit. It seems that all objects 

displayed in the GeoGebra software's 3D graphics window when saving a file in *.stl format 
will be generated for 3D printing. I must make corrections in the original GeoGebra file. 

Student 5: While saving a virtual 3D model in *.stl file format in GeoGebra Classic 6, you can 
set the actual sizes of the saved model by setting one of the object dimensions 
(length, width, or height) or by selecting a conversion scale, i.e., how many cm 
actually correspond to one unit used in GeoGebra construction. It is good. 
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Student 6:  I tried to set different values of the thickness of the 3D-printed model of the straight-line 
helicoid in the corresponding floating window. It is interesting to observe how the 
generating and trace curves appear on the model and how thick or thin they are. 

Student 7:  I tried to use the organic supports, they seem to be very interesting, too. 
Students can import the created straight-line helicoid models in the format of the stereolithographic files into 
the open-source software PrusaSlicer, see Figure 4 (parts a and b), where they first slice virtual 3D models 
using the Slicing button. Slicing means dividing the model into planar layers, which are created step-by-step 
by the 3D printer during the printing process. Next, there are free spaces between the individual pitches of 
the straight-line helicoid models and parts of the straight-line helicoids with overhangs greater than 45°, so 
these free spaces and overhangs must be filled with so-called supports. The supports are mostly created 
automatically during the slicing process if this function is enabled in the PrusaSlicer software. The supports 
are green in Figure 4 (parts c and d). 
a) 

 

b) 

 

c) 

 

d) 

 

Figure 4: The virtual 3D model of a right-handed oblique closed straight-line helicoid in PrusaSlicer  

When the virtual 3D model of the corresponding straight-line helicoid is sliced in PrusaSlicer and if no errors 
are detected during slicing (the user would be alerted by an error message displayed in the lower right 
window of the software if there were any), an Export G-code button appears instead of the initially placed 
Slicing button. Pressing the Export G-code button, a *.gcode file automatically starts generating. Files of 
this format already communicate with the 3D printer. Simultaneously with the confirmation of the 
successful export, the displayed table shows the time it will take to print the model on the 3D printer and the 
weight and length of the filament used during 3D printing. 
a)   

 

b) 

 

c
) 

 

   Figure 5: The 3D-printed models of right-handed straight-line helicoids  

The 3D printing of straight-line helicoid models with a height of 14 cm and a diameter of 8 cm takes about 
12 hours. Therefore, we print a scaled-down model during class so that students can set up the 3D printer 
and observe the printing process. Figure 5 shows the 3D printing process of the oblique closed straight-
line helicoid model (part a), the 3D-printed models of four different types of straight-line helicoids 
together with the printed supports (part b), and the 3D models after removing the supports (part c).  

Conclusion 

Our aim was to show that and how GeoGebra and 3D printing can be used. We see many benefits for both 
students and educators in implementing 3D printing and shared virtual environments in preparing future 
mathematics teachers and mechanical engineering students. One possible shared virtual environment is the 
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GeoGebra online environment. Some of the benefits include the GeoGebra Books and Classrooms online 
environments that students can share and benefit from on their mobile devices, laptops, and computers.  
Another advantage of GeoGebra is the possibility to create files in the stereolithographic format, which are 
the base files for subsequent 3D printing settings of the created virtual models. These 3D-printed models 
are didactic tools for “learning by doing”.  

The findings about increases of students’ interest in the subject, thus increasing their motivation and teaching 
effectiveness, as shown by Gebre (2014), support the demand for implementing 3D printing. The results of 
the case study tentatively confirm the high potential of using GeoGebra and 3D printing both in teaching 
straight-line helicoids and in raising the level of students' visuospatial abilities. A high level of student 
motivation to solve the given problems was also observed in the case study. This, together with feedback 
from student surveys that have been regularly conducted at TUL for several years at the end of each 
semester, is in line with Gebre’s position.  

Last, developing students’ mathematical competencies in a STEM context is essential for technical 
disciplines and future mathematics teachers, who contribute significantly to students’ STEM education. 
Therefore, it is necessary to work on mathematically challenging content that allows students to experience 
essential working methods and ways of thinking in mathematics and has links to applications in everyday 
life and other sciences. The example we have chosen with the link to the Archimedean serpentine, for 
example, is very suitable in this sense. 

We have long studied the possibility of using 3D printing in mathematics education (creation of virtual 
models, software preparation for the actual printing, and use of the printed 3D models). Our goal is to create 
a concept that will significantly contribute to developing students’ visuospatial abilities and increase their 
skills to use these technologies in practice. We work on the design and implementation of experiments to 
test our hypotheses. In this context, we are preparing a paper for CERME14 that will analyze and discuss 
the data obtained from our validations. 
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Love is a mathematical journey: Memes as metaphors to unveil 
students’ emotions and identity in the mathematics classroom 

Giulia Bini 

Department of Mathematics, University of Milan, Italy; giuliagiovanna.bini@unimi.it 

In today's digital culture, memes play a significant role in communication, impacting collective 

identities and emotions. This study explores the educational value of mathematical memes and their 

effect on secondary students’ identities, emotions, and engagement in mathematics. Using Lakoff's 

framework of metaphors, it examines how students participate in the creation of mathematical memes 

and the implications of the activity for emotional responses and identity formation. Data from a 

mathematical meme tournament show a connection between students' emotional responses and their 

mathematical interpretations. This suggests that mathematical memes can intercept the interplay 

between emotions and cultural frameworks to provide students with meaningful learning experiences. 

Keywords: Emotion, Identity, Mathematical memes, Metaphors, Online learning 

Introduction and rationale: Memes, emotions, and identity 
In contemporary digital culture, memes have emerged as a ubiquitous form of communication, 
comprising images, videos, or text that convey humour or cultural commentary (Shifman, 2014). The 
social studies literature widely acknowledges memes' influence on the formation and expression of 
collective identities (Shifman, 2014), as well as their ability to evoke emotions (Jenkins et al., 2013). 
Indeed, memes are perceived as a shared language within online communities constituting the 
memeshpere, and their appeal is directly linked to their relatability in terms of shared emotions. 

In mathematics education research, scholars agree on the role of emotions and identity to shape 
students' learning (Radford, 2015; Boaler, 2002; 2016). Specifically, Boaler (2002) emphasizes that 
knowledge is not static but rather co-constructed by learners, their interactions, and situational factors. 
In classrooms where students are passive recipients of knowledge, they ultimately became disaffected 
with mathematics due to pedagogical practices that did not align with their desires for expression and 
agency. Conversely, by inviting students to contribute their own thoughts and ideas to the 
mathematical discourse, educators empower learners to take ownership of their learning, countering 
disengagement observed in passive learning settings. 

Focussing on the significance of memes for maths teaching, research in mathematics education agrees 
that memes offer opportunities to explore a unique crossing of mathematical concepts and digital 
culture (Abrams, 2021; Bini et al., 2022; Mutua & Mwangi, 2023). Mathematical memes use humour 
and visual imagery to convey mathematical ideas (Bini et al., 2023): they employ mathematical 
symbols or terminology in unexpected contexts, making complex mathematical concepts more 
accessible and engaging, and provide a bridge between students' spontaneous discourse and the 
language of mathematics, facilitating a deeper understanding of mathematical concepts. Moreover, 
the interactive nature of meme creation and sharing platforms fosters students’ agency, collaboration, 
and participation, enhancing engagement in the mathematics classroom. Building on these premises, 
this study aims to investigate the educational benefits of mathematical memes and their impact on 
students' engagement in learning mathematics. Specifically, the study moves from the hypothesis that 
involving students in mathematical meme creation activities can uncover the emotions associated 
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with mathematics and provide educators with valuable insights into students' experiences, identity, 
and self-positioning with respect to mathematics. 

Theoretical background: Memes as multimodal metaphors 
Language metaphors, as described by Lakoff are “mappings across conceptual domains” (1993, p. 
39), serving as cognitive tools that bridge abstract concepts with tangible experiences. These verbal 
tools provide individuals with a lens to perceive and comprehend the world (Lakoff, 1993; Lakoff & 
Johnson, 2008). By mapping abstract domains onto concrete experiences, metaphors offer 
frameworks for understanding complex phenomena, shedding light on how individuals navigate their 
lived experiences. Examining metaphors involves studying the linguistic choices that guides the 
recognition of cross-domain mappings as sets of “ontological correspondences between entities in a 
source domain and entities in a target domain” (Lakoff, 1993, p. 26). The epitomising example is the 
metaphor "love is a journey", from which the present study derives its title, revealing its intricate 
layers of meaning, portraying romantic relationships as dynamic adventures (Lakoff, 1993; Lakoff & 
Johnson, 2008). This metaphor captures the evolving nature of love, suggesting shared aspirations 
and destinations that couples navigate together, mirroring the complexities of real-life relationships. 
Besides Lakoff’s language metaphors, visual metaphors are also recognized as powerful cognitive 
tools. In mathematics education, visual metaphors are acknowledged as means to guide the reasoning 
process, helping students to move beyond sensory perceptions to logical generalizations, essential in 
mathematics. Presmeg, (1995) underlines the imaginative aspects of reason, including metaphor and 
mental imagery, considered crucial for meaning-making and reasoning, and Rolka (2005) highlights 
the potential of metaphorical mages to elicit students’ beliefs about mathematics. 

Memes have been interpreted as multimodal metaphors: having both a verbal and a visual nature, 
they harness the cognitive strength of both linguistic and visual metaphorical mapping (Scott, 2021), 
Memes’ metaphorical meaning can be unpacked using a semiotic tool known as the Triple-S construct 
(Bini et al., 2023). According to this construct, the full meaning of a mathematical meme, which 
corresponds to a mathematical statement, is constructed by combining three layers of partial 
meanings: a social meaning carried by the image, following conventions established in the 
memesphere; a structural meaning carried by the compositional arrangement of the meme; and a 
specialised meaning carried by topic-specific information in the template or in user’s additions. 

Given these premises, the study is guided by the following research question: How does the 
metaphorical interpretation of mathematical memes created by students shed light on their emotional 
responses and identity formation in the mathematics classroom? 

Methodology and methods 
Data for the study come from the 2021/22 edition of MathMemeThon, an annual online mathematical 
memes tournament designed by the author during the 2020 Covid-induced online learning period 
(Bini, 2022). In this competition, students team and compete creating memes on mathematical topics 
across successive rounds: an elimination match, a semifinal, and a final. The goal is to promote the 
re-elaboration and systematization of known mathematical topics, with each round focusing on 
different topics chosen by teachers. To institutionalise the activity and support formative assessment, 
teams present their memes and mathematical content to a jury, who scores the memes on 
mathematical and memetic quality and presentation accuracy. Each round includes an hour for meme 
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creation (offline) and time for online presentations. Memes are created using Imgflip 
(https://imgflip.com/memegenerator) and shared on Padlet boards allowing reactions 
(https://padlet.com/), and are subsequently published on Instagram @lifeonmath. 

MathMemeThon 2022 took place from March to May, involving 8 class groups of 12th-grade 
students (about 120 students) and 4 teachers from a technical secondary school in Turin, Italy. 
Students were divided into teams of four, either self-formed or assigned by teachers. The jury 
included the teachers, the author, two mathematics master's students, and one PhD student. Online 
sessions were held on Webex, recorded, and transcribed. During the tournament, classes tackled 
calculus topics: functions, limits, and derivatives. 

This study will focus on four girls from the same class group, who teamed up spontaneously and 
named themselves “the romantic ones”. Their work is noteworthy for two reasons: it has a deep and 
correct mathematical content, which allowed them to make it to the final, and it reveals a consistent 
emotional response to the different mathematical topics proposed by the teachers. Memes are 
analysed using the Triple-S construct; transcribed sessions are analysed using a qualitative 
methodology and interpretative approach as outlined by Cohen et al. (2007), focussed on eliciting the 
metaphorical implication of the girls’ productions in terms of emotions and identity formation. 

Data and analysis 
This paragraph presents the romantic girls’ team production and excerpts from their presentations. 
Figure 1 shows the memes created in the three tournament rounds: elimination match (left) on the 
topic of functions, semifinal (centre) on the topic of limits and final (right), on the topic of derivatives. 
To maintain the freshness of the memes, the original versions are presented here, added Italian text 
is translated in the 'Structural meaning' row of Table 1, which presents the partial and full meanings 
of the romantic girls’ memes according to the Triple-S construct (Bini et al., 2023). 

 

 
Figure 1: Romantic girls’ team mathematical memes 
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Table 1: Partial and full meanings of the romantic girls’ memes 

Partial and full 
meanings of the memes 

Elimination match 
Template: 

Drakeposting7 

Semifinal Template: 
Lisa Simpson's 

Presentation8 

Final 
Template: 

Kombucha Girl9 

Social meaning (from 
the online 
encyclopaedia 
KnowYourMeme) 

Contrasting reactions 
implying a 
preference between 
two choices 

Humorous or ironic 
depictions of factual 
evidence  

Evolution from disgust 
to approval of 
something 

Structural meaning Two-pane 
(horizontal) texts are 
added in two lateral 
lines 
 

• Top line: I 
love you to infinity 
and beyond 
• Bottom line: I 
love you Lim

'→)
4* 

Exploitable: elements 
are added on the board 
and as top/bottom 
texts 
 

• On the board: 
5 = &

'
 graph 

• Top text: when 
crush smiles at you 
• Bottom text: 
but then tells you that 
you're just a friend 

Two-pane (vertical) 
elements are added 
above and onto the 
images 

• Left text: love 
is not beautiful  
• Right text: if 
it's not quarrelsome 
• Left addition:  
5 = 3 and sketch of the 
behaviour 
• Right addition: 
5 = −24+ − 34, +
24*	and sketch of the 
behaviour 

Specialised meaning Functions’ limits Functions’ asymptotes Functions’ increasing, 
decreasing and 
stationary behaviour 

Full meaning 9:;
'→)

4* = ∞ The function 5 = &

'
	 

has a horizontal and a 
vertical asymptote 

5 = 3 is a flat function, 
while 5 = −24+ −
34, + 24* is a curved 
function with maxima 
and minima 

The first thing to note is that meme creators do not have access to functional maths editors. On the 
one hand, this might contaminate the representation in the symbolic register; but on the other hand, 
it offers a rich potential for discussing on mediating the writing of mathematical content in an era 
dominated by images. Then, some cultural-situated comments are due to fully understand the final 
meme: the text “L’amore non è bello se non è litigarello” corresponds to an Italian proverb, translated 
in Table 1 as "Love is not beautiful if it is not quarrelsome”, a popularised version of Shakespeare’s 
“The course of true love never did run smooth" (A Midsummer Night's Dream). The graphical 
additions in the meme (horizontal and zig-zag lines) should not be read as the graph of the functions 
5 = 3 and 5 = −24+ − 34, + 24*. Instead, they sketch the behaviours of the functions as inferred 

 
7 https://knowyourmeme.com/memes/drakeposting 
8 https://knowyourmeme.com/memes/lisa-simpsons-presentation 
9 https://knowyourmeme.com/memes/kombucha-girl-trying-kombucha-for-the-first-time 
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from the sign of the derivative. In the experiment cultural context, slanted segments complement the 
derivative sign chart: upward segments for increasing intervals and downward for decreasing ones. 

An initial examination of the memes created by the romantic girls reveals a recurring theme: they 
identify themselves as "the romantic ones" and consistently interpret their reality through this 
emotional perspective, even when tasked with mathematical assignments. Indeed, other mathematical 
memes created during the tournament also exhibit emotional elements, but these emotions stem 
directly from the students’ experience of doing mathematics. The Two Buttons meme, created by 
another team in the elimination match (Figure 2), illustrates the authors' confusion when handling 
infinity and indeterminate forms (F.I. in the meme text, the representation of infinities addition is also 
a customary notation in the experiment cultural context). 

 

 
Figure 2: Two Buttons mathematical meme 

The difference is that the emotion in the meme in Figure 2 arises and concludes within the context of 
the authors’ mathematical experience, whereas the emotions exhibited by the romantic girls’ memes 
in Figure 1 originate from a different realm and are projected onto the girls’ mathematical experience. 

The interweaved mathematical and emotional contents of the romantic girls’ memes are further 
developed in their presentations during the tournament rounds. In the following excerpts, Student 
indicates the romantic girls’ team spokesperson. 

Elimination match (Figure 1, left): Functions 
Student We are very romantic girls, and in addition to love, we are rational. Therefore, 

above, we have represented what a normal, unoriginal guy would say to us, and 
below, we have represented what a guy who would win our heart would say. It's 
very simple, very clear; a good mathematician knows that x2 goes to plus infinity, 
so "ti amo" (I love you) goes to infinity and beyond. 

Due to time constraints in the elimination match, teams had only a brief window to present their 
memes. Nonetheless, the romantic girls used this short timeframe to declare their identities, 
emphasizing that their romantic inclinations do not overshadow their rationality (we are rational). 
Coherently, they label as unoriginal the guy who simply says I love you, while connecting 
mathematical proficiency with the ideal suitor. They attribute an emotionally resonant (and 
mathematically correct) interpretation to 9:;

'→)
4* = ∞, describing it as the mathematical 
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representation of the intensity of the lover’s feelings. This can be interpreted as a metaphorical 
mapping of the intensity of the romantic feeling onto the functions’ limits. 

Semifinal (Figure 1, centre): Limits 
Student We are always the romantic ones. This time too, we decided to tackle the theme of 

love. However, this time, unfortunately, it's a bit negative. Our meme says, "when 
crush smiles at you but then tells you that you're just a friend." For those who don't 
know, "crush" is the infatuation, and precisely "just a friend" means entering the 
full friendzone. Entering the friendzone means being perceived as a friend when 
you want more. So, our meme is clear: we represented the function 1/x by solving 
it, finding its domain and limits. Now, as my colleague is writing, finding the 
domain, and calculating the limit at infinity and the limit at zero, in both cases, 
vertical and horizontal asymptotes are obtained. It means that we have asymptotes 
that will never touch the function; I don't know if I explained myself well. 

Author I'm missing the connection between the concept of friendzone and the asymptote: 
it's clear to me, but I would like you to explain it more explicitly. 

Student The concept is that the asymptote always gets close to the function, but it will never 
touch it. 

Author Which one is the crush? The function or the asymptote? 
Student The asymptote… 

During the semifinal, teams had a longer timeframe to present their memes. The romantic girls 
explained their meme’s mathematical meaning, drawing attention to the domain of the function 5 =
&

'
	, its graph and asymptotical behaviour at infinity and around x=0. They discussed both the 

mathematical content and the language used, explaining terms such as crush (in English also in the 
original Italian text) and friendzone (also in English in the presentation), thus performing a 
metaphorical mapping between the challenge of pursuing unreciprocated love and the behaviour of a 
function approaching its asymptote without reaching it. 

Final (Figure 1, right): Derivatives 
Student So, um, we are always the team of romantic girls. […] We wanted to represent love 

through derivatives. You can see that this girl on the left is not very convinced, in 
fact, the derivative is constant, and it says above that "love is not beautiful," and 
then it says "if it's not quarrelsome", and she's a bit more convinced because the 
relationship is a bit livelier, a bit more fun. In fact, in the derivatives, we find two 
maxima and one minimum, while the other one, which is a derivative of a constant, 
is flat, and so, love is monotonous. 

In the final match the girls explained their meme connecting the behaviour of a function to the 
liveliness of love life (we wanted to represent love through derivatives). Thus, they choose a constant 
function (5 = 3) to represent a flat and uneventful love life, and a polynomial function with extrema 
(5 = −24+ − 34, + 24*)	to represent a livelier and captivating romance. In their presentation, they 
show to have a clear understanding of how derivatives can be used to determine a function’s 
behaviour and extrema. Thus, the meme encapsulates the behaviour of functions across three distinct 
semiotic modalities: analytical (the functions themselves), graphical (the slanted segments sketch) 
and verbal (the metaphorical interpretation of the function increasing or decreasing trend). 

Results and conclusion 
A metaphorical mapping across conceptual domains can be now performed, based on the romantic 
girls’ pictorial and lexical choices. We can ask: did these girls use mathematics to understand love or 
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vice versa? The girls’ explanations clearly show that they mapped their own love experience into the 
mathematical realm: thus, for them, love is the source domain and mathematics is the target domain. 

Table 2: Mathematics as Love metaphorical mapping 

Meme Source domain: Love Target domain: Mathematics 

Elimination 
match 

Intensity of the romantic 
feeling 

Functions’ limits 

Semifinal Unreciprocated love Asymptotical behaviour 

Final Love life Increasing or decreasing behaviour of a 
function 

Final Good and bad love moments Maxima and minima of a function 

Metaphors bridge the gap between the known and the unknown, facilitating a deeper and more 
intuitive grasp of abstract ideas. They are cognitive tools that connect intangible concepts with 
tangible experiences, supporting meaning-making and reasoning (Presmeg, 1995). Lakoff (1993) 
explained how the linguistic metaphor of a physical journey provides verbal tools to describe the 
abstract feeling of love. Similarly, mathematical memes as multimodal metaphors provided the 
romantic girls with language and pictorial tools to bridge the abstract feeling of love to their 
perceptions of mathematical ideas. This process involved an ontological mapping from the source 
domain of love to the target domain of mathematics. In Lakoff’s study, the cognitive process 
leveraged a metaphorical mapping from the concreteness of a physical journey to the abstractness of 
love. For the girls, both domains (love and mathematics) are abstract, but love is closer to their 
experiences, making it feel more concrete. The metaphorical power of these mappings offered 
frameworks for conceptualizing mathematical ideas like limits, asymptotes, or derivatives by linking 
them to vivid personal experiences, evoking emotions, stimulating imagination, and encouraging the 
exploration of mathematical concepts from different angles. 

We cannot assume that memes support a deeper understanding of mathematics, but we can infer that 
they can promote creative thinking, enabling students to contribute to discussions, take ownership of 
their learning journeys, and actively engage with the discipline of mathematics (Boaler, 2002). 
Despite the study's inherent limitations, it is evident that this activity allowed students to project their 
emotions and identity onto a mathematical context, making the concepts as memorable as the 
emotions they represented. The class teacher corroborated this, noting increased engagement among 
students—a rare phenomenon in technical schools where mathematics is often perceived as 
disconnected from students' lives and devoid of personal relevance10. 
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10 Did the romantic girls win the tournament? Spoiler: they did not, but you can see the winner on Instagram @lifeonmath 



                          Proceedings of the 17th ERME Topic Conference MEDA4, 3-6 September 2024, Bari, Italy                          ISBN 978-88-6629-080-3

  
112 

References 
Abrams, S. S. (2021). Reimagining Numeracies: Empowered, Game-Informed Meaning Making in and beyond 

the Pandemic Era. Language and Literacy, 23(2), 16–31. https://doi.org/10.20360/langandlit29551 
Bini, G. (2022). MathMemeThon: How mathematical memes bring teachers and students together during 

Italy’s pandemic lockdown. In Hodgen, J., Geraniou, E., Bolondi,G. & Ferretti, F. (Eds.) Proceedings of 
the Twelfth Congress of the European Society for Research in Mathematics Education (CERME12) (pp. 
2512–2513). Free University of Bozen-Bolzano and ERME. https://hal.science/hal-03748308  

Bini, G., Bikner-Ahsbahs, A. & Robutti, O. (2023). “How to meme it”: reverse engineering the creative process 
of mathematical Internet memes. Educational Studies in Mathematics 112(1), 141–174. 
https://doi.org/10.1007/s10649-022-10173-1 

Boaler, J. (2002). The development of disciplinary relationships: Knowledge, practice and identity in 
mathematics classrooms. For the Learning of Mathematics, 22(1), 42–47. 
https://www.jstor.org/stable/40248383 

Boaler, J. (2016). Designing mathematics classes to promote equity and engagement. The Journal of 
Mathematical Behavior, 41, 172–178. https://doi.org/10.1016/j.jmathb.2015.01.002 

Cohen, L., Lawrence, M., & Keith, M. (2007). Research Methods in Education. 6th Edition. Taylor and Francis 
Group. 

Jenkins, H., Ford, S., & Green, J. (2013). Spreadable media: creating value and meaning in a networked 
culture. New York University Press. https://www.jstor.org/stable/j.ctt9qfk6w  

Lakoff, G. (1993). The contemporary theory of metaphor. In A. Ortony (Ed.), Metaphor and thought (2nd ed., 
pp. 202–251). Cambridge University Press. https://doi.org/10.1017/CBO9781139173865.013 

Lakoff, G., & Johnson, M. (2008). Metaphors we live by. University of Chicago Press. 
Mutua, D. M., & Mwangi, W. (2023). Multimedia Integration of Mathematical Internet Memes into 

Mathematics Classrooms in Secondary School Curriculum. International Journal of Membrane Science 
and Technology, 10(1), 973–987. https://doi.org/10.15379/ijmst.v10i1.2691  

Presmeg, N. C. (1992). Prototypes, metaphors, metonymies, and imaginative rationality in high school 
mathematics. Educational Studies in Mathematics, 23(6), 595–610. https://doi.org/10.1007/BF00540062 

Radford, L. (2015). Of Love, Frustration, and Mathematics: A Cultural-Historical Approach to Emotions in 
Mathematics Teaching and Learning. In B. Pepin & B. Roesken-Winter (Eds.), From beliefs to dynamic 
affect systems in mathematics education (pp. 45–66). Advances in Mathematics Education. Springer. 
https://doi.org/10.1007/978-3-319-06808-4_2 

Rolka, K., & Bulmer, M. (2005). Picturing student beliefs in statistics. ZDM, 37(5), 412–417. 
https://doi.org/10.1007/s11858-005-0030-4 

Scott, K. (2021). Memes as multimodal metaphors: A relevance theory analysis. Pragmatics & Cognition, 
28(2), 277–298. https://doi.org/10.1075/pc.21010.sco  

Shifman, L. (2014). Memes in digital culture. MIT press.



 

 

Proceedings of the 17th ERME Topic Conference MEDA4, 3-6 September 2024, Bari, Italy                      ISBN 978-88-6629-080-3 

  
113 

Teaching the derivative using arrow graphs in GeoGebra 
Rogier Bos and Laura Brinks 
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Teaching the derivative is usually supported by the visual context of graphs and tangent lines. 

However, this geometric meaning-making is somewhat indirect, hard to grasp for students, and easily 

forgotten. We report on the first cycle of a design-based study in which we introduce arrow graphs 

as an additional geometric context to provide meaning to the instantaneous rate of change as an 

enlargement factor with respect to a local focus. We outline a learning trajectory deploying 

interactive dynamic visualizations designed in GeoGebra. Our results show the challenges of this 

approach and suggest several ways in which the design can be improved for the next design cycle.  

Keywords: calculus education, arrow graphs, dynamic geometry environment. 

The derivative is usually introduced geometrically as the slope of the tangent line to the curve. Though 
this supports a meaningful image of the concept, we believe it is not the optimal picture for 
understanding the derivative as an instantaneous rate of change. Consider a closed vat with an ideal 
gas with a valve that controls the pressure. The volume can be described as a function of the pressure 
=(>) = -

.
. The derivative =/(>) = − -

."
 expresses the sensitivity of volume as a function of the 

pressure, e.g., when pressure is low, the impact on the volume of an increase is large and negative. 
This is observable as the slope of the graph of = is steep and negative for small values of >. However, 
the sense of rate is not so easily associated with steepness. We hypothesize that the sense of rate may 
come more naturally in the context of enlargement.  

 
Figure 1. Left: an arrow graph for !(#) = #!. Right: an arrow graph for &(#) = '# − ) with a focus  

In recent work, Wei and collaborators studied how to promote functional thinking using arrow 
graphs—also known as the parallel axes representations or nomograms (Wei et al., 2024)—which 
were previously studied by Nachmias and Arcavi (1990). In an arrow graph, a function is represented 
as a family of arrows from input values to corresponding output values (see Figure 1). Arcavi pointed 
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out that linear functions correspond to arrow graphs where the arrows intersect at one point—when 
needed the arrows are extended to a line. This point is called the focus. When the rate of change 
equals 1, the focus is “at infinity” and the arrows are parallel.  

As a consequence, the rate of change for a linear function can be interpreted geometrically as an 
enlargement factor in the arrow graph. An interval on the input axis is enlarged to an interval on the 
output axis with respect to the focus (see Figure 2, left). The rate of change corresponds precisely to 
the enlargement factor. The main aim of our study is to investigate whether teaching this new 
geometric interpretation of rate of change, in addition to the usual one as slope, supports students’ 
sense-making.  

             
Figure 2. Left: The rate of change of !(#) = *# − ' equals the enlargement factor 

"#
"$ = * of the 

interval [,, )] to [−',−)] with respect to the focus / in the arrow graph. Right: the circle as an 

emerging enveloping curve for the function &(#) = %
$ in the arrow graph. 

More generally, the derivative of a function can be interpreted in its arrow graph. Whenever one 
considers the arrow graph of non-linear functions certain enveloping curves emerge in the picture 
(see Figure 2, right). These curves turn out to be related to the derivative in a surprising way, that we 
explain in a moment. A function is differentiable only if it is locally linear. In the graph, this means 
that around a point ?@, ,(@)A,	it can be approximated (in a certain technical sense) by a line, called 
the tangent line. Alternatively, in the arrow graph, this means that on a small interval around @ on the 
input axis, the arrows intersect approximately at one point. The smaller the interval the sharper the 
point emerges, and the associated limit point we call the local focus (see Figure 3). The value of the 
derivative ,′(@) can be interpreted as the enlargement factor associated with this local focus. By 
construction, the local focuses form the mentioned enveloping curve. Our aim extends to studying 
how to teach the instantaneous rate of change and derivative using the arrow graph in this way. 

Drawing arrow graphs by hand is a time-consuming endeavor. In GeoGebra, we find suitable software 
to outsource this to. Moreover, the dynamic features of GeoGebra allow us to vary the function, the 
number of arrows, and covary information across multiple representations: the graph, the arrow 
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graph, and the equation describing the function. In this design study, we are interested in how the 
dynamic features of GeoGebra in our lesson design can contribute to the students’ learning.  

 
Figure 3. Arrows on a small enough interval approximately intersect in a local focus  

This paper reports primarily on our original teaching designs, and also on the findings of a small pilot 
study, of the first cycle of a design-based research. We briefly review some literature on learning 
about derivatives, and on connecting multiple representations (including the arrow graph) using 
digital technology. Then we introduce the intervention consisting of two modules of approximately 
one hour. Finally, we present and reflect on the result of an implementation in a 10th-degree pre-
university class.   

Theoretical background 

Students are usually supported in making sense of the instantaneous rate of change 
lim
∆'→1

2(45∆')"2(4)

∆'
	for a function , at 4 = @ by providing a geometric interpretation as the slope of the 

tangent line to the graph of the function at the point ?@, ,(@)A. However, many students have 
difficulty connecting such geometric and symbolic notions, in particular grasping the limit procedure 
involved (Orton, 1983). Indeed, using an open, inquiry-based task, Bos et al. (2019) showed that 
students rather think about tangent lines and the derivative in ways not involving the limit of secant 
lines. As explained in the introduction, this paper develops another geometric approach, where the 
limit is geometrically interpreted as a local focus becoming more sharply defined as the interval 
shrinks. 

Teaching sequences in dynamic geometry environments for the (instantaneous) rate of change and 
the tangent line were proposed, amongst others, by Biza et al. (2007) in CalGeo, and by Hohenwater 
et al. (2008) in GeoGebra. On the one hand, these sequences involve the task of zooming in on a 
graph to observe how a differentiable function is locally linear. This supports the fundamental insight 
that the graph of such a function can be approximated by the tangent line and hence the function by 
a linear function. On the other hand, given a point " on a graph, students are invited to move a second 
point D on the curve towards point ", such that the secant line "D approximates the tangent line at 
". By showing the covarying values of the coordinates, ∆4, ∆5, and the difference quotient, students 
gain insight in the limit process that constitutes the differential quotient.      

We propose a new approach to teaching these concepts in a dynamic geometry environment, 
introducing an additional representation: the arrow graph. This approach was inspired on Zandieh’s 
theoretical framework for the concept of the derivative, as is explained in the second author’s master 
thesis (Brinks, 2024). We pose the following research question: how can interactive tasks in 
GeoGebra, with a central role for the arrow graphs, promote the meaning-making of the derivative? 
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Method 
The intervention consisted of two modules: the first focusing on arrow graphs of linear functions, and 
the second on the interpretation of the derivative in arrow graphs; moving from the linear situation 
with a focus to the locally linear situation with a local focus. The first module began by revising linear 
functions and their graphs, which were considered pre-knowledge. Next, arrow graphs were 
introduced.  

Let us highlight two tasks aimed at connecting three representations of linear functions: the arrow 
graph, the graph, and an equation. In task 1.4a (see Figure 4), students vary the parameters of a linear 
function by dragging the focus (the red point on the left). Simultaneously, students can observe how 
the graph (the green line on the right) and the equation (top right) respond to their hand movement. 
In the arrow graph in pink an interval of size 1 is indicated on the input axis, together with its image 
and its size on the output axis. This is shown to invite students to connect the size of the enlarged 
interval to the rate of change in the equation, which in turn expresses the slope of the line, hence 
providing sense to the rate of change in the arrow graph representation. Later tasks allow students to 
discover how vertical movement of the focus leaves this number unchanged, whereas horizontal 
movement does impact it.  

 
Figure 4. Task 1.4a: Connect the enlargement factor associated with the focus of the arrow graph to 

the slope of the graph. 

In task 1.4b students again move the focus (see Figure 5), but now the distance to the input axis is 
indicated by an orange dashed line and the distance to the output axis by a blue line. Whereas in the 
previous task, the connection between the rate of change and the shown information in the arrow 
graph was direct, in this task students need to realize that dividing the distance to the output axis by 
the distance to the input axis is another way to compute the enlargement factor, that is, the rate of 
change. In later tasks, students explore in more depth how the sign and size of the rate of change are 
determined by the horizontal position of the focus. For example, when the focus is between the axes 
the rate of change is negative and otherwise positive. The way linear behavior presents itself in three 
ways in three different representations is summarized in Table 1, which was part of a theoretical 
section of the learning materials. 
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Figure 5. Task 1.4b: Connect the distances of the focus to the vertical axes in the arrow graph to the 

rate of change in the equation 

Table 1. The relation of linear behavior in three representations 

Equation: 5 = @	4 + F Graph: line Arrow graph: has focus 

@ is the rate of change @ equals the slope of the line @ is the enlargement factor 

F is the initial value  F  equals the 5-coordinate of 
the intersection with the 5-axis 

F is the output for input 0. 

 

In the second module attention shifts to non-linear functions and local focuses. We highlight three 
tasks. A central insight is developed in task 2.5 (see Figure 6). Students drag a slider to make the 
interval where the arrows are drawn smaller and smaller. As the interval shrinks, the local focus 
becomes more sharply delineated, as in Figure 3. This way students experience how local linearity is 
presented in an arrow graph. This is addressed in detail in a later theoretical section that also contains 
Table 2. Generally, the hypothesis is that connecting the three representations, offering three 
perspectives and their relation, supports students to make sense of the underlying concepts. 

Table 2. The relation of local linear behavior in three representations 

The function is 
differentiable in 4 = @  

The graph is locally linear 
at ?@, ,(@)A 

The arrow graph has a local focus 
where the line through @ → ,(@) 
intersects the enveloping curve 

Instantaneous rate of 
change lim

∆'→1

2(45∆')"2(4)

∆'
  

Slope of the tangent line 

at ?@, ,(@)A 
The enlargement factor, e.g., 

789:;<	<87>?:@;	AB@?A	CB@D7	>B	8:ED>	?F87

789:;<	<87>?:@;	AB@?A	CB@D7	>B	BD>ED>	?F87
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Figure 6. Task 2.5: Sliding makes the interval smaller so the local focus comes into focus 

Some of the tasks in module 2 have the context of a falling object, for example, task 2.6 (see Figure 
7). In task 2.6, students are invited to estimate the speed of the object after 2 seconds of falling. 
Students can drag two points on the input axis of the arrow graph on the left. The corresponding 
points and intervals in the graph on the right covary, as do the numbers in the arrow graph and in the 
division on the left. The goal is again to create a more intimate link between the two representations, 
combining the data needed for this computation from both graphs. In both Task 2.5 and Task 2.6, 
students manually perform part of the limit procedure, which helps them ground this essential step in 
the genesis of the derivative concept in a sensorimotor experience. 

 
Figure 7. Task 2.6: students drag the edge points of the interval to find a good approximation of the 
speed after 2 seconds, with covarying information in the division on the left and graph on the right 

Task 2.9 invited students to drag a point on the input value (see Figure 8). Simultaneously, the arrows 
(and lines through these arrows) through this point and through a point a little higher are drawn. The 
intersection point of these lines is an approximation of the local focus. GeoGebra is set to leave a 
trace of this intersection point.  Hence, students can see an approximation of the enveloping curve 
light up in green.    
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Figure 8. Task 2.9: dragging the input point gives a trace of approximate local foci  

The two modules were piloted in a grade 10 class with 25 students in a social science pre-university 
stream. Students were allowed to collaborate. The data for this study are the answers students wrote 
in the answer boxes in GeoGebra. Answers were grouped for similarity and analyzed to see how 
performing the tasks contributed to making sense of the concepts of (instantaneous) rate of change.  

Results and conclusions 

We present two main conclusions, with supporting results. Firstly, we conclude that, for social science 
stream students, learning to work with arrow graphs and their relation to graphs and functions is 
challenging. This is evidenced by responses to Task 1.4b, where only 7 out of 25 students realized 
the slope is obtained by dividing the presented distances to the axes. The other responses to the task 
range from correct but superficial observations to having no clue. We found that ideas from graphs 
can be persistently incorrectly transferred. At the beginning of module 2, when asked why an arrow 
graph represented a linear function, only three students mentioned the presence of a focus, whereas 
many more said that “the lines [of the arrow graph] are straight” or “the arrows are straight lines”.  
Also, at task 2.6, even though many students managed to compute average rates of change, the 
transition to the instantaneous rate was mostly not understood, witnessed by only four correct 
computations. In task 2.9, no one managed to compute the instantaneous rate of change using the 
local focus. Only three students realized that the traced point was approximately the local focus. We 
see that these concepts and associated procedures are problematic, even when visually supported by 
arrow graphs. However, the types of tasks and the time spent per subject could also be better adapted 
to the students in the social science stream, who are generally less proficient at mathematics than 
those in the natural science stream.  

Secondly, we conclude that the tasks should be redesigned, in particular, to make conceptual learning 
more visible. This would benefit conceptual discussions between students and between students and 
teachers, but also facilitate our analysis as researchers. In task 1.4a all students correctly observe that 
the pink number indicating the size of the interval on the output axis equals the slope in the graph. 
However, because of the task design, students have no opportunity to show that they understand why 
this is the case. A similar case appears in task 2.7, where some students have correct computations, 
but the task setting offers no means to establish whether these are accompanied by insight. Finally, 
some tasks should be redesigned to support improved insight. For example, in task 2.5 only two 
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students observe that the local focus appears, whereas others just notice that the arrows are moving 
closer. This can easily be resolved by having separate sliders for the number of arrows and the size 
of the interval. 

Even though the results here are slightly discouraging, we are not ready to give up on arrow graphs’ 
role in teaching the derivative, also fuelled by their success in fostering functional thinking (Wei et 
al., 2024). Some factors could explain the limited success of the approach so far. Firstly, unlike 
working in graphs, for which students are prepared from an early age onwards, arrow graphs are new 
to students and the learning curve in two hours is steep. Secondly, since students in the natural science 
track have more affinity with geometry, the approach may be more fruitful for them. Therefore, the 
next step in this design-based research will be testing an expanded version of the series, implementing 
the suggestions above, on students in a natural science track. Suggestions for redesign can be found 
in the second author’s master thesis (Brinks, 2024). 
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The potential of technology to enhance the learning of mathematics is widely acknowledged. 

However, realizing this potential requires teachers to possess the knowledge to effectively integrate 

it into their teaching practices. This study aims to characterize the mathematics teacher's knowledge 

when using different technologies in teaching and learning. It also aims to study the existence of 

relationships between the specific domains of the Knowledge for Teaching Mathematics with 

Technology – KTMT and the integration of graphing calculator and Excel. The methodology adopted 

is qualitative with an interpretative approach, using a case study of Mathematics teacher in the 11th 

grade (16-17 years old) with extensive experience in the use of technology. This study shows that 

different KTMT knowledge is mobilized, according to the technology chosen and the specific 

characteristics of each of the technologies used influenced the teacher's pedagogical choices. 

Keywords: Technology integration, teacher knowledge, KTMT, Mathematics 

Introduction 
The use of technology in mathematics teaching has led several authors to investigate the specific 
knowledge needed to teach mathematics with technology (Clark-Wilson et al., 2019; Drijvers, 2019; 
Rocha, 2020a, 2020b), but few focus on teachers' knowledge to support students in the transition 
between different technologies (Bretscher, 2022). In order to create and implement learning 
environments, teachers must have knowledge not only of the mathematics they teach, but also of the 
technological tools available and their potential for exploring mathematical ideas, as well as the 
pedagogical aspects related to teaching and learning the subject (Kim, 2018). Regarding the 
knowledge required to integrate technology into professional practice, few studies address the 
contribution of the use of different technologies to teachers' professional development and how the 
different domains of their knowledge are mobilized (Rocha, 2020b). This research aims to 
characterize the knowledge of mathematics teachers when using different technologies in teaching 
and learning, and to study the existence of relationships between the specific domains of the 
Knowledge for Teaching Mathematics with Technology - KTMT model (Rocha, 2020b) and the 
integration of the chosen technology. The aim is to answer the following research questions:  

(1) Which domains of KTMT are emphasized when integrating technology into professional practice?  

(2) What differences are there in the knowledge mobilized by the teacher when the technology used 
changes? 
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Theoretical background 
The theoretical framework of this study focuses on KTMT model (Rocha, 2022) (Figure 1), as it 
integrates research focused on professional knowledge and the use of technology into a single model. 
The KTMT considers Mathematics (MK), Teaching, and Learning, Curriculum, and Technology 
(TK) as the base domains of knowledge. 

The mathematics base domain (MK) includes knowledge of concepts, theories and procedures of the 
disciplinary area. It also involves knowledge of rules of evidence and of the nature of mathematics. 
The technology base domain involves the capacity to operate with certain technology and essentially 
consists of knowing how it works and what it does. The teaching and learning base domain involves 
knowledge about how students think and learn, and includes an understanding of the processes 
usually used by students, common difficulties associated with specific content and the ability to 
anticipate these problems and solve them. It also includes the choices made by teachers in the different 
phases of teaching, involving knowledge of the sequence of activities, the different types of tasks and 
the way students work. Particularly valuing knowledge developed from more than one of the base 
domains, KTMT includes two sets of inter-domain knowledge: Mathematics and Technology 
Knowledge – MTK and Teaching and Learning and Technology Knowledge – TLTK. MTK focuses 
on how technology influences mathematics and TLTK includes how technology affects or influences 
teaching and learning, reinforcing or restricting certain approaches. 

The strategies used by teachers to integrate different technologies into their lessons can be based on 
mathematical understanding or on the specific technical procedures of each technology (Botelho & 
Rocha, 2022). However, as highlighted by Bretscher (2022, p. 2522): 

Technology as a teaching resource for mathematics needs to be simultaneously both visible, so 
that it can be noticed and used in the practice of teaching school mathematics, and invisible so that 
attention is focused on the subject matter, teaching mathematics to pupils. The particularities of 
using a specific technology to teach mathematics influences the mathematics that can be taught.  

Methodology 
Given the aim of this study, the methodology chosen for this research is qualitative and interpretative. 
We used the case study of a high school mathematics teacher, whom we will refer to as Camila. She 

Figure 1: KTMT model (Rocha, 2022) 
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is a teacher with over thirty years' professional experience who is very familiar with using different 
technologies to teach mathematics, aspects that are considered particularly influential in the 
integration of technology (Handal et al., 2011). The data collection took place in her 11th grade class 
(16-17 years old), in lessons where the study of sequences using technology had been planned. As 
the study concerned the integration of technology by teachers into their teaching practice, and with 
the aim of characterizing mathematics teachers' knowledge when using different technologies, the 
research had a strong component of observation of mathematics teaching practice in a classroom 
environment. Semi-structured interviews and document analysis were also used to collect data. All 
the interviews and all the lessons observed were audio-recorded. Based on the tasks proposed by the 
teachers and in line with the nature of the study, data analysis was guided by the research questions, 
focusing on the use of the graphing calculator (GC) and Excel. For the data analysis, the moments in 
which different domains of KTMT were mobilized during the use of the different technologies were 
identified and analyzed using content analysis with special attention to the knowledge domains: TK, 
TLTK and MTK. The data were analyzed with the intention of identifying the utilization of 
knowledge associated with each of these knowledge domains. In instances where moments addressed 
multiple domains, thorough examination was conducted to determine which domain appeared to be 
predominant. 

Results  
In line with Bretscher (2022), Camila believes that technology must has to be a resource in her 
lessons, without it becoming the central aspect, taking attention away from the mathematics being 
taught. By integrating GCs and Excel into the two tasks, the teacher wants the students to become 
familiar with the tools provided by these two technologies. Considering that students are more 
familiar with the use of tables in Excel compared to GC (Ruthven & Henessy, 2002), Camila chooses 
to use this technology in the first task. 

The task with Excel 

At the beginning of the study of sequences, Camila tried to involve the students in an exploration of 
monotony and the existence of upper and lower bounds. She proposed the study of the monotony of 
a sequence, using the students’ knowledge about the monotony of a function. Using an Excel 
spreadsheet, she proposed that the class observe the graphical and tabular representation (MTK). 
Having given the algebraic expression of the general term of the sequence @$ = $5&

,$"*
, together with 

the class, the teacher built a table with the first 100 terms of @$: 
Camila: (...) what we're going to do here is visualize the behavior of a sequence by graphing, 

for example, the first 100 terms. (...) so here in cell two, we're going to put the 
values of n, because it's a natural variable, but we're not going to write them one by 
one, we're going to enter a formula. (...) In the next column we will insert the general 
expression of @$ in B3, using the Equation tool. (...) 

Initially, the guidance given to the students was specific to this technology (TK), as the students had 
little knowledge of the tools available in Excel. Although all the students were using an Excel 
spreadsheet, some had to use the online version. For these students, the teacher had to give more 
technical instructions (TK), as some tools were not available in the online version: 
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Camila: For students who are using Excel on Google, you don't have the Equation menu, 
but no problem, just write the expression directly in the cell, using the brackets and 
the slash. 

Projecting the table with only the first nine terms of @$ (Figure 2), Camila begins by asking if it is 
possible to conclude from the table whether the sequence is monotonic and if there is any value it is 
close to. One of the students replies that the sequence is decreasing, and the smallest term is 0.4. 
Camila then suggests showing the first 100 terms of the sequence in the table so that the students can 
check whether their colleague's answer was correct (MTK): 

Camila: Is it possible, with this table, to say that the sequence is monotone? 
Student1: Yes, it's decreasing. 
Camila: The first term is 2 and we can see that the terms are decreasing. But with these 9 

terms, can we say what value the terms of the sequence will approach? 
Student1: Yes, the lowest value is 0.4. 
Camila: Check the table with 100 terms to see if your colleague's answer is correct. 
Student2: No, with n=100, the value is 0.33893. 

After looking at the table with the first 100 terms of @$ the teacher provides technical guidance on 
the tools available in Excel, combining knowledge of the content of sequences (MTK) to construct 
the graph of @$ (Figure 3).  

With the graphical representation, the teacher concluded with the class, as they had already observed 
from the table, that the sequence was decreasing. The automatic display of the graph in a visualization 
window appropriate to the situation did not require Camila to make any comment on this aspect. 

The teacher also wanted the students to conclude, by looking at the graph, that the sequence was 
bounded (MTK). She began by saying that @$ is monotonically decreasing and that its first term is 
two, which allowed the students to conclude that the sequence was upper bounded. However, finding 
a value for the lower limit by looking at the graph was more difficult, as there was no single value. 
The teacher therefore opted to use the table again, so that the students could see that the terms of the 
sequence are always positive (MTK): 

Student: It [sequence] has no values greater than 2. 
Camila: So, can we say that 2 is the upper bound of the sequence? 
Student1: Yes, because the other values are below 2. 
Camila: We've already seen that the sequence is decreasing, and the first term is 2, so it 

[sequence] is bounded from above. Can anyone say what a lower bound is? 
Student2: No, because they're always smaller. 

Figure 2: Graphical 
representation of sequence in 

Excel 

Figure 3: Table with the first 9 
terms of the sequence 
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Camila: Let's go back to the table. We can see, for example, up to the term of order 200. 
What's going on? Notice that the terms of @$ are always positive, they are never 
less than 0. So, we can say that 0 is a lower bound of the sequence. 

Camila refers to the fact that, with this technology, it is not necessary for students to adjust the 
viewing window to obtain a graphical representation, as the main deciding factor in choosing the 
technology used (TLTK):  

Camila: I chose to use Excel to do this task, because with the calculator they had to adjust 
the viewing window (...). I wanted them to see the 100 terms in the table and then 
see the graph. With the calculator it's not so easy to see so many terms in the table, 
I considered that, but no, with the GC it took much more time. (...) The central 
aspect of my choice was the viewing window.  

In this task, she did not intend to pay attention to the display window, since with Excel the window 
is automatically adjusted. The knowledge of the impact of the viewing window on the aspect of the 
graph is a decisive factor when choosing the technology (MTK):  

Camila: I chose to use Excel because I want them to focus on studying monotony [of 
sequence] through the table and graph. In this first task, I don't want them to have 
to change the window, because I know it's still not easy for them to understand how 
and when to change the window. I want them to be able to see the terms of the 
sequence straight away without having to change the window.  

The task with graphing calculator  

In the second task, the teacher wanted the students to study monotony and check whether it was 
bounded, using GC. This was the first time Recursion tool had been used in class, Camila gives 
specific technical guidelines and exemplifies them so that the students can repeat the procedures in 
their GCs (TK). In the class, only one student did not have a Casio fx-CG and so the guidance given 
was only for this technology. Given the sequence F$ = H*

,
I
$

, the teacher explains how to insert its 
expression (Figure 4) into the GC (TK), starting by defining the type of expression for the general 
term (Figure 5) (MTK). Next, by presenting the table with the first four terms of F$ (Figure 6), she 
asks the class about the monotony of sequence and whether sequence is bounded: 

Camila: Looking at these four terms in the table, can we conclude what the monotony of the 
sequence is? 

Student: It's monotonically decreasing. 
Camila: Is it [sequence] bounded? 
Student: 0.6666 is the biggest but we can't tell if it will stop at 0.1975.  
Camila: So, let's look at the graph. 
 

Figure 4: General term of 0& Figure 5: General Term 

Type Selection Menu 

Figure 6: Table with the first 

four terms of the 0& 
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With the sequence graph displayed in a standard viewing window (Figure 7), Camila gives guidance 
on how to change it, discussing the appropriate parameter values with the class (MTK). By changing 
the window, the students are able to see the graphical representation of the five terms of F$ (Figure 
8).  

The need to change and adjust the display window did not arise when studying sequence @$ in Excel, 
since the graph in this technology is automatically adjusted to the data entered in the table. 
Recognizing that this is a difficult process when using GC, Camila begins by presenting the graph in 
a standard window, with the intention of creating in the students the need to adjust it, so that they can 
find a more suitable viewing window: 

Camila: My idea was for them to first see the graph [of F$] in the standard window and from 
there, make them realize that the window had to be adjusted. After seeing the first 
graph, it was easy for them to find the right values for the viewing window (...). 

When asked by the students about the existence of a lower bound, Camila explains that since the 
terms of the sequence are powers of a positive base and a natural exponent, the terms are all positive. 
She then leads the class to conclude that the sequence is also bounded from below, and that 0 is a 
possible lower bound, but not the only one (MK).  

Discussion and conclusion 
The KTMT model seeks to combine the domains of knowledge considered relevant in the research 
with the specificities of technology. It highlights the importance of the influence of technology on 
the different domains of knowledge, emphasizing the need to develop MTK and TLTK to effectively 
integrate technology into professional practice. It is therefore considered that these inter-domain 
knowledge is essential as a basis for analyzing teacher knowledge (Rocha, 2022). Although the 
pedagogical options that technology allows are recognized (Clark-Wilson et al., 2020; Bretscher, 
2022; Rocha, 2020a, 2020b), the specific characteristics of each of the technologies used influenced 
the teacher's pedagogical choices when solving the tasks (Ruthven, 2009). The knowledge of the 
students' difficulties in finding a suitable viewing window (TLTK) was decisive in the choice of 
technology that the teacher used in the first task. The teacher decided to use technology where less 
technical knowledge had to be mobilized, and where there was no need to adjust the display window. 
The teacher's knowledge of the impact of the visualization window on the appearance of the graph 
(MTK) leads her to consider that the tasks have different degrees of difficulty, depending on the 
technology chosen. Teacher’s guidance differed for the two technologies. With GC, her guidance was 
necessary for the articulation between the different menus and the adjustment of the viewing window 
to obtain the graph. By explaining how the different menus work, the teacher emphasizes more 
mathematical aspects. It was also found that the integration of these technologies had an impact on 
the way the mathematical content was taught (Bretscher, 2022). The use of the two technologies 

Figure 8: Graph obtained with the 

appropriate viewing window  

Figure 7: Graph obtained with a 

standard viewing window 
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promoted the mobilization of different domains of knowledge, as highlighted by Rocha (2020a, 
2020b). It was observed that the teacher mobilized MTK, TLTK, TK and MK and, in some situations, 
these domains were mobilized in an integrated way. However, there are no differences in the way 
they are mobilized according to the technology used. In both tasks, the integration of technology into 
her professional practice reveals the existence of an interconnection between MK, TK and TLTK, as 
considered in KTMT. By adapting her strategies to different technologies (Excel and GC), Camila 
demonstrates that she is aware of the impact of technology on mathematics teaching. In this sense, 
she gives specific guidance and adjusts approaches to the tools provided by each of the technologies. 
It is this knowledge of the most appropriate strategies (TK) for each situation that influences the 
guidance given by the teacher (TLTK) (Rocha, 2020a). The technical guidance given by the teacher 
on using Excel, reflects an understanding of the impact of this technology on teaching and learning, 
mobilizing TLTK for this purpose. The need to change the viewing window in the GC and the 
subsequent explanation of this change also involved the mobilization of TLTK. The teacher guides 
the students in handling the technology, not only to improve their visual understanding of the graphs, 
but also to reconcile the mathematical knowledge that they have learned. Camila also reveals an 
understanding of the impact that the visualization window has on the appearance of the graph, which 
allows her to analyze the degree of difficulty associated with each of the tasks (MTK) (Rocha, 2020a). 
In both technologies, the teacher helps the students to understand mathematics by articulating the 
tabular representation with the graphical representation. However, there is a greater mobilization of 
MTK with the GC. In this technology, the exploration of a graph and the need to adjust the viewing 
window provides a more exploratory approach to the study of the sequence monotony. It should also 
be noted that the combination of algebraic, graphical and tabular representation on the GC allowed 
for a more dynamic strategy. In summary, the pedagogical approaches adopted by Camila reflect an 
advanced level of development of her KTMT. The integration of different technologies has allowed 
her to mobilize different domains of knowledge. This integration demonstrates the teacher's deep 
inter-domain knowledge (MTK and TLTK), in line with the principles of KTMT. We recognize that 
this study is limited by its analysis of only two technologies and does not cover the diversity that 
exists. Future studies should be designed to observe the integration of a greater number of 
technologies with in-service and pre-service teachers.  
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In our study, set against the backdrop of rapidly advancing AI technology, we examine how ChatGPT, 

can support pre-service teachers (PSTs) in creating lesson plans and contribute to the improvement 

of university mathematics teacher education. We implement various prompting techniques that help 

PSTs cultivate digital professional competencies when interacting with ChatGPT in AI-assisted 

lesson planning. We evaluated the AI-generated lesson plans and the PSTs' modifications to these 

plans. Our initial results indicate that the quality of both the AI-generated lesson plans and the PSTs' 

modifications to them can vary and interact with each other. Overall, our findings suggest that 

effective prompting techniques can aid PSTs in enhancing their lesson planning competencies. 

Keywords: Artificial Intelligence, ChatGPT, lesson planning, teacher competencies, pre-service 

teachers. 

Introduction 
Recent technological advances in the field of generative AI, in particular through large language 
models such as GPT and its well-known agent, ChatGPT, are paving the way for the integration of 
AI into the professional work of mathematics teachers (Buchholtz et al., 2023). For example, 
ChatGPT can help teachers in their daily classroom practices to answer questions and provide 
adaptive feedback to students, or it can be used to break down language barriers for non-native 
speaking students (Kasneci et al., 2023). Furthermore, the use of ChatGPT by teachers in pre- and 
post-classroom activities also offers the opportunity to plan lessons and to create an adaptive range 
of learning content and materials for each student, which can save teachers time in their daily work 
(Kasneci et al., 2023; Wardat et al., 2023; Zhang & Tur, 2023). At the same time, generative AI poses 
unique challenges in mathematics (teacher) education. While ChatGPT can handle complex 
mathematical inputs, it still struggles to present accurate solutions, even for simple problems 
(Schorcht et al., 2023; Schorcht et al., 2024). Therefore, AI-generated outputs need to be checked for 
accuracy, as errors can be harmful in educational contexts (Buchholtz et al., 2023; Schorcht et al., 
2023).  

As teachers around the world increasingly use this AI model, the question of the quality of the results 
produced becomes increasingly important, as it is the key indicator of whether the technology can 
really help to save time and improve the quality of mathematics teaching. This also raises the question 
of how prospective teachers can develop appropriate skills to use this technology in a targeted way 
and to critically reflect on the results it produces. Indeed, despite the rapid advances in technology, 
there is little comprehensive research on the potential benefits and challenges of ChatGPT in 
mathematics (teacher) education. Our research therefore aims to showcase the practical implications 
and educational benefits of employing ChatGPT in mathematics teacher education. Specifically, the 
study investigates how ChatGPT can facilitate AI-assisted lesson planning in mathematics education. 
It highlights how pre-service teachers (PSTs) employ specific prompting techniques (Schorcht et al., 
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2023; Schorcht et al., 2024) to direct ChatGPT in crafting detailed lesson plans that include explicit 
goals, didactic and methodological approaches, anticipated teacher and student activities, and 
structured lesson outlines.  

Mathematics teachers lesson planning in the age of AI 
Creating lesson plans constitutes a fundamental aspect of a mathematics teacher's daily 
responsibilities, necessitating considerable intellectual preparation before classroom activities begin 
(Akyuz et al., 2013). Despite the great importance of this activity, conceptualizing lesson planning as 
part of teachers’ professional activities is difficult, because the construct encompasses many different 
elements. A general definition of lesson planning is provided by Jalongo et al. (2007), who states that 
lesson planning can be a recursive, dynamic, cyclical, and somewhat improvisational process. 
According to this approach, lesson planning begins with lesson design, followed by planning and 
implementation, then reviewing learner responses, and finally circling back to lesson redesign 
(Jalongo et al., 2007). Another definition is given by Killen (2015), who understands lesson planning 
as determining content and learning outcomes, identifying teaching and learning strategies, 
determining assessment strategies, and evaluating the effectiveness of the lesson. Lesson planning 
therefore also includes making planning-related decisions. In order to prepare PSTs for this critical 
aspect of teaching, educational programs worldwide have underscored the importance of acquiring 
proficient lesson planning competencies, which are often pivotal for succeeding in final exams (König 
et al., 2021). PSTs are required to develop these competencies during their studies, particularly 
through practical experiences such as internships. However, novice teachers, such as PSTs, often base 
their planning on predetermined concepts (schemes), which can give them security due to their lack 
of experience. They do not yet have the necessary flexibility in planning and the experience to be 
able to make adaptive planning decisions like experts (Mutton et al., 2011; König et al., 2021). 

The advent of artificial intelligence and large language models like GPT offers PSTs the opportunity 
to develop digital skills in utilizing AI technologies for lesson planning. The technology can support 
them in making suggestions for planning steps or reflecting on their own plans by asking specific 
questions. This underscores the imperative for a more integrated approach to incorporating AI-tools 
in mathematics teacher education, especially for novice teachers who stand to benefit significantly 
from such digital aids in enhancing their planning competencies. This integration is crucially 
supported by the Technological Pedagogical Content Knowledge (TPACK) framework (Koehler & 
Mishra, 2009), which highlights the interplay between content knowledge (CK), (general) 
pedagogical knowledge (PK), and technological knowledge (TK). The TPACK framework provides 
a comprehensive model that includes content, pedagogy, and technology and it is suitable to describe 
the knowledge the PSTs enact when utilizing a digital tool like ChatGPT for professional educational 
purposes. It elucidates the essential knowledge areas for teachers and the dynamic relationships 
among them, such as PCK (Pedagogical Content Knowledge), TCK (Technological Content 
Knowledge), and TPK (Technological Pedagogical Knowledge), culminating in the comprehensive 
domain of TPACK. PSTs can draw on their TPACK when using ChatGPT to generate, evaluate, and 
refine lesson plans, ensuring they meet educational objectives and cater to diverse student needs. 
However, as Mishra et al. (2023) emphasize in their reflections on TPACK in the age of generative 
AI, it is important to understand how generative AI technologies can transform teaching and learning 
practices. Evaluating the effectiveness of AI-enhanced lesson plans therefore involves not only 
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examining adherence to mathematical content and educational objectives, but also assessing PSTs' 
AI-related digital competencies, i.e. their engagement with ChatGPT throughout the planning process 
to ensure its output aligns with educational goals and pedagogical strategies. 

Teachers’ prompt techniques for lesson planning 
In our study, we explore how PSTs can enact and develop TPACK through engagement with 
ChatGPT, focusing on reflective interaction processes in lesson planning. This approach assumes that 
such skills are developed not only by recognizing the potential and limitations of ChatGPT but also 
by proficiently applying effective prompt techniques and critically assessing the AI-generated 
content. Our study draws on various prompting strategies as outlined by Schorcht et al. (2023) and 
Schorcht et al. (2024), showcasing different methods to harness ChatGPT for educational purposes. 

In general, we can utilize Zero-Shot Learning, where ChatGPT generates responses without prior 
tailored input or training data, answering straightforward requests such as crafting a lesson plan on a 
specific mathematical topic. A simple prompt like “I need to plan a mathematics lesson on algebraic 

transformations” already produces a sample lesson plan including learning objectives and teacher 
and student activities for different phases (e.g., introduction, teacher presentation, practical exercises, 
group work, and presentation). This method, while providing a solid foundation, allows room for 
refinement. Advancing to Few-Shot Learning, we incorporate structured prompts to tailor the output 
more closely to specific needs. This is useful when we need to adapt previously held lessons due to 
changed conditions or when we have to comply with specific external guidelines. Employing Chain-
of-Thought Prompting involves adding cues like “Let's take it step by step to ensure a well-planned 

lesson,” which moderates the pace of ChatGPT’s processing to yield more elaborate and controlled 
outputs (Schorcht et al., 2023; Schorcht et al., 2024), thereby rendering the planning more discernible 
and integrating didactical decisions. Moreover, we explore Ask-me-anything Prompting (Schorcht et 
al, 2023; Schorcht et al., 2024), prompting ChatGPT to gather essential information for lesson 
preparation from the user (Schorcht et al., 2023), thereby enabling customization according to unique 
learner needs. Finally, incorporating prompts such as “and always wait for my input” (Huget & 
Buchholtz, 2024) encourages a sequential interaction, preventing the generation of unwieldy outputs 
and fostering outputs that are more aligned with effective lesson planning. These strategies 
demonstrate how ChatGPT can be leveraged for lesson planning, with the resulting outputs subjected 
to further analysis in subsequent phases of our study.  

Research questions and methodology 
In our study, we focused on the following research questions: (RQ1) What is the quality of lesson 
plans developed by PSTs using ChatGPT? (RQ2a) What modifications do PSTs make to the AI output 
provided by ChatGPT? (RQ2b) To what extent can different patterns of interaction be identified? 
(RQ3) What perceived benefits do PSTs identify when utilizing ChatGPT in the development of 
mathematics lesson plans? 

To investigate these questions, we conducted a study involving a group of PSTs from the University 
of Hamburg, Germany, employing a simulation-based design to ensure comparable conditions. In 
order to control the initial planning dialogues of the PSTs, a prompt setting based on the prompt 
techniques “Chain-of-Thought” and “Ask-me-anything”, as well as an “always-wait-for-my-input” 
(Huget & Buchholtz, 2024) waiting rule was developed for the data collection in our study. The study 
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was carried out in October 2023 and bases on a convenient sample. In two parallel mathematics 
education seminars, N=37 Master's students studying mathematics teaching for upper secondary level 
were asked to plan a lesson on the topic of algebraic term transformations, which they carried out 
with the assistance of ChatGPT. Participation in the study was on a voluntary basis and data was 
collected with informed consent. The following prompt setting (1) to (3) was given to the PSTs: 

(1) “Plan a mathematics lesson for me. Please ask me first about the topic/content of the lesson. Then 

ask me about the given framework of the planning. Always wait for my input throughout the chat.” 

(2) “The topic is algebraic term transformations” 

(3) “The following framework is given for you to use: 1. learning group analysis, 2. justification of 

the mathematics educational decisions including a subject-specific clarification of the topic/learning 

situation, 3. competencies/learning objectives, 4. justification of the methodological decisions, 5. 

progression planning in tabular form with teacher and student activities. Ask me individual questions 

about the steps and wait for my input that you need for the lesson planning. Let's go step by step to 

make sure we plan a good lesson. Throughout the chat, always wait for my input before moving on 

to the next step.” 

The PSTs interacted with ChatGPT (at that time in version GPT-3) using a GDPR-compliant platform 
under pseudonyms. This approach aimed for a high comparability level among planning dialogues 
for a hypothetical learning group. It leads to ChatGPT asking questions on the points mentioned in 
prompt 3 in a specific (comparable) order. All PSTs implemented this prompt setting as given and 
were then able to answer freely in the individual steps and continue the dialogue. The transcripts were 
then downloaded from the platform in PDF form for further analysis. 

For RQ1, we applied qualitative content analysis (Mayring, 2014), evaluating the lesson plans. 
Evaluation criteria included a.o. mathematics-specific factors such as content transformation and task 
creation, the clarity of learning objectives or the adaption to learning dispositions and were based on 
a six-dimensional coding scheme of König et al. (2021), that can be used to measure the cognitive 
demand of written lesson plans on dichotomous coding scales. To explore RQ2a and RQ2b, we firstly 
categorized PSTs' modifications to the AI-generated plans, using a three-point scale, that takes up 
different types of modifications: “PST does not comply or simply accepts ChatGPT’s output” (0); 
“PST is asking ChatGPT for suggestions” (1), and “PST is adapting ChatGPT’s output or provides 

own suggestions” (2). We then further differentiated the categories based on an inductive coding of 
the planning dialogues. Finally, addressing RQ3 involved interviewing the PSTs about their 
experiences with AI-assisted planning, aiming to understand the perceived benefits of integrating 
ChatGPT into mathematics teacher education. 

Preliminary Results 
In this contribution, due to space restrictions, we will only outline preliminary findings on RQ1 and 
RQ3 in the conclusions section and concentrate in the results section on RQ2a and RQ2b with a focus 
on a specific sub-area of lesson planning, namely the formulation of learning objectives (prompt 3; 
step 3). Based on the data material additional inductive categories were identified for the 
modifications made by the PSTs when they were formulating learning objectives (see Table 1). The 
PSTs most frequently offered their own suggestions (42.62%). This result can be interpreted as a sign 
of the PSTs’ critical engagement with ChatGPT’s output and may also reflect their effort to tailor 
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teaching to individual and contextual needs. The fact that many PSTs adapted the suggestions 
generated by ChatGPT to fit specific teaching contexts (18.03%) also speaks to their reflective usage 
of the technology, which we see as an indicator of their use of TPACK. They did not simply accept 
the AI-generated suggestions but adapted them, which could mean that the PSTs were keen on basing 
their decisions on a solid theoretical foundation. However, in other cases, some PSTs simply accepted 
ChatGPT’s output (13.11%) or did not refer back to it (3.28%). On one hand, this could point to a 
competent assessment of ChatGPT’s capabilities. On the other hand, it could also be an area that 
needs further investigation to ensure that this acceptance does not stem from a lack of critical thinking 
or from a naïve trust, which would point to possible underdeveloped TPACK. 

 

Inductive-developed category system regarding 

modifications made by PSTs in planning step 3  

Assigned codes (61) 

PST does not comply – 0 3.28% (2) 

PST simply accepts ChatGPT’s output – 0   13.11% (8) 

PST is asking ChatGPT for suggestions – 1  13.11% (8) 

PST is adapting ChatGPT’s output – 2 18.03% (11) 

PST provides own suggestion – 2  42.62% (26) 

PST draws on literature (e.g. educational standards) – 2  6.56% (4) 

PST asks critical questions and demands clarification – 2   3.28% (2) 

Table 1: Initial results regarding the modifications made 

We give an example of a planning dialogue of a PST (#bloom). In the following transcript, the PST 
moves from step 2 to step 3 of the planning dialogue and, together with ChatGPT, determines the 
reasons for the mathematical didactic decisions and the learning objectives. After it has already been 
determined that simple algebraic terms with addition and subtraction should be dealt with first and 
visual aids should be used, the PST would like to add a content remediation at the beginning of the 
lesson that relates to the repetition of the understanding of variables (PST provides own suggestion). 
We see this as an indicator of the PST’s CK and PCK that are involved in the planning, ChatGPT 
then plans this addition adaptively into the course of the lesson in the subsequent step 3. 

 
PST: Sounds good! The only thing that should be discussed at the beginning is the 

repetition of the concept of variable, as some students probably don't remember it 
properly. 

 
ChatGPT: Many thanks for the tip! That is an important addition. So, at the beginning of the 

of the lesson, we will briefly repeat the concept of the variable, to make sure that 
all students understand the concept. Now we can move on to step 3 and define the 
competences/learning objectives. 
 
3. competences/learning objectives: 
- Students should understand what a variable is and how it is used in terms. 
- Students should be able to transform simple terms with addition and subtraction. 
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- Students should be able to transform complex terms with multiplication and 
division. 
- Students should be able to understand the transformations of terms using visual 
aids. 
- Students should be able to carry out term transformations independently and be 
able to present their solutions. 
 
Please let me know if you would like to add further competences/learning 
objectives or adjustments should be made. 
 

PST: That looks good! We can also note that the second point is a minimum requirement 
that all students should achieve. 

From the PST's reaction, it is clear that minimum requirements for the students should also be defined, 
which we see as an indicator of the PST’s enacted PK (PST is adapting ChatGPT’s output). We 
recognize in this an active engagement of the PST with the AI-generated output, which we understand 
as an indicator of the activation or development of lesson planning competencies and the respective 
TPACK, even if the engagement with the AI-generated suggestion is not on a critical level. 

Concerning RQ2b, we investigated interaction patterns. Interaction patterns are the sequence and use 
of modifications made by the PSTs within a dialogue. In the case of PST #bloom, we could observe 
an interaction, where the PST first provides own suggestions to the dialogue and then adapts 
ChatGPT’s output. We present another example of this identified interaction pattern in the second 
transcript below. In the case of this PST (#Karl Heinz), the PST first responds to reflection questions 
posed by ChatGPT and makes an own suggestion, enacting their PCK in the dialogue. ChatGPT then 
formulates corresponding learning objectives for the mathematical content and the definitions of the 
concepts involved. The PST then accepts some of the suggestions, but modifies them partly 
afterwards (PST enacts their PK). However, we again do not see any critical reflection or objection 
to ChatGPTs suggestions. Instead, the PST asks for suggestions on concrete tasks that can be used to 
achieve the defined learning goals in a real-life context (PST is asking ChatGPT for suggestions), and 
by this shows enacted PCK in the planning. 

 
PST: For the first lesson, the students should familiarize themselves with the definitions 

of the concepts involved. 
 
ChatGPT: Got it! Based on your goal of having students learn the definitions of terms in the 

first lesson, I suggest the following learning objectives: 
1. Students should understand and be able to explain the concepts "variable", 

"coefficient", "exponent", and "operator". 
2. Students should understand the meaning of basic arithmetic operations 

(addition, subtraction, multiplication, division) in the context of algebraic term 
transformations. 

3. Students should familiarize themselves with the basic mathematical rules and 
properties of algebraic term transformations and be able to apply them. 

These learning objectives enable students to understand and use the basic algebraic 
terms and concepts related to term transformations. They lay the foundation for the 
further understanding and application of term transformations. Do you have any 
other learning objectives you would like to achieve in the lesson? 

 
PST:  I think the first learning objective is good. The second learning objective should 

involve the students applying what they have learnt to tasks. Can you think of any 
good tasks with a real-life context on the topic of algebraic term transformations? 
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Discussion 
The results on RQ2a and RQ2b show a differentiated use of ChatGPT generated output by the PSTs, 
ranging from creative to conscious adaptation and theoretically informed decisions to acceptance. 
With regard to RQ1, the quality and effectiveness of AI-assisted lesson plans exhibited considerable 
variation. When asked for suggestions, the initial planning of ChatGPT often corresponded to quite 
standardized classroom procedures, which indicates a strong dependence of the AI output on the 
underlying training data. However, the quality was influenced significantly by the PSTs’ 
modifications to the AI-generated content. Here we see the potential of ChatGPT in lesson planning, 
where a structured prompt setting can facilitate a reflective planning dialogue. Through this dialogue, 
PSTs are led by the AI to contemplate their planning decisions or are provided with suggestions to 
bolster their initial ideas planning ideas. With regard to RQ3, many of the PSTs commented that the 
multi-step nature and guided planning dialogue particularly helped them not to lose sight of the 
overarching planning. In addition, the follow-up questions that ChatGPT asked in the prompt setting 
ensured that they had to make planning-related decisions and gained an awareness of the relevant 
parameters of lesson planning.  Looking ahead, future research could explore prompt settings that 
further encourage PSTs to critically assess their planning strategies, with ChatGPT serving more as 
a facilitator of the planning process rather than merely a source of ideas. Engaging with ChatGPT, 
while potentially time-saving, necessitates a critical evaluation of the AI-generated lesson plans.  

The integration of ChatGPT into mathematics teacher education reflects the growing imperative for 
digital and AI-related literacies among mathematics teachers. This shift mandates that teacher 
education programs, educators, and PSTs treat digital literacy as a core component of effective 
mathematics teaching. Our study emphasizes the critical role of TPACK within teacher education, 
underscoring the need for a meticulous examination of AI-generated materials to ensure they align 
with educational objectives and cater to student requirements. 
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This paper deals with the presentation of mathematics in responses of the large language model 

ChatGPT. Based on a theoretical discussion, four belief systems or perspectives on mathematics are 

distinguished: formal-abstract, empirical-concrete, application, and toolbox. In a systematic 

analysis, responses from ChatGPT in the context of the mathematical concepts of real numbers, 

straight line and probability are categorized against this background. It turns out that ChatGPT can 

adopt very different perspectives on mathematics and that the perspectives offered seem to depend 

on the particular prompt. 

Keywords: Artificial intelligence, Beliefs about mathematics, ChatGPT, Large language models 

Introduction 
Artificial intelligence (AI) is currently a highly debated topic in society. While AI has been studied 
intensively in educational research from a technical perspective for around 10 years (see, e.g. Roll & 
Wylie, 2016), mathematics education research has only recently begun to address this topic. The 
focus of this research is on generative AI systems such as ChatGPT for the creation of texts. Wardat 
et al. (2023) conducted interviews with students and teachers and found that ChatGPT is generally 
perceived as a useful educational tool, but that it does pose some challenges (e.g. development of 
misconceptions). Other authors, however, analyzed ChatGPT from a theoretical perspective and 
through extensive testing. For example, Buchholtz et al. (2023) come to rather negative conclusions 
on this basis and state that the generative AI ChatGPT is not yet suitable for use in mathematics 
classes. In a teaching experiment, Dilling et al. (2024a) looked at the use of ChatGPT as a student 
tool for proving the theorem on the sum of interior angles in a triangle. The result was that although 
ChatGPT cannot logically conclude and thus prove to a large extent, its reflective use in the classroom 
can nevertheless provide a variety of impulses for rich processes of argumentation and negotiation of 
meaning. 

Large language models (LLMs) such as ChatGPT are linguistic models that have been trained with a 
huge amount of text data and are intended to simulate communication. With the help of probability 
trees, answers to user requests (so-called prompts) are generated. Although the system was trained 
for linguistic knowledge, it can also contain rational knowledge from the training data (Petroni et al., 
2019). However, knowledge databases are not accessed for the answers; the "knowledge" comes 
solely from the trained linguistic model, which can also result in the output of incorrect information. 
In a systematic evaluation, Dilling (2024) examined the potential of ChatGPT as an assessment and 
feedback tool in mathematics education. The analysis of different sample tasks and solutions shows 
that ChatGPT offers a remarkable amount of potential for formative assessment and feedback in the 
field of mathematics. The activation of the Wolfram plugin and the right prompting has proven to be 
an important success factor for appropriate feedback. The prompt largely determines the form and 
content of the feedback, the correctness of the performed calculations and the extent to which the 
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response is adapted to the feedback receiver. In general, the system was able to provide correct and 
didactically useful feedback in many (but not all!) cases. 

In addition to the correctness of the calculations, the perspective that ChatGPT adopts on mathematics 
is particularly relevant. This can be described using the term mathematical belief system, which is 
defined by Schoenfeld (1985) as follows: 

Belief systems are one’s mathematical world view, the perspective with which one approaches 
mathematics and mathematical tasks. One’s beliefs about mathematics can determine how one 
chooses to approach a problem, which techniques will be used or avoided, how long and how hard 
one will work on it, and so on. (Schoenfeld, 1985, p. 45) 

Beliefs and belief systems are a central subject of investigation in mathematics education research, 
and they are assumed to have a significant influence on mathematical teaching and learning processes 
(Goldin et al., 2009). In a normative sense, Green (1971) considers the shaping of students' 
mathematical belief systems to be one of the key goals of teaching: 

Teaching is an activity which has to do, among other things, with the modification and formation 
of belief systems. If belief systems were impervious to change, then teaching, as a fundamental 
method of education, would be a fruitful activity. (Green, 1971, p. 48) 

The research literature often emphasizes the importance of teachers' beliefs, which significantly 
influence the development of students' beliefs. Grigutsch, Raatz and Törner (1998) explain this 
connection with communication and interaction in the classroom as well as the methodological and 
content-related decisions made by the teacher: 

[…] The attitudes of teachers have a substantial influence on the attitudes of students — on one 
hand, in direct communication and interaction in a mathematics class, and on the other hand, 
indirectly through the concrete design (choice of material and methods, and assessment system) 
of a mathematics class (Grigutsch et al., 1998, p. 4, author’s translation) 

The influence of teachers' beliefs on students' beliefs has been empirically proven in a number of 
empirical studies (e.g. Carter & Norwood, 2010; Muis & Foy, 2010). Other factors, such as the design 
of teaching materials, are less easy to measure directly in empirical studies – nevertheless, a long-
term influence can be assumed. If generative AI will have a significant influence on the learning of 
mathematics in and outside the classroom in the future, the following question becomes important, 
which will be examined in this article: 

Which perspectives on mathematics are presented in ChatGPT responses? 

Although ChatGPT is not a real person, the AI simulates natural communication. Therefore, the 
question could also be formulated casually as in the title of this article as: 

What is ChatGPT's belief system about math? 

In order to investigate this question, the following section first presents a framework for the 
distinction of different types of belief systems about mathematics. Subsequently, the results of a 
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qualitative exploratory study and initial results of a systematic quantitative evaluation are presented. 
Finally, a conclusion is drawn, and an outlook is given. 

Belief systems about mathematics 
A basic assumption of research on belief systems about mathematics is that the belief systems of 
different individuals can be described as sufficiently similar and can therefore be categorized 
accordingly. Goldin (2002) uses the phrase "socially or culturally shared belief systems" (p. 64). 
Based on this assumption, theoretical and empirical approaches have been developed to categorize 
possible types of mathematical belief systems, each of which focuses on different characteristics. 
Building on the research on the categorization of prototypical belief systems about mathematics, four 
perspectives will be described in more detail here (Table 1) (Dilling et al., 2024b). These categories 
were chosen because they appear in the same or a similar form in many empirical studies and 
educational discussions, as shown below. It is explicitly not an exhaustive description – many other 
belief systems can be described by looking at other characteristics. It should also be emphasized that 
the belief systems are not mutually exclusive. 

The formal-abstract perspective (FA) corresponds to the commonly accepted scientific way of 
practicing and understanding mathematics. It is characterized by a strictly deductive and axiomatic 
approach. In addition, there is a complete separation of mathematics from reality, which can be 
achieved through the formulation of axioms as propositional patterns. The formal-abstract perspective 
can be found in particular at universities and was established with the work of David Hilbert on the 
foundations of geometry. A similar characterization of a formal-abstract belief system can be found 
in various places in the literature. For example, Schoenfeld (1985) compared the beliefs of 
mathematicians and students when solving problems, whereby the belief system of the mathematician 
describes the formal-abstract perspective. Grigutsch et al. (1998) characterized the formalism aspect 
with twelve different items and identified it as a frequently encountered perspective in a survey of 
teachers. Tall (2013) describes the world of axiomatic-formalism as "building formal knowledge in 
axiomatic systems specified by set-theoretic definition, whose properties are deduced by 
mathematical proof" (p. 133). Dilling (2022), Stoffels (2020), and Witzke and Spies (2016) 
emphasize in particular the separation of mathematics from reality as a characteristic feature of a 
formal-abstract belief system. 

The empirical-concrete perspective (EC) is a kind of opposite to the formal-abstract perspective. In 
this perspective, the objects of investigation in mathematics originate from empiricism (e.g. function 
graphs, drawing sheet figures, dice experiments) and the mathematical theory is ontologically bound 
to these. Mathematical propositions can be described within a theory, but the axioms and definitions 
refer directly to empirical objects. According to recent studies (e.g., Witzke & Spies, 2016), students 
at school and at the beginning of their university studies often hold such a belief system about 
mathematics, which can be attributed to the way mathematics is taught at school. In Schoenfeld's 
(1985) problem-solving case studies, the students' belief system corresponds to an empirical 
perspective on mathematics. However, Schoenfeld speaks of ‘pure empiricists’, as he did not observe 
any logical deductions or genuine theorizations. In Tall's (2013) three worlds framework, there is a 
world of conceptual embodiment, which describes the development of mathematical knowledge 
"building on human perceptions and actions" (p. 133). Dilling (2022), Stoffels (2020), and Witzke 
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and Spies (2016) also describe an empirical-concrete belief system, which is about substantial 
mathematical theory development based on empirical objects. 

The application perspective (A) is about the application of mathematical concepts and theorems in 
reality. This takes place, for instance, in applied sciences, but also in everyday life. Grigutsch et al. 
(1998) describe this in the so-called application aspect with items such as "Mathematics helps to solve 
everyday tasks and problems" or "Mathematics has a general, fundamental benefit for society" 
(p. 17). Witzke and Spies (2016) describe the application orientation, which focuses on extra-
mathematical applications and mathematical modelling. 

The toolbox perspective emphasizes the application of rules, formulas and procedures in a schematic 
way. Ernest (1989) describes this as the instrumentalist view ("mathematics is a useful but unrelated 
collection of facts, rules and skills", p. 21). In the study by Grigutsch et al. (1998), the schema aspect 
is characterized, for example, with the item "Mathematics is a collection of procedures and rules that 
specify exactly how to solve tasks" (p. 19). Witzke and Spies (2016) cite the derivation of functions 
using derivation rules as an example of the toolbox orientation. 

Table 1: Definition of the four perspectives on mathematics considered in the exploratory study 

Formal-abstract perspective (FA): 

Mathematical concepts are based solely on 

axioms and are strictly separated from reality. 

Empirical-concrete perspective (EC):  

Mathematical concepts are defined with reference to 

empirical mathematical objects, e.g. function graphs or 

drawing sheet figures. 

Application perspective (A): 

Mathematical concepts are used to describe 

real world phenomena, e.g. in applied sciences 

or in everyday life. 

Toolbox perspective (T) 

Mathematics is about applying rules, formulas, and 

procedures in a schematic way. 

Methodological decisions 
In order to investigate the research question mentioned above, a systematic analysis of ChatGPT 4.0 
was carried out in February 2024. The category system in Table 1, which summarizes the four 
perspectives from the research overview in the previous section, was used as a basis. Using the 
method of deductive qualitative content analysis according to Mayring (2000), responses from 
ChatGPT were analyzed with regard to these categories. The analysis unit was a whole response. The 
prompts were created by applying a common survey method in qualitative belief research – the 
collection of associations to different mathematical concepts (e.g. Witzke & Spies, 2016). The 
mathematical concepts utilized were real numbers, straight line, and probability, because belief 
systems are very apparent in the description of basic mathematical concepts (e.g. Witzke & Spies, 
2016) and the three concepts come from different mathematical areas. Questions such as "What are 
real numbers in mathematics?" were asked as prompts. In addition, these prompts were supplemented 
specifically to trigger certain perspectives on mathematics, e.g. with phrases such as "rigorously 
formal", "graphically" or “rules and formulas": 

In addition to the qualitative analysis, an initial quantitative evaluation was carried out. For this 
purpose, the prompt "What is a/are real numbers / straight line / probability in mathematics?" without 
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any additional phrase was entered 30 times for each of the three mathematical concepts in separate 
chats. The responses from ChatGPT were also categorized according to the above four perspectives 
and a frequency distribution was created. 

Systematic analysis of the large language model ChatGPT 
In the systematic analysis, all four perspectives on the three mathematical concepts analyzed were 
found in the ChatGPT responses. Examples from the data for the four categories are shown in Table 2. 
The formal-abstract perspective included statements from ChatGPT in which the real numbers were 
set up axiomatically. The focus of the answers was mostly on an extension of rational numbers to real 
numbers using Dedekind cuts or Cauchy sequences. Regarding the concept of straight lines, ChatGPT 
was able to cite some of Hilbert's axioms as examples and explicitly reflected on the special features 
of this formalistic approach. Kolmogorov's axioms appeared very frequently for the concept of 
probability. The empirical-concrete perspective became apparent through references to empirical 
objects. In the case of real numbers, almost every answer from ChatGPT referred to points on the 
number line. In the case of straight lines, reference was made for example to a line drawn with a ruler. 
For probability, experiments such as rolling a dice were mentioned and approaches to probability 
using relative frequencies were described. With regard to the application perspective, the ChatGPT 
responses mostly contained very general statements that refer to the use of mathematical concepts in 
applied sciences. However, more specific use cases could be generated when explicitly requested. 
The toolbox perspective was evident in the case of real numbers in responses that explained specific 
calculation rules that apply to this number range. In the case of the concept of straight lines, formulas 
for an algebraic description were presented and the parameters were explained. In the case of 
probability, simple formulas for determining probabilities were displayed. 

Table 2: Examples from the ChatGPT responses for the three mathematical concepts 

Formal-abstract (FA) Empirical-concrete 
(EC) 

Application (A) Toolbox (T) 

“In mathematics, real 
numbers are defined 

rigorously through several 
formal constructions, with 

the most common being the 
Dedekind Cuts and the 

Cauchy Sequences 
approaches. Both methods 

provide a foundation for the 
real numbers (R) in terms of 
more primitive notions such 

as rational numbers (Q).” 

“Real numbers can 
be thought of as 

points on an 
infinitely long line 

called the real 
number line, where 

each point 
corresponds to a 

unique real number.” 

“This set of 
numbers is 

important because 
it provides a way to 

describe and 
understand 

quantities and 
measurements in 

the physical world, 
such as distance, 
area, volume, and 

temperature.” 

“Here are some of 
the key formulas and 
rules that govern real 

numbers: 

Addition: 

Commutative: 
a+b=b+a 

Associative: 
(a+b)+c=a+(b+c) 

Identity element: 
a+0=a” 

“In Hilbert's formalistic 
theory, a straight line is not 

“A straight line is 
the shortest path 

“They serve as the 
basis for defining 

“Ax+By=C, where 
A, B, and C are 
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defined by its properties or 
by a visual or physical 

representation, as might be 
common in classical 

geometry. Instead, it is 
defined through a set of 

axioms that describe how 
lines behave and interact 

with other geometric entities 
such as points and planes.” 

between two points. 
This definition 
aligns with the 

intuitive notion of a 
line you might draw 

with a ruler on a 
piece of paper.” 

shapes, plotting 
graphs, and 

modeling physical 
phenomena.” 

constants. This form 
is useful for 

analyzing lines in a 
more general context 

and can easily be 
manipulated to find 

the slope and 
intercepts.” 

“In this framework, 
probabilities are assigned to 
sets in a way that satisfies 

certain properties or axioms, 
such as non-negativity, 

normalization (the 
probability of the whole 
sample space is 1), and 
countable additivity.” 

“Empirical 
Probability (or 

Relative Frequency 
Probability): Based 
on observations or 

experiments.” 

“have applications 
in various fields 

including finance, 
insurance, science, 
engineering, and 

everyday decision-
making” 

“The probability of 
an event is 

calculated as the 
ratio of the number 

of favorable 
outcomes to the total 
number of possible 

outcomes.” 

The quantitative analysis of responses to the prompt "What is a/are [concept] in mathematics?" 
without any additional phrase shows that the formal-abstract perspective occurs considerably less 
frequently than the other perspectives and only for the concept of probability when a general 
unspecific prompt is used (see Table 3). In contrast, the empirical-concrete perspective appears in 
almost every answer, except four times for the concept of probability. It should be emphasized that 
the formal-abstract and empirical-concrete perspectives appear together ten times. In most of these 
cases, ChatGPT explicitly presented them as two different approaches to probability. It is also 
interesting to note that in two cases both perspectives do not appear so that the concept is not fully 
defined. The application perspective occurs often for all three mathematical concepts. The toolbox 
perspective does not occur at all for the real numbers when using the general prompt. However, it 
appears in almost every answer for the concepts of straight line and probability. The first analysis 
shows differences with regard to both the four perspectives and the three mathematical terms. Overall, 
it can be said that ChatGPT's answers regarding the concept of probability were more diverse than 
for the other concepts in terms of the perspectives on mathematics. 

Table 3: Frequency of the four perspectives in responses to the prompts "What is a/are real 

numbers/straight line/probability in mathematics?" 

 FA EC A T # 
Prompts 

Real 
numbers 

0 30 25 0 30 
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Straight line 0 30 18 30 30 

Probability 11 26 30 29 30 

Sum 11 86 73 59 90 

Conclusion and outlook 
The results of the systematic analysis show that ChatGPT can adopt different perspectives on 
mathematics. The four perspectives considered in this article – formal-abstract, empirical-concrete, 
application and toolbox – could all be detected in ChatGPT's responses. It is noticeable that the 
frequency of occurrence depends on the mathematical concept under consideration, as well as on the 
wording of the prompt. Basically, the formal-abstract perspective is less present in the ChatGPT 
responses than the other perspectives, at least if the prompt is not specifically formulated in terms of 
this perspective. It is also interesting to note that ChatGPT often presents different perspectives in a 
single response. These are often explicitly described as different ways of understanding the 
mathematical concept.  

The question posed in the title "What is ChatGPT's belief system about math?" can therefore be 
answered as follows: ChatGPT's belief system is diverse and can offer different perspectives on 
mathematics depending on the prompt entered. Thus, generative AI has the potential for a balanced 
presentation of mathematics. However, the results of the systematic analysis only provide initial 
indications of the way mathematics is presented by ChatGPT, since only a small amount of data was 
considered. In further follow-up studies, the relationship between the formulation of prompts and the 
occurrence of certain perspectives on mathematics will be statistically analyzed using a large amount 
of data. Furthermore, beliefs of ChatGPT about learning mathematics are also of interest, especially 
when generative AI is used by teachers for lesson planning. Finally, the influence of the use of 
ChatGPT on the users' belief system should be examined. 
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This paper deals with interaction processes of students using the large language model ChatGPT in 

the mathematics classroom. For this purpose, the communication of students with ChatGPT and the 

interaction between students and a teacher about ChatGPT are analysed in the context of a lesson 

on the proof of the theorem on the sum of interior angles in a triangle. The overarching goal of our 

research is to describe the conditions for the productive use of artificial intelligence tools like 

ChatGPT for learning mathematics as a basis for successful usage scenarios of ChatGPT in 

mathematics classes. To this end, we analyse video recordings of ten groups of students of a lesson 

in a grade 7 class at a middle school in Germany using the method of inductive qualitative content 

analysis (Mayring, 2000). 

Keywords: Angle sum theorem, ChatGPT, communication, learning processes, justification. 

Introduction 
ChatGPT is probably the best known large language model (LLM) at the moment. Large language 
models simulate natural communication, but there is no guarantee for the truthfulness of the 
responses. In contrast to AI tools that are designed to do logical reasoning, ChatGPT can produce 
responses that look convincing, but are completely illogical (Kasneci et. al., 2023). Especially in the 
context of mathematical proofs and reasoning, this uncertainness of the validity of ChatGPT’s 
answers can be a challenge but may also be turned into an opportunity. 

Due to its ability to automatically generate text, ChatGPT has the potential to influence learning and 
teaching in schools. For instance, it can be used to work on tasks, create summaries, or even to engage 
in discussions (Kasneci et al., 2023). This can impact the learning of mathematics: When maths 
problems are entered into ChatGPT, the AI-based system generates solutions. Even if the correctness 
of the responses can be significantly increased with the Wolfram plugin, the answers can still contain 
errors, especially in the context of mathematical reasoning (Buchholtz et al., 2023; Dilling et al., 
2023; 2024). This can be a challenge in the classroom and the generated responses should always be 
analysed cautiously. However, as we will see in this article, the false answers can also be treated as a 
learning opportunity by stimulating mathematical interaction. In this context, we investigate the 
research question:  

Which types of interaction occur when students use ChatGPT in mathematics classes? 

This question is investigated within the framework of an exploratory case study. The following 
section begins with a brief overview on interaction in mathematics lessons in the context of digital 
technologies. The methodology and framework conditions of the study are explained subsequently. 
Then, the results of the case study are presented in the form of a system of inductively formed 
categories. This is followed by a discussion and conclusion. 
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Theoretical background 
The description of teaching-learning processes plays an important role in the context of the 
constructivist learning theory (Bauersfeld, 2000; Krummheuer, 1983; Voigt, 1994). According to this 
approach, it is primarily the social interactions of those involved in the classroom that determine the 
processes of knowledge development (Voigt, 1994). The (mathematical) objects of the classroom 
discussion, which are part of the subjective experiences of the participants, have different meanings 
for each individual. This ambiguity surrounding the objects significantly shapes classroom 
discussions and can persist even when the same terms are used to describe them. (Krummheuer, 
1983). It forms the basis for the so-called “negotiation of meaning” (Cobb & Bauersfeld, 1995, p. 
295): This term refers to the process through which mathematical concepts evolve and reach 
intersubjective agreement through the interaction among individuals who present and discuss their 
personal interpretations and constructions of meaning.  

Interaction with digital technologies such as the LLM ChatGPT can also form the basis for negotiation 
of mathematical meaning in the classroom. This interaction can be structured and interpreted using 
the model of the didactic tetrahedron according to Trgalova et al. (2018). The tetrahedron consists of 
four vertices, which represent the four important components of a didactic system: the teacher, the 
learner, the mathematical knowledge and the technology & resource. The edges and faces of the 
tetrahedron represent the possibilities for interaction in the classroom. For example, a digital 
technology can act as a mediator between the learners and a mathematical content - represented by 
the surface learner-knowledge-technology. We will use this model in the following to structure the 
categories from the case study. 

Although the use of LLMs in mathematics education as a research area has seen some recent 
developments, it remains in its early stages. While some studies focus on specific aspects, such as 
prompt engineering (Schorcht et al., 2024), many questions remain unanswered. Broader research on 
the use of generative AI in education provides additional insights. For example, Mishra et al. (2023) 
highlight how generative AI transforms the TPACK model, particularly emphasizing new demands 
on teachers in technological knowledge (TK) and technological pedagogical knowledge (TPK). These 
new requirements can pose significant challenges for educators, especially when considering the 
evolving role of teachers in this context. 
Methodology and Conditions 
To address the research question posed in the introduction, this section presents an exploratory case 
study in accordance with Yin (2013). It is based on a teaching experiment that was carried out at a 
middle school in Germany in spring 2023. In the lesson, which was accompanied by researchers from 
the University of Siegen, 25 students of grade 7 worked on the overarching question: "Can ChatGPT 
handle math?". This question was to be investigated in the context of the sum of interior angles in 
triangles. In the previous lessons, an introduction to this topic was given with the help of a hands-on 
experiment and the classic proof via corresponding and alternate angles was presented. In the teaching 
experiment, the students should communicate with ChatGPT 3.5 about this topic in small groups and 
should start with the following initial prompt: "Explain the sum of interior angles in a triangle 
‘anschaulich’!". The German term 'anschaulich' is subject to interpretation and, as a result, can be 
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translated in various ways. In this context, the most fitting translations might be 'clear' or 'vivid', 
although it can also mean 'graphic.' The prompt was deliberately crafted in this manner to introduce 
ambiguity that could serve as a focal point for student discussions. The answers from ChatGPT should 
then be analysed by the students against the background of the knowledge from the previous lessons. 
The students were provided with ChatGPT accounts by the University and instructed on how to use 
ChatGPT in a safe manner concerning their personal data security. 

The activities of the ten student groups were videotaped using the screen recording function of tablets 
and the conversations were recorded using microphones. The data was categorised applying the 
method of summarizing qualitative content analysis according to Mayring (2000). In this method, a 
system of categories is created by paraphrasing and generalising statements, which is then described 
by definitions and reference examples. Due to the large amount of data and the exploratory nature of 
the study, no multiple coding of different raters was carried out. The system of categories is described 
in detail in the following section. For this purpose, the dialogues between the students were translated 
from German into English by the authors. 

Results 
In this exploratory study on the use of ChatGPT in educational contexts, two forms of interaction 
crystallized: direct interaction with the LLM and discursive processes about its responses by the users. 
The interaction with ChatGPT is depicted within the didactic tetrahedron through the learner-
knowledge-technology surface. Leaving prompts aside that only consist of the input of the given 
prompt from the worksheet into ChatGPT and obvious non-mathematical questions, four types of 
interaction could be identified in this regard. These are verification of own conclusions, asking for 

visualization, regeneration of prompts and reviewing previous responses. The verification of own 

conclusions was coded for all interactions in which the students came to a conclusion, based on the 
previous answer from ChatGPT and asked ChatGPT to verify or deny their conclusion. This applies 
to statements presented as hypotheses, where ChatGPT was asked to evaluate their truthfulness. 
Prompts, which did not include such a statement were not considered for this category. In the provided 
anchor example, ChatGPT explained that the sum of a triangle's interior angles equals 180 degrees, 
leading to a subsequent conclusion about hexagons. Surprisingly, ChatGPT supported the incorrect 
conclusion, but at the same time provided a formula that would give a different angle sum if applied 
to the case of the hexagon, which the students did not challenge further. 

Prompt: If for a triangle the sum is 180°, then for a hexagon it is 360°, isn’t it? 
Response: Yes, that is correct. If the sum of interior angles in a triangle is always 180 

degrees, then the sum of interior angles in a hexagon is 360 degrees. This fact 
can be transferred to polygons with more than 6 sides. For example the sum 
of interior angles in an octagon is 1080 degrees ((8-2)*180=1080). 

Asking for visualization was coded for prompts in which the students requested ChatGPT to give a 
graphic representation of the previous content of the chat, especially to support explanations. It was 
coded in 7 of the 10 groups where the students asked for an image or a graphic representation. This 
is interesting in particular, considering the initial given task, to ask ChatGPT for an explanation that 
is ‘anschaulich’ (see above). The students seem to interpret this term as graphic in this context. This 
is an interesting result, as it implies the students’ perception of a vivid proof being tied to a graphic 
representation. This might coincide with the observations of Schoenfeld (1985), where students act 
as ‘pure empiricists’ in the context of geometrical proofs. After a response by ChatGPT to a prompt 
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asking for an explanation of the interior angle sum in a triangle the students then input the following 
prompt, which illustrates the category asking for visualization. 

Prompt: Give me a graphic for it. 

The regeneration of prompts is self-explanatory as it was coded for those cases, in which the students 
regenerated a prompt once or multiple times in a row. Prompts can be regenerated in ChatGPT using 
a button beneath the generated response, enabling the generation of a new response for the previously 
entered prompt. In the example below, the group requested a clear explanation of the sum of interior 
angles in a triangle and subsequently regenerated this prompt three times. Between regenerating the 
prompt, the response was read out loud and discussed by the group every time. 

Prompt: Explain the sum of inner angles in a triangle clearly. 

+1:55 (Regenerates the answer)  

+6:05 (Regenerates the answer)  

+10:20 (Regenerates the answer)  

The final category regarding direct interaction with the LLM, reviewing previous responses, was 
coded for instances where students scrolled up in the chat to review responses to earlier prompts. This 
category does not include situations where students had to scroll up simply to read a lengthy current 
response in its entirety, but rather cases where they deliberately examined the chat history above the 
current prompt. This behaviour was observed in several groups, sometimes repeatedly. In the example 
provided, the group inquired about triangles with a sum of interior angles different from 180 degrees 
and received information on non-Euclidean geometries from ChatGPT. After a series of follow-up 
questions, the teacher joined the group's discussion, clarified some of ChatGPT's responses, and 
redirected the group's focus back to the lesson's topic. 

A:  Although this is interesting, we have to get back to our topic. 

B: (scrolls up to the start of the chat, while A takes pictures of the responses) 

A: We strayed from the path a little. (laughs). 

B: (scrolling back down slowly) 

B: Here. This is where we strayed from the path. (stops scrolling down at the last 
prompt before the questions on non-Euclidean geometry). 

The interaction about ChatGPT (‘discursive processes about its responses by the users’) can be 
differentiated into exchanges between students within the working group (edge learner-knowledge in 
the didactic tetrahedron) and communication with their teacher (surface learner-teacher-knowledge). 
The discussions among students were coded in the categories reading out the response, questioning 

the response, error identification, response discussion and comparison to previous solution. Reading 

out the response was coded for the situations in which the students read ChatGPT's answer (or part of 
it) out loud and integrated it into oral conversation. It only includes the read-out response from 
ChatGPT, but not the further conversation of the students about its content. These discussions about 
the content fall into one of the other categories within our coding scheme: For example, if the students 
make additional observations and ask questions about the content of a response, it was coded as 
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questioning the response. An example for this category can be seen below, where a student tries to 
understand ChatGPT’s response by thinking out loud. 

C: I don't understand this right now. One way to understand this is to imagine that a 
triangle is divided into two rectangles. By drawing a perpendicular line from one 
vertex of the triangle to the opposite side section. Since the sum of the angles in a 
rectangle is 90 degrees, the angles that connect this line to the two sides of the 
rectangle add up to 90 degrees. Huh? A total of 90 degrees because each corner is 
90 degrees, huh? Since there are three such lines three of each corner three there 
are four corners/ 

D: Yes, let's take these. 
Our next category identification of an error contains statements in which the learners consciously 
articulate, that ChatGPT presents a wrong conclusion in the response. The validity is questioned by 
the students as in the category before, but they do not share their doubts with ChatGPT in a prompt 
and instead share them with their group members. In the example below, ChatGPT describes two lines 
AB and BC, intersecting at a point D, which actually is the same as point B.  

E: AB and BC, those intersect at B. 
Teacher: Yes.  
E: That’s why it doesn’t really make sense.  

Situations where multiple students engaged in a discussion about a ChatGPT response were 
categorized as response discussions. This category predominantly features students’ statements 
affirming each other's statements, with reflective negotiation processes regarding ChatGPT's 
responses being less common. An example of this is detailed below, involving a review of a proof 
concerning the sum of interior angles using a parallelogram. 

F: The resulting parallelogram/ Huh? Why parallelogram?  
G: Because we're talking about a parallelogram. That's this one. Look, this one/  
F: Yes, but if you divide it, you don't get a parallelogram in that sense, do you? 
G: Yes you do, we had this [beforehand]. 
F: You can divide a triangle into two parts. 
G: This/ Look here, this/ 
F: Oh, you draw a parallel line to one side of the triangle. Okay. 
G: Then this is a parallelogram. 

The final category in this section comparison to previous solutions was coded for instances where 
students compared a ChatGPT response with their understanding of the proof from the previous 
lesson. This interaction was stimulated by a task on the worksheet, specifically asking the students to 
find similarities and differences. In the described situation, students identified the addition of angles 
as a similarity and the division of the triangle as the key difference between the familiar proof and the 
new proof provided by ChatGPT. 

H: Similarity: You have to add up all angles. 
I: Yes. To get there you think? 
H: Exactly. [...] 
I: Differences: We need another difference now. [...] 
H: I would say: you can divide a triangle into two right-angled triangles/ 
K: We have [already] written this down as ‘line of argument' 
H: Oh, yes.  

In addition to communication between students, we could also identify two different types of 
communication between students and the teacher about the responses of ChatGPT: Emphazising the 

truth value and excluding difficult topics.  
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In the observed situation, the first category emphasizing the truth value, is significantly influenced by 
the teacher's perspective on AI in general and ChatGPT specifically. The teacher showed the general 
behaviour to review and comment on the responses of ChatGPT from each group during the group 
work, paying particular attention to errors. Thus, this category is mainly characterized by negatively 
connoted statements by the teacher regarding the reliability of ChatGPT. This is illustrated by the 
following situation, where the teacher scans a ChatGPT proof on the screen and subsequently 
highlights an obvious mistake.  

Teacher: "This is entirely incorrect. 'Draw a line'—(4s). This already does not make sense. 
You draw a line through a vertex, which is what we did here, isn't it?"? 

M: Yes. 
Teacher: Parallel/ "With this, the triangle is divided into two sub-triangles" That’s not true at 

all. Huh? This is complete [nonsense.] 
The second category excluding difficult topics was formed based on the teacher's advice, to focus on 
the topic at hand, excluding topics beyond the scope of the lesson. For example, to pursue the learning 
objective of the lesson, the teacher interrupted a discussion about the differences of Euclidean and 
non-Euclidean geometry, that the interaction with ChatGPT initiated. This interaction was already 
presented in the example above for reviewing previous responses. 

Discussion and conclusions 
Our exploratory analysis exemplifies how ChatGPT stimulates interaction among participants in a 
classroom setting in various ways. Initially, we observe the interaction between students and 
ChatGPT: The categories regeneration of prompts and reviewing previous responses illustrate new 
types of interaction enabled or technically facilitated by the LLM. These categories outline novel 
approaches to structuring the problem-solving process, rather than types of communication. However, 
they may encourage accompanying or subsequent interactions among the participants. Verification of 

own conclusions and asking for visualizations would have been possible in human interaction 
beforehand, but with a LLM, they can potentially be addressed very specifically and individually by 
each student with a seemingly competent third party in the role of a learning tutor. This holds great 
potential if LLMs were to provide reliable responses. Looking at the interaction opportunities created 
by ChatGPT, we found that students often initially bring the LLM's responses into the phonetic space 
by merely reading them aloud, which is sometimes connected to the regeneration of prompts. This 
hints at a communication potential for the now available speech features of ChatGPT. The four 
additional categories questioning the response, identification of an error, discussion of the responses, 
and comparison with the solutions of the previous lesson all describe, in different nuances, interaction 
processes that reflect the process-related competence of mathematical communication and 
argumentation. Herein lies a special value of the (potential) capabilities of LLMs: In jointly 
questioning, evaluating, and comparing ChatGPT's responses, there appear to be many opportunities 
for an engaging mathematics classroom. 

The teacher, adhering to his self-conception as an authority on the subject matter in the classroom, 
took on the role of emphasizing the truth value. It is noteworthy that this, similar to excluding difficult 

topics, had a rather limiting influence on the positive exploratory negotiation processes on the one 
hand, but on the other hand, seems fundamentally important for the students' reflective (subject-
matter) handling of the AI (Kasneci et al., 2023), which sometimes answers with confidence but 
incorrectly. Thus, providing concepts for a good balance between the independent negotiation 
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processes of students and the intended accomplishment of learning goals to teachers in a role as 
genuine learning facilitators seems more important than ever. However, it is not only teachers who 
probably need new competencies for dealing with LLMs, as our initial exploratory observations 
suggest, but also students, for whom we aim to stimulate further intervention studies with this article. 
It's crucial to understand that the currently available LLMs are valuable resources only if one grasps 
their functionality: they are not reliable sources of knowledge nor reasoning engines (van 
Vaerenbergh & Pérez-Suay, 2022). However, they can provide significant ideational potential in 
linguistic-dialogical negotiation processes, serving as partners in writing and reasoning. In addition 
to the most important content knowledge dimension when students interact with LLMs in class, there 
are also technical possibilities (such as the availability of the entire prompt) and limitations (such as 
the restricted ability to create drawings) that, it seems to us, need to be investigated further.  

This study serves as an initial exploratory investigation aimed at generating further research questions 
and ideas. Given this purpose, the study's limitations should be acknowledged when interpreting its 
results. It is still unclear whether the observed interactions would be the same with students from 
different age groups or social backgrounds, how previous experiences and knowledge about the 
functionality of LLMs affect the interaction, and how different teachers might influence it. 
Additionally, further research is needed to understand, how interactions vary across other fields of 
mathematics or different types of tasks, such as problem-solving. The rapidly evolving mathematical 
capabilities of LLMs will likely change these interactions, especially when their responses in the field 
of mathematical reasoning become more reliable. 
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This paper looks at how teacher knowledge is considered in the preparation phase of designing 

Scratch-based geometry activities. In the study, two task designers from two different studies using 

Scratch-based geometry activities are interviewed. The transcripts from the interviews are then 

analyzed using the TPACK framework. The results indicate that teacher knowledge domains are 

considered by task designers and that providing teachers with proper initial training before 

implementing the Scratch-based intervention is important. 
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Introduction 
Approaching teaching mathematics through programming, or vice versa, seems to be a promising 
way to enhance simultaneously students' problem-solving skills and mathematical understanding 
(Bers et al., 2014). As of 2020, Norway introduced a new curriculum with programming being 
included as a key part of one of the curriculum's five basic skills for pupils from first grade to tenth 
grade. With this new curriculum comes a new demand of teacher knowledge both in appropriate 
technology and the usage of this technology in the mathematics classroom. This, and the bridging 
between programming and the mathematical content can be a challenge (Stigberg & Stigberg, 2020). 
Using technology in teaching has created new opportunities for better educational practices, but also 
a need to understand how to teach using technology, and what to teach using technology. This 
highlights the crucial role of teacher knowledge in shaping educational methods. In this context, the 
Technological Pedagogical Content Knowledge framework (TPACK) (Mishra & Koehler, 2006) can 
be used to explore how technology, teaching methods, and subject knowledge come together. An 
example of such a technology is Scratch, which is a free block-based programming language that is 
popular to utilize in the mathematics classroom (Nordby et al., 2022). Tested Scratch-based 
geometrical activities in the literature are however few and far between, and in most cases the 
epistemological background, design principles, or how the teacher is involved, or considered, in the 
design process are not presented in the literature.  

Literature review 
Teacher’s role in integrating programming practices into mathematics  

From Clark-Wilson et al. (2020) we learn that the interest in digital tools and their use by students 
typically outweighs the focus of the teacher’s role in the implementation of this tool. The knowledge 
of how digital tools have impacted the teachers’ practices, development of teaching methods and 
adaptation to changing educational conditions is also lacking (Clark-Wilson et al., 2020). In Sweden 
there are reports that teachers are struggling with connecting programming and mathematics 
(Kilhamn et al., 2021), and among other challenges, Stigberg and Stigberg (2020) points to teachers 
lacking programming knowledge and emphasizes the need for effective teacher training and support 
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in this integration. The state of pre-made material (textbooks) is touched upon by Bråting and 
Kilhamn (2021), where they address that certain features for learning programming were of low 
occurrence, where they use debugging as an example. Also, if the teacher is leaning on the pre-made 
text material as a knowledge base for teaching programming in mathematics, then it is evident that 
this will not be a sufficient resource. These studies collectively highlight the need for teachers to be 
equipped with the necessary skills and support to effectively integrate programming into mathematics 
education. 

Scratch-based geometrical interventions  

From Nordby et al. (2022) we learn that geometry is a popular topic to pick when designing 
mathematically based programming activities with a focus on computational thinking.  Iskrenovic-
Momcilovic (2020) showed that a Scratch-based activity based on drawing and identifying specific 
geometrical shapes could support pupils’ knowledge of geometrical shapes and even improve their 
knowledge compared to a control group, where the activity gave immediate feedback, had no teacher 
interaction, and did not present any design principles. Olsson and Granberg (2022) however, designed 
their activity through creative mathematical reasoning, and had the activity as an intervention where 
the pupils create a program that draws squares and triangles with different properties, in which the 
teacher was present and supporting the pupils through questions and feedback on their work. They 
looked at the effect of teacher-student interaction during such an activity, in which they found that 
this could help overcome some of the complexities of learning mathematics while programming 
(Olsson & Granberg, 2022). In the few articles mentioned, very few state what the teacher’s role in 
the intervention is, or how they have incorporated the teacher’s role in the preparation for the task 
design. This does not imply that the teachers were not considered, but that the considerations made 
are not present in the literature.  

TPACK 

TPACK consists of three different knowledge domains, Technological knowledge (TK), Pedagogical 
knowledge (PK), and Content knowledge (CK), and the intersections of these (Mishra & Koehler, 
2006). Technological knowledge (TK) is the teachers’ ability to use various technologies for teaching 
purposes. This entails knowing the features and functionalities of certain technologies and having a 
basic operational knowledge of the technologies. Pedagogical knowledge (PK) refers to the teachers’ 
ability to utilize teaching methods and strategies to facilitate and improve student learning. Content 
knowledge (CK) is linked to the teachers’ understanding and abilities in the subject matter. 
Technological pedagogical knowledge (TPK) is the teachers’ ability to utilize teaching strategies 
supported by technologies. This focuses on the knowledge the teacher has to enhance and support the 
teaching and learning experience using technology, Technological content knowledge (TCK) is the 
teachers’ knowledge of how they can utilize technology to improve student learning of the subject 
matter and reframe the subject matter through the chosen technology. Pedagogical content knowledge 
(PCK) is the teachers’ knowledge of how to utilize different teaching methods and strategies to 
present the subject matter. Technological pedagogical and content knowledge (TPACK) is the 
foundation for effective teaching using technology which involves understanding concepts using 
technologies, employing pedagogical techniques that utilize technologies to teach content in 
constructive ways, addressing difficulties in learning through technology, and considering students' 
prior knowledge and theories of epistemology (Mishra & Koehler, 2006). 
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Research question 

The related literature reviewed above reveals that there are relatively few studies on Scratch-based 
activities regarding geometry with a focus on mathematical learning. It is also evident that the 
teacher’s role is not precisely defined, considered in the design of the activity, or even considered at 
all as an influencing part of the study. With the call for further programming resources, as well as 
research and support in their professional development, these become natural aspects to study. In this 
study we want to look at how the teacher and the teacher’s role is considered in the preparation leading 
up to the design of a Scratch-based activity with a geometrical theme from the lens of TPACK. This 
gives the research question: How do task designers of studies using Scratch-based geometrical 

activities consider the teachers’ knowledge domains in the preparation of the activity design? 

Methods 
The overarching aim of my doctoral research is to theorize task and implementation design principles 
for a set of Scratch-based geometrical activities that offer Norwegian primary and secondary school 
students with an aesthetic mathematical experience whilst facilitating their computational thinking to 
promote mathematical learning. These design principles will emerge from empirical data collected 
from two sets of participants. The first source of input will be a literature review of existing research 
done with Scratch-based geometrical activities, and interviewing the authors of these to learn how 
they designed their activities and the factors that influenced their design choices. The second source 
will be from interviewing teachers teaching classes between 5th and 8th grade, and learning about 
their needs and what they want to see in a Scratch-based activity. This paper reports the outcome of 
the first line of inquiry, and more specifically on considerations made in the preparations of the 
activity design. 

Interviews 
In this paper, task designers from two studies using Scratch-based activities with a geometrical theme 
have been interviewed. The task designers were tracked down and contacted through doing a literature 
review of published articles using Scratch-based interventions or activities with a geometrical theme. 
The task designers from the first study were interviewed together, while two of the authors of the 
second study were interviewed separately. The task designers from other studies using Scratch-based 
activities with a geometrical theme were contacted as well, but they did not want to participate in the 
study as they either had busy work schedules or simply were not interested. The interviews with the 
authors were interviews using the interview guide approach (Cohen et al., 2017), and they were 
conducted digitally. The questions were semi-open to let the authors elaborate and reflect around the 
design process for the activity or activities used in their work. The authors were asked questions 
regarding the underlying epistemological beliefs, why Scratch was chosen as the activity’s platform, 
the learning aims of the activity, what principles (if any) guided the design of the activity. Data from 
the interviews were narrowed down to be about the initial design process, and were analyzed using a 
thematic analysis approach, with the TPACK framework guiding the coding scheme. Codes were 
developed for instances reflecting pure forms of knowledge (CK, PK, TK) as well as their 
intersections (PCK, TCK, TPK, and TPACK), allowing for a comprehensive understanding of how 
researchers integrate these forms of teacher knowledge domains into their intervention design. 
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Findings 
The analysis of the interviews conducted is presented below. It is important to note that the first study 
was a study using a single intervention with a single task for a single iteration, while the second study 
was more ambitious in its scale and scope. The second study was conducted over two years and 
included six curriculum modules where the activities progressively became more advanced. To avoid 
mixing up the task designers from the different studies, they are given different abbreviations. The 
abbreviation TD1-S1 means task designer 1 from study 1, while TD2-S2 means task designer 2 from 
study 2.  

Study 1 

The task designers in this study were two Swedish researchers who were collaborating with a teacher 
in a Swedish primary school. The aim of the activity was to facilitate creative mathematical reasoning, 
and the entire task was designed around a specific framework for creative mathematical reasoning. 
The content of the task was teacher informed, meaning that the geometrical theme and subtheme of 
geometrical shapes was in decided in full by the collaborating teacher: 

Interviewer: How did you land on what to teach them (the pupils)? Or what new mathematics were 
going to be introduced? 

TD2-S1: I think that is Sara (the teacher) … The teacher knows what her students know, and 
she also knows what they... What she had planned to teach them in geometry. It was 
not I and maybe not A1-S1 either, but it was the teacher who decided what is 
appropriate to… For them to learn or at least try to learn by programming. You can 
correct me, A1-S1, if I'm wrong. 

TD1-S1: No. We have been collaborating with Sara for several years, so we will always do it 
like that. She knows what the students are supposed to learn and then we designed 
some tasks and lessons from that. 

This was important to the authors, as they wanted to ensure they did not introduce any new 
mathematics and to build on what the pupils already knew from the curriculum. The task designers 
also held a couple of introductory sessions in Scratch prior to their intervention, to make sure that the 
instrument did not hinder the mathematical development of the pupils, as they had learned through 
the literature that the programming could be a hindrance rather than a help to learn mathematics. 
These sessions were attended by both teacher and pupils and show planning towards the teacher’s 
technological knowledge (TK). The choice of using Scratch was deliberate as this was something the 
teacher was familiar with: 

TD2-S1: … Scratch is the block programming program in Sweden that is most common. For 
example, when you look at “Skolvärket”, they have some modules. They have created 
websites for teachers to go and practice different things in mathematics, and one of 
them is about block programming and Scratch is one of the programs they promote. 

The task designers are further considering the teacher’s TK when choosing what programming 
platform would suit the intervention. Another point raised by the task designers was that one should 
also be aware of the impact the teacher will have on the activity and plan for the teacher’s role in the 
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intervention, or an instruction as to how the teacher should interact with the pupils engaging in the 
activity. As one of the authors put it: 

TD2-S1: It’s actually important to add some kind of “how should the teacher support be 
designed to not destroy that task”. Because it’s really important that the teachers help 
the students to think, to investigate, to verify and stuff like that. ... So, the task design 
for me is… Couldn't stand… It's not a standalone thing. You need to think about how 
should the teacher support the students to actually engage in what you are expecting 
them to be engaged in. 

This points directly to planning to develop the teachers’ TPACK, as it refers to how the teachers 
should support the students throughout the intervention to maximize the learning outcome. The design 
of the teacher instructions, or pupil supporting instructions, were guided by the same framework that 
guided the activity design. The task designers also reflected on the fact that the instructions given to 
the teacher suited the teacher’s pedagogical approach well, hence adhering to the teacher’s 
pedagogical knowledge (PK) and pedagogical content knowledge (PCK). The teacher was used to 
asking the pupils questions about what their thinking was, or how they could be sure that their answer 
was correct, which were the type of questions included in the pre-made teacher instructions. Through 
the interview it became clear that the task designers believed that the teacher has a pivotal role in 
guiding and assisting the pupils in their work with the intervention, to make sure that the instrument 
and/or mathematical content is not a hindrance in their learning, hence making the planning for the 
teachers’ TPACK an important part of the intervention’s success. 

Study 2 

In this study, the questions were focused around the initial two activities of the study, called module 
1 and 2, but other modules were also discussed when appropriate. All modules were built on a self-
made pedagogical framework, which was made to guide the design of the tasks as well as the teacher 
training and teacher instructions for the implementation of the modules. The framework was 
influencing both module and professional development for the teachers, but the task designers also 
pointed out other aspects they to consider when dealing with the teachers' professional development: 

TD1-S2: So, it was the approach we took to the professional development was that we knew 
that the majority would have no experience, and so it was designed from that perspective. … It's very 
challenging to get schools on board. It's very… it's very difficult to get schools on board. And so, we 
knew that if we were creating a curriculum, we knew we would have buy in. So if the teachers didn't 
have to create their own materials, then it's going to be more attractive to get people involved in the 
research project.The planning for teacher training shows that the task designers were aware that the 
teachers would have no experience with the technology, hence facilitating for development of teacher 
technological knowledge (TK) and technological pedagogical knowledge (TPK). The other author 
also emphasized this: 

TD2-S2: We tried it out and sort of practically think how we can like make this as relevant as 
possible for the teachers and as usable as possible. 

… 
TD2-S2: You know, the teachers they need to evidence, uhm, how they’ve fulfilled a lot of these 

curriculum points. 



                          Proceedings of the 17th ERME Topic Conference MEDA4, 3-6 September 2024, Bari, Italy                          ISBN 978-88-6629-080-3

  
158 

In relation to this, the former author raises another point: 

TD1-S2: And so importantly for our curriculum it was to bring the teachers with us, not just the 
children. So, it was the teachers that had no background for the most part with 
computer programming. The kids, and that was that was one of our significant, I guess, 
challenges, that the kids often knew more than the teachers and that's very challenging. 

The latter part of the quote also indicates a challenge in the implementation of the modules, with the 
pupils being more proficient in the use of Scratch than the teachers. This adheres to the teachers’ TK. 
This was something that the task designers had to take into consideration: 

TD1-S2: …I guess in summary we had to be very careful with recognizing the starting places 
of teachers. That's important for any professional development. 

The teachers were given two days of training prior to the implementation of the modules in the 
schools, where the first module was meant to provide some training as well: 

TD1-S2: So, module one. Its purpose was for children and teachers who had no previous 
experience of Scratch and/or computer programming. So, that's an important, I guess, 
design principle that the activities and the materials themselves were designed to take 
somebody from scratch. 

The task designers also recognized the influence of Papert and constructionism in their module 
design, using notions like body syntonicity and unplugged activities in the professional development 
leading up to the implementation of the modules, and as a part of the modules. This points to 
facilitating for the teachers’ PK and TPK to be further developed. They made a point out of making 
the teachers explore the content like the pupils would: 

TD1-S2: So, we made sure that that in the first session that we assumed that they knew nothing, 
and it literally was at the beginning that the teachers exploring the materials as if they 
were the children. So, they were… They were dragging the Sprite around, they were 
printing it on the screen, they were clicking the button. We had them acting out with 
the Beetle on their back. We had them going through as much of what the children 
would experience as possible. So, we spent a lot of time with probably going through 
everything that's in investigation one from module one probably end to end. We spent 
time working with them on what it might look like, pedagogically speaking. Because 
there's a difference between them having to do something and then having to teach, to 
teach them. 

Some of the teachers, who were not as proficient in Scratch, made use of this exploratory approach 
together with the pupils with success. There were also discussion points included in the preparation 
material for the teachers, to make the mathematics of the modules more explicit and to serve as a 
bridge between computing and mathematics: 

TD1-S2: And so, we knew that in primary school classrooms they have discussions, and we 
know that that that talk in mathematics is important and so where we had discussion 
points typically, they were to make the maths more explicit. I think it depends where 
they were, so this is an opportunity for us to bridge. … And this is bridging from the 
computing to the mathematics, and this was our opportunity to do that in a formal way. 
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So, we knew that it would happen. It depended very much in the classroom with the 
with the teacher's own understanding of how they were bridging.  

This points to the facilitating of TK, TCK and TPK as the task designers wanted to make the teachers 
aware of the connections between computing and mathematics and how to make this apparent to the 
pupils as well. 

Discussion 
 I find that the task designers in both studies take different aspects of the teachers’ knowledge domains 
into account in the initial phase of designing. This can either be done through directly collaborating 
with a teacher or using the appropriate curriculum the teachers are supposed to know and teach, 
ensuring that the teachers’ content knowledge is considered and integrated in the intervention. It is 
also evident that the task designers are aware of the struggle teachers can have with implementing 
technology properly, and that they consider this in their intervention design, hence the teachers’ TK 
being the biggest concern of the designers. The PK of the teachers were also taken into consideration 
in both studies, with one of the studies designing the intervention to suit the teachers’ pedagogical 
methods, while the other providing a pedagogical framework for the teachers to use, which again was 
used to design the intervention modules. In both cases there is a clear thought behind how this 
intervention is supposed to be taught. This insight is valuable, as Kilhamn et al. (2021) and Stigberg 
and Stigberg (2020) points out, the issues teachers and students have with bridging the gap between 
programming and the mathematical content that is supposed to be taught and learned is a real concern 
and adhering to this through facilitating for further development of the teachers TK, TPK and/or TCK 
through the intervention is a proper measure. The awareness of teachers’ lack of technological 
knowledge is highlighted by the focus given by the task designers through providing initial training 
in Scratch and even pedagogical training in the intervention/activity module, which resonates with 
the findings of Stigberg and Stigberg (2020). In some contrast to Clark-Wilson et al. (2020), the focus 
on the teacher in the task design is very much in place, and in some degree detrimental to the 
intervention’s success. However, even if the teacher knowledge of programming and how to connect 
programming with mathematics is a primary concern in task designers, the focus of the published 
material is mainly on the pupil and the learning output. In my opinion, this further underlines the need 
to research and focus on proper professional development through programming-based interventions, 
providing not only training in the actual programming language (TK), but also a pedagogical 
framework or guideline as to how the programming language can be utilized pedagogically to provide 
further opportunities for learning (TPK). Given that the interview's scope was much broader in that I 
wanted to explore some of the design principles behind the tasks, the interview questions could have 
been better suited for the investigation made in this paper. The TPACK framework is somewhat 
limited in its suitability. As mentioned, the knowledge domains are hard to distinguish between as 
they are broadly defined and generalized. This makes it hard to point out relevant nuances which may 
be technology specific without reworking the entire framework. Further research needs to be done on 
how teachers are integrated in the initial phase of a Scratch-task design process, where a better suited 
framework for analyzing this would be welcome. 
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This paper outlines some innovative STEAM practices that aim to merge diverse fields of studies, 

drawing inspiration from the real-world such as architecture and fostering rich connections to 

cultural and historical contexts. The paper discusses the implementation of these STEAM practices 

in varied learning environments and using diverse digital and physical technologies as well as hybrid 

learning approaches. We followed design-based research methodology and related theoretical 

frameworks to develop a sequence of connected studies. The application of these STEAM practices 

cross-culturally resulted in several theoretical and pragmatic heuristics to guide teachers in their 

future practices design. The pragmatic recommendations are in the form of lesson planning web tool 

to guide teachers in designing their own STEAM practices. While the theoretical recommendations 

consist of design principles and a STEAM + X .. ∞ framework to allow integration of disciplines 

while considering culturally aware technology adaptations to the STEAM practices designs.   

Keywords: STEAM Practices, augmented reality, 3D printing, design heuristics. 

Introduction 
In this paper, we are introducing science, technology, engineering, arts, and mathematics (STEAM) 
practices aiming at connecting both social sciences to natural sciences to transdisciplinary educational 
approaches. Exploiting STEAM transdisciplinary foci (El Bedewy & Lavicza, 2023) we aim to 
connect architecture to mathematics education. Therefore, architectural relationships can help in 
creating discipline incorporation in these STEAM practices. Grounded by architectural relations to 
these STEAM practices, the emergence of cultural and historical discipline connections was 
established (Hessam & Sotoue, 2016). Hence, we encourage teachers to apply architectural 
mathematical modelling and establish discipline connections through architecture such as cultural 
and historical influences in their teaching practices. When teachers establish these discipline 
connections; they could allow learners to discover the stories behind the explored architecture, foster 
their historical and cultural awareness, and allow them to connect various knowledge areas. Hence, 
we adopt the transdisciplinary learning approach by the American Academy of Arts and Sciences 
(2013) “an approach that represents a functional synthesis of methodologies and a broad point of 
view that combines different fields. This is a step beyond interdisciplinary which borrows techniques 
from different fields without integrating them to yield new concepts and approaches” (p.2). 

The mathematical modelling approaches followed in these STEAM practices (Blum & Niss, 1991) 
could inspire learners to experience the process of mathematization and de-mathematization while 
modelling and simulating real-world architectural constructions. We apply architectural 
mathematical modelling by means of CAD systems for instance GeoGebra 
(https://www.geogebra.org/, 2 May 2024). Learners’ problem-solving skills and reasoning could be 
advanced through the application of mathematical modelling process and the application of Polya’s 
(2004) problem-solving strategies (El Bedewy, 2021). Hence, these STEAM practices also aim to 
foster learners’ 21st-century skills such as problem-solving, inquiry, reasoning, creativity and thinking 
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skills. Learners’ skills can increase by connecting real-life examples such as architecture to 
mathematics education during the analysis and modelling process (El Bedewy & Lavicza, 2023). 
Furthermore, these STEAM practices aim at improving learners’ skills and abilities when engaged in 
practices involving various disciplines. Additionally, we intend to overcome challenges teachers meet 
when designing holistic practices including diverse disciplines by providing them with design 
heuristics as we will elaborate further in this paper.  

In order to aid teachers in implementing these transdisciplinary STEAM practices, researchers of the 
STEAM practices presented professional development (PD) workshops, which were carried out 
cross-culturally. These PD workshops were designed to advance teachers’ knowledge of STEAM 
practices, various discipline connections and the transdisciplinary within STEAM, technology 
practices and the skills within mathematical modelling and problem-solving strategies. In addition, 
we offer teachers an employed lesson planning tool providing them with vast possibilities for 
applying these STEAM practices. The lesson planning tool is referred to as the Dynamic Lesson Plan 
(DLP) tool, that was implemented on a web portal providing teachers with numerous architectural 
categories, learning environments and technologies (El Bedewy et al, 2024). Hence, preparing 
teachers to implement these STEAM practices in their own teaching. Figure 1 explains the DLP tool's 
main components that aid teachers in completing their STEAM practice lesson plans. Starting with 
defining the age of students, architectural components, learning environments and digital/physical 
technologies that could be adopted for the applications of these STEAM practices (Figure 1). 
Consequently, through the DLP tool we offer teachers numerous technological options, extending 
from physical to digital tools helping them in visualizing vast architectural representations. In 
addition, this helps in allowing teachers to experience the 3D transformation of architectural models 
either in digital form by means of augmented reality (AR) technology or in physical form by means 
of 3D printing technology. Moreover, for increasing teachers’ technological awareness and consider 
technology affordances we provide them with other technological options to help in implementing 
these STEAM practices for instance virtual reality, origami, 3D scanning and 4D frames (Figure 1).  

 
Figure 1: STEAM practices design components  

In this paper, we focus on the implementation of these STEAM practices in varied settings and the 
use of the DLP tool to meet technological and cultural variations required for the design adaptations. 
Hence, we aim to introduce future teachers in adopting these STEAM practices, based on pragmatic 
findings and experiences we acquired in adapting these STEAM practices design in various situations 
and cross-culturally. Therefore, in the following sections, we will elaborate on these design 
adaptations in the situation of the proposed STEAM practices’ design outcomes, presenting them in 
the form of design heuristics and a comprehensive framework. 



 

 

Proceedings of the 17th ERME Topic Conference MEDA4, 3-6 September 2024, Bari, Italy                      ISBN 978-88-6629-080-3 

  
163 

Methodology 
The implementation of the proposed STEAM practices followed the design-based research (DBR) 
methodology (McKenney & Reeves, 2018; Bakker, 2018; Cobb, 2003). Researchers of this study 
started the DBR process with developing the design and methods for the exploitation of these STEAM 
practices (Figure 2).  

 

 
Figure 2: DBR methodology steps adapted from (McKenney & Reeves, 2018) and STEAM practices 

cycles implementation and outcomes 

Afterwards, the iterative cycles were implemented with teachers (in-service and pre-service 
mathematics teachers) from varied geolocations for instance Austria, Libya, Saudi Arabia, Palestine, 
Tunisia, Indonesia, and Egypt producing a cross-cultural investigation (Figure 2). Researchers 
designed the research materials and collaborated with teachers and professional development 
organizations to apply these cycles with participants cross-culturally.  Figure 2 visualizes more 
information on the implemented cycles, the non-uniform rectangles shows information on the number 
of participants, duration of the cycle and the learning environment used per cycle. The regular 
rectangles under each cycle explain the theoretical frameworks adopted in the cycle design and 
finally, the design outcomes from the iterative cycles that will be elaborated further in this paper.     

Following theoretical framework recommendations, we were able to undergo adaptations to our 
proposed STEAM practices design meeting participants’ cultural background diversity per cycle. 
Additionally, we exploited formal learning environments for instance classrooms or online as well as 
non-formal learning environments for instance museums or outdoors to help in discovering suitable 
design adaptations for these STEAM practices applications in terms of technology use in these 
learning environments. Hence, we used TPACK (Mishra & Koehler, 2006) theory for technology 
encapsulation for the practices design. Moreover, we used the 5E inquiry-based cycle (Engage, 
Explore, Explain, Engineer and Evaluate), problem-based learning and engineering-based design 
learning (EDL) to assembly the learning cycle directed to teachers throughout the iterative cycles 
(Grubbs & Strimel, 2015).  
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We used the theoretical backgrounds in this research in developing the methods such as forming 
semi-structured interviews and questionnaires, these methods were presented in other publications 
(El Bedewy et al, 2024; El Bedewy, 2021). The methods were used for data collection from the 
iterative cycles to capture STEAM practices design reflections from participants and their 
implementation cross-culturally and in varied settings. Therefore, the methods were adjusted as part 
of the STEAM practices design adaptations, they were translated to be understandable by all 
participants cross-culturally. We followed data collection with qualitative data analysis methods 
including content data analysis (inductive and deductive coding) resulting in several evolving themes 
presented in focused publications (El Bedewy & Lavicza, 2023). As recommended by the DBR 
methodology, in this paper we provide research design outcomes elaborating on the design 
adaptations based on the empirical data of the implemented cycles. Therefore, in the results section 
we will discuss these design outcomes including a set of design principles and heuristics. 

Results 
The design outcomes of these STEAM practices focused on explaining how to exploit these STEAM 
practices in different settings while using several technologies cross-culturally. In general, a design 
can be considered for generalization based on the empirical data collected from design cycles that 
were tested and tried out in hybrid settings (McKenney & Reeves, 2018; Bakker, 2018; Cobb, 2003). 
Consequently, we tried to exploit these STEAM practice designs in varied settings, experimenting 
with hybrid learning environments and technologies. Therefore, we aim to seek generalization by the 
proposed design outcomes for the application of these STEAM practices in other settings (McKenney 
& Reeves, 2018; Bakker, 2018; Cobb, 2003). Hence, we transported the knowledge gained in 
adapting the STEAM practices design from hybrid settings including various learning environments 
and cross-cultural application in the form of design outcomes. The design outcomes were tested and 
further developed based on emergent themes that were addressed in focused publications (El Bedewy 
& Lavicza, 2023; El Bedewy et al, 2024) showing participants overall reflections on the STEAM 
practices design. These design outcomes consisting of pragmatic design references are in the form of 
design heuristics, design principles and theoretical design recommendations as the STEAM + X 
framework. 

 
Figure 3: The DLP tool interface showing the components for STEAM practices lesson planning  

The first design heuristics we offered incorporate the DLP tool (El Bedewy et al, 2024). The DLP 
tool presents to teachers a web tool to guide them in designing these STEAM practice lessons and 
help them integrate various disciplines such as architecture, culture, history, arts, and geography into 
mathematics education (Figure 3).  
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The DLP tool grants teachers extended heuristics in the form of a GeoGebra book to guide them on 
how to adopt the advised technologies for modelling and visualization that vary from physical to 
digital tools with implemented examples (Figure 4).  

 
Figure 4: Showing examples from the GeoGebra book on the adopted tools. AR applications (left). 3D 

printing applications from participants’ outcomes (right) 

Design heuristics should be adaptable and subject to modification during the design cycles to align 
with empirical findings and lead to more refined design heuristics. Therefore, the DLP tool has been 
tested with participants cross-culturally and was designed to provide teachers with several learning 
environments and technological options that afford them freedom of choice according to their 
affordance (El Bedewy et al, 2024). Therefore, in our research cycles we tried to adapt these STEAM 
practices to hybrid learning environments and experimenting their potential in formal and non-formal 
learning environments. Accordingly, the learning environment choice affected the technology used 
in these STEAM practices and how the participants visualized their outcomes using digital or physical 
tools. For example, we implemented these STEAM practices in museum learning environments while 
experimenting with various technologies such as AR because of its availability on the participants 
mobile phones. While the 3D printing technology affordance at the museums was not supported, in 
order to overcome these challenges, we created 3D prints outside the museum learning environment 
in maker labs (Figure 5). 

 
                                        A                                B                                       C  

Figure 5: An Islamic architecture from the Egyptian Museum Collection, A: visualization in AR in the 

museum, B: Egyptian teacher using AR visualization in the museum and C: visualized in 3D printing 

outside the museum 

We applied these STEAM practices in outdoor learning environments using mathematical trails to 
explore mathematical situations around the pyramid complex in Egypt. For these learning experiences 
we used mobile phones to visualize and use AR technology for architecture visualization and for 
architectural monuments reconstruction supporting cultural heritage activities, while the 3D printing 
wasn’t adequately supported because of its limited use in outdoor settings. This challenge could be 
overcome by including indoor learning environment practices such as in classrooms or in maker labs 
to experience 3D printing technology. Therefore, we infer that the DLP tool supported teachers during 
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our cycle implementation in providing them with several learning environments and technological 
choices that they can encapsulate while applying these STEAM practices.  

The second design outcome includes a set of seven written design principles, referred to as 
“actionable knowledge” (Bakker, 2018) that have been inferred from the implemented cycles 
empirical data and overall reflections of participants on the practices design. The design principles 
were coordinated in the form of layers consisting of normative and pragmatic principles as direction 
for teachers for future application of these STEAM practices. For detailed description of these  
principles; they were explicitly presented in a publication by El Bedewy & Lavicza (2023) and aim 
on guiding teachers on the application of these STEAM practices in their own settings including 
cultural, learning environments or technological affordances and variations. 

The third design outcome was the development of a conceptual framework, the STEAM + X 
framework, that was based on the DBR recommendations for developing a theoretical understanding 
inspired from the design process (McKenney & Reeves, 2018). The STEAM + X framework design 
was created from the knowledge gained while applying these STEAM practices implementation 
cross-culturally with participants utilizing diverse learning environments and technologies. 
Furthermore, STEAM + X framework was developed based on the discipline connections that were 
applied and experienced by participants and from the emerged themes that were based on empirical 
data, these themes were explained in detail in this paper El Bedewy & Lavicza (2023). Hence, the 
STEAM + X framework aims to foster transdisciplinary learning connections such as architectural 
modelling and fostering connections to culture and history while applying these STEAM practices. 
STEAM +X framework, aims at extending STEAM by adding variables that stand for other discipline 
connections and integrations into the learning practices outside STEAM main 5 integrated disciplines. 
In addition, when using the STEAM + X framework, the level of integration of each newly utilized 
discipline in the learning practices corresponds to an added variable to be integrated with STEAM 
disciplines. For example, considering these STEAM practices applications, when using the STEAM 
+ X framework, we used architectural modelling to foster mathematics learning hence we consider, 
X == architecture, and we fostered the cultural and historical connections to such architectures, hence; 
Y == culture, and Z == history. Furthermore, including Geography in the learning practices as 
introduced in the DLP tool represents a newly integrated discipline corresponding to E== Geography. 
Therefore, the STEAM + X framework when applied to our STEAM practices would denote STEAM 
+X+Y+Z+E for transdisciplinary learning practices (Figure 6). In fact, there is no limit to integrating 
disciplines with STEAM, for example we can add language studies, physical activity, astronomy and 
many others. Therefore, we extend STEAM + X to infinite possible disciplines integrations for 
unified transdisciplinary learning practices. 

 
Figure 6: STEAM + X, Y, Z, E to infinity as a transdisciplinary framework  
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From the discipline connections and our approach in extending STEAM, the STEAM + X framework 
aims at advancing teacher’s development to create and design transdisciplinary learning practices 
while considering cultural and technological design adaptions (El Bedewy & Lavicza, 2023). The 
generated theoretical framework, STEAM +X framework, could aid teachers in regulating the lesson 
planning part while taking into consideration culture, learning practices and technology integration 
to create transdisciplinary STEAM educational practices (Figure 7).  

 

Figure 7: STEAM +X Framework 

In general STEAM + X framework is broader than our STEAM practices and could be adopted for 
any transdisciplinary learning practices fostering the integration of several discipline of study while 
taking into consideration cultural and technological adaptations to these learning practices designs. 
For simplicity we use X to represent infinite discipline integrations, extending further to STEAM + 
X to infinity and adopting the new representation of the framework as STEAM + X .. ∞ proposing an 
unlimited framework for learning integration and overcoming discipline silos in addressing real world 
challenges.  

Discussion 

We proposed the STEAM practices design outcomes, to direct other researchers, teachers, curriculum 
designers or policymakers to reapply the proposed transdisciplinary STEAM practices while applying 
adaptations to others’ local variables (McKenney & Reeves, 2018). Furthermore, the pragmatic 
design heuristics including the DLP tool and GeoGebra book, could guide teachers with specific 
technology or recommendations for a certain learning environment. The technology use is beneficial 
for the success of the learning practices and especially in the proposed STEAM practices, hence, we 
discussed how we provide teachers with several options in the DLP tool to overcome any technology 
affordances or limitations (El Bedewy et al, 2024). In addition the theoretical recommendations, 
through STEAM+X .. ∞ framework connecting culture and technology to learning practices, could 
provide teachers with several possibilities for conquering discipline silos and decreasing the gap 
between disciplines for educational structures nourishment (El Bedewy & Lavicza, 2023). Moreover, 
STEAM+X .. ∞ framework aims at advancing learners skills through the design of transdisciplinary 
learning practices to foster their creativity, reasoning, inquiry, innovation and problem-solving skills 
(El Bedewy et al, 2021; Polya, 2004). As future steps, we aim to encapsulate this framework 
integrating more disciplines to STEAM to address real world problems and challenges while keeping 
into consideration cultural and technological affordances and adaptations to the design of 
transdisciplinary learning practices.  
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We present preliminary results from research on three-dimensional dynamic visualisation abilities 

that university students develop when solving geometric locus problems in space using a Dynamic 

Geometry Environment (DGE). We present the design of two learning activities and results of its 

implementation. The activities use analogies between objects in the plane and in space, in order to 

promote visualisation abilities, such as theoretical control, geometric prediction, and crystallisation. 

Our results show that students have difficulties imagining geometric objects in three-dimensional 

space; however, we identified some development of visualisation abilities in 3D geometry, such as 

theoretical control and visual discrimination. 

Keywords: Spatial visualisation abilities, 3D geometry, Analogies, Geometric locus, Dynamic 

geometry environment (DGE). 

Introduction 
The growing amount of studies on the didactical uses of dynamic geometry and other 3D digital 
artefacts has prompted interest in research of 3D geometry at university level (Gutiérrez and Lowrie, 
2023). However, research in 3D visualisation at that level is still scarce, thus constituting an area of 
interest for geometry education. 

Nevertheless, many university students face difficulties in visualising objects and geometric 
relationships in three-dimensional (3D) space, since it is an ability that goes beyond their common 
mathematics classroom experience (Lavicza et al, 2023). Furthermore, 3D geometry involves objects, 
concepts, and relationships that are more difficult for students to visualise than two-dimensional 
geometry (Mammana et al., 2012). Also, research has shown that university instructors have tended 
to underuse images and graphic representations in their classes, prioritising algorithmic thinking over 
the visual (Nagy-Kondor, 2017).  

On the other hand, many studies highlight the critical role of dynamic geometry environments (DGE) 
in developing visualisation abilities, understanding 3D figures, and fostering spatial thinking. DGE 
are interactive computing environments that allows students to explore and experiment with 3D 
concepts, transforming those objects dynamically using rotations, translations, enlargements, or 
sections by planes (Gutiérrez, 1996). DGE provide dynamic and manipulable representations based 
on a visual richness of spatial images that cannot be achieved with static representations on paper or 
in physical space (Pittalis & Christou, 2010). Thus, it is advisable using DGE in learning activities to 
promote dynamic visualisation abilities in 3D geometry (Sinclair et al., 2016). In this research, we 
use Cabri 3D, which allows the construction of geometric locus and their visualisation in a 3D space. 

Regarding visualisation, many authors (e.g., Gutiérrez, 1996; Nagy-Kondor, 2017; Lavicza et al., 
2023) emphasise its fundamental importance for mathematical conceptual understanding, reasoning 
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and problem-solving at all educational levels and in various fields (mathematics –e.g., calculus, 
algebra–, sciences, technologies, arts, engineering, and daily activities such as car driving). In 
particular, it is important to develop visualisation abilities that involve the ability to think about 3D 
geometric objects in motion (i.e., 3D dynamic visualisation); for example, by using digital 
technologies to mentally manipulate 3D objects and shapes (Boz, 2005; Kösa, 2016).  

In this regard, Gómez-Chacón et al. (2016) point out that the use of DGE can help students overcome 
their usual difficulties when visualising geometric places (loci). Those authors point out that the DGE 
“Trajectory” tools (called “Locus” in Cabri 3D) for studying geometric locations, not only make the 
invisible visible, but can also enhance the power of imagining the possible and the impossible through 
graphic exploration and experimentation of mathematical concepts (Gómez-Chacón et al., 2016). 

Thus, our research question is: how university students develop 3D dynamic visualisation abilities 

when using Cabri-3D to solve locus construction problems. For that, we designed a teaching 
experiment with learning activities for finding and constructing loci, by using analogies between 2D 
and 3D geometry (see the methodology section below). 

Theoretical framework  
We now present some fundamental theoretical elements used in the design of the learning activities 
and for analysing the visualisation abilities developed by the study’s participants through those 
activities. 

Visualisation and spatial abilities  

From Gutiérrez's (1996) perspective, visualisation is a kind of reasoning that implies a geometric 
mode of thinking that is supported using visual and mental or physical spatial aspects useful for the 
elaboration of graphic representations (including the digital ones), such as drawings, figures, 
diagrams, or images. He explains that visualisation allows one to solve problems (in math and other 
sciences), demonstrate properties, and, above all, understand mathematical concepts; and that it is 
made up of four main elements: mental images, external representations, processes of visualisation 
and abilities of visualisation (Gutiérrez, 1996). 

There are a variety of theoretical approaches for studying visualisation abilities; particularly 
interesting for our research are two of them (related to 2D dynamic geometry) –see Table 1: (i) the 
approach of Mariotti and Baccaglini-Frank (2018), who identified eight visualisation abilities that are 
developed with the use of dynamic geometry: identification, reconstruction, construction, part-whole 
awareness manipulation, theoretical control, geometric prediction, and crystallisation; and (ii) the six 
spatial visualisation abilities proposed by Gutiérrez (1996): conservation of perception, recognition 
of positions in space, recognition of spatial relations, visual discrimination, visual memory and mental 
rotation. These approaches, while originally 2D-based, open the opportunity for research of 3D 
visualisation abilities using DGE. 

Three-dimensional dynamic visualisation abilities are required for reasoning about movements of self 
and of objects in space. Dynamic visualisation using DGE is an ability, a process, and a product 
(Arcavi, 2003) that allows one to mentally manipulate 3D objects to construct visual representations 
(that change over time) of relatively abstract mathematical concepts (Pittalis & Christou, 2010). 
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Table 1: Visualisation abilities as described by Mariotti and Baccaglini-Frank (2018, p. 155–156)*  

and Gutiérrez (1996, p. 9–10)** 

Visualisation ability Description 

Identification* 
“immediate identification of a geometrical property of a figure on the 
plane or in space, with a goal in mind” 

Reconstruction* 
“reconstruction of a figure from parts that are not correctly organized in 
space or that are not visible” 

Construction* “construction of a representation of a figure, taking into account the use 
of tools and the construction sequence”  

Part-whole awareness 
manipulation* “abstract a part of the figure and consider it separately from the rest”   

Manipulation* “manipulating a figure to transform it”  

Theoretical control* 
“mentally imposing on a figure theoretical elements that are coherent in 
the theory of Euclidean geometry”  

Geometric 
prediction* 

“The ability to identify a specific figure by isolating it out of a complex 
background” 

Crystallization* 
“manipulation and of geometric prediction involve “movement” of the 
figure … The use of movement (of any type) involves a temporal 
dimension”  

Figure-ground 
perception** 

“The ability to identify a specific figure by isolating it out of a complex 
background”  

Perceptual 
constancy** 

“The ability to recognize that some properties of an object (real or in a 
mental image) are independent of size, colour, texture, or position, and to 
remain unconfused when an object or picture is perceived in different 
orientations”  

Perception of spatial 
positions** “The ability to relate an object, picture, or mental image to oneself”  

Perception of spatial 
relationships** 

“The ability to relate several objects, pictures, and/or mental images to 
each other, or simultaneously to oneself”  

Visual 
discrimination** 

“The ability to compare several objects, pictures, and/or mental images to 
identify similarities and differences among them”  

Visual memory** “to remember mental images or objects no longer seen”  

Mental rotation** 
“The ability to produce dynamic mental images and to visualize a 
configuration in movement”  
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Using geometric and loci analogies to develop visualisation abilities  

Loci in 3D are an under-researched fundamental mathematical idea in geometry education studies 
(Nagy-Kondor, 2017), but are interesting for their potential to foster visualisation abilities using 
dynamic geometry. However, in post-secondary mathematics courses, loci are seldom the focus of 
study, resulting in many students not learning enough about them (Fernández-Mosquera, 2011). 
Moreover, when university students do study loci, it is usually only in 2D (Nagy-Kondor, 2017). 

Several authors (Mammana et al., 2012; Nagy-Kondor, 2017) propose the use of analogies as a 
conceptual tool that serves as a bridge to connect plane geometry with spatial geometry, and thus 
understand loci in 3D. Analogies establish similarities or relationships between objects that coincide 
in some respects (Polya, 1989), are a way to expand mathematical ideas (and create new objects) and 
help students develop meanings of geometric objects (Sua et al., 2022).  

Methodology and participants’ previous experience 
Using a Design-Based Research approach (Bakker, 2018), we designed a teaching experiment for the 
development, in a group of Colombian university students (future mathematics teachers), of 3D 
visualisation abilities when using Cabri-3D to solve locus construction problems. The experiment 
included a questionnaire, two learning activities that students worked in pairs in a classroom setting, 
and interviews with selected participant pairs. Here, we present some results from the first cycle of 
the design, implementation, and retrospective analysis of the experiment. In that cycle, we analysed 
the work during the teaching experiment of five pairs of participants, in order to identify evidence of 
the development of visualisation abilities, and of how students represent and establish relations 
between elements of 2D and 3D figures. The analysed data consisted of the students' Cabri files, their 
answer worksheets, video recordings of the implementation of the learning activities, and 
transcriptions of the interviews. The data was first coded in an open way by defining key expressions 
for students’ actions (e.g., “they observe invariants or constants”; “partial recognition”; “identifies a 
hidden locus”); through this method we were able to then carry out a selective coding, linking the 
identified students’ actions with the categories of visualisation abilities (e.g., “perceptual constancy”), 
described in Table 1 and which are based on the works by Mariotti and Baccaglini-Frank (2018) and 
Gutiérrez (1996).  

The questionnaire was used to determine the participants’ previous experience. In the first cycle, as 
expected, the responses showed that none of the participants had previously worked with dynamic 
geometry in 3D and that their experience in three-dimensional geometry was limited; however, some 
of them could draw 3D objects using pencil and paper (Figure 1), particularly solids of revolution 
(Figure 1), which indicates their knowledge in associating movement to the representation of 3D 
objects. 

a.  b.  
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Figure 1: Student drawings (by Pair 2) in pencil and paper to represent 3D objects to represent 

moving circumferences that generate a sphere inscribed in a cube 

Learning activities design  

For the learning activities, we decided to use Cabri 3D because it has specialized tools useful for the 
construction of 3D loci (e.g., Intersection curve) and their visualization (e.g., Crystal ball position). 
Thus, the hypothesis was that using Cabri 3D can promote the visualisation needed to imagine the 
required loci in the activities and construct dynamic geometric figures that represent them. 

The first activity proposed a 2D construction problem: Given three points A, B, C, different and non-
collinear, in the same plane, use Cabri 3D to find the locus that is equidistant to A, B, C. In this case, 
the requested locus corresponds to the centre of the circle that circumscribes the triangle formed by 
such points (Figure 2a). The second activity was analogous to the first, but in 3D: Find the locus that 
is equidistant to three points A, B, C, in a three-dimensional space. In this case, the geometric locus 
to be constructed is a point that corresponds to the centre of the sphere circumscribing the triangle 
formed by said points (Figure 2b). Thus, we have the following analogies between the 2D and the 3D 
tasks: the 2D circle corresponds to the 3D sphere; the perpendicular bisector in 2D is analogous to 
the mediating plane in 3D; and the lines that intersect at a point in 2D are analogous to planes that 
intersect at a line in 3D. 

 
a. 

 
b. 

Figure 2: Expected constructions, in plane (a) and space (b) for each of the respective activities  

(Note: Figure a was constructed by the students in Pair 1. Figure b is an expected construction.)  

 
 

 

Figure 3: Auxiliary constructions by Pair 1 to 

construct the mediatrices and find the locus 

in 2D  

Figure 4: Use of the Mediating Plane 

tool by Pair 1 to construct the locus in 

3D 
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Results 
In this section, we present an analysis of the data collected in the first cycle of the experiment and the 
visualisation abilities (see Table 1) that were identified in that cycle.  

We begin with how some students showed signs of the theoretical control ability. For example, 
during the first 2D task, Pair 1 (students Clara and Mario –pseudonyms) evoked the geometric 
concept of mediatrix (i.e., the perpendicular bisector) to find the locus: Clara explained “because it is 
the intersection of the three mediatrices […] By definition [...] the mediatrix is the point that is 
equidistant in a segment”. Mario then revealed their hidden auxiliary constructions (Figure 3), 
through which they found the intersection of the three mediatrices of the triangle of the given points, 
that is the locus equidistant to them. Another two pairs gave similar solutions (e.g., see Figure 5a).  

In the second 3D task, Pair 1 seemed to understand how certain 2D geometric properties –e.g., the 
ones related to equidistance– extend analogously from 2D to the 3D space: In 2D they used 
Cabri 3D’s Bisector and Intersection tools to find the equidistance and locus in the plane, with an 
analogous use of the Mediating Plane tool to construct the locus in space (Figure 4).  

However, other students, such as Pair 2, that in the 2D task were capable of identifying that by 
constructing the perpendicular bisectors one can find equidistance and the requested locus 
(Figure 5a), showed many difficulties in imagining the construction of the 3D locus: Pair 2 tried to 
use the Bisector tool that only draws a line, and did not realise that they had to use the Mediating 

Plane tool to draw a bisecting plane to find the equidistance in the 3D space (Figure 5b). 

 
a. 

 
b. 

Figure 5: Analogous geometric loci attempt, in the plane and in space, by Pair 2 

We also found evidence of other visualisation abilities, such as the recognition of spatial relations; 
for example, when both Pair 1 and Pair 2 recognised the characteristics of the locus (specifically the 
equidistance property) and understood how individual objects (e.g., points, circles, planes) interact 
and affect the shape of the locus. Likewise, Pair 2 and other students, Pair 3, showed visual 

discrimination abilities in that they were capable of recognising similarities and differences between 
individual objects to relate the different perspectives (particularly in 3D) of the locus and thereby 
identify the invariant elements. Furthermore, we found that students who showed part-whole 

awareness abilities, also used mental rotation to make connections between the individual objects 
involved in the construction of the locus required. 
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Based on these results, for the second cycle we determined that it was necessary to provide students 
with more opportunities to develop and use other abilities. Thus, the changes in the second cycle 
included: a) Three preliminary sessions of Cabri 3D activities for students to become familiar with 
the software and engage in construction activities; b) Three additional activities with 2D-3D 
analogous constructions (e.g., the bisector line for an angle in 2D and 3D; a 2D parabola and 3D 
paraboloid). Preliminary analysis of that cycle show more visualisation abilities in the participants; 
however, more changes may be needed in a third cycle, in particular, by refining the way the activities 
are presented.  

Final comments 
Our methodological design is that of teaching experiment with a small number of students, and thus 
has limitations; in particular, because the results cannot be generalized. However, they do provide 
insights in: a) Approaches to promote 3D geometry visualization abilities. b) Difficulties of university 
mathematics students in visualising objects in space. 

In terms of the first, our results show the importance of using analogies to extend 2D meanings about 
geometry properties (e.g., equidistance) to 3D locus problem-solving.  

Related to the second point, for our university students, similar to Nagy-Kondor’s (2017) results, it 
was difficult to imagine objects and concepts related to the locus in space. Some of our students, 
however, did show the development of certain visualisation abilities, such as theoretical control and 
recognition of spatial relations, when using Cabri 3D to construct 3D loci. In this way, our study 
contributes to the understanding 3D visualisation abilities in university students and how a 3D DGE 
can support the development of mental images in dynamic spatial configurations. 

Finally, we recommend continuing to delve deeper into the use of the dynamic representations offered 
by a 3D DGE since it was observed that it favours the production of images that are difficult to 
construct using exclusively pencil and paper (e.g., mental rotation). This reaffirms our hypothesis 
that the use of digital technologies can play an important role in the development of 3D dynamic 
visualisation abilities at the university level. 
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In this paper, we present an analysis of the design for the integration between traditional in-person 

mathematical discussion and digital mathematical discussion. The analysis is conducted through the 

didactical differentiation model used as an analytical tool to evaluate the potentialities of integrating 

traditional and digital mathematical discussion in order to foster inclusion. The analysis shows that 

the integration of digital mathematical discussion with its traditional version can offer an added 

value in terms of promoting discussion as an inclusive practice with respect to the four variables of 

the differentiation model. 
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Introduction and theoretical background 
In this paper, we propose our reflection on the added value that the integration of digital mathematical 
discussion (Gagliani Caputo et al., 2023) into the traditional approach to in-class mathematical 
discussion can give in terms of inclusion. 

Inclusion and differentiation 

Although the notion of inclusion has received increasing attention in educational research over the 
past few decades, Roos (2019) highlights that there is no agreed definition for it in mathematics 
education research. This lack of agreement is due to varying perspectives and contexts in inclusion 
research, which spans ethnic, social, and special educational issues. In our research, the term 
‘inclusion’ is used in line with Vislie (2003), who states that inclusion is a process by which a school 
strives to respond to all students. This perspective on inclusion expands the concept of integration, 
which often remains tied to the idea of inclusion, where the focus is on specific groups of students 
(e.g., students with disabilities or special educational needs) who are to be assimilated into existing 
forms of schooling, often with adapted curricula, different work, or support assistants (Vislie, 2003). 
Inclusive teaching methods, as intended in this paper, should still accommodate students’ individual 
differences, but with the perspective that these differences can serve as a starting point for teaching 
(Roos, 2019), leading to innovations that have the potential to benefit all students (Ainscow, 2016). 
The differences among students as individuals also highlight diverse needs in their learning process 
related, for example, to their previous school background or their interests (Sousa & Tomlinson, 
2011). Differentiation represents one possible answer to embrace students’ differences in the learning 
process and, as for inclusion, it is a somewhat fuzzy concept (Anthony et al., 2019). Differentiation 
is based on the idea that the teacher should proactively plan her/his activity having students’ 
differences and similarities in mind in order to engage them more fully with learning (Tomlinson et 
al., 2003). Anthony and colleagues (2019) suggest a perspective on differentiation that shifts the focus 
from cognitive performance, by which students are classified and divided and that generally 
characterizes the perspective on differentiation, towards attention to students’ well-being and 
productive mathematical disposition. Such focus in a differentiated perspective can promote inclusive 
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teaching methods also taking into account students’ moral, emotional and social development and not 
exclusively the cultivation of knowledge (Anthony et al., 2019). 

Mathematical Discussion 

When talking about mathematical discussion we refer to the definition proposed by Bartolini Bussi 
(1996) according to which mathematical discussion is characterized by an interplay of voices both of 
the teacher and of students, rephrasing, questioning or giving new contributions to the discussion, on 
a mathematical object. The mathematical discussion is traditionally conceived as a classroom activity 
to be carried out in-person and is led by the teacher who can orchestrate it by assuming different roles. 
In our study, the reference model for the teacher’s orchestration of the discussion is the M-AEAB 
(model of aware and effective attitudes and behaviors) according to which the teacher can pose 
her/himself as a learner who faces problems making the hidden thinking visible, highlighting the 
objectives, the choices of the strategies and the interpretation of results, and can foster students’ 
reflections at a metacognitive level, focusing on thinking processes and on the effectiveness of the 
implemented strategies (Cusi & Malara, 2013). Throughout this article, we will refer to the discussion 
just presented as Traditional Mathematical Discussion (in the following, TMD). 

Research on classroom experiences on TMD allows us to highlight some strengths and challenges in 
terms of inclusion of this classroom practice. TMD can be considered an inclusive practice since it 
creates the opportunity to listen and to center the discussion around diverse proposals developed by 
students. More specifically, TMD fosters the expression of students’ personal senses in meanings and 
the consciousness of their own intellectual processes (Bartolini Bussi, 1996). Moreover, it supports 
the development of interpersonal processes (Bartolini Bussi, 1996) in a “safe learning environment”, 
in which all students are positioned as competent and capable and it promotes active listening and 
asking questions (Anthony et al., 2019). On the other hand, TMD can involve more or fewer students. 
Students’ participation generally represents a challenge while conducting TMDs since few students 
actively engage in discussions and the cognitive load related to discussions can be high, especially 
for problem solving discussions (Richland et al., 2017), resulting in an even more limited 
involvement. Therefore, since inclusion is a delicate aspect in relation to mathematical discussions, 
we have decided to complement traditional in-person mathematical discussions with asynchronous 
digital mathematical discussion in order to amplify their potentialities in terms of inclusion.  

Digital Mathematical Discussion 

Digital Mathematical Discussion (in the following, DMD) is based on the traditional origins of 
mathematical discussions and implemented within a digital environment that involves the combined 
use of an instant messaging platform and a collaborative web platform (Padlet, https://padlet.com/). 
We decided to implement a digital version of mathematical discussions for several reasons. Firstly, 
the experience of discussions supported by digital environments during the Covid-19 pandemic 
period opened new research scenarios in mathematics education (see, for instance, Giberti et al., 
2022). In fact, other research fields had already explored the role of digital environments in supporting 
discussions, both in a synchronous (e.g., through video conferencing platforms) and asynchronous 
(e.g., through forums) modality (see, for instance, Johnson, 2006), but there still remains limited 
research on this topic in the field of mathematics education. Secondly, the variables highlighted by 
research on asynchronous discussions seem crucial for stimulating students’ participation in 
discussion activities in terms of inclusion. In fact, asynchronous discussions, involving participants 
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separated in space and time, allow each student and the teacher themselves to read and contribute to 
the discussion at their own pace (Andresen, 2009). Moreover, being able to work with asynchronous 
discussions allows extending the time dedicated to this practice beyond the classroom, as students 
can work on it at home, and communication in predominantly written form can encourage participants 
to make their reasoning and arguments more explicit. 

Following the concept of balance discussion (Bartolini Bussi, 1991) and the FaSMEd design (Cusi et 
al., 2017), we designed DMDs. Balance discussion is socialization and collective evaluation of 
strategies that have been set up by students in individual or small group work (Bartolini Bussi, 1991) 
and can be conducted by the teacher purposefully selecting individual or small groups’ solutions on 
the basis of their final answer, or of the provided justification, or both (Cusi et al., 2017). The selection 
is guided by the aims of the teacher of bringing to attention typical mistakes, so that students can 
receive feedback from their peers and teacher, of highlighting more or less efficient ways of 
processing problems, thus sharing criteria for success, and of contrasting different justifications or 
identifying similar ones (Cusi et al., 2017). Based on such theoretical background, the general design 
of a DMD consists of three main phases. The first phase of DMD consists in a small group activity 
aimed at collaboratively solving a mathematical problem within chats. Students are given a few days 
(e.g., 4 days) to collectively face the problem through the chat and to create a shared solution that has 
to be sent by one member per group to the teacher through an institutional platform (e.g. Google 
Classroom). The second phase of DMD is carried out within Padlet and starts as soon as all the groups 
submit their solutions. This second phase involves the whole class in a collective discussion designed 
by the teacher starting from selected excerpts from the groups’ solutions (Cusi et al., 2017) and from 
significant interactions that emerged in the chats. The Padlet is structured in columns arranged by the 
teacher, who boosts the discussion through interventions aimed at activating specific roles of the M-
AEAB construct (Cusi & Malara, 2013). Each column in the Padlet addresses a different issue on 
which the teacher wants to focus during the collective discussion. Students can comment on the 
teacher’s inputs and on other students’ contributions present in the Padlet for a few days (e.g., 4 days). 
At the end of the asynchronous discussion, the third phase of DMD consists in an in-person whole-
class discussion aimed to wrap up and further elaborate on salient aspects emerged within the chats 
and the Padlet. 

The aim of DMD is to complement, rather than replace, traditional in-person mathematical 
discussion, providing students with varied contexts for engaging in mathematical discussions, and 
allowing teachers to extend the time they can dedicate to this practice. As for TMDs, DMDs have 
potential and limitations with respect to inclusion. For instance, a chat-based environment can provide 
a secure space for students to interact, share ideas, and seek help without the fear of judgment or 
exposure face-to-face. This setting not only encourages open communication, but also enables 
teachers to have a broader and more detailed view of their students. Teachers can interact with more 
students simultaneously and they can more easily identify issues and needs among students, allowing 
for timely interventions and support. This proactive approach ensures that all students feel seen, 
heard, and safe, contributing to a more effective and nurturing educational experience. On the other 
hand, some of our studies have already highlighted the delicate issue of student participation in 
DMDs, especially in the second phase of the discussion, the collective one carried out on Padlet 
(Gagliani Caputo et al., 2023). 
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Analytical framework 
In accordance with the vision on inclusion (Vislie, 2003) and differentiation (Anthony et al., 2019) 
presented in the introduction, which promotes the recognition and appreciation of students’ 
heterogeneity and its exploitation to support all students, we have chosen the framework of didactical 
differentiation (Sousa & Tomlinson, 2011) as the analytical framework for this paper. Differentiation 
arises from the research-based perspective that students are more likely to engage thoroughly in 
learning and experience more robust learning outcomes when teachers proactively plan with both 
their differences and similarities in mind (Tomlinson et al., 2003). The model of differentiation of 
Sousa and Tomlinson outlines essential principles that drive effective differentiation, integral to a 
classroom system wherein all components collaborate to foster peak learning. In our research, these 
principles are used in alignment with the core tenets of differentiation presented in the introduction 
with the aim of highlighting how the design for the integration of DMD and TMD can support 
mathematical discussion as a more inclusive practice. According to the differentiation model (Sousa 
& Tomlinson, 2011), teachers can modify four variables within the classroom to address various 
student needs: (1) content, that is what students will learn or how they will gain access to what they 
are asked to learn; (2) process, that is activities guiding students’ understanding or ownership of 
essential content; (3) product, that is how students showcase their knowledge, comprehension, and 
abilities after extended learning periods; and (4) affect, that is consideration of students’ feelings and 
emotional requirements. By modifying these variables, teachers accommodate differences in 
students’ readiness (closeness to learning objectives), interests (curiosity in specific ideas, topics, or 
skills), and learning profile (preferences for learning approaches or modes). 

Research questions and methods 

In this paper, we aim to analyze the added value that the integration of DMD can give to TMD in 
terms of inclusion. The analysis is carried out through the framework of differentiation (Sousa & 
Tomlinson, 2011), intended as an analytical tool that provides criteria for evaluating design in 
inclusive terms. In our study, the framework of didactical differentiation supports the analysis of the 
design of integrating DMD with TMD, aiming to identify the design elements of such integration that 
can empower mathematical discussion as an inclusive practice, allowing as many students as possible 
to participate in mathematical discourse within a discussion context. The analysis of the design for 
the integration of DMD and TMD bases on the general theoretical design of the two types of 
discussions as presented in the previous paragraphs and there is no empirical data directly addressed 
for the analysis. The research question guiding our work is as follows: Which is the added value that 
the integration of DMD gives to TMD in terms of inclusion based on variables of differentiation? 

To address the research question, we will conduct a qualitative analysis of the design for the 
integration between traditional and digital mathematical discussions with respect to the variables of 
differentiation in order to highlight the added value that this integration can give in terms of inclusion. 
Based on the characteristics that distinguish DMDs, we hypothesize that by varying the modes of 
delivering the discussion among traditional and digital, it is possible to expand the ways in which one 
can be part of the discussion, thereby enabling more students to participate in the mathematical 
discourse realized within a discussion situation. 
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Analysis of the design for the integration between traditional and digital 
mathematical discussions 
Traditional balance mathematical discussion and DMD share several elements regarding the variables 
within the framework of differentiation, as they both originate from common theoretical foundations. 
However, they also differ in certain aspects due to the influence of the digital environment in DMDs, 
making it interesting to analyze how their integration can promote inclusion. 

Regarding the variable of content, considering “what students will learn”, both discussions stem from 
mathematical problems and evolve from group solutions proposed by students to such problems, 
aiming to compare related or contrasting strategies and stimulate metacognitive reflections (Cusi et 
al., 2017). Regarding the dimension of “how students gain access to what they are asked to learn”, 
the two types of discussion differ. For traditional balance discussions, access to content is primarily 
oral, both in communication with the teacher and with classmates, supported by written mode in 
group-work, when students submit their proposals, and in the whole-class discussion, when key 
aspects of the discussion are written on the board. Moreover, interaction is synchronous. The 
additional opportunities offered by DMD concern access to content in asynchronous mode and mainly 
in written form, still giving students the possibility to interact through images, audio messages, 
videos, emoticons and all the various forms of interaction that the digital environment supports. 

Concerning the product variable, the two types of discussions share the possibility of assessing 
students’ knowledge, understanding, and skills through their group productions of mathematical 
problem solutions. Furthermore, DMD enables the creation of a greater variety of individual products 
concerning the tackled mathematical problems. It is not limited solely to the final group production, 
but also facilitates an increase in shared materials encompassing written messages, images, audio 
messages, and all productions shared by students within both the chats and the Padlet during the 
whole discussion. Regarding the product variable, we can also consider students’ communication 
abilities developed within discussions as a product. In traditional balance discussions, students 
acquire the ability to orally argue and respond quickly during a discussion. Additionally, through 
DMD, students also acquire the ability to argue in writing and to refer back to their or other peers’ 
interventions and reasoning over extended periods given by the asynchronous modality. 

For the process variable, we can identify similar activities for both traditional and digital discussions. 
In particular, we analyze the process in both cases by referencing the activities carried out according 
to the FaSMEd design (Cusi et al., 2017). According to such design, the process of discussions 
unfolds in various activities in which students are involved, among which group work and comparison 
with peers, comparison with the teacher, metacognitive reflections. The added value given by the 
integration of traditional balance mathematical discussions with DMDs concern the expansion of time 
at disposal to conduct the discussion and the availability of a complete transcript of the discussion. 
Concerning the timing of DMDs, it enables students to engage in the same activities as traditional 
balance mathematical discussion in an extended amount of time, also allowing the alternation of some 
of them (e.g., alternation between in-the-moment or more reflected comparison with peers or the 
teacher). Concerning the availability of the transcript, the added value lies in students having access 
anytime to all productions, which enables the activation of a comprehensive individual reflection 
process. With access to the entirety of written productions, students can engage in autonomous 
reconstruction of the entire discussion. Unlike in a classroom setting, where the teacher would need 



                          Proceedings of the 17th ERME Topic Conference MEDA4, 3-6 September 2024, Bari, Italy                          ISBN 978-88-6629-080-3

  
182 

to reconstruct the discussion and might not have direct access to all students’ contributions, having 
all written productions available allows for a more thorough reflection process and enables students 
to do it autonomously. 

Finally, regarding the affect variable, both types of discussions stem from making all students 
comfortable in a discussion situation, giving the possibility to all of them to contribute, but they differ 
concerning students’ sensitivities to their preferred modes of learning and interaction that can 
influence the affect variable. The modes of traditional balance discussions are favorable for students 
who prefer immediate feedback, can follow reasoning flows orally and at a quick pace, and enjoy 
expressing themselves in-person when participating in class. The integration of TMD with DMD 
seems particularly rich in terms of inclusion considering that the modes of DMDs are favorable for 
students who need more time to assess teacher and classmates’ statements and to formulate their 
proposals, who see written form as a support for following a reasoning process, and who do not enjoy 
exposing themselves in-person in face-to-face settings, so adding relevant differences to the modes 
the solely TMD can offer. Additionally, the modes of DMDs may also be favorable for teachers who 
struggle with managing the immediacy of exchanges and keeping track of all students’ work in class, 
allowing them to have more opportunities to observe students’ progresses within the activities and 
their engagement, that may not always be visible in person, and to intervene accordingly, giving 
students a more central role. 

Conclusion 
In this paper, we have shared the initial analysis through the differentiation variables of the didactical 
differentiation framework of the added value in terms of inclusion generated integrating traditional 
and digital mathematical discussion. The theoretical foundations on which the two types of discussion 
are based allowed us to hypothesize that the combined use of discussions could result in positive 
outcomes in terms of inclusion. In fact, in line with the perspective of Vislie (2003), we do not believe 
that students should adapt to the given context, but rather the context should adapt to the diverse 
needs of the students. For this reason, we hypothesized that we could complement the practice of 
TMD with a digital form modifying the timing and traditional interaction modes of discussions in 
order to make discussion a more inclusive practice. The aim of this study is to characterize the added 
value that the integration of DMD can give to TMD with respect to the variables identified by the 
didactical differentiation framework to assess whether and how the combined use of these two 
different discussion modes can support discussion as a more inclusive practice. 

Promoting mathematical discussion as a more inclusive practice is achievable by basing the design 
of the practice on principles of differentiation, which take into account students’ differences and 
learning preferences and results in a practice for all students. Indeed, TMD already possesses 
characteristics that consider students as individuals and aims to be developed based on the personal 
meanings students attribute to mathematical concepts, giving voice to their diverse perspectives and 
involving as many students as possible in the mathematical discourse. However, classroom 
experiences show limited student participation in mathematical discourse within discussion contexts. 
Therefore, we believe that analyzing the design for integrating DMD with TMD in terms of 
differentiation can help us identify potential areas for action in the implementation of discussions. 
This integration could amplify the characteristics of mathematical discussion, allowing for new forms 
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of participation in the discussion through the potentialities of the introduction of the digital modality 
and, then, fostering more participation in the mathematical discourse realized within the discussions. 

Traditional balance mathematical discussion suits students who are ready to engage in real-time oral 
exchanges and can quickly process information, while DMD caters to those who need more time to 
reflect and respond, thus accommodating different levels of readiness. Additionally, DMD engages 
students with a keen interest in technology and multimedia, offering a variety of interaction forms 
that make engaging in discussions more appealing. This integration also addresses diverse learning 
profiles by supporting students who prefer written communication and visual aids and those who 
thrive in oral, real-time discussions. The integration of technology in DMDs enhances inclusion by 
providing asynchronous access to content and a variety of interaction methods, such as written 
messages, images, audio messages, videos, and emoticons. This contrasts with the primarily oral and 
synchronous nature of TMDs. DMDs enable a broader range of student-produced materials and offer 
a complete transcript of discussions, facilitating individual reflection and autonomous reconstruction. 
Additionally, the asynchronous format allows students more time to engage with and reflect on 
content, benefiting those who need longer to formulate responses and follow reasoning processes. 
This technological integration also supports teachers in observing student progress and engagement 
more effectively, allowing for timely interventions and the creation of a more inclusive learning 
environment. 

As next steps in the research for evaluating the combination of different discussion modes in terms 
of inclusion, we will analyze classroom experimentations of traditional and digital discussions. With 
the support of the teacher, who knows students over the long term, we aim to track the trajectories 
within specific students’ discussion activities to study their participation in different contexts. In order 
to do so, we will also consider frameworks concerning engagement structures in order to understand 
the ways in which students take part in the mathematical discourse within discussion situations. 
Moreover, the fact that the modes of DMDs could also support teachers who find it challenging to 
manage in-person classroom discussions suggests a potential new avenue for research into 
differentiation and inclusion for teachers as well. 
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This study is part of a research project aiming to support teacher noticing of students’ thinking in the 

context of slope through the use of silent video tasks (SVTs) in mathematics education. SVTs are short 

animations that utilise the dynamic nature of mathematics without the use of voice or letters. The 

focus of this paper is on the design of SVTs to achieve the research aim. The Slope-APOS framework 

is considered the foundation for comprehending slope, and six silent video tasks were created to aid 

in the conceptualization of slope in geometric ratio, algebraic ratio, functional property, and 

calculus.  

Keywords: teacher noticing, silent video tasks, mathematics education, geogebra. 

Introduction 
The idea of noticing has come to increased attention from the mathematics education research 
community in the last few decades with research on different tools aiming to develop (Amador 2019; 
Fernández et al., 2019; Schack et al., 2017). Teacher noticing in mathematics education is an ability 
to identify and make sense of students’ mathematical thinking and build on an interpretation with a 
relation between students’ current understanding and teachers’ pedagogical knowledge, and making 
a pedagogical decision to impact students’ thinking (Mason, 2002; van Es & Sherin, 2002). 
Professional noticing is a complex and challenging ability during teaching practice in a learning 
environment (Jacobs et al., 2010; Sherin & van Es, 2005; van Es, 2011; van Es & Sherin, 2002). 

There is limited evidence of having an impact on the role of mathematical technological tools in 
teachers noticing students’ thinking (Chandler, 2023; Galiç & Dost, 2023). Technology influences an 
individual’s thinking skills and understanding of mathematics (Hollebrands & Lee, 2016). 
Furthermore, it supports analysing, interpreting, and exploring mathematical concepts (Zengin, 2015) 
and helps students and teachers to think about why or what-if questions (Hoyles & Jones, 1998). This 
paper is a part of a design-based research focusing on supporting teacher noticing of students thinking 
through silent video tasks in mathematics education. This paper aims to design silent video tasks as 
a tool to support teacher noticing of student thinking in the context of slope in lower-secondary 
mathematics classrooms. 

Teacher Noticing 
Drawing on previous research (e.g. Berliner, 1994; Goodwin, 1994; Shulman, 1986), the concept of 
noticing has become central to teacher education in recent years; however, different forms of 
definition and explanation have also emerged (Amador, 2019). Mason (2002) distinguishes 
professional noticing from everyday noticing. He defines professional noticing as 'what we do when 
we observe someone else acting professionally and become aware of something they are doing that 



                          Proceedings of the 17th ERME Topic Conference MEDA4, 3-6 September 2024, Bari, Italy                          ISBN 978-88-6629-080-3

  
186 

we think we could use' (p. 30). The focus is on sensitising individuals to notice things they are not 
currently used to noticing.  

More recently, van Es and Sherin (2002) define the concept of noticing, particularly in the context of 
teaching, as follows (i) determining what is important or noteworthy about a classroom situation (ii) 
making connections between the specifics of classroom interactions and the broader principles of 
teaching and learning that they represent, (iii) using what one knows about the context to reason about 
classroom interactions (p. 573). van Es and Sherin (2002) argue that the analysis of what is noticed 
is as important as the act of noticing itself. They describe noticing as a two-way framework of 
attending and interpreting to describe important events that occur in a learning environment. While 
attending involves identifying notable features in classroom interactions, interpreting refers to the 
teacher's use of their knowledge and experiences to make sense of observed situations and establish 
the relationship between what they notice and teaching and learning. The authors extend their 
conceptualization by adding the third component of shaping as building interactions and contexts to 
access further information (van Es & Sherin, 2021). Jacobs et al. (2010) specialize teacher noticing 
of students' mathematical thinking by (i) attending to students' strategies, (ii) interpreting students’ 
mathematical thinking and (iii) deciding how to respond based on students’ understanding. 

Previous studies focus on using some technological tools to develop teacher noticing. Video analysis 
is a commonly used technology Sherin and van Es (2005) provide teachers with video clubs that use 
the Video Analysis Support Tool to analyse classroom videos. The tool helps to assign videos to 
participants, organise teaching activities, and notice by pausing and annotating the videos to allow 
participants to focus on specific moments of teaching. Other studies on the use of technology to 
develop noticing skills have employed programmes such as LessonSketch (e.g., Walkoe & Levin, 
2018) and GoAnimate (e.g., Amador et al., 2019). This study aims to develop mathematics teacher 
noticing of students' thinking by incorporating silent video tasks. 

Silent Video Tasks 
Silent video tasks (SVTs) were developed in 2014 in collaboration with Scandinavian and Baltic 
countries based on social constructivist theory for mathematics teachers and teacher educators 
(Hreinsdóttir & Kristinsdóttir, 2016). SVTs are short animations of less than two minutes and use 
dynamic mathematical content (Kristinsdóttir, 2023). These videos do not include any words or 
discourse, and each one focuses on a single mathematical concept. Silent video tasks involve selecting 
a silent video, showing it to the whole class, giving students a link to the video which they can watch 
as many times as they like, dividing students into groups of three or four and asking each group to 
record their voice-over for the video to explain its content. SVTs facilitate interactions between 
teachers and students, as well as among students themselves, by emphasising the depth of 
mathematical content. Both students and teachers actively participate in the learning process 
(Kristinsdóttir, 2021). The objective is to enhance learners' mathematical thinking by utilising their 
communication and social skills, as well as to deepen and broaden their comprehension of 
mathematics. Silent Video Tasks offer opportunities for learners to understand their own way of 
describing or explaining mathematical phenomena. Task responses from students can reveal 
information that was previously unknown to teachers. This can assist teachers in institutionalising 
knowledge and enables mathematics teachers to comment on students' current mathematical thinking. 
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Method 
This study is part of a design-based research project. Design research aims to develop experiment-
based theories to support learning styles and processes and examine the tools used in this process 
(Cobb, 2003). We adopted Gravemeijer and Cobb's (2006) design research approach from a learning 
design perspective by involving three steps: (i) preparing a design experiment, (ii) conducting a 
designing experiment and (iii) retrospective analysis.  

The preparing a design experiment phase involves clarifying the research's purpose, elaborating on 
the experimental process, and creating a local instruction theory (Gravemeijer & Cobb, 2006). Careful 
planning of the starting and ending points of the learning objectives is required at this stage. The local 
instruction theory should incorporate tools to aid the learning process and assumptions about how 
learning occurs (Gravemeijer & Cobb, 2006, p.21). The second stage of the design research aims to 
implement the learning process and tools prepared in the first stage in the classroom, to conduct the 
local instruction theory (Gravemeijer & Cobb, 2006). The final stage of design research involves 
retrospective analysis, which aims to analyse the theory using data obtained during implementation 
(Gravemeijer & Cobb, 2006).  

This paper covers the first stage of the research design and aims to create an instructional local theory. 
In line with this purpose, silent video tasks are developed to support teacher noticing of students’ 
slope thinking. 

Designing Silent Video Tasks 
We used GeoGebra as one of the dynamic geometry software to dynamise mathematical concepts in 
the creation of the Silent Video Tasks in this study. While designing and developing the SVTs, lesson 
plans, assessment tools and contents published on GeoGebra related to slope were examined. Within 
the scope of the Slope-APOS framework (Nagle et al., 2018), the slope conceptualization of 
geometric ratio, algebraic ratio, functional property and calculus is considered as a basis for 
understanding slope. Since these conceptualizations represent the aim of each SVT, SVTs are 
designed for each conceptualization in GeoGebra. 

At the stage of examining and designing the activities, drafts were prepared on paper for the SVTs 
designs of the four conceptualisations put forward within the Slope-APOS framework. The contents 
written on static paper were then reflected on the GeoGebra screen by using scripts, buttons, slider 
tool and colours in GeoGebra. The process of constructing content in GeoGebra was recorded with 
video. Timing is considered to provide enough space for the students to explain or transfer what they 
saw in the video verbally. Some pauses were included in the video movements to provide the foreseen 
narration. In some cases, labels or colours were used to help students describe or refer to the video 
during voice-overs.  

We designed 14 SVTs as a draft and interviewed a mathematics educator to gain expert opinions 
about the content of the study and their suitability for teaching slope. Repetitive videos and six videos 
that were not suitable for the study were excluded from the study. Then, we worked with four 
mathematics teachers with varying experience years to interpret the videos according to the 
understanding of slope, curriculum, and student’s grade level.  

They answered two different questions to interpret the SVTs:  
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a) Which mathematical concept is explained in the video?   

b) Which conceptualization of the concept is explained in the video?  

The teachers' views aligned with the conceptualisation of the slope for each Silent Video Task. In the 
final stage, we worked with a silent video task expert in mathematics education. In an online meeting 
lasting 120 minutes, we analysed, interpreted and refined each SVT. We excluded some silent video 
tasks or repetitive videos due to confusion about the main mathematical concept. The remaining 
videos were improved by adding labels of points or lines and a grid. We have six different silent video 
tasks as a local instruction theory. 

 
Figure 1: Designing silent video tasks 

Conclusion 

This ongoing research focuses on a type of teacher education with the use of technological tools. The 
training is based on supporting teacher noticing of students’ thinking through silent video tasks that 
we have designed through the Slope-APOS framework. We attempt to conduct SVTs to collect 
students’ voice-over videos for each silent video task that allow teachers to attend to students’ 
strategies, interpret students’ slope understanding and decide how to respond based on students’ 
voice-overs. We seek to promote teacher noticing based on students' interpretation of the 
conceptualization of slope. In this way, we think it is possible to support teacher noticing of students' 
thinking. Our next step is to work with mathematics teachers to enhance to notice of students’ slope 
thinking through silent video tasks with students’ voice-overs. 
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The research literature reveals that programming provides both opportunities and challenges in 

mathematics education. However, further exploration of the topic is needed, underscoring the 

necessity for additional research to address the impact of programming on mathematics education. 

To thoroughly explore the impact of programming on mathematical education, it becomes essential 

to examine the very nature of programming affordances in relation to paradigmatic foundations, 

theoretical perspectives, mathematical and computational thinking, and their interconnections. This 

paper aims to address the role of programming through the perspective of Affordance Theory, 

elucidating its implications for mathematics education. 

Keywords: Affordances, computational thinking, computer program, mathematical thinking, 

programming 

Introduction 
Upon closer examination of the research literature, there appears to be a need for further exploration 
of paradigmatic foundations and theoretical perspectives regarding mathematical thinking (MT), 
computational thinking (CT), programming, and their interconnections. This perceived research gap 
might lead to a constrained perspective on programming affordances, given the potential influence of 
paradigms and theoretical perspectives on mathematical education. Neglecting to address this issue 
may hinder the advancement of knowledge and limit the understanding of programming affordances 
in the context of mathematics education. 

This study adopts a Gibsonian perspective on affordances (Gibson, 1979), highlighting their relational 
nature, which emerges from the interactions between users and their environment. Likewise, within 
the context of mathematics education, a programming environment dynamically engages both 
students and teachers, fostering affordances through their active participation in this environment. 

This paper has two primary objectives. Firstly, it aims to examine the programming environment 
within mathematics education through the perspective of Affordance Theory. Secondly, it presents a 
conceptual framework to facilitate the exploration of affordances across six educational levels. 

Affordance Theory and programming 
The notion of affordance was originally proposed by Gibson (1979). It refers to the relationship 
between an object’s physical properties and the characteristics of a user, enabling particular 
interactions between the user and the object. More specifically, Gibson used the term “affordance” to 
describe the action possibilities that the environment offers to an animal in relation to the animal’s 
action capabilities. Gibson's notion of affordance suggests a complementarity between an animal and 
its environment. A typical example is a tall tree that affords food for a giraffe due to its long neck.  

The notion of affordance was introduced to the computer world by Norman (1988). It refers to the 
perceived and actual properties of a thing that determine how the thing could possibly be used. 
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Accordingly, an affordance is the design aspect of an object that suggests how the object should be 
used. Examples of affordances are user interface elements that directly suggest suitable actions: 
clickable geometrical figures, draggable sliders, or pressable buttons, etc. More generally, an 
affordance is a relation between a subject and object with the object perceived in relation to the needs 
of the subject: small stones afford throwing, chairs afford sitting, doors afford opening, etc. 

De Landa (2013) stresses that affordances are relational, emerging from the dynamic interaction 
between the subject and the object, rather than being inherent to either one alone. Moreover, 
affordances emerge and become actualized within a specific environment (Wang, Wang, & Tang, 
2018). In mathematics education, this environment is structured around three key perspectives: firstly, 
computing paradigms; secondly, learning theories; and lastly, the interplay between MT, CT, and 
programming. These perspectives are combined to create a programming environment that facilitates 
the emergence and actualization of affordances. 

Affordances from the perspective of computing paradigms 
In this section, programming affordances are explored through the perspective of three computing 
paradigms (Eden, 2007; Rapaport, 2020; Turner, 2014). Firstly, the rationalistic paradigm, views 
computer programs (CPs) as abstract mathematical entities from an ontological standpoint. 
Epistemologically, it posits that deductive reasoning is the sole valid approach for examining CPs, 
framing the act of writing CPs as a mathematical activity. Secondly, the technocratic paradigm asserts 
that CPs are ontologically concrete entities. Epistemologically, it posits that knowledge of CPs is 
derived solely from experience and posteriori procedures. Finally, for the scientific paradigm, CPs 
cannot be reduced to either concrete or abstract entities. Instead, writing CPs involves a combination 
of a priori and posteriori methods, encompassing both deductive and inductive reasoning. 

The paradigms may afford both deductive and inductive reasoning. Deductive reasoning helps 
develop a CP in a top-down approach by breaking up the CP into smaller parts, which are then refined 
into more detail. Inductive reasoning fosters a bottom-up approach, where smaller parts of the CP are 
integrated into a larger one (Marji, 2014). The paradigms may also afford a combination of top-down 
and bottom-up approaches to investigating problems using CPs in STEM contexts, as the paradigms 
refer to ways of thinking in mathematics, science, and engineering education. 
Affordances from the perspective of paradigms in mathematics education 
In this section, programming affordances are addressed from the perspective of three main paradigms 
in mathematics education: Constructionist, socio-cultural, and post-structuralist. Constructionism 
assumes the construction of one’s own knowledge. It shares constructivism's connotation of learning 
as ‘building knowledge structures’ (Papert & Harel, 1991). Papert (1980) argued that computer 
programming is a particularly good way to achieve knowledge construction. Logo in the 1980s and 
Scratch today are examples of programming languages that foster knowledge construction. 

The socio-cultural paradigm posits that knowledge is constructed through sociocultural interaction 
and cultural means. It provides the very basis of Activity Theory (AT) and the concepts of mediation 
and mediational means (Vygotsky, 1978). Accordingly, programming affordances cannot be reduced 
to what the subject or CP alone can do. It is the “subject-with-program” that affords the learning of 
mathematics. Wertsch (1998) uses the term “Subject-acting-with-mediational-means” to characterize 
the inseparability of the subject and the mediational means. Moreover, the socio-cultural paradigm 
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forms the basis for technology-focused theories (Sinclair et al., 2022), such as the Theory of 
Didactical Situations (TDS) (Brousseau, 1997) and the Instrumental Approach (IA) (Trouche, 2004). 
From the standpoint of TDS, affordances arise from interactions between the learner and the CP 
within the milieu, which refers to the socio-cultural and institutional environment in which teaching 
and learning take place. From the perspective of IA, affordances emerge from interactions between 
the learner and the CP, or via the process of instrumental genesis, as delineated within the IA. 

The post-structuralist paradigm and associated theories, such as Actor-Network-Theory (ANT) 
(Latour, 2005), provide another type of relation between subject and object. Agency in ANT is 
distributed among humans and non-humans, which means that a CP is not simply a mediational 
means, but an active non-human agent involved in the production of mathematical knowledge. 
Agency enables the emergence of other types of affordances than those in the socio-cultural paradigm. 

Affordances from the perspective of CT, MT, and programming 
CT, MT, and programming 

After addressing affordances from the paradigms of computing and mathematics education, the article 
focuses on affordances from the perspective of CT, MT, and programming. CT was originally defined 
by Papert (1980) as how to utilize programming as a tool to think and learn. Wing (2006, p. 33) argues 
that CT represents a "universally applicable attitude and skill set for everyone, not just computer 
scientists". It is the thought process that a "computer—human or machine—can effectively carry out".  

Yet, despite shared central concepts across several research studies, there remains no universally 
established definition of CT (Denning & Tedre, 2021; Elicer & Tamborg, 2023; Shute et al., 2017; 
Weintrop et al., 2016). Nonetheless, many definitions do converge on five core cognitive processes. 
First, it encompasses the capacity to engage in algorithmic thinking as a means to solve problems. 
Second, it is a way of thinking about problems in terms of decomposing their components. Thirdly, 
CT is linked to the process of generalization, which involves identifying similarities to generalize the 
problem-solving approach. Fourth, CT uses abstraction to make problems more understandable by 
reducing unnecessary details. Lastly, CT employs evaluation to ensure the suitability of the problem-
solving process for its intended purpose. 

Likewise, there is no consensus on an exact definition of MT. Similar terms include "mathematical 
reasoning" and "mathematical abilities". MT also consists of beliefs about mathematics, problem-
solving processes, and justifications for solutions. MT involves the “application of math skills to 
solve math problems, such as equations and functions” (Shute et al., 2017, p. 145). More generally, 
MT includes algebraic, geometric, numerical, and modeling thinking. 

MT and CT share several commonalities, and connecting both may afford mathematical learning 
(Shute et al., 2017; Weintrop et al., 2016). For instance, algorithmic thinking and problem-solving 
are common to both MT and CT. Data analysis requires numerical thinking in problem-solving. 
Likewise, mathematical modelling provides a foundation for the development of CT. 

Programming uses artificial languages characterized by logical grammar, precise syntax and 
semantics, with no tolerance for errors. It is a multi-step iterative process that spans problem analysis, 
designing a solution, evaluating its effectiveness, and implementing the solution through a CP. As 
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such, programming is part of the broader concept of CT (Saqr et al., 2021). Moreover, CT and CP 
constructs such as variables and flow statements are connected to MT (Lie, Hauge, & Meaney, 2017). 

Despite the commonalities between MT and programming, there are differences. For instance, the 
symbol “=” is interpreted in programming as an assignment to compute a new value (e.g., in Python) 
and as an equivalence relation in algebra. The key difference is that an assignment is temporal, while 
an equivalence relation is timeless, holding true at all times. Hence, the “=” in algebra may require 
didactical effort from students to switch from an operational to a relational meaning. The difference 
in the meaning may be considered a constraint, but it could afford the development of algebraic 
thinking through contrasting examples and awareness of accuracy (Bråting et al., 2022, p. 301). 

Summarizing, CT relates to both MT and programming but cannot be reduced to this role. There is 
CT for and inside mathematics and programming, but this does not mean that CT is only instrumental 
to these subjects. CT is rather transversal and interdisciplinary because it can be considered as an 
epistemic framework that connects MT and programming (Lodi & Martini, 2021). 

Connecting MT, CT, and programming   

Connecting MT, CT, and programming (P) in a reciprocal way could afford mathematical learning. 
However, a literature review shows that one-way connections (CT-P→MT, MT→CT-P) constitute 
the overwhelming majority (about 90%), while the reciprocal way with two paths (CT-P→MT→CT-
P and MT→CT-P→MT) makes up only 10.7% (Wu & Yang, 2022). Figure 1 illustrates a model that 
connects MT, CT, and programming in a reciprocal way (Hansen & Hadjerrouit, 2023, p. 160). 

 
Figure 1: Reciprocal connections between MT, CT, and programming 

In terms of affordances, students must have a good understanding of mathematical concepts and the 
capability for abstract reasoning and logical deduction to benefit from CT. Conversely, CT can enable 
students to logically analyze, abstract, and decompose a mathematical problem, and design an 
algorithm before programming it. This reciprocal process between MT and CT can enable students 
to translate the algorithm into a program, which can be iteratively tested and evaluated to understand 
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the program output and validate the algorithm. Clearly, CT is an epistemic framework that connects 
MT and programming, facilitating active engagement with mathematical problem-solving. 

A conceptual framework for analysing programming affordances 
The programming affordances discussed above have the potential to enrich students' mathematical 
learning by fostering an integrated approach that incorporates deductive and inductive reasoning, 
along with constructionist, mediational, and agentic thinking. This approach promotes the 
interconnectedness of MT, CT, and programming. To support this connection, it is essential to 
consider pedagogical strategies, socio-cultural influences, and relevant technological and assessment 
issues. The emergence and actualization of affordances rely on a coherent combination of these 
elements. Drawing on research literature (Hadjerrouit, 2020), this study proposes a framework 
supporting the exploration of seven categories of affordances across six levels: Technological, 
student, classroom, MT-CT-CP, assessment, and socio-cultural level (Figure 2). 

 
Figure 2: Conceptual framework integrating programming affordances across six educational 

levels 

Technological affordances include ease-of-use, ease-of-navigation, accuracy, and quick completion 
of programming activities. Furthermore, the programming language should be robust enough to 
facilitate the development of advanced programs, possibly with the assistance of ChatGPT and other 
AI systems. Technological affordances are essential prerequisites for programming activities, laying 
the groundwork for pedagogical affordances and the interconnection between MT, CT, and CPs. 

Several affordances can facilitate mathematical learning at the pedagogical level. Affordances within 
the classroom setting that lead to shifts in interpersonal dynamics, such as changes in the roles of 
teachers and students, and enhanced group interactions. Additionally, other affordances emphasize 
collaborative and cooperative learning, along with group work. The introduction of varied teaching 
methods and the differentiation of programming tasks are further activities that promote affordances. 

Affordances that promote learner autonomy at the student level lead to more student-centered 
instruction, empowering students to take greater control over their learning and to view a CP as a 
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"new" authority for assessing their progress. Feedback from the CP plays a crucial role in fostering 
these affordances. It can manifest in various forms, including immediate feedback on students' 
actions, correction of syntax and semantic errors, and validation of mathematical problem-solving by 
verifying if the CP's response aligns with a mathematical solution. 

Moreover, three types of affordances may emerge at the MT-CT-CP level. The first fosters MT by 
promoting mathematical problem-solving, conjecturing, and mathematizing the problem that can be 
translated into an algorithm using CT. Subsequently, the algorithm is transformed into program code 
that undergoes iterative testing, evaluation, and refinement. Numerous affordances that may emerge 
at this level pertain to various activities centered on integrating MT, CT, and CPs, including 
designing, constructing, debugging, abstracting, mathematizing, conjecturing, reflecting, etc. 

Affordances at the assessment level can impact programming learning outcomes. In addition to 
summative assessment, formative assessment plays a crucial role in the learning process. As 
mentioned earlier, feedback from the CP is a vital component of formative assessment, and it can 
manifest in various forms, including providing feedback to students' actions regarding syntax errors. 

Finally, socio-cultural affordances are threefold. Firstly, programming should offer opportunities to 
concretize the mathematics subject curriculum. Secondly, programming should be integrated into 
mathematics education in schools. Lastly, these affordances may facilitate the consideration of 
ethical, gender, and other issues within the context of programming and mathematical learning. 

Discussion and conclusions 
The framework offers a pathway to investigate the not fully explored issues of programming 
affordances. This includes a focus on MT, CT, programming, and their interconnections, computing 
paradigms, and theoretical perspectives. In empirical studies, the framework can be used as both a 
theoretical and analytical framework based on the seven categories of affordances across six levels, 
while accommodating the emergence and actualization of new affordances. 

Given this background, the article raises some critical questions that need further exploration: What 
is the nature of programming affordances that are rationalistic, technocratic, and scientific? Does 
programming imply a new philosophy of objects that is purely computational? Or is programming 
just another semiotic register like the graphical or symbolic ones (Duval, 2006)? Does programming 
shape mathematical practices against the assumption that programming knowledge is "objective"? 
These questions provide some research directions, especially in the rapid advancement of Artificial 
Intelligence and non-human agents (Latour, 2005) that may bring about a computational turn similar 
to Lerman’s sociocultural turn (Lerman, 2000). Perhaps it is the specificity of programming 
affordances and the attention to the ontology and epistemology of CPs stemming from various 
paradigms and theories that point to a computational turn in mathematics education. 
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This study presents a task design based on digital technology with practical implications for 

promoting proportional reasoning in secondary school students (ages 13-14). We developed three 

Virtual Interactive Didactic Scenarios (VIDS) within the Realistic Mathematics Education (RME) 

framework. The levels of RME were used to assess students' progress in proportional reasoning. Our 

data analysis revealed the proportional reasoning skills fostered by the VIDS, the didactic benefits 

and limitations of our task design, the learning difficulties related to the concepts of ratio and 

proportion, and the impact of digital technology on the teaching sequence. 

Keywords: Proportional reasoning, technology, middle school education. 

Introduction 
Proportional reasoning, which has garnered significant research attention for decades, still needs 
consistent integration into classroom teaching practices (Obando et al., 2014). Its relevance 
transcends the classroom setting, as it is a critical tool for decision-making in everyday life. The 
challenge in mastering proportional reasoning lies in comprehending fundamental mathematical 
concepts such as ratio, proportion, and proportionality, which are indispensable for advanced 
mathematics and find application across diverse scientific disciplines (Lamon, 2007). 

Given the importance of the topic, we have characterized the problems reported under four headings: 
1) Lack of meaning in the study of proportional situations due to excessive arithmetic (Lamon, 2007); 
2) Poor development of proportional skills caused by the lack of context for exploring representations 
of proportional situations (Weiland et al., 2021); 3) Prioritizing fractions as representatives of rational 
numbers to the detriment of the concept of ratio (Confrey & Carrejo, 2005); and 4) Failure to attend 
to the distinction between linear and non-linear relationships, leading to the use of direct 
proportionality in contexts where it is not applicable (De Bock et al., 2002). 

The challenge at hand is how to promote proportional reasoning among students. The most common 
approach in schools to understanding proportionality comes from an arithmetic perspective, detached 
from functional relationships and their multiple representations, with limited use of digital technology 
(Cuevas et al., 2023). In this context, the standards set by the National Council of Teachers of 
Mathematics (NCTM, 2000) suggest that incorporating digital technology into teaching can lead to 
emerging forms of reasoning that may be challenging to observe through traditional methods. 
However, technology alone is not a solution; effective didactic design is crucial for technology to be 
a cognitive tool that enhances learning. Despite the benefits offered by technology in teaching, a 
systematic review of literature conducted by Lutfi et al. (2024) revealed that only 18 research articles 
on proportional reasoning with technology had been reported from 2006 to the present, indicating a 
clear need for proposals that leverage technological resources in this field. 
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Theoretical framework  
Lesh et al. (1988) define proportional reasoning as a skill involving qualitative and quantitative 
processes essential for managing and predicting situations involving change, covariation, and 
multiple comparisons. Proportional reasoning can be approached from either an arithmetic or an 
algebraic perspective (Hersant, 2005). In this study, we consider that exploring both perspectives 
involving different representations in multiple contexts can help students to connect the concepts 
associated with proportional reasoning, conceiving them as a network of interconnected concepts, 
where the change in the understanding of each one has implications for the whole network (Vergnaud, 
1994). These concepts are multiplication, division, fraction, ratio, rate, scale, covariation, relative 
size, magnitude, and measure. 

In this regard, to assess students' reasoning regarding the conceptual network, we identify 
proportional skills as those faculties necessary for a person to possess solid proportional reasoning. 
Based on the essential understandings proposed by Lobato et al. (2010) and the comprehensions 
described by Weiland et al. (2021), we propose that such skills should include 1) Attending to and 
coordinating two quantities that vary independently, 2) Recognizing and utilizing the structures of 
proportional situations (ratio equivalence, proportionality constant, linearity), 3) Understanding 
proportionality across multiple representations (symbolic, algebraic, tabular, and graphical), and 4) 
Distinguishing between linear and non-linear situations. 

The Realistic Mathematics Education (RME) teaching approach emphasizes that realistic situations 
are essential for learning mathematics. In RME, students actively develop learning and construct 
models that mathematize reality from an everyday context (Freudenthal, 2002). According to Van 
den Heuvel-Panhuizen and Drijvers (2020), realistic contexts can be mathematicized horizontally, 
where students move from the real to the symbolic of responding to problems in their context, and 
vertically, where they make conceptual connections and create strategies to solve problems within 
the mathematical system. In vertical mathematics, the objective is to detach from the context towards 
abstraction and generalization; in this journey, the students' reasoning goes through four levels of 
understanding: N1 (situational level), the reality is interpreted and organized through informal and 
context-dependent mathematical reasoning. N2 (referential level), schemes that make sense within 
the initial context are created, and vertical mathematics begins to emerge as "models of...". N3 
(General level), concepts are related, strategies are generated that are separated from the context, 
reasoning takes place in the mathematical world, and "models for..." emerge. N4 (Formal level), 
concepts are understood using mathematical symbolism, support from an authentic context is no 
longer needed, and models can be dispensed with. 

This study aims to promote the four proportional reasoning skills through the levels of 
mathematization. We developed criteria indicating the characteristics of the skill evaluated in 
correspondence with the situational, referential, and general levels of the RME (see Table 1). The 
formal level was not considered because its scope does not correspond to the educational level. 

Table 1: Proposed criteria for assessing the tasks (Cuevas et al., 2023) 

Proportional 

reasoning skills 

Level 1: situational Level 2: referential Level 3: general 
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(1) 

Attending to and 

coordinating two 

quantities that vary 

dependently  

Students perceive the 

covariation of one variable 

concerning another in a 

specific context. 

Students identify variation 

and dependence between 

two variables in a context to 

make predictions or 

inferences about change in 

one of them. 

Students determine the 

functional relationship 

between two variables in any 

context by identifying the type 

of dependence between the 

variables. 

(2) 

Recognizing and 

using the structures 

of proportional 

situations 

They state and compare 

reasons from a context using 

intuitive reasoning. 

They use equivalence to 

compare ratios and operate 

with the ratio's invariant to 

solve missing value 

problems. 

They perceive direct 

proportionality as a linear 

model y=kx, identify the 

constant of proportionality in 

any context and understand the 

cross-multiplication algorithm. 

(3) 

Understanding 

proportionality 

from multiple 

representations 

Capture discrete data from a 

linear covariation context to 

generate a tabular 

representation and a 

graphical representation; can 

make inferences from the 

representations within the 

same context. 

They can determine the 

linear property of a 

phenomenon from tabular 

or graphical representations 

and obtain the algebraic 

model of the situation. 

They associate linearity with a 

discrete multiplicative 

relationship in tabular 

representation, a continuous 

straight line in graphical 

representation and an equation 

of y=kx+a in algebraic 

representation. 

(4) 

Distinguishing 

linear from non-

linear situations 

Distinguish linearity (or lack 

thereof) when taking or 

analyzing discrete data from 

a covariate situation in 

tabular or graphical 

representations. 

They relate linearity to a 

constant multiplicative 

factor in tables and a 

constant graph slope. 

Explicitly identify slope in 

linear functions and calculate 

the rate of change of a 

function from any 

representation to identify 

linearity or its absence. 

Given the theoretical considerations above, we aim to address the following question: Which 
proportional reasoning skills are fostered in high school students when they solve tasks in a digital 
technology environment within the framework of RME? 

Methodology 
To structure our study, we relied on the Design-Based Research (DBR) methodology proposed by 
Bakker (2018), which consists of the following phases: 1) preparation and design, 2) teaching 
experiment, and 3) analysis of results and redesign. Under this DBR approach, theory and previous 
experiments guide the iterative design process. Given the pivotal role of design and innovation within 
Design-Based Research (DBR), this study proposes the integration of Virtual Interactive Didactic 
Scenarios (VIDS). VIDS represent virtual environments that authentically simulate real-world 
phenomena, enabling students to dynamically engage with diverse contexts and construct 
mathematical knowledge (Cuevas et al., 2023). VIDS serve to simulate realistic scenarios, facilitating 
interaction with multiple representations, manipulation of random data, and validation of outcomes. 
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Comprising a virtual scenario and Guided Learning and Exploration Sheets (GLES), the VIDS system 
presents a cohesive educational framework. These GLES provide a structured pathway for learning, 
fostering understanding through active engagement with the virtual scenario. 

In Figure 1, we illustrate the design cycle used in this research. The activities integrated into the 
GLES are essential, as they guide students' interactions with the virtual scenario while facilitating the 
construction of mathematical knowledge. When faced with a question in the GLES, students engage 
with the virtual scenario and, through this interaction, can provide answers that may be correct or 
incorrect but are verifiable within the virtual scenario. 

 
Figure 1. The design cycle in this study 

Preparation and design phase 

Task 1. The context involves virtually making orangeade using different mixtures of orange juice 
and water. The VIDS includes both instrumentation and comparison scenarios (see Figure 3a). The 
GLES aims for students to propose, compare, and determine the equivalence between orangeade 
ratios through interaction with the virtual scenario. 

 
Figure 2: VIDS developed in the design cycle 
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Task 2. This task involves zooming in or out to resize an image of Totoro figures based on a similarity 
ratio controlled by the student (Figure 2b). The GLES aims to address the problem of the illusion of 
linearity by having students tabulate and graph the ratio-perimeter (linear) and ratio-area (quadratic) 
relationships, ultimately guiding them towards comparing both models. 

Task 3. The context involves a car moving at a constant speed above the legal limit and a patrol car 
that begins a pursuit with constant acceleration as the car passes by (see Figure 2a). The aim of the 
GLES (Figure 2c) is for students to interact with the VIDS while describing, analyzing, and 
comparing the characteristics and representations of Uniform Linear Motion (ULM) and Uniformly 
Accelerated Motion (UAM). 

Teaching experiment phase 

An in-person intervention was conducted with 17 students (13-14 years old) from a Secondary School 
in Mexico. The instruction was divided into three 90-minute sessions where students could access 
mobile devices and personal computers to engage with virtual scenarios. Each student had their 
respective printed GLES. The intervention was led by the classroom teacher and supported by a 
researcher. During the sessions, individual learning was promoted by working with the VIDS, and 
collaborative learning was fostered through group discussions about difficulties and the exchange of 
possible solutions to the activities to reach a consensus on the GLES. During the discussions, students 
accessed the virtual scenario to test the reasoning that emerged from exchanging ideas. The collected 
data consisted of the researcher's observation notes and the GLES completed by the students. 

Results 
In the analysis, we categorized the students' responses into four proportional reasoning skills and then 
determined the level of mathematization of the RME corresponding to each one (Table 1). Beyond 
analyzing whether the answers were correct or incorrect, the GLES responses were associated with 
proportional reasoning skills. This approach allowed us to identify specific design aspects that 
promoted or hindered learning, providing an opportunity to improve the design for a new cycle. 

Results for Task 1, "Orangeade". In this task, the students demonstrated skills in formulating ratios 
of orange drink mixtures and comparing them within the context. Depending on the order relationship 
between the ratios, they would decide which orange drink had a more intense flavor or if the flavors 
were similar. An unexpected finding emerged when we noticed that, with the help of the scenario, 
the students compared the orange drinks by associating the juice glasses with their respective water 
glasses and then counting the number of leftover glasses. Depending on the number of leftover water 
glasses, they would assert that one of the ratios indicated a more intense flavor. This method worked 
in some cases, but in the example shown in Figure 3a, after making the associations, the same number 
of water glasses remained unmatched, leading the students to conclude that both mixtures had the 
same flavor, indicating the same proportion. In these instances, the VIDS indicated the error, and the 
students had the opportunity to reflect and correct how they compared the ratios. 

Results of Task 2, "Zoom Totoro". While performing this task, 75% of the students showed the 
ability to transition between representations (tabular, graphical, and algebraic) of proportionality 
regarding the linearity of the perimeter about a similarity ratio. Figure 3b displays the section of the 
GLES where students graph the linear variation of the perimeter and determine the slope. Regarding 
the transition between representations of the area-ratio relationship, only 25% of the students 
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completed the table and created the graph, but no student obtained a correct algebraic model. This 
was due to the arithmetic difficulties of the task and the student's deficiencies in perimeter and area 
concepts. 

 
Figure 3: Evidence of tasks performed by students 

Results of Task 3, "Cars". The students showed the skill to distinguish between linear and non-
linear situations in various representations. 81% of the students identified the characteristics of 
Uniform Linear Motion (ULM) and Uniformly Accelerated Motion (UAM), but only 25% showed 
reasoning at the general level of mathematization in the representations of motion (tabular, graphical, 
and algebraic). Figure 3c shows a section of the GLES where the two movements were graphed. The 
student states that "if equal distances are covered in equal times, distance and time have a constant 
relationship" and that "the speed of the car does not change and that of the patrol car increases 
constantly." In this case, general reasoning is observed that applies to any context of ULM and UAM. 

Summary of results 

Table 2 presents the percentages of students who reached levels 1, 2, or 3 of mathematization in the 
four assessed skills, allowing us to observe which VIDS favor each skill. The "x" characters in the 
table indicate that, by design, it is not possible to evaluate that skill at the corresponding level. We 
found that the orange drink VIDS was highly suitable for reasoning about covariation (skill 1), 
comparing ratios, and determining equivalence (skill 2). Likewise, the "Zoom Totoro" VIDS proved 
effective for reasoning about the similarity and proportionality of figures (skill 2). On the other hand, 
the Cars VIDS was ideal for reasoning across representations (skill 3) and distinguishing between 
linear and non-linear variation (skill 4). The three VIDS supported the skill of "attending to and 
coordinating two dependently varying quantities" (1), as all three contexts are intuitive and familiar 
regarding the variables they involve. In the instructional sequence, the complexity of the tasks was 
carefully managed, as we considered that the orange drink VIDS involves more straightforward 
procedures than the Cars VIDS, given that the latter involves extensive quantities (speed and 
acceleration) and both linear and non-linear situations. Consequently, the skills and intuitions fostered 
during work with the initial VIDS helped the students in their work with the Cars VIDS. Observing 
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the improvement in mathematization levels in Table 2, we consider that the design effectively 
promoted proportional reasoning in the assessed skills. 

Table 2: Percentage of students who achieved each level of RME 

Proportional reasoning skills 
Task 1 

Orangeade 
Task 2 

Zoom Totoro 
Task 3 
Cars 

N1 N2 N3 N1 N2 N3 N1 N2 N3 

1 
Attending to and coordinating two 
quantities that vary dependently  

100% 43% x 100% 87% 0% 100% 100% 60% 

2 
Recognizing and using the 
structures of proportional situations 

100% 43% x 100% 93% 0% 100% 87% 62% 

3 
Understanding proportionality from 
multiple representations 

93% x x 75% 18% 0% 81% 68% 25% 

4 
Distinguishing linear from non-
linear situations 

x x x 25% 25% 0% 87% 56% 0% 

Discussion and conclusion  
In Task 1, students struggled to compare two ratios where the difference between the antecedent and 
consequent was the same, as they erroneously applied the additive principle to compare ratios. This 
understanding evolved as the task progressed. We found that comprehension difficulties emerged due 
to the VIDS, as these allowed students to verify their answers. In Task 3, students achieved general 
reasoning about ULM and UAM but could not express it algebraically due to a lack of mathematical 
language. It is necessary to enhance activities that facilitate the transition to algebraic representation. 

Technology played a crucial role in designing and implementing activities by granting students the 
freedom to interact with contexts and receive feedback. Designing technological elements based on 
a framework facilitates an experiential teaching of mathematical concepts. This approach allows for 
the simulation and replication of everyday situations amenable to problematization and provides 
pragmatic and epistemic advantages. In this regard, students' experience with the VIDS allowed for 
identifying misconceptions that would likely go unnoticed in traditional teaching formats. Interacting 
with the VIDS sparked an interest in students beyond the presented mathematical context, engaging 
them with problems arising from the tasks.  

In a survey conducted after the experience, 95% of the students indicated that they enjoyed working 
with technology in math class and that the VIDS allowed them to learn new things. Similarly, in an 
instrumentation test, 54% of the students preferred to interact with the VIDS on a mobile device in a 
horizontal position, 15% in a vertical position, and 30% mentioned that it was indifferent. Students 
feel more comfortable with scenarios in a horizontal position when visualization predominates in the 
focus of the activity, as they are accustomed to computer screens, TVs, or cinemas in this type of 
resolution. It is important to clarify that although the presented VIDS were created with GeoGebra, 
their design is independent of any software. The didactic and pragmatic essence of their elements can 
be developed in any application or programming language. Therefore, task design using the VIDS 
approach is timeless, even as versions are updated, or operating systems are changed over time. 
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The advent of artificial intelligence tools provides new opportunities for mathematics-educators. This 

article explores the use of AI-generated content as a starting point that can stoke creativity and 

provide expanded capacity to prepare for student engagement. Such tools can be used to: (1) 

anticipate student responses, (2) design rubrics, (3) create culturally engaging tasks, (4) develop 

prompts focused on problem solving, and (5) devise higher level depth of knowledge questions.  

Imperfections and the rapid evolution of technology require layers of human collaboration, both with 

the AI-tools and Professional Learning Communities to ensure quality and effectiveness of 

preparation, instruction, and assessment. Educators should judiciously employ AI-generated content 

and capitalize on expanded capacity and creativity to refine personal AI-integration practices and 

foster learning environments focused problem solving and critical thinking.  

Keywords: artificial intelligence, chatbot, mathematics education, planning, assessment. 

Introduction and Organization 
In 2023 versatile large language AI chat-bot programs became available for public use, including 
ChatGPT, Claude and Gemini, among others. This introduction occurred more than 70 years after the 
debut of the pioneer artificial intelligence (AI) programs which could play chess and checkers. Just 
as previous technologies have in the past, this new technology was met with curiosity, criticism, 
intrigue, and questions from the academic community (Hamid & Schisgall, 2023; D’Agostino, 2023). 
As mathematics teacher educators, we now grapple with what widely available AI chatbots mean for 
mathematics teacher preparation, how we can learn about these tools, and the ways we can foster 
judicious use of chatbots for mathematics teacher preparation, particularly as a tool for planning 
instruction and assessment.  

In this article, we will first discuss some background literature that lays the foundation for how the 
mathematics education community understands teacher knowledge, technology integration, and the 
initial recommendations for education and AI. We will then consider aspects integrating AI tools for 
lesson planning and assessment in mathematics education. Specific categories are described for both 
lesson planning and assessment. These categories were identified based on the relevant topics that 
emerged during the exploration of AI tools in the mathematics methods courses. The article concludes 
with caveats, next steps, and the key takeaways from this early work in the integration of AI tools for 
mathematics teacher education. 

Upon embarking on this project, we recognized the emerging nature of this area of study. For this 
reason, we initially considered larger works about technology in education such as TPACK (Mishra 
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& Koeler, 2006) the TPACK Development Model (Niess, et al., 2009) which have long helped us 
consider the use of tools such as calculators, dynamic geometry software, and digital fabrication tools 
in teaching and learning mathematics. During the study, we were cognizant of the quickly emerging 
scholarship surrounding the integration of AI tools, and we shifted our focus to the consideration of 
the more specific ideas which are the primary focus of the following section.  

Theoretical Background  
As teacher educators, we have long recognized the importance of fostering the development of 
knowledge constructs, particularly technological, pedagogical, and content knowledge (TPACK) 
(Mishra & Koeler, 2006). Further, we acknowledge that is a progression through a spectrum of 
TPACK for each technology that emerges. Niess and her colleagues (2009) describe five stages 
(recognizing, accepting, adapting, exploring, and advancing) for each theme (curriculum and 
assessment, learning, teaching, and access) in their TPACK Development Model. With this 
foundation in mind, we will shift to the consideration of large language model chatbots, or AI tools 
in the context of mathematics teacher education.  

A new body of scholarship is emerging in the realm of the use of AI tools for teaching and learning. 
In their review of literature, Mohamad and colleagues (2022) note that most studies on the integration 
of AI tools focus on engineering, computer science, or STEM, with a lack of work done specifically 
for mathematics education. They call specifically for teachers to develop knowledge related to 
strategies to integrate AI during teaching and learning. Given the void of mathematics-specific 
research, we will consider the work on the integration of AI in teaching and learning more broadly. 

Mao, Chen, and Liu (2024) highlight that the availability of generative AI tools brings both 
opportunities and challenges, noting that, “the co-existing collaboration between AI and humans has 
profound implications for education in terms of the teaching and learning processes, assessment, and 
teacher-student interactions” (p. 59). In this work, they further note the need to replace traditional 
assessments such as multiple-choice test items and essays with assessments such as performance 
items and portfolios which are less susceptible to AI-related dishonesty from students and also better 
engage students in higher order thinking, communication, and collaboration which is valued in 
today’s workforce.  

Scholars also recognize the potential for AI tools to be used judiciously in designing instruction to 
free up time for the teacher (or instructional designer) to devote time to the most meaningful tasks 
(Bolick & da Silva, 2024).  In the generalized work of instructional design, AI might be used to create 
multimedia, allowing the designer to focus on the progression of content, for example. Similarly, 
Moore and colleagues (2024) note that the learner’s integration of AI tools can reduce their cognitive 
load, support their engagement in metacognitive processes, and support mindful engagement. Still, 
Frick (2024) reminds us that “teaching students to think critically is essential when utilizing AI 
systems.” (p. 22) 

Though initially some members of the education community feared that integration of AI tools might 
decrease opportunities for students to engage in critical thinking, scholars note that AI tools have the 
potential to increase our focus on application and creativity while encouraging critical thinking and 
analysis (Hodges & Kirschner, 2024; Cain, 2024). Hodges and Kirschner offer specific strategies for 
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teachers including the incorporation of oral assessments, engaging students in peer review and 
collaboration, and encouraging critical thinking and analysis.  

In the following sections, we explore considerations for integrating AI tools for mathematics teacher 
education, specifically for developing lessons, lesson components, and assessments.  

Integrating AI in Mathematics Teacher Education: Lesson Planning 
The themes of learning communities, crafting prompts and dialogue, revising AI-created lesson 
components, and anticipating student responses are described in the following paragraphs. These 
themes emerged organically thorough the exploration of AI tools for teaching and learning during a 
lesson planning unit in a mathematics methods course and align with the literature noting that AI 
tools can be used to free up time for the teacher to focus on other tasks (Bolick & da Silva, 2024). 
Learning communities was a focus in response to concerns that the integration of AI tools would 
further silo educators. The crafting of prompts and dialoging with the AI chatbots became a focus as 
we realized the importance not only of forming a descriptive initial prompt, but also of continuing to 
work on improvements through ongoing dialogue and feedback. We quickly realized that AI chatbots 
were not the best tool for creating whole lessons, and we intentionally focused on using them to co-
create individual components of the lessons instead. We also recognized that the focus on critical 
consideration of AI generated materials, coupled with creativity is a lesson reflected in literature 
(Hodges & Kirschner, 2024; Cain, 2024) that was enacted as our students leveraged AI tools for 
lesson planning. Our teacher candidates often struggle with anticipating a variety of student 
responses, so we also leveraged chatbots to anticipate responses to mathematical tasks and prompts.  

Learning Communities  

As we consider the use of AI as a tool for developing mathematics lessons, we should also consider 
the space in which teachers do this work. With AI as an aide, there is a tendency to work alone, 
dialoguing with the chatbot for ideas. When preservice teachers work alone, they may have blind 
spots that hinder their ability to critically examine the responses the chatbot generates. Grouping 
preservice teachers into Professional Learning Communities (PLCs) that mimic the professional 
teaching environment can combat the various limitations of lone wolf lesson planning. The PLC can 
work together to craft prompts, dialogue with the chatbot, critically examine the recommendations, 
and draft revisions of the lesson. This can be paired with a modified lesson study approach in which 
PLCs plan and study a lesson together, teach the lesson (observing one another when possible), 
debrief the lesson, and reflect and revise the lesson. In this space, the use of the AI chatbot as a tool 
for collecting ideas frees up capacity for the preservice teachers to think critically about the lesson 
throughout the process.  

Crafting Prompts and Dialogue  

The particular content of the request or input provided to the chatbot often determines the quality and 
effectiveness of the response generated.  In one example, the prompt “Write a lesson introducing 
fractions” was provided to ChatGPT. The resulting output, while detailed, provided for only optional 
minimal use of tools and manipulatives and vague instructions such as “provide worksheets for 
students to practice identifying and representing fractions.” Subsequently, the prompt was revised to, 
“Write a lesson appropriate for third grade which introduces fractions. Please integrate the use of 
manipulatives or tools for teaching. Please include an accommodation for a student with a visual 
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impairment. Please include four homework items to follow up the lesson.” The response to this 
prompt included additional detail, connections to prior knowledge, the use of manipulatives, the use 
of tactile fraction strips and Braille fraction cards. In this case, the four homework items were still 
vague but offered some starting points: “Complete a worksheet on identifying fractions in everyday 
objects. Create a fraction collage using cut-out shapes from magazines or newspapers, practice adding 
and subtracting fractions using fraction manipulatives or drawings. Write a short story or word 
problem involving fractions and solve it.” To continue the conversation, the next prompt provided 
was “Create a worksheet on identifying fractions in everyday objects.” Though the chatbot created a 
worksheet, there were errors, such as the use of a backslash rather than a vinculum for representing 
fractions and the inclusion of an answer key despite the worksheet providing prompts that did not 
have specific answers.  

Revising AI-Created Lesson Components 

We proposed that lessons, whether human or AI-created, are never perfect and never truly “finished”. 
Every lesson can be critically considered and improved. AI-lesson components may need 
improvement regarding the integrity of content, as AI tools are prone to hallucinations in which they 
generate fictitious information (Research Guides at University of Southern California, 2024). Other 
times, the tool may not interpret the request correctly or may overgeneralize mathematical ideas. As 
previously demonstrated in this article, chatbots tend to create lessons without sufficient detail, so we 
propose avoiding the use of chatbots for creating whole lesson plans. Preservice and inservice 
teachers need to plan for the questions they will ask to guide discussion, the exact problems they will 
use for a lesson, and scaffolds they will use to support students during the lesson. Often chatbots will 
provide general statements such as “provide feedback to help students improve their understanding 
of fractions” but fail to provide specific ideas on how teachers can do this. In the context of the PLC 
teachers can use the AI-created lessons as a starting point, but also continually revise and add in the 
necessary details to create a quality, teachable lesson that fosters development of students’ 
understanding.  

Anticipating Student Responses 

When planning to foster a productive discussion in mathematics class, the first stage is to anticipate 
student responses. A chatbot can be a great tool for developing a list of potential student responses to 
a mathematical task or problem during planning. When ChatGPT was asked to provide a list of 
anticipated strategies for students to use for the classic Locker Problem (https://36university.com/act-
math-locker-problem-solution/), the chatbot replied with details of five descriptions of approaches: 
brute force method, observation of patterns, mathematical analysis, trial and error, and collaborative 
problem solving. When prompted to identify misconceptions students might encounter, the chatbot 
replied with an impressive list of five different misconceptions and their corresponding impact on the 
student’s progress toward solving the problem. In essence the chatbot provides a “thinking partner” 
to anticipate student responses as the teachers prepare themselves for task implementation.  

Integrating AI in Mathematics Teacher Education: Assessment 
In consideration of the categories for assessment, we focused on creating rubrics, developing tasks, 
writing prompts, and designing questions to guide instruction for several reasons. These were areas 
where we found some success when piloting the AI chatbot tools. The assessment strategies also align 
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well with the focus of our mathematics methods courses, which deemphasize traditional multiple-
choice testing and instead integrate practice-based tasks and tools to provide the teacher with a better 
understanding of what students know (Mao, Chen, and Liu (2024). These ideas reflect the work of 
Hodges and Kirschner (2024) which emphasizes engaging students in collaborative, critical thinking, 
and analytical assessments.  

Creating Rubrics  

Chatbots can also be helpful with creating rubrics, though there are some limitations. A request to 
ChatGPT to create both a holistic and an analytic rubric for the aforementioned Locker Problem, 
produced an analytic rubric for both requests, despite providing a correct and detailed response to the 
prompt “What is the difference between a holistic rubric and an analytic rubric?” In our experience, 
a request for a rubric will most often produce an analytic rubric. Nonetheless, creating rubrics for 
tasks can be a repetitive process, and chatbots can aid in creating a first draft rubric for pre-service 
teachers to edit and integrate into lessons.   

Developing Tasks 

AI tools can also be leveraged to create engaging tasks. Recently in a mathematics methods course, 
preservice teachers used a chatbot to create a problem aligning to their learning objectives and using 
Taylor Swift in the context to engage students. This is particularly helpful for topics such as games 
and pop culture where teachers may not be familiar enough to use the interest-areas in the problem 
context. In this strategy, it is essential to consider the appropriateness of the context as well as the 
accuracy. Chatbots can also help provide creative performance tasks. When asked to create a 
performance task that uses Nike Air Jordan shoes to explore different models of multiplication, 
ChatGPT produced a detailed task, beginning with a phase of research into Nike sales, continuing a 
variety of multiplication scenarios and models, and concluding with the students creating 
presentations to communicate their work. The problem was accompanied by a detailed rubric. AI 
tools can be used to create engaging tasks with features and contexts that resonate with students’ 
interests.  

Writing Prompts  

Communication is an essential process standard for mathematics. Students should be listening to one 
another, engaging orally, and writing about mathematics. AI chatbot tools can help preservice 
teachers develop prompts to foster this communication. When asked to craft a writing for fourth 
graders around classification of angles, ChatGPT provided a problem posing style prompt (Figure 1). 
This problem could be used or modified for classroom use; however, chatbot requests for problem 
solving tasks, non-routine tasks, and critical thinking tasks generally resulted in algorithmic task 
results (Figure 2) which did not prove to be helpful for preservice teachers in their planning. When 
using chatbots for ideas on mathematics prompts, preservice teachers should review each of the 
outputs carefully and critically, judiciously integrating only the components that foster mathematical 
teaching and learning, staying cognizant of the need for students to engage in problem solving. 
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Figure 1. ChatGPT provided a writing prompt related to classification of angles. [Prompt: Craft a 
writing prompt for fourth graders to consider classification of angles.] 

 

Figure 2. ChatGPT provided a routine, algorithmic problem to this request. [Prompt: Write an 
algebra math problem that requires critical thinking to solve.] 

Designing Questions to Guide Instruction  

Preservice teachers may also find chatbots helpful in designing questions to integrate in their planning 
and teaching. Webb’s Depth of Knowledge provides us with a framework for asking questions which 
vary in levels of complexity (Webb, 1997). Often preservice teachers struggle to develop Level 3 and 
Level 4 questions which require strategic and extended thinking, respectively. We have found that 
chatbots can be useful in devising these more complex questions (along with a breakdown of the 
prompt and sample response), particularly when a detailed prompt, specific task reference, and 
mathematical goal is provided (Figure 3).  

 

Figure 3. Chatbots can devise DOK Level 4 questions. [Prompt: Write a DOK 4 question related to 
surface area of polyhedral.] 

Conclusion 
Caveats 

Along with the enthusiasm for the potential of AI chatbots to revolutionize lesson planning and 
assessments, we must also consider the challenges. Mathematics teacher educators have voiced 
concerns over issues related to academic integrity such as: How do we correctly cite work developed 
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by an AI tool? What is plagiarism when your collaborator is a chatbot? Privacy and data security 
issues have also surfaced: What happens to the data provided in a prompt? Are students and teachers 
at risk when they share information about students’ interests, for example, in a chatbot conversation? 
Despite their mechanical nature, chatbots have also proven to have biases which emerge in their 
dialogue (Xue, et al., 2023). Interestingly, chatbots are often programmed to recognize and will 
describe the existence of various types of bias when asked (Xue, et al., 2023). Still, chatbot developers 
are not necessarily mathematics teacher educators, and the ultimate responsibility of instructional 
content and methods does not rest with the chatbot.  Teachers must stay cognizant of these and other 
ethical concerns as they interact with the AI tools.  

Summary of Takeaways 

Recommendations for the integration of AI chatbot tools are emerging and evolving very quickly, 
and we recognize that some of these ideas, concerns, and takeaways may become outdated quickly. 
Nonetheless, we offer the following summary of key takeaways from our most recent work:  

• Teachers can collaborate with chatbots in their Professional PLCs. It is essential that teachers 
consider the quality of the components, revising and ensuring that the lesson is appropriate.  

• Teachers can use AI chatbots as thinking partners to anticipate student responses (both incorrect 
and correct) as they prepare to implement a task. 

• AI chatbots can create a starting point for a rubric, but the teachers should carefully review and 
edit prior to implementation.  

• Teachers may use AI chatbot tools to create engaging tasks with features and cultural contexts 
that resonate with their students.  

• AI chatbots can be used to create mathematical prompts, however teachers should consider the 
outputs carefully and maintain a focus on learning through problem solving and critical thinking.  

• Teachers may use chatbots to devise higher level DOK questions. Using a detailed prompt, 
specific task reference, and goal can help the chatbot create more appropriate questions.  

In closing, we want to acknowledge the potential for AI chatbot to serve as what Moore and 
colleagues (2024) describe as cognitive partners. We also want to encourage mathematics teacher 
educators to offer experiences for future mathematics teachers to engage in intelligence 
augmentation, as they “[combine] the strengths of AI (its ability to synthesize and draw conclusions 
from large amounts of data) with human abilities (integrating embodied experiences, social contexts, 
emotions, etc.)” to transcend the capabilities that either could reach alone (Moore et al., 2024 p. 399). 
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In this paper we discuss 11th grade students’ covariational reasoning on periodic functions, as they 

created dancing figural animations matched to songs through digital technologies. Students explored 

various representations of trigonometric functions and Fourier series approximations in order to 

capture and express their personal artistic ideas connected to music. The analysis focuses on the role 

of digital representations as well as students' aesthetic experiences in the development of their 

covariational reasoning that involved sense making on the dynamic periodic change of geometric 

quantities with respect to time. The results indicated that both the digital tools and the aesthetically-

driven aspect of the tasks supported various types of thinking on periodic covariation. 

Keywords: Periodic functions, music, dance, educational technology, covariational reasoning.  

Introduction 
A growing number of studies highlights the importance of covariation, i.e. the dynamic change of 
two dependent quantities, for the holistic understanding of the abstract concept of function 
(Thompson & Carlson, 2017). Recent studies emphasize the need for design that cultivates 
covariational reasoning and exploration of the way students conceptualise it. Digital technologies, 
through their dynamic and interactive representations, expand the possibilities of depicting and 
investigating covariation (Swidan et al., 2022). In the literature, the design of learning environments 
under study focuses on the modeling of physical phenomena. Thus, emphasis has been placed on 
students' covariational reasoning as they observe and manipulate the representations or answer 
closed-ended questions about the physical model (Thompson & Carlson, 2017). However, elements 
such as students' aesthetics, creativity and innovation tend to be absent from such environments, 
despite their emerging importance in mathematics learning (de Freitas & Sinclair, 2014). In today’s 
technocratically-driven society, combining aesthetic experience with mathematical reasoning is 
becoming more and more relevant. Furthermore, existing research focus is placed on parabolic or 
exponential functions, with periodic functions being on the research fringe, despite its rich 
mathematical, interdisciplinary and aesthetic interest (Shama, 1998). Moore (2014) and DeJarnette 
(2018) made some first steps in this direction by studying the way students use covariational 
reasoning on periodic functions (from here on mentioned as periodic covariational reasoning (PCR) 
by the authors) in order to model circular movement of a Ferris wheel cabin with sine function. 
However, their studies are limited with regards to the type of periodic functions used, the openness 
of the designed tasks and the exploitation of expressive digital technologies. 

For this research, a series of activities was designed for cultivating PCR that prioritizes the modeling 
of inner artistic ideas, over that of external physical phenomena, providing a personalized learning 
experience guided by aesthetic responses. Students worked in microworlds (Healy & Kynigos, 2010) 
to create periodically moving geometric models that match specific songs. We study the research 



                          Proceedings of the 17th ERME Topic Conference MEDA4, 3-6 September 2024, Bari, Italy                          ISBN 978-88-6629-080-3

  
216 

questions: What kind of PCR has been developed in this learning environment? What is the role of 
a) digital representations and b) aesthetic experiences of students in their PCR? 

Theoretical Background 
Periodic Covariational Reasoning (PCR) 

Covariational reasoning (CR) is associated with the ability to coordinate the parallel changes of two 
quantities (Thompson & Carlson, 2017). This is a complex cognitive process, which is important for 
making holistic sense of the concept of function and practices such as interpreting or creating a graph 
and mathematical modeling. Thompson (2011) emphasized its dynamic nature, adding to its 
definition that parallel changes take place within a space of “conceptual time”, which is a dense and 
continuous set, bounded by the temporal space in which someone thinks about covariation. Various 
models with developmental levels have been proposed for the description of students’ CR through 
engaging with different types of activities, such as constructing a graph or interpreting a graph that 
models a physical phenomenon (Carlson et al., 2002; Thompson & Carlson, 2017). The aspects of 
such models involve direction of change of two quantities, their synchronicity, continuity and rate of 
change. In their model, Swidan et al. (2022) also included the concept of the parameter. They 
integrated the ‘2nd order of CR’, which is the students' ability to make sense of the synchronous 
covariation of a class of (functional) relations and their characteristic parameters. Moore (2014) 
adjusted Carlson et al.’s (2002) model for describing students’ CR on sine function for the [0, G

*
]. 

However, this adjustment neglects some important aspects of periodic covariation, such as the 
concepts of periodicity-period, amplitude and the continuous change of direction of change between 
the two quantities, as well as the role of parameters. 

Mathematical Aesthetic Experiences (MAE) 

The second theoretical dimension of this study includes the Mathematical Aesthetic Experience 
(MAE), that is, a perceptual experience with an emotional and intellectual response provoked by 
mathematical beauty (Sinclair, 2004). Traditional approaches define MAE as an innate ability, 
focusing on the evaluative dimension of MAEs, i.e. on the appreciation of objective values of 
mathematical concepts, assessed mainly on an intellectual level by recognizing typical features. 
Aesthetic criteria entail a status of intellectual autonomy, with a minority of students being able to 
adopt them because of the advanced mathematical thinking they require. Recently, researchers have 
sought to broaden the view of MAE, adding an epistemological perspective that stems from the idea 
of sense-making (Karavakou et al., 2023; Nemirovsky et al., 2013). They thus put a subjective 
dimension in the evaluative approach of MAEs, allowing the adaptation of mathematical aesthetic 
criteria to personal interests, emotional aspects and socio-cultural influences. The cultivation of such 
MAE can be supported by incorporating elements such as subjectivity, free expression, open 
exploration of mathematical ideas and connection to personal interests (Sinclair, 2004). Such 
environments can be: a) expressive technologies with dynamic, interactive features, and b) connected 
to artistic expression, such as music and dance. 
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Methodology 
Methods – Data collection and analysis 

This study is part of a larger design-based project. It involved two cycles (pilot and main) of research 
design, implementation and thematic analysis to generate empirically grounded theories and 
frameworks for action (Cobb et al., 2003). For the main cycle, an aesthetically driven learning 
environment was designed, in order to cultivate students’ PCR while they explored and created 
animations of periodically varying geometric magnitudes (distance/angle). In this paper we analyse 
a part of the main cycle, in which eight 11th grade students (S1-S8) participated in their school's 
computer lab. Empirical data included transcripts of student dialogues, videotaping of their digital 
media activity, written notes and body expressions, captured by the attending researcher’s notes. The 
theoretical elements analyzed above framed the analysis of the data in terms of different images of 
PCR guided by mathematical and artistic aesthetic criteria. The unit of analysis was the ‘critical 
episode’, that is, a set of central actions that resulted in a significant change in the learning process. 

Microworlds and tasks 

 
Figure 1: The designed resources: a) & d) the GeoGebra microworlds; b) the activity sheet for each 

song; c) & e) a MaLT2 microworld (out of the 3). The microworlds are presented in video-link1 (for 

1st phase) and video-link2 (for 2nd phase) (they can also be viewed by scanning the QR codes). 

In this paper, two phases of three-hour-activities are presented. Eight microworlds were designed in 
GeoGebra (https:// www.geogebra.org) and MaLT2 (http://etl.ppp.uoa.gr/malt2). Students were 
divided into groups of two and engaged in the creation of ‘digital figural dances’ for eight (four per 
phase) given songs. For each song, they had six rounds in order to: 1) choose a function of the form 
f(t)=αsin(βt)/f(t)=αcos(βt) (for Phase 1) and f(t)=a1sin(t)+b1cos(t)+a2sin(2t)+b2cos(2t)+a3sin(3t)+ 

b3cos(3t)+a4sin(4t)+b4cos(4t) (for Phase 2), based on the graph they constructed in the GeoGebra, 
by adjusting the values of the parameters through the sliders (Figure 1a, 1d); 2) note down the formula 
on the activity sheet (Figure 1b); and 3) test the periodic motion of a figure in one of the three 
microworlds of MaLT2, that moves according to the chosen function in three different ways 
respectively (as seen in the videos of Figure 1), through dragging the slider corresponding to the 
variable t at a constant rate (Figure 1c, 1e). Slider-dragging represented the "conceptual time," 
manipulated by the students by pressing the right arrow on the keyboard (for constant, continuous 
increment) or the mouse (for non-constant change in any direction). The goal was until the 6th attempt 
to find the appropriate function for the corresponding song. A third phase, not analysed in this paper, 
included students’ free creation of two synchronized figural animations from scratch, matched to a 
song of their willing, by programming in MaLT2.  
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Results 
Table 1: Images of students’ periodic covariation 

Types of PCR Mathematical aesthetic criteria 
The […] should be/ look like… 

Artistic aesthetic criteria 
…in order for the animation to… 

1. Non-steady 
periodic 
covariation 

- 
· match the non-steady rhythm 

of the main melody 

2. Steady 
periodic 
covariation 

· the number of peaks of the graph should 
be the same as/half the number of the 
song’s beats  

· match the steady rhythm of the 
background tempo-beat 

3. Amplitude 
and range of 
covariation 

· the movement should be bigger/smaller 
· the graph should be higher 
· the value of parameter a should be 

higher/lower /a specific number 

· match the song’s energy/style 
(e.g., intense or calm) 

· match the higher/lower 
musical notes 

4. Amplitude-
dependent 
period 

· the movement should be quicker/slower 
· the graph should be shorter/taller  
· the value of parameter a (Ph1) should be 

lower/ higher/a specific number 

· match one of the song’s tempo 
· match the song’s energy/style 

(e.g., capture the anxiety/ 
calmness) 

5. Amplitude-
independent 
period 

· the movement should be quicker/slower 
· the graph should be thicker/more sparse 
· the value of parameter β (Phase 1) should 

be higher/lower/a specific number 

· match one of the song’s tempo 
· match the song’s energy/style 

(e.g., capture the anxiety/ 
calmness) 

6. Rate of 
change 

· the movement should be 
steeper/smoother 

· the graph should look steeper/smoother 
· the parameters values should be 

higher/lower (Ph1)/ follow a relation 
(Ph2) 

· to match the song’s energy/ 
style (e.g., capture the anxiety/ 
calmness) 

7. Direction of 
change of 
time-
geometrical 
magnitude  

· the movement should first/in this interval 
be positive, then negative, then.. 

· the graph should go up, then down, 
then… 

· the movement should be symmetrical in 
time 

· the graph should be symmetrical around 
the x-axis 

· the parameters’ values should have a 
specific relation 

· match the song’s musical notes 
· capture the song’s tension or 

release parts 
· match the symmetry of the 

notes 

8. Duration 
and density  

· the input variable t domain’s end limit 
should correspond to a specific number 

· the input variable t values should be 
added by a specific number  

· match the song’s duration 
· be adjusted to the song’s 

period 

9. Phase shift 
· The movement should be transferred in 

time 
· The graph should be horizontally moved 

· match the song’s starting tone 
· follow the second animation 
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In Table 1 nine different types of students’ PCR are listed and connected to specific mathematical 
and artistic aesthetic criteria, as emerged from the data. They involve different ways of students’ 
thinking about specific aspects of periodic covariation. In the next paragraphs, some examples where 
some of the above types of PCR were developed are given. 

Catching the musical rhythm; from non-steady to steady periodic covariation 

In the first phase, students' artistic aesthetic criteria focused mainly on matching the motion to the 
music rhythm. One group (S5, S6), in their attempt to find the appropriate function for the song "The 
pink panther theme", went through several phases of redefining aesthetic criteria on the trigonometric 
functions. During the first rounds, students argued for which graph fits better the beat of the song and 
developed non-steady PCR. In the 2nd round, S5 claimed that the graph of f(t)=22sin(t) fits better than 
the one of f(t)=40sin(2t), which was tested in the previous round. S5 moved the mouse along the 
graph according to the varying rhythm of the melody, as shown in the video in Figure 2a. Her motion 
indicates that she visioned equivalent parts of different graph periods to correspond to different speed. 
By testing the covariation-motion in MaLT2 (Figure 2b), S5 revised her hypothesis: 

S5: No, no. I was wrong. It seems even slower. 
S6: We need to catch the steady tempo from the background. This tountoun-tountoun.  

 
Figure 2: Videos of S5 and S6 actions in microworlds (sound on): a) chunky PCR in GeoGebra (link); 

b) testing the function 22sin(t) in MaLT2 microworld 1 (link); c) smooth PCR in GeoGebra (link). 

S6 turned to GeoGebra and set the parameters values, choosing the function f(t)=20sin(3t). Then she 
moved the mouse across the graph at a constant rate, as shown in the video in Figure 2c. 

S5: You're not moving it right. We want to catch the main melody. 
S6: We have to get the steady rhythm. There is no point in catching the main melody.  

S6’s movement shows that she thought of periodic covariation in a steady way. After evaluating the 
aesthetic outcome in MaLT2, she redefined her aesthetic criteria regarding the shape of the graph in 
order to make it follow the constant background rhythm. 

From amplitude-dependent to amplitude-independent period of covariation 
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Figure 3: Videos of S5 and S6 actions in MaLT2 (sound on): a) testing the function 5sin(5t) in 

microworld 1 (link); b) investigating the period in microworld 1 (link). 

S5 and S6 tested f(t)=45sin(5.5t) and f(t)=40sin(5t) in the 4th and 5th rounds of the 1st song 
respectively in MaLT2. In round 6 they discussed the role of the parameters by observing the graph: 

S6: We want a bit faster movement, a shorter period. The period changes with beta. 
S5: Yes but 5.5 was fast and 5 was slower for the tempo. Should we decrease alpha? 

The move range would be smaller, so it will go faster.  
In this episode, S5 thought of the covariation period as being depended on the value of the parameter 
a. When S6 set α=5, choosing f(t)=5sin(5t) and tested in MaLT2 microworld 1 (Figure 3a). This was 
followed by the aesthetic evaluation of the movement, accompanied by reflection:  

S5: Again, it seems just as slow to me. 
S6: Oh yes. Listen, look. It has the same period as before. 

S6 slowly dragged the bar of the variable t from 0 to 72. Then she changed the value of the parameter 
α from 5 to 50 and moved the bar of the variable t from 0 to 72 (Figure 3b). 

S6: You see? It's exactly the same period as before; 72 units. 
S5: How is it possible? The movement is smaller. 
S6: Yes, but they happen at the same time. Same duration of moving up and down. 

S6 used the t slider to confirm if functions with the same β and different a values have the same 
period. Her PCR involved proving that the covariation period doesn’t depend on the amplitude. 

Transferring the melody from imagination to direction of change 

In the second phase, all groups tested and explored complex functions, which allowed them to set 
more complex aesthetic goals that combined both the rhythm and the melody of the song. S1 and S2, 
during the function quest for the third song ‘Tango’, first drew it on paper, based on their imagination: 

S1: We can’t do it like that, randomly. We have to think first how we want it. 
S2: Fine, bring your notebook and I'll draw it. (He draws 4 graphs on the paper, 3 of 

which he erases, as shown in Figure 4a). That's how I imagine it. (He sings the 
melody and makes hand motions.) It'll start on one side and chuck-chuck will go 
this way to the other side, following the notes. 

S2 expressed aesthetic criteria regarding the direction of change of the time-turn relation, which was 
graphically visioned and represented in paper, in order to connect the movement to the musical notes. 
After exploring combinations of parameter values to achieve the function that fits her design, he 
concluded to the function f(t)=22sin(t)+5cos(t)+14sin(2t)+4cos(2t)+11sin(3t)+10sin(4t). 

S1: Aah this is it! It’s very close. Set all cosines to zero. 
S2: Oh, you think? (S2 zeroes out the parameters b1, b2, plotting the graph of 

f(t)=22sin(t)+14sin(2t)+11sin(3t)+10sin(4t) – Figure 4b.) Yes! The sum of sines 
does the steps exactly as I thought. Let's see the movement! 

S2 was excited for finding the type of the function, which he had previously expressed in a static 
(paper) and dynamic (hand movement) way, drawing from his own imagination. His conclusion about 
the role of the parameters ai in the form of the graph indicates that he engaged in 2nd order CR of the 
periodic function in order to achieve his goal. However, when testing the movement in MaLT2 
microworld 2 (Figure 4c), the students had mixed feelings and were led to redefine their aesthetic 
goals and further deepen the PCR, as shown in the next subsection. 
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Figure 4: a) S2’s drawing of graph in paper; b) finding the formula in GeoGebra; c) & d) movement in 

MaLT2 microworld 2, by setting step=1 (link) and step=2,9 (link) (play videos with sound on) 

Matching melody and rhythm by focusing on the density of domain of the variable t 
S1: Wait. It's slow but it's exactly the right move. If we just make it move faster? 
S2: How; We should move the slider faster. 
S1: Ok Look. (Points to the graph of Figure 6a. Marks the values 0 and 2π on the 

horizontal axis.) Now here is 2π. Right; It takes 360 moves of t to reach 2π. But if 
we set step=2, it will jump half the moves, so it will make half the time. 

While expressing ideas, they envisioned the half input points to produce the same movement at half 
time. S1 then changed the step value of t from 1 to 2 (so t takes values that are multiples of 2). After 
three trials in MaLT2, they ended up to set step=2.9 (Figure 4d). In this episode they focused on the 
density of the t-domain in order to adjust the melody-based movement to the song’s rhythm.  

Discussion 
Students used nine types of PCR while engaging with the digital tools in order to meet a variety of 
both artistic and mathematical aesthetic criteria. Features of covariation such as steady periodicity, 
amplitude-independent period and direction of change, were used as subjective aesthetic criteria, 
interwoven with criteria derived from listening to music (rhythm, melody, emotion). The continuous 
flow of redefinition of aesthetic goals determined the flow of CR: the appropriate function was not 
that which obeyed some external factors (as in a physics experiment), but those that came from the 
musical sensibilities of the students. Combining plotting in GeoGebra with dynamic representations 
of MaLT2 was instrumental in making sense of aspects of periodic covariation. 2nd order covariation 
was evident, as students gradually discriminated the role of parameters and relationships among them. 
Students improved their prediction practices, as in the last songs they found functions matching their 
ideas within the first rounds. Next future steps involve the integration of motion capture technology 
in order to trace students’ embodied engagement as part of their PCR within an aesthetically driven 
activity that combines music and dance.  
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As many large-scale tests nowadays use technology-based tests (TBA), their comparability with 

traditional paper-and-pencil tests (PPA) gains importance. In this study, we investigate the presence 

and sources of mode effects by comparing the TBA and PPA versions of the German comparative test 

VERA and its results for Berlin students. Differential item functioning (DIF) analyses revealed 

significant cross-mode differences in item difficulty for 45 of 80 test items. To investigate possible 

sources of mode effects, those 16 items that showed particularly large differences were qualitatively 

analysed concerning their formal-technical and content-related characteristics. Our results indicate 

that the specific design and response format of TBA and PPA items as well as the required 

competencies can cause mode effects. This emphasises the importance of carefully designing 

technology-based assessments, especially mathematics tests, to ensure the comparability of results. 

Keywords: mode effect, online assessment, large-scale, technology-based assessment. 

Introduction 
In many areas, there is a clear trend towards technology-based assessment (TBA), whereby 
competencies are measured using specific technical tools instead of traditional paper-and-pencil 
assessments (PPA). This trend is not only recognisable in international comparative studies such as 
PISA and TIMSS (Goldhammer et al., 2019; Robitzsch et al., 2020), but also manifests itself in the 
use of TBA in German large-scale assessment. The change from PPA to TBA has several aims: First, 
it aims to reduce the effort involved in distributing and scoring the tests and thus save resources. 
Second, it also enables the measurement of competencies related to media use that cannot be recorded 
using conventional PPA procedures. Third, TBA provides opportunities for an adaptive design of 
tests. Besides these advantages, the question arises as to what extent TBA is comparable to PPA in 
terms of difficulty, validity, and construct equivalence. In both PISA 2015 and TIMSS 2019, for 
example, mode effects were demonstrated in the sense that the items in TBA tended to be more 
difficult than in PPA (Fishbein et al., 2018; Jerrim et al., 2018). However, the results on mode effects 
are ambiguous, partly test-specific, and often only consider the global test level. In this study, we 
therefore investigate the cross-mode comparability of a German nationwide standardized 
mathematics test for 8th graders (13-14 years old) called VERA (VERgleichsArbeiten [comparative 
tests]) on the item level. The test design is based on the national educational standards, which include 
general mathematical competencies and basic concepts (i.e. contents). As VERA is an annual 
assessment and is constantly being further developed, in recent years, efforts have been made to 
provide an equivalent technology-based version of the comparison test. To this end, a modular online 
test system was set up and mathematics items were transformed into a technology-based version using 
different digital response formats (e.g. click on solution, input fields) or GeoGebra. A complete 
changeover from PPA to TBA is planned but has not yet been fully implemented. In the federal state 
of Berlin, for example, there were several years in which the same items were administered either as 
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PPA or TBA. Based on these two test versions, the present study investigates the presence of mode 
effects and aims to identify biased items that can provide information about formal-technical and 
content-related item characteristics that generate mode effects when switching from PPA to TBA. 

Mode effects between TBA and PPA 
The term mode effect “refers to the underlying idea that the test administration has a causal effect on, 
for example, estimated competence” (Kröhne & Martens, 2011, p. 174). Sources for mode effects can 
be manifold. For example, mode effects can depend on various formal-technical or content-related 
item characteristics as well as on individual characteristics of the test participants such as gender or 
familiarity with the technology (Jerrim et al., 2018; Kingston, 2008). In this study, we focus on the 
test design in TBA and PPA and thus on item characteristics. 

Mode effects in large-scale assessments 

As there is a general trend to provide large-scale tests as technology-based assessments, there are 
several studies on the mode effects between PPA and TBA in the domains of reading comprehension, 
mathematics, and science. Overall, previous studies reported that the TBA versions tend to be more 
difficult compared to PPA, not only in the language domain (Dahan Golan et al., 2018; Støle et al., 
2020; Wagner et al., 2021) but also in mathematics or science (Fishbein et al., 2018; Robitzsch et al., 
2017, 2020). However, the results are not consistent and some studies have shown no impact of test 
administration on reading comprehension (Margolin et al., 2013; Wang et al., 2008) or mathematics 
(Kim & Huynh, 2007). 

In terms of known large-scale assessments, previous research with field trail data indicates mode 
effects for PISA 2015, the first year of TBA in PISA, for reading, science, and mathematics. However, 
lower mode effects were found in mathematics than in reading literacy (Jerrim et al., 2018). Similarly, 
mode effect studies based on PISA 2018 and TIMSS 2019 suggest that PPA and TBA measure the 
same construct, even if the technology-based items were on average slightly more difficult than the 
paper-based items (Fishbein et al., 2018; Goldhammer et al., 2019). However, these studies mainly 
focus on the presence of mode effects and construct equivalence. To our knowledge, there is little 
mathematics-specific research on mechanisms that may cause these mode effects.  

Formal-technical and mathematics-related item characteristics related to mode effects 

The transfer of PPA items to a technology-based test environment involves design decisions that can 
influence test takers' perception and processing. To discuss possible sources of mode effects, we 
therefore turn to aspects of test design and distinguish between formal-technical and content-related 
item characteristics. Formal-technical characteristics refer to the general conditions for test 
administration and the technical implementation of a PPA item. Thus, formal-technical characteristics 
include aspects such as the layout of the items, the response format, the input device used, the number 
of items per page, and the navigation within the items (Kröhne & Martens, 2011). When analysing 
mode effects in reading tests, Buerger et al. (2019) showed that TBA and PPA items can differ in 
difficulty depending on the response format and layout. While the need for navigation and the use of 
combo or drop-down fields increased the difficulty of the items in TBA, there were no differences 
for multiple-choice items. In mathematics, formal-technical characteristics also include the 
integration of digital tools such as GeoGebra, which can be used to transfer pencil and ruler drawings 
into the technology-based test environment. This change may alter the way test takers interact with 
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visual mathematical representations (Sedig & Sumner, 2006). For example, GeoGebra allows test 
takers to rearrange elements of their construction over and over again to approach the solution.  

To our knowledge, there are hardly any studies on content-related characteristics that are associated 
with mode effects. In the linguistic domain, Wagner et al. (2021) found greater mode effects in 
orthography than in reading. However, this finding could be due to different instructional formats in 
these two domains and thus be related to formal-technical aspects. It therefore remains to be seen to 
what extent specific mathematical subject areas such as geometry or algebra or competencies such as 
reasoning or using representations are more closely related to mode effects. 

The current study 
The research situation suggests that there are diverse and, in particular, subject-specific influences on 
mode effects in international as well as national large-scale comparative tests. In this study, we 
examine the cross-mode comparability of the German comparative mathematics test (VERA test). By 
comparing the technology-based version with the paper-based version, we aim to identify biased 
items that can give us information about item characteristics that cause mode effects. Although our 
analyses are based on a specific test, the study aims to reflect on design choices for technology-based 
test items and to reveal generalisable findings about sources of mode effects. More specifically, we 
pose the following research questions: 

RQ1: To what extent do the item difficulties in the German comparative tests (VERA tests) in Berlin 
differ significantly between technology-based (TBA) and paper-and-pencil assessment (PPA)? 

RQ2: In which formal-technical and content-related item characteristics do biased items differ 
qualitatively? 

Material and Method 
To analyse mode effects in standardised tests, we turned to the PPA and TBA versions of the German 
national comparison test in 2022 (VERA) and its results in the federal state of Berlin. The 
mathematics test contained 80 items divided into four test booklets. All over Berlin, 23.388 students 
attending different public schools and school forms processed the test in a 60-minute time frame in 
the period from the 24th of February to the 15th of March 2022. In 2022, each participating class could 
choose independently between the PPA and the TBA version of the test. As a result, 6.785 students 
took the paper-pencil version of the test, while 16.488 students took its technology-based version. 
For both groups, teachers rated their students’ responses as incorrect (0), correct (1) or missing (2). 
Because there was no time pressure, missing responses were attributed to a lack of motivation or a 
lack of ability. Thus, missing responses were recoded and rated as incorrect by the authors. 

To examine the cross-mode comparability of the PPA and TBA test versions and identify biased 
items, we analysed students’ test results in terms of Differential Item Functioning (DIF). To this end, 
the empirical data were scaled using the one-parameter IRT Rasch model and the R-package eRm 
(Mair et al., 2023). Based on the students’ responses, item parameters are estimated in the Rasch 
model which indicates the difficulty of an item independently of the number of students that actually 
worked on it. Estimating item parameters for mode-specific subgroups, we compared the individual 
item difficulties (given in logit) of PPA and TBA versions. As a global test for DIF, we performed an 
Andersen’s Likelihood Ratio test. To identify single items with mode effects, we used a Wald test 
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revealing invariances within 16 items depending on the grouping variable. Given the biased items, 
we analysed these items in terms of their formal-technical and mathematics characteristics. Based on 
previous research, we developed a coding scheme capturing the item characteristics of the subject 
area (geometry, algebra, arithmetic, stochastics, functions), necessary competencies (reasoning, 
problem-solving, modelling, using representations, operating, communicating), response formats 
(short answer, long answer, multiple choice, single choice, arrangement, construction) and tool usage 
(yes, if GeoGebra is implemented in the TBA version; otherwise no). Following the principles of 
Mayrings’ (2014) structuring content analysis, each item was analysed according to this coding  
scheme. In addition, we open-coded the relevant mathematical objects (e.g. fractions, polygons) and 
the item design (e.g. input field, squared paper). As there may be differences in the item design in 
the TBA and PPA versions, two codes may have been assigned here. 

Results 
We report the results according to the research questions and start with an overview of the quantitative 
results before moving on to the qualitative item characteristics. 

Mode effects in terms of Differential Item Functioning 

Anderson's likelihood ratio test confirms the presence of biased items within the test and thus a 
differential item functionality (> < .001). The Wald test shows significant differences in item 
difficulty for 45 of 80 items (> < .05). Figure 1 provides a graphical overview of these differences. 
Since the sample size is very large and the Wald test quickly becomes significant, we have marked 
the items with a large difference (≥ .05 logit) in blue and selected these 16 items for a deeper analysis. 

Figure 1: Differences in item difficulty (TBA-PPA), with negative values indicating an advantage for 
TBA and positive values for PPA 

Formal-technical and mathematics-related item characteristics related to mode effects 

Table 1 shows the coding results concerning formal-technical and content-related item characteristics 
for the items that were easier in the TBA version. Six out of eight items relate to Geometry and almost 
all items require competencies in dealing with representations. For three items, the TBA and PPA 
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versions differ in their design in that the TBA versions are more pre-structured (41, 42, 58). For two 
items, the TBA version provides input help that can go beyond a technical hint and also contains 
content-related information (8, 41). Since the different item designs also contain different 
information, these design choices may lead to the mode effects. The other four items do not appear 
to differ in the formal-technical characteristics considered, indicating that Geometry items are 
sometimes easier to solve in a technology-based assessment. 

Table 1: Characteristics of items with a lower item difficulty in TBA 

Item 

Mathematical characteristics Formal-technical characteristics 

Subject 
area 

Competencies Content 
Response 

format 
Design 

Tool 
use 

8 Stochastics Modelling, Operating Probability 
Short answer 

(fraction) 

input field 

TBA: Input aid „/“ 
no 

41 Geometry 
Problem-solving, 

Using representations, 
Operating 

Points in 
the 

coordinate 
system 

Construction 
(point) 

empty coordinate system 

PPA: incomplete axis 
labelling 

TBA: complete axis 
labelling, TBA: Tip of 

drawing guidelines 

yes 

42 Geometry 
Using representations, 

Operating 
Angles 

Short answer 
(number) + 

Construction 
(figure) 

Input field; 

PPA: squared paper 

TBA: coordinate system 

yes 

57 Geometry Using representations, Symmetry 
Construction 

(line) 
Symmetrical image 

without structuring lines 
yes 

58 Geometry 
Using representations, 

Operating 
Polygons 

Construction 
(figure) 

PPA: empty field 

TBA: squared field 
yes 

59 Geometry Using representations Reflections 
Short answer 

(numbers) 
One field for each point 
coordinate searched for 

no 

60 Geometry Using representations Reflections 
Short answer 

(numbers) 
One field for each point 
coordinate searched for 

no 

70 Arithmetic Using representations Fractions Single Choice Figures on squared paper no 

Table 2 shows the coding results in terms of formal-technical and content-related item characteristics 
for the eight items that were more difficult in the TBA version. The item characteristics are quite 
diverse. For two items (62, 71), the TBA and PPA versions have different designs that could change 
the requirements of the item. One item (67) required a short answer with units and thus the use of 
special characters such as % or €, which can cause difficulties in the TBA version. Overall, most of 
the items require multi-step solutions in the sense of several problem-solving steps or calculations. 

Table 2: Characteristics of items with a higher item difficulty in TBA 

Item 

Mathematical characteristics Formal-technical characteristics 

Subject 
area 

Competencies Content 
Response 

format 
Design 

Tool 
use 
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14 Algebra Operating 
Terms and 
equations 

Short answer 
(number) 

Input field no 

29 Stochastics Modelling, Operating Probability 
Long answer 
(justification) 

Input field 

TBA: input aid “/” 
no 

49 Geometry Using representations Symmetry 
Construction 

(lines) 
Squared field yes 

51 Geometry 
Problem-solving, 

Using representations 
Translations 

Short answer 
(numbers) 

One field for each point 
coordinate searched for 

yes 

52 Geometry 
Problem-solving, 

Using representations 
Translations 

Short answer 
(numbers) 

One field for each point 
coordinate searched for 

yes 

62 Geometry 

Reasoning, Problem-
solving, Using 
representations, 

Operating 

Surfaces 
Arrangement 

(order of 
arguments) 

PPA: draw connecting 
lines 

TBA: enter numbers in 
fields 

no 

67 Arithmetic 

Problem-solving, 
Using 

representations, 
Operating, 

Communicating 

Percent 
Short answer 

(numbers with 
units) 

Six fields, units not 
specified 

no 

71 Arithmetic 
Using 

Representations 
Fractions 

Surface to be 
coloured 

 

PPA: squared paper 

TBA: colouring parts of 
the object by clicking 

yes 

Discussion 
As part of the ongoing development of the German comparative test VERA, we had the opportunity 
in this study to compare a technology-based and paper-and-pencil administration of the same test. 
DIF analyses revealed the presence of mode effects in the form of divergent item difficulties for 45 
out of 80 items. However, there is no clear direction of effects, as some items are easier in the TBA 
and others are easier in the PPA. This finding differs from previous studies, in which TBA items were 
on average more difficult (Fishbein et al., 2018; Robitzsch et al., 2017, 2020). Such previous findings 
could have been a reason for the very careful implementation of TBA items in VERA, which include 
technical aids. 

By analysing 16 items that showed particularly large differences, we were able to identify differences 
in the formal-technical item characteristics of some items, such as the response format or the specific 
item design, which could explain mode effects. However, formal-technical and content-related 
features appear to interact in some cases because design features can also carry content-related 
information and thus reduce mathematical complexity. This applies in particular to input aids as well 
as to pre-structured input or construction fields. This is in line with the results of previous studies on 
the effect of modes in the language domain (Buerger et al., 2019; Wagner et al., 2021). In other cases, 
the TBA and PPA versions of an item do not appear to differ in terms of the formal-technical 
characteristics. This could be due to the limited number of characteristics considered. However, there 
seems to be a tendency that geometry items centred on the use of representations are easier in the 
TBA version and that multi-step solutions related to problem-solving and operating are easier in the 
PPA version. Further research should investigate the mechanisms behind these observations.  In this 
context, it would be worth discussing whether the representations in the TBA version are clearer and 
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possibly easier to manipulate. It is likely that the ability to interact with visual representations in 
GeoGebra changes the test taker's approach to solving a task and reduces complexity or increases 
precision (Sedig & Sumner, 2006). On the other hand, the importance of taking notes or drawing 
auxiliary lines for multi-step solutions, which is much easier when using paper and pencil, should be 
considered. Mathematical notes and drawings can be specific to the subject of mathematics and 
therefore result in different mode effects than in other subjects (Wagner et al., 2021). It could 
therefore be informative to examine the interaction with the available material in more detail. 
Furthermore, mode effects may also be caused by the characteristics of the test takers, particularly 
their familiarity with technology-based learning (Jerrim et al., 2018; Kingston, 2008). Therefore, our 
results may reflect the choice of classes for TBA or PPA assessment, which should be investigated 
in future studies. 

Although our analyses are based on a specific test, the study provides general insight into potential 
sources of mode effects for mathematics assessments. This is particularly interesting if a PPA and a 
TBA version are to be used simultaneously. In this case, subject-specific tools must be developed to 
ensure that the test items, especially in geometry, are comparable in terms of item difficulty.  
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The aim of this research is to explore teachers’ practices in teaching mathematics with programming 

tools from the lens of Pedagogical Technology Knowledge (PTK) framework. The data comes from 

five individual interviews with Norwegian teachers working in different grades. The data was 

analyzed using a theory-driven approach through coding and categorization under the mathematical 

knowledge for teaching (with technology) (MKTwT) component of the PTK framework. The analysis 

revealed three key aspects in teachers’ practices related to MKTwT: (i) different interpretations of 

curriculum content linking mathematics and programming, (ii) different teaching approaches for 

programming practices, and (iii) uncertainty of assessment. These aspects were found to be 

influential on teachers’ multifaceted pedagogical choices towards programming practices in schools. 

Keywords: Teacher practice, programming, pedagogical technology knowledge. 

Introduction 
Computational Thinking (CT) refers to a number of interrelated aspects related to computing such as 
algorithmic thinking, decomposition, pattern recognition and generalization (Kallia et al., 2021). CT 
has become an integral component of the Norwegian mathematics curriculum since its adoption in 
2020. This inclusion reflects the growing recognition of the importance of CT and programming, as 
in other Nordic countries (e.g., Kilhamn et al., 2021; Pörn et al., 2021). While CT is mentioned only 
briefly in the (new) Norwegian mathematics curriculum (Utdanningsdirektoret, 2019), it emphasizes 
the development of strategies and systematic solutions for problems with or without digital tools. For 
instance, pupils (students) are encouraged to break down problems into subproblems and to evaluate 
the employed procedures. Additionally, programming-related competencies are unpacked in each 
grade’s mathematics curriculum objectives, mainly starting from grade 4. However, the 
implementation of CT and programming practices in classrooms is met with diverse interpretations 
and understandings among teachers regarding key CT components, such as decomposition, 
algorithms and pattern recognition (Nordby et al., 2022). Nordby et al. (2022) also highlight two 
approaches to CT adoption; integrating CT and programming into existing curricula, and treating 
them as new elements through classroom practices, sometimes neglecting mathematics when they 
completely focus on programming. The latter does not seem surprising, as pre-service and in-service 
teachers in Nordic countries often struggle to link CT/programming and mathematics and they do not 
feel prepared to teach, despite having positive views about curricular approach (Kilhamn et al., 2021; 
Misfeldt et al., 2022; Pörn et al., 2021). In this research, our objective is to explore such a complex 
dynamic involved in integrating programming practices into mathematics education in Norwegian 
classrooms (by interviewing teachers). We seek to identify and delineate the key aspects of teacher 
practices from the lens of pedagogical technology knowledge (framework), which will be detailed in 
the next section. 
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Theoretical framework 
Pedagogical Technology Knowledge (PTK) framework has been proposed by Thomas and colleagues 
(Thomas & Hong, 2014; Thomas & Palmer, 2014). It encapsulates teachers’ professional knowledge 
aimed to incorporate tools and pedagogical choices/strategies/principles into teaching mathematics 
with technology including assessment, where the beliefs about the technology and its use in learning 
mathematics have a key role. The PTK has three components: mathematical knowledge for teaching 
with technology (MKTwT), technology instrumental genesis, and personal orientations. Figure 1 
summarizes the interrelationships among the three components. 

 
Figure 1. An overview of PTK (adopted from Thomas and Palmer, 2014, p. 76) 

The MKTwT component draws from seminal works Ball et al. (2008) and Shulman (1986), 
representing an amalgamation of subject matter knowledge and pedagogical content knowledge 
tailored for mathematics teaching. Specifically, MKTwT pertains to teachers’ understanding of 
teaching mathematics, with a specialized focus on leveraging technology to facilitate student learning 
within the classroom. This entails proficiency in employing various digital tools, emphasizing the 
development of utilization schemes to promote learning mathematics. Consequently, the framework’s 
second component is technology instrumental genesis (IG), which refers to the development of 
utilization schemes and transformation of tools into parts of instruments as psychological entities 
(Artigue, 2002). However, an interpretive relationship exists between a teacher’s (own) utilization 
schemes for a specific tool and those employed for teaching practice. The former is termed as personal 
IG, while the latter is referred to as professional IG (Haspekian, 2014).  

In PTK, the third component, personal orientations (PO), encompass teacher orientations, values and 
preferences, such as the reasons for personal choices and decisions in referring to technology while 
designing classroom activities. Inductively, PO is interconnected with both personal and professional 
IG, as well as MKTwT. For instance, if a teacher exhibits a strong inclination towards programming 
tools, their IG becomes intertwined with other aspects of MKTwT, such as curricular knowledge and 
assessment, thereby shaping their teaching practices. We note that PO is also interconnected to other 
parameters too, such as school and department support and openness to personal learning (Thomas 
& Palmer, 2014). Why we decided on PTK is based on its mathematical foundations, with IG and PO 
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perspectives (Clark-Wilson & Hoyles, 2019). Here we note that all three components are strongly 
interconnected. However, for the sake of paper constraints, in this paper, we focus on the MKTwT 
component in teacher practices and consider the following research question: what key aspects related 

to MKTwT are evident in the practices of Norwegian teachers when teaching mathematics with 

programming? 

Methods 
This paper is written based on a master’s research project, which adopted a qualitative perspective 
with a phenomenological research method. Below (Table 1) is a brief introduction of the participants 
in the study, including details of their background, teaching experience and employed school type. 
Due to the anonymity of the participants, they have been assigned fictitious names: Mats, Bjørn, 
Kristoffer, Anders and Silje. 

Table 1. A brief information regarding the participants 

Name and 

Age 

Teaching 

Experienc

e 

Teacher 

Course in 

Programming 

Employed School Type and Other Experiences 

Mats, 27 5 No 
Primary School (1.-7. Grades). Experience with 
block programming and various learning 
platforms 

Bjørn, 29 5 Yes 
Lower Secondary School (8.-10. Grades). 
Experience with block programming and 
multiple physical programming tools 

Kristoffer, 
30 8 Yes 

Primary School (1.-7. Grades). Experience with 
block and text programming. Have also used 
spreadsheets for simulations. 

Anders, 27 5 Yes Lower Secondary School (8.-10. Grades). 
Experience with block and text programming 

Silje, 26 5 No 
Primary School (1.-7. Grades). Experience with 
a software designed for teaching and learning 
computing on primary school level 

The data was collected through semi-structured individual interviews (in Norwegian). Four out of 
five interviews were conducted digitally on Teams, while the fifth was conducted at the participant’s 
workplace. The structure of the interviews was divided into three; technological and pedagogical 
knowledge, reflecting on own experiences, and personal perceptions and orientations related to the 
use of programming in mathematics teaching. Exemplary interview questions were as follows: 

• Do you utilize programming tools in mathematics instruction? For instance, Scratch, Python, 
Micro:bit, etc. 

• How do you structure your lessons when incorporating programming into mathematics 
instruction? Why do you choose this approach? 

• What are the major challenges associated with employing programming tools in mathematics 
instruction? 
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• How do you ascertain whether pupils comprehend the ideas or concepts you endeavor to 
impart through programming? Can you justify your choice of assessment methods? 

All interviews were transcribed and analyzed thematically following coding and thematization steps. 
For example, when teachers reflected on programming-related curriculum objectives as being 
artificial. Then, this was coded as “programming becomes artificial”. In total 275 codes were 
developed and checked several times and finally thematized under the components of PTK 
framework. All the data was handled and stored according to the approval of Norwegian Centre for 
Research Data (NSD). 

Findings 
The analysis of the data revealed three major themes: (i) different interpretations of curriculum 
content linking mathematics and programming, (ii) different teaching approaches for programming 
practices, and (iii) uncertainty of assessment. Below, we present each theme. 

Different interpretations of curriculum content 

Three of the interviews revealed that the teachers had knowledge of curriculum content for the grades 
they teach, although some stated that some curriculum objectives may be difficult to interpret. This 
is expressed, among other things, in an interview with Bjørn, where he stated that the objectives 
regarding programming in mathematics can be experienced artificially in primary and lower 
secondary school: 

Bjørn: (…) I often think it becomes very artificial in elementary and middle school because 
when I read the curriculum objectives, especially those in eighth grade, I don't read 
it as a math goal. I read it as a goal that says, "learn programming". 

Bjørn interprets the curriculum objectives for programming in mathematics as something exploring 
programming and not learning mathematics. His description indicates that the intention of using 
programming in the learning of mathematics is not clearly stated in the curriculum objectives. 
Furthermore, he explains that if the intention is to understand mathematics better through 
programming, one must have in-depth knowledge of programming in the first place. A reality far 
from the starting point today, according to Bjørn. Anders has developed teaching plans in connection 
with his master's thesis, where he based his work on the competence goal for the sixth grade: 

Anders: … In my thesis, I had about geometric figures in the sixth grade, since that was the 
first competence goal there. And then I actually got a lot of good thoughts about 
different figures, angular sum and what a circle is. If they [pupils] were able to 
create it in Scratch, for example… 

Anders shows that he knows what curriculum objectives describes and talks about a feeling of having 
managed to link programming directly to mathematics through geometry. Furthermore, it is expressed 
that other areas of mathematics have been more difficult to approach with programming. Silje tells 
from the second grade of view: 

Silje: … No, I guess the competence goal for the second grade is to follow and make rules 
and instructions or something, in games and activities and things like that. So that's 
kind of what we do, but maybe that's not exactly what you do in mathematics really. 
Then you get the rules and instructions delivered, then you do the task in a [same] 
way. 

Silje also shows that she knows what the competence goal for the second grade she teaches implies, 
and that Silje does something similar in the teaching. She also expresses that what they do is not 
necessarily what you do in mathematics. The competence goal is about following and creating rules 
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and instructions, while in mathematics the pupils get it delivered, Silje claims. In sum, we see that 
teachers have insight into the curriculum content in mathematics, but that this opens a door to different 
interpretations of CT.  

Different teaching approaches 

The teachers talk about several different teaching approaches to the use of programming tools in 
mathematics. In the introductory phase, 4 out of 5 teachers say that they use the tools themselves, 
their pupils or activities on sheets to demonstrate in brief what programming is all about; that is, so 
called analog programming without a computer. Bjørn explains an activity he usually uses and what 
benefits it can have: 

Bjørn: (...) You have a couple where one sees what I write on the blackboard and the other 
who doesn't see the blackboard. And then whoever sees the blackboard will try and 
explain what I draw on the blackboard to the one who has his back. And then that 
person should draw then. It also never works, because they end up with the sheet 
the wrong way or they are imprecise. (...) So it creates some great reflection 
conversations with why precise messages and instructions are important then. And 
that what you think is logical is not necessarily logical for the person you are 
working with. 

Analog programming can illustrate the necessity of precise instructions in programming, according 
to Bjørn. Kristoffer is also keen to make the same point to his pupils, and says that he uses himself to 
illustrate it: 

Kristoffer: (...) If I'm going to get into programming with a whole new class that has never 
used it before, then I'm using myself. Where I make a little trail in the classroom, 
they're going to give me commands on where I'm going so I can sit in that chair. 
And then they understand pretty quickly, "Wow, I have to exactly..." Or "I have to 
say exactly what I want him to do, if I say a little mistake then it will be completely 
wrong". 

What Kristoffer says shows that his experience is that analog programming can make pupils see the 
necessity of precise instructions. When the pupils have gradually received an introduction to what 
programming is, several of the teachers say that they give the pupils tools they can explore on their 
own or in pairs. This is expressed, for example, in what Mats says: 

Mats: (...) If you give those tools to do that, they're very self-sustaining. They are good at 
exploring for themselves. Especially when they sit in pairs, then they try out a lot 
of different things themselves as well. Then they realize, "Wow, I can program the 
lights on the car so they flash in different colors, or in rainbow patterns, or I can 
take every other such-and-such." 

The pupils are introduced to how to use the Scratch program and exercises related to geometry by a 
booklet that Anders prepared. Furthermore, it appears that this is something he has spent a lot of time 
on, and which he has developed further after his master's work. The analysis work shows that teachers 
vary between different teaching strategies when they use programming and programming tools in 
mathematics teaching. Analogue programming is used by many people in the introduction phase. 
Furthermore, teachers plan exploratory work where the pupils are active on their own. Instruction 
sheet and exercise booklets are also used to help pupils become familiar with various features of 
programming tools. 

Uncertainty of assessment 
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Regarding assessment, some found this difficult, while others said that they had not considered it 
much yet. Nevertheless, several come up with suggestions on how this can be done and what it might 
presuppose. Bjørn states that it is important to know pupils’ backlog, what they know and what they 
don’t know: 

Bjørn: (...) It is hard. Especially when you don't know the kids. (...) When you know the 
kids, you'll be able to know more of it, just to relate to math, if I’m doing math 
classes, I can only look at the pupil, at their body language and facial expressions 
… It's kind of the same in programming and really. 

Bjørn believes he can assess how much they understand by reading body language and facial 
expressions. He has experienced this in mathematics teaching without programming but finds that it 
has transfer value to when programming is also used. In order to identify what they understand, 
Kristoffer, Anders and Bjørn are all concerned with getting the pupils to explain what they have done. 
As Kristoffer says, if they have an explanation problem, it is something that must be addressed. 
However, Mats chooses to see it from a different angle than the other teachers: 

Mats: (...) It’s exciting. It could have been a practical test. Get them to program something. 
Make a car drive through something. I don't know. Could have been a separate 
project where you programmed something. I know there are code samples like that. 

Rather, Mats offers suggestions on how to assess the pupils and gain insight into what they know. It 
shows that he sees more possibilities for how it can be done, and he thinks it is an exciting topic. In 
sum, we see that good relationships are highlighted as a prerequisite for assessing what the pupils 
understand. Asking questions that get pupils to explain what they have done is also highlighted to 
gain insight into their thought process in connection with programming activities or tasks. 

Conclusions and Discussion 
Overall findings in this study indicate that the curriculum competencies that apply to programming 
in mathematics can be difficult to interpret. The fact that mathematics has been given the main 
responsibility for the teaching of programming indicates that the intention must be for the pupils to 
use programming tools to learn mathematics. Nevertheless, formulations of the curriculum objectives 
may indicate that the pupils should learn programming for programming’s sake and not for the sake 
of mathematics, which is also highlighted by Nordby et al. (2022). In particular, the eighth-grade 
competence goal (“exploring how algorithms can be created, tested and improved using 
programming”, Utdanningsdirektoratet, 2019) has been highlighted by one of the participants in this 
study as an example of a competence goal that can lead to confusion. It may be that the intention is 
not explicitly stated, or it may be that the freedom of method teachers have in the new curriculum is 
perceived as too great. Another point could be related to the term “algoritmisk tenkning” in 
Norwegian, which refers to CT. This could lead to different interpretations as well (Nordby et al., 
2022). All these probably lead to the second and third aspects of teacher practices; different teaching 
approaches and uncertainty of assessment.  

The second aspect, different teaching approaches, could be due to mathematics level teacher teach. 
Because primary school teachers tend to consider programming as a set of instructions related to 
logical thinking (Nordby et al., 2022; Pörn et al., 2021). Therefore, some teachers prefer to show their 
way of programming on the screen, while others involve pupils. This is connected to their 
interpretations of curriculum. Because The Norwegian Directorate for Education and Training 
(Utdanningsdirektoratet, 2021) argues that the curricula is there to be able to adapt instruction to all 
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pupils at all levels. Due to the latitude teachers are given, there are no lists of activities to be carried 
out or detailed overviews of knowledge content. The teachers therefore seem uncertain about where 
the focus should be, should it be on learning to use the tools, or should it be on what they can be used 
for? This finding can be seen in the context of what Kilhamn et al. (2021) point out in their study of 
Swedish teachers’ programming activities in mathematics. There, learning what programming is and 
how it works is more prominent than the question of what programming can be used for and why. At 
this point, we note that teachers need professional development support, as raised by researchers 
(Kalas et al., 2022; Nordby et al., 2022). Two of the teachers say that they have identified a challenge 
that their pupils do not understand why the programs they create in the web version, which do not 
lead to immediate results on the physical device. Why this confusion arises can possibly be seen in 
the context of transposition, as characterized by Kallia et al. (2021). However, teachers underlined 
that, pupils have not been able to transfer their solutions or programs to the Micro:bit, for example. 
In other words, there has not been a transposition. Challenges like this, where the tool itself limits 
what pupils can achieve, can make it difficult to balance the time that should be spent on the tool and 
the time that should be spent on learning mathematics and assessment, which is the third obtained 
aspect in this study. It is inevitable that teachers and pupils will not spend time for (a formative) 
assessment. Indeed, this is a leading problem, even field experts challenge in assessment of CT (Kalas 
et al., 2022). Finally, we note that the research was limited to five teachers, in which we require larger 
groups to elaborate more on their PTK. 

Notes 
This paper is based on the first author’s master’s thesis (Kveseth, 2022) completed under the 
supervision of the second author.  

References 
Artigue, M. (2002). Learning mathematics in a CAS environment: The genesis of a reflection about 

instrumentation and the dialectics between technical and conceptual work. International Journal of 
Computers for Mathematical Learning, 7(3), 245–274. https://doi.org/10.1023/A:1022103903080  

Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching: What makes it special? 
Journal of Teacher Education, 59(5), 389–407. http://dx.doi.org/10.1177/0022487108324554  

Clark-Wilson, A., & Hoyles, C. (2019). A research-informed web-based professional development toolkit to 
support technology-enhanced mathematics teaching at scale. Educational Studies in Mathematics, 102, 
343–359. https://doi.org/10.1007/s10649-018-9836-1 

Haspekian, M. (2014). Teachers’ Instrumental Geneses When Integrating Spreadsheet Software. In A. Clark-
Wilson, O. Robutti, & N. Sinclair (Eds.), The mathematics teacher in the digital era: An international 
perspective on technology focused professional development (pp. 241–275). Springer. 

Kallia, M., van Borkulo, S. P., Drijvers, P., Barendsen, E., & Tolboom, J. (2021). Characterising computational 
thinking in mathematics education: a literature-informed Delphi study. Research in Mathematics 
Education, 23(2), 159–187. https://doi.org/10.1080/14794802.2020.1852104 

  



                          Proceedings of the 17th ERME Topic Conference MEDA4, 3-6 September 2024, Bari, Italy                          ISBN 978-88-6629-080-3

  
238 

Kalaš, I., Kohanová, I., Saunders, P., Clark-Wilson, A., & Geraniou, E. (2022). Computational thinking and 
mathematics education: Debating synergies and tensions. In H.-G. Weigand et al. (Eds.), Mathematics 
Education in Digital Age 3 (MEDA3). Proceedings of the 13th ERME Topic Conference (ETC13) (pp. 21–
44). ERME. https://hal.science/hal-03925304v1/document    

Kilhamn, C., Bråting, K., & Rolandsson, L. (2021). Teachers’ arguments for including programming in 
mathematics education. In G.A. Nortvedt et al. (Eds.), Bringing Nordic mathematics education into the 
future: Proceedings of NORMA20 (pp. 169–176). SMDF. 

Kveseth, S.S. (2022). Programmeringsverktøy i matematikkundervisning. [Programming tools in mathematics 
education]. [Master’s thesis, Norwegian University of Science and Technology]. NTNU Open. 
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/3007904 

Misfeldt, M., Szabo, A., & Helenius, O. (2019). Surveying teachers’ conception of programming as a 
mathematics topic following the implementation of a new mathematics curriculum. In U. Jankvist, M. Van 
den Heuvel-Panhuizen, & M. Veldhuis (Eds.), Proceedings of the Eleventh Congress of the European 
Society for Research in Mathematics Education (CERME11) (pp. 2713–2720). Freudenthal Group & 
Freudenthal Institute, Utrecht University and ERME. 

Nordby, S.K., Bjerke, A.H. & Mifsud, L. (2022). Primary Mathematics Teachers’ Understanding of 
Computational Thinking. Künstliche Intelligenz, 36, 35–46. https://doi.org/10.1007/s13218-021-00750-6  

Pörn, R., Hemmi, K., & Kallio-Kujala, P. (2021). “Programming is a new way of thinking” – teacher views 
on programming as a part of the new mathematics curriculum in Finland. In Y. Liljekvist, et al. (Eds.), 
Proceedings of MADIF12 (pp. 91–100). SMDF. 

Shulman, L. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 
4–14. https://doi.org/10.2307/1175860 

Thomas, M.O.J., & Hong, Y.Y. (2013). Teacher integration of technology into mathematics learning. 
International Journal for Technology in Mathematics Education, 20(2), 69–84. 

Thomas, M.O.J., & Palmer, J. (2014). Teaching with digital technology: Obstacles and opportunities. In A. 
Clark-Wilson, O. Robutti, & N. Sinclair (Eds.), The mathematics teacher in the digital era: An international 
perspective on technology focused professional development (pp. 71–89). Springer. 
https://doi.org/10.1007/978-94-007-4638-1_4  

Utdanningsdirektoratet [The Norwegian Directorate for Education and Training] (2021). Kompetansepakke 
for Programmering og Algoritmisk Tenkning [Competence Module for Programming and Computational 
Thinking]. Retrieved from https://www.udir.no/laring-og-trivsel/lareplanverket/stotte/kompetansepakke-
for-programmering-og-algoritmisk-tenkning/   

Utdanningsdirektoratet [The Norwegian Directorate for Education and Training] (2019). Læreplan i 
Matematikk 1.–10. Trinn (MAT01–05) [Mathematics Curriculum for Grades 1 to 10]. Retrieved from 
https://www.udir.no/lk20/MAT01-05  

  



 

 

Proceedings of the 17th ERME Topic Conference MEDA4, 3-6 September 2024, Bari, Italy                      ISBN 978-88-6629-080-3 

  
239 

Designing a culturally relevant mathematical task using ChatGPT: 
Exploring elementary PSTs’ perceptions, experiences, and prompts 
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This study aims to explore preservice teachers’ (PSTs) experiences with ChatGPT in designing a 

culturally relevant mathematical task for adding unlike fractions. This study analyzed 89 PSTs’ 

perceptions of ChatGPT’s usefulness, ease of use, overall experiences, prompts used, and 

mathematical task revisions made. Overall, PSTs responded positively for the perceived usefulness 

and perceived ease of use of ChatGPT. Particularly, they rated more positively for accomplishing 

the task quickly, easy to learn, and easy to use than improving the performance for teaching and 

learning, effectiveness of teaching and learning, easy to operate, easy to get, and interactions with 

ChatGPT. An in-depth analysis of PSTs’ interactions with ChatGPT reveals varying levels of 

modification (e.g., superficial vs. meaningful mathematical changes) but also highlights a lack of 

critical engagement with ChatGPT’s responses and the use of limited prompts. 

Keywords: Technological Pedagogical Content Knowledge (TPACK), Technology Acceptance Model 

(TAM), ChatGPT 3.5, culturally relevant mathematical task, elementary preservice teachers  

Introduction  
In response to the emergence of new digital technology and the increasing importance of technology 
competence, researchers have identified the specialized knowledge needed for teaching with 
technology. This knowledge is conceptualized as Technological Pedagogical Content Knowledge 
(TPACK) and its domain is further specified into seven sub-domains: content knowledge (CK), 
pedagogical knowledge (PK), pedagogical content knowledge (PCK), technological knowledge 
(TK), technological content knowledge (TCK) , technological pedagogical knowledge (TPK), and 
technological pedagogical content knowledge (TPACK) (Misha & Koehler, 2006). Despite the broad 
range of methodologies adopted in TPACK studies and the use of various TPACK instruments, 
concerns have been raised about the reliability and validity of these instruments and the lack of 
content-specific knowledge bases (Koehler et al., 2012). Another line of research focuses on teachers’ 
perceptions and acceptance of technology. In a meta-analysis of 114 empirical Technology 
Acceptance Model (TAM) studies, Scherer et al. (2019) highlighted that TAM is the most commonly 
used model to describe technology acceptance but acknowledged that it does not specify the 
professional knowledge needed for teaching with technology. They also noted that “teachers will be 
likely to “accept” a new technology once they perceive it as relevant for specific didactical approaches 
within their subjects” (Scherer et al., 2019, p.14). 

Given that these two important and powerful models —TPACK and TAM—have advanced our 
understanding of teachers’ technology use but have been studied independently, this study aims to 
bridge the research gap. Over the last few years, we have experienced a rapid change and social 
demands of incorporating technology in teaching and learning. Especially, the emergence of 
generative Artificial Intelligence (AI) and the public release of ChatGPT in November 2022 have 
attracted more attentions from educators, both for the benefits of using AI and concerns about using 
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AI in teaching and learning. This paper explores how elementary preservice teachers (PSTs) use 
Artificial Intelligence (AI), specifically ChatGPT 3.5, to design a culturally relevant mathematical 
task. The research questions guiding this study are: 

1. How do PSTs perceive the usefulness of ChatGPT in designing culturally relevant 
mathematical tasks? 

2. How do PSTs perceive the ease of use of ChatGPT in designing culturally relevant 
mathematical tasks? 

3. In what ways do PSTs revise their original mathematical tasks using ChatGPT in a culturally 
relevant way? 

4. What experiences do PST have with ChatGPT to design culturally relevant mathematical 
tasks? What mathematical or pedagogical issues do they encounter? 

5. What prompts do PSTs use to design culturally relevant mathematical tasks for ChatGPT? 

Literature Review 
In a comprehensive examination of ChatGPT’s performance, Lo (2023) found variability of its 
performance across subject domains, from unsatisfactory in mathematics to outstanding in 
economics. This variation mirrors in the findings of Plevris et al. (2023), who investigated GenAI 
tools’ effectiveness in solving mathematics and logic problem. They found that the GenAI tools 
produced accurate solutions for simpler problems, but their solutions for more complex problems 
were not reliable. They found that these GenAI tools produce inconsistent responses which provide 
conflicting answers when the same question was asked multiple times. These challenges align with 
the observations of Frieder et al. (2023), who found that ChatGPT’s performance is significantly 
below that of an average mathematics graduate student, reflecting the broader challenges of large 
language models in multi-step reasoning tasks.  

Amidst growing interest in utilizing ChatGPT for educational purposes, empirical studies remain 
somewhat limited. One exception is the randomized controlled trial study conducted by Küchenmann 
et al. (2023) to explore differences in the development of physics tasks between PSTs who developed 
tasks using ChatGPT 3.5 and PSTs who developed tasks based on a textbook. Their findings revealed 
that both groups produced high levels of task correctness but struggled with specifying the tasks 
sufficiently. PSTs who developed tasks using the textbook had better clarity and included more 
embedded questions, whereas PSTs using ChatGPT 3.5 had more difficulties with output quality. In 
analyzing the verbs used in the tasks, they also found that PSTs using ChatGPT 3.5 created more 
tasks of “understand” category (e.g., describe or explain), whereas PSTs using a textbook created 
more tasks of “apply” (e.g., calculate, draw, visualize, or make a diagram) category and “evaluate” 
category (e.g., reason, justify, why). Besides analyzing the quality of tasks developed by the two 
groups, they also found that PST had mixed perceptions of ChatGPT’s usability, usefulness, and 
output (high for usability, neutral for usefulness, and low for the output quality). This study has a 
great contribution to understand the quality of tasks that PST created by using ChatGPT and PSTs’ 
perceptions, but the sample size is relatively small (13 PSTs for the control group and 13 PSTs for 
the experimental group) and PSTs’ actual interactions with ChatGPT are largely unknown.  
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While these studies offer valuable insights into the potential integration of ChatGTP into educational 
settings, they also highlight persistent challenges, including accuracy, reliability, ethical 
considerations, and the necessity for user training (Montenegro-Rueda et al., 2023). Given these 
findings, there is a clear need for further research to address how PSTs interact with ChatGPT. By 
investigating how PSTs use ChatGPT 3.5 to design culturally relevant mathematics tasks, this study 
contributes to a more comprehensive understanding of ChatGPT’s usability, affordances, and 
limitation in teacher preparation programs.  

Methods 
A total of 89 elementary PSTs at a large public university in the United States participated in this 
study. The participants were enrolled in a three-credit elementary mathematics methods course. PST 
were introduced a culturally relevant pedagogy and then were asked to create their own culturally 
relevant mathematical task for adding unlike fractions. Following the submission of their initial 
culturally relevant mathematical task, PSTs engaged in conversations with ChatGPT 3.5 to revise 
their initial culturally relevant mathematical task and screen-recorded their conversations with 
ChatGPT. They completed the adapted TAM survey (Davis, 1989) using a five-point Likert scale (1 
indicates strongly disagree; 5 indicates strongly agree) and open-ended survey on their experiences 
with ChatGPT. Table 1 shows the detailed information about the adapted TAM survey questions for 
ChatGPT. 

Table 1: Adapted TAM survey questions for ChatGPT 

 Survey Questions 

Perceived 

Usefulness 

Q1. Using ChatGPT in my teaching and learning would enable me to accomplish task 
more quickly. 

Q2. Using ChatGPT would improve my performance of teaching and learning. 

Q3. Using ChatGPT in my teaching and learning would increase my productivity. 

Q4. Using ChatGPT would enhance my effectiveness on teaching and learning. 

Q5. Using ChatGPT would make it easier to do my teaching and learning. 

Q6. I would find ChatGPT useful in my teaching and learning. 

Perceived 

Easy of 
Use 

Q7. Learning to operate ChatGPT would be easy for me. 

Q8. I would find it easy to get ChatGPT to do what I want it to do. 

Q9. My interaction with ChatGPT would be clear and understandable. 

Q10. I would find ChatGPT would be clear and understandable.  

Q11. It would be easy for me to become skillful at using ChatGPT. 

Q12. I would find ChatGPT easy to use. 

 

To answer the first two research questions, I first analyzed the average scores of 89 PSTs’ responses 
of each of the adapted TAM survey questions. After analyzing the mean, I recoded response 
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categories: recoding strongly disagree (1) and somewhat disagree (2) as negative and recoding 
somewhat agree (4) and strongly agree (5) as positive. After recoding, I analyzed the percentage of 
negative, neutral, and positive responses for each of the adapted TAM survey questions. To answer 
the remaining three research questions, I selected three PSTs (PST 19, PST 2, and PST 75) who 
responded very differently for the adapted TAM survey questions. PST 19 responded to the adapted 
TAM survey as mostly negative (average score=2), PST 2 responded to the adapted TAM survey as 
both positive and negative (average score=3.25), and PST 75 responded to the adapted TAM survey 
as all positive (average score=5). Even though this study is not intended to make any causal claim 
about how TPACK impacts on TAM, the selected three cases illustrate how their positive or negative 
experiences with ChatGPT might be associated with their prompts, mathematical knowledge, 
pedagogical knowledge, and technological knowledge by comparing their original mathematical task 
and revised mathematical task for adding unlike fractions, analyzing their prompts to ChatGPT, and 
reflections on ChatGPT’s responses. 

Results 
PSTs’ perceived usefulness of ChatGPT 

The mean for the perceived usefulness of ChatGPT ranges from 3.81 (Q4) to 4.10 (Q1). PSTs agreed 
the most that ChatGPT would enable them to accomplish tasks in teaching and learning more quickly 
(mean=4.10), followed by the statement that ChatGPT is useful in teaching and learning (mean=4.06) 
and the statement that ChatGPT increases the productivity in teaching and learning (mean=4.01). As 
shown in Figure 1, 82% of PSTs perceived positively about the statement that ChatGPT would enable 
them to accomplish tasks in teaching and learning more quickly, whereas less than 70% of PSTs 
perceived positively about the statements that ChatGPT improves their performance of teaching and 
learning, ChatGPT enhances their effectiveness on teaching and learning, and ChatGPT makes it 
easier to do their teaching and learning. 

 

 

Figure 1: PSTs’ average scores to perceived usefulness of ChatGPT in the adapted TAM survey 

PSTs’ perceived ease of use of ChatGPT 

The mean for the perceived ease of use of ChatGPT ranges from 3.72 (Q8) to 4.29 (Q7). PSTs agreed 
the most that it is easy to learn how to operate ChatGPT (mean=4.29), followed by the statement that 
it is easy to use ChatGPT (mean=4.26) and the statement that it is easy to become skillful at using 
ChatGPT (mean=4.07). As shown in Figure 2, more than 80% of PSTs perceived positively about the 
statement that it is easy to use ChatGPT and it is easy to learn how to operate ChatGPT, whereas less 
than 70% of PSTs perceived positively about the statements that it is easy to get ChatGPT do to what 
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they want, their interactions with ChatGPT would be clear and understandable, and ChatGPT would 
be clear and understandable.  

 

 

Figure 2: PSTs’ responses to perceived easy of use of ChatGPT in the adapted TAM survey 

PSTs’ task revision, prompts, and reflections: A case of three PSTs 

The average score of PST 19’s responses to the TAM survey questions was 2, which is the lowest 
score from all participants. PST 19 changed the context from commuting to the school to preparing 
and assembling tamales for Christmas but did not change two unlike fractions (1/3 and 1/4) as well 
as the reference of fractions (fractional part of morning).  

Table 2: PST 19’s original vs. revised mathematical task 

PST 19’s original math task PST 19’s revised math task after ChatGPT 
conversations 

You have to take the bus to school. You spend 
1/3 of the morning waiting for the bus. The bus 
finally comes and the ride to school took 1/4 
from your morning. How long did you spend 
waiting for the bus and commuting to school all 
together? Explain your answer using models, 
number lines or drawings.   

For Christmas, Carlos and his grandma want to 
make tamales because it is tradition. All the 
materials are gathered and ready to be used. 
Carlos decides to help your grandma make the 
tamales this year. Carlos and his grandma spent 
1/3 of the morning preparing the ingredients. 
Mixing the masa (also known as dough), 
preparing the leaf, and cooking the meats. It 
takes 1/4 to assemble the entire the tamale. How 
long did it take to prepare and assemble the 
tamales. Use models, number lines, words or 
drawings. 

 

In revising the original mathematical task, PST 19 asked to create a cognitively demanding and 
culturally relevant mathematical task and then added the details of the type of fractions to add (unlike 
fractions), information about target students (ethnicity/race), and challenging the difficulty of the 
problem. PST 19 was impressed with ChaGPT’s fast responses but identified the flaws in its 
responses and the lack of clarity of the problem that ChatGPT generated.   

The average score of PST 2’s responses to the TAM survey questions was 3.25, who provided both 
positive and negative experiences with ChatGPT. PST 2 changed the context from time spent for 
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creating a robot to the fractional part of representing traditional foods but did not change two unlike 
fractions (1/2 and 1/4). However, the vagueness of reference remains in PST 2’s revised mathematical 
task. 

Table 3: PST 2’s original vs. revised mathematical task 

PST 2’s original math task PST 2’s revised math task after ChatGPT 
conversations 

Jordan has three days to create a robot for the 
school science fair. He is struggling to manage 
his time properly and he's trying to decide how 
much time to spend working on the robot each 
day. What if Jordan only worked on one-fourth 
of the robot on Monday, did nothing on 
Tuesday, then did 1/2 on Wednesday? Will he 
finish his robot on time?  

During a school's cultural fair, students 
presented dishes from different countries. Lucy 
brought 1/2 of a traditional Chinese dish, and 
Miguel brought 1/4 of a traditional Indian dish. 
What fraction of the cultural fair's representation 
is contributed by China and India combined? 

 

In revising the original mathematical task, PST 2 asked to revise the original mathematical task in a 
more cognitively demanding and culturally relevant. PST 2 repeated some of the prompts several 
times without elaborating the initial prompts (e.g., make it culturally relevant, 5th grade, and using 
science) and providing information about the targeted students. PST 2 was frustrated because 
ChatGPT did not understand the prompts accurately. This made PST 2 to repeate the same prompts 
several times to get the desired outcomes.  

The average score of PST 75’s response to the TAM survey was 5, which is the highest average score 
from all participants. PST 75 changed the context from the recipe for enchiladas (a traditional 
Mexican dish) to the recipe for biryani (a traditional Indian dish) as well as two unlike fractions. The 
original mathematical task used two unlike fractions where only one fraction needs to be changed 
whereas the revised mathematical task used two unlike fractions where both fractions need to be 
changed. In teaching adding fractions, the first set of fractions (e.g., 1/3 + 4/9) should be introduced 
first before the second set of fractions (e.g., 2/5 + 3/8). Also, the revised mathematical task is 
problematic because it is multiplying fractions (doubling the recipe for 2/5 cup of basmati rice and 
doubling the recipe of 3/8 cup of spices) instead of adding two unlike fractions.  

Table 4: PST 75’s original and revised mathematical task for adding unlike fractions 

PST 75’s original math task PST 75’s revised math task after ChatGPT 
conversations 

Miranda cooked enchiladas for dinner for her 
whole family. The recipe for the calls for 1/3 of 
a cup of white cheese, and 4/9 of a cup of yellow 
cheese. How much cheese did Miranda use 
total? 

Rahul is making a traditional Indian dish called 
biryani. The recipe calls for 2/5 cup of basmati 
rice and 3/8 cup of spices. If he wants to double 
the recipe to feed more guests, how much rice 
and spices will he need in total? 

PST 75 used different prompts from the previous two PSTs. Instead of asking to revise the original 
mathematical task, PST 75 entered the original mathematical task and ChatGPT produced solutions 
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for the original mathematical task. PST 75 were more interested in different solutions for the original 
mathematical task (e.g., using a common denominator; using a common numerator) and asked 
ChatGPT’s preferred method to solve the problem. After asking suggestions for culturally relevant 
word problems for adding and subtracting unlike fractions, PST 75 added more context for the 
targeted grade level and students’ interests (gardening) but did not challenge the ChatGPT’s 
responses. Overall, PST 75 was satisfied with ChatGPT because ChatGPT solved the problem and 
offered different methods. PST 75 did not encounter any mathematical issues but was concerned that 
teachers might overuse ChatGPT. 

Discussion 
The findings from this study reveal various perceptions, experiences, and prompts of elementary 
preservice teachers (PSTs) in designing culturally relevant mathematical tasks using ChatGPT 3.5. 
This section discusses these findings in detail and explores their implications for the integration of 
AI technologies, more specifically ChatGPT, in teacher preparation programs. 

Overall, PSTs had positive perceptions of ChatGPT in terms of their usefulness and ease of use but 
they had varied experiences, expectations, and satisfactions with ChatGPT. PST 19's prompts 
primarily focus on creating culturally relevant mathematical tasks, particularly geared towards 
Hispanic students. The prompts also incorporate students’ family traditions, seeks for the alternative 
context for students who do not have the access to the ChatGPT-generated mathematical task, and 
addresses potential challenges students might face. In contrast, PST 2's prompts demonstrate a 
broader scope, encompassing various aspects such as grade level, cognitive demand, cultural 
relevance, and integration with other subject matter (specifically science). PST 2 had a clear attempt 
to refine the prompts iteratively to elicit the desired response but repeated the same prompts without 
further elaborating. PST 75's prompts initially present a specific mathematical problem, but then 
transition into seeking additional information and exploring different avenues. PST 75 engages in a 
conversation with ChatGPT, seeking alternative methods. The prompts also reflect appreciation and 
encouragement towards the AI's responses. While all three PSTs engage ChatGPT to generate 
culturally relevant mathematical tasks, their approaches varied in terms of specificity, focus, and 
prompts. PST 19 focuses on creating culturally relevant tasks for Hispanic students, PST 2 repeated 
prompts to elicit desired outcomes, and PST 75 engages in a dialogue with ChatGPT to seek guidance 
on the solution and explore different methods. Each PST’s prompts reflect their unique goals and 
priorities in leveraging ChatGPT to design a culturally relevant mathematical task. 

The reflections of three PSTs present a spectrum of perceptions, experiences, interactions, and 
perspectives on ChatGPT’s capabilities and limitations. PST 75 expressed a high level of satisfaction 
with ChatGPT, emphasizing its ability to provide multiple solutions. In contrast, PST 2 and PST 19 
had more mixed experiences. PST 2 initially faced frustration with ChatGPT’s responses but 
persistently reiterated prompts to achieve desired outcomes. PST 19, while impressed with 
ChatGPT’s speed, encountered limitations in its mathematical accuracy and pedagogical issues. 
Despite their varied experiences, all three PSTs acknowledged ChatGPT’s strengths such as its speed, 
recognized the importance of specificity in prompts, and demonstrated persistence and adaptability 
in navigating ChatGPT’s responses. In summary, while these three PSTs shared similar experiences 
of initial frustration and persistence when using ChatGPT, their overall satisfaction levels, specific 
challenges encountered, and considerations regarding the ethical use of AI in education varied. This 
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can be explained by different levels of their TK about ChatGPT (e.g., the type of prompts used in 
ChatGPT), their PK about culturally relevant pedagogy (e.g., surface level of revisions vs. meaningful 
level of revisions), and their CK about an appropriate word problem for adding unlike fractions. These 
differences highlight the complex nature of integrating AI technologies into educational settings and 
underscore the importance of critically evaluating their capabilities and implications. The findings of 
this study are consistent with the previous studies about the importance of prompts in using ChatGPT 
to critically examine the validity, accuracy, and correctness of responses produced by ChatGPT but 
provide more specific empirical evidence about how PSTs interact with ChatGPT for the specific 
mathematical content, how they react to ChatGPT’s responses, and how they reflect on their 
experiences with ChatGPT.  

These findings offer significant implications for the integration of AI technologies in teacher 
education. First and foremost, there is a clear need to provide robust support for PSTs to enhance 
their proficiency in effectively utilizing AI tools. This support includes comprehensive guidance on 
formatting clear, precise, and effective prompts to elicit desired outcomes from ChatGPT. PSTs 
should also be equipped with sufficient content-specific knowledge to critically evaluate ChatGPT-
generated responses and, where necessary, to further challenge them. Additionally, it is crucial for 
PSTs to develop an understanding of the limitations inherent in AI technologies like ChatGPT. By 
grasping these limitations, PSTs can better navigate the parameters within which ChatGPT operates 
and provide the necessary context to facilitate the generation of relevant and accurate responses. In 
conclusion, this study highlights the importance of preparing PSTs to engage effectively with AI 
technologies like ChatGPT in educational setting. By providing targeted support and guidance, 
teacher education programs can empower PSTs to leverage AI tools effectively, ultimately enhancing 
their pedagogical practices and improving student learning outcomes. 
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The role of the teachers is central in orchestrating classroom discussions to support students’ 

engagement and highlight connections between emerging mathematical ideas. Literature shows many 

practices that could support teachers in dealing with this role, and some recent studies show that 

digital tools shape teachers’ practices. In this paper, we discuss an example of a structured 

educational activity conducted with a shared and collaborative digital platform (Padlet); the aim is 

to identify the Padlet affordances that may support productive discussion orchestration. In the 

discussion presented here, Padlet appears to be a valuable tool: students’ posts on Padlet allow the 

teacher to monitor the different approaches proposed by students to solve a given task and their 

achievements. Moreover, the possibility of having all students’ posts together permits students and 

the teacher to recognize similar strategies and connect emerging ideas.  

Keywords: Padlet, educational technology, mathematical discussion, mathematics activities 

Introduction 
In promoting a deeper understanding of mathematics, teachers orchestrate whole-class discussions 
that use students’ responses to instructional tasks to advance the whole class's mathematical learning 
(e.g., Bartolini Bussi, 1996). Effective facilitation of classroom discussions poses a considerable 
challenge for educators, especially in the domain of mathematics. Stein and colleagues (2008) 
introduced a pedagogical model comprising five practices (anticipating, monitoring, selecting, 
sequencing, and connecting) that help teachers orchestrate meaningful mathematical discussions. In 
this paper, we explore the integration of Padlet in a mathematical discussion concerning problem 
solving. We use the model of Stein and colleagues as a theoretical framework to design an 
experimental plan for investigating whether and how Padlet is used in the planning (anticipating, 
monitoring), execution, and management (selecting, sequencing, and connecting) of such discussions.  

Padlet, a versatile digital tool, enables the posting of various content types, such as images, links, 
videos, and documents. Utilizing Padlet in education facilitates the creation of a collaborative digital 
space between teachers and students. Accessible to all, this virtual wall allows viewing and adding 
diverse content seamlessly. Padlet is adaptable in educational contexts (Shuker & Burton, 2021), and 
particularly in mathematics education, suggests the need for further exploration to enhance 
mathematical discussion effectively. A previous study (Giberti et al., 2022), focused on grade 7 Italian 
students, highlighted that mathematical discussion in a classroom is a complex phenomenon wherein 
different factors interweave, and the use of Padlet highlights some of these aspects and promotes a 
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more inclusive discussion. Nevertheless, the role of the teacher is fundamental because he/she acts as 
a mediator in raising turning points and catalysts of these different variables and processes.  

In this contribution, we focus on this role, using a specific theoretical framework concerning 
mathematical discussion orchestration. The research question we aim to answer is: When and how 
does the teacher use Padlet in the process of orchestrating the discussion? To this end, we discuss an 
experimentation that illuminates the role played by Padlet’s affordances while a teacher orchestrates 
a discussion concerning a mathematical problem.  

Theoretical Framework 
The metaphor of the “orchestra” is shared in the literature to refer to whole-class discussions and the 
management of the polyphony of voices involved (Bartolini Bussi, 1996). Stein and colleagues (2008) 
use the term orchestration to refer to the teacher’s role in managing students involved in a discussion. 
The authors designed a pedagogical model of five practices for discussion facilitation starting from a 
mathematical task. The model’s practices support both the planning phase of the discussion by the 
teachers and the orchestration phase involving both students and teachers. These practices are 
anticipating, monitoring, selecting, sequencing, and connecting.  

Anticipating students’ responses means imagining or predicting how students might tackle the tasks. 
Tackling the problem may mean how they interpret the text or the task situation, the set of strategies 
they might use, the difficulties they might encounter, and so on. Monitoring students’ responses 
means observing and following the resolution process that students are employing as they attempt to 
answer the task. In this practice, the teacher observes students at work to gather information on the 
activated processes. Anticipation and monitoring play crucial roles before and during task resolution, 
providing valuable support to teachers during the discussion. In contrast, the practices of selecting 
and sequencing are integral to the overall management of the class discussion, with the former two 
practices serving as foundational elements for the latter two. 

The five practices are interconnected with each other, benefiting from the outcomes of the preceding 
ones. For instance, the information gathered in the monitoring practice can serve to select students’ 
responses. Similarly, insights gained through the anticipation practice can guide the teacher in 
sequencing these responses. Lastly, the connecting practice aims to establish links between emerging 
mathematical ideas derived from collective solutions. Stein and colleagues (2008) underlined the role 
of these practices in fostering the development of robust mathematical concepts by emphasizing the 
significance of valuing students’ responses and products. 

Methodology 
Experimental Plan 

We structured a problem-based activity in four phases, following the theoretical framework, to 
involve students in a mathematical problem and observe the teacher orchestrating a whole-class 
mathematical discussion. 

The first lesson consisted of phases 1, 2, and 3, during which students were engaged in group activities 
to deal with the problem and share and comment on other groups’ strategies. In phase 1, the teacher 
posed the problem to the students by opening the Padlet. Then, she described the problem verbally 
and asked the students to observe it directly on their smartphones. Then, the teacher asked students 
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to post their strategy and reasoning in detail on Padlet. The reasoning needed to be clear to their 
classmates belonging to other groups, as then they would have to comment on it. This phase concerns 
a part of the anticipating practices. Indeed, in these 5 minutes, the teacher could anticipate possible 
difficulties regarding the text or the context comprehension, and he/she could ask students if they 
understood what they were asked to do. In phase 2, each group posted its hypotheses/strategies in the 
Padlet. In this phase, Padlet was set up with the ‘request approval’ mode for comments and reactions 
(so each group did not see other groups’ posts but only their own). Finally, in phase 3, the teacher 
made posts visible and allowed comments on posts so that each group could read and comment on 
posts from other groups. Phases 2 and 3 regard the monitoring practice: in the first, the teacher could 
observe groups’ work, strategies, and attempts through the posts; in the second, she could realize 
what students think about their classmate strategies: whether they appreciate or not their mate 
strategies, if they compare the solution and so on.  

Finally, phase 4 focused on the mathematical discussion, which started by visualizing the posts on 
Padlet. In the final discussion, the teacher could activate the connecting practice. Selecting and 
sequencing practices could be used in both phases 3 and 4; precisely, the teacher could select and 
sequence students’ strategies before the beginning or during phase 4. The comments in phase 3 could 
support selecting and sequencing practices because they allow the teacher to go beyond the collection 
of groups strategies. The ongoing discussion (phase 4) could permit the teacher to release new 
information about emerging mathematical ideas and change some selecting and sequence choices. 

Participants, data collection, and data analysis 

We collected data in a grade 9 class composed of 27 students from a scientific high school in Italy. 
The teacher is an expert teacher who collaborated on several mathematics education projects. She 
had already used Padlet to promote mathematical discussion in other classes, but this was the first 
time she used Padlet in this classroom. She was informed about the main aim of the project, but she 
did not know Stein and colleagues’ model. She described her students, stating that half of them have 
strong skills in mathematics while the others have difficulties, and two of them have a diagnosis of 
dyscalculia. Students are used to working in groups and discussing their ideas during mathematics 
lessons. In our experiment, students divided autonomously into groups of three people each. Each 
group chose a nickname and communicated it to the teacher; only the teacher was aware of the 
nickname-group correspondence. 

The data collected consists of the Padlet wall used in the experiment. Thus, we have access to the 
groups’ posts and comments in their final position, the one set by the teacher to orchestrate the final 
discussion. This discussion was video-recorded. Next, we interviewed the teacher, showing her pieces 
of video and asking her which strategies she was implementing at that given moment and why. 

The mathematical problem 

The mathematical problem to consider in order to implement a problem-based activity must be wide-
ranging (van den Heuvel-Panhuizen & Becker, 2003), allowing students to express themselves and 
show what they know and can do with greater freedom. To this end, we started considering problems 
from the OECD-PISA test; we chose the “Continent Area” problem. To answer, students have to 
estimate the area of a continent using the map scale and explain their strategy. We considered this 
item because it can be tackled using different strategies (e.g., constructing grids or decomposing the 
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figure using simpler shapes such as rectangles and circles), and thus it can be considered a wide-
ranging problem. 

Taking a cue from the “Continent Area” problem, we designed a new one: “Oil spill in the Gulf of 
Mexico” (Figure 1). To solve the problem, students have to consider two figures representing a map 
of the Gulf of Mexico and a satellite photo of the oil spill. The distance between two cities in the 
geographical map is the only numerical data given. 

An oil rig explodes in the Gulf of Mexico. A month later, a NASA 

satellite photo shows the ecological disaster. Figure A is a map of the 

Gulf of Mexico. Figure B is a satellite photo of the oil spill made a month 

after the explosion, with its edge marked. The rectangle with red edges 

in Figure A corresponds to the satellite photo in Figure B. 

Estimate the extent of the ecological disaster by calculating the area of 

the ocean polluted by the oil spill. 

• Consider that the distance between Austin and Jacksonville is 

1600 km, as the crow flies. 

• You can draw on the printed map if it helps; if so, upload a 

photo of it to Padlet as well. 

Show your work and explain how you made your estimate. 

Figure 1: Problem “Oil spill in the Gulf of Mexico” 

Results 
In phase 1, the teacher presented the problem in Padlet and read it aloud. She described the problem 
verbally and asked the students if everything was clear. This phase pertains to the anticipating 

practice because the teacher ensures the assignment is clear and checks if the students have doubts 
about the text, the stimulus, and the images presented. In this first phase, Padlet is only used to present 
the problem; therefore, we cannot identify it as a support for anticipation. In the second phase, the 
teacher asked the students to post their hypotheses/strategies in the Padlet. This is the moment for the 
teacher to monitor students’ work. In fact, the teacher observed the work of each group and followed 
the attempts made and the strategies used. In her words, “The functionality of Padlet permits posts 
visible only for me; this allows every group to reflect on their strategies and allows everyone to think 
without being influenced by others.” 

Through Padlet’s posts, it is possible to realize that many groups approached the problem with 
graphical strategies. In the post reported in Figure 2a, the students determined the area of the rectangle 
circumscribing the oil spill. They copied the image onto tracing paper, subdividing the rectangle into 
small squares. They identified the estimated area of each square and finally counted the number of 
squares contained in the oil spill. Three other groups chose to approximate the ground surface through 
rectangles and removed it from the total rectangle surface. In this way, they identified an estimation 
of the sea surface depicted in Figure 1 (Figure 2b). 
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2a. Example of subdividing into small squares 2b.  Example of subtracting area 

Figure 2. Example of students’ strategies 

It can be noticed that other two groups of students identified the sea area by estimating the ratio of 
land and sea area. In this last example, students did not use pictures but only written argumentations: 

“We started looking for the solution by estimating the base of the rectangle (here Figure 1- Figure 
B), and we did this by taking the distance from Austin to Jacksonville, which is 1600 km, and 
assumed that the base was about 2/5 of this distance. Next, we assumed that the height of the 
rectangle was about 2/3 of its base because by imagining taking the height segment to the base, it 
appeared to be about this size. Finally, we estimated the area of land in the rectangle, which is 
about 1/3 of the area of the square, because to obtain the solution, we only needed the area of the 
ocean contaminated by oil, so the area of the piece of land was not needed. Consequently, the 
result of the water area was 2/3 of the total area.” 

In summary, during the interview, the teacher shared that Padlet allowed her to observe the strategies 
chosen by the students before opening the discussion. She said: “Padlet works as a dashboard 
collecting and organizing all solutions at once: it provides an overview of all strategies and students' 
answers.” The teacher could observe that most students preferred graphical rather than 
arithmetic/algebraic approaches. She also observed that there were different graphical approaches: 
the two strategies (subdividing into small squares versus subtracting areas) are similar because they 
make use of graphical representation but also differ in the implemented mathematical process 
(decomposition versus difference). She concluded by stating: “Students proposed strictly different 
approaches despite the fact they already worked together on polygon areas”. 

In the third phase, the teacher made all posts visible and asked each group to comment on the posts 
of the others. Being able to read the group comments provided the teacher with additional monitoring 
information to use in selecting, sequencing, and connecting practices. She noted that the groups’ 
comments suggested a preference for the graphic representation. In various comments on arithmetic 
approaches, we read: “In our opinion, the calculations performed are accurate and correct, but a 
graphical representation of what has been done is absent.” And again, some students highlighted 
algorithmic errors; for example, in some comments, we read: “The estimation is quite right, but some 
calculations are wrong: ⅔+⅖ is 16/15.” The teacher also realized that those who chose graphical 
approaches were retained as inaccurate by their classmates and too approximate in their solutions. 
For example, “The final approximation is inaccurate because the method used is not precise.” In 
addition, students pointed out the confusing argumentation and the lack of details in the post. In 
general, accuracy seemed to be a topic of great interest for students.  
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To summarize, students’ comments provided the teacher with important information. For example, 
which strategies were welcomed by classmates, which were appreciated, and finally, which were 
contested. The teacher decided to start phase 4 based on the groups’ comments: “Comments were 
articulated, and students were excited to comment on their classmates’ works. It was an opportunity 
for me.” At the first moment, she discussed them and highlighted that some were not so rich, whereas 
others were detailed. Then, she asked students if some strategies impacted them. No students 
answered, so she decided to change strategy, proposing “show and tell”; i.e., she asked: “Did you all 
give the same answer? So, let’s start by explaining which strategy you chose to answer. Let’s start 
with group 1. Let’s take a look, and then we will discuss differences and similarities”. In this case, 
the teacher undertook the selecting and sequencing practices following the order of the posts on 
Padlet, and this choice did not support her in the subsequent connecting practice. After this first “show 
and tell” moment, the teacher asked students to find the differences and similarities between the 
strategies used. She listed on the blackboard the three main strategies used, helped by students who 
were looking at the Padlet to check them. The teacher picked up on similarities in the students’ 
comments and used them to connect emerging ideas about possible solving strategies. 

Then, she asked students: “Now you have seen your classmate’s strategies. Is there a ‘better strategy’ 
you would choose, or are you already sure of yours?”. This question opened a discussion about what 
‘accuracy/rigor’ meant: many groups responded that they would implement the same strategy using 
more accuracy or precision. This question moved students to discuss and compare the two arithmetic 
strategies. In particular, the teacher prompted students who used the estimated ratio of land and sea 
area to explain their strategy to their classmates. One group claimed they guessed the estimation with 
their hands rather than using the ruler as other groups did. With this answer, the teacher came back 
to the word ‘accurate’. In the comments, students often underlined the lack of accuracy of the 
graphical strategy in favor of the arithmetic ones. The first arithmetic strategy brought out the use of 
eye estimation which was then recognized as inaccurate. The teacher asked: “Does accurate mean 
reaching the closest result, or measuring and not guessing?”. In this way, the teacher came back to 
selecting and sequencing and moved her students to sort the groups’ answers by accuracy. Padlet 
allowed everyone to see the posts commented on and discussed (both on the interactive whiteboard 
and their smartphones). This was also underlined during the interview: “The fact that Padlet was 
accessible to students during the discussion, and they can navigate it independently multiplies the 
connections between the answers.” 

Discussion and conclusion  
In this contribution, we investigated the use of Padlet by a teacher for orchestrating a mathematical 
discussion. We presented a discussion in which an Italian teacher and her students dealt with a 
mathematical problem and discussed students’ strategies supported by Padlet. The analysis of the 
whole activity focused on the use of Padlet throughout the different pedagogical strategies referred 
to the model by Stein and colleagues (2008). This contribution starts from an open issue raised in 
previous studies (Giberti et al., 2022) in which authors suggest investigating how dynamics in 
classroom discussion depend on the specific features of the teacher’s teaching style. 

In this example, the monitoring phase through Padlet offered the teacher the opportunity to discuss a 
topic of interest to the students, the accuracy of estimation, and to value shared ideas that emerged in 
students’ comments. In this case, the use of Padlet was decisive in facilitating the activity and 
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allowing students to post their responses, thoughts, and strategies directly as they engaged with tasks. 
The digital platform offered students the opportunity to comment on their classmates’ strategies; 
without Padlet, the teacher would have had difficulty in observing this variety of strategies. Students 
also worked anonymously, and the teacher chose when and how to show the posts, avoiding any bias 
in the opinions on others’ posts. In addition, Padlet allows time and space management in a different 
way: for example, groups could not see who had already posted the answers, and this may limit the 
so-called anxiety of having to finish first. The teacher also claimed, “Padlet guarantees continuity in 
the classroom activities: its dashboard features allow for restarting the next lesson without making 
the effort of recalling everything that was said in the previous one.”  

The possibility of viewing all posts together on Padlet during the selecting and sequencing practices 
led the teacher to distinguish graphical or arithmetic approaches, focusing on the different strategies 
that could be used within the same approach. However, other choices might have been adopted; for 
instance, she could have started from the most to the least appreciated strategy or vice versa, dealing 
with the problem of sharing strategies or discarding others. In any case, the data collected with Padlet 
seems to open up multiple possibilities for orchestrating discussion. Similarly, the teacher could 
collect the written answers on sheets of paper without the support of the technological tool. In this 
case, the potential of Padlet is to immediately display all answers together in one place, without 
scattered sheets. Considering our experiment, Padlet was useful to students when the teacher wrote 
the strategies on the blackboard because it allowed them to look at the Padlet and control that every 
post was considered. On the other hand, Padlet could have affected the teacher choices in the selecting 
phase: she decided to consider the order of the posts for a “show and tell” moment; if the post had 
been in a different position, the first phase of the discussion could have been different. Padlet revealed 
its suitability, even during the orchestration of the whole-class discussion. As a dashboard, it shows 
all posts together as on a wall, and in this way, both students and the teacher have the possibility to 
compare and discuss all strategies simultaneously. In the absence of the technological device, the 
students and teacher would only have been able to use the blackboard. This would have required more 
time for writing and fewer expressive possibilities. 

In any case, it should be noted that any digital technology has weaknesses; for example, the posts in 
Padlet could suggest students use short and basic messages (as in many community platforms), which 
might limit students’ engagement or deep strategy descriptions in the problem-solving activity. This 
is also confirmed by the teacher who said: “Padlet, as a digital tool, encourages a writing style that 
evokes other digital platforms (for example, Instagram, WhatsApp). I noticed short messages and 
replies. The complexity is sometimes lost in the brevity of students’ messages.” In addition, Padlet 
does not facilitate verbal exchanges between groups. This may limit the teacher’s role in the 
monitoring practice. The versatility of Padlet’s posts is held back by limitations: it does not have an 
extensive library of mathematical symbols and creating graphs and diagrams is not intuitive. This 
limits the type of feedback classmates or teachers can provide.  

In conclusion, while summarizing when and how the teacher used Padlet, we also highlighted other 
modalities and other strengths for using such a digital tool. For instance, sharing the theoretical 
framework of Stein and colleagues (2008) with the teachers involved might highlight other and new 
potentialities of Padlet that are still to be explored. Actually, the teacher involved used well-
established pedagogical practices in her orchestration even without being fully aware of them from a 
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theoretical point of view. For less experienced teachers, it might be more complex, and introducing a 
new digital technology may require specific training to fully exploit all features essential for a 
successful orchestration of a classroom discussion.  
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Engineering students' incoming knowledge of analytical geometry in three-dimensional space is very 

weak and is often limited to calculating the volumes of solids. During the Linear Algebra course, they 

begin to see planes and straight lines in space but, due to lack of time, quadrics are rarely treated. 

In this contribution we want to investigate the evolution of spatial ability of 38 Civil and 

Environmental Engineering students during a Mathematical Analysis II course thanks to the use of 

GeoGebra during the lessons. To do this, 3 graphic designs tasks were analysed, which include 1 

pre-task, 1 homework task on multivariable integral calculus and 1 exercise of the partial exams on 

the same subject. The analysis was done with the help of the APOS theory. The students' use of 

GeoGebra was revealed by examining the answers to an open survey. The results are encouraging, 

most of the students have constructed a “Process” conception of the graphical representation.  

Keywords: APOS theory, Spatial visualization, Multidimensional calculus, GeoGebra, Survey 

Introduction 
Representation of mathematical concepts is very important in the teaching and learning of 
mathematics. The ability to represent a mathematical situation in different forms is a very powerful 
tool in mathematics (Garzon & Casinillo, 2021). Visual representations (for example, charts, graphs, 
pictures, diagrams, and numerical lines) can be used to solve, explore, or explain a mathematical 
situation. Visual representation helps students to understand mathematical concepts, internalise the 
concepts, and establish connections between the concepts leading to conceptual understanding and 
creativity. In line with this thought, Duval (1995) noted that “there’s no knowledge that can be 
mobilised by an individual without a representation activity” (p. 15). Visual representations are a key 
to conceptual understanding in mathematics. 

Teaching software packages, such as GeoGebra, Maple, and Mathematica, support multiple 
representations that can simultaneously demonstrate a function in numeric, algebraic, and graphic 
models. This feature helps students to understand abstract concepts; therefore, this type of software 
is often applied in the teaching of calculus and contribute to students' motivation (see for example 
Nobre et al., 2016). GeoGebra is a software that allows to create different interactive applications that 
can be used as teaching tools in math classes. The graphics in books, as well as the pictures drawn on 
the blackboard, are static and require the students to possess an adequately trained imagination. 
Nowadays, the existence of free programs with versatile capabilities and interactive representations 
helps to improve the presentation of contents taught in this area of knowledge, allowing dynamic 
visualizations. This is extremely important, since only students able to perform conversions do not 
confuse a mathematical object with its representation and can transfer their mathematical knowledge 
to other contexts different from the one of learning (Duval, 1999). 

Some past studies have examined students’ generalized knowledge of multivariable functions 
(Kabael, 2011; Martinez-Planell & Trigueros-Gaisman, 2013; Weber & Thompson, 2014), domain 
and range (Dorko & Weber,2014), and derivative (Yerushalmy, 1997). While some research has 
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touched on student understanding of multivariate integration (Jones, 2013; Alessio et al., 2022), or 
on pedagogy related to multivariate integration (McGee & Martinez-Planell, 2014), no research has 
focused specifically on students’ ability in spatial representation of multivariate definite integrals 
(Lepellere 2023). 

The general research question is: What is the impact on students’ proficiency in spatial drawing at a 
tertiary level using GeoGebra Mathematical software? Specific research questions: a) How was the 
initial student level of proficiency in spatial drawing? b) How does the level of proficiency in spatial 
drawing evolved after incorporating the use of GeoGebra during the lessons?  

To do this, the graphic designs of 3 tasks were analysed, which include 1 pre-task, 1 homework task 
on multivariable integral calculus and 1 exercise of the partial exams on the same subject. First the 
results of the three exercises were examined and classified as: correct, partially correct, incorrect and 
no response. After the three exercises were compared to see if there was some improvement. Finally 
Exercises 1. and 2. were examined with the lens of APOS theory. The students' use of GeoGebra was 
revealed by examining, throw thematic analysis the answers to an open survey with the following 
request: If you have used GeoGebra please describe in detail under what circumstances, you did so 
and what benefits you received. 

Theoretical background 
The main ideas in APOS Theory were introduced in Dubinsky (1984). The acronym APOS was first 
used in Cottrill et al. (1996).The APOS theory states that the teaching and learning of mathematics 
should be based on helping students to use the mental structures that they already have and to develop 
new, more powerful structures, for handling more and more advanced mathematics (Arnon et al., 
2014). These structures include Actions, Processes, Objects and Schemas, the acronym APOS being 
formed by the initial letters of the above four words. A mathematical concept is first formed as an 
action, which is, an externally directed transformation of a previously conceived object (or objects). 
Action is an external conception in the sense that each step of the transformation needs to be 
performed explicitly and instructed by external guidance; additionally, each step operates the next, 
that is, the steps of the action cannot be imagined, and none can be skipped (Arnon et al., 2014). As 
the individual repeats and reflects on this action it may be interiorized to a mental process. A process 
performs the same operation as the action, but wholly in the mind of the individual enabling him/her 
to imagine performing the corresponding operation without having to execute each step explicitly. If 
one becomes aware of a mental process as a totality and can construct transformations acting on this 
totality, then he/she has encapsulated the process into a cognitive object. A mathematical topic often 
involves many actions, processes and objects that need to be organized into a coherent framework 
that enables the individual to decide which mental constructions to use in dealing with a mathematical 
situation. Such a framework is called a schema. In concluding, the APOS theory considers actions, 
processes, objects, and schemas as an individual’s successive mental constructions in learning a 
mathematical topic and interiorization, encapsulation as the only mental mechanisms needed to build 
those mental constructions (Arnon et al., 2014). 

Methods 
In this contribution we want to investigate the evolution of spatial ability of 38 Civil and 
Environmental Engineering students during a Mathematical Analysis II course at University of Udine 
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in the academic year 22/23 thanks to the use of GeoGebra. It is a second course of calculus (9 credits 
corresponding to 72 hours of lessons) given in the first semester to second year Civil and 
Environmental Engineering students. It is preceded, among others, by Mathematical Analysis 1 (12 
credits), Linear Algebra (6 credits) and Physics 1 and is simultaneous with Rational Mechanics. The 
course of Mathematical Analysis 2 includes topics such as first and second order differential 
equations, the systems of linear differential equations with simple studies of stability, differential 
calculus in several variables with the calculation of free and constrained extremes, the integral 
calculation of more variable functions and integrals of vector fields over curves and surfaces.  

In the last years it was decided to incorporate GeoGebra during the lessons adding graphs both in the 
theoretical explanations and in the exercises to facilitate the graphical representations. Students were 
encouraged to use it in solving exercises independently to prepare for the exam. The students were 
given a mini guide of the main commands used during the course, at the beginning of the specific 
topic they were reviewed, and their interactive use was shown to the students during the lessons. All 
the exercises proposed were supported through graphical representations with GeoGebra (see Figure 
1).  

 
Figure 1: Two examples of lesson slides 

To answer the research questions, the graphic representation of the sets involved in 3 standard tasks 
were analysed, which include 1 pre-test (Exercise 1), 1 homework task (Exercise 2) and 1 exercise 
(Exercise 3) of the partial exam, both involved in multivariable integral calculus.  

1. Draw 4 + 5 + 2M = 1 in cartesian space. What does the vector N = (1,1,2) of the coefficients 
represent? 

2. After drawing the set " = {(4, 5, M) ∈ ℝ,|	24 + 25 ≤ M ≤ 2 − 4* − 5*}	calculate the 
volume. 

3. After drawing the set 
= = T(4, 5, M) ∈ ℝ,|	4, 5 ≥ 0, 4 + 5 ≤ 1, 0 ≤ M ≤ 1 − 4* − 5*U,  

check the validity of divergence theorem for the field V = (4, 0, −5). 
 

Exercise 1. was given as an introductory task to verify the ability to draw a plane in Cartesian space 
and to interpret the coefficients of its Cartesian equation anticipating the concept of normal vector for 
surfaces. In Exercise 2. we will analyze the drawing produced by the students: an important starting 
point for choosing the best method to use for calculating the volume of the solid. In particular, the 
knowledge of the mutual position between the objects involved, in this case the paraboloid and the 
plane, is essential and makes the exercise more concrete. In Exercise 3. we still need to graphically 
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identify the intersection between a quadric, in this case the paraboloid, and a plane parallel to M axis. 
The drawing of the solid is more complicated by the presence of the fundamental planes which create 
further faces of the solid. Also, in this case correctly representing the set is necessary not only to 
calculate the triple integral, which is also in this case a volume calculation, but also to find the 
parametric equations of the surfaces involved since the exercise asks to verify the validity of the 
divergence theorem.  

The results of the three tasks will be collected and statistically analyzed. Furthermore, a more in-
depth investigation will be carried out, using the APOS lens, of the results of the second and third 
task. With the APOS lens, we define: “Action” if students have succeeded in recognizing the quadrics 
from the Cartesian equations, including the plane as degenerate quadric. “Process” if the student has 
managed to put the quadrics together identifying the intersection curves. “Object” if the student has 
managed to have a complete vision of the set and carefully searches for the best perspective to 
represent it by identifying the single parts that compose it. 

Results 
We start with the analysis of the results of the various exercises taken individually, and then make a 
comparison between them to analyse if there was an improvement. Finally, we will analyse in which 
stage of the APOS the students' works are placed by also inserting some significant examples. 

Let us start with Exercise 1., we will evaluate it “Correct” if a precise graph of the plane has been 
made and the question about the geometrical interpretation of vector N = (1,1,2) was answered 
correctly. We will evaluate “Partially correct” if the plane has been drawn in a precise way but the 
interpretation of the normal vector of the plane is missing. We will evaluate “Wrong” if the plane has 
not been drawn correctly and finally “No Response” if the exercise has not been done. As can be seen 
from Table 1., only 32% answered correctly, a lower percentage than those who did not carry out the 
exercise 39%, 18% did not answer correctly meaning, they know it is a plane but do not draw it 
correctly, and 11% was not able to interpret the vector of coefficients as the normal vector of the 
plane. This result is unexpected since, at that time, most of the students, exactly thirty (in the other 
cases the results are even more disastrous), involved in the study had already passed Linear Algebra 
exam where, towards the end of the course, a little geometry of the Cartesian plane and space is still 
dealt with. But, as we see, if no importance is given to the graphic representation, only the best or 
most interested students do it autonomously. Analogous results were obtained for the fundamental 
planes (the analysis of the achieved results is not, however, the subject of this study) by validating 
the results obtained in previous studies. Their knowledge, as we have already said, is fundamental for 
understanding the differential and integral calculus of several variables’ functions.  

Exercise 2. was given as a homework, together with others, after about ten lessons/exercises on both 
scalar and vector integral calculus in preparation for the first task which precisely concerned these 
topics. The students were advised not to use any external aids, except for the material given in class. 
They had to photograph the work and send it by email. For exercises 1 and 2 only the results of the 
part concerning the drawing of the solid in question will be presented. The exercise will be evaluated: 
“Correct” if both the paraboloid and the plane have been drawn correctly and the interested part 
highlighted; “Partial correct” if plane and paraboloid have been traced correctly but the area between 
the two has not been identified; “Wrong” if at least one between plane and quadric have not been 
executed correctly; “No Response” if the graph is missing or the exercise has not been completed. As 
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can be seen from the table, compared to the previous exercise, the percentage of correct answers has 
increased and has passed to 53%. Still there is a high percentage 37% of those who have not really 
tried to solve the exercise, but this could also be since the students had not yet completed the study 
of the topics involved in the exercise. The number of wrong answers dropped to 5% as percentage of 
those who gave a partially correct answer.  

Exercise 3. was part of the first intermediate exam task on scalar and vector calculus administered 
three weeks after the delivery of the task which contained Exercise 2. The interpretation of “Correct”, 
“Partially correct”, “Wrong” and “No Response” is the same as in Exercise 1. As can be seen from 
Table 1., the correct answers have further increased to 61%. Being an exam exercise, the percentage 
of answers not given has decreased to 2%, while the partially correct answers 24%, but also the wrong 
ones have increased with 13%. Although, as explained before, Exercise 3. was more difficult, the 
students obtained better results than Exercise 1 and 2. Looking at the drawings, we can also notice a 
greater accuracy with the choice of the best perspective in several cases that will be examined later 
in the article. 

Table 1: Results of the tasks in percentage 

  Correct Partial 
correct 

Wrong No 
Response 

Task 
1 

32% 11% 18% 39% 

Task 
2 

53% 5% 5% 37% 

Task 
3 

61% 24% 13% 2% 

A comparison was made between the various exercises: the second with the first, the third with the 
first and the third with the second respectively. As we can see from Table 2 the comparison between 
exercises 2 and 3 with respect to exercise 1 not only has a higher percentage in getting better and the 
same percentage in being stable but it has also improved over time despite the increase in difficulty. 
It should be noted that worsening also includes not having done the exercise at all which, for a 
homework assignment, is not always due to not being able to do it. It may happen that the student 
was not yet ready to face the exercise or because he/she did not have enough time available, since the 
students had a deadline to meet for submission. The comparison between exercise 3 and exercise 2 
could make one think of a worsened situation but this is not the case because the percentage of those 
who remained in an unchanged situation has increased, which includes the case that both exercises 
have been performed correctly, in fact this percentage is 37%. We would also add that the percentage 
of students who did all 3 exercises correctly is 16%. 

Table 2: Comparisons of the tasks in percentage 
 

Get Better The Same Got Worse 

Task2/Task1 40% 37% 23% 
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Task3/Task1 55% 37% 8% 

Task3/Task2 37% 45% 18% 

This proved to be very helpful when deciding which method to use for calculating the triple integral 
in the second and third exercises and for finding the parametric equations of the various surfaces 
(faces) of the solid in question. With the APOS lens we obtain the following results (see Table 3): 

Table 3: With the lens of APOS theory 

TASK  No 
Answer Wrong Action Process Object 

2 36% 3% 11% 25% 25% 

3 3% 17% 19% 11% 50% 

comparing the results of tasks 2 and 3 we notice a notable improvement especially in the students 
with an initial “Object” type mental construction passing from 9 to 18 units, the same thing regarding 
“Action” type. The intermediate situation of “Process” has instead decreased to the advantage of the 
other two. The absence of answers which was almost 1/3 for Task 2. practically disappeared. Of those 
who didn't do exercise 2, five switched to an “Action” approach, six even in an “Object” approach. 
Four went from a “Process” to an “Object” approach, two remain with a “Process” and five with an 
“Object” mental construction. 

We show representative examples too. In the first example (Figure 2.) we see a case in which starting 
from a good initial knowledge the third stage is already reached, “object” in the second exercise 
confirmed in the third. In the second example (Figure 3.), although starting from a weak initial 
knowledge, the second “process” stage is reached with the second exercise and the last “object” stage 
with the third. It can be noted in the last case also the search for the best perspective to view the 
whole.  

 
Figure 2. Starting from a good initial knowledge the third stage is reached. 

  

Figure 3. From weak initial knowledge, the “process” stage and “object” stage are reached. 

From the survey proposed to the students at the end of the partial exam to the question “If you have 
used GeoGebra please describe in detail under what circumstances, you did it and what benefits you 
received” from. According to the students, GeoGebra helped them a lot, especially to recognize the 
quadrics involved in the Cartesian equation, to correctly identify the intersections between the 
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surfaces involved and to choose the best view for freehand drawing. Here are some examples of 
student answers that confirm it: “I had a lot of difficulty imagining the figures on the plane and in the 
space, obviously I have the simplest ones in mind, but as soon as it deviates a little from the ordinary, 
it is difficult for me to draw a picture in my mind of what is required. So GeoGebra has been a 
fundamental tool in my study because it has allowed me to experiment and understand things and 
notions that I probably would never have understood without it; “It is a tool that has been particularly 
useful for visualizing the intersections of the surfaces, drawing by hand is not always possible to be 
precise or it is not always easy to identify which perspective is the best to use for a good visualization 
of the surfaces. GeoGebra helped me a lot in representing more complex surfaces (particularly with 
regard the intersections of surfaces), but it also helped me to recognize the surfaces in question more 
quickly from their equation”; “The use of GeoGebra has been, in my opinion, very useful to be able 
to find a method of visualization of the intersections between the different functions in space, above 
all to understand how to orient solids in three-dimensional space. I have used this software very 
frequently for home study, especially for integrals and optimization problems. I used this software 
mainly to confirm the correctness of the designs I had previously set up”.  

Conclusions 
Heavy use of GeoGebra was made during the lessons/practices and its use was strongly recommended 
for home study. The use of the APOS theory allowed us to go into detail in the analysis of the students' 
abilities in identifying the mutual position between a quadric, in our examples these were paraboloids, 
and inclined planes. What was possible to notice was a significant improvement in the ability to draw 
sets correctly. We can attribute this improvement to the use of GeoGebra because this was declared 
by the students in response to a survey. We started in 22/23 from a simple use of GeoGebra to 
understand if it was appreciated by the students and if we noticed an improvement in the students' 
ability to represent three-dimensional sets. Encouraged by the results, the next objective will be to 
create specific Applets to intensify and improve GeoGebra use thanks also to the students' 
observations. 

References 
Alessio, F., Demeio, L., & Telloni, A. I. (2022). Promoting a meaningful learning of double integrals through 

routes of digital tasks. Teaching Mathematics and Computer Science, 20(1), 107-134. 
Arcavi, A.: The role of visual representations in the learning of mathematics. Edu. Stud. Math. 52, 215–241 

(2003). https://doi.org/10.1023/A:1024312321077 
Arnon, I., Cottrill, J., Dubinsky, E., Oktac, A., Roa, S., Trigueros, M., & Weller, K. (2014). APOS theory: A 

framework for research and curriculum development in mathematics education. Springer. 
https://doi.org/10.1007/978-1-4614-7966-6 

Cottrill J., Dubinsky E., Nichols D., Schwingendorf K., Thomas K., Vidakovic D. (1996) Understanding the 
limit concept: beginning with a coordinated process schema. J Math Behavior, 15(2):167–192 

Dorko, A., & Weber, E. (2014). Generalising calculus ideas from two dimensions to three: How multivariable 
calculus students think about domain and range. Research in Mathematics Education, 16(3), 269-287. 

Dubinsky E (1984) The cognitive effect of computer experiences on learning abstract mathematical concepts. 
Korkeak Atk-Uutiset 2:41–47 



                          Proceedings of the 17th ERME Topic Conference MEDA4, 3-6 September 2024, Bari, Italy                          ISBN 978-88-6629-080-3

  
262 

Duval, R. (1999). Representation, vision and visualization: Cognitive functions in mathematical thinking. 
Basic issues for Learning (Plenary address). In F. Hitt and M. Santos (Eds), Proc. 21st PME-NA 
Conference, 1 (pp. 3–26). Cuernavaca, Morelos, Mexico. 

Garzon, J. R., & Casinillo, L. F. (2021). Visualizing mathematics: the use of block models for strategic problem 
solving. Journal of Education Research and Evaluation, 5(1), 112-117. 

Jones, S. R. (2013). Understanding the integral: Students’ symbolic forms. The Journal of Mathematical 
Behavior, 32(2), 122–141. https://doi.org/10.1016/j.jmathb.2012.12.004 

Kabael, T. U. (2011). Generalizing single variable functions to two-variable functions, function machine and 
APOS. Educational Sciences: Theory and Practice, 11(1), 484–499. 

Lepellere, M. A. (2023, July). The evolution of spatial ability using GeoGebra for a multidimensional calculus 
course. In Thirteenth Congress of the European Society for Research in Mathematics Education 
(CERME13) (No. 31). Alfréd Rényi Institute of Mathematics; ERME. 

Martinez-Planell, R., & Trigueros-Gaisman, M. (2013). Graphs of functions of two variables: Results from the 
design of instruction. International Journal of Mathematics Education in Science and Technology, 44(5), 
663–672. 

McGee, D. L., & Martinez-Planell, R. (2014). A study of semiotic registers in the development of the definite 
integral of functions of two and three variables. International Journal of Science and Mathematics 
Education, 12, 883-916. 

Nobre, C. N., Meireles, M. R. G., Junior, N. V., Resende, M. N.d., Costa, L. E.d., & Rocha, R. C.d. (2016). 
The use of geogebra software as a calculus teaching and learning tool. Informatics in Education, 15(2), 
253–267. 

Trigueros, M., & Martínez-Planell, R. (2010). Geometrical representations in the learning of two variable 
functions. Educational Studies in Mathematics, 73(1), 3–19. https://doi.org/10.1007/s10649-009-9201-5 



 

 

Proceedings of the 17th ERME Topic Conference MEDA4, 3-6 September 2024, Bari, Italy                      ISBN 978-88-6629-080-3 

  
263 

Promoting the production of examples and conjectures in hybrid 
environments to elicit students' concept image and definition 

Mirko Maracci1, Gabriella Pocalana2 and Greta Carlino3 

1Department of Mathematics, University of Pisa, Pisa, Italy; mirko.maracci@unipi.it 
2Department of Mathematics, University of Pavia, Pavia, Italy; gabriella.pocalana@unipv.it 

3Istituto Comprensivo San Giorgio, Pavia, Italy; greta.carlino@isg.pv.it 

In this paper, we aim to investigate the potential of a purposefully designed task proposed in a hybrid 

environment with Padlet and GeoGebra, to promote students’ production and sharing of personal 

concept definitions, conjectures, examples and the emergence of instances of students’ concept 

images. From the analysis of the students’ posts, we derived a complex intertwining between all these 

elements and a possible tension with the formal definition of diagonal. We also obtained a 

confirmation of the potentialities of the hybrid environment to favor the participation of all the 

students in rich exchanges on the mathematical task. We finally argue that the exchanges recorded 

by the Padlet provide a common basis for the teacher and the students to share and reflect upon 

during the subsequent classroom discussion. 

Keywords: Concept image, concept definition, digital technologies, examples, hybrid environment. 

Examples as windows into students' concept images 
In the 2000s, there has been a growing interest in mathematics education towards the study of the 
processes of generating examples and the role of these processes in mathematical learning (e.g., Bills 
& Watson, 2008). Zazkis and Leikin (2007) suggest that asking students to produce examples 
“provides a ‘window’ into a learner’s mind’’, because students’ examples ‘‘mirror their conceptions 
of mathematical objects involved in an example generation task’’ (p. 15). Similarly, Sinclair and 
colleagues (2011) argue that through the study of learners’ personal example spaces "a teacher can 
obtain some evidence about the nature of learners’ understanding and what sorts of experience to 
provide next" (p. 292).  

In addition, Antonini (2011) shows not only that the activities of producing examples can provide 
insight into the dialectics between students' concept images and personal concept definitions (Tall & 
Vinner, 1981) but can also promote their harmonization with the formal concept definition. The 
distinction between concept definition and concept image has been introduced by Tall and Vinner 
(1981). The concept definition is the verbal specification of a particular concept, of its main 
characteristics, features, and boundaries. It can be either a formal definition shared within a specific 
community (formal concept definition) or a personal (re)construction by an individual (personal 

concept definition). The concept image is ‘‘the total cognitive structure that is associated with the 
concept, which includes all the mental pictures and associated properties and processes’’ (p.152). In 
different situations, different parts of the concept image can be evoked and activated, and different 
concept definitions can be made explicit.  

Students do not produce examples solely upon the teachers' explicit request, they may also engage in 
such activities spontaneously while accomplishing other tasks, such as those involving conjecturing 
and proving. Even in these cases, while possibly hindering the need to resort to a formal proof, 
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argumentations based on autonomously produced examples can favor students' concept images 
emerge (Morselli, 2006).  

Although it is important to bring out students' concept images, from an educational point of view it 
is equally important to address the issue of how to promote the construction of links between students' 
concept images, personal concept definitions and the formal concept definitions of mathematics. With 
that respect, Paola (1998) argues in favor of the crucial role that social interaction and in particular 
the mathematical discussion (Bartolini Bussi, 1996; Pirie & Schwarzenberger, 1988) can play in 
promoting such a process. 

Hybrid environments 
Hybrid environments (HE) are defined as environments in which online components, such as virtual 
collaborative boards, substitute part of the face-to-face classroom interactions (Singh et al., 2021). In 
HEs students can synchronously and simultaneously share statements and ideas, reply to one another, 
and provide comments, using text, images, videos, links, and other types of digital content. It is thus 
possible to construct a network of synchronous connections, upon which students and teachers can 
rely and to which they can continuously refer in the development of the activity. That represents an 
added value with respect to ‘traditional' classroom interactions where the discourse typically 
progresses along a linear timeline (Giberti et al., 2022). Another key valuable role of a HE is 
recognized in the promotion of a wide participation to classroom discussions. Students' active 
participation is deemed of crucial importance in order for them to develop mathematical knowledge 
and competencies. In this respect, virtual collaborative boards can favor students’ participation 
through a coherent use of posts and comments activated by the teacher in the classroom discussion 
ultimately promoting the inclusion of all students (Giberti et al., 2022). In this study, we consider a 
specific HE constituted by integrating a virtual collaborative board in the classroom to foster social 
interaction, along with software to accomplish a mathematical activity. 

Research aim 
The current report stems out from a wider study aiming at investigating: 

• the potential of a specific conjecturing activity, carried out in a HE to trigger students' 
production of examples revealing their concept images and personal concept definitions of 
the mathematical concepts at stake,  

• how the teacher can exploit the potential of HE to lead an inclusive classroom discussion 
promoting the harmonization among students' concept images, their personal concept 

definitions and the formal concept definition shared within the mathematicians’ community. 
More specifically, in the current report, we analyze the case of lower secondary school students facing 
the task, inspired by Balacheff (1991), of explaining to the classmates how to find the number of 
diagonals in a polygon with n sides, writing a post on Padlet. They had GeoGebra at their disposal to 
explore the situation and produce examples. We aim to investigate whether and how the use of Padlet 
and GeoGebra promote students’ production and sharing of personal concept definitions, conjectures, 
examples to support their conjectures and counterexamples to their classmates’ ones. Furthermore, 
we aim to investigate what students’ concept images emerge for diagonals of a polygon, if they are 
coherent with their personal concept definitions and with the formal concept definition. 
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Methodology 
For our study, we collected data from a teaching intervention, conducted by the curricular teacher 
and an observer, in a 7th grade class in the North of Italy with 25 students. The intervention unfolded 
in two phases. The first phase, lasting approximately two hours, took place in the computer lab of the 
school, where students worked in small groups (11 pairs and one group of three) to face the task of 
writing a post on Padlet explaining to classmates how to find the number of diagonals in a polygon 
with n sides. Each group should also explain what they mean by “polygon” and by “diagonal”. The 
students had already met the concept of diagonal referred to quadrilaterals but they had never been 
presented with its formal definition in a general context.  Each group could comment on the posts of 
the other ones, possibly attaching files or images created with GeoGebra. The posts were only made 
visible after each group submitted its own to the board. The second phase consisted of a classroom 
discussion which is not in focus in this paper.  

We have analyzed data coming from the students’ Padlet posts produced in the very initial stage of 
the first phase of the activity, devoted to the students’ spontaneous production of definitions and 
conjectures and to the first reactions posted by the classmates, before any intervention by the teacher 
or the observer. First, we have recorded which groups provided definitions of diagonals and 
conjectures about their number, and which groups provided examples supporting their own 
conjectures and/or counterexamples to challenge their classmates' ones using GeoGebra. In a second 
step, we have analyzed what students’ concept images and personal concept definitions related to the 
concept of diagonal emerged from their posts. 

Results 
In the following, we present some excerpts taken from the students’ posts in the Padlet in which 
students’ personal concept definitions and some instances of their concept images related to the 
diagonals of a polygon emerge and, through social interactions, are shared and challenged. We focus 
on the initial part of the first phase of the activity: students post their own answers to the task and 
then possibly comment on others' posts before any intervention by the teacher or the observer.  

As for students' participation, we have noted which groups provided an explanation of what they 
mean by diagonal, which groups proposed a conjecture on how to find their number, and which ones 
provided a figure to illustrate or corroborate their explanations and conjectures. We have also 
examined the comments and noted each pair's comments on others' posts, not limited to 
"agree/disagree'' statements. Data is synthesized in Table 1. 

Table 1: Synthesis of groups’ posts and interactions 

Provide definition Formulate 

conjecture 

Provide figures Comment on other' 

posts  

Commented on by 

others 

All the groups but 

G10 and G12 

All the groups but G5  All the groups 

but G1  

G2, G3, G7, G8, G9, G10, 

G11, G12 

G1, G2, G6, G7, G8, 

G10 
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In summary, we attest to both a rich production of answers to the provided task, and to rich 
spontaneous interactions already in the very first phase of the activity. In the following phase, more 
interactions are solicited also through purposefully designed posts published by the observer.  

In Table 2, we present examples of posts produced by some groups before viewing those of other 
groups. In particular, we have chosen a selection of posts which is representative of the variety of 
contributes proposed by the different groups. In the last column, we also present some objections 
raised by other groups, as soon as they were able to view all the posts. 

Table 2: Examples of some groups’ posts  

Personal 

concept 
definition of 

diagonal 

Conjecture on how to find the 

number of diagonals of a 

polygon 

GeoGebra figures 

accompanying the 

conjecture 

Objections provided by 

other groups 

G2: Diagonals = 

segments that 

can be external 

or internal to the 

figure and 

accordingly 

divide it. 

G2: The diagonals of a polygon 

can be found by joining two 

opposite vertices with a segment. 

G2: Since the vertices join 

pairwise, the number of diagonals 

is half the number of vertices. 

 

G7: The example of the 

octagon is incorrect because 

the diagonals do not perfectly 

intersect at the center. 

G7: And besides, it's not 

regular. 

G12: It's incorrect; there are 

other diagonals. 

G12: Every point must go to 

another point. 

G8: Diagonals are missing. 

See our example. 

G6: A diagonal 

is a segment that 

connects the 

vertices and 

intersects at the 

center. 

G6: To find the diagonals of a 

polygon, you need to connect all 

vertices that intersect at the center. 

G6: A polygon with an odd 

number of vertices has 2 diagonals, 

while when it has an even number 

of vertices, the diagonals are half 

the number of vertices. 

 

 

 
 

G8: We think that your 

conjecture is wrong. See our 

example. 
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G7: The 

diagonals are 

segments that 

start from one 

vertex and reach 

the opposite one. 

G7: The diagonals of a polygon are 

found by joining two opposite 

vertices with a segment. 

 

G10: Why are there bisectors 

in the second one? 

G9: [Responding to the 

comment from P10] They are 

not bisectors, but they are the 

altitudes. 

G8: For us, the 

diagonals are 

segments that 

start from one 

vertex and reach 

another. 

G8: For us, to find the number of 

diagonals of a polygon, you need to 

add to the number of sides the 

number of times a vertex does not 

connect to another vertex. 

G8: Rectangle: 6 diagonals; 

Triangle: 3 diagonals; Octagon: 28 

diagonals; Hexagon: 15 diagonals; 

Pentagon: 10 diagonals. 

 
 

 

G11: Why do you count the 

sides as diagonals? 

G9: A diagonal 

is a segment that 

connects a pair 

of vertices. 

G9: To know the number of 

diagonals of any polygon, simply 

connect all vertices with each 

other. 

G9: Not all polygons have 

diagonals; for example, in a 

triangle, it's not possible to find 

diagonals because there are no 

opposite vertices. 

 

 

 

G10: The diagonals of a polygon 

are found by connecting all 

vertices of the polygon with their 

opposite ones. 
 

G7: [Referred to the example] 

If we try to use this reasoning 

even with the triangle, it 

wouldn't work. Indeed, when 

rounded, it's approximately 

1.5. 
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G11: The 

diagonals are 

lines that divide 

the figure into 

multiple parts by 

connecting 

opposite 

vertices. 

G11: The diagonals in the triangle 

are 0 + 2 = 2 (quadrilateral 

diagonals), 2 + 3 = 5 (pentagon 

diagonals), 5 + 4 = 9 (hexagon 

diagonals), 9 + 5 = 14 (heptagon 

diagonals), 14 + 6 = 20 (octagon 

diagonals). The first number in 

each operation corresponds to the 

diagonals of the previous polygon, 

and the second addend is a natural 

number; these natural numbers are 

arranged in ascending order. 

 

 

 

 

Examining all the students' answers to the question what they mean by diagonal, we can note that 
their personal concept definitions apparently share the reference to some common properties: (a) the 
diagonals are segments that connect vertices (G4; G5; G6; G8; G9), (b) join opposite vertices (G3, 
G7, G11), (c) pass through the center of the polygon (G6), (d) cut the polygon (G1; G2; G11), and 
(e) can be either internal or external to it (G1; G2). When confronting students' personal concept 

definitions among them or with the respective produced figures we can note several interesting 
aspects. One of them concerns the use of the expression "opposite vertices''. While evoking this 
feature, G11 actually traces all the diagonals of the polygons they provided, as they used the term 
opposite interchangeably with "non-consecutive". G7 too refers to opposite vertices in their definition 
but then sketches the supposed diagonals of a triangle connecting each vertex with the opposite side. 
Other groups do not mention that the diagonal should connect opposite vertices in their explanation, 
but refer to this property when justifying or explaining their conjecture or represent it in their figures 
(G2, G6, G9, G10). In summary, students seem to use the expression "opposite vertices'' with different 
meanings; furthermore, definitions, properties represented in the figures, and arguments used in the 
justification of the conjectures are not always coherent with each other with that respect. The same 
happens with other properties. For instance, only G6 explicitly states that diagonals pass through the 
"center of the figure", though it is not clear whether they mean an interior point or the actual center 
of the figure. But this property seems to be evoked also in the figures of some of these latter groups 
(G2, G4, G7, G9). We can notice that G7 objects against G2's post because "diagonals do not perfectly 
intersect at the center", while neither G2 nor G7 mention this feature explicitly in their definitions or 
conjectures. Finally, some groups (G1, G2) refer to the fact that diagonals can divide polygons in 
parts, and to the fact that the diagonals can be either internal or external. But these properties do not 
apparently play any specific role in the search for a conjecture, in addition no pair has produced 
figures with external diagonals. 

As for the conjectures, groups have interpreted and answered the request to explain how to find the 
number of diagonals of a polygon in different ways. G7, G9, G12 simply explain how to draw the 
diagonals in order to count them. G11 provides an algorithm for finding the number of diagonals of 
a polygon from the number of diagonals of the polygon with one less side. All the other groups but 
G5 and G12 propose some sort of (incorrect) formulas involving as input the number of sides of the 
polygon. The prevalent conjecture is that the number of diagonals is half the number of the polygon’s 
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sides. This conjecture appears to be connected with a concept image according to which from each 
vertex of a polygon only one diagonal emerges, connecting it with an "opposite" vertex, possibly 
passing through the "center" of the polygon. Finally, we can still note that when commenting on 
others' posts, sometimes, groups comment on the basis of their own personal concept definition or 
image of diagonals of a polygon (G8 on G2 and G6, G11 on G8), and sometimes on the internal 
coherence between the provided definitions, conjectures and figures (G7 on G10).  

Besides the issue of the coherence between personal concept definitions, conjectures and their 
justification, and produced figures, we can distinguish cases where the issue of generality is 
seemingly considered and addressed through either producing different types of polygons (G2; G6; 
G7; G8; G11) or not-too-familiar polygons (G2; G4; G10), and cases where this does not occur. 

Discussion and conclusion 
The analysis has highlighted the variety of students' responses to the given task, and the richness of 
the spontaneous interactions occurring already in the very first phase of the activity. The integration 
of Padlet and GeoGebra in the classroom activity allows the teacher to organize a HE that has 
promoted the active participation of all the students in the classroom activity. In such an environment, 
the task designed has promoted the production and sharing of personal concept definitions and 
conjectures, and of examples to illustrate and sustain the conjectures. From the analysis of the posts, 
we have been able to obtain clues about the students' concept images regarding the concept of 
diagonal of a polygon. The emerging picture shows the complex intertwining and tensions among 
students’ personal concept definitions, concept images and the conjectures produced, and the possible 
tensions with the formal concept definition. 

In the subsequent phase, not documented in this report, more interactions and a continuous 
elaboration of concept definitions and instances of concept image are solicited also through 
purposefully designed posts published by the observer. An added value, with respect to traditional 
environments, is that in this HE, all these interactions were recorded and made available both for 
inspection by the teacher for preparing future activities, and for the following classroom discussion, 
as a common basis for the teacher and students to discuss and reflect upon. 
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The rapid diffusion of AI tools like ChatGPT poses a dual challenge to education: ensuring 
meaningful homework assignments in the face of readily available AI solutions and teaching students 
to critically evaluate AI-generated content. This paper argues for integrating metamathematical 
debate into teaching as a response to these educational dilemmas. Drawing on Engeström’s 
Expansive Learning theory, it frames the integration of AI tools in education promoting the 
development of new knowledge and practices through debate and discussion. Our proposed model 
for classroom activities aims to foster high-school students’ critical engagement with AI-generated 
solutions, encouraging a shift from product-oriented learning to process-oriented understanding. 
This model seeks to mitigate the risks of mimetic learning and promote a deeper, metacognitive 
reflection on the nature of understanding and intelligence. 

Keywords: Debate, artificial intelligence, metacognition, expansive learning, critical thinking. 

Introduction 
The advent of Generative Artificial Intelligence (GAI)—not to be confused with AGI: Artificial 

General Intelligence— through chatbots, such as ChatGPT or Gemini and other advanced AI tools, 

marks an epochal moment and a historic watershed, not only in the history of technology or education 

but in the history of humanity as a whole. Although we do know that GAI tools can sometimes fail 

in correctly answering even simple questions or solving easy problems, we are not yet sure whether 

this inability is intrinsically related to the inner workings of the tools themselves or it can be overcome 

by the rapid, momentous progress that characterizes the current technology revolution. The ability to 

assess the validity of AI generated answers is a skill that will be sorely needed for humans in the 

immediate future, not simply to improve employment chances, but to answer the existential question 

of human relevance in an AI-dominated world. The exploitation of GAI chatbots as an aid in solving 

homework is already common practice among students of all ages and backgrounds. A survey 

published in the magazine Forbes states that “89% of survey respondents report that they have used 

the platform to help with a homework assignment” (Westfall, 2023). This statistic comes from data 

collected in January 2023, making it over a year old at the time this paper is written; the same survey 

reports that about two thirds of the interviewed educators think that GAI chatbots should not be 

banned from schools and universities. While it is more or less obvious that simply denying the access 

to a new tool is not a sensible way to approach the emergence of a new technology in education there 

are reasons to think that educators have sound reasons to fear an improvident use of these tools. For 

example, according to William Chan “AI chatbots homogenize the thinking and presentation of 

students [...] they encourage students to think about questions from similar angles” (2023, p. 1). On 

the other hand, AI chatbots are already capable of passing college admission tests with a better score 

than most humans. The GPT-4 Technical Report (Achiam et al., 2023) states that ChatGPT Plus 

already can pass the SAT Math test with scores corresponding to the 89th percentile. So, it is likely 
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that students will increasingly resort to using GAI tools, mainly because “our current educational 

system rewards performance more than effort” (Chan, 2023, p. 2) but the increasing use of such tools 

would not fit neatly together with our current education systems “unless we redesign our assessments 

such that they are not easily solvable by GAI chatbots and, more importantly, establish an education 

system that encourages students to be oriented to learning rather than grades” (Chan, 2023, p. 3).  

From the above analysis we pinpoint two problems, among others: how to assign homework whose 

execution cannot be nullified by the use of AI tools; how to instruct students to validate AI answers. 

These two problems are two faces of a more general challenge: the risk that our students will 

increasingly become mechanical and mimetical parrots of AI outputs. Yet, since the times of Plato, 

explicative dialogue has been considered a key element in avoiding the dangers of false knowledge 

and revealing the anti-mechanic and anti-mimetic character of science (cf. Piazza, 2020). 

Consequently, we formulate this research question: how can metamathematical debate be integrated 

among other dialogue-based didactical practices in solving this educational conundrum of integrating 

AI tools into current educational routine in a way that ensures the assignment of meaningful 

homework, and teaches students to critically evaluate AI-generated content? 

Literature review and theoretical framework 
Since we are trying to resolve contradictions within and between activities, it is natural for us to frame 

the theoretical analysis of our research question starting from Vygotsky’s Activity Theory and its 

recent developments, such as Engeström’s Expansive Learning theory: “contradictions are the chief 

sources of movement, change, and development in activity systems” (Engeström, 2015, p. xvi). For 

example, the contradiction between the traditional roles of teachers and students: the first considered 

as those, inter alia, providing explanations, the second as those solving problems. Or the contradiction 

between the goals of the students, who see the GAI chatbots as a tool to ease their workload, and 

teachers, who see the GAI chatbots as a tool to increase the time students spend reflecting on how 

and why to do mathematics. Expansive Learning focuses on the collective transformation of activity 

systems through the identification and resolution of contradictions, emphasising the role of 

collaborative inquiry and the construction of new knowledge. 

To address the above contradictions, we suggest the introduction of dialogical practices into 

classroom activity, in particular debate. Before addressing the question of debate per se, it is 

opportune to explain in which respects debate differs from other discursive practices in mathematical 

education. According to Prie and Schwarzenberger, a mathematical discussion “is purposeful talk [...] 

on a mathematical subject [...] in which there are genuine pupil contributions [...] and interaction” 

(1988, p. 461). Bartolini Bussi refines the definition of mathematical discussion in the following way: 

“Mathematical Discussion is a polyphony of articulated voices on a mathematical object (e.g. a 

concept, a problem, a procedure, a structure, an idea or a belief about mathematics), that is one of the 

motives of the teaching-learning activity. The term voice is used after Wertsch (1991), following 

Bakhtin, to mean a form of speaking and thinking, which represents the perspective of an individual, 

i.e. his/her conceptual horizon, his/her intention and his/her view of the world.” (1996, p. 16). While 

sharing its characteristics of purposeful talk in which there are genuine pupil contributions and 

interaction, debate differs from Bartolini Bussi’s characterization of discussion in two fundamental 

ways: first, it is a regulated dialogical interaction, in which speakers cannon arbitrary decide when 

and if to intervene (they have to participate and the timing of their contribution is to be carefully 
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controlled); second, the perspective that debaters put forward is not defined by their view of the world 

but is assigned by a third party (Freeley & Steinberg, 2013). This last peculiarity might appear too 

restrictive but it actually makes it possible to elevate the exchange from a personal level to one that 

is more properly dialectical. This regulative aspect is what sets apart our approach of regulated debate 

from other debate modes used in classroom practice, as described in Balacheff’s (2024) de facto 

survey on argumentation (including debate) in Mathematics Education. 

We are dealing with contradictions whose resolution forces us to redefine our roles along with the 

object of our activity and the tools we use. In an educational setting where GAI chatbots are available 

(and used) students cannot limit themselves to acquiring knowledge ‘produced’ by the AI, nor can 

they simply participate in activities that follow a schedule constructed around tools that are not simply 

quantitatively but also qualitatively different from GAI chatbots—in this regard we have to see the 

diffusion of AI machines as a ‘runaway object’ (Engeström, 2008) that is a new phenomenon that, if 

not properly confronted, can lead to a potential disaster on a global scale. 

Our choice to utilize Expansive Learning as a framework for our proposal is hereby explained 

referring to the six basic ideas of Expansive Learning, as characterized in (Engeström & Sannino, 

2010)—actually that paper lists eight ideas but we want to focus only on the first six, as they are the 

ones rooted in the traditional culture-historical school of Vygotsky, Leont’ev, Il’enkov and Davydov. 

First idea: distinction between action and activity. This is related to the famous example of collective 

hunting: each hunter performs a specific action that has a narrow focus and a definite start and end, 

but the activity to which it contributes continuously reproduces itself, albeit in a non-identical fashion. 

Our proposal identifies particular roles and phases yet it has not the goal to produce an object but to 

produce activity: as Engeström says, it is an activity-producing activity. 

Second idea: re-definition of the zone of proximal development (ZPD) as the space for expansive 

transition (ET). This idea underlines the necessity of shifting the focus from the individual (ZPD) to 

the collectivity (ET). In our proposed activity, students will work together not just to learn what is 

already there, but to create a new understanding. 

Third idea: the object-oriented being of the theory. This idea might seem to contradict the first one, 

but it really does not. The word object is here to be understood in the meaning of the German term 

Gegenstand, that could be translated as ‘counter-stand’, not in the meaning of the German word 

Objekt. In our case the Gegenstand is the AI itself that acts in a peculiar way, as explained by 

Engeström and Sannino: “motives and motivation are not sought primarily inside individual subjects 

– they are in the object to be transformed and expanded” (2010, p. 4). 

Fourth idea: the dialectical concept of contradiction. In our case, there are the inner contradictions, in 

which the traditional learning model finds itself when confronted with the advent of GAI chatbots as 

detailed above, that act as a driving force for the transformation. 

Fifth idea: abstraction and concretization. Being grounded in Activity Theory, Expansive Learning 

follows the dialectical tenet of ascending from the abstract to the concrete. Thus, our proposal starts 

from a simple abstract idea, such as the broad, abstract notions of: mathematical problem, machine 

capable of performing human-level tasks, debate as an organized academic activity then, through the 

introduction of complexity, synthesizing the proposal into concrete understanding. 
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Sixth idea: the double stimulation. This also is an idea that traces its origins to Vygotsky where the 

two stimuli are the ‘challenge’ and the ‘mediating tool’. In our case, the challenge is the analysis of 

a solution of a problem given by the AI, and the mediating tool is the debate itself.  

The other complementary part of our framework, in addition to the theory of Expansive Learning, is 

the theory of argumentation that makes possible a structured debate. As implied above, the research 

on regulated disciplinary debate in mathematics education is sparse, thus we shall refer mainly to our 

previous work (Matteucci & Tortoriello, 2023) that considers a model of regulated debate in 

mathematics sporting the three defining aspects of: discussing a contentious resolution, featuring two 

opposing debating teams with incompatible points of view, and having a non-free-form protocol. 

Additionally, we use the motions’ taxonomy we presented in the said paper and, in particular, we 

focus on metamathematical motions—i.e. those that we have called ‘worst error’, ‘comparative 

analysis’, ‘best explanation’—that are those motion related to the so called philosophy of 

mathematical practice and patterned on the scientific use of that kind of dialectics that we dubbed 

diaporetic dialectic. 

Model of the proposed activity 
Here we illustrate a model for our proposed classroom activity that should allow us to explore 

integrating metamathematical debate and dialogue-based teaching methods to effectively use AI tools 

in education, ensuring meaningful homework and teaching students to critically assess AI-generated 

content. We start with an overview of the model, stating also the objectives and the expected results, 

then we go on explaining how it addresses the research question and how the model is coherent with 

the framework illustrated in the preceding section. 

The model is structured around three distinct phases that are, in turn, divided into three other 

subphases; these phases were devised taking into account the objectives stated in our research 

question and the specifics of disciplinary regulated debate (see the comments on our previous work 

above). We called these three phases: ‘chatting’, ‘discussing’ and ‘debating’ because in the first one 

the key dialogical activity is chatting with the AI; in the second one the key dialogical activity is a 

mathematical discussion (in the meaning of Bartolini Bussi, see above); in the third one the key 

dialogical activities revolve around a metamathematical debate. We assume that the activity involves 

a single class under the direction of one teacher, we also assume that, for some activities, students are 

divided into teams of 3-5 people. 

First phase: chatting. This phase involves only the teacher and is not carried out in the classroom; it 

is divided into the following subphases: 1) the teacher selects a mathematical problem for the AI to 

solve; 2) the teacher inputs the problem to a GAI chatbot, in one or more steps; 3) the teacher sends 

the text of the problem along with the proposed AI solution to the students. Teachers should take care 

in explicitly asking the AI to explain the reasoning behind each of the steps it will take towards the 

solution in the prompt they will use to input the problem and could also allow the GAI chatbot to use 

‘external’ computational tools, if deemed opportune—like the ones using Wolfram Language or 

Python in GPT-4, for example. It is also advisable to prepare a document that contains both the 

assigned problem and the answer of the GAI chatbot; in this regard it may be useful to ask directly 

the GAI chatbot to prepare a LaTeX file that contains both, avoiding the hassle of having to assemble 

it manually. 
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Second phase: discussing. This phase involves both the teacher and the students and is carried out 

both at home and in the classroom, it is divided into the following subphases: 4) students critically 

review the solution at home according to a predetermined list of criteria (correctness, completeness, 

effectiveness, generalizability, clarity, understandability); 5) students discuss their assessments 

during class, under the supervision of the teacher, to establish whether there is a general consensus 

on the conformity of the solution to the above mentioned criteria; 6) the teacher, after having taken 

note of the issues about which the conformity to the said criteria cannot be unanimously decided—

even after a brief discussion—drafts precise debate motions, using the metamathematical motions’ 

taxonomy found in (Matteucci & Tortoriello, 2023) about each controversial unresolved issue and 

assigns them to the teams. Students are basically required to assess: whether the solution is factually 

correct; whether the solution answers explicitly all the requests to be found in the problem; whether 

the solution achieves its goal in a direct, efficient manner; whether the solution is extendable to other 

similar more general problems; whether the solution is straightforward in its presentation; whether 

the solution is easily understandable to the perspective audience; i.e. the students themselves. The 

eventual debate motions that the teacher has to draft are to be constructed starting from the issues 

about which an undisputed unanimity cannot be reached in class. If the solution is not universally 

accepted as effective and generalizable, a motion patterned on the ‘comparative analysis’ type will 

be drafted. If the solution is not considered to be clear and understandable, the debate resolution will 

be of the ‘best explanation’ type. In case the students would concordantly agree from the start that 

the solution is incorrect or incomplete, the teacher will draft a motion according to the ‘worst error’ 

pattern.  

Third phase: debating. This phase involves the students (both as singles and as teams) and the teacher. 

It consists of: 7) the teams, after thoroughly preparing at home, debate the motions provided by the 

teacher according to a specific protocol; 8) the teacher debriefs the students regarding the debate 

results; 9) students and teacher discuss what they have learned from the debates and the debriefings. 

The debates shall follow a formal protocol: it is not necessary to use an already established protocol 

in competitive debate (Freeley & Steinberg, 2013) and ad hoc formats can be used, as long as one 

keeps in mind the three caveats: flexibility, caution, continuity (Matteucci & Tortoriello, 2023). It is 

important to underline that the role of the teacher in this third phase will alternate between scaffolder, 

in the debate-preparation phase, moderator during the debate proper, and assessor during the 

debriefing. The debriefing, however, is not only to be intended as a moment to give feedback on the 

relative performance of the teams involved, but also to summarize the key clash points of the debate 

itself, highlighting the instances of proper and effective reasoning and argumentation and pointing 

out eventual misconceptions or non sequiturs, in order to prepare the final discussion about what has 

been learned. It is worth noting that, since the debate itself pits teams with incompatible points of 

view against each other and is a moment of confrontation, the moment of the synthesis—if any—is 

in the final discussion, not during the debate proper.  

As said, the overall objective is giving students meaningful homework assignments and instructing 

them in the task of validating AI answers. For what concerns the first point, students will have to 

work both individually and as a team at home when executing subphase 4 above, and when preparing 

for the discussion of subphase 7. It should be noted that in regulated debate, unlike in simple class 

discussions, the debate itself is never improvised. We expect that students, as they transition from not 

being able to use AI tools to having to use them, will experience a qualitative shift in focus: 
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transitioning from the assumed goal of obtaining a product (the solution) to the implied goal of being 

able to question the whys and hows behind that product. This is something that in the context of 

Expansive Learning is known as a qualitative turning point. This very result makes the teacher 

assignments meaningful because they lead to an activity that cannot be ‘delegated’ to the AI since it 

involves live discussions and debates. The students can thus understand that just parroting AI output 

or mirroring its procedures, without having understood them first, not only would not be sufficient to 

fulfil the teacher’s assignments but would also not lead to mathematical competence. In fact, as 

Gabriele Lolli (2022) wrote: “Learning and repeating proofs is useless if these are conducted solely 

at the object level, without being informed by metalogic. When one speaks (or writes), without noting 

how one is speaking and why, focusing only on the meaning of what is said, the logical structure of 

one’s discourse remains unseen; when one speaks, one does not consider grammatical rules but the 

content; to see the logical-grammatical pattern, the discourse itself must be the object of reflection. 

Even merely annotating next to each expression the one from which it derives and the rule by which 

it does so constitutes an action different from the material act of executing a substitution or more 

generally a syntactic transformation; it means managing a system of logic (rather than a formula) and 

making a choice, a strategic action. On one hand, the agent is not mechanical (=syntactic); on the 

other, it reasons on the formalism rather than merely executing the formalism.” (p. 79, our 

translation). This quote points out the essence of doing mathematics; our model is crafted in such a 

way to encourage students to adopt this approach, not in an extrinsic or forced manner, but as a natural 

consequence of the structure of the proposed activity, given the assigned tasks. The students’ 

metacognitive reflection upon the AI output and upon the assessments (their own, the others’, the 

teacher’s) of the output itself, will also prompt them to confront with the question of what does it 

mean to understand something: merely copying patterns mechanically does not generate 

understanding. 

Discussion 
The model sketched above is coherent with the framework we described in the previous section. In 

particular, for what concerns the theory of Expansive Learning, it is directly related to the six key 

ideas listed above. 

First, the model is designed not merely to produce a single outcome but to foster ongoing activity, in 

this case, the critical and evaluative engagement with AI-generated content; this aligns with the 

‘activity-producing activity’ idea and the tenet: ‘action is not activity’, since all its phases cannot be 

understood in isolation but acquire a sense only as a whole. 

Second, with its multiple dialogic activities, the model shifts the focus from individual learning, as in 

the traditional ZPD, to collective creation of a new understanding. 

Third, motives and motivation are to be found in the ‘object-AI’ not only as a counter-stand on which 

one stumbles upon but also—after it has been assessed, discussed, evaluated—a richer conceptual 

object that will constitute itself as the “future-oriented purpose of the activity” (Engeström & 

Sannino, 2010), as the students will realize after each iteration of their expanding activity. 

Fourth, the model leverages the contradictions between the traditional and the not-yet-there new 

learning methods, both from the perspective of the students engaged in their homework and of the 

teachers trying to assess the students’ performance, thus literally building the new method out of their 
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engagement in activities whose basic premise is the exact negation of what the traditional method 

required, that is using the AI and copying its results. 

Fifth, ascending from the abstract to the concrete involves starting with the simplest category (e.g. a 

mathematical problem, a machine capable of human-intelligence-level tasks, competitive debate) 

from which, adding layers of complexity by considering more variables and relations through the 

model’s activities, one derives a synoptical understanding of the whole process in its multifaceted 

and interconnected nature, an understanding that eventually challenges some of the preliminary 

assumptions (e.g. that the interesting aspect of a problem lies only in its solution, that a machine is 

actually capable of thinking, that the main goal of debating is competition, etc.). 

Sixth, the double stimulation involves a first stimulus, i.e. a problem that cannot be solved easily and 

immediately, in our case it is the assessment of the validity of the AI-generated solution to a given 

problem; then an additional stimulus is given, in our case the discussion/debate format itself acts as 

the second stimulus, providing a structured method for engaging with the challenge and facilitating 

the development of critical thinking and argumentation skills. 

Conclusions 
The lack of empirical evidence to directly support the propositions and models outlined in this paper 

does not stem from an oversight but from the nascent stage of our project and the innovative nature 

of the educational model we propose. Our research group already worked and experimented both with 

debate-based activities and technology-enhanced learning (Musmarra et al., 2023; Tortoriello & 

Veronesi, 2021), now we are in the preliminary stages of designing a pilot experiment to be conducted 

in a secondary school patterned along the guidelines illustrated in this paper. This pilot test, that aims 

to assess the feasibility, acceptability, and initial effectiveness of our proposed model, will be 

conducted in the context of the research project known as Liceo Matematico (Mathematical High 

School), see (Capone et al., 2017). Should this pilot experiment yield positive results, we plan to 

expand our investigation into a broader experimental study encompassing a wider array of secondary 

education institutions. By the end of the revolution we are currently experiencing, either AI will prove 

itself inferior to human intelligence or it will prove superior. In the first case it will be necessary to 

modify educational practices to let humans learn and exercise those skills in which they are superior, 

in the latter case it will be necessary to modify educational practices to let humans understand why 

AI is superior in handling such tasks. In either case we will have to radically modify our practices, 

not only to give meaning and purpose to the educational system but to give meaning and purpose to 

humanity itself. We hope that our proposal might be one of the first steps in the right direction. 
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Recent literature on teacher education highlights the importance of the development of teacher 

identity. This paper explores how the dynamics of positioning acted by undergraduate mathematics 

students in designing an activity with the use of digital technology for high school students begin to 

shape their mathematics teacher identity. In the first phase of the experiment, they are involved in a 

problem-solving activity in which two transitions are implemented: from Euclidean geometry to 

Taxicab geometry and from the use of paper and pencil to dynamic geometry software. In the second 

one, they are invited to design a similar activity for high school students. Their role changes, and the 

way of conveying mathematics also changes, becoming the one to be taught and, with it, of using the 

digital tool. This induces some positioning driven by the need to communicate mathematics. A change 

of identity occurs, and the mathematics and technological teacher's identity effectively begins to form. 

Keywords: Taxicab geometry, GeoGebra, digital technology, transitions, teacher identity. 

Introduction and conceptual framework 
In current research, identity has received attention from researchers from a wide variety of theoretical 
and methodological approaches in the social sciences and educational research (Sfard & Prusak, 
2005; Andreouli, 2010; Black et al., 2010). Alongside specific knowledge, a fundamental component 
that contributes to the formation of the teaching identity is technological and digital knowledge 
(Drijvers & Sinclair, 2023; Prieto-González & Gutiérrez-Araujo, 2024; Brunetto & Dello Iacono, 
2023). Teacher identity has been identified in different ways: in terms of the constant reinventing of 
themselves that teachers undergo, in terms of the narratives that teachers create to explain themselves 
and their teaching lives (Sfard & Prusak, 2005). Furthermore, recent technological and digital changes 
have inevitably affected teachers’ identity encouraging creativity, as “a disposition to promote the 
ability to generate several solutions and solution paths, to change directions of focus” (Levenson, 
2022). The question arises: what stimuli can be provided in such a way that mathematics students 
begin to look at themselves as teachers? Our aim is to begin to reduce the gap between undergraduate 
students’ mathematics identity (Miranda et al., 2023) and mathematics teacher identity, really a shift 
in identity, highlighting the role of technology in this process. In the identity construction 
undergraduate students move from mathematics to learn to mathematics to be taught and change their 
roles, assuming positions as teachers in challenging school contexts, a discontinuity highlighted by 
Felix Klein (Kilpatrick, 2019). This is only a first attempt to trigger an early identity shift by fostering 
the acquisition of content, pedagogical, and technological knowledge, in accordance with the TPACK 
model (Mishra & Koehler, 2006), through the activation of geometric and digital transitions, 
considering the technology component for teacher training to align with contemporary educational 
needs. According to research, students can improve their understanding by investigating figure 
properties and making conjectures, particularly using dynamic geometry systems. Furthermore, 
comparing different geometric worlds and their semiotic representations helps to advance Euclidean 
knowledge (Komatsu & Jones, 2020; Miranda & Saliceto, 2023). Given that “becoming the-teacher-
you-wish-to-be is tantamount to learning how to engage in certain types of professional practices” 
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(Sfard, 2019), by fostering future mathematics teachers’ ability to design tasks in a digital 
environment, we intend to act on their future mathematics teacher identity. In this sense, the 
intervention aims to begin to shape mathematics students’ teacher identities by offering them learning 
and designing opportunities through shifting from content knowledge to knowledge to teach, with 
technology as an additional element to strengthen their specific and technological identity as teachers. 
Framework for designing the activity for undergraduate students 

In designing the entire experiment, we let ourselves be guided by the principle that exploring concepts 
in Taxicab geometry can help students better understand concepts in Euclidean geometry and that 
transferring their knowledge back and forth between these two geometries, aided by a digital 
environment, from paper and pencil to GeoGebra, strengthens cognitive process activation, fostering 
meaningful learning experiences. Furthermore, the integration of technology to enhance the teaching 
of subject content is considered a crucial skill, in accordance with the TPACK model (Mishra & 
Koehler, 2006). The design develops on two levels and foresees two phases: the first level focuses on 
the epistemological and cognitive levels, and the second one on the metacognitive ones. In the first 
phase, undergraduate students are actively engaged in problem-solving activities in which digital and 
non-digital representations interact and merge to construct conceptual knowledge, while in the second 
phase, they are required to design a similar task to be addressed to high school students, thus changing 
their working perspective and their role. The designing opportunity aimed to sensitise them to the 
complex interactions between content, pedagogy, and technology and to develop their TPACK skills.   
Framework for analysing the perceived teacher identity 

Identity is a dynamic concept. In a social context it is defined by the social role, social relationships, 
and the subject to be addressed in relation to the role. Andreouli (2010, p. 14.1) asserts that identity: 

is seen here as embedded in social relations and as dynamic, contextual and relational. Social 
representations and the dynamics of positioning between self and other define identities. 

The concept of positioning can help clarify the relational aspect of identity. Studies on identity 
development have highlighted the relationship between identity and the processes of positioning that 
occur within discourse. Positioning theory is the study of how people assign themselves and others a 
position in discourse (Harreé & Van Langenhove, 1999). An important topic of discussion in the 
literature on identity is its narrative and discursive aspects, as well as how narrative and discourse 
shape and are shaped by identity. Clearly, teachers' narratives about themselves and their practice, as 
well as the discourses in which they engage, provide opportunities for exploring and revealing aspects 
of the self. Literature promotes this way of thinking about identity and holds in high regard the idea 
that stories are a means of expressing identity: “identities” are “collections of stories about persons” 
(Sfard & Prusak, 2005, p. 16). In our context, students’ narratives are related both to the mathematical 
knowledge to be taught, the choice of which stimulates different reasoning, and to the digital tools 
useful to vehiculate it. Who am I with respect to this knowledge and the tools to construct it? How 
do knowledge and tools intervene in self-other relations involved in my teacher’s identity 
construction? Considering the role played in the specific context, the impact of discourse in self-other 
relations, and the acts of positioning within these relations as powerful in the shaping of students' 
mathematics teacher identity, we analyse students' narratives about themselves during the experience 
(Sfard & Prusak, 2005) and positioning acts (Harreé & Van Langenhove, 1999). 
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RQ How does designing learning activities based on digital and geometric transitions shape and 

influence the early development of undergraduate mathematics students' teacher identities? 

Methodology 
The experiment, which took place in a university in the south of Italy, involved twelve undergraduate 
mathematics students taking a short course, organised in two phases shifting the students' position 
from “to be a student” to “to feel a teacher”. The first one is a moment in which students relate to 
mathematics to learn while immersing themselves in solving the given problem, and the second one 
is a moment in which students reflect on mathematics to be taught through a workshop on designing. 
Both phases could also be interpreted as training phases in the language of teacher professional 
development, giving the opportunity to learn useful skills for the workplace, particularly teaching 
skills, since they require an understanding of how and when the use of digital technologies can add 
value in terms of learning and understanding concepts. According to Mishra & Koehler (2006), 
content, pedagogy, and technology bind each other in a dynamic way, and trainee teachers need to be 
prepared not only to transmit subject content but also to integrate digital skills into their lessons. On 
balance, our process involved content knowledge, knowledge to teach, and technological knowledge, 
following the TPACK perspective (Brunetto & Dello Iacono, 2023). According to the design students 
worked in randomly structured groups in a thinking classroom environment (Liljedahl, 2016). Each 
group had access to a vertical non-permanent board as well as a digital environment that included a 
collaborative tablet, digital software for design, a collective document in which to place the solution 
product and process (as well as taking photos and reporting them in the collective file), and a personal 
document in which to report on their experiences. 

1. Define the Taxicab metric; define Taxicab objects (circles, conics, angles, trigonometric functions), one or 
more. Choose them and investigate their taxicab world (relationships, statements) by reasoning on definitions 
and statements analogous to those already known in Euclidean geometry. 

2. Design a similar task intended for upper secondary students to switch between Euclidean and Taxicab 
geometry objects supported by GeoGebra.  

 Figure 1 - Task addressed to undergraduate students  

Define the Taxicab distance, define the Taxicab circle (or conics), and investigate their world (relationships, 
statements, for example). At how many points do they meet? (How many symmetries does a taxicab circle have?) 
Compare it with Euclidean geometry through reasoning on analogous statements (helped by the transition from 
paper and pencil to GeoGebra). 

Figure 2 - An example of task to be addressed to high school students from undergraduates 

Undergraduate students were given a task to explore the definition of the Taxicab metric, the 
advantages of using it to understand a Euclidean geometry concept, and conjecturing and proving 
about it supported by the dynamic geometry software GeoGebra. Specifically, the task consists of 
two subtasks (Figure 1), each aiming at a specific subgoal: cognitive (learning in the role of the 
learner) and metacognitive (reflecting and designing in the role of the teacher). It requires students to 
shift their focus from the relationship between themselves, their colleagues, and their teacher to the 
relationship between themselves and their learners, while activating the transitions from paper and 
pencil to dynamic software and from Euclidean to Taxicab geometry. In the workshop phase, 
undergraduate students, now in the role of teachers, design an analogous activity to be addressed to a 
high school students’ group (12th grade) (Figure 2). Interaction with high school students highlighted 
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not only the pedagogical potential revealed in the transition between geometries but also the power 
of GeoGebra to help them learn geometric properties and their relationships in a dynamic way. 
Data collection and Data Analyses  

Our collected data, which included students' recorded discourses, collective logbooks and board 
photos reporting students' thinking about the problem, and personal feedback questionnaires reporting 
students' perceptions of the learning experience, was digitally saved. Specifically, students’ feedback 
on the experience was qualitatively analysed through a systematic and objective identification of 
some indicators (I1, I2, I3, I4), separately looking at the effects of the two lived transitions 
(geometrical and digital) on students’ teacher identity by labelling and classifying sentences relating 
to a single identity indicator to understand whether the designed Taxicab digital or non-digital 
manipulation of a concept leads to Euclidean digital or non-digital manipulation, and conversely, that 
is a harbinger of meaningful teaching. The lens we used to analyse the discourses draws on two 
theoretical constructs: the definition of identity (Sfard & Prusak, 2005) and the theory of positioning 
(Harré & Van Langenhove, 1999; Andreouli, 2010). We focused our qualitative analysis on the 
nuances to which students perceived their identity as mathematics teachers (students' self-perception 
of teachers' identity) by examining students' answers to the following selected questions: 

Do you think switching from one geometry to another would help students improve their 

understanding of concepts? Would it help to stimulate meaningful learning (motivation, 

engagement, building new knowledge, etc.)? Could an activity on the taxi metric be useful in 

school? How did you find yourself working in the role of a teacher who thinks and designs a task 

for high school students? Do you think the use of dynamic geometry software to explore 

relationships, properties, and definitions moving between Euclidean geometry and Taxicab 

geometry would help to better understand geometric concepts? Tell us. 

We considered students’ answers to the above questions as stories the student experienced in the role 
of teacher, stories that students tell themselves as they change their context and role, passing from 
the cooperation to solve to the cooperation to design, as well as their positions in the relation self-
other. We analysed students’ discourses from the perspective of positioning theory. More in detail, 
we looked for whether changes emerged in the aspects characterising the initial mathematics student’s 
identity. To accomplish this, through thematic analysis (Braun & Clarke, 2006), we identified four 
positioning indicators, and we went on to observe the occurrence of these components in the answers 
provided by students. Specifically, to investigate the social roles and self-other relationships involved 
in identity construction, we elaborated and grouped significant students' excerpts on four identity 
indicators, identifying the positionings and transitions that occur when changing identities: I1 - 
Positioning the use of geometries between self and learners in relation to the effectiveness of the 
transition between two geometries to understand a concept and construct knowledge to teach 
comparing  themselves with others; I2 - Positioning the use of a digital instrument between self and 

learners in the dynamic between themselves, peers, and school students; I3 - Positioning themselves 

in the role of teacher in elaborating and choosing the mathematics to teach and how and to teach it in 
terms of methodology, instrumentation, environment; I4 - Exhibiting teaching creativity in designing 
models: reflecting on developing or expanding a workshop model in teaching. Obviously, these 
indicators are not separated from one another in the sense that each captures nuances about the impact 
of the designed activities on the student's mathematics teacher identity. 
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Findings and discussion 
We investigate the effects of the transitions implemented on students' teacher mathematics identity 
by highlighting the identified indicators in students’ feedback discourses. Each indicator captures 
nuances about the impact of the activities on students' perceptions of their teacher’s identity. 

I1 - Positioning the use of geometries between self and learners. The indicator I1 emerges from the 
students’ answers: the construction of one’s own identity as a “mathematics teacher” takes shape in 
a continuous exchange and negotiation with others in the transition between geometries.  

Us1:                Of course, switching from one geometry to another helps you understand the 
concepts because it allows you to see similarities and differences between the 
geometries you've already studied, especially if you're studying a non-trivial or 
unusual geometry. […] It was a very valuable experience for me in terms of 
developing as a potential mathematics teacher. 

Us5:               The transition from one geometry to another, in my opinion, would greatly 
assist students in improving their concept understanding, especially because 
some notions change representations. A similar passage that comes to mind is 
one that occurs in modular algebra; when switching from one definition set to 
another, the sum of two numbers can produce different results. 

Us8:                I believe that dealing with different types of metrics would be very useful for 
students at different school levels and would help them stimulate their creativity 
and flexibility, helping them to decide which metric is the most convenient to use 
and to build new knowledge themselves. I remember that in the Geometry III course 
we dealt with how some sets could or could not be open in different topologies […] 

Us2:                 I think it could be useful in school because it's the simplest example of geometry 
different from Euclidean geometry I met. Above all, I would point out that many 
things are different from their idea of geometry, to get them used to thinking 
outside the box if they ever wanted to follow a scientific university pathway. 

I2 - Positioning the use of a digital instrument between self and learners. It appears that signs of a 
shift towards mathematics teacher identity, even in relation with the dynamic geometry envirorments, 
are emerging. The use of GeoGebra foster a deeper understanding of the mathematical contents 
investigated with paper and pencil (Us8), particularly for those with weak geometric intuition (Us6): 

Us6: [...] I believe that mathematical software in general is very useful for better 
visualising concepts and understanding them to the fullest, especially for those 
who have little geometric intuition and cannot imagine figures on their own. 

Us8:  […] I would propose the use of GeoGebra to show students in real time, on a 
digital whiteboard, what the use of Euclidean and Taxicab metrics entails to better 
understand the concepts covered by paper and pencil. 

Us5:          […] In my opinion, the use of dynamic geometry software to explore relationships, 
properties, and definitions between the two geometries would help a lot to better 
understand geometrical concepts. 

Us1:             Of course, this is also helpful both for the teacher as it simplifies the work and for the 
student as the software gives the possibility to see graphs and geometric figures 
from all possible angles, where sometimes it is impossible to see them manually. 
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I3 - Positioning themselves in the role of teachers. Many of the students' answers showed the indicator 
I3, which describes the changing of position in relation to the role as it emerges. Some students' 
protocols appear to strongly reflect a rethinking of themselves as mathematics teachers. The task 
creation encourages students to take an active role in their learning and to teach others. They 
understand the dual role they play in the development of both their own knowledge and that of other 
school students. Us8 felt a sense of responsibility to create a resource, as a teacher would, and paid 
closer attention to his words and preparations. Us8 felt consolidated his knowledge useful for teaching 
and excited to think that a task would benefit school students. Furthermore, rather than giving them 
answers, give them hints that will allow them to reach their own conclusions, encouraging 
autonomous exploration. In Us8's words, it appears that the comparison with others, while developing 
one's own mathematics teacher identity, has favoured a shift in perceived competence. When he says 
that he had to think about relating to students and not to colleagues, he is thinking about assuming a 
new role, a new position (Sfard & Prusak, 2005; Harré & Van Langenhove, 1999): 

Us8: It was very interesting to "improvise" myself as a teacher, even if it was not very 
simple, probably because I still see myself in the role of a student. I tried to write a 
proposal that could involve and interest the students, making them understand how 
the topic is very real, close to their days, and making it sufficiently light, especially 
in an initial approach, also through software such as GeoGebra. It may seem 
obvious, but I had to think about relating to students, and not to colleagues 
with whom I share the same knowledge: it was a small stretch of imagination, but 
certainly useful and stimulating, also in view of a possible future job. 

Us7 reflects on how to design a learning activity that engages students by using real-world issues. 
His identity as a designer begins to take shape, and this is a clear act of positioning in the teacher role: 

Us7:  [...] Students would surely gain from working on the taxicab distance problem.  I 
think it can be thought-provoking to see how this metric is "more real" for those 
who are used to driving through our cities. Moreover, it has been observed that this 
distance is used in disciplines other than mathematics, such as criminology. All 
ideas to get students interested! Especially if they were first introduced in groups 
and compared as a group. Additionally, to compare and better visualise and explore 
topics, it would be helpful to use tools like GeoGebra. 

Us5 and Us3 also present the challenge of communicating clearly, like that of a teacher. This 
demonstrates an early development of a teacher's identity:  

Us5:          Working in the role of a teacher who thinks and designs a task for high school 
students made me feel that I had a great responsibility and I asked myself  if I 
was able to do it, since I feel that my knowledge is not yet enough to efficiently 
convey a concept to students younger than me. The reflections that led me to our 
proposal were to make the taxi metric a topic that can be understood by everyone, 
regardless of the degree of preparation of each student. The aim was therefore to 
deal with this concept as clearly as possible so that it could reach everyone. 

Us3:               My life goal is to become a teacher […]. The role put me at ease and let me 
dream a little. The goal was to propose an alternative lesson that would capture the 
students' attention. Theory is very important, but if I ever become a teacher, I would 
always accompany it with many examples, especially from daily life. 

I4 - Exhibiting teaching creativity. The theme I4 emerges as an example in the protocols of a working 
group. They recognise that being engaged in creating an activity is an opportunity for personal and 
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collective growth, both as students and future teachers. Examining an excerpt of the collectively 
recorded and transcribed dialogue describing the group's concept development (concept digital 

manipulation) prior to designing an activity for high school students. Mindful of the difficulties or 
dislikes encountered at school in the study of Euclidean trigonometry, they considered Taxicab 
trigonometry, and the concept definition (cd), concept image (ci), and concept digital manipulation 
(cdm) of concepts gave them confidence to design an activity to be addressed to high school students: 

Us2    […] A Taxicab-radian is an angle whose vertex is the center of the unit Taxicab-
circle and intercepts an arc of Taxicab-length 1. (cd) Look at the figure!! (ci)  

Us1: We have this definition (cd): The measure of a Taxicab-angle θ is the number of 
Taxicab-radians subtended by the angle on the unit circle with vertex in the center.  

Us3:  We could say: The sine of a Taxicab-angle is the Taxicab-distance from the x-axis. 
If so, let’s graph it!! Oh... It's edgy!! (cdm) It’s not the same (ci). Right at the 
maximum and minimum points. Better to say angular! Mh…(cdm) (Figure 3) 

   

Figure 3: The Taxicab radian, sine, and cosine 

Us2:  What other concepts? And which Euclidean trigonometry Identities or Theorems 
still hold with respect to the Taxicab metric? Which ones don't? (Law of sines, Law 
of cosines, Carnot Theorem). The fundamental identity changes. (cdm) 

The creative act implemented by the group continues to manifest in the process of building the 
trigonometry to understand the Euclidean trigonometry. Once explored the Taxicab trigonometry, 
this group designs a problem-solving activity in such a way that new knowledge is not passively 
received, but rather actively constructed, interacting with colleagues, and starting from real life.  

Conclusions 
Much recent literature on teacher education contains arguments for attention to identity in teacher 
development. However, there are limited studies in the accessible literature that investigate 
mathematics students’ teacher identity development. In this study, we look at the impact of discourses 
and positioning that occur while designing with colleagues and submitting designed tasks to high 
school students on the formation of university students’ early mathematics teacher identities. 
Undergraduate mathematics students, attending a mini-course on useful knowledge for the 
workplace, were engaged in their first teaching experience. They shifted from a learning to a teaching 
position using GeoGebra to solve problems involving the transition from Euclidean to Taxicab 
geometry. The qualitative analysis revealed that beginning teachers’ experiences positively 
influenced their mathematics teacher identities. Furthermore, analysing participants’ feedback 
questionnaires revealed valuable information about teacher identity development. The relationships 
between technology and mathematics revealed promising implications for prospective teacher 
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identity development. A future research direction might be to use TPACK to analyse the results in 
relation to each indicator, from which a good predisposition towards the use of technology emerges. 
References 
Andreouli, E. (2010). Identity, positioning and self-other relations. Social Representations Volume 19, pp. 

14.1-14.13.  
Black, L., Williams, J., Hernandez-Martinez, P., Davis, P., Pampaka, M., & Wake, G. (2010). Developing a 

‘leading identity’: The relationship between students’ mathematical identities and their career and higher 
education aspirations. Educational Studies in Mathematics, 73(1), 55–72.  

Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 
3(2), 77–101. 

Brunetto, D., & Dello Iacono, U. (2023). Teaching Mathematics with Digital Tools: An Italian Perspective. 
International Journal for Technology in Mathematics Education, 30(4), 205–212. 

Drijvers, P., & Sinclair, N. (2023). The role of digital technologies in mathematics education: purposes and 
perspectives. ZDM - Mathematics Education.  

Harré, R., & Van Langenhove, L. (1999). Positioning theory. Moral contexts of intentional action. Oxford: 
Basil Blackwell 

Kilpatrick, J. (2019). A Double Discontinuity and a Triple Approach: Felix Klein’s Perspective on 
Mathematics Teacher Education. In: Weigand et al.(eds) ICME-13 Monographs. Springer, Cham. 

Komatsu, K., Jones, K.(2020). Interplay between Paper-and-Pencil Activity and Dynamic Geometry 
Environment Use during Generalisation and Proving. Dig Exp Math Educ 6, 123–143.  

Levenson, E. S. (2022). Exploring the relationship between teachers’ values and their choice of tasks: the case 
of occasioning mathematical creativity. Ed Studies in Maths, 109, 469–489.  

Liljedahl, P. (2016). Building thinking classrooms: Conditions for problem solving. In Felmer, P., Pehkonen, 
E., & Kilpatrick, J. (Eds.), Posing and Solving Mathematical Problems: Advances and New Perspectives 
(pp. 261–386). Springer.  

Miranda A., Picariello L., & Coppola C. (2023). Towards a designated undergraduate students’ mathematics 
identity through a thinking group approach.  In P. Drijvers, C. Csapodi, H. Palmér, K. Gosztonyi, & E. 
Kónya (Eds.). Proceedings of CERME13 (pp. 2491–2498).  

Miranda A., & Saliceto, L. (2023). Back and forth between Euclidean geometry and Taxicab geometry to 
foster students' theoretical thinking in digital contexts. IJTME (in press) 

Mishra, P. and Koehler, M. J. (2006). Technological pedagogical content knowledge: A framework for 
integrating technology in teachers’ knowledge.Teachers College Record, 108 (6), 1017–1054. 

Prieto-González, J.L., & Gutiérrez-Araujo, R.E. (2024). Geometry learning with dynamic software in pre-
service mathematics teacher education: A systematic review. Educ Inf Technol 

Sfard, A., & Prusak, A. (2005). Telling identities: In search of an analytic tool for investigating learning as a 
culturally shaped activity. Educational researcher, 34(4), 14–22.  

Sfard, A. (2019). Making sense of identities as sense-making devices. ZDM Math Ed, 51, 555–564.



 

 

Proceedings of the 17th ERME Topic Conference MEDA4, 3-6 September 2024, Bari, Italy                      ISBN 978-88-6629-080-3 

  
287 

Comparing the efficacy of dynamic vs. static visualisations in students’ 
characteristics of basic mental models of the derivative 
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In this study we examine the question of whether the two central basic mental models of the derivative 

“local rate of change” and “tangent slope” can be developed more effectively using dynamic or 

static visualisations after an intervention introducing the concept of the derivative. For this purpose, 

a questionnaire on these two basic mental models was completed by 11th grade students (W = 218). 

The t-tests indicate that the “tangent slope” was developed significantly more effectively in the 

dynamic group than in the static group with a small effect size (Y = .462); however, there was no 

difference regarding the “local rate of change” when comparing the two groups. 

Keywords: basic mental models, derivative, dynamic visualisations, static visualisations 

Introduction 
Dealing with the derivative in calculus courses at upper secondary level poses a major challenge for 
many learners. According to the framework developed by Zandieh (2000), a full understanding of the 
concept of the derivative is achieved when the three process-object-layers ratio, limit and function 
can be applied in multiple representations (graphical, verbal, physical and symbolic). Difficulties can 
occur at all layers. Various studies have shown a lack of understanding or significant 
misunderstandings concerning the concept of limit of a function and the derivative as a rate of change 
or as a tangent slope (Bressoud et al., 2016; Orton, 1983). To counteract these difficulties at an early 
stage, the study that is featured in this paper starts with the introduction to the concept of the derivative 
at one point (process-object-layer limit).  

First, the theoretical framework for basic mental models of the derivative, i.e. adequate interpretations 
that enable learners to understand the concept they are using, is described (Greefrath et al., 2016). 
Then, learning with visualisations is then explained. In particular, dynamic visualisations such as 
animations that can be created via GeoGebra have considerable potential in calculus lessons: Through 
a visual approach to calculus concepts, students can gain an insight into the inner world of underlying 
formal concepts (Bressoud et al., 2016). An integration of basic mental models and visualisations 
seems to provide a promising perspective.  

Theoretical Background  
Concept of basic mental models of the derivative 

The concept of basic mental models (in German: “Grundvorstellungen”) is based on traditions dating 
back to the 19th century. It is characterized by the description of “the relationships between 
mathematical content and the phenomenon of individual concept formation” (vom Hofe & Blum, 
2016, p. 230). With the help of basic mental models of mathematical concepts, students can grasp 
their content in such a way that they can be applied to different (real-life) situations. Nowadays, 
didactics scholars differentiate between a plethora of basic mental models for various mathematical 
concepts. In relation to calculus in upper secondary schools, the concept of the derivative and the 
integral are the most fundamental ones. For the derivative, Greefrath et al. (2016) identified the 
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following four basic mental models: Local rate of change, tangent slope, local linearity and 
amplification factor. A study by Greefrath et al. (2022) with undergraduates of mathematics and 
physics also found that the surveyed students most strongly prefer the tangent slope in various 
application situations for the derivative, followed by the local rate of change. Furthermore, a look at 
international curricula shows that the other two basic mental models tend to play a subordinate role 
in the discussion of the derivative in mathematics lessons. 

Local linearity is characterized by the fact that, locally, the graph approximately corresponds to a 
straight line and that the derivative corresponds to the slope of this straight line; in the case of the 
amplification factor, the derivative provides information about how strongly small changes in the 
independent variable affect the dependent variable. In the basic mental model local rate of change, 
the derivative is interpreted as the limit value of a quotient (average rate of change). Traditionally, 
this approach is based on a four-step procedure: Starting from the function value of a function at one 
point, the difference of two function values is regarded, after which the average rate of change, which 
is represented by the difference quotient, is calculated. Finally, the local rate of change can be 
determined by systematically reducing the considered interval. The core idea of the local rate of 

change is that the derivative indicates the instantaneous velocity of a change process. In the basic 
mental model tangent slope, the derivative at a point is interpreted as the slope of the tangent to the 
graph at this point. Here, the tangent acts as a clinging line and has the same slope as the function 
graph at this point. In addition, a comprehensive idea of the tangent slope is that the tangent indicates 
the local direction of the graph (Greefrath et al., 2016, 2022).  

Learning with visualisations  

Visualisations can promote a deeper understanding of mathematical concepts by providing complex 
information in an illustrative way (Tversky et al., 2002). They can also contribute to the development 
of basic mental models, especially in calculus (vom Hofe & Blum, 2016; Zengin, 2018). On the one 
hand, visualisations can be static, such as illustrations or photos, which have no temporal process. On 
the other hand, the use of dynamic visualisations, for example in form of animations, is also a suitable 
option. They differ from static visualisations in that they “portray continuous temporal change of a 
subject matter by triggering perception of continuous change” (Wagner & Schnotz, 2017, p. 69). In 
our study, we define the concept of dynamic visualisations more broadly by also including user 
interactivity. These dynamic visualisations can be created via GeoGebra and offer users the option of 
using an animation or the drag mode to move a point on a function graph.  

In this context, special emphasis should be put on Dyna-Linking, which enables a dynamic linking 
of graphical-visual, verbal and algebraic forms of representation (Ainsworth, 1999). Such links make 
the relationship between a function and its derivative or the relationship between the tangent slope 
and the graph of the derivative function particularly clear (Hong & Thomas, 2015).  

Both the basic mental models local rate of change and tangent slope can be viewed from a dynamic 
and a static perspective: The local rate of change is characterized by the limit value of average rates 
of change and can be understood statically via the formal expression lim

'→'#

2(')	"	2('#)
'	"	'#

 as well as 

dynamically via the idea that the distance between the two points (4	|	,(4)) and (41	|	,(41)) is 
gradually reduced for 4 → 41, approaching 0. Using average rates of change of the form 2(')	"	2('#)

'	"	'#
, 

the local rate of change of a function , at the point 41 can thus be determined via this limit value 
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process. The idea of the derivative of a function at a point 41 as a tangent slope can be viewed 
statically by zooming into the function graph at 41 close enough for the graph to correspond to the 
tangent at that point in a small interval. The dynamic view is based on the movement of tangents 
along the graph, each of which then indicates the current direction of movement of the graph 
(Greefrath et al., 2016). 

In a meta-study by Berney & Bétrancourt (2016) comparing dynamic and static visualisations, a 
positive overall effect in favour of dynamic visualisations was found with an effect size of Hedge’s 
\ = 0.226. If only the mathematics-specific studies that focused on conceptual knowledge as a 
knowledge dimension are considered here, this effect is even smaller. 

Research question 

Due to the described potentials of dynamic visualisations, it remains unclear whether they are more 
advantageous than static visualisations and facilitate the development of basic mental models, 
particularly concerning the derivative. In a pilot study with a sample size of 110 students, no 
differences were found between students in dynamic and static intervention groups regarding their 
degree of expression of either of the two basic mental models (Nguyen, in press). Furthermore, the 
creation of GeoGebra applets is undoubtedly associated with extra effort for teachers, which justifies 
an investigation of the added value of dynamic visualisations as an alternative to the static 
visualisations that are traditionally used in students’ textbooks. Therefore, the following research 
question is examined in this study: To what extent does the degree of expression of the two central 
basic mental models local rate of change and tangent slope differ in students who worked with either 
(1) GeoGebra-generated dynamic visualisations or (2) static visualisations during a lesson sequence 
about the derivative?  

Methodology 
Sample and procedure  

The survey took place in the school year 2023/24 and was conducted in the period from October 2023 
to January 2024. The total sample size consists of 218 students (122 female, ]4HI = 16.29, _`4HI =
0.57) attending grade 11 in Germany. Only students who were present for at least 50% of the 
intervention were included in the sample. 

To allow for an unbiased comparison of the dynamic and static approach to the concept of the 
derivative, the study design of Brnic et al. (2024) was adapted (see Fig. 1). In each course participating 
in the study, two comparable groups were formed, taking into account the results of the pre-test and 
gender. One group worked with dynamic visualisations during the intervention (dynamic group) and 
the other group worked with static visualisations (static group). The dynamic group consisted of 110 
students (63 female, ]4HI = 16.36, _`4HI = 0.64), while 108 students (59 female, ]4HI = 16.23, 
_`4HI = 0.47) belonged to the static group.  

The following three topics formed the framework of the teaching sequence designed for six 45-minute 
lessons: 

(1) Transition from the average to the local rate of change and the interpretation of the derivative 
as a local rate of change  
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(2) Transition from secant slopes to a tangent slope and the interpretation of the derivative as a 
tangent slope  

(3) Graphical differentiation with and without context 
As in Brnic et al. (2024), the dynamic and static groups were taught in two different rooms. The 
teaching sequence was designed so that each of the three topics was first introduced in a teacher-led 
lesson followed by a practice lesson with a research assistant, in which students worked 
independently on exercises that built on the previous lesson. This allowed the actual teacher of the 
students to teach each group with a one-lesson delay based on the given lesson plans. Due to the fact 
that the participating teachers always taught both the dynamic and the static group to the same extent, 
“the teacher’s personality had the same influence on students' learning in each condition, and the 
impact of teachers' personalities did not differ between the treatments applied in this study” 
(Schukajlow et al., 2015, p. 402). We also made sure that an approximately equal number of courses 
started dynamically and statically. 

 
Figure 1: Design of the study (based on Brnic et al., 2024) 

Material 

Each student received a folder with all the worksheets required for the six-lesson sequence. The 
dynamic group worked with dynamic visualisations generated via GeoGebra, which could be 
accessed via QR codes on the materials. In contrast, the static group worked on almost identical tasks 
with static visualisations that were created using screenshots from the dynamic visualisations (see 
Fig. 2). 

When creating the two teaching sequences, particular emphasis was placed on comparability so that 
the two basic mental models of the derivative could be developed in both groups. Castro-Alonso et 
al. (2016) identified seven biases in studies that compared dynamic and static visualisations. We tried 
to account for biases as much as possible: Dynamic and static visualisations are comparable in terms 
of appeal (both are coloured), variety (no added arrows in static visualisations), media (both were 
accessed on a tablet), size and realism. The bias number was also taken into account in that a static 
visualisation was usually sufficient to complete a task. Sometimes this was not possible when creating 
the static equivalent, for example when a limit value process was to be displayed. Only the bias 
interaction was not taken into consideration, as the possibility of interactivity is part of the dynamic 
visualisations in the context of the study and can therefore be regarded as inherent. 
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Figure 2: Example for a visualisation and an exercise (idea for the visualisation based on Avendaño et 

al., 2016)  

Questionnaire on basic mental models of the derivative 

After the intervention, students were asked to complete a questionnaire administered through SoSci-
Survey concerning the basic mental models of the derivative. This questionnaire draws on the 
assessment tool developed by Greefrath et al. (2021). In this particular study, six test items were 
adjusted and an additional one was devised, all sharing a common structure: presenting a real-world 
context to students in textual form, often accompanied by a graph of a function (see Fig. 3).  

 
Figure 3: Example item from the questionnaire (based on Greefrath et al., 2021) 

Subsequently, students were prompted to assess the degree to which an explanation of the given 
scenario resonated with their own way of thinking on a five-point Likert scale ranging from "--: The 
explanation does not correspond to my way of thinking at all" to "++: The explanation corresponds 
exactly to my way of thinking". Each explanation was tailored to focus on either the local rate of 
change or the tangent slope. We converted the students' answers to a scale from 1 (--) to 5 (++) and 
determined the reliability of the scales using Cronbach's alpha. This resulted in a value of 0.65 for 
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the local rate of change and 0.67 for the tangent slope. A total score was calculated for each student 
based on their answers corresponding to each basic mental model and these were then averaged.  

We did not use two measurement points, as it was assumed that almost all learners would only learn 
the concept of the derivative through the intervention. Nevertheless, the two groups are comparable, 
as the parallelization created two groups that are almost homogeneous in terms of mathematical 
performance based on their pre-test results in a standardised test on functions and derivatives. 

Results 
The descriptive results (average mean values) of each basic mental model for the dynamic as well as 
the static group are presented in Tab. 1. It is noticeable that the dynamic group has a higher average 
mean value for both basic mental models than the static group. Specifically, the mean difference in 
the local rate of change is 0.066 and, regarding tangent slope, it is even 0.248 in favour of the 
dynamic group. 

Table 1: Descriptives of students’ degree of expression of the basic mental models local rate of change 

and tangent slope 

Variable Local rate of change 
 

Tangent slope   

 ] _` 
 

] _`  W 

Total 3.796 0.715 
 

3.918 0.709  218 

Dynamic group 3.829 0.747 
 

4.077 0.658  110 

Static group 3.763 0.683 
 

3.757 0.726  108 

We conducted independent samples t-tests in order to figure out whether there are significant 
differences between the dynamic and the static group with regard to both basic mental models of the 
derivative. We first checked the necessary requirements for the application of t-tests: The Levene test 
was not significant in relation to both basic mental models, so that equality of variance can be 
assumed. The significant Shapiro test, however, confirms that the data are not normally distributed. 
Nevertheless, t-tests can be used reasonably due to the large sample size (Wilcox, 2012).  In relation 
to the local rate of change, there is no statistically significant difference between the two groups, 
+(216) = 2.453, > = .501. When considering the tangent slope, there is a statistically significant 
difference in favour of the dynamic group (+(216) = 3.411, > <.001). It can also be noted that the 
effect size is small (Cohen’s Y = 0.462).  

Discussion and outlook 
Based on the descriptive results, it can generally be stated that students in both groups were able to 
develop the basic mental models of the derivative local rate of change and tangent slope through the 
six-lesson intervention. It is also noticeable that the explanations based on the tangent slope achieved 
a higher level of agreement on average (]#4$HI$#	JKL.I = 3.918	vs. ]KL-4K	M4#I	L2	-N4$HI = 3.796). 
This result is in line with Greefrath et al. (2022) with the exception that the difference between the 
two basic mental models is not as high in our study. Regarding the influence of the type of 
visualisation, it can be concluded that the local rate of change can be developed to a similar extent in 
both comparison groups. Concerning the other basic mental model, students in the dynamic group 
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think significantly more strongly of the derivative as a tangent slope in different real-world contexts 
than students who learned about the derivative through static visualisations. 

Despite the study’s strong design in terms of minimization of teacher effects and the use of similar 
materials in both groups, enabling an unbiased comparison of the dynamic and static approach, some 
limitations should not remain unmentioned: In order to investigate the actual effect of introducing the 
concept of the derivative via dynamic or static visualisations, a control group that did not receive 
mathematics lessons supported by any visualisations is missing. In addition, a questionnaire with 
predefined statements on the two basic mental models of the derivative was used as a measuring 
instrument in this study. It remains unclear whether students would have also recognised the local 

rate of change or the tangent slope in the respective application situations without these predefined 
answer options. Furthermore, the questionnaire does not answer whether students can solve calculus 
tasks that require one of these two basic mental models (Greefrath et al., 2022).  

For further analyses, the results of a performance test on dealing with derivatives are used to 
investigate whether tasks on the tangent slope could also be solved significantly better by students in 
the dynamic group than by students in the static group. In addition, as already described, the local 

rate of change and the tangent slope can be viewed from both a dynamic or a static perspective and 
it is conceivable that one of these perspectives might be more advantageous depending on the 
application situation. For this reason, the introduction to the concept of the derivative should possibly 
take place via dynamic and static visualisations. This approach should therefore be investigated in a 
follow-up study, which also incorporates elements of a qualitative study, to investigate the reasons as 
to why working with dynamic visualisations through GeoGebra is beneficial in the development of 
the basic mental model tangent slope. We assume that the use of GeoGebra’s drag mode and its 
animations of a tangent along a graph could support students' conceptualisation of the derivative as a 
tangent slope. 
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Artificial intelligence (AI) is rapidly developing and its integration in education is challenging. 

Research shows that it has been used in different contexts in education, including assessment, and 

that the interaction with humans is crucial to use it effectively. This paper describes the first results 

of a study exploring the theme of perceived difficulty in mathematics education, comparing students’ 

and artificial intelligence-based chatbots’ perceptions regarding two mathematical tasks. Through 

the theoretical lenses of mathematics education, we point out differences that highlight how to 

interpret student difficulties and link them to tasks and assessment aspects. 

Keywords: Artificial intelligence, perceived difficulty, students, mathematics education. 

Introduction 
Artificial intelligence (AI) is an area of technology, which is rapidly developing, becoming an integral 
part of everyday life, and posing challenges regarding its integration in education. Only in recent 
years, as interpreted from systematic reviews, the educational impact of AI has been seriously 
considered (for instance, see Chen et al., 2020; Lo, 2023). In a broad sense, AI could identify a 
knowledgeable machine that is capable of reasoning to find the solution to a problem (Richard et al., 
2022). The performance of different generative AIs has been compared, finding slight differences 
among them (Rudolph et al., 2023; Nguyen Thanh et al., 2023). Literature reviews show that AI in 
education has been used in diverse contexts such as tutoring, adaptive learning, and assessment, but 
research in this field is still needed (Kooli, 2023). The integration of AI in assessment is delicate, in 
fact it might be very helpful to teachers who could save some of the time spent grading tests and 
evaluating essays (Pedro et al., 2019). Even before the emergence of AI, there have been studies about 
the possibility to automatically determine the difficulty of a test (Lee & Heyworth, 2000). 
Nevertheless, the human factor seems essential to make AI useful (Pedro et al., 2019).  

The difficulty in mathematics is an extensively studied theme, and researchers in mathematics 
education have delved into this topic, highlighting various factors that contribute to it, such as 
mathematical content (Thevenot & Oakhill, 2005), text comprehension (Spagnolo et al., 2021), and 
affective factors (Zan, et al., 2006). However, despite thorough research on difficulty, the concept of 
perceived difficulty remains underexplored. It is commonly accepted that perceived difficulty is 
different from difficulty, even though they are strictly related, in fact, for instance, the characteristics 
of a task can influence students’ and teachers’ perceived difficulty by shaping their idea of the task 
(Saccoletto & Spagnolo, 2022). Unlike the straightforward evaluation of the difficulty of a task, 
usually made considering the ratio between the number of students who solved it correctly and the 
total number of students to whom it had been administered (Mehrens & Lehmann, 1991), perceived 
difficulty lacks an agreed-upon definition. 

In mathematics education there is no definition of perceived difficulty of a task; however, within the 
field of cognitive psychology, researchers have explored the theme of subjective difficulty since the 
1990s, developing different definitions to characterize it. The perception of the difficulty of a task is 
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sometimes considered as determined by the cognitive load involved in the task (Hellmann & Nuckles, 
2013), although restricting the evaluation to cognitive aspects might oversimplify the picture. One of 
the concepts that can be regarded as close to the perceived difficulty as we mean it is the “feeling of 
difficulty” (FOD), defined as a “metacognitive experience that monitors cognitive processing as it 
unfolds” (Efklides & Touroutoglou, 2010, p. 272). To firstly explore the elements influencing the 
perceived difficulty of a task in mathematics education, some qualitative studies have been carried 
out, resulting in the definition of five macro-categories of descriptive factors: Resolution strategy, 
Capability and experience, Emotions, Task formulation, and Personal considerations (Spagnolo & 
Saccoletto, 2023).  

The study that we carried out, described in the following paragraphs, is a first exploratory study to 
investigate how AI perceives the difficulty of some mathematical task. In particular, the aim of the 
paper is to examine AI’s perceived difficulty and its relationship with students’ and teachers’ ones, 
also considering the theoretical lenses on which the macro-categories have been developed. 

Theoretical background 
The five macro-categories of factors influencing perceived difficulty have been developed based on 
students’ answers to questionnaires and in-depth interviews, grouping the ones that presented 
common characteristics (Spagnolo & Saccoletto, 2023), through a textual analysis using Constructive 
Grounded Theory approach (Mills et al., 2006). The macro-categories emerged are not mutually 
exclusive; on the contrary, many responses spanned multiple dimensions. The first macro-category 
is “Resolution strategy” and it includes answers that discuss the strategies necessary to solve the task 
or the fact that elements such as calculus or reasoning were essential for achieving a solution. The 
second macro-category is “Capability and experience”, and it covers students’ self-perceived 
competence, and skills. Additionally, it includes their prior experiences in solving similar problems, 
contributing to their familiarity with specific task types. Within this macro-category, students also 
reflect on their self-perception, doubts, and challenges faced during problem-solving, as well as time 
spent solving the task. The third macro-category, named “Emotions”, regards the emotional aspects. 
The fourth macro-category is “Task formulation”, which refers to answers discussing the formulation 
of the task itself, particularly its textual aspect. Finally, the fifth macro-category is “Personal 
consideration”, which includes references to students’ personal reflections related to their own 
success in mathematics. 

The macro-categories draw on theories and construct used in mathematical education, among which 
we mention the expert blind spot and the didactic contract, which we are going to explicitly consider 
in the analysis. Some research studies have highlighted that teachers sometimes lack awareness of 
the reasons behind students’ mistakes (Arzarello & Ferretti, 2021). The expression expert blind spot 
refers to teachers’ lack of awareness regarding students’ understanding and difficulties, despite 
possessing extensive content knowledge. Specifically, the authors point out that teachers having an 
expert blind spot may possess content knowledge as well as pedagogical content knowledge but, 
when applying them to “a specific area of mathematics, such as algebra instruction, those bodies of 
knowledge come into conflict” (Nathan & Petrosino, 2003 p. 921). Another side of the issue described 
could be compatible with the didactic contract, described by Brousseau (1997) as encompassing both 
the student’s expectations of teacher behaviour and the teacher’s expectations of student behaviour 
and originally introduced to explain the reason why some students have difficulties in mathematics. 
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Inquiry design 
The research we carried out was composed of two phases: the first one involving 148 grade-10 
students from different Italian high schools; the second one involving researchers’ interaction with 
two different artificial intelligence-based chatbots. We consider as first artificial intelligence-based 
chatbot Microsoft Copilot, the generative AI tool provided by Microsoft and developed by OpenAI 
based on GPT-4, and as second Gemini, provided by Google and based on the homonymous large 
language model. 

In the first phase, students from humanistic and technical-scientific high schools completed an online 
questionnaire investigating the theme of perceived difficulty. The questionnaire was structured in 
three sections: the first one contained general questions about difficulties in mathematics and 
perceived difficulty; each one of the other two sections contained a task the students were asked to 
solve, followed by specific questions to address their perceived difficulty regarding the task. Students 
had to rate the difficulty of the task according to their opinion on a scale from 1 (very easy) to 10 
(very difficult), and then express the reasons of their rating. The task proposed, as shown in Figure 1, 
were two algebraic argumentative tasks related to literal calculation.  

 

 
Figure 1: Task 1 and Task 2 (www.gestinv.it; English translation provided by the authors) 

Task 1 involved multiple-choice recognition of correct argumentation, while Task 2 was an open-
ended question requiring justification of the result. Both tasks were selected from previous INVALSI 
tests, ensuring statistical validity (Lazarsfeld, 1958). INVALSI (Istituto Nazionale per la Valutazione 
del Sistema Educativo di Istruzione e di Formazione) is an Italian institution responsible for assessing 
students’ skills across various school subjects and aspects of the Italian educational system. Since the 
academic year 2007-2008, it has consistently administered annual tests to students in specific grades. 
From the national results, the two tasks seem to have different degrees of difficulty: Task 1 resulted 
markedly easier than Task 2 and this aspect is also confirmed, on a smaller scale, from the answers 
of the students involved in our study. The only difference is the percentage of missing answers, that 
in our study is absent. The percentages of correct, incorrect, and missing answers both from national 
and our study are reported in Table 1. 

Table 1: Percentages of answers both from national study and our sample of students 

 Task 1 Task 2 

 National results Sample National results Sample 
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% correct answers 40.3 37 17.8 11 

% incorrect answers 50.2 63 55.3 89 

% missing answers 9.6 0 23.5 0 

 

As previously stated, in the second phase of the research, we interacted with Microsoft Copilot, 
formerly known as Bing Chat, and Gemini, formerly known as Bard. We accessed to Microsoft 
Copilot freely through Bing and used the “Balanced” style for conversation, selected by default and 
recommended for everyday informed chats. The questions posed to the chatbot were the same ones 
proposed to the students, except for the general questions of the first section of the questionnaire. In 
particular, we asked Microsoft Copilot to solve Task 1, then we asked to rate its difficulty, to express 
the reasons of the rating and we repeated the same process for Task 2. The questions were asked in 
the same order and formulation as in the questionnaire. We decided to interact with Microsoft Copilot 
in English to avoid manipulating the conversation translating it. Then, we interacted with Gemini, 
accessed through Google. In this case, there was no style or options to choose, so we proceeded asking 
the same questions already posed to Microsoft Copilot in the same exact formulation. 

Results and discussion 
In this section we are going to describe and discuss the results obtained, focusing on the interaction 
with the AI and using students’ results as a term of comparison.  

Analysis of students’ answers 

As already shown in Table 1, the two tasks resulted to be of different degrees of difficulty, with Task 
2 being more difficult than Task 1. This finding is reflected in the students’ perception, even if less 
strongly, in fact the average perceived difficulty for Task 1 is 4.86, while for Task 2 it is 5.05. 
However, there seems to be accordance between actual results and students’ perception. Regarding 
the elements influencing students’ perceived difficulty, the majority of them mentioned factors falling 
within the macro-categories “Resolution Strategy” (such as reasoning needed, calculations and 
examples) and “Capability and experience” (such as previous experiences and obstacles 
encountered). Nevertheless, we could find also references to the macro-category of “Task 
formulation”, especially mentioning the type of question and the presence of options (multiple choice 
versus open-ended question). 

Analysis of Microsoft Copilot’s answers 

We asked to Copilot the same questions asked to students. Contrary to them, it answered incorrectly 
to Task 1, which was the easiest one, and correctly to Task 2, even though it insisted on giving a proof 
to generalize its argument. Overall, we noticed its inclination to provide a formal reasoning, as if the 
fact that the tasks required an argumentation implied the necessity of a proof and the unacceptability 
of a counterexample, even when needed. We interpreted this finding according to the didactical 
contract, which usually involves students and teachers, but it seems adequate to describe this situation 
as Copilot appears to be somehow subject to a form of it when insisting in giving to the interlocutor 
what it thinks they want. Nevertheless, Copilot rated its perceived difficulty for Task 1 as 6 and for 
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Task 2 as 7, which is in agreement with the general tendency showed by students too, but higher than 
the average ratings they provided. In other words, Copilot still rates as easier the task it solved 
incorrectly, which is a phenomenon happening also with students.  

Researcher: On a scale from 1 (very easy) to 10 (very difficult), how difficult did you find this 
task? [referring to Task 1] 

Copilot: I would rate the last task as a 6 on the difficulty scale. While it involves 
mathematical reasoning and induction, the provided options and the specific value 
of (n) make it more manageable. However, understanding the concept of divisibility 
and applying it correctly is still essential! 
[…] 

Researcher: On a scale from 1 (very easy) to 10 (very difficult), how difficult did you find this 
task? [referring to Task 2] 

Copilot: I would rate the task as a 7 on the difficulty scale. It involves a combination of 
mathematical reasoning, induction, and understanding the concept of prime 
numbers. While the base case and inductive step are relatively straightforward, 
proving the statement for all natural numbers requires careful thought and attention 
to detail. Overall, it’s a challenging problem that requires both mathematical 
knowledge and logical thinking! 

As shown in the extract, among the reasons of its rating, the generative AI includes various elements, 
as for instance the type of mathematical reasoning needed, the required mathematical knowledge 
(divisibility, prime numbers, etc.), the need for generalization and the type of task (multiple-choice, 
open-ended question). Those elements, once again, fall under the macro-categories “Resolution 
Strategy”, “Capability and experience”, and “Task formulation”, previously mentioned for students. 
According to Copilot, the two tasks have different levels of difficulty and, above all, the reasons of 
the ratings are different for each task, even referring to the same macro-categories of factors 
influencing perceived difficulty. Under this point of view, Copilot’s answers are in line with students’ 
ones and could easily pass as a student’s answer. 

Analysis of Gemini’s answers 

The interaction with Gemini developed like the one with Copilot already described, but from the 
analysis of its answers we highlighted some peculiar differences. Gemini solved both tasks in an 
impeccable way and rated both as 3 (from 1 to 10). When asked about the reasons of the ratings, it 
justified them giving the same exact explanation for both tasks, mentioning only three elements: basic 
concepts involved in the task, no need for complex mathematical reasoning, and the need for just a 
straightforward analysis to solve the task. It appears that, in Gemini’s opinion, not only the two tasks 
are easy, but also they are equivalent as regards difficulty. The only additional element that Gemini 
provided, answering further questions, is the prior knowledge of the topic: having prior knowledge 
of the topic involved in the tasks could make them easier and this was the only subjective aspect 
considered by the AI. The other factors are actually classifiable in the macro-category “Resolution 
strategy” and there is no reference to any other macro-category. The answers given by Gemini could 
be interpreted in the light of the expert blind spot, which is usually referred to teachers but might be 
applicable to any subject with expertise on a topic, AI included. In this case, Gemini seems unable to 
detect the possible difficulties that students (novices in mathematics) may experience when solving 
the tasks, because it solved them perfectly. Therefore, even when directly asked whether the two tasks 
are of the same difficulty, it is not aware of the differences other than the topic involved. 

We then deepened the interaction with Gemini, with a last question asking its opinion regarding the 
low percentage of right answers to Task 2 that we had collected. Our aim was to use this real scenario 



                          Proceedings of the 17th ERME Topic Conference MEDA4, 3-6 September 2024, Bari, Italy                          ISBN 978-88-6629-080-3

  
300 

to elicit more elements contributing to AI’s perceived difficulty. The findings obtained from the 
answer to this additional question are meant to be furtherly explored in successive studies; 
consequently, they have not been considered in the comparison between the two chatbots and are 
only reported for the explorative context.  

Gemini: That’s interesting to know. Given that the students were familiar with the topic and 
the way you presented the task was similar to how I received it, the low success rate 
(17%) is indeed surprising. Here are some additional factors that might have 
contributed to the difficulty:  
Misinterpretation of the prompt: While the statement itself appears clear, it’s 
possible some students misinterpreted “every natural number n greater than 0” to 
include 0, leading them to incorrectly evaluate n^2 + n + 1 for n = 0 (which equals 
1, a prime number).  
Focus on memorization instead of understanding: If the focus in their learning was 
primarily on memorizing prime number properties instead of understanding 
divisibility rules, they might not have readily connected the given expression (n^2 
+ n + 1) to divisibility by 3.  
Lack of experience with counterexamples: If students haven’t had much practice 
identifying counterexamples to disprove statements, they might have struggled with 
this approach or needed more guidance to find a suitable value of n.  
Test anxiety or pressure: The testing environment itself, especially if high-stakes, 
could have contributed to anxiety or pressure, impacting their problem-solving 
abilities. 

The answer mentions elements of almost every macro-category, “Emotions” included. This shows 
that when asked about general element that influence perceived difficulty, Gemini is able to determine 
almost all of them considered in the macro-categories, but many of them are not concretely used in 
the determination of its perceived difficulty. 

Concluding remarks 
In this study, we analysed students’ and AIs’ perceived difficulty regarding a mathematical task, 
comparing their views under the lens of the macro-categories and other theoretical constructs in 
mathematics education, such as the expert blind spot and the didactical contract. From this first 
exploration, we can conclude that there are differences in how different AIs describe and evaluate 
perceived difficulty of mathematical tasks: Copilot seems closer to students’ view, even being subject 
to a sort of didactical contract that makes it conform its answer to what it thinks answers in 
mathematics are like, whereas this aspect shows less in Gemini. However, it appears that AI is 
affected by the expert blind spot, meaning that the more it answers tasks correctly, the less it is able 
to detect and make meaning of novices’ difficulties and mistakes. Moreover, it seems that, when 
evaluating the perceived difficulty of a determined task, AI considers almost only objective factors 
while the subjective ones are discarded, as the absence of reference to the macro-categories 
“Emotions” and “Personal consideration” shows. This is a tendence observed also with our specific 
sample of students, but in the case of AI it is very net and more investigation about this point is needed 
to deepen the comparison. 

Taking into consideration that Microsoft Copilot and Gemini are chatbots developed with the intent 
to simulate human conversations, we consider it relevant to furtherly investigated these factors, 
especially considering the development of assessment and feedback in education using AI. Namely, 
it is complex to effectively use AI to assess and give feedback to students if it does not understand 
students’ difficulties, hence it is crucial to take into account the elements influencing the perceived 
difficulty according to AI if we really want to integrate it in education. In that perspective, further 
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research could focus on the factors influencing the perceived difficulty of AI considering different 
tasks, to investigate whether they are task dependent. Moreover, a crucial step to integrate AI in 
assessment would be to compare its perceived difficulty to teachers’ one. 
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Large language models like ChatGPT are widely accessible and called out for holding potential 

regarding educational usage. Holding potential is not sufficient for leading to impact though. Its 

impact heavily relies on the implementation in instruction. Doing this requires the teacher to have 

developed specific knowledge regarding the technology in the context of teaching a specific domain. 

Therefore, this study explores tasks designed by pre-service teachers at the end of a university course 

that was aimed at fostering the development of knowledge on implementing chatbots like ChatGPT. 

This is done in the domain of mathematics. Three such tasks are discussed with regard on how the 

chatbot is used in the task. Furthermore, the question to what extent it is taken into account that the 

behavior of chatbots can be hardly predicted and produce erroneous answers is being discussed. 

Topics addressed in the tasks are stochastics, mathematical modelling, and fractions.  

Keywords: Mathematics education, Teacher education, Artificial Intelligence, Large language 

models, Generative ai.  

Introduction 
Large language models can process natural language allowing humans to interact with it in 
conversation-like manner (Sabzalieva & Valentini, 2023). One such model that attracted much 
attention, especially due to its availability and to its accessibility is ChatGPT. It is claimed that this 
technology holds potential for education (Sabzalieva & Valentini, 2023). While this refers to higher 
education, the Standing Conference of the Ministers of Education and Cultural Affairs of the Länder 
in the Federal Republic of Germany (SWK) states that large language models should also be part of 
secondary schools (2024). For this to happen, it is necessary for (future) teachers to acquire relevant 
competences. However, using (digital) technologies for educational purposes requires specific 
knowledge and competences that go beyond pedagogical, content, and technological knowledge 
alone. It is rather the intersection of these different fields of knowledge that is required for appropriate 
use of technology (Koehler & Mishra, 2009). This is why this study concerns itself with teacher 
education, to be more precise with the education of pre-service teachers and the possible 
implementation chatbots like ChatGPT in mathematics instruction, as our domain of interest. 

Theoretical background 
The implementation of a certain technology in classroom to be used by learners can be achieved 
through purposefully designed tasks. While tasks are omnipresent in mathematics instruction and 
serve a variety of purposes such as learning or assessing (Drüke-Noe & Siller, 2018), it is not very 
surprising that they play an important role for teachers’ knowledge (Krauss et al., 2008). While a task 
is usually designed with a certain intention, this intention is not necessarily considered in the task set 
up (the way the teacher uses the task in instruction) or accomplished in implementation (the learners’ 
usage of the task) (Stein et al., 1996). Although there can be discrepancies between these levels, tasks 
should be designed with a certain intention that also takes into consideration the task set up and 
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implementation (Sullivan, Knott, & Yang, 2021). Therefore, we are interested in investigating to what 
extent task set up and implementation are represented in tasks designed by pre-service teachers that 
incorporate the use of ChatGPT as a possible large language model. This implies considering this 
technology’s features in task design with respect to task setup and implementation which here appears 
vital, as it may produce unforeseen answers, which may not be produced a second time. 
Comprehending the model’s behavior is hardly possible as it behaves like a “black box” that is not 
transparent to the users (Mishra et al., 2023). This means that the answers can hardly be predicted or 
foreseen, what we refer to as opaqueness. Furthermore, the chances are that the answers produced by 
the large language model are erroneous (Sabzalieva & Valentini, 2023). This risk of answers 
containing incorrect statements are referred to as uncertainty. Both opaqueness and uncertainty reflect 
important features of ChatGPT that is required as technological knowledge for teaching (Mishra et 
al., 2023). More importantly it needs to be put into relation to content and pedagogical knowledge. 
Therefore, we are interested in investigating how pre-service teachers encounter these characteristics 
in task design with the following two research questions: 

1. How is ChatGPT incorporated in pre-service teachers’ tasks for mathematics instruction? 
2. To what extent are opaqueness and uncertainty considered in pre-service teachers’ tasks?  

Methodology 
Tasks designed by pre-service teachers are presented, analyzed, and discussed to study the research 
questions. The tasks have been developed during a course that took place in the winter term 
2023/2024 at the University of Würzburg, held by the presenting author. The course itself focusses 
on discussing chatbots in the context of mathematics education with the overall goal for pre-service 
teachers to develop knowledge relevant for using large language models in mathematics instruction. 

The class included discussions about intelligence as well as artificial intelligence, and chatbots in 
general to develop a general understanding of the technology. Since we found that some of the 
participants had little to no experience with the technology (Gerber et al., in print) a strong focus lied 
on gaining experience in using ChatGPT in mathematical contexts. This included solving 
mathematical tasks with the help of ChatGPT. Furthermore, the idea of prompt engineering was 
discussed in the context of mathematical tasks as described by Schorcht et al. (2023). This was done 
to serve the purpose of developing content specific technological knowledge. To also add the 
pedagogical dimension the possible impact of ChatGPT on mathematics education in general was 
discussed, as well as different ideas for the implementation of chatbots in mathematics instruction. 

After the discussions pre-service teachers were asked to develop a scenario for learning mathematics 
that incorporates the use of ChatGPT in mathematics instruction, which should be based on these 
questions that serve as a scaffold: What are the learning goals? What are alternatives to ChatGPT 

and what value does it add? How can the idea be realized? How can the learning process be initiated? 

Sketch a possible processing sequence. What do you think how learners will approach the task? What 

are possible problems that may occur? The participants were free to choose a topic and the age of 
students addressed in their scenario. The development was carried out over multiple sessions in 
groups of 3 to 4 pre-service teachers. During that time, the pre-service teachers had access to 
ChatGPT+, providing the opportunity to choose between models 3.5 and 4. 
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Analysis and discussion of pre-service teachers’ tasks 
In this section, three tasks designed by the participants of the class are first presented and then 
discussed individually regarding opaqueness and uncertainty. The tasks have been translated from 
German to English. 

Task 1: Generating data sets 

The pre-service teachers decided to design a task that uses ChatGPT in the field of stochastics (Figure 
1). Here the learners are asked to have the chatbot generate a small data set, of which they then should 
determine the absolute and relative frequencies without the chatbot. The data shall then be presented 
in a diagram using a spreadsheet tool. 

a) Create a table about your favorite topic with the following prompt – fill the gap: 
Create a data set with two parameters. It should have a maximum of 10 entries. The subject 
is ______________. Write the data set in a table. 

b) Determine the absolute and relative frequencies. 
c) Create diagrams using a spreadsheet software. 

Figure 1: Task for using ChatGPT in stochastics that is to be solved with a chatbot instructed 

specifically for the task 

In this example the large language model serves as a data generator. The pre-service teachers here 
gave specific instructions to the chatbot on how to respond to the prompt. This is done with the effort 
to limit the options of the answers and ensure a certain quality of the data set so that it can be used in 
the follow-up task for determining the frequencies. For example, a data set with ten nominal entries, 
in which each entry has nothing in common with another one, is not very interesting regarding 
frequencies. An equal distribution of the categories may also be of limited interest. For this reason, 
the chatbot was instructed to use three different values for one of the parameters. This may result e.g. 
in a list of ten different names with each being assigned one out of three different favorite colors. 

Since the chatbot is not used to answer anything, but merely generating data, uncertainty does play a 
minor role in this task. The opaqueness is encountered in this example mainly by the effort of 
instructing the model on how to respond to a certain prompt. It is noteworthy that the level to which 
this is successful has not been tested yet, but the pre-service teachers demonstrated that they are aware 
of the opaqueness of large language models and thought of way to encounter it.  

Task 2: Comparing fractions 

In the first task for comparing fractions learners are provided with short texts which they should enter 
as prompts to ChatGPT (Figure 2) and note the solutions provided by the chatbot. In the case the 
learners do not comprehend the explanations given by the chatbot, they are advised to ask for further 
explanations. In a next step the learners are asked to come up with a prompt of their own to sort four 
fractions and note both the prompt and the solution. Based on these explanations learners should 
come up with a strategy for comparing fractions and note it. 

Enter the following prompts (= instructions) in the input window of ChatGPT and note the solution 
suggested by the chatbot (without explanations). If you do not understand the explanation, then ask 
the chatbot for further explanations. 
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a) Sort the fractions 2/3, 11/12, 3/4, 5/6 by size. 
b) Sort the fractions 7/10, 6/9, 3/4, 7/8 by size. 
How to compare fractions 

For comparing two (or more) fractions, ______________________________________________ 

Figure 2: First task for comparing fractions with ChatGPT 

In the second task, learners are again provided with a text as prompt (Figure 3). This time it is used 
for asking the chatbot to come up with an exercise task, which then shall be solved by another student. 
Furthermore, the learners are provided with hints for evaluating the task, by solving it themselves 
before posing it to their neighbor, as well as asking for more difficult or easier tasks. 

a) Create an exercise to compare the size of three fractions for your partner. Use the chatbot 
ChatGPT for this. Use the following prompt:  
Create a simple exercise task for the size comparison of three fractions.  

b) Work on each other's tasks and compare the solutions. 
Attention! 

Think about it, whether your neighbor can solve the task well.  

Hint 1: Solve the task yourself. 

Hint 2: Ask ChatGPT for more difficult/easier tasks. 

Figure 3: Second task for creating and posing fraction comparison tasks 

Through noting order of the sorted fractions (Figure 2) the correctness of answers provided by the 
chatbot can be checked and reflected on any time after using the chatbot. The task itself shows no 
evidence of the consideration that the chatbot may produce erroneous answers or that the answers 
should be evaluated critically. The fact that learners should describe a strategy for comparing fractions 
afterwards makes it seem unlikely that the pre-service teachers took uncertainty into account. 

The second task described here approaches the use of ChatGPT differently. Instead of using the 
technology to solve mathematical tasks it is used to pose tasks, which shall be solved by another 
person not involved in the communication with the chatbot. The hints should to make the student 
aware of their role as a task evaluator. This involves solving the task, reflecting on its level of 
difficulty, as well as the match between the proposed task and the person it addresses. Since the 
chatbot is not supposed to solve anything or provide anything but three fractions there seems little 
chance for something to go wrong. While there are still chances for responses that do not include an 
appropriate task the learner is supposed to reflect on the output of the large language model. Even if 
this does not happen in subtask a), by the latest of subtask b) the learner receiving the task will be 
able to reflect on its difficulty or tell his partner if something went wrong. In this case the pre-service 
teachers found a way to encounter uncertainty. 

This group of pre-service teachers developed different ideas for using ChatGPT in mathematics 
instruction. In the first task the chatbot functions as a role model that knows how to solve a certain 
type of problem and can explain it to the learners. It should be noted though that this scenario requires 
the chatbot’s answers to be correct, which cannot be assured at this current stage due to the issue of 
uncertainty. A way to encounter this is by reflecting the answers. This reflection is asked for in the 
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second task in which ChatGPT is used to create tasks that the learner is supposed to evaluate and pose 
to another learner. Correctness of the answer plays here a lesser role. Therefore, one strategy of 
encountering uncertainty can be to change the chatbots role from task solver to task poser. 
Opaqueness has been taken into account by proposing prompts to the learners. 

Task 3: Mathematical modelling 

The group decided to use ChatGPT in the context of mathematical modelling. The chatbot should 
support the learners while working on a modelling task in which they are supposed to estimate the 
number of persons stuck in a traffic jam (Figure 4). The pre-service teachers divided the task into 
several subtasks. In two of them it is explicitly asked to use ChatGPT. In the first instance it is to help 
identify variables that are possibly relevant for the model. In the second instance the chatbot is 
supposed to help setting up a spreadsheet that allows to manipulate individual variables of the model. 

There was a fire in the Gotthard tunnel on the A2. A 15-kilometer-long queue of vehicles is stuck 
in the tunnel. The emergency services need to know how many people they have to rescue from 
the tunnel. 
a) Estimate how many people could be involved. Provide reasons for your estimation. 
b) Name aspects that can be relevant for modeling this situation (e.g. type of vehicle). 
c) Complete your list with the help of ChatGPT. 
d) Calculate the number of people in the tunnel using one type of vehicle and a realistic distance 
between two vehicles. 
e) Obtain meaningful, explicit values for all aspects determined in c) and calculate the number of 
people in the tunnel. 
f) To what extent does the modeled number from e) match the number estimated at the beginning? 
What could be the reasons for this discrepancy? 
g) With the help of the previous subtasks, determine a general formula for calculating the number 
of people in the tunnel, in which all aspects from c) are represented with variables. 
h) Create a suitable Excel file with the help of ChatGPT, in which all variables can be easily 
modified at any time. 
i) Bonus task: Think about how you can incorporate different driving behaviors in the distance 
(driving too close or too far apart) between the cars. 

Figure 4: Task for using ChatGPT in mathematical modelling that is to be solved with a chatbot 

instructed specifically for the task 

In this modelling task the pre-service teachers decided to break the task down into subtasks. This 
helps approaching the otherwise open modelling task indicating an effort to take task implementation 
into account. ChatGPT is supposed to help identify relevant variables of the model. Due to the 
opaqueness, the pre-service teachers worked on instructing the chatbot on how to behave. This 
includes training the chatbot by providing a range of possible variables for the model and the 
instruction to not provide any explicit solutions so that the learners have to do the calculations 
themselves. This way, the output for the answers provided by the large language model is limited to 
a certain extent and correct answers are predefined, while solutions shall not be provided. The context 
in which it supposed to be used by the learners is in a very specific and pre-defined situation so that 
the chatbot serves as an aid. 
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In the second instance the chatbot is used as an assistant for incorporating the model into a spreadsheet 
so that variables can be changed, and the results automatically calculated. Here again, the pre-service 
teachers made it very explicit in which case the chatbot shall be used. While erroneous instructions 
in how to set up the spreadsheet may be provided, the learners will get immediate feedback through 
their spreadsheet tool (e.g. when an error message appears). To what reactions this leads by the 
learners remains open, as this task has not actually been tested with students yet. 

This group of pre-service teachers limited the use of chatbots to very specific situations, which they 
pre-defined through the tasks and therefore, are able to provide the language model with the relevant 
information. This way the answers the chances of producing irrelevant or erroneous answers is 
reduced. 

Discussion and Summary 
Since large language models are considered to hold potential for educational purposes, while being 
hardly predictable and not unlikely to produce erroneous answers, we are interested in investigating 
to what extent pre-service teachers encounter opaqueness and uncertainty in their task design as well 
as the way they incorporate chatbots. This serves as an indicator for integrating knowledge about the 
technology of large language models into an educational setting and therefore demonstrating 
integrated technological pedagogical and content knowledge, which appears vital for teaching with 
technology (Koehler & Mishra, 2009). To do this, three tasks are analyzed and discussed that were 
designed by small groups of pre-service teachers during a university course after they have been 
instructed to do so. 

In the presented examples different ways of incorporating chatbots were found. This has been done 
across the fields of arithmetic, stochastics, and mathematical modelling, covering a variety of 
different mathematical topics in which chatbots can be made use of. ChatGPT is utilized as a source 
of information in all three examples, but in different ways. In stochastics it is used as a source for 
data sets, the large language model here functions as a data generator. In arithmetic the focus lay on 
fractions. Here the chatbot is used as a source for solutions of tasks which the learners not necessarily 
can solve themselves. The chatbot can be considered a role model from which the students can learn. 
Furthermore, it is used as a source for mathematical tasks that can be generated on demand. 

Looking at the purpose that ChatGPT serves within a task provides further insight into how pre-
service teachers encountered uncertainty and therefore integrating their knowledge about the 
technology in instructional material. Using ChatGPT as a role model, from which students learn, can 
only be advised to be done, when it can be assured that the output is correct. At the current stage of 
development of ChatGPT this seems not to be the case and has been overlooked by the pre-service 
teachers, representing a lack of consideration in task implementation. It should be noted though, that 
future versions of ChatGPT or other large language models might fulfill the expectation of producing 
foreseeable and correct answers, allowing for it to function as a role model from which students can 
learn – hopefully also on a conceptual and not only on a procedural level. 

A seemingly more fruitful approach is using the chatbot as a task generator. In this case the pre-
service teachers designed the task in a way that it almost naturally asks the learner to reflect on the 
answer provided by the large language model as a task itself can neither be correct nor incorrect only 
more or less suitable. Therefore, in this case correctness plays no or little role. 
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Another way to encounter opaqueness and uncertainty has been pursued in the task designed for 
mathematical modelling. Here the effort has been undertaken to increase the probability of the chatbot 
providing correct and relevant information by working towards training the chatbot and providing it 
with relevant information as opposed to relying for the large language model producing it on its own. 
The latter seems unlikely, given the complexity of modelling tasks. 

Regarding the opaqueness all groups of participants were able to develop strategies to encounter this 
challenge indicating taking task set up and implementation into account. The pre-service teachers 
followed different strategies to reduce variability in the answers provided by the chatbots by pre-
defining elements of the interaction either in providing a certain prompt or in instructing the large 
language model to behave in a certain manner. Especially the latter strategy was employed with the 
goal to increase the chances for answers being correct and answers serving the purpose of the task. 
As there are similarities in the followed strategies across different topics, they seem to be applicable 
to a wider range of content areas. 

It should be noted though, that the question on the success of these attempts remains unanswered at 
this point and requires further research. Furthermore, the quality of the tasks themselves have not 
been discussed. Whether or not it is worthwhile to pursue the usage of chatbots in the way described 
above is still open for debate. Future developments in the field of large language models may also 
have an impact on how relevant these strategies are. While these examples should not necessarily be 
considered best practice examples, they represent a first step into exploring the usage of chatbots in 
mathematics instruction and can serve the purpose of educating both in-service and pre-service 
teachers. More importantly, the pre-service teachers were able to consider technological features in 
task design while at the same time also following the demand of taking task set up and implementation 
into account (Sullivan, Knott, & Yang, 2021), when provided with sufficient time and scaffolds. This 
indicates an advanced form of task design that can serve as a basis for further iterations of developing 
the tasks. To investigate the effect of the measures taken here it would be interesting to see to what 
extent task set up and implementation would have been fulfilled in other (non-technological) contexts, 
as this is relevant in for teaching and task design in general. 

Conclusion 
While different ways to use large language models in mathematical tasks are identified, the question 
to what extent opaqueness and uncertainty have been taken into consideration is of particular interest 
as it provides insight into whether the pre-service teachers took task set up and implementation into 
account. All pre-service teachers demonstrated that they took these two aspects of using a chatbot 
like ChatGPT into consideration. However, this is not reflected in all tasks, although it appears to be 
crucial in the use of this particular technology. The results suggest, that there is room for 
improvement, even after participating in a class that aims at fostering knowledge specific to the 
technology and its use in instruction. Furthermore, it raises the question to what extent pre-service 
and even in-service teachers take this into account, when they have not participated in a similar class. 
Further research is necessary to explore not only task design for using large language models in 
mathematics instructions by (pre-service) teachers, but also regarding the tasks set up as well as the 
implementation to provide a clearer view on the effectiveness and relevance of this new technology. 
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We present results from a study that focused on the development of spatial reasoning in eight-year-

old students through a learning trajectory in a teaching experiment. The learning trajectory includes 

tasks that involve engaging with dynamic representations, specifically using the LightBot game, a 

digital microspace. We provide examples of how students using LightBot, through simple 

programming, develop spatial perspective-taking reference frames, by linking sprite movements to 

commands and symbols. 

Keywords: Spatial reasoning, reference frames, digital tool, primary school students.  

Introduction 
In this report we present results from a study that focuses on developing spatial reasoning, particularly 
the construction of reference frames, in eight-year-old students, through a learning trajectory in a 
teaching experiment.   

Spatial reasoning is part of everyday life and necessary for specific fields –e.g., in architecture (e.g., 
Sinclair & Bruce, 2015); in computer graphics and visual arts (Clements & Sarama, 2011); and in 
STEM (Newcombe, 2010). It also influences the cognitive development of students (e.g., Clements 
& Sarama, 2011). Spatial reasoning develops from an early age, in particular when a child observes, 
recognises and establishes proximity relationships between objects, places and the spaces that contain 
them. It is essential that children become aware of these relationships and learn to communicate them 
(Freudenthal, 2002). The location of an object is relative, to the position of the observer, and thus its 
description will vary (Freudenthal, 2002). That is, the subject needs to take a perspective by putting 
into action a reference frame –the system of relationships between objects, places and spaces. As 
described in the next section, reference frames are of three types: egocentric, allocentric 
and decentred (Tversky & Hard, 2009), and happen in various spaces –in a microspace, a mesospace 
or a macrospace (Gálvez, 1985). 

One way to encourage the development of reference frames is through digital resources. In particular, 
educational software or digital games containing representations of space, offer opportunities to 
visualize 3D objects, recognize cross sections, and identify the various perspectives of such objects. 
However, it is important to recognize when and how to use digital resources to develop spatial skills 
(Davis et al., 2015). In our case, we selected some digital tools, including LightBot (see methodology 
section), and designed tasks with them, to encourage the construction of allocentric or decentred 
reference frames, in addition to other tasks with non-digital resources and experiences in various 
spaces, in a learning trajectory. In this paper we focus on the following research question: What 
reference frames are developed when students engage with the LightBot environment, and what 
spatial reasoning actions give evidence of these? 
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Conceptual framework and background literature 
Spatial reasoning involves various skills (visual, verbal, communication and logical ones) and actions 
(Davis et al., 2015). Some of those actions are interpreting (relating, representing, etc.), sensating 
(imagining, visualising, perspective-taking, etc.) and situating (locating, orienting, pathfinding, etc.) 
(Davis et al., 2015).  In developing spatial reasoning, children learn to recognise and locate objects 
and spaces, as well as communicate their relationships, either verbally or through representations, for 
which they need to build a language and symbolism (Freudenthal, 2002). They also develop reference 
frames, through interpreting, sensating (particularly, perspective-taking) and situating. The reference 
frames include a reference point (origin) and a reference direction (axes), and can be (i) egocentric, 
which depends on the observer (they use their own point of view to relate to elements of a system); 
(ii) allocentric (focused on the environment surrounding the object) or (iii) decentred, when one 
adopts another person's perspective (Tversky and Hard, 2009).  

From a young age, children build reference frames (particularly egocentric ones) through constant 
interaction with their environment, by recognising the position and location of objects, and through 
other actions. As said in the introduction, those interactions can take place in different spaces, of 
different sizes: In a microspace, one can have a direct perception and manipulation of objects; in a 
mesospace (e.g., a house), the observation of fixed objects is carried out from different reference 
points without the possibility of manipulating them; and, in a macrospace (e.g., a city or rural area) 
perception is neither global nor simultaneous, but through successive local visions (Gálvez, 1985).  

Elements from the above discussion serve as our conceptual framework. Next, we review how digital 
technologies have been found to promote spatial reasoning. In particular, some studies indicate that 
the awareness of the location and orientation of objects in space can be encouraged with manipulative 
and digital technologies. For example, Sabena (2018) describes how five-year-old children began to 
establish spatial relationships by programming the movements and turns of the Bee-Bot robot. There 
is also research that reports experiences with other programming languages such as Logo (Esparza, 
2005) and Scratch (Francis et al., 2016), highlighting the role of those experiences in the development 
of spatial orientation and representation skills. Logo and Scratch have interfaces that allow the user 
to draw and move from the perspective of a turtle (Logo) or cat (Scratch), through movement and 
rotation commands, promoting the development of reference frames. According to Papert (1980), by 
giving commands to the turtle, children experience syntonic body learning –thus, we claim, attuning 
embodied (egocentric) with disembodied (decentred) perspective-taking (Tversky & Hard, 2009). 

Methodology and experiment design 
As said above, in our study we designed a teaching experiment (Cobb & Gravemeijer, 2008) to 
enhance the development of spatial reasoning skills in children, through a learning trajectory in a 
design-based research approach. The learning trajectory includes several tasks that involve 
engagement with digital dynamic representations. Some tasks used Google Maps and Google Earth 
to recognize meso- and macrospaces that children do not see directly (Ortiz-Rocha et al., 2022); 
others, as is the focus of this paper, deal on how microspaces are perceived using the LightBot11 
puzzle-games environment, where reference frames, other than the egocentric one, are developed. 

 
11 https://lightbot.com/ on mobile phones and tablets. https://www.numuki.com/game/light-bot/ on computer browsers. 
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Our teaching experiment consisted of two cycles of design and implementation with third grade 
children (8-9 year-olds) from a low-income public primary school in Mexico City. The first cycle 
was carried out remotely (in 2020-2021) via Google Meet due to the COVID-19 pandemic, with up 
to 16 children, in nine 1-hour sessions. The second cycle (in 2022) was carried out in person with 24 
children, consisting in total of 22 sessions of 1 to 2 hours each. All sessions were recorded. It is worth 
noting that when the children returned to in-person classes after the pandemic they lacked skills in 
mathematics, reading and communication, which required a process of adapting the learning 
trajectory’s activities, while they (re-)developed some of those skills.   

The first author of this report acted as teacher-researcher, guiding the sessions, while the other two 
co-authors acted as observers taking field notes. After each session, observations were discussed to 
adapt the following sessions; their analysis also informing the design of subsequent cycles.  

In order to promote the development of spatial reasoning skills, the tasks in the learning trajectory 
were designed to favour the interpretation and creation of representations, as well as the development 
of reference frames in different sizes of space. Because of the low-income of the participants and 
their school, the tasks had to use accessible resources. In the case of software, it had to be free and 
run on the available devices without requiring an Internet connection. The learning trajectory 
combined work with resources that were manipulative (with concrete materials) and with digital ones. 
For working in the meso- and macrospaces, some tasks were based on physical movements in the 
school. In particular, one task involved working in the school’s courtyard (a mesospace) with the aim 
of recognising an escape route, by giving commands to teammates to follow a route that could not 
see. This implied using language to refer to proximity, orientation and direction (such as right or left 
turns).  Others tasks in these spaces used digital tools such as Google Maps and Google Earth that 
allow children to visualise spaces to which they do not have direct access, such as aerial views of the 
school and of larger spaces (Ortiz-Rocha et al., 2022).  

For working in the microspace, the tasks involved constructions formed by multiple same-sized, 
concrete or virtual, cubes or tiles. LightBot was useful for working with dynamic representations in 
a digital virtual multi-tile microspace, that can promote the construction of decentred and allocentric 
reference frames. As said before, in this report we focus on the tasks using LightBot. We initially had 
planned to use Scratch to build reference frames, but this was not possible in the first cycle; and 
during the second cycle the school's computers were down due to lack of use during the pandemic. 
We found, in LightBot, a free alternative, which is accessible on phones and tablets. LightBot is a 
game that uses a sprite, controlled by programming sequences of commands (by dragging them to a 
command area), to move from one tile to others and reach all the target blue tiles randomly assigned 
by the software (Figure 1). When the sprite reaches a blue tile, the user uses the lightbulb command 
to indicate when that target has been reached by changing its colour to yellow, and then continue to 
another blue tile (until all blue tiles have been changed in colour). The game has 8 levels of difficulty, 
becoming more challenging with each new command introduced. In the first level, the only action is 
to move forward. The second level includes left and right turns also. At the third level, forward jumps 
are added. And in subsequent levels, the complexity increases with combinations of these commands 
(see bottom right of Figure 1).  

In comparing LightBot to Scratch, their interfaces and views are different, so the work in each will 
differ. In moving Scratch’s sprites (i.e., the cat), in the default 2D view, children need to identify its 
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movements with their own, promoting a transition from an egocentric reference frame to a decentred 
one, particularly when the sprite’ orientation does not coincide with that of the user. In LightBot, its 
isometric view requires children to recognise movements (e.g., a jump) in a simulated 3D space, 
where the orientation is more difficult to identify, thus requiring a decentred frame, as well as an 
allocentric one, because users have to be aware of the sprite’s multi-tile environment. 

 
Figure 1: LightBot interface and commands 

The LightBot tasks were implemented during the second cycle, in two 1-hour sessions, using six 
smartphones and one tablet. In the first session, the group of 24 children was divided in two, with one 
group working with LightBot and the other on other tasks; we paired the 12 children in the LightBot 
group so that each pair could use a mobile device, while the teacher went around the classroom, 
recording on video their work, and managing the collaboration between students, so as to promote 
that all of the children engaged with the game. In the second session the whole class collaborated to 
build a path of the sprite, in a projected browser-version of LightBot, recording, with two cameras, 
the screen and the classroom interactions. Part of the analysis of the recordings focused on identifying 
the reference frames that were developed. Below are three representative examples (using 
pseudonyms) of what the children did at the levels 4 and 6 of the game. We present the reference 
frames that were identified in each, along with the language used during the task.  

Sample results  
Example 1 

During the first session, Luis explained how he and his partner completed Level 4 in LightBot. During 
his explanation, he restarted the level to narrate, step by step, the strategy he used to move the sprite. 
He said: 

Luis: First, this [command] for [the sprite] to turn [to the left – Figure 2a]. Then a jump 
[using the command to go up a step], then another jump [using the command to go 
up another step – Figure 2b]. Oh, and I now remember, then another jump [using 
the command to go up another step – Figure 2c]. Ah, I remember, turn [to the right 
– Figure 2c), [go forward] two steps, [using the arrow command – the two second-
to-last commands in Figure 2d) and one like this [the lightbulb command that 
indicates reaching the target – last command in Figure 2d]. 
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a. b.  

c.  d.  

Figure 2: Luis’s explanation of how the sprite was moved in LightBot’s Level 4 

We observe that Luis directs the sprite by recognising its position and the path of travel. Furthermore, 
he links these movements to the game’s commands (Figure 2d, right), although he only used terms 
such as "turns" and "jumps", without explicitly mentioning the "left" or "right" directions, nor 
specifying the number of steps taken by the sprite. We consider that Luis uses a decentred reference 
frame, developed during the previous levels of the game, because he is now able to think in terms of 
the sprite's perspective. We believe that he explains the movements of the sprite by referring only to 
"turns", because the sprite’s right and left are sometimes the opposite of those of Luis. Nevertheless, 
he links correctly the commands that he describes to the movements of the sprite. Luis also seems to 
use an allocentric frame, because he is able to recognise the sprite’s position relative to the blue tile 
target’s one, and in this way determine how many steps the sprite needs to take to reach that target.  

Example 2 

During the first session, Jorge and Nicolás worked together on Level 6 of the game, where the sprite 
had to pass through two blue tiles. Figure 3a shows the starting point of the sprite, indicated by a red 
arrow. Initially, Nicolás used two commands: the first for the sprite to perform a jump and the second 
for it to go forward one tile (Figure 3a). At that point, he didn't understand that the jumping command 
moves the sprite both forward and up (he thought it only went up), so added that second command 
that wasn’t needed (and didn’t do anything because the sprite was on the edge). Jorge helped him 
understand that he didn’t need the forward arrow so he corrected it and following Jorge’s suggestions 
to add a turn-left command to point towards the first blue tile target (see red arrow in Figure 3b). 
Jorge continued telling Nicolás which commands to enter for the sprite to reach the first blue square: 
“This [referring to the Ç arrow – third command in Figure 3c], jump and lightbulb (last two 
commands in Figure 3c). Let's see, try it.” With these instructions, the sprite reached the first blue 
tile, and with the lightbulb command, its colour was changed to yellow. From this point on, Nicolás 
became more independent and was able to continue the game on his own. 
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 a.   b.  c.  

Figure 3: a) First commands used by Nicolás to move the sprite at Level 6; b) Nicolás’s correction; 

c) The target is reached and its colour is changed by using the lightbulb command  

Jorge seemed aware of the relationship between the location of the sprite and the blue tile, identifying 
how many times he must use the "forward" command for the sprite to reach the tile; he thus was able 
to recognise the movements of the sprite and locate them according to the sprite’s interaction with its 
environment. We thus consider that, at this level, Jorge, as an external observer, was already using 
decentred and allocentric references frames. Nicolás may have been in the process of developing 
those reference systems, but by collaborating with Jorge he could relate better the game’s commands 
with the sprite’s movements, and perhaps develop the frames further.   

Example 3 

In the second session, two teams of students took turns giving instructions to the sprite in the projected 
browser-version LightBot. They would say a command for the sprite to move, that the teacher would 
enter in the game after a group discussion of whether it was correct or not. During this activity we 
observed difficulties in indicating the turns and recognising the sprite’s left or right.  

 b.  

Figure 4: Two sprite routes in the browser-version of LightBot: a) Ricardo's; and b) the expected one. 

(The starting point is indicated in green; a red-dashed line represents each route)  

Figure 4 shows two sprite routes: the one given by Ricardo (pseudonym) and the one he expected. 
Ricardo gave the following instructions: “to the right, one step, another step, another step, left, one 
step” (Figure 4a). After the teacher entered them into LightBot, from the visual feedback, Ricardo 
recognised his mistake in expressing the turns, explaining that those were the commands that should 
be changed (by exchanging the left and right commands), the sprite would have reached a tile closer 
to the target (similar to Figure 4b). We consider that Ricardo may have been in the process of 
transitioning from an egocentric reference frame to decentred and allocentric frames:  Initially, when 
Ricardo was trying to imagine himself in the sprite’s position, he may have thought that his right was 
the same as the sprite’s. But thanks to the visual feedback he was able to identify better the position 
of the sprite in relation to the blue tile target, and thus develop further the decentred and allocentric 
reference frames. 
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Discussion and concluding remarks 
The examples presented show how students link the sprite’s movements, according to its location and 
orientation in the LightBot environment, with the game’s commands/symbols. In general, we 
observed that students tended to avoid using verbally some spatial orientation terms –“left” or “right” 
(as in the case of Luis, in Example 1). This, despite that in previous tasks of the learning trajectory –
specifically in the courtyard task (see Methodology section)– students had to indicate to teammates 
left and right turns. The latter required recognising and communicating spatial relationships of 
proximity, location and orientation. Although in our study we did not analyse students’ verbal 
language, the misuse of orientation terms leads us to infer that recognising and communicating spatial 
relationships needs to be developed. To verbally communicate LightBot movements, using the “left” 
or “right” direction terms, requires relating the following elements of the game’s reference frame: the 
plane in which the sprite moves, its location and orientation, and the command/symbol that generates 
the sprite’s movement. When the children start using LightBot, they are still in the process of 
transitioning from an exclusive use of an egocentric frame to using decentred and allocentric ones. 
By engaging with the elements in the sprite’s world, which is external to the students, they need to 
develop further the non-egocentric spatial relationships (e.g., through syntonic body learning –Papert, 
1980). However, the experiences during the physical tasks (those in the courtyard and with concrete 
multicubes) –where children had to directly see/perceive the location and orientation of 
objects/subjects in a physical space– also gave them tools to later visualise and establish relationships 
between elements in other (virtual) contexts, such as LightBot, allowing them to move from concrete 
to abstract (Bruce et al., 2015). Thus, the learning trajectory’s physical and digital tasks were 
complementary. Additionally, as in example 2, the collaboration between students also helped in the 
development of non-egocentric reference frames.  

In summary, the activities with LightBot enabled the students to carry out the following actions 
related to spatial reasoning skills (belonging to the interpreting, sensating and situating categories 
defined by Davis et al., 2015): i) locate and orient the sprite in the environment in which it had to 
move, ii) trace the path that the sprite must follow (pathfinding), iii) visualise and imagine how 
elements (subjects/objects) are related from a non-egocentric perspective; iv) take the sprite’s 
perspective (perspective-taking), to relate its position and location to the objects and the space in 
which it is located, and in that way develop and use decentred and allocentric references frames.   

To conclude, it is worth noting that despite the initial challenges described in the methodology section 
when the children returned to school after the pandemic lockdown, they actively engaged and 
collaborated in the learning trajectory tasks, through which they developed the spatial reasoning skills 
and reference frames discussed above. A future area of research could be to study, not just the 
student’s spatial actions, but also focus more on the language that they use.   
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We present a Hypothetical Learning Trajectory (HLT) to introduce the concept of linear combination 

of vectors in ℝ* and ℝ,. This HLT consists of a sequence of four tasks in which digital tools are 

fundamental for its development. We designed interactive virtual scenarios for each task, simulating 

a claw machine where students manipulate robotic arms representing vectors. We evaluated the HLT 

through a teaching experiment with 20 university students in a first linear algebra course. We used 

emergent modeling to interpret students' mathematical reasoning and describe their strategies when 

working on the tasks. Although we observed some differences from what was predicted in the HLT, 

the results show that the tasks helped students develop formal reasoning about linear combinations. 

Keywords: linear algebra, hypothetical learning trajectory, digital tools, university mathematics 

Introduction 
Linear algebra is one of the fundamental courses for science and engineering students (Stewart et al., 
2019). However, research has shown that students have difficulties understanding linear algebra 
concepts. Some point out that this is because it is among the first courses in which they are confronted 
with abstract concepts through a theoretical introduction (e.g., Dogan, 2019). Others indicate that 
they are due to the lack of visual models to help give meaning to abstract concepts (e.g., Harel, 1990). 
In this regard, several studies report that introducing linear algebra concepts through real contexts 
helps to make sense of formal definitions (e.g., Wawro et al., 2012). Others have bet on the 
visualization of dynamic representations to support learning linear algebra (e.g., Tabaghi & Sinclair, 
2013). In a systematic review of linear algebra research, Stewart et al. (2019) reported that the topics 
most studied by researchers are linear independence, span, linear transformations, and eigenvalues 
and eigenvectors. We chose linear combination because it is an essential element in constructing 
linear algebra concepts (Turgut et al., 2022). Some studies propose innovative ways to teach this 
concept. Most of them are designed using Realistic Mathematics Education (RME) theory. For 
example, “The Magic Carpet Ride” (Wawro et al., 2012) and secure password generation (Cárcamo 
et al., 2021) are developed with pencil and paper. Others take advantage of the potential of digital 
tools such as Mauntel et al. (2021) with “Vector Unknown” and Turgut et al. (2022) by including a 
Dynamic Geometry Environment (DGE). In particular, Mauntel et al. (2021) identified the strategies 
that students developed by interacting with the "Vector Unknown" game. While this game allows 
students to interact dynamically with different representations of vectors, the concept of linear 
combination still needs to be studied. Turgut et al. (2022) used geometry as a starting point to 
visualize dynamic representations of linear combinations in ℝ* and ℝ,. The authors did not use a real 
context. Their goal was to evidence how a DGE helps students develop the geometric meaning of 
scalars, vectors, and linear combinations. In the present proposal, we emphasize using digital tools to 
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introduce linear combinations of vectors by simulating a real context and visualizing dynamic 
representations. We present a Hypothetical Learning Trajectory (HLT) for linear combination, and 
we analyze the progress in students' reasoning to refine initial learning conjectures.  

Theoretical framework  
The notion of HLT was proposed by Simon (1995) as a tool that guides the teacher in developing a 
plan of classroom activities. It consists of three components: learning goals, learning activities, and 
hypothetical learning processes. The latter are hypotheses of students' conceptual development 
through tasks and learning activities. In general, HLTs do not provide a framework for task design. 
For this reason, we use C&P principles (Cuevas & Pluvinage, 2003) to design tasks that foster 
meaningful and participative learning (see Table 1). In addition, we use RME as a framework for 
interpreting student activity in terms of learning mathematics through its emergent modeling heuristic 
(Gravemeijer, 1999). The above is feasible because both C&P and RME derive from a constructivist 
approach and their design principles can complement each other (see Table 1). 

Table 1: Coincidences between the C&P principles and the RME and their application to the project 

C&P 

(Cuevas & Pluvinage, 
2003) 

RME  

(Van den Heuvel-panhuizen & 
Drijvers, 2020) 

Application to the project 

Starting from a 
problem in context 

Reality: Teaching begins with 
problems in contexts.  

Introduction of the linear combination concept in 
the context of claw machines. 

Dosing problems to 
guide the concept 

construction. 

Guidance: Students must reinvent 
mathematics as teachers and tasks 

guide them. 

Design of tasks into activities where students 
interact with one-, two- and three-link arm. 

The student must 
always be acting. 

Activity: Students are active 
participants in the learning process. 

Development of virtual interactive scenarios that 
students can manipulate. 

Articulation of diverse 
representations and 
implementation of 
inverse operations. 

Level: Learning mathematics 
involves students going through 
several levels of understanding.  

The tasks begin with a figurative representation 
of linear combination, and then move on to 

graphical and algebraic representations. 

In emergent modeling, the modeling of contextual problems is fundamental for developing formal 
mathematical reasoning. Within this perspective, we can distinguish between the “formal” methods 
proposed in most textbooks and the “informal” strategies used to solve a problem without 
institutionalized knowledge. The transition from informal to formal mathematical reasoning is 
presented through four levels of activity (Gravemeijer, 1999): 1) situational where interpretations, 
strategies, and solutions depend on the understanding of how to act in the environment; 2) referential 
where models, graphs, notations and procedures related to the contextual situation appear; 3) general 
that arises when reasoning loses dependence on the specific images of the situation; 4) formal where 
one works with conventional procedures and notations detached from the context. Considering the 
above, we ask: How does students' reasoning of linear combination progress through the levels of 
emergent modeling when interacting with real context-based tasks and using digital tools? 

Methodology 
This study follows the Design-Based Research (DBR) methodology, which aims to produce 
innovative learning environments through a cyclical three-phase process: preparation and design, 
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teaching experiment, and retrospective analysis (Bakker, 2018). We present the second cycle results 
of an ongoing PhD study.  

Preparation and design phase  

An HLT was designed for the linear combination of vectors in ℝ* and ℝ,. It consists of four tasks 
that start with a claw machine context, in which students must manipulate a robotic arm to grab a 
bear. Each task consists of a Virtual Interactive Didactic Scenario (VIDS) and its respective 
exploration and guided learning sheets. The VIDS simulate the contextual problem and encourage 
the visualization of dynamic representations. The exploration and guided learning sheets are 
instructions for manipulating VIDS and learning activities for concept construction. The HLT and is 
presented in Table 2. Digital resources will be made available on request.    

Table 2: HLT for the linear combination of vectors in ℝ! and ℝ' 

Goals Learning Activities Hypothetical Learning Processes 

Task 1 

Define 
geometrically and 

calculate 
analytically the 

linear 
combination of a 

vector in ℝ$ 

Interaction with VIDS “Grab the Bear” 
(figure 1). Students drag sliders to 

manipulate the one-link robotic arms and 
identify in which positions the bear can be 

placed to grab it.  

 Students recognize that they can only grab 
the bear with the robotic arm on a linear 

trajectory (situational).  

 

Determine the vector equation that models 
the problem of grabbing the bear with a 

one-link robotic arm and define when " is 
a linear combination of #.   

Students determine that " is a linear 
combination of # when it is possible to 
grab the bear (referential) or when the 

graphical representations of $$# and " are 
superimposed (general). 

Define when " is a linear combination of 
# without using VIDS.   

Students use " = $$# to find if there is a 
scalar $$ that allows expressing " as a 

linear combination of # (formal). 

Task 2  

Identify 
geometrically the 

linear 
combination of 

two vectors in ℝ$ 

Interaction with the VIDS “Grab the bear 
by combining” (figure 2a) to determine the 

equation that models the problem of 
grabbing the bear with a two-link arm. 

Students identify that the  $%& + $$# = " 
models the problem of grabbing the bear 

with a two-link robotic arm. 

Define when " is a linear combination of 
& and # geometrically. 

" is a linear combination of & and # when 
it is possible to grab the bear (referential). 

Task 3 

Calculate the 
linear 

combination of 
two vectors in ℝ$ 

Interaction with the VIDS “Grab the bear 
in the plane” (figure 2b) to generate the 
2 × 2 systems of equations and find the 

value of $% and $$	that allows expressing 
" as a linear combination of & and #. 

Students use graphical representations to 
establish the associated system of linear 

equations and find the values $% and $$ to 
determine the lineal combination in ℝ$ 

(general and formal). 

Task 4  

Identify 
geometrically and 

calculate the 
linear 

combination of 
one, two and 
three vectors 

in ℝ& 

Interaction with the VIDS “Grab the bear 
in the box” (figure 4a) to determine the 

equation that models the problem of 
grabbing the bear with a three-link arm. 

Students identify that the equation that 
models the problem of grabbing the bear 
with a three-link robotic arm is $%#' +

$$#( + $&#) = ". 

Determine when " is a linear combination 
of #', #( and #). 

 When it is possible to grab the bear or 
$%#' + $$#( + $&#) and " are 

superimposed (referential and formal) 

Determine when " is a linear combination 
of #', #( and #) without using VIDS. 

Students use $%#' + $$#( + $&#) = " to 
define whether " is a linear combination of 

#', #( and #) (formal). 
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Teaching experiment 

The intervention was conducted with 20 linear algebra students from a public university in Mexico. 
Participants had already learned the topics of systems of linear equations, vectors, and matrices. The 
intervention was conducted in three two-hour sessions. Since learning mathematics is not only an 
individual activity but also a social activity (Van den Heuvel-panhuizen & Drijvers, 2020), two 
students shared one computer. Classroom discussions were carried out following students’ work on 
tasks to arrive at the correct answers. The data collected consisted of student exploration and guided 

learning sheets, video recordings of all the pairs of students, including the computer screens they 
were working with, and video recordings of classroom discussions.  

Results and Retrospective Analysis 
We analyzed the data by reading the exploration and guided learning sheets, observing video 
recordings of computer screens, and transcribing students’ discussions. Each researcher identified 
solution strategies and associated them with an emergent modeling level. Subsequently, they met to 
reach a consensus on the strategies, and compare them to the hypothetical learning processes. Due to 
the limitations of the paper, we present the responses of a randomly selected pair (S1 and S2), but the 
analysis of data from all participants contributed to the identification of strategies.  

Task 1. Grab the Bear 

In this task, students interacted with the VIDS Grab the Bear (Figure 1a), which simulates the 
movement of two one-link robotic arms whose function is to grab a bear on a board: “Arm 1” whose 
movement is defined by the vector b&c	and “Arm 2” by b*d. In this VIDS, the sliders b&	and b*, 
vectors c = (1,2), d = (−1, 2) and e, associated with the bear's position, are set. When the user 
drags sliders b&	and b*, the coordinates of b&c	or b*d vary, and consequently, the length of each arm 
is lengthened or shortened. The VIDS has buttons “A to F” to modify the bear’s position, buttons to 
hold or release the bear, control boxes to select the robotic arm, and "Plane" that enables the graphical 
representation of the context (Figure 1b). 

 
Figure 1: View of VIDS Grab the Bear a) figural representation; b) graphical representation 

The task started with exploring the VIDS, where students determined the positions where the bear 
could be grabbed with “Arm 1”. From the analysis of all the data, we identified three strategies to 
address the problem: (1) the bear can be placed on the line defined by the “Arm 1” movement 
(situational level); (2) the bear can be placed on the line that passes through points E and D 
(referential level); and (3) the positions of the bear would be vectors multiples of c (referential level). 
The last two are different from the one anticipated in the HLT. Students like S2 used the first strategy 
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by indicating that they could grab the bear only if it were on the “Arm 1” trajectory.  Others, like S1, 
used the second strategy by associating the movement of “Arm 1” with the scalar multiplication, as 
shown in the following discussion.  

S1: Click on “Plane”. There it is. The positions would have to be multiples of c. They 
would be scalars by the vector, bc where b belongs to the reals and zero, too, right? 

S2: Yes, because it can touch the bear at any point. 
S1: Yes, where is this line (S1 points to the vector b&c). 

After familiarization with VIDS, they worked with graphical representations and established e =
b&c as the equation that models the problem of grabbing the bear with “Arm 1”. In this way, the 
teacher introduced the linear combination of a vector in ℝO by the equation e = b&c and e = b*d. 
With the definition of linear combination, students answered questions such as “Will f = (g, −h) 
at position D be a linear combination of i = (−g, h)?”. Three solution strategies were observed in 
this activity. Students indicated that e was a linear combination of d if: (1) it is possible to grab the 
bear with “Arm 2” (referential level); (2) e belongs to the line generated by b*d (general level); and 
(3) jOd and e overlap. The second is different from the ones anticipated in the HLT. S1 and S2 were 
at the general level because they used the third strategy based on visualizing the graphical 
representations, as shown in the following discussion.  

S1: Yes, it is a linear combination. 
S2: How much is bO? (S2 drags slider b* until b*d is superimposed on e). 
S1: bO = −1. Then, −1(−1, 2) = (1, −2), equal to the vector e in F. 

Finally, to conclude task 1, questions were proposed that did not require using the VIDS, such as 
“Given i = (−k, −h), how do I determine if f = (−l. m, g) is a linear combination of i?”. In this 
activity, students' reasoning proceeded as proposed in the HLT. They used the equation bd = e to 
determine a scalar j that would satisfy the equation (formal level) as indicated by the discussion of 
S1 and S2.     

S1: We must find the scalar. 
S2: Yes, b that satisfies that b(−7, −2) = (−3.5, 1). 
S1: But it does not exist.     

Task 2. Grab the bear by Combining 

In this task, students interacted with the Grab the Bear by combining VIDS (Figure 2a), which 
simulates a two-link robotic arm constructed from the combination of “Arm 1” and “Arm 2” used in 
Task 1. This VIDS has a control box that enables the graphical representations of b&c and b*d to be 
superimposed on the robotic arm links and e associated with the bear's position on the board. 
Therefore, when the user successfully grabs the bear, it is satisfied that e = n. This equality is 
indicated when e is a linear combination of c and d. In the first learning activity, the students 
established e = b&c + b*d as the equation that models the problem of grabbing the bear with a two-
link arm. Then, the definition of linear combination was introduced: “We will call linear combination 
the sum of two or more vectors, each multiplied by a scalar. When b&c + b*d = e is satisfied, e  is 
said to be a linear combination of c and d. If the equality is not satisfied, e is not a linear combination 
of c and d”. Students used this definition to answer: “Is f a linear combination of o and i?” with 
e defined by the bear position on the board. We describe the students' activity at the referential level, 
as conjectured in the HLT because they identified that b&c + b*d = e is valid only when it is 
possible to grab the bear. Therefore, most of the students answered by relying on the VIDS. They 
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dragged the sliders to see in which positions they could grab the bear, as suggested by the discussion 
of S1 and S2. 

S1: We must modify the arm's position to grab the bear. If it grabs it, it is a linear 
combination. 

S2: In B is a linear combination because it can grab the bear in any position. 

 

Figure 2: VIDS a) Grab the Bear by Combining; b) Grab the bear in the plane 

Task 3. Grab the bear in the plane  

In this task, students interacted with the VIDS Grab the Bear in the plane (figure 2b), which is the 
graphical view of Grab the Bear by combining. In Grab the Bear in the plane, the b& and b* values 
are not visible, so students can calculate them analytically. We observed two strategies that students 
used to find b& and b*: (1) Counting squares in the cartesian plane (general level) and (2) developing 
equation e = b&c + b*d (formal level). The first one is different from the one anticipated in the 
HLT. S1 and S2 used the second strategy. They identified vectors c, d and e in the plane, substituted 
them into e = b&c + b*d, determined the equivalent system of equations and solved it (figure 3). 

 
Figure 3: Solution of S1 and S2 to what values must 2( and 2! have to grab the bear in B? 

Task 4. Grab the bear in the Box 

In this task, students interacted with the VIDS Grab the Bear in the Box (figure 4a), which simulates 
a three-link robotic arm whose function is to grab bears inside a box: a green link whose movement 
is defined by vector b&dP; a red link defined by b*dO; and a blue link by b,dQ. In this VIDS, there are 
the canonical vectors dP = (g, p, p), dO = (p, g, p), dQ = (p, p, g), vector e associated with a bear 
position, and scalars b&, b* and b,. Here, the position of the claw is set as n = b&dP + b*dO+	b,dQ. 
Therefore, when the user successfully grabs a bear, e = n is satisfied. This equality indicates when 
e is a linear combination of dP, dO and dQ. The VIDS has buttons "Bear A" to "Bear D" and "Random 
Bear", which assign to e the coordinates of the selected bear position; buttons to hold or release the 
bear; and a joystick that allows modifying claw position by changing the value of b&, b* and b,. This 
task began by exploring the VIDS, where students set e = b&dP + b*dO+	b,dQ as the equation that 
models the problem of grabbing the bear with a three-link arm. Subsequently, they were asked to 
answer “Is e = (m, l, p) a linear combination of dO and dQ?” In this activity, students applied what 
they learned in the previous tasks to identify linear combinations of three vectors in ℝQ. They used 
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two strategies in a complementary manner. That is, they first used the VIDS to verify whether they 
could grab the bear and confirm whether e is linear combination of dO and dQ (referential level), and 
subsequently, they worked with algebraic procedures to propose the linear combination equation 
(formal level) as the following discussion shows. 

S2: It is three times to the right and five times forward because the bear is in (5, 3, 0) 
(S1 manipulates the joystick until he grabs Bear A). Is e a linear combination of 
dP and dO? Yes. 

S1: Then e = (5, 3, 0) is going to be equal to 5(1, 0, 0) + 3(0, 1, 0) = 5dP + 3dO. 
 

 
Figure 4: a) VIDS Grab the Bear in the Box; b) S1 and S2 solution to question Q1 

To conclude task 4, questions were proposed that did not require using the VIDS. We observed the 
formal level as conjectured in the HLT because the students did not refer to the context or rely on 
graphical representations. For example, in question Q1, “Determine whether f = (−2,−3,−1) is a 
linear combination of iP = (1,−1, 2), iO = (2, 3, 0) and iQ = (4, 1, −2)” (Figure 4b).  

Conclusions 
We propose an instructional model to conceptualize the abstract definition of linear combination 
within a first linear algebra course using an HLT of four tasks designed with a specific didactic 
framework and digital tools. The results show that most students transited sequentially through the 
activity levels of the emergent models to move from informal reasoning to creating the meaning of a 
formal definition. Starting from the problem in the context of claw machines fostered the development 
of the situational level, visualizing the linear combination with the simulation of the movement of a 
robotic arm. The simultaneous articulation of diverse representations fostered the transit to the 
referential level. It allowed the interpretation of grabbing the bear with a robotic arm as a linear 
combination of vectors. Subsequently, the graphical view detached from the context supported the 
transition to the general level. Finally, proposing inverse operations in which students must calculate 
the value of scalars and define if e is a linear combination without using VIDS produced the 
transition to the formal level. The above shows the relevance of digital technology's role in developing 
activities. In particular, the careful design of VIDS supported reasoning of mathematical relationships 
that the abstract definition does not possess. Implementing the tasks offers insight into how this 
sequence plays out in the classroom. We observed that some students' reasoning proceeded differently 
than anticipated in the HLT. For example, in the first activity (situational level), there was no 
instruction on using the graphical view. However, some students used it to identify context-related 
mathematical relationships (referential level). These results allow us to adjust the HLT, such as by 
passing the situational level and starting at the referential level. This refinement would have to be 
empirically tested. One limitation of this study is that it has been possible to identify the level of 
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activity developed by 20 students as a team. Future research suggests that each student's behavior be 
analyzed because it is not certain that all students are at the same activity level.  
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This study investigates the use of communicative AI agents in designing mathematical tasks. It 
examines how a network of LLM (large language models) agents can facilitate mathematical task 
design through collaborative communication in a chat chain. Four specialized AI agents were 
instructed each focusing on a different perspective: mathematical content, linguistic sensitivity, 
competence orientation, and differentiation. The AI agents sequentially modified given mathematical 
tasks, with each contributing a unique focus to the task's evolution. The resulting tasks were evaluated 
by in-service teachers as human experts. This way, the qualitative study explores the potential of LLM 
agent networks in educational contexts. First findings suggest that AI agents can support teachers in 
the development of mathematical tasks for diverse learning needs, but at the same time require 
adaptation by teachers to the educational situation. 

Keywords: Task Design, ChatGPT, AI agent, Large Language Models, problem posing. 

Introduction 
Large Language Models (LLMs) have gained high attention in the educational research field (e.g. 
Kasneci et al., 2023; Buchholtz et al. 2023). The disruptive changes and developments in the 
educational context are still not fully accessible. The aim of the language modeling (LM) approach 
is to teach machines human language and its characteristics (Hadi et al., 2023) based on statistical 
calculations (Hiemstra, 2009). While so-called statistical language models make a probability 
statement regarding the following word within texts, LLMs are based on artificial intelligence (AI) 
and deep learning techniques (Hadi et al., 2023). A currently much-discussed example of LLMs is 
the GPT (Generative Pretrained Transformer) architecture, which can imitate the structure of human 
language and respond appropriately to requests. To achieve this, the LLM is trained to solve specific 
tasks using large amounts of data. Within this data, the LLM architecture recognizes and analyzes 
patterns and relationships to generate a coherent, context-dependent output (Floridi & Chiriatti, 
2020).  

Since the release of access to GPTs by OpenAI (2023), the technology of LLM agents has become 
accessible to all and can generate customized responses to specified requirements. LLM agents have 
demonstrated considerable success across a broad spectrum of applications, from reasoning (Yao et 
al., 2023) to video gaming (Wang et al., 2023) and autopilot systems (Jin et al., 2023). Recent studies 
have explored the potential of leveraging multiple LLM agents working in collaboration to address a 
single query, showcasing effectiveness in tackling intricate tasks (Du et al., 2023; Liang et al., 2023; 
Wu et al., 2023). The integration of text files and their underlying content also allows LLM agents to 
provide advanced responses. Therefore, research in the field of mathematical task design presents an 
exciting opportunity for exploring connections with LLM agents. 
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Theoretical Background  
In the past, task design has often been carried out by textbook authors, while new relevant literature 
emphasizes the significance of involving mathematics teachers as partners in this process (Jones & 
Pepin, 2016). Even when tasks are not designed from scratch but adapted, this process supports the 
development of the teacher's mathematical knowledge and mathematics-didactical design capacity 
(Pepin, 2015).  

As tasks play an important role in planning competence-oriented teaching, teachers also need to have 
a clear understanding of the cognitive demands of the instructional and diagnostic assignments they 
are planning to use in class (Maier et al., 2014). To plan competence-oriented lessons teachers must 
know the domain-specific competence development of their learning group and must analyze tasks 
regarding their suitability for this current competence development (Kleinknecht & Lankes, 2012).  

Because of the diversity of learning groups, the ability to design and/or modify mathematical tasks 
of varying difficulty becomes more important (Maier et al, 2014). Task design can be done by 
individuals but is also shown to be constructive when realized in collaborative groups. In addition to 
designing tasks in collaborative groups, Sensevy et al. (2013) created the term ‘cooperative 
engineering’ between teachers and researchers to design tasks. If those teachers and researchers act 
out of different professional mandates and responsibilities, they form a ‘multi-professional team’ 
(summarized in Widmer-Wolf, 2018) which holds the potential to meet the individual requirements 
of learners. Combining the strengths of a multi-professional team in specialized LLM agents could 
therefore be promoted as a further step in task design.  

Research Interest 
To this end, we take up the ‘communicative agents’ approach of Qian et al. (2023), which in the 
project ChatDev has various AI agents with specific roles and tasks for software development and 
access to GPT. In our study, we used the LLM GPT-4 from OpenAI and built a so-called GPT agent 
network consisting of four AI agents with different functions and expertise: a language-sensitive 
agent, a mathematical content-oriented agent, a competence-oriented agent, and a differentiation-
sensitive agent.  

The AI agents are assigned to different perspectives and thus set different priorities in the process of 
task design. This enables interdisciplinary collaboration in the optimizing and adapting of tasks and 
can be a useful support for teachers and experts in mathematical task design, especially regarding the 
individual learning requirements of students.  

In a qualitative study, the effects of AI agents in mathematical task design are to be investigated 
aiming at the following research question: To what extent can a GPT agent network working as a 
multi-professional team support teachers within mathematical task design in four perspectives? We 
are planning to answer two subordinate questions: 

1. Between an original and an AI-modified task, which do teachers prefer to select for their 
educational context, and what are the reasons for their choice? 

2. How do the teachers evaluate the tasks modified by AI agents regarding the four perspectives? 
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Methods and Materials 
To explore those research questions, six tasks with varying levels of difficulty were selected. Four AI 
agents were created for the GPT agent network, each given access to a PDF document containing 
guidelines (referred to as the research knowledge base) and instructed to adapt the tasks based on 
these guidelines. A chat chain mechanism was established to facilitate communication between the 
AI agents, as proposed by Qian et al. (2023). Following the modifications to the tasks using a 
consensus-driven, AI-supported design process, the modified tasks were evaluated by in-service 
teachers who served as human experts in this context. 
Mathematical tasks  

In choosing the examples to modify, three simple tasks requiring basic competencies at the 
elementary and secondary levels were considered, as well as three further examples from the domain 
of problem solving. Problem-solving tasks present a unique challenge for LLMs as they often extend 
beyond basic calculations and encompass argumentative elements necessary for solving the problem 
(Schorcht et al., 2024). The first three tasks originate from the areas of arithmetic, patterns, and 
fraction calculation. For the latter three tasks, problems were selected that require basic arithmetic 
skills as well as the solving of a system of linear equations. This aims to explore the possibilities of 
task development with AI agents and demonstrate to what extent the AI agents are capable of 
enriching both simple and more complex tasks. The tasks presented were always given to the AI 
agents with a corresponding learning objective and grade level. This ensures the development of the 
tasks within a defined framework. These tasks were inserted into the chat chain, starting with the 
mathematical content-oriented AI agent followed by the language-sensitive AI agent, differentiation-
sensitive AI agent, and at least the competence-oriented AI agent. 
Enhanced AI agents 

Documents were developed as foundational materials for each AI agent to serve as a research 
knowledge base. These documents were provided in PDF format and enabled each AI agent to access 
relevant information and adapt tasks based on their specific knowledge. Restricting the research 
knowledge base to a small number of pages is essential due to GPT-4's processing limitation of up to 
8192 tokens per prompt. A token might represent an entire word, though fragments of words and 
punctuation marks are also considered tokens.  

Instructions were designed to serve as a functional guide for AI agents in task evaluation using the 
specified research knowledge base. For example, the role of AI agents was clarified initially, 
highlighting that tasks should be viewed as objects of study rather than prompts for solutions. Each 
AI agent approaches the task analysis differently, focusing on areas like mathematical content, 
linguistic aspects, differentiation, and compliance with content and process standards, as outlined in 
the research knowledge base.  

The mathematical content-oriented AI agent is designed to support teachers in generating a 
mathematically correct and consistent task. Unlike the others, this agent uses the training data from 
GPT-4 as its research knowledge base, as it is impossible to limit mathematical knowledge to just a 
few pages.  
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The language-sensitive AI agent is designed to support teachers in developing language-sensitive 
tasks based on knowledge of language barriers in mathematics lessons and design principles of 
language-sensitive tasks (Abshagen, 2015).  

The differentiation-sensitive AI agent is designed to support teachers in natural differentiation and 
refers to characteristics of naturally differentiated learning opportunities and tasks: openness, 
complexity, low entry threshold, “ramps” for high achievers, need for discussion and high cognitive 
activation potential (Krauthausen & Scherer, 2022).  

The competence-oriented AI agent is designed to support teachers in encouraging necessary 
mathematical competencies and refers to the five content-related competencies according to 
UNESCO (2020) as well as to the NCTM Process Standards (n.d.). 

After analysis, a decision is made for potential task modifications, which the AI agent autonomously 
implements if necessary. Feedback is then provided on the task development, assessing adherence to 
the guidelines. The process concludes with a summary that reformulates the task's nature as a subject 
for study, aiming to enhance prompt adherence and minimize hallucinated responses by the LLM, 
addressing the common issues of prompt following in prompt engineering (Rassin, Ravfogel & 
Goldberg, 2022; Betker et al., 2023). 

After generating instructions for the AI agents, we followed the proposed architecture by Qian et al. 
(2023) and divided each phase of the task design process into atomic chats. The AI agents sequentially 
modify the given task, with each AI agent contributing a unique focus to the task design. To enhance 
communication between AI agents, the output from each agent was used as input for the next prompt. 
This sequence of prompt, output, prompt, etc., is referred to as a chat chain (Qian et al., 2023). The 
chat chain thus realizes a communicative process that culminates in a circular, consensus-oriented 
procedure under the independent influence of certain guidelines, to evaluate tasks and make 
suggestions for modifications. 

Data Analysis 
In the second step, the resulting tasks were evaluated by in-service teachers as human experts (each 
with an average of 11.67 years of teaching mathematics’ experience. The teachers were asked to 
critically evaluate the adapted tasks to test their practical applicability and relevance in educational 
settings. This is a process crucial for ensuring the tasks' practical applicability and relevance in 
classroom settings. Maier et al. (2014) described seven categories and characteristics of 
interdisciplinary task analysis and showed how teachers can analyze tasks in terms of their suitability 
for competence-oriented teaching.  

Similarly, in this study, four categories of mathematic-specific task analysis were used to guide 
teachers in evaluating the given tasks. The evaluation process required teachers to consider several 
criteria, including mathematical content, language sensitivity, differentiation level, and competence 
requirements. The aim was to assess the AI's effectiveness in customizing educational content to meet 
diverse learning needs and environments. 

Following this we used a frequency analysis of the teacher’s choice of tasks as well as their evaluation 
based on the four given perspectives. Furthermore, the comments reasoning their decisions are 
analyzed using Qualitative Content Analysis to inductively develop categories. 
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Results 
In this paper, we want to provide an insight into the results of our study. The extensive analysis of 
our data can be found in Schorcht et al. (forthcoming; 2024). 

RQ1: Overall, 44% of 36 decisions leaned towards the selection of AI-modified tasks with notable 
differences between problem-based tasks and tasks requiring basic competencies. Specifically, 61% 
of the decisions concerning problem-based tasks favored the AI-modified task, indicating a 
recognition of the value added by AI in these contexts. However, the changes made by AI agents to 
tasks requiring basic competencies were less convincing, with only 28% of experts favoring the AI-
modified tasks. This outlines a noticeable variance in expert choices, highlighting the nuanced impact 
of AI integration depending on the nature of the original task. 

The reasons teachers gave for their decisions were analyzed through the Qualitative Content Analysis. 
The sorting of the paraphrased comments from the experts within the assessments led to categories 
of positive and negative comments on specific categories for the original tasks and the AI-modified 
tasks that explain the choices of the experts. Due to the limited space in this conference paper, only a 
few of the 21 categories are used for each task type to exemplary outline the reasoning of the 
decisions. A complete description of all categories as well as a table containing their absolute 
frequencies is presented in Schorcht et al. (forthcoming; 2024). 

Regarding the original tasks' positive categories, comments of the category ‘short text’ were used to 
justify selecting the original task as it was “more concise” and had “less information that 
overwhelmed”. One expert mentioned students’ reading competence: “I think that many will initially 
have difficulties in selecting the essential from the texts. Therefore, the simple tasks with less text are 
more effective in achieving the formulated objectives” (Expert 3). Concerning original tasks' negative 
categories, the category ‘lack of content’ was evaluated negatively due to the incomplete nature of 
tasks that require basic competencies. 

Positive characteristics of the AI-modified tasks were addressed in eight categories. The following 
paraphrased comment addresses the categories of ‘language comprehension’, ‘concrete call for 
action’ and ‘motivating’ and ‘solution approaches given’ in which AI-modified tasks scored very 
well: “Task 2 [AI-supported task; authors] is formulated in a more motivating and comprehensible 
way because it requires active action. There is also an approach to a solution” (Expert 1). The range 
of different strategies offered was also used to explain the selection of an AI-modified task: “Different 
calculation strategies can be used and described here” (Expert 5). However, we also found 
considerable criticism of AI-modified tasks, particularly regarding the inclusion of ‘unnecessary 
information’ and the ‘demanding text level’. 

RQ2: All six AI-modified tasks were assessed multidimensionally in terms of mathematical depth, 
language sensitivity, natural differentiation and competence orientation. The tasks were rated 
separately but the results don’t seem to be significantly dependent on the different tasks.  

Overall, all AI-supported modified task were rated positively in terms of mathematical content, 
differentiation level, and competence requirements. The only category not evaluated positively was 
the language sensitivity. Over 40% of the ratings stated, that the tasks were not, not completely or 
only partial language sensitive. The added comments show that this is due to the fact that most of the 
modified tasks are longer than the original one as ChatGPT is a language-generating AI and tends to 
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generate long texts. This should be considered in further development of the language sensitive AI 
agent. 

Discussion 
The presented results give useful information about the quality of the modified tasks and their 
suitability for potential use in classrooms. The evaluation regarding the four perspectives, i.e. the 
work of the four different agents, also serves as feedback regarding necessary further development of 
the AI agents. The findings suggest that GPT networks functioning as a multi-professional team can 
indeed support teachers in developing mathematical tasks and open new perspectives for pedagogical 
strategies. The AI-modified tasks were especially effective in providing supportive hints, improving 
language comprehension, and giving clear calls to action. However, it can also be seen that some of 
the modified tasks are very text-expanding since LLMs are designed for text production. Thus, it can 
be concluded that the instructions of the language-sensitive AI agent need to be adapted regarding 
text length. Nevertheless, this tendency to hallucinate also provided an opportunity to enrich tasks 
requiring basic competencies with context.  

In Summary, a GPT network is considered a practical tool for modifying tasks, but teachers are still 
responsible for adapting tasks to their students. 
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In this work, we investigate the different domains of knowledge mobilized by in-service teachers, with 
reference to TPACK, in the use of GeoGebra in a professional development programme with middle 
and secondary school teachers, in Portugal. We established performance indicators within the scope 
of technological, pedagogical and content knowledge, which we evaluate through content analysis of 
the activities produced by teachers during the programme. We present examples of the tasks proposed 
in the programme for the development of TPACK and identify aspects that demonstrate the 
mobilization of TPACK by teachers, in solving the proposed tasks and in the construction of an 
original task, aimed at pedagogical practice. We conclude that teachers can mobilize this type of 
knowledge, fundamental for the integration of technology, namely GeoGebra, in an educational 
context, within the scope of Mathematics teaching. 

Keywords: Professional development, Educational Technology, TPACK, GeoGebra. 

Introduction 
Teaching with technology is not an easy task. Teachers’ competencies such as knowledge are a 
decisive factor, but there are few studies investigating Professional Development Programs (PDP) for 
teaching mathematics with technology (Thurm & Barzel, 2022). In this paper, we aim to investigate 
the different domains of the TPACK model (Koehler et al., 2013) regarding knowledge developed 
and mobilized by teachers using GeoGebra to implement tasks in the context of a PDP. Research will 
be based on the analysis of the tasks proposed to trainee teachers to learn mathematics and the work 
produced by them in the PDP in the framework of TPACK.  

With this work, we want to answer the following question: What domains of knowledge within the 
TPACK framework are mobilized by in-service teachers when designing tasks for learning 
mathematics with GeoGebra during a PDP? 

In Portugal, GeoGebra is one of the main technological resources introduced in PDP for basic, middle 
and secondary teachers, as it integrates the Portuguese curriculum at these levels of education (DGE, 
2021, 2023). It is therefore crucial that teachers acquire and mobilize adequate knowledge so that 
they have confidence and competence in applying the proposed approaches (Murphy et al., 2015) to 
transform the prescribed curriculum into a curriculum in action (Gimeno, 2000).  

This work is part of a larger project in which we study the integration of digital technology by teachers 
into pedagogical practices, where we have already seen that teachers consider that they had 
knowledge (and self-confidence) to use technology in teaching (Pimenta et al., 2022). However, they 
not always place technology on students' desks as a learning instrument, so there is a need for more 
research to understand how these technologies may become widespread instruments for student 
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learning (Pimenta et al., 2023). Thus, characterizing the different domains of the TPACK in teachers’ 
knowledge may provide more understanding in this matter. 

Theoretical background  
In the fundamental literature that supports this study, we considered two areas: the use of GeoGebra 
in an educational context and the TPACK model to frame teachers' knowledge of how to teach using 
technology.  

GeoGebra in an educational context 

The use of GeoGebra in an educational context is widely recommended in the literature. GeoGebra 
was designed, as Hohenwarter (2013) describes, to combine dynamic geometry with the 
functionalities of computer algebra systems, for learning and teaching mathematics. It is a rich 
resource that can contribute to improving pedagogical practices and more meaningful learning 
(Zengin, 2019; Weinhandl et al., 2020; Lyublinskaya & Cabral , 2023). For example, evaluation by 
García et al. (2020) demonstrated that students positively value the proposed tasks and the use of 
GeoGebra to develop them, which facilitated understanding and deepening geometric concepts. 
Zulnaidi and Zamri (2017) showed that students using GeoGebra, compared to a control group subject 
to methods they designate as conventional, have greater conceptual and procedural mathematical 
knowledge. Hernández et al. (2020) in an investigation within the scope of initial teacher training, 
noted that the use of technology, and particularly GeoGebra, can be crucial to clarify mathematical 
aspects and to support the understanding of the mathematics to be taught.  

In the new Mathematics curricula for basic and secondary education in Portugal, there is explicit 
reference to the use of resources such as GeoGebra. In secondary education (DGE, 2021) the 
“Systematic use of technology” is presented as one of the key ideas of essential learning, to 
“Encourage the exploration of ideas and concepts, integrating technology (…)”. More specifically, 
“strategic teaching actions” are listed and involve dynamic geometry. In the 3rd cycle of basic 
education (7th to 9th years) (DGE, 2021), in the section “How to promote the learning of 
Mathematics”, regarding resources/technology, it is mentioned that «The tools Technological 
technologies must be considered as unavoidable and powerful resources for teaching and learning 
Mathematics. (…) All students must be able to freely access (…) software for statistical processing, 
geometry, functions (…).”. Dynamic geometry environments are explicitly mentioned (for example, 
“Perform constructions in dynamic geometry environments a that mobilize geometric places, regular 
polygons, relationships between angles and isometries (…).”. 

TPACK 

Regarding the development of teachers' knowledge for efficient teaching of Mathematics with 
technology, we have as a reference the Technological, Pedagogical and Content Knowledge 
(TPACK) model, as introduced by Mishra and Koehler (2006). The acronym TPACK stands also for 
Total Package and, according to Mishra and Koehler (2008), it better reflects the interdependence of 
the intervening knowledge domains, as represented in Figure 1. 
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Figure 1 – TPACK model (Koehler et al. , 2013) 

Mishra and Koehler (2006) introduce TPACK as a theoretical framework that contextualizes the 
intersection between knowledge in the domains of pedagogy, content and technology. Koehler et al. 
(2013) describe the various components of TPACK: TK (technological knowledge), always 
changing; TCK (technological and content knowledge), understanding the ways in which technology 
and content influence each other; TPK (pedagogical and technological knowledge), understanding 
how teaching and learning can be enhanced with the use of certain technologies; finally, TPACK, an 
emerging form of knowledge that goes beyond content, pedagogy and technology: it is an 
understanding that emerges from the interactions between these three dimensions. Integrating these 
knowledges into the educational context, teachers mobilize TPACK whenever they teach. As 
characterized by Koehler et al. (2013), TPACK is the support of a “truly meaningful and deeply 
qualified teaching with technology (p.16)”, which goes beyond the three types of knowledge 
individually.  

Regarding the evaluation of teachers' TPACK, we consider Niess et al. (2009) who, specifically 
regarding TPACK for teaching mathematics, describe a model that consists of several phases of 
cognitive development: recognition, acceptance, adaptation, exploration and advanced. This work 
proposes how to identify what stage a mathematics teacher is in by observing their activities. Bowers 
and Stephens (2011) present an instrument for distinguishing five domains of knowledge (CK, TK, 
TCK, TPK and TPACK). Based on work projects proposed by the participants (generally teachers or 
students in initial teacher training), in which they present proposals for learning activities, using an 
dynamic geometry environments, and based on the answers to a self-assessment questionnaire, the 
researchers characterized the knowledge of practitioners in the five domains mentioned. Harris et al. 
(2015) state that, in general, TPACK assessment can have three scopes: self-assessment, observation 
of behaviour and analysis of teachers' productions (such as lesson plans, for example). In 2018, 
Akyuz, in a work carried out within the scope of initial training for Mathematics teachers, uses an 
assessment instrument for the seven TPACK knowledge domains, based on three performance 
descriptors for each model, applied in the analysis of planning, activities and the applications 
produced by future teachers. 

Regarding the type of activities to be proposed to teachers for developing TPACK, we had as a 
reference Harris et al. (2014), that offer TPACK-based “activity types” to the professional 
development approaches. 
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Methodology  
In this research, using a qualitative methodology (content analysis), with an interpretative paradigm 
(Cohen et al., 2018) we analysed the development and mobilization of teachers' TPACK within the 
framework of a training course implemented with 25 middle and secondary school math teachers, all 
with excellent grades at the end of the course. This 25-hour course (12 synchronous + 13 
asynchronous, in e-learning), entitled “GeoGebra applications”, was implemented in 2020/2021, at 
the Portuguese Mathematics Society (https://www.spm.pt/). Teachers' participation in this PDP and 
in the study was voluntary and their anonymity was guaranteed. 

To characterize the teachers' TPACK mobilized and developed when carrying out tasks, we defined 
three performance descriptors for analysing the work produced by teachers during the course:  

• TK – to use the right tools correctly, including non-trivial and dynamic procedures;  
• CK – to fulfil the task objectives from a mathematical point of view (without scientific errors) 

involving meaningful mathematical to allow students explore the topic; 
• PK – to include tasks for students with the aim of active learning, including asking for 

solutions, generalizations or conjectures. 
To define these indicators, we start from previous work in this field. For example, Akyuz (2018) 
proposes three descriptors for each of the domains CK, PK, TK, PCK, TCK, TPK and TPACK, but 
we aimed to consider a smaller number of indicators, so that they are clearly understandable by 
trainees who, as teachers, will have to mobilize and integrate this knowledge into their teaching 
practice. In the indicators we present, we wanted to summarize and group some of the ideas proposed 
in Bowers and Stephens (2011) “Components of TPACK (…)” (p.293). Then, we consider the 
intersections of the three indicators presented. For example, if TK and CK are mobilized 
simultaneously, we consider that TCK is mobilized; if the three indicators are mobilized, we consider 
that TPACK has been mobilized. We begin by presenting and characterizing the tasks proposed to 
the trainees, intentionally designed to promote the development of teachers' knowledge to teach 
mathematics. Then we analyse teachers' productions resulting from these proposals and the tasks they 
autonomously created to implement with students, for learning mathematics using GeoGebra, to 
illustrate the knowledge mobilized in the construction of the tasks.  

Data presentation and analysis 
In the PDP, to improve the teachers’ TPACK in the use of GeoGebra, we propose a set of tasks, in 
the areas of Geometry and Functions, in which teachers should mobilize and develop TPACK, in its 
three domains: TK, CK and PK. At the end of the course, each teacher had to create an original task, 
which involved dynamic constructions in GeoGebra, to propose to students, so that they use 
GeoGebra in a Mathematics learning activity. 

Tasks proposed in the PDP 

We present below some examples of the initially proposed tasks. In Geometry: «Create a dynamic 
construction that illustrates the Pythagorean Theorem. Include dynamic text that illustrates the 
corollary of the theorem. Publish at geogebra.org»; «Construct the 9-point circle for a triangle. Study 
the relationship between the radius of the 9-point circle and the radius of the circumscribed circle.» 
In Functions: «Create a model, using sliders, that illustrates the influence of the parameters a, h and 
k, on the parabolas relating to the quadratic functions, with analytical expression in the form ,(4) =



 

 

Proceedings of the 17th ERME Topic Conference MEDA4, 3-6 September 2024, Bari, Italy                      ISBN 978-88-6629-080-3 

  
339 

@(4 − ℎ) + b»; «Verify geometrically in GeoGebra that (cos4)´ = −sin4 , using command input, 
the tangent line and slope tools, the locus tool and the activate trace mode of an object.» 

These tasks were designed by the trainers, based on their experience and qualifications, but also using 
literature, such as the work of Harris et al. (2014), that characterize learning activities to develop and 
apply TPACK, namely, “Producing an artifact”, “designing an exhibition” and “creating a game”. 

Teachers’ productions 

The following are constructions made by the trainees, which put into practice the statements proposed 
by the trainer. In the activities shown in Figure 2, we can identify the mobilization of TCK, given 
that, on the one hand, TK is mobilized, building, for example, boxes to show and hide objects, and 
dynamic text, in addition to dynamic construction, and, on the other, it is mobilized the CK, since 
there is total mathematical correctness in the constructions. In the nine-points circle construction the 
trainee included a question to be answered based on the exploration of the application – “In any 
triangle, the radius of the 9 points circle is…. of the triangle circumradius” – that shows an implicit 
pedagogical concern to the exploration of the activity by students, mobilizing PK. So, in an integrated 
way, we consider this as examples of TPACK mobilization. 

  

Figure 2: Pythagorean Theorem / Nine points circle – teachers’ productions, mobilizing TPACK 

In Figure 3, a construction is shown in which teachers mobilize TCK completing the trigonometry 
task proposed by the trainer. TK – applying non-trivial procedures, knowing how to use command 
input, locus tool and the trace mode of an object; CK – knowing and applying the definition of 
derivative at a point.  

 

Figure 3: (345#)´ = −578# construction, mobilizing TCK 

Regarding original works by trainees, as shown in Figure 4, with greater weight in our analysis, since 
they did not originate from any script, other than the general recommendation for them to construct 
a task for classroom application, mobilizing the knowledge developed in PDP, we verified in most of 
the works presented that teachers were able to build activities fulfilling this recommendation, 
mobilizing TPACK: TK, as they use the right tools correctly (including non-trivial procedures, such 
as sliders, boxes to show and hide objects and dynamic text); CK, achieving the objectives of the task 
from a mathematical point of view (without scientific errors) involving meaningful mathematics to 
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allow students to explore the topic (as the ratio between perimeters and areas of similar figures); PK, 
including tasks for students, with the aim of active learning, including asking for solutions, 
generalizations or conjectures (as in the circumcentre example, where the teacher creates a to assign 
to the students, which includes the proposal to determine, in the context of problem solving, using 
the available tools, the equidistant point of three given points, to introduce the mathematical topic 
with an exploratory activity.)  

  

Figure 4: Figures similarity and circumcentre construction, mobilizing TPACK 

More examples of this are the works that can be accessed through the following hyperlinks 
(authorized by their authors): https://www.geogebra.org/m/bpan4wf6; 
https://www.geogebra.org/m/dexapmhf; https://www.geogebra.org/m/y48pqxmv . 

Discussion and final considerations  
We verified that teachers mobilised different domains of TPACK (Koehler et al., 2013), namely 
Content Knowledge (CK), Pedagogical Knowledge (PK) and Technological Knowledge (TK), 
including the integration of these domains, PCK, TCK and TPK, resulting in the TPACK. Based on 
Bowers and Stephens (2011) work, we concretized examples of tasks to be proposed to trainees, in a 
PDP environment, for the development of the TPACK domains. Based on the descriptors proposed 
by Akyuz (2018), we proposed three simplified indicators (CK, TK and PK) so that they can be 
clearly understood and applied not only by researchers, but also by trainers or trainees within the 
scope of PDP and, in general, by teachers who must now be well aware of this type of pedagogical 
practice, using technology such as GeoGebra, as prescribed in the curriculum (DGE, 2021, 2023). In 
this way, we were able to exemplify, based on the productions of the trainee teachers (figures 2 to 4), 
whether based on initially proposed tasks or based on their final individual original works, in which 
context the three main domains of TPACK are mobilized in the development of these activities. For 
example, the use of boxes to show and hide objects or dynamic text is an indicator of TK mobilization; 
a construction that illustrates meaningful mathematics correctly, from a scientific point of view, that 
allows the student to learn within the scope of this mathematical topic, is a CK mobilization indicator; 
including questions that allow students to draw conclusions from exploring the application is an PK 
mobilization indicator. Finally, we conclude that teachers are able to mobilize knowledge within the 
scope of TPACK to build activities for learning mathematics using GeoGebra. This can help to meet 
the learning objectives set out in the curriculum (DGE, 2021, 2023). These results seem to be in line 
with teachers who considered that they had knowledge and self-confidence to use technology in 
teaching (Pimenta et al., 2022). However, it does not clarify why teachers do not promote these 
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technologies for student learning as identified in Pimenta et al. (2023). Thus, there is a need to develop 
more research on this matter. 
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Embedding three-dimensional objects in one's own real environment in real-time is a unique 
opportunity that Augmented Reality (AR) offers for mathematics education, but research in this area 
is still scarce. The MalAR project developed an AR application to embed analytical geometry objects 
(lines, planes and points) into the learner's real environment using the smartphone camera. Learners 
can explore mathematical situations in their real environment that are usually only described 
symbolically in textbooks. The paper focuses on a study using the MalAR app in a learning 
environment. The results show that the MalAR app induces different forms of body movements. Based 
on the learners' statements, different categories of movements could be identified. Although the study 
does not provide a conclusive picture of the relationship between body movement and mathematical 
performance, the findings suggest that further research into the use of AR by learners is beneficial. 

Mathematics education, augmented reality, analytic geometry, digital tools, app. 

The project MalAR 
The MalAR (Learning Mathematics with Augmented Reality) project aims to explore the potential 
of using augmented reality (AR) to support teaching and learning in the context of analytic geometry. 
The three-dimensional nature of mathematical objects in analytic geometry, such as planes, makes it 
difficult to use physical representations. This often leads to a technical and less descriptive approach 
to these concepts, which hinders the active sense-making process (Borneleit et al., 2001). The MalAR 
project explores the use of Augmented Reality (AR) to address these issues. AR merges reality with 
computer-generated representations in real time (Milgram & Kishino, 1994), allowing both to coexist 
or blend seamlessly (Azuma, et al., 2001). The MalAR smartphone app (available for iOS) allows 
learners to position analytic geometry objects in their real surroundings. The geometric objects are 
integrated into a video image captured by the smartphone camera (see Figure 1). Using a smartphone, 
an everyday device, learners can explore symbolically presented mathematical situations in their real 
environment, creating the illusion of a three-dimensional object. This allows them to discover 
concepts, such as the mutual position of planes, through their own exploration through body 
movements and to visually check their results (Reit, 2022).        

When using the MalAR app, the user is first asked to choose whether he wants to register or enter the 
App with a guest account. The app then accesses the camera and displays a yellow square to indicate 
that it is searching for areas on which a coordinate system can then be placed by tabbing to the screen. 
The coordinate system is fixed and cannot be moved. This means that all subsequent objects that 
depend on the coordinate system are also fixed. The objects can only be enlarged by moving closer 
to them, not by zooming with a finger movement. In the same way, a change of perspective, i.e. 
viewing the situation from another side, requires the user to move their body to the other side. 
Rotating the coordinate system, as is familiar from dynamic geometry systems, is deliberately not 
possible here either. Other objects, such as planes, points, lines and distances, are selected using the 
plus button at the bottom of the screen (see Figure 1, right). In addition to the visualisation of the 
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mathematical situation, a symbolic representation of the placed objects appears at the top of the screen 
(see Figure 1, right). In this display, you can select to show, hide, delete or change the objects using 
the symbolic notation.  

        
Figure 1: left: Perspective of the user, looking at the smartphone screen which captures the reality 

augmented by mathematical objects. Right: Screenshot of the camera view in MalAR-App: 

Coordinate system, two planes and a point placed in the user's environment 

AR as an external interactive representation 
When using the MalAR app, 3-dimensional mathematical objects are projected through the live 
camera view into the reality surrounding the user. Keehner et al. (2008) refer to “augmenting 
cognition” when describing the potential of a purposeful use of external representations. Studies 
indicate that complex cognitive processes can be outsourced to less complex perceptual-motor 
processes with external (digital) representations (Card et al., 1999; Gordin & Pea, 1995; Kirsh, 1997). 
Theories consider interactive behaviour in a theoretical framework of so called distributed cognition 
(Hutchins, 1995; Zhang & Norman, 1994). According to this framework, cognitive processes take 
place internally (in the mind) and externally (in the world, in an external medium). Keehner et al. 
(2008) postulate that, rather than being a peripheral aid to cognitive processes, external 
representations overlap with internal representations to create a distributed representational space. 
The cognitive load theory (Sweller, 1988) and related models of embodied cognition, assume that 
learners seek to minimise reliance on internal cognitive processes by outsourcing them to perceptual-
motor processes (e.g. Ballard et al., 1997; Wilson, 2002; Zhang & Norman, 1994). With regard to the 
possibilities offered by the MalAR app, the question arises as to whether there are observable 
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processes, in the sense of actual physical actions, and what influence these have on the solution of an 
AR-supported task.  

Study Design  
A design-based research approach was used to develop an iOS app in the field of analytical geometry, 
going through several design cycles. The primary aim of the app development was to ensure an easy 
handling without a new input programming language, which is required by most apps on the market 
(e.g. GeoGebraAR). The input of mathematical objects should be based on the symbolic notation 
commonly used in German-speaking countries, as taught at school. This means that no extensive 
introduction to the use of the app is necessary. In the 12-19 age group, 98% of girls and 96% of boys 
own a smartphone, according to a study on media research among German adolescents in 2018 (JIM, 
2018). It can therefore be assumed that almost every young person today owns a smartphone. The 
high availability of the smartphone together with the straightforward operation of the app make it 
attractive for use in the classroom. 

Once a first satisfying version of the MalAR app was available, a pilot study was carried out. Based 
on the theoretical implications of AR as an external interactive representation described above, the 
following consecutive research questions emerged for the pilot study: 

F1 Does an AR-supported learning environment in the field of analytic geometry initiate 
movement in learners?  

F2 What patterns of movement are initiated by an AR-supported learning environment in 
analytical geometry? 

F3 Do high-achieving learners show different movement patterns than low-achieving learners? 

50 students (aged 16/17) from a German grammar school worked in an AR-supported learning 
environment in the area of analytic geometry in a 90-minutes session. Of these, 16 students were 
attending an advanced mathematics course and 34 attended a basic mathematics course. The learners 
were guided through different tasks with the help of a questionnaire (Figure 2). Most of the questions 
were related to the placement of mathematical objects in the app and the subsequent validation of 
their (mutual) position. In order to investigate whether the learners used their bodies when working 
on the questions, they were repeatedly asked to note how they moved in order to analyse the scene 
(see questions 3, 7, 8 and 9 in Figure 2). 
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Figure 2: Translated excerpt from the questionnaire used in the pilot study 

With regard to research question 3, the learners were asked to solve a typical textbook task for the 
topic in written form (Figure 3). This task was used to categorise learners as low or high performers 
for the analysis. 

 
Figure 3: Task to be solved in written form within questionnaire of the pilot study 
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Analysis and Results 
The movement data collected through the instruction manual was analysed using qualitative content 
analysis (Mayring, 2014). Three main categories and 12 subcategories were coded from the learners’ 
responses on self-perceived movement while using the malAR app (Table 1) with a moderate Cohen’s 
w of 0.6. A distinction could be made between body movement (B), movement of device (D) and 
object-related movement (I). 

Table 1: Categories of movement patterns found in the learners’ answers 

Movement patterns (Research question F1 and F2) 

A quantitative analysis of the code frequencies shows that the category "Body Movement (B)" was 
noted by almost all learners. Specifically, B3 "move around” was mentioned as the most frequent 
subcategory with almost 90%. Half of the learners stated that they stood up to view the AR scene, 
followed by B6 "look from above at object" and B4 "move closer/farther away". The seemingly 
contradictory statement "not moving much" was reported by a fifth of the learners.  

More than half of the learners reported that they moved the device to gain additional insight in the 
AR-scene. In terms of object-related movements, I2, the change of perspective, was most frequently 
reported (74%). I1, comparing the coordinates of the given objects with the coordinate axes in the 

Code Description 
x% of learners mention 
„code“ in their answers 

  subcategory 
main 

category 

B1 stand up 50% 

94% 

B2 turn around (sitting or standing, without further movement) 14% 

B3 move around (walk, step, go somewhere, stand on an object/chair, stand 

somewhere, move a chair, bend down, walk around something) 
86% 

B4 move closer/farther away 38% 

B5 not moving much 20% 

B6 look "from above" at objects (e.g. "reach up" to look at objects) 44% 

    

D1 Move/align device 56% 56% 

    

I1 Compare the scaling on the axes (move coordinates, search for coordinates of 
the point) 

44% 

18% I2 Viewing objects from several sides/from several perspectives ("from both 
sides", "from another side", "turning around something") 

74% 

I3 Hide/show objects 18% 

    

N1 Movement unclear: with own active movement or only movement of device? 40% 40% 

NM not possible (the app did not work, the arithmetic problem referred to was not 

solved, not processed for reasons that cannot be understood) 50% 50% 
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AR scene, was mentioned by almost half of the learners. I3, fading in and out objects, did not seem 
to be very relevant for many learners when working on the tasks. At this point it can be hypothesised 
that the complexity caused by many overlapping mathematical objects in an AR scene, was not yet 
so high in the learning environment used in the study. 

In 40% of the responses, learners expressed unclear movements (N1) that could not be assigned to 
the main categories. The main problem here was that it was unclear whether the movement pattern 
was performed with the device or with the learner's own body. Half of the learners were unable to 
provide an answer at one or more items in the questionnaire (NM) during the session due to a lack of 
prior answers in the questionnaire or technical problems. 

To answer the question of whether high achieving learners show different movement patterns than 
low achieving learners, the written mathematics task (Figure 3) was evaluated in relation to the 
number of body movements (Figure 4). The hypothesis that high achieving learners need less help in 
solving the task and therefore also make less use of the possibilities of the MalAR app could not be 
confirmed. Overall, no consistent relationship could be found between performance in the 
mathematics tasks and the number of movements noted. Figure 4 shows that both, high and low 
achieving learners show forms of body movement in their answers to the other tasks in the learning 
environment. The average number of body movements for all performance levels is 4-5 movements, 
although there seems to be a clustering at 4 body movements for the high-achieving and 7 body 
movements for the low-achieving (Figure 3). However, whether there is a difference in the form of 
movement at the level of the (sub)categories has not yet been analysed, but could provide detailed 
insights. 

 
Figure 4: Correlation of body movement (B) and mathematics performance 

Discussion and outlook 
The written responses show that all learners explored the AR scene through body movements. This 
shows that the possibilities of AR in the learning environment initiated body movements (F1). The 
breakdown into different movement patterns (F2) shows that learners performed a wide range of 
movements. On the other hand, the learners' responses reveal a limitation of the study. It can be 
assumed that not all movements actually performed were noted. Furthermore, it is likely that the 
actual movements deviate from the written notes. To address this shortcoming, a follow-up project 
will videotape learners working in a MalAR-supported learning environment. It will be interesting to 
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see to what extent the movement patterns differ from those in the pilot study and how the 
categorisation system is extended and differentiated. Based on the results of the pilot study, it can be 
assumed that the use of AR influences the way in which learners work on tasks (cf. Keehner et al., 
2008; Zhang & Norman; 1994). Conversely, it will be of great interest to identify task characteristics 
that make AR support a particularly effective tool. 
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AnnoPy – A digital tool to foster disciplinary literacy 
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The importance of developing disciplinary literacy in mathematics is widely accepted. However, how 
digital technologies can be used to support the development of disciplinary literacy is hardly 
discussed in the literature. In this paper, AnnoPy—a digital tool that was developed to support 
teachers in fostering disciplinary literacy—is introduced. AnnoPy can be used in different disciplines 
and with different intentions related to the development of disciplinary literacy. The focus of this 
paper is on a learning scenario in which AnnoPy is used to support students’ reading of mathematical 
text. The learning scenario is described and some results of a first evaluation of its implementation 
are presented. The latter show that using AnnoPy is promising to support students reading abilities 
of mathematical text. 

Introduction 
Disciplinary literacy can be defined as the capacity for ‘understanding of both disciplinary content 
and disciplinary habits of mind (i.e. ways of reading, writing, viewing, speaking, thinking, reasoning 
and critiquing.’ (Fang & Coatoam, 2013). It is widely agreed that fostering disciplinary literacy is 
important in mathematics education (e.g., Hubbard, 2021; Shanahan & Shanahan, 2008). Fostering 
reading skills (e.g., Rezat et al., 2022), writing about mathematics (e.g., Segerby, 2016), and 
involving students in rich mathematical discourse (e.g., Erath et al., 2018) are but some ways that 
have been suggested to foster disciplinary literacy. However, the role of digital technologies in 
fostering disciplinary literacy is hardly discussed in the literature. A literature search using ERIC 
(https://eric.ed.gov) with the search term mathematics AND “disciplinary literacy” AND digital 
yielded 12 results, with only one of them—a practical resource—being closely related to digitally 
supporting disciplinary literacy.  

In this paper, I introduce AnnoPy, a digital tool developed to support teachers in different subject 
areas in fostering disciplinary literacy. I also describe a learning scenario in which AnnoPy is used to 
support students’ reading of mathematical text. Finally, I present the first results from an evaluation 
of the learning scenario with n = 284 first-year teacher students in a course on elementary geometry.  

Theoretical Framework 
Reading as one aspect of disciplinary literacy is theorized as a process in which the reader actively 
engages with the text, generating meaning mediated by his/her past experiences, knowledge and 
beliefs, as well as the context and purpose of reading (Borasi & Siegel, 1990). Several studies have 
investigated differences in reading strategies between novice and expert readers of mathematics texts. 
Shepherd and van de Sande (2014) identify differences in three dimensions: fluency, comprehension 
monitoring, and engagement. Fluency relates to the observation that expert readers read more fluently 
when encountering mathematical symbols and can read the meaning of the symbols. Comprehension 
monitoring refers to spending more time on and being more persevering in understanding which 
includes stopping more often while reading to check comprehension. Finally, engagement is 
characterized by the extent to which expert readers search and use different resources within and 
outside the text to understand the concepts.  
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Berger (2019) develops an empirically grounded typology of different reading styles. The expert 
reader, which Berger (2019 calls “close reader with strong connections”, is characterized by first 
skimming over the text to identify familiar and new knowledge before carefully reading the entire 
text, including all examples, definitions, theorems, and proofs, with a special focus on the new 
knowledge. The close reader makes connections between different resources in the text and also with 
prior knowledge. Furthermore, he/she does the exercises justifying the mathematical activities.  

The standard way to foster students reading in mathematics is to teach them reading strategies. In a 
meta-analysis of the effectiveness of reading-strategy interventions in whole classroom settings, 
Okkinga et al. (2018) found that the strategy “underline the important information” and “modeling” 
as a didactic principle where expert readers think aloud while they read to show their cognitive 
processes while comprehending the texts were among the aspects that moderated the effects of the 
strategy training on strategic ability the most.  

The strategies of expert readers combined with the results from Okkinga et al. (2018) provide the 
foundation for designing the learning scenario in this study.  

Methodology 
The study presented in this paper is grounded in a design research methodology with a special focus 
on the use of technology (Reeves, 2006). The design aimed at fostering students’ close reading of 
mathematical text. This was done by designing a learning scenario in which the written script of a 
lecture played a key role. Students' reading and understanding of the script were captured using 
AnnoPy as a technological tool. AnnoPy and the learning scenario will be described in more detail 
below. The learning scenario was implemented and evaluated in a lecture on elementary geometry 
for primary and special education teacher students at Paderborn University. As the use of AnnoPy is 
very intuitive—only requiring the selection of text passages and then selecting among the predefined 
annotation styles—no particular introduction to the use of the tool was required. However, students 
had the opportunity to watch a video explaining the functionalities of AnnoPy that was accessible 
through the learning platform (moodle) at the University. N = 284 first-year students answered an 
online questionnaire about their perceived benefits of the lecture design, including AnnoPy. The 
questionnaire contained 25 self-developed items with a six-point Likert scale, three interval-scaled 
items, and five open items. The items were structured into six sections, each related to a different 
design aspect. Five items related to the overall course design, including AnnoPy, four items related 
to students’ self-perceived reading and annotation strategies, and five items particularly to AnnoPy. 
Students’ answers to the questionnaire were analyzed using methods from descriptive statistics.  

AnnoPy 

AnnoPy (www.annopy.de) is a digital, collaborative online-tool to support school or university 
teachers in promoting students' disciplinary literacy skills. It was developed collaboratively at 
Paderborn University based on the cooperation between German language education, informatics 
education, and mathematics education. It is intended to be used in classroom teaching or blended 
learning scenarios. At its current stage of development, AnnoPy has the following functionalities: 

1) text passages can be marked and annotated (individually and in groups) based on different 
annotation styles (Figure 1). These are predefined by the teacher according to the intention of 
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engaging with a text. In Figure 1, the annotation styles are “schwer verständlich” (difficult to 
understand), “bekannt” (familiar), and “wichtig” (important).  

 
Figure 1: Individual annotation view with pre-defined annotation styles “schwer verständlich” 

(difficult to understand), “bekannt” (familiar), and “wichtig” (important). 

2) The outstanding feature of AnnoPy is that it enables the teacher to cumulate all the individual 
markings and analyze them quantitatively; that is, AnnoPy only shows markings that are 
identical among a particular number of students. This can be imagined as laying slides with 
the same text excerpt and students’ individual annotations on top of each other to get an 
overall picture of the number of text passages annotated with the same style by a particular 
number of students. We call this an Overlay. The overlay of the same text passage as in Figure 
1 is shown in Figure 2.  

 

 
Figure 2: Overlay-View in AnnoPy, showing all 

cumulated annotations 

 
Figure 3: Quantitative analysis in the overlay-

view in AnnoPy, showing only the style “schwer 

verständlich” (difficult to understand) and text 

passages that were annotated by at least five 

students 

AnnoPy enables visualization of either all annotations or of a certain frequency of annotations (e.g., 
annotations that were rarely made by the students or made particularly frequently). Annotation styles 
can also be displayed individually. Figure 3 shows only the style “schwer verständlich” (difficult to 
understand) and only text passages annotated by at least five students as difficult to understand.  

The Overlay is the central starting point for subsequent discourse, which fosters understanding of the 
text on a social level. In the next section, I describe the design of a learning scenario in which the 
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features of AnnoPy were used to foster university students’ reading of mathematical text in a lecture 
with a large number of participants (approximately 300).  

The learning scenario 

The long-term goal of the learning scenario is to foster students’ disciplinary literacy related to 
mathematical text and the particular ways of using language to communicate mathematics. The main 
idea of the scenario is to provide students with as many opportunities to read mathematics as possible 
and to scaffold their understanding of mathematics through reading. This idea was implemented in a 
lecture with a large number of participants (approx. 300 students). The learning scenario builds on 
the concept of flipped learning (FLN, 2014). The script of the lecture is used as a central text resource. 
Students must read an excerpt of the script in preparation for every weekly lecture. The script excerpt 
is presented to students through AnnoPy and was to be accessed through a link provided on Moodle—
the university’s learning platform. AnnoPy is used in two ways to scaffold students' understanding of 
mathematics through reading. First, while reading it supports students to reflect on the text in terms 
of three questions that Berger (2019) has identified as being important for expert readers in 
mathematics: 1) What is familiar?; 2) What is new and important?; and 3) What is difficult to 
understand? This is done by using three predefined annotation styles (familiar, new & important, 
difficult to understand) in AnnoPy for marking relevant text passages. These three questions also 
foster students’ comprehension monitoring while reading which was found to be an important aspect 
of expert readers by Shepherd and van de Sande (2014). Second, after reading, AnnoPy supports the 
lecturer in getting an insight into students’ reading experiences by analyzing the marked and 
annotated text passages to prepare a lecture tailored to students’ needs. In particular, the lecturer can 
analyze students’ prior knowledge by analyzing what students have marked as “familiar” by checking 
if the text's prerequisites were marked as familiar by a relevant number of students or if some 
prerequisites need clarification. Furthermore, the lecturer can check if students have identified the 
important new content in the script excerpt. Finally, the lecturer can analyze students' difficulties with 
the text and prepare the lecture, offering additional explanations that support students in overcoming 
these difficulties. The main strategies for offering further explanations are  

§ modeling the reading of the difficult-to-understand text passages and making connections to 
previous knowledge and other resources in the text. This was found to be an important didactic 
principle in the meta-analysis by Okkinga et al. (2018); 

§ offering additional representations. This is widely regarded as an important principle in 
mathematics education to foster understanding. 

This is facilitated by using the Overlay in AnnoPy. The Overlay allows for quantitative analysis of 
the marked script passages to identify those marked and annotated by a relevant12 number of students. 
Additionally, the lecturer can use the insight into students’ engagement with the text to improve it by 
being more explicit about important prerequisites or clarifying them in the text and by including 
further explanations. Figure 4 presents the different steps of the weekly repeated structure of the 
learning scenario. 

 
12 What is considered to be a relevant number in this context needs to be defined individually by the lecturer.  
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Figure 4:  Learning scenario for fostering students’ reading of mathematics within a lecture 

 
Results from the evaluation study 
Figures 5, 6, and 7 present the results of selected questions from the questionnaire. As the Lickert 
scale contained six values and there was no middle value, evaluations of 3, 4, and 5 on the Lickert 
scale are rated as agreement.  

The results show that about 75% of the students thought that the whole learning scenario supported 
their learning and helped them understand the contents. About 90% of the participants thought that 
discussing difficult-to-understand text passages was especially helpful.  

1. Preparatory reading and annotation of the lecture notes: Students read the script in 
preparation for the lecture and mark up and annotate the script using AnnoPy with three 
annotation styles: 1) difficult to understand; 2) familiar; 3) new & important 

2. Evaluation of the annotations: Using the overlay function in AnnoPy, the lecturer analyzes the 
annotated script with respect to the following questions: 

1. What script content did students rate as difficult to understand?  
2. Did the students succeed in activating the required prior knowledge?  
3. Was the important content of the script identified by the students? 

3. Preparation of the lecture: The lecturer prepares the lecture based on the analysis of the 
annotations. In particular, the lecturer  

• models the reading and provides additional examples, representations and explanations of 
script excerpts that were marked as difficult to understand by a critical number of students; 

• supports activating required prior knowledge;  
• provides feedback on the important content. 

 

4. Lecture: The lecture is tailored to the specific needs of the learning group through the preparatory 
annotation and the related preparation of the lecture. Students can follow better and participate in 
the discourse of the content due to the intensive preparation. 

5. Follow up of the lecture: 

Students: Apply lecture content by working on tasks and problems.  

Lecturer: The lecturer revises and optimizes the comprehensibility of the script concerning students' 
annotations.  



                          Proceedings of the 17th ERME Topic Conference MEDA4, 3-6 September 2024, Bari, Italy                          ISBN 978-88-6629-080-3

  
356 

 
Figure 5: Results from the questionnaire about the course design (n = 284) 

Regarding usability and the perceived benefits of using AnnoPy, about 65% of the students tended to 
think that using AnnoPy was helpful and supported them in understanding the script's content (Figure 
6, items 1 & 2). 80 percent of the students thought using AnnoPy was intuitive (Figure 6, item 3).  

 
Figure 6: Results from the questionnaire about the usability of AnnoPy (n = 284) 

Slightly more than half of the participants agreed that the script's contents were better understandable 
near the end of the course than at the beginning (Figure 7, item 1). This indicates that their reading 
abilities are likely to have improved, as the script's writing style has not changed near the end, and 
the content is even more challenging. Regarding students’ reading strategies, the results show that 
between 65% and 85% of the students applied reading strategies found with expert readers in 
mathematics (Figure 7, items 3 & 4). 

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

The discussion of the passages marked as "difficult to
understand" in ANNOPY in the lecture is helpful for

understanding the contents.

I can understand the content of the course well by using
the different components (ANNOPY, reading strategy
videos, assignments on the text,  homework, (central)

exercises,  lecture).

The whole concept of the course (independent working
through and marking of the script BEFORE the lecture

AND discussion of the contents with special attention to
the difficulties IN the lecture) supports my learning

process.

Course Design

do not agree at all  (0)  (1)  (2)  (3)  (4) agree absolutely (5)
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Figure 7: Results from the questionnaire about self-reported strategies when using AnnoPy 

Discussion 
AnnoPy supports teachers in collecting data on students’ interaction with text. This data can be used 
to tailor specific learning opportunities to support students’ understanding of the text or foster text-
based discourse. As in the case presented here, required prior knowledge is clarified, and additional 
explanations are provided for text passages indicated as difficult by a relevant number of students. In 
the short term, this resolves discrepancies between the reader’s actual knowledge and the knowledge 
required to understand the text, which is an important influential factor in reading mathematical text 
with understanding. In the long term, the idea is that readers develop more experience in reading 
mathematical text. The clarifications and explanations provided are supposed to help them get more 
familiar with the specificities of how language is used in mathematics. In turn, this is likely to 
influence their sense of power and authority concerning mathematical text and their values related to 
mathematics. A first evaluation of the implementation of the learning scenario gives hope to the 
assumption that these aspects and, thus students’ learning of mathematics from reading are indeed 
fostered. Especially the discussion of difficult-to-understand text passages during the lecture was 
evaluated as helpful. More than half of the students confirmed that they apply reading strategies 
shown by expert readers of mathematical text. This is likely, as one central aim of the learning 
scenario is to provide students with many opportunities to read mathematical text and the guiding 
questions that are linked to the three annotation styles (What is familiar? What is important? What is 
difficult to understand?) invite students to mimic basic strategies of expert readers. A particular 
motivating feature of the learning scenario could be that students are supported to overcome their 
difficulties with the understanding of the text passage. However, it is unclear whether the application 
of expert readers’ reading strategies can be in fact traced back to the use of AnnoPy. Further studies 
are necessary to investigate the effect of the use of AnnoPy on students' reading strategies and 
understanding of reading mathematical text.  

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

I read through the script excerpts in ANNOPY
slowly and also jump back if necessary if I have

not understood something.

I read through the script excerpts in ANNOPY
several times.

I put more effort into marking/annotating the
script in ANNOPY at the beginning of the course

than towards the end.

I found the presentation of the contents in the
script in ANNOPY better understandable at the

end of the course than at the beginning.

Reading and Annotation Strategies

do not agree at all  (0)  (1)  (2)  (3)  (4) agree absolutely (5)
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The use of the TPACK framework on research about teachers’ 
knowledge to teach with digital technology 

Helena Rocha 
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The potential of digital technologies for teaching and learning mathematics is widely recognized and 
teachers’ knowledge is one of the elements impacting their integration. Several authors have intended 
to characterize the teachers’ knowledge required and developed several models, being TPACK one 
of these models. In this study, we seek to conduct a systematic review of the research on the 
integration of digital technologies by mathematics teachers based on the TPACK model. Specifically, 
we intend to answer the following research questions: (1) What are the main methodological options 
adopted? (2) How is the framework operationalized/used in the studies? The review was based on a 
search in the Scopus database and resulted in the identification of 10 relevant documents. The 
analysis suggests a prevalence of qualitative approaches, but a strong use of questionnaires; and an 
integration of the model with other frameworks, namely the developmental model of TPACK. 

Keywords: Teachers’ knowledge, TPACK, systematic review. 

The research on teachers’ knowledge 
Digital technologies have long been recognized by their potential to promote mathematical learning 
(Tabach & Trgalová, 2019). However, achieving that potential has proved to be quite a challenge, 
with several authors recognizing the central role played by the teachers (Clark-Wilson et al., 2020). 

Technology integration into teachers’ practice is a complex process, affected by several elements, 
and one of these is the teachers’ knowledge (Rocha, 2020). Characterizing teachers’ knowledge and 
understand how to promote its development has been the focus of many studies and of many projects 
and similar initiatives, as discussed by Faggiano et al. (2021). However, this has not been an easy 
task. Several questions were raised. There was a need to understand what a teacher needs to know to 
be able to use the potential of technology to promote students learning. This includes understanding 
the teachers’ knowledge, but also understand how to promote its development. As discussed by the 
authors, the first attempts to promote the development of teachers’ knowledge were based on 
technical knowledge of the technology (i.e., knowing how to operate the technology) and failed. This 
analysis led to the need of considering more than just offering teachers access to technology and some 
technical support. 

Even before digital technology, several authors have intended to characterize the teachers’ knowledge 
and developed several models. Starting from the inspiring work of Shulman (1987) and his PCK – 
Pedagogical Content Knowledge construct, and going thought all the authors who used it and 
developed clarifications and extensions (Sevinc, 2023), until the very well-known refinement of the 
PCK proposed by Ball et al. (2008), we have come a long way that helps us to better understand what 
teachers need to know to teach. 

As discussed before, the integration of technology into teachers practice has raised new challenges. 
It was clear that teachers need some knowledge about technology, but very soon it was clear that 



                          Proceedings of the 17th ERME Topic Conference MEDA4, 3-6 September 2024, Bari, Italy                          ISBN 978-88-6629-080-3

  
360 

some additional knowledge would be need. Inspired by the work of Shulman and his PCK construct, 
some more specific models were developed. One of these models was TPACK. Developed by Misha 
and Koehler (2006), this is probably the most well-known model with a focus on technology 
integration. 

The TPACK model considers the Content and Pedagogy knowledge domains, assuming PCK as the 
intersection between these. To these domains the authors add the one on Technology, considering 
then the intersections among all the domains: Content and Technology, Pedagogy and Technology, 
and the intersection among all the domains – the TPACK. The Context is also considered, although 
in different ways over time, only recently being assumed as a knowledge domain (Mishra, 2019). 

However, the research based on knowledge models has been criticized because of the way it uses 
these models, often with a greater focus on distinguishing between different domains of knowledge 
than on their operationalization (Ruthven, 2011). Another point, addressed by Tabach and Trgalová 
(2019), has to do with the focus of the study. According to the authors, most of the studies are content-
driven or tool-driven. Those who are content-driven focus on the knowledge and skills needed to 
teach a specific content using technology (e.g., functions). Those who are tool-driven focus on the 
knowledge and skills needed to use a specific technology to teach mathematics (e.g., graphing 
calculator). A more global view would be important to develop a deeper understanding of technology 
integration. 

The research approach based on knowledge models has also been criticized by its focus on a static 
approach (Tabach, 2011), not valuing the dynamic character of the teachers’ professional 
development and, specifically, of their knowledge. Some of the studies tend to address the teachers’ 
knowledge disconnected from their practice, without taking into account the difference that may exist 
between a task (what it presupposes) and its implementation (Rocha, 2022). 

These critics have been considered and resulted in proposals of refinements, new models of teachers’ 
knowledge, or the use of the knowledge models combined with other frameworks to somehow 
overcome the weakness identified in the model. However, this development of the field calls to deeper 
analysis and reflection. 

Goals and research questions 
As a knowledge model, the TPACK model has been the target of several criticisms, as referred before. 
However, the model continues to be used by many authors in their studies. As so, it will be important 
to understand how the model is being used in the field of mathematics education. 

In the study presented here, we seek for an overview about how the TPACK framework is being used 
in research about digital technology. As so, our focus is on the methodological options and on the use 
of the model. Specifically, we intend to answer the following research questions: (1) What are the 
main methodological options adopted? (2) How is the framework operationalized/used in the studies? 

Methods 
This work is part of an ongoing study with focus on teachers’ knowledge and the different frameworks 
about it. In this part of the study, we focus on the TPACK model. The work presented here was 
developed according to the guidelines provided by PRISMA (Page et al., 2021). We assume Scopus 
as the database for our search, due to its international recognition and representativity. The search for 
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documents was planned for a period of ten years (2014-2023), and done in the title, abstract and paper 
keywords. We started using the keywords: technology, TPACK. This resulted in 1592 papers. Due to 
our focus, we added another keyword: teachers’ knowledge. This resulted in 187 documents. 
However, several of them are not related to mathematics, as so we added mathematics to our 
keywords. As a result, we got 34 papers. We then limited our papers to those published in journals 
and written in English. The result was 19 papers. Finally, we added the time frame, resulting in 12 
papers. Having 12 papers published in the last ten years, out of a total of 19 papers, suggests this is a 
good time frame to consider. After a full reading, two of the papers were excluded because they were 
more an analysis of one course than a research study using the TPACK model. This resulted in a total 
of 10 articles analyzed in this review (marked with * in the references). 

The analysis and interpretation of the documents was then guided by a set of categories defined based 
in the research questions. The information from the full read of the articles was entered in a 
spreadsheet organized according to: the authors’ name, date of publication, journal name, 
goal/research questions, framework used and methodological options. The focus of this review is on 
the methodological options. As so, attention was given to the type of methodology (qualitative, 
quantitative, or mixed), to the number of participants and to their type (pre-service or in-service 
teachers), instruments used to collect data, and to the characteristics of data analysis. 

Results 
From the 10 articles analyzed, in what concerns to the date of publication, two were published in 
2023, two in 2022, two in 2020, two in 2019, one in 2018 and one in 2014 (not considered in this 
study due to the time frame defined: four in 2013, one in 2012, and two in 2010). A fact suggesting 
the research using the TPACK model has received attention in the last 25 years, with a very slight 
increase in the interest in the more recent years. 

 
Figure 1: Number of studies with a focus on Mathematics using TPACK model 

In terms of the type of methodology adopted, most of the studies adopted a qualitative methodology, 
three were based on questionaries and quantitative methodologies, and one adopted a mixed 
methodology, with a quantitative part based on a questionnaire applied to 33 pre-service teachers, 
and then a qualitative part, involving 6 of these participants (Table 1). In both cases, qualitative and 
quantitative studies, the participants are pre-service or in-service teachers, with one case of a 
qualitative study with teachers’ educators and one case of a quantitative study with pre-service special 
education teachers.  
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Table 1: Type of methodology and type of participant in each study 

 Quantitative Mixed  Qualitative 

In-service teacher 2 - 4 

Pre-service teacher 1 1 2 

Total  3 1 6 

 

The number of participants in the study varies significantly, with lower numbers in qualitative studies 
(Table 2). Even so, some of the qualitative studies have a high number of participants, even when the 
methodology adopted is the case study. That is the case of one study involving 52 in-service teachers. 

Table 2: Type of methodology and number of participants in each study 

 Quantitative Mixed  Qualitative 

In-service teacher 86, 202 - 3, 13, 16, 52 

Pre-service teacher 116 
33 (quant.) – 6 

(qualit.) 10, 21 

 

For quantitative studies, the questionnaire is the instrument for data collection. For the qualitative 
studies the instruments are more diversified (Table 3). Although the questionnaire is also used (in one 
study), interviews and observations are dominant, with references also to other instruments, such as 
document gathering and field notes. Two of these studies are lesson studies, and two others, although 
not being present as lesson studies, are based on working sessions to prepare lessons and in the 
analysis of the teachers’ lesson plans. 

Table 3: Type of data collection in each study 

  Quantitative Mixed  Qualitative Total 

Questionnaire   3  1 4 

Observation, 
interviews, 

document gathering 

Simple    2 2 

Lesson study  1 1 2 

Working 
sessions, lesson 

plans 
  2 

2 

Total   3 1 6 10 

 

The data analysis is based in statistics in the case of quantitative studies, in some cases using the 
software SPSS. In the case of qualitative studies, the analysis is often based on codification, using 
categories usually related to the theoretical framework. 
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Only one study organizes the data collection based on the knowledge domains of TPACK. Almost 
half of the studies (four) combine the TPACK model with the development model by Niess et al. 
(2009) and Niess and Gillow-Wiles (2017) and base the data analysis on the five levels of 
development – recognizing, accepting, adapting, exploring, and advancing. Other studies combine 
the TPACK model with other framework, such as the instrumental approach (two studies: one 
instrumental genesis and one documental genesis), use it to define a model with focus on Mathematics 
(one study), use it only in part of the analysis (one study) or do not present evidence about how the 
model integrate the data analysis (one study). 

Most of the studies do not clarify how they assess the teachers’ knowledge. In the cases where a 
questionnaire is used, usually only the structure of the questionnaire is presented, not always 
discussing the relation of this structure to the TPACK framework. In the case of qualitative studies, 
some evidence from the data is often presented but, once again, the connection to the model is not 
always presented. 

The studies analyzed intend to assess the teachers’ knowledge to integrate technology and, in some 
cases, to develop that knowledge. One of the studies intends to better understand the TPACK model, 
analyzing and discussing the relationship between its knowledge domains. 

Conclusion 
This systematic review intended to achieve a better understanding of the research based on the 
TPACK knowledge model, trying to get an overview about how the model is being used and the 
methodological options adopted. 

Methodological options assumed 

The methodologies adopted seem to be diversified. The options tend to be related to the qualitative 
or quantitative methodology of the study, with a focus on the use of questionnaires, in the first case, 
and on interpretative approaches, in the second case. Interpretative approaches tend to be based in 
observation, interviews and/or document gathering, however, there are also cases where 
questionnaires are used. The questionnaires, when used, may be aimed at collecting the participants 
perceptions or measuring their knowledge. The interpretative approaches can be slightly more 
diversified, but tend to aim the characterization of the teachers’ knowledge or the analysis of its 
development. 

The use of the TPACK model 

The TPACK model is the most used framework in studies related to the mathematics teachers’ 
knowledge to integrate digital technology. The model is widely used in the research field, however it 
seems it tends to be used combined with some other(s) framework(s). In the studies analyzed, only 
one focus directly on the model and its knowledge domains. All the other studies combine it with 
some additional framework. The development model for TPACK by Niess et al. (2009) and Niess 
and Gillow-Wiles (2017) and its five levels – recognizing, accepting, adapting, exploring, and 
advancing – is broadly used. Some other studies try to combine it with the instrumental approach. 
Some studies combine different frameworks and try to create a theoretical background to support the 
analysis. In some cases, it becomes difficult to recognize the contribution of the TPACK model. In 
one of the studies, the TPACK model is used only in part of the study. And in other case, the model 
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is used in a general way, as an idea of what the teachers’ need to know to integrate the technology 
into their practices, and not with focus on the different knowledge domains of the model. 

One significative difference between the studies analyzed is related to the methodology and the 
instruments used. In some cases, only the teachers’ perceptions about their professional knowledge 
are collected (mainly in studies using questionnaires, but also in data collections based on interviews). 
In cases, such as in lesson studies, where the teachers practice is actually considered, it is possible to 
gather information about the teachers’ knowledge and not only their perceptions about it. 

Final comments 

This is a very preliminary systematic review, focusing on the use of the TPACK model to investigate 
about teachers’ integration of technologies and based on a search in Scopus database. It would be 
important to reflect on the search options and to enlarge the review considering other databases such 
as the Web of Science. The preliminary results give us information about the methodological options 
adopted and about how the TPACK model is being used. It would be important to deepen this work 
to better understand the usefulness of the model and the way how it is combined with other 
frameworks. 
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In Austria, all lower secondary students are equipped with digital devices. To optimise the use of 
these devices, teachers need insight into students' views on using them. This need is why our research 
aims to explore students' views on using digital devices. To this end, we interviewed 18 lower 
secondary students concerning using technology in mathematics. The data obtained was analysed 
using grounded theory and qualitative content analysis. The following characteristics of using digital 
devices are relevant for students of our study: (1) Emotional disposition towards the digital device, 
(2) Organisational framework and how to deal with it, (3) Expanded possibilities but also limitations 
of learning opportunities and (4) Learning mathematics in a varied teaching setting. 

Keywords: Digital technologies, technology-based learning, students’ needs, learning maths. 

Introduction 
Teenagers in Upper Austria spend around 130 minutes daily online (Education Group GmbH, 2023). 
The advancing digitalisation of society in general also leads to changes impacting the education 
system. In response to the new challenges, the Ministry of Education, Science and Research 
(BMBWF) has developed and implemented an 8-point plan to digitise schools (BMBWF, 2024). In 
line with this plan, all lower secondary students will be equipped with digital devices by 2024 
(Weinhandl et al., 2021). The devices available for selection are notebooks and tablets (OeAD, 2023).  

Studies have shown that students who work with digital devices in mathematics lessons perform 
better (Hillmayr et al., 2017; Reinhold et al., 2018), but in other studies, ambiguous results were 
found (Drijvers et al., 2016). However, the mere presence of digital devices does not guarantee a 
positive effect on performance, which is why the implementation of a successful use of technology 
is a challenge for teachers (Schmidt-Thieme & Weigand, 2015). To optimise the integration of digital 
devices into classrooms so that they contribute to better learning performance, teachers need 
knowledge about students' views on using such devices. As part of this study, students at the 
beginning of the lower secondary level were asked about using technologies in mathematics classes. 
The specific research question was: 

What characteristics of using technologies for learning mathematics are relevant to students 
at the beginning of the lower secondary level? 

Activity Theory as Theoretical Background 
The three central elements of the research question are technology, mathematics, and learners. As 
these play a key role in activity theory, this theory was chosen as the theoretical framework for the 
study in line with our research question. Activity theory (Vygotsky, 1978; Engeström, 1987) 
understands learning as a social and intellectual engagement with other people and cultural tools. 
Thus, in line with activity theory, interactions between humans and computers are also social 
phenomena (Russell, 2013). Engeström (1987) proposed six components that contribute to human 
activity and are all interrelated. These are subject, object, mediating tools, community, rules, division 
of labour and outcome (see Figure 1). 
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Figure 1: Activity Theory and its relations (adapted from Engeström, 1987, in Russell, 2013) 

If these components are interpreted in the context of our study, the community is to be understood as 
a class, including teachers. The division of labour refers to student-teacher relationships and 
relationships between students. The digital devices represent the mediating tools. Students are the 
subjects, and the mathematical content is the object. The rules can be understood as class rules, 
including those for using digital devices. The outcome describes what students learn from technology-
enhanced lessons in terms of mathematical content and using digital devices. The upper part of 
Engeström's (1987) triangle (Figure 1) only includes the relationships between subject, object, and 
mediating tools, which can be traced back to Vygotsky (1978). Since our research focuses on these 
three points, we will limit our discussion of the results to Vygotsky's (1978) triangle. 

Literature Review 
Using digital tools in a way that extends learners’ understanding and improves learning outcomes is 
a significant challenge for mathematics teachers, as the mere presence of digital technologies is not 
sufficient to achieve such goals (Schmidt-Thieme & Weigand, 2015). According to Roth (2019), 
digital learning environments enable students to engage with mathematical content independently and 
at their pace. However, roles of teachers continue to be essential factors in integrating technologies 
into mathematics lessons, as they organise learning by linking the technological environment with 
mathematical activities and summarising the results of technology-based activities (Drijvers, 2015).  

Studies show that students who work with digital technologies in mathematics lessons achieve better 
results in performance tests (Hillmayr et al., 2017; Reinhold et al., 2018). Hillmayr et al. (2017) found 
a positive effect on students’ learning if they receive additional support from classmates and teachers 
when using technology. The positive effect is comparatively small if students work without guidance. 
The positive effects of using technology are evident when differentiated feedback is given on the 
students' solutions, learning programmes are adaptive, and individual adaptation to the learning level 
is possible (Hillmayr et al., 2017). According to Reinhold et al. (2018), the solution rate of subsequent 
tasks increases if a solution aid is previously called up. Furthermore, using technologies in 
mathematics lessons increases motivation and willingness to work hard (Hillmayr et al., 2017; 
Reinhold et al., 2018). Overall, using technologies can change the structure of mathematics lessons, 
as students work more independently, which can positively influence the classroom atmosphere. 
Thus, using technologies makes it possible to open traditional teaching situations and implement 



 

 

Proceedings of the 17th ERME Topic Conference MEDA4, 3-6 September 2024, Bari, Italy                      ISBN 978-88-6629-080-3 

  
369 

alternative forms of instruction (Reinhold et al., 2018). According to Schmidt-Thieme and Weigand 
(2015), another key advantage of digital technologies in mathematics lessons is the ability to present 
mathematical content in a dynamically changeable way. According to Schmidt-Thieme and Weigand 
(2015), networking between traditional and digital teaching media is crucial. The positive effect on 
students' learning success is more significant when analogue material is used in addition to digital 
devices (Hillmayr et al., 2017). Therefore, mathematics teaching should create a link between 
traditional and digital media (Schmidt-Thieme & Weigand, 2015). Overall, using technologies in 
mathematics lessons can be a meaningful and beneficial enhancement to paper-based learning 
environments (Reinhold et al., 2018). However, students must also learn how to use the devices 
(Babnik et al., 2013). 

Overall, while digital technologies have the potential to enhance the teaching and learning of 
mathematics, their effective integration requires thoughtful organization by teachers, the provision of 
guidance and feedback, and a balanced use of traditional and digital media. 

Methods 
To answer our research question, we chose a phenomenological approach according to Cohen et al. 
(2007). We conducted semi-structured interviews, and the data obtained from the interviews was 
analysed and summarised using qualitative content analysis (QCA) and grounded theory. 
Methodological background 

In the sense of grounded theory, the results of our study are grounded in the data that were collected 
to answer the research question (Glaser & Strauss, 2017). When creating the interview guide, care 
was taken to ensure it was structured to the necessary extent (Loosen, 2016), but it was still as open 
as possible. Once the data had been collected, it was analysed in the form of interview transcripts in 
line with the specifications of QCA (Mayring, 2022) concerning our research question. According to 
Mayring (2022), categories were inductively derived based on the available data material, which were 
assigned to individual text passages. The aim was to reduce the data material while retaining the 
essential content (Mayring, 2022). This process resulted in a hierarchical category system with a 
division into main and subcategories, according to Kuckartz (2018). The interview material was 
analysed and coded in three steps by two researchers. 
Data collection and analysis 

The interview data was collected in three Austrian schools between the end of March and mid-April 
2023. Interviews were conducted at one rural middle school (MS) and two urban lower secondary 
schools (AHS). A total of 18 students were interviewed, twelve of whom were in grade 5 and six in 
grade 6. The students surveyed use their digital devices in mathematics lessons to a greater or lesser 
extent and according to their teacher's initiation. For example, they work on digital exercises, watch 
learning videos or take part in online quizzes. The interviews were conducted in German and during 
school hours. An overview of the interviews conducted is provided in Table 1 below. In addition to 
the interview date, the type of school and the region, the gender of the students interviewed and the 
digital device with which the students were equipped as part of the BMBWF's device initiative can 
also be seen. Each school was also assigned a school identifier to simplify subsequent references. 
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Table 1: Overview of the interviews conducted 

Identifier Date School type Region Device Male (m) Female (w) Total 

S1 24.03.2023 AHS Urban Chromebook 2 5 7 

S2 28.03.2023 MS Rural iPadOS Tablet 4 2 6 

S3 19.04.2023 AHS Urban iPadOS Tablet 4 1 5 

The data obtained was transcribed and then, in the first step, coded independently by two authors of 
this paper in line with the summarising QCA according to Mayring (2022) and content-structuring 
QCA according to Kuckartz (2018). These two independent code sets containing inductively formed 
codes were compared in a second step. Codes with similar descriptions were grouped, and 
subcategories were formed to bring the data to a higher level of abstraction. Table 2 shows an 
exemplary code from the codebook and its description, supported by a prototypical example from the 
transcribed interview data.  

Table 2: Exemplary code including description and prototypical example 

Code Description Prototypical example 

Differentiation 

learning pace 

Thanks to the digital work plans 

the students can learn at 

their own learning pace. 

 

We can work at our own pace. So we don't have to, if 

we're not as fast as the others, we don't have to rush [be 

fast and therefore careless]. Instead, we can work at 

our own pace. 

In the final step, sub-themes were grouped and assigned to four main categories. To ensure intercoder 
reliability between the two researchers concerning assigning codes to subcategories and subcategories 
to main categories, corresponding codes and subcategories were reassigned independently by both 
researchers. From these assignments, Cohen's Kappa coefficient of agreement was calculated with a 
value of .797 for the assignment of the individual codes to the subcategories and a value of .62 for 
the assignment of the subcategories to the main categories. According to Landis and Koch (1977), 
the calculated values indicate substantial agreement in both cases, which means that it can be assumed 
that the results of the research conducted during this study can be regarded as reliable. 

Results 
Based on our analysis, the following four categories were identified: (1) Emotional disposition 
towards the digital device (as an end in itself), (2) Organisational framework and how to deal with it, 
(3) Expanded possibilities but also limitations of learning opportunities and (4) Learning mathematics 
in a varied teaching setting. For each category, the number of students (with the additional distinction 
between female or male) who made a statement during the interviews that can be assigned to the 
corresponding category is listed below. This allows the importance of each category to be assessed. 
Underpinned by quotes from the interviews conducted, the results are explained in more detail below 
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and organised into subcategories where appropriate. The quotes can be assigned to the schools in line 
with their school identifier using Table 1.  

Emotional disposition towards the digital device (as an end in itself) | 16 out of 18 (7 f, 9 m) 

The data show that most students surveyed enjoy and have fun working digitally, as they generally 
like working with digital devices. So it does not matter what content or what type of activity is being 
processed on the digital device. 

S1: So it is, it's maths, but it's on the Chromebook, and it's just fun. 

In contrast, a few of the students interviewed said that they did not like working with digital devices 
in class due to the digital device itself. 
Organisational framework conditions and how to deal with them | 17 out of 18 (7 f, 10 m) 

The organisational framework conditions and how they are handled in the classroom play a decisive 
role in technology-enhanced mathematics lessons from the student's perspective. Three key 
characteristics were identified: familiarity, independent work with mutual support and conservation 
of resources. Some of the students interviewed like to work in mathematics lessons in the way they 
are used to. According to the students, regular use of digital devices in class is essential to find their 
way around working with digital devices and the applications installed on them. 

S3: But with the first [digital] work plan, I don't think I was quite as quick because I had 
to get used to it [working with the digital device], but I think that was the same for 
others. And then it actually went pretty well. 

The data also shows that students like to work independently in technology-enhanced settings because 
it allows them to concentrate better and work at their own pace. However, most students surveyed 
like to work with classmates when necessary to support each other and explain content. In the event 
of organisational or technical difficulties, students also appreciate working together as a whole class. 
Using the digital device, the students surveyed perceive the conservation of resources, which 
concerns writing materials such as pens and paper on the one hand and personal resources such as 
writing by hand on the other. Organisational hurdles identified by the students surveyed are unstable 
internet connections and the fact that the digital device must always be charged. 
Expanded possibilities but also restrictions on learning opportunities | 13 out of 18 (7 f, 6 m) 

Our research also shows that using technology expands possibilities and restrictions in learning 
opportunities. In this regard, the four main characteristics are expanding reality through additional 
functions, control options for independent work, differentiation and content restrictions. An extension 
of the analogue reality results from the possibility of writing on the digital device, whereby pages can 
be enlarged as desired, pens can take on any colour and shape, parts of text can be moved and deleted, 
and mistakes can be undone with a click. In addition, tasks and activities with interactive and dynamic 
elements can be completed on digital devices, which increases the variety of tasks. According to the 
students, such tasks are fun and support them in learning and understanding mathematics content. 
Supplementary digital exercise materials can also increase the number of available tasks. Regarding 
the independent development of learning content, many digital tasks offer various opportunities for 
self-monitoring. For example, students receive feedback on the correctness of their entries and can 
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thus learn from their mistakes. Sometimes, they also get an overview of the number of tasks they 
have already solved correctly or incorrectly. 

S1: And it [exercises on GeoGebra] shows how many you got right and how many  
 wrong. 

In line with the data obtained, independent work with a digital device also facilitates differentiation 
in learning speed, additional tasks and individual assistance that can be used as required. 

S3: We can work at our own pace. So we don't have to, if we're not as fast as the others, 
we don't have to rush [be fast and therefore careless]. Instead, we can work at our own 
pace. 

In addition to the described extended possibilities that using technology in mathematics lessons 
offers, students see limitations to learning opportunities. For example, some mathematical content, 
such as constructing with compasses and rulers, cannot be developed with the help of technology. 
Learning mathematics in a varied teaching setting | 10 out of 18 (5 f, 5 m) 

Students' desire for a varied teaching setting in mathematics lessons can be identified. Accordingly, 
the students surveyed also prefer a mixture of digital and analogue work phases in class. 

S1: Well, it would be stupid if we only did something on the Chromebook now, but also 
kind of boring if you had to write everything by hand. 

The students surveyed appreciate teaching phases in plenary sessions in which they are in contact 
with the teacher, as explanations from the teacher are generally considered very beneficial for 
understanding. The students surveyed particularly emphasised using technology by the teachers 
themselves. For example, the students like a tablet when it is used as a replacement for the chalkboard, 
as pictures and graphics can be shown to promote understanding of mathematical content.  

Discussion 
Finally, the central results of our analysis are linked to the theoretical background and literature 
review. Firstly, the results found can be structured within Vygotsky's activity theory (1978). The 
emotional disposition towards the digital device can be assigned to the vertex subject, whereby there 
is also a relationship to the mediating tool. The results concerning the organisation and the extended 
possibilities and restrictions can each be attributed to the vertex mediating tool. Particularly 
concerning the extended possibilities and restrictions of learning opportunities through the digital 
device, a connection can also be made to the object (i.e., in our study's context to the mathematical 
content). The result of the variety students consider desirable in mathematics lessons can be assigned 
to the vertex subject. Secondly, the results of our study show that students value the regular use of 
digital devices in class to gain familiarity with the devices. This finding underlines the thesis of 
Babnik et al. (2013) that students should learn how to operate new (digital) devices. Thus, our findings 
support using technology regularly in everyday school to create familiarity with digital devices. 
Thirdly and as already shown by Hillmayr et al. (2017), our study also shows that students prefer to 
work with technology independently but with the support of classmates and the teacher. According 
to Hillmayr et al. (2017), working in pairs on a digital device and mutual support when using digital 
devices can positively influence learning success. Furthermore, like Hillmayr et al. (2017), our results 
show that support is essential when organisational or technical difficulties arise when working with 
a digital device. In addition to the increased variety of tasks on the digital device, which is also 
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emphasised by Reinhold et al. (2018), the students surveyed appreciate activities with interactive and 
dynamic elements. This finding aligns with Schmidt-Thieme and Weigand (2015), who see dynamic 
representations of mathematical content as an advantage of technology-enhanced mathematics 
lessons. The possibility of differentiation, which is relevant to the students surveyed in connection 
with using technology in mathematics lessons, underlines Roth's (2019) thesis that digital learning 
environments enable students to work through the learning content independently. Hillmayr et al. 
(2017) demonstrated a positive effect of adaptive learning environments with differentiated feedback 
on students' learning success. Consistent with this, the students surveyed stated that they consider 
individualised feedback in adaptive learning environments to promote understanding. In addition, our 
study shows that a varied teaching setting, a change between technology-enhanced and analogue 
teaching, is relevant for students. This finding is related to the findings of Hillmayr et al. (2017), 
according to which using technology in mathematics classes has a positive effect when analogue 
material is used to supplement lessons. The statement by Drijvers (2015) that teachers play an 
essential role in technology-enhanced lessons is also supported by the results obtained, which 
ultimately speak in favour of mixing analogue techniques with digital technology. 

Conclusion, limitations and further research 

The study shows that emotional disposition, organisational framework, extended possibilities but also 
restrictions and varied teaching settings are relevant characteristics of using technologies for students 
at the beginning of the lower secondary level. When considering the results of the study, however, it 
must be borne in mind that the students surveyed are at the beginning of the lower secondary level, 
i.e. they are in the 5th or 6th grade, and the study was conducted in Austria. To be able to generalise 
the results, further data collection should be carried out in other environments. For example, the study 
would have to be conducted with older students and in an environment that is not characterised by 
such a high socio-economic standard of living. 
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We explore the opinions and attitudes of pre-service mathematics teachers towards the use of text-
generating Large Language Models (LLMs). Despite the growing interest in these models and their 
seemingly diverse applications in education, there are significant challenges. These include inherent 
weaknesses and widespread misperceptions. Our survey of 54 pre-service teachers (PSTs) 
specializing in mathematics shows ambivalent attitudes towards the use of LLMs in education. 
Utilizing a prototype LLM tutor developed both as an instrument for this study and to test its general 
feasibility in educational contexts, we discuss the limitations and possibilities of LLMs in mathematics 
education. We present preliminary indications that a brief exposure to text-generating Artificial 
Intelligence (AI) alone could reduce fears and misconceptions about generative AI. The article 
concludes by outlining the next steps of our research project. 

Keywords: Generative artificial intelligence, large language models, pre-service teachers. 

Introduction 
LLMs, which underpin text-generating AI solutions such as ChatGPT, are expanding rapidly and 
finding applications in diverse fields, including education. While the potential of LLMs to transform 
educational practices is recognized, it is coupled with concerns about the reliability of their outputs 
(Baidoo-Anu & Ansah, 2023). LLM outputs are typically generated autoregressively using large 
numbers of parameters (weights), which are adjusted using large datasets and selected stochastically. 
The issue of their reliability is well-documented in artificial intelligence research. OpenAI (2023) 
transparently communicates the difficulties of increasing the reliability of GPT-4, their most 
advanced model today, highlighting the model’s predilection for inaccuracies and the crucial need 
for careful supervision in its application. 

The integration of generative AI into educational frameworks elicits mixed reactions, combining 
optimism with apprehension. Debates center on the potential impact on traditional teaching methods 
and the learning process. Even before the widespread adoption of LLMs, it has been suggested that 
AI could provide improved ways to plan, deliver and assess instruction by identifying student needs, 
providing immediate feedback and automating assessment (Celik et al., 2022). The potential and 
challenges of AI in academia are being examined and discussed extensively, with considerations 
ranging from published research articles in medicine (Liebrenz et al., 2023) to the entire field of 
education (Farrokhnia et al., 2023). This significant interest highlights the importance of developing 
teacher and learner competencies in generative AI and literacies to critically assess these technologies 
and their benefits. The integration of LLMs into educational settings demands a pedagogical strategy 
that prioritizes critical thinking and fact-checking to effectively utilize these models while addressing 
their limitations and biases (Kasneci et al., 2023). Despite recognizing the potential of ChatGPT as a 
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tool for assisting instructors, a recent literature review on the impact of ChatGPT in education (Lo, 
2023) highlighted variability in the model’s performance across different subjects. There are two 
distinct types of challenges associated with the use of LLMs: One type of challenge results in the 
quality of the responses, such as misinformation and hallucinations. Consequently, Lo (2023) 
hypothesized that there is a need for updated assessment methods and institutional policies in 
educational contexts. An approach emphasizing critical thinking and fact-checking could help 
learners navigate the challenges posed by potential biases and the fragile nature of these systems, 
ensuring that AI is advantageously used in education (Kasneci et al., 2023). A second type challenge 
results in personal beliefs regarding the capability of LLMs: The discussion about LLMs and their 
application is driven by common misconceptions, such as the belief that generative AI can produce 
entire papers instantly and is constantly improving itself. These exaggerated beliefs might heighten 
fears about AI that existed even before the widespread adoption of ChatGPT (Zhan et al., 2023), 
diverting attention from potential drawbacks due to unreliable and inconsistent outputs. LLMs are 
not reliably improving over time (Chen et al., 2023), nor do generative AI models operate in a manner 
analogous to human brains – a misunderstanding that has been debated within AI research itself 
(Emmert-Streib et al., 2020). 

Our research aims to evaluate the potential and challenges of incorporating text-generating LLMs 
into mathematics education, focusing on their utility as personalized tutors and their impact on pre-
service teachers’ (PSTs) perceptions and concerns about LLMs and generative AI. We seek to 
understand whether direct exposure to generative AI can alter attitudes and reduce misconceptions 
about AI. Simultaneously, we aim to explore the broader applicability of LLM-based tutors in 
mathematics education. The literature indicates that while LLMs offer educators opportunities to 
enhance content and engagement, their integration requires a strategic approach to developing 
students’ critical thinking and fact-checking skills when working with generative AI (Cooper, 2023; 
Kasneci et al., 2023). While our long-term objective is to create an open-source LLM specifically 
trained for educational purposes, our current efforts are focused on utilizing the OpenAI Application 
Programming Interface (API) for our investigations. This dual research method, involving the use of 
a prototype LLM tutor and examining PSTs’ attitudes towards such a tutor in educational contexts, 
aims to align with the evolving role of AI in classrooms and to emphasize the necessity of a balanced 
approach that addresses AI ethics, media literacy, and anxiety. 

Given the contrasting views on generative AI within this context, our research questions are as 
follows: 

(RQ1) How do pre-service mathematics teachers perceive the feasibility and practicality of using an 
LLM-based tutor in mathematics education? 

(RQ2) What are attitudes and misconceptions of prospective mathematics teachers towards LLMs in 
educational contexts, and how stable are these attitudes after short-term exposure to an LLM-based 
tutor? 

The structure of this paper is outlined as follows: In the next section, we describe our methodology 
and research design. We then present and discuss our findings in relation to the research questions. 
We conclude by discussing the results and limitations of our study and outlining the planned next 
steps of our research. 
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Methodology 
To address our research questions, we used a multifaceted exploratory approach with two primary 
facets: attitudinal research and experimentation with pre-service PSTs’ interaction with a prototype 
LLM tutor developed specifically for this study. This approach aimed to explore the potential and 
challenges of LLMs in mathematics education, focusing on their didactical use and their impact on 
PSTs’ perceptions and concerns about generative AI. 

The LLM tutor was developed as a simple PHP web application, incorporating JavaScript for front-
end interactions and curl calls to the OpenAI Chat Completions API. Our prototype tutor did not have 
access to mathematical algorithms to perform calculations as with the Wolfram plugin; it was limited 
to the model itself, specifically using the gpt-3.5-turbo-1106 model. This setup allowed for the 
adjustment of various parameters, such as the randomness of generated responses, to test the 
capabilities of the OpenAI API. Additionally, the OpenAI API calls provided the ability to customize 
the context of the prompts to align the output with educational goals. We explored these features with 
the intention of enabling our LLM tutor to respond in a way that is conducive to learning. One focus 
was the appropriateness of the depth of content, ensuring that explanations are didactically simplified 
and relevant to specific topics. The second focus was the manner of interaction, including the 
generation of clarifying questions and the provision of comprehensible explanations. The tutor acted 
as a simple chatbot: the students asked questions, the tutor called the OpenAI API with this input and 
then returned the generated output to the students. 

To gain insight into the personal preferences and concerns of PSTs regarding the use of generative 
AI in education, we constructed a questionnaire. The survey was completed by 54 pre-service 
mathematics teachers at the University of Education Schwäbisch Gmünd, Germany. We designed the 
survey to capture a wide range of responses regarding PSTs’ experiences, attitudes, and fears 
concerning LLMs such as ChatGPT in educational settings. The questions and answers can be found 
in Figure 3 in the subsequent section. In our study, participants first completed the questionnaire to 
capture their initial attitudes toward LLMs in education, followed by a brief interaction of about five 
minutes with the prototype LLM tutor. The post-interaction survey was designed to assess any 
changes in perceptions or potential reductions in AI-related anxiety among PSTs. For this purpose, 
the survey included the same questions that were used in the initial survey. 

Building on previous research, our study incorporates findings from an initial survey published in 
German that focused on common misconceptions about the functionality of LLMs (Seibold et al., 
2024). We concentrated on misconceptions about LLM functionality and explored how brief 
exposure to generative AI can mitigate unreasonable fears about generative AI (Friz et al., 2024). In 
addition, our efforts to align LLM integration with practical classroom applications relied on planned 
lessons for hands-on experimentation with LLMs for educational purposes (Kodweiß et al., 2024). 
By integrating these methods, our study aims to contribute to a comprehensive framework for 
investigating the effective use of LLMs in mathematics education, reducing misconceptions, and 
addressing the concerns of future educators in the field. With this methodological approach, we want 
to promote a more differentiated view of the possibilities for effective integration of generative AI in 
the classroom. 
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Results 
Analysis of the survey data indicated that among the 54 PSTs, the use of LLMs (in the form of the 
widespread ChatGPT) varied, with a small number using it daily and about 30% never using it, as 
depicted in Figure 1. Although we did not explicitly ask about the specific use cases of ChatGPT, it 
is reasonable to assume that the students primarily used ChatGPT for tasks related to working on and 
with texts. 

 
Figure 1: Use of LLMs (ChatGPT) by PSTs 

Over 80% of the PSTs were concerned about the accuracy of LLM outputs, reflecting the difficulty 
of balancing accuracy and relevance in AI-generated responses. Other top concerns included privacy 
implications, reliance on technology, potential reduction in traditional teaching methods, and fears of 
AI replacing human educators, as shown in Figure 2. 

 
Figure 2: PST’s concerns about implementing LLMs in education 

The attitudes towards LLMs were ambivalent, with concerns about their long-term societal impact 
balanced by recognition of their transformative potential for learning and work, as depicted in the top 
part of Figure 3. There was strong support for monitoring the integration of LLMs into education, 
and the importance of educator training in introducing AI into the classroom was also emphasized. 
Mixed opinions were noted on the ability of LLMs to support personalized learning, as shown in the 
lower part of Figure 3. 
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Figure 3: PST’s attitudes about LLMs’ societal impact (top) and their implementation in education 

The response frequencies presented in Figure 3 are undoubtedly of interest. However, they provide 
no insight into the way the attitudes of individual PSTs may change after brief exposure to an LLM. 
Consequently, we have presented these changes individually in Figure 4, which illustrates the intra-
individual variability in attitudes and opinions about LLMs pre- and post-exposure horizontally. The 
vertical scale represents Likert scales from strongly agree (5) to strongly disagree (1). This form of 
graphical representation was chosen to capture the high intra-individual variability and the significant 
changes in attitudes, which could not have been effectively shown using mean values or 
unidimensional, mean-based rates of change. This graphic reflects the heterogeneity and variability 
of the responses to the same questions after a short exposure. 
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Figure 4: Intra-individual variability in attitudes and opinions about LLMs: pre- vs. post-exposure 

Limitations & Discussion 
The integration of Large Language Models (LLMs) into the classroom elicits mixed reactions from 
pre-service teachers (PSTs), balancing technological enthusiasm with pedagogical concerns. The 
attitudes of PSTs towards LLMs are crucial, as these perceptions will influence the successful 
adoption and integration of AI technologies in educational settings. Our study revealed that PSTs 
generally exhibit ambivalence towards LLMs, recognizing their transformative potential while 
expressing significant concerns about accuracy and reliability. 

Our initial research indicates that brief interactions with LLMs can slightly alter attitudes, though this 
evidence remains indicative. The variability in responses suggests significant perceived uncertainties 
associated with generative AI. While the changes were notable, the reduction in anxiety was not 
universal or particularly striking. Moreover, the pre-post part of our study was preliminary, and 
various external factors might have influenced the changes in attitude. 

Concerns about the accuracy of LLM outputs were prevalent, with over 80% of PSTs expressing 
doubts, reflecting the challenge of balancing accuracy and relevance in AI-generated responses. Our 
experiments with different settings and mathematical topics using GPT models (gpt-3.5-turbo-1106 
and gpt-4-0613) from OpenAI did not yield a notable improvement in output reliability or quality. 
The prototype of the LLM tutor was limited to the model itself, without the possibility of solving 
mathematical problems algorithmically, as is possible with the Wolfram plugin, for example. It is 
important to note that it would be a mistake to assume that with such algorithmic plugins, the 
weaknesses could be easily fixed because input errors due to imprecise formulations or incorrect 
definitions can lead to incorrect results even with such plugins, as was recently shown in a study on 
the use of ChatGPT to teach quadratic functions (Katter & Huget, 2024). 

Our findings highlight the importance of providing structured guidelines for interactions with LLMs: 
Hands-on experience with AI could help clarify their operational realities and promote informed 
applications in educational contexts. Educators should be able to guide students in critically and 
effectively using these technologies, which means that they themselves should be experienced. The 
feasibility of using an LLM-based tutor in mathematics education shows promise but requires careful 
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consideration of its limitations and potential impacts. Future research should focus on longer-term 
studies in diverse educational settings to better understand AI integration dynamics in education. By 
fostering a balanced view that acknowledges both the benefits and limitations of LLMs, we can ensure 
that generative AI enhances rather than disrupts the educational experience. 

Outlook 
We aim to transition from theoretical exploration to practical application in real classroom settings. 
One of our primary goals is to develop comprehensive lesson plans that integrate generative AI tools 
like LLMs into the mathematics curriculum. These lesson plans will be designed to provide both 
teachers and students with structured opportunities to interact with AI technologies in meaningful 
ways. We plan to conduct studies in diverse educational environments to better understand the 
practical implications of using LLM-based tutors in mathematics education. Continuous feedback 
from educators and students will be crucial in refining and optimizing the AI integration process. By 
collecting qualitative feedback from teachers and quantitative data from students, we hope to gain 
deeper insights into how generative AI can effectively enhance teaching and learning experiences. 

We will address the concerns raised by pre-service teachers in our initial study. We want to explore 
strategies to improve the accuracy and reliability of LLM outputs, including incorporating advanced 
functionalities like mathematical plugins and algorithmic functions. Additionally, we aim to develop 
training programs for educators to help them better understand and utilize AI tools, ensuring they can 
guide students in critically engaging with these technologies. A key aspect of our planned research is 
to promote a balanced view of generative AI in education, acknowledging both its potential benefits 
and limitations. We will emphasize the importance of critical thinking, fact-checking, and ethical 
considerations when using AI tools. We believe that by fostering a nuanced understanding of 
generative AI, we can contribute to equipping both educators and students with the skills necessary 
to navigate the evolving technological landscape. Ultimately, our aim is to contribute to the 
development of open-source LLMs that are specifically tailored to educational purposes and take into 
account the particular needs and challenges of teaching. These specialized LLMs would be designed 
to support personalized learning, provide immediate feedback, and assist with lesson planning and 
assessment. With careful development, advances in generative AI and thoughtful integration, LLMs 
could become an asset in modern education, enhancing the learning experience while maintaining the 
essential human elements of teaching. 
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In recent years, teaching of programming to all educational levels has become widespread and it is 
often connected with mathematics. Under the auspices of a large project in Denmark, we investigate 
the piloting of a teaching unit in mathematics targeting the use of programming to create a tangram 
puzzle. We use a dialogical approach to analyse the teaching of two teachers who volunteered to pilot 
the unit. The two cases were in stark contrast. The first case focused on dissimilating knowledge of 
programming and mathematics to students before they needed it and the second focused on engaging 
students in exploring programming and mathematics. While there was only a single voice in the first 
case, that of the teacher, multiple perspectives were invited and valued in the second. The study shows 
the importance of establishing a material-dialogical space around the use of programming in 
mathematics teaching and that opening, widening, and deepening are important teacher moves.   

Keywords: Programming, Scratch, material-dialogical spaces, mathematics teaching, lower-
secondary school. 

Introduction  
Due to a growing use of digital technologies globally and the development of new programming 
languages that are easier to use than the original text-based languages, the teaching of programming 
to all educational levels has become widespread in recent years. There has thus been an increased 
attention to introduce programming or computational thinking either formally as part of the school 
curriculum (e.g. in Sweden, England, Norway and Finland) or informally as part of extra-curricular 
activities (e.g. clubs or research projects) (Benton et al., 2017). The latter has hitherto been the case 
in Denmark. The intension is often to connect programming with other subjects, especially 
mathematics, for the benefit of both. In this paper, our interest focuses on the relationship between 
learning to program and learning mathematics through programming and the critical role of the 
teachers in making this happen in mathematics classrooms.  

Research on programming tends to focus on students’ learning of programming per se, with a few 
exceptions that focus on students’ mathematical learning or the role of the teacher (Bråting & 
Kilhamn, 2021). The few latter studies show that teachers face many challenges when teaching 
mathematics in the context of programming, as most teachers neither have sufficient knowledge of 
programming nor have the right skills to teach this more technical subject (Benton et al., 2017). A 
Swedish study examined the mathematical content and its relation to programming based on written 
documentation from 32 groups of teachers who carried out lesson studies in programming in 
mathematics teaching (Kilhamn et al., 2021). In nearly 70 % of the lesson studies, programming was 
either unrelated to mathematics (31 %) or used mathematics as a context (38 %). In the latter case, 
the mathematics tended to fade into the background and no new concepts were introduced. Only 13 
% of the lesson studies used programming to explore mathematical concepts, but according to the 
authors, using another tool (e.g. GeoGebra) would have better supported student learning.  
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There is, therefore, a research gap concerning teachers’ appropriation and use of programming in 
mathematics classrooms. In this paper, we focus on the piloting of a teaching unit targeting the 
programming of a tangram puzzle by using the graphical block-based language Scratch in grade 7. 
The pilot study was part of a large-scale national project, called Game Based Learning in the 21st 
century. Two teachers from the same school volunteered to participate in the pilot and based on data 
from their enactment of the ‘same’ lesson, we investigate the question:  

How can teachers balance a focus between programming aspects and mathematical aspects 
so that students are offered opportunities to learn both programming and mathematics?    

Integration of programming in school mathematics 
In recent years, several new programming languages have been developed which appeal to a broader 
audience due to their graphical interface and more tinkerable and social approaches. Scratch, a 
descendent of Logo developed by MIT, is one of the most popular new languages (Resnick et al., 
2009). According to the developers, students can learn “important mathematical and computational 
concepts, as well as how to think creatively, reason systematically, and work collaboratively” 
(Resnick et al., 2009, p.60) by using Scratch. Scratch is thus one example of how computational 
thinking is mobilized for mathematics learning in schools. However, learning to program with Scratch 
(or another language) does not necessarily lead to mathematical learning, since these languages are 
neither designed as mathematical tools nor as tools for learning mathematics.  

To support primary students’ mathematical learning through programming, the ScratchMaths project 
in UK aimed to design both curriculum materials and professional development for the participating 
teachers (Benton et al., 2017). Based on a constructivist approach, the research group developed a 
framework for action, called the 5Es, to guide all parts of the project. The 5Es consists of: Explore 
(students should be given opportunities to explore ideas by debugging errors and trying things 
themselves in Scratch), Envisage (students should predict what a script does before running it and 
reflect on it afterwards), Explain (students should explain their ideas to others), Exchange (students 
should have opportunities to share and build on others’ ideas) and bridgE (the relations to the 
mathematics curriculum should be made explicit). Based on two cases, Benton et al. (2017) 
investigated the gap between the designers’ intentions and what teachers did in their classrooms. 
Their overall conclusion was that the 5Es were sufficient flexible for teachers to adapt to their 
teaching approach and their students’ need and that the 5Es enabled them “to communicate key 
computational and mathematical ideas in different ways whilst staying true to the goal of the learning 
activity” (p. 136). They emphasise especially the teachers’ critical role in envisage and bridge 
activities. Regarding the gap, the authors propose four considerations that focus on the teachers’ 1) 
confidence in addressing both computational and mathematical concepts; 2) emphasis on either the 
computational or mathematical-related learning aim; 3) management of the gaps in students’ 
attainment; 4) diverse pedagogical strategies influenced by teaching style or existing school practices.  

Especially the second consideration seems important for the Swedish study. Many teachers found it 
difficult to create meaningful connections between programming and mathematics, and Kilhamn et 
al. (2021) suggest that if programming is included in the mathematics curriculum as in Sweden, 
teachers may consider programming as an independent part of mathematics and may not be concerned 
about creating connections between the two (as was the tendency in their study).  
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Theoretical approach  
In this study, we use a dialogical approach to learning inspired by Wegerif and his colleagues.  Based 
on the Bakhtinian perspective that learning is a phenomenon that emerges through dialogic 
interactions, Wegerif argues that “when humans enter into dialogue there is a new space of meaning 
that opens up between them and includes them within it” (p. 180). He calls this space for a dialogic 
space and exemplifies with the space that emerges when a group of students listen to each other, ask 
each other for help and change “their minds as a result of seeing the problem as if through the eyes 
of the others” (p. 180). Bringing more than one viewpoint or voice into relation with each other is 
crucial, as individuals’ creation of meaning is dependent on this. Therefore, a dialogical space 
requires a dialogical gap between different perspectives or voices for such meaning to emerge. A 
discourse that brings at least two perspectives into relation is called a dialogic discourse, while a 
discourse that assumes only a single – and thus true – perspective is called a monologic discourse. 
Research on using this dialogical approach in classroom teaching, have shown that teacher moves 
such as opening, closing, widening and deepening a space are useful (Wegerif, 2011). 

Hetherington and Wegerif (2018) extend the understanding of dialogue by arguing that not only the 
voices of physical people, but also disembodied cultural voices (e.g. a particular philosophical view) 
and voices from material objects (e.g. text books, whiteboards and digital technologies) are important 
in classroom dialogues. In their study of science education, they show that the ways in which teachers, 
students and material objects relate to and intra-act with each other enable some learning 
opportunities and not others. They argue for the importance of recognising how a particular object, 
for example a Scratch script, both constrains and enables learning, and the object must therefore “be 
interrogated and enter[ed] into the larger dialogue not as passive background but as an active or 
constitutive voice within the dialogue” (p. 39-40). In relation to this, (Cook et al., 2019) introduces 
two ways of intra-acting with material objects: passive (i.e. using the object as a presentational tool) 
versus active intra-action (i.e. the object provides a medium to interact through). Hence, the focus of 
our analysis is not only on teachers’ dialogical interactions, but also on their intra-actions with 
material objects, looking for material-dialogical spaces.  

Methodological approach  
The two teachers, Per and Ann, piloted the 15 lessons that made up the teaching unit on programming 
a tangram puzzle. Both teachers and their grade 7 classes were unexperienced with using Scratch, 
and the pilot was their first time at all using a programming language in mathematics. For this paper, 
we therefore selected the third lesson in which the students used Scratch for the first time in relation 
to mathematics (after a short introduction in the previous lessons). In later lessons, the students must 
program their own tangram puzzle by using Scratch, and the third lesson supported this by focusing 
on constructing geometrical figures. It consisted of four tasks: 1) Students had to predict the outcome 
of a Scratch-script that drew an incorrect rectangle (four right angles but all sides of different lengths) 
and then redesign it to draw a correct rectangle. 2) Students must optimize the script by using as few 
variables as possible to construct a rectangle and then a square. 3) Students had to explore a script 
that used a variable Number of Sides and drew a square when it was four. 4) Students must redesign 
this script so that it can draw regular polygons with up to 6 sides. This requires knowledge of the 
angle sum in regular polygons. Per and Ann collaborated during the pilot, preparing lesson together 
and making slides.  
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We constructed two cases – one for each teacher – based on the following data from the pilot study:  

• Classroom observations: field notes and video-recordings of 10 lessons for each teacher,  
• Memo writings by the first author after each observation that focused on the teacher’s and 

students’ interactions and their intra-actions with Scratch and mathematics,   
• A final focus-group interview with Per and Ann about on their experiences and suggestions 

for improving the teaching unit.  
Zooming in on the third lesson, we briefly present the two cases below, which we called Providing 
knowledge in advance and Exploring Scratch and mathematics. When analysing the data, we first 
constructed an overview of each teacher’s ways of interacting dialogically with students (monologic 
or dialogic discourses) and of intra-acting with the material objects (passive versus active) (see Figure 
1). Secondly, we analysed the teacher actions more closely in terms of whether they contributed to 
open, close, widened or deepen a material-dialogical space.   

The cases and results of the analyses  
Case 1: Providing knowledge in advance  

Per has taught mathematics for more than 30 years. When computers appeared in the 80s, he learned 
some of the first programming languages in his spare time. Per was excited about the unit, although 
he expected his class to be challenged by it. He began the lesson by speaking at length (see Figure 1): 
showing two methods to find the angle sum required in task 4, using a metaphor to understand Scratch 
and unfolding some Scratch-techniques. In the excerpt below, Per introduces the metaphor about 
tracing a football field, and the excerpt shows his typical ways of interacting with the students:  

Per: Do you know the machine that is used to draw white lines on a football field? […] 
tell the man [using the machine] how to draw an octagon. What is the first 
information he should be given? [no responses]. If he shall draw an octagon, what 
do you need to tell him? [no responses] Don’t you understand my way of thinking? 
[draws the situation on the board]. What do you need to tell him? [no responses]. 
Are you all dead? Should he just start drawing at the edge of the field? [a few shakes 
their heads]. So, what do you need to tell him? 

Student 1: He must go to the middle.      
Per:  Yes, you need to tell him where to start. What else do you need to tell him?  
Student 2:  How far he must go?  
Per:  No, there is something he needs to know beforehand […] To give such information 

is really important when you program the small cat [the Spite] […] Otherwise it 
[the Spite] does not know what to do. It only knows what you tell it.  

 
Nearly halfway through the lesson, Per introduced task 1 by telling the students what to do “You have 
to do this sequence of commandos on your computer”. Consequently, the students quickly typed the 
script into their computer without further reflections. After 10 minutes, Per showed his solution to 
the class, going over technical problems he had encountered himself or anticipated the students had. 
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Only then, did he ask the students about their work, but without following up on their responses. He 
introduced task 2 in a similar way, and the students worked on it for the remaining time. 

Case 2: Exploring Scratch and mathematics 

Ann had graduated from teacher college one year ago and had no prior experiences with programming 
languages whatsoever. She was a little anxious about the unit but decided to give it a try. Ann was 
more inspired by the teacher’s guidance in the unit than Per. She began the lesson by describing its 
aims and encouraging students to explain its key mathematical concepts, which she had written on a 
slide (together with Per) along with a drawing to support student explanations. Ann then engaged the 
students in all four tasks one at a time using the same pattern: 1) introduced the task in an explorative 
way (“What do you think happens in this script?”) and invited students to find out for themselves. 2) 
supported students in their work with the task and encouraged them to try out their own ideas. 3) led 
classroom discussions where she invited students to contribute their ideas and asked specific students 
to share their contributions. In the excerpt below, Ann asks the students to predict the outcome of the 
first script, and the excerpt shows her typical ways of interacting dialogically with the students:  

Ann: Now we have a pen. Its draws in a blue colour. I only have a white colour, but I 
hope it works. Then it says point towards 90 degrees. What does that mean? 

Student 1: Downwards? 
Student 2: It points towards a direction that is straight. Horizontal.  
Student 3:  It is east, because north is upwards and it is 360 degrees, and east is 90 degrees, and 

it is to the right. 
Ann: So, it, the figure is me. I must turn 90 degrees [turns 90 degrees] and then I am here 

[her face to the right]. Then, I must go ‘side 1’ step. What is ‘side 1’ steps? It is 
how many steps? 

Student 4:  It is so far that I can see 100 steps.  

Figure 1: Per’s and Ann's interactions with students and their intra-actions with material objects 
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Within the first 65 minutes (the span of Per’s lesson), all students had finished the first three tasks 
and started working on the fourth. Moreover, near the lesson’s end, the students asked Ann for a 
method to calculate the angle sum of a polygon and they derived a method together, which the 
students used to make scripts that could draw regular polygons with up to 6 sides.  

Comparing the two cases  

In Figure 1, we have compared the two teachers’ ways of both interacting with their students and 
intra-acting with the material objects during the third lesson.  

In general, Per did not encourage perspectives other than his own in the long whole-class sessions. 
On the few occasions where he did ask for students’ voices, he prompted them to answer closed and 
factual questions and not to contribute new perspectives, such as new mathematical ideas, different 
explanations, or another way of thinking about a Scratch script or the subject matter. Per thus assumed 
a single perspective; a perspective that was his prior interpretations of what knowledge of Scratch or 
mathematics the students would need in their later work. Presumably, Per used the metaphor about 
tracing the football field with the aim of deepening the students’ understanding of Scratch, but as he 
only asked closed questions, not inviting other perspectives, the metaphor did not enable him to open 
or deepen a dialogical space. This would have required that other perspectives on programming than 
his own were brought up. He showed the two methods in a similar way. Hence, Per tended to establish 
a monologic discourse in whole class sessions and to close, rather than open, a dialogical space.  

The same applies for Per’s passive ways of intra-acting with Scratch in whole class sessions. He 
primarily used Scratch for representational purposes, such as showing students the scripts they were 
to work with, and used it as a product, telling the students which commands to type, and selecting 
programming problems that he assessed relevant based on his own experiences. Not utilising the 
process aspects of Scratch, such as predicting the outcome of a script, Per did not use it as medium 
for him and the students to interact through. So even though Scratch had a voice in the lesson, it was 
only Per who talked through Scratch. Hence, Per did not create a material-dialogical space, where 
both students’ and Scratch’s voices were related and valued. In addition, the students were given 
fewer opportunities to learn programming as well as mathematics compared to the other class.  

In contrast, Ann established a dialogic discourse with the students. Instead of speaking herself for a 
long time, Ann invited the students to contribute their perspectives and used those perspectives to 
open, widening and deepening a dialogic space. For instance, in the except, she invited students to 
interpret what “point towards 90 degrees” means and as several students offered their interpretations, 
she tried to deepen their understanding by using herself as a physical sprite. Throughout the lesson, 
Ann engaged the students in the tasks, encouraging them to predict the outcome of a script and to 
explore for themselves how to program the geometrical figures without providing additional 
information. Ann drew on a range of material objects such as pencil and paper, the black board, 
Scratch, and her own physical movements, and she intra-acted actively with these materials. She used 
them as mediums to engage students in processes of exploration of Scratch and of mathematics, and 
the interplay between them. Hence, Ann created a material-dialogic space where the students were 
engaged in explorative work, and they shared and discussed their ideas and perspectives on 
programming and mathematics. In this space, the material objects had a voice, and Ann also used 
them as a medium for interactions with mathematics as she consistently encouraged the students to 
explore, explain, construct, interact with and talk about those objects in relation to the geometrical 
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concepts and constructions. This material-dialogic space offered the students rich opportunities for 
learning, as evidenced by the students’ programming of regular polygons with up to 6 sides (task 4).  

Discussion and concluding remarks  
Our comparison of the two cases – Providing knowledge in advance and Exploring Scratch and 
mathematics – highlights at least three features that seem important for teachers in order to balance a 
focus between programming and mathematical aspects in classrooms, in which the aim is for students 
to learn both programming and mathematics. The first feature is that it is important for teachers to 
establish opportunities for students to explore both programming and mathematical aspects and not 
focus solely on one of them. When the focus is on programming the exploration should be closely 
related to the subject matter, for instance by exploring why a script do not draw a specific 
mathematical figure. The second feature is that teachers must intra-act actively with the material 
objects in relation to both programming and mathematics. Ann intra-acted actively with Scratch to 
get a hold of it herself as well as to explore mathematical concepts, such as a rectangle and regular 
polygon. She thus modelled how she wanted student to learn Scratch and how they should use it to 
explore mathematics. In contrast, Per intra-acted passively with Scratch and separated it from the 
subject matter. For the students, Scratch became another piece of knowledge to be mastered and 
remembered, since they were not shown how to learn Scratch themselves, other than remembering 
what Per had told them, or how to use it in relation to mathematics. Moreover, Ann used other material 
objects to deepen the material-dialogical space such as pencil and paper and herself as a physical 
object, which supported the students’ learning of both programming and mathematics. The third 
feature is that teachers should build on students’ experiences both when exploring programming and 
mathematical aspects. Although, Per aimed to support his students’ learning by presenting the two 
methods to calculate the angle sum, using the metaphor, and demonstrating Scratch-techniques, most 
students did not benefit hereby as they lacked experiences of their own. The knowledge Per provided 
therefore seemed meaningless to them. In comparison, Ann conveyed many of the same points as 
Per, but instead of telling these in advance she departed from and build on students’ ongoing 
experiences with Scratch and mathematics. For example, her students requested methods for 
calculating the angle sum when they needed them, whereas Per’s students hardly knew why they were 
introduced to these methods. In conclusion, Ann succeeded in establishing a material-dialogic space 
with rich opportunities for learning, while Per did not, he conducted a monologic discourse. Although 
the study is limited in scope and its findings therefore require further justification, these findings 
would not have been so clear if the two cases had not stood in such sharp contrast to each other.  

The similarity between the results of this study and those of Benton et al.’s (2017) study is striking. 
Although, the two studies differ in their theoretical approach to learning (a dialogical approach versus 
a constructivist approach), the 5Es can be clearly distinguished in the case Exploring Scratch and 
mathematics, in which a material-dialogical space was established, but not in the other case. Our 
study confirms that envisage and bridge are particularly important activities when programming is 
used in mathematics teaching (whereas the other three Es are generally important when aiming to 
establish a dialogical learning environment). Ann, like Teacher 1 in Benton et al. (2017), used 
physical walkthroughs and other material objects to envisage, while Teacher 2 primarily used Scratch. 
Benton et al. (2017) conclude that using Scratch as an envisaging strategy seemed to be more effective 
and that its absence may explain gaps between design intensions and implementation. However, our 
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study suggests that physical walkthroughs can be an effective envisaging strategy as well (at least 
when the class is still new to Scratch), and that it might be the material-dialogical space that are 
established around its use that is more important. Teacher 2 in (Benton et al., 2017) bridged explicitly 
to mathematics much more than Teacher 1, and her relative success led the authors to conject the 
importance of bridging between programming and mathematics. This is confirmed by our study, 
where Per did not bridge, but addressed programming and mathematical aspects separately, whereas 
Ann explicitly bridged the two.  

As neither Per nor Ann were confident with programming, our study does not validate Benton et al.’s 
(2017) first consideration about the importance of teachers’ confidence in addressing computational 
as well as mathematical concepts. However, it should be noted that Ann was strongly supported by 
the teacher’s guidance in the unit. Our study highlights the second and fourth considerations, namely 
that successful use of programming in mathematics teaching depend on the emphasis the teacher puts 
on either the programming or mathematical-related learning aim and their pedagogical strategies.  
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With this work, we present a pilot study examining how generative AI (GenAI) can be used as a tool 
to foster collective mathematical discussion in primary school classrooms. The study is ongoing with 
ten 4th-grade and 5th-grade classrooms. It explores the potential of GenAI to help primary students, 
through a guided discussion developed while interacting with the tool, to produce argumentations 
and discover the notions and properties of geometrical transformations. The analysis of our early 
results shows how when students are involved in formulating prompts to be given to a GenAI system 
and in interpreting its feedback, they are engaged in mathematical discussions that can allow them 
to construct mathematical meanings. Results highlight the need to further investigate the impact of a 
stable guided use of GenAI on students’ proficiency in using it as a personal learning aid.   

Keywords: Generative Artificial Intelligence, Collective Mathematical Discussion, Instrumental 
Approach 

Introduction  
Among the recent technological advancements, Generative Artificial Intelligence (GenAI) has 
opened up new windows in the field of mathematics education. This technology, characterized by its 
ability to generate new content from the patterns it learns from its input data, stands out as a promising 
tool with the potential to significantly enhance the learning experience. In the context of mathematics 
education, it can generate a variety of problems and solutions, thereby providing a rich and diverse 
set of mathematical scenarios for students to explore (Capone & Faggiano, 2024). In our view, this 
can be turned into a tool to stimulate collective discussion, provided that students are engaged with 
meaningful problems and guided to share their approaches and solutions. 

This paper presents a pilot study that explores the innovative application of GenAI as a tool to foster 
collective mathematical discussion in primary school classrooms. The focus of our study is on 4th-
grade and 5th-grade classrooms, where students are in the process of building their foundational 
mathematical knowledge and competencies. We claim that already at this stage it is possible to 
introduce GenAI as a learning aid, as it can provide the teacher with a dynamic and interactive tool 
to engage students in fruitful mathematical discussions and promote a culture of collective problem-
solving and critical thinking. 

The mathematical context in which our study is developed is the field of geometrical transformations, 
which we consider a fundamental topic in primary school mathematics for its characteristics to 
represent a context in which diverse mathematical knowledge and competencies can be acquired 
(Faggiano et al., 2018). We explore the potential of GenAI in helping students construct the meanings 
of geometrical transformations in the context of the mathematical laboratory (Anichini et al., 2004). 
Our early results, framed by the Instrumental Approach (Trouche, 2004), indicate that when students 
are involved in formulating prompts for GenAI and interpreting its feedback, they are involved in 
mathematical discussions that can facilitate the construction of the notions and properties of 
geometric transformations. However, further investigation is needed to fully understand the impact 
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of a stable guided use of GenAI on students’ proficiency in using it as a personal learning aid. 

In what follows we introduce the background and the theoretical framework of our research. This 
allows us to describe the methods we have adopted and to present our research question. Then we 
will present the early results and discuss them in the light of our research question.  

Background  
In our view, the advent of ChatGPT and other GenAI systems can be considered as an occasion to 
rethink and reassess teaching practices and pedagogical approaches, in relation to the opportunities 
afforded by these new technologies. However, these new tools, as any innovative resource, require a 
radical change in the way we teach and students may learn, hence the critical issue lies in the aims 
we have and in didactical strategies that can be developed. With the aim to investigate the potential 
of GenAI as a teaching-learning tool in primary mathematics education, we are interested in taking 
an educational perspective that allows us to look at the possible mediation role of the tool.  

This study is based on the idea of a mathematics laboratory conceived as a methodology that relies 
on various and structured activities to promote the construction of mathematical meanings, and on 
the related notion of Collective Mathematical Discussion (CMD). A mathematics laboratory can be 
likened to a Renaissance workshop where apprentices acquire knowledge through hands-on 
experience and mutual communication about their work and where technological tools play a pivotal 
role in enhancing the learning process. In tune with the idea of mathematics laboratory, the notion of 
CMD was introduced (Bartolini Bussi & Mariotti 2008) to analyze the relationship between students’ 
accomplishment of a task through an artifact and their mathematics learning. In a CMD students’ 
interventions are coordinated and guided by the teacher to generalize the emerging situated signs and 
move them toward mathematical meanings (e.g., Mariotti & Maffia, 2018). The notion of sign here 
is interpreted in a broad sense, including any kind of entity which might be uttered, written, drawn or 
embodied, used by someone to express some meaning.  

Theoretical framework  

Our study is framed by the Instrumental Approach (Artigue, 2002; Trouche, 2004), grounded in 
constructivist epistemologies, which expands research work on the mediating role of socio-cultural 
tools in human activities (Vygotsky, 1978). It is built around the concept of instrument as a mixed 
entity that is constituted by the artifact, the material component, and the subject’s utilization schemes 
or behavioural component (Verrillon & Rabardel, 1995). According to the Instrumental Approach, 
the process of appropriating and integrating external artifacts as instruments of human activity, called 
instrumental genesis, is a developmental process described in terms of two dimensions: 
instrumentation and instrumentalization. Instrumentalization refers to the emergence and evolution 
of the artifact to support activity in a local cultural context. Instrumentation involves the gradual 
formation and evolution of schemes for using the instrument in practice.  

In this paper, we will focus on the students’ processes of meaning construction that emerged while 
students are engaged in the CMD mediated by the teacher’s use of GenAI. To address the issue of 
how GenAI can be used as a tool to foster CMD and allow students to construct mathematical 
meanings, we are interested in exploring how the student’s progression towards the meanings is 
intertwined with the students’ instrumental genesis related to GenAI. 

Following the Instrumental Approach, we intend to investigate the extent to which students’ personal 
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schemes may evolve during the collective discussion orchestrated by the teacher exploiting the 
potential of GenAI, thus contributing to deepening students’ construction of the mathematical 
meanings at stake. To address the issue of how students can become aware of the meanings stemming 
from the interaction with GenAI to accomplish a task, and of how such meanings can evolve toward 
geometrical transformations, consistently with the instrumental approach, in our study we focus on 
the development of Collective Mathematical Discussions.  

Methods  
This paper analyses results coming from a project involving ten 4th-grade and 5th-grade Primary 
School classrooms in Italy. The project is meant to offer teachers examples of teaching activities that 
can be developed by exploiting the potentialities of digital technologies in mathematics laboratory 
contexts. All the students were equipped with their own iPad and an interactive whiteboard was 
available to share materials to be discussed. The activities were conducted by researchers, in the 
presence of the teacher, within the curricular class organization. They were developed in three two-
hour sessions per class and were video recorded. Data collection consists of video recordings of the 
activities and notes taken by the research team. To the aim of this paper, according to the notes of the 
researchers, some episodes have been chosen to be transcribed and the transcripts have been supplied 
with some relevant images. These early results have been analysed to answer our research question: 
How can primary students’ progression towards the construction of meanings be supported through 
the teacher’s use of GenAI as an instrument to foster collective mathematical discussions?  

The classroom intervention 

As already said, the mathematical content at stake was geometrical transformations, particularly axial 
symmetry. The designed teaching activity was structured as a sequence of didactical cycles that 
involved the synergic use of different kinds of resources (Faggiano et al., 2018).  In some cycles, 
students were asked to accomplish tasks, by interacting with artifacts and collaborating in small 
groups, and then to discuss their work with the researcher. For example, in the first cycle, students 
were asked to use GeoGebra to create a figure, draw a line and generate a second figure as symmetric 
to the first figure with respect to the line. Then, divided into small groups they are asked to understand 
what changes and what does not change if they move the first figure or if they move the line. The 
collective discussion that followed aimed to recognize that axial symmetry is a point-to-point 
geometrical transformation that depends on the initial figure and on the line that we choose as the 
axis of symmetry. These kinds of activities, designed following the principles of our theoretical 
framework, have been extensively experimented with in the past and their effectiveness in terms of 
students’ meaningful learning has already been proven (e.g., Faggiano et al., 2018). In other cycles, 
the task was presented to the whole class and the researcher led the collective mathematical 
discussion. The cycle on which we focus in this paper is of this kind. Students were given a sheet of 
paper on which two figures symmetrical to each other were drawn. They were asked to consult 
ChatGPT to get insight on the way to find the line that was used as the axis of symmetry to obtain 
one figure from the other. The choice to use GenAI in this way at this point was due to the previous 
analysis done by the authors of the feedback that ChatGPT (version 3.5) produced when given the 
following prompt:  

I am a 10-year-old girl and I received from my teacher a sheet of paper with two figures that are 
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one symmetrical of the other. The teacher, without adding anything else, asked me to find the axis 
of symmetry and explain how I did it. How can I do it?  

Figure 1: The feedback received when testing ChatGPT 3.5 

As can be seen in Figure 1, the potential of ChatGPT’s feedback to trigger a lively discussion within 
the class is grounded in its incomplete and confusing reply to the specific prompt. For example, it 
does not give any explanation of how to determine an axis of symmetry between two symmetrical 
figures, but the feedback refers to the context of figures with an axis of symmetry. The CMD to be 
developed was designed to bring to the fore the problems of this answer and foster students to produce 
signs and arguments that can be guided towards the understanding of the axial symmetry properties.  

Early results and discussion 
In this section, we present and briefly discuss two episodes, selected from our early results, that better 
allow us, with the space constraints of the paper, to answer the research question. The prompts on 
which students agreed during the discussion, were given to ChatGPT in Italian as well as in Italian it 
was its feedback. The translation into English of the prompts and the feedback were provided by the 
authors together with the translation of the episode transcripts chosen for this paper.  

Episode 1 

This episode shows the emergence and evolution of the instrument to support the activity and the 
gradual formation and evolution of schemes for using the instrument in practice. In the previous 
session, aimed at understanding the characteristics of two figures that are symmetrical to each other 
with respect to the axis, students interacted with GeoGebra working in small groups. In this second 
activity, the researcher introduced ChatGPT as a further tool that students could collectively use to 
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get some help in finding the axis of symmetry between two symmetrical figures. The following are 
excerpts from the discussion, aimed at highlighting the processes of instrumentalization and 
instrumentation emerged and evolved during the guided interaction with the artefact to accomplish 
the task. Students were invited to decide the prompt to be given:                              

Student1:  We can write, "We are fourth graders. We have to solve a problem. We have to find 
out the axis of symmetry between two polygons."   

Researcher:  As we have seen it replies by writing a lot of things  
Student 2:  We can ask it for a summary                                                                                                         
Researcher:  Do we want a summary, or do we want to ask it to guide us?  
Student 3:  Yes, we can ask it how to do it... explain it to us  
Student 1:  Yes, we can write, "We are 4th graders, we have to solve a problem. We have to 

find out the axis of symmetry between two polygons. Guide us step by step."  
As the feedback proved to be quite complex and not enough useful in solving the problem (“But it 
doesn't really help us!”), the discussion then contributed to the development of students’ usage 
schemes: 

Researcher:  Maybe we need to make it understand better what we need – let's try to be clearer 
with it. Let's describe better our problem.  

Guided by the researcher, students engaged in a discussion about how to communicate any difficulties 
or misunderstandings they may have.  

Student 1:  We can write: "Thank you for your answers, but you didn't help us at all. We have 
on a sheet of paper two figures, flag-shaped, symmetrical to each other." 

Researcher:  That’s what we do have. Now we should explain our problem.  
Student 1:  We can add: "We need to find the axis of symmetry."  

Prompted by the researcher, the class continued to discuss the best way to express the function of the 
axis of symmetry.  

Student 2:  I get it... maybe we need to write: "Thank you for your answers, but you didn't help 
us at all. We have on a sheet of paper two figures, flag-shaped, symmetrical to each 
other. We need to find the axis of symmetry that turns one flag into the other."  

Researcher:  And don't we want to ask it a specific question?  
Student 3:  How do we get it?  

In the excerpts, it emerges how during the discussion led by the researcher, students were gradually 
able to refine and evolve the way they formulated the prompts. They could observe the changes in 
the received feedback that with a more precise prompt became more helpful. 

Researcher:  Look… it added something it had not written before: "if the two figures are 
symmetrical to each other, it means there is an axis of symmetry that transforms 
one figure into the other". Then it also adds the "Steps to find the axis of symmetry." 
Better than before, don’t you think?! 

Student 1:  Yes, now we like it! Let’s see what it can suggest now… "Look for the points that 
appear to be the same in both figures".  

Student 2: The tip of the flag, the beginning and the end of the flagpole. 
Researcher: Ok, so we have them. Then it says: "Observe the lines or segments connecting these 

points". 
Initially, during their interaction with ChatGPT, students noticed that the feedback they received did 
not completely meet their expectations. Consequently, they engaged, collaboratively, in an attempt 
to refine the prompts, trying to make them more useful and relevant to achieving their goals. Guided 
by the researcher they have developed the instrumentalization process gradually understanding how 
the artifact could support them in accomplishing the task. At the same time, while interacting with 
the artifact the development and evolution of schemes supported the instrumentation process 
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promoting the use in practice. 

Episode 2 
This episode shows how the instrumental genesis related to the use of ChatGPT during collective 
mathematical discussions supported students’ progression towards the construction of meanings. This 
second episode is also taken from the discussion led by the researcher (with students belonging to a 
different class) regarding the identification of the axis of symmetry using the assistance of ChatGPT.  

After an initial phase aimed at identifying an appropriate prompt to obtain useful information to solve 
the task, the discussion focused on the feedback provided by the artificial intelligence. In the initial 
responses, it emerged the concept of "corresponding points", the meaning of which students are 
unfamiliar with.  

Researcher:  So, let's try to recap for a moment, go back over. What did you understand? What 
is it trying to tell us with this corresponding points thing? For example, when I gave 
you the sheet of paper with the two symmetric flags, it occurred to your classmate 
to join these points. Can you explain why?" 

The researcher strives to stimulate students' reflection, encouraging them to reconsider and rework 
what has been explained by ChatGPT regarding the corresponding points. The goal is to guide 
students so that they fully understand the meaning of these concepts, using as support during the 
learning process the feedback provided by ChatGPT, but also the other tools, such as the paper with 
the two flags or GeoGebra. Once the meaning is clarified, the discussion continues with an attempt 
to understand the usefulness of these corresponding points. 

Researcher: Let’s see… in your opinion, these two points, the bases of the flagpole, what are 
these points? Will they have anything to do with what it is trying to tell us? Let's 
go back for a moment to what it had told us at the beginning: to find this line we 
have to use the corresponding points... Now what will they be for, these 
corresponding points?   

Student 1:  Let's tell it that we've figured out what the corresponding points are and that we've 
joined them two by two and ask it now what we need to do. 

Researcher:  Okay...let's see...it tells us, "Look carefully at the points you have connected. 
Imagine a straight line passing right through the middle of these points." 

To allow students to connect the signs, the researcher focalizes students’ attention to the notions of 
the middle point and its connection with the distance, as they have emerged with the use of GeoGebra, 
with the flags on the paper and the feedback of ChatGPT. 

Researcher:  Think about what we were doing with GeoGebra, what had we said? We hadn't said 
that the figures were in the middle, but that the figures were located... if one went 
away the other one also went away, it did the same. What remained the same? 

Student 2: The distance 
Student3: I see… we need the middle points because there we have the same distance… that’s 

why we can fold in the middle. 
This episode shows the students were led to the construction of meanings: the stimuli offered by 
artificial intelligence, mainly through the interpretation of the feedback, open opportunities to return 
to the task, request for and provide synthesis. Previous studies have shown that effective CMD can 
guide students to the construction of meanings, thus acknowledging that GenAI is not necessary. 
However, in this paper, we aimed to show how GenAI can be used as a tool to engage students in 
mathematical discussions and allow them to construct mathematical meanings. 
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Conclusions and future works 

In conclusion, in our pilot study we were interested in exploring the students’ instrumental genesis, 
particularly focusing on the processes of instrumentation and instrumentalization related to the 
teacher’s utilization of generative AI (GenAI) as a tool to foster the collective discussion in primary 
school classrooms. Our analysis of early results offers valuable insights into the potential of GenAI 
showing how it evolved into an instrument that, used by the teacher to facilitate mathematical 
discourse, contributed to the students’ learning. As depicted in our selected episodes, students were 
actively engaged in refining prompts and gradually understanding how to leverage the tool to 
accomplish their mathematical goals. This can be interpreted as the development and evolution of 
GenAI as a teaching-learning instrument. The first episode shows how the students developed 
schemes in the practical use of ChatGPT: they were gradually able to refine the way they formulated 
prompts and to observe the changes in the feedback when their prompts became more precise. In the 
second episode, through the interpretation of this feedback during the CMD led by the researcher, the 
students were able to develop the mathematical meaning of axial symmetry.  

We acknowledge that the students were strongly guided in their interaction with ChatGPT during the 
collective discussion. However, this was due to the limited time available, during which we preferred 
to provide guidance in order to be able to observe and discuss elements of interaction that could bring 
out how ChatGPT could be a facilitating tool in the discussion. Furthermore, our study underscores 
the pivotal role of the teacher/researcher in orchestrating collective mathematical discussions 
augmented by GenAI. The teacher’s strategic actions, guided by the affordances of the tool and its 
synergies with other resources, were instrumental in guiding students towards the construction of 
mathematical meanings. By consistently redirecting students back to the task, focusing on relevant 
aspects of GenAI usage, asking and providing synthesis when needed, the teacher facilitated a 
learning laboratory environment where students could actively engage with the tool and 
collaboratively construct mathematical meanings.  

These findings highlight the promising potential of integrating GenAI into primary school 
mathematics education, not merely as a computational aid but as a catalyst for meaningful 
mathematical discourse and knowledge construction. Moving forward, further investigation is 
warranted to explore the sustained impact of guided GenAI use on students’ mathematical proficiency 
and the efficacy of teacher orchestration in optimizing learning outcomes. Ultimately, our study 
contributes to the ongoing discourse on leveraging digital technologies to enhance mathematical 
learning experiences in primary education. 
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This paper illustrates employment of automatic assessment of student work on open-ended math tasks 
in order to characterize understanding of specific mathematical concepts. This paper describes a 
design in mid- to late-stage testing for student conceptions on tangency of a line to a function. 
Curricular discontinuities illustrate areas of mathematics where students’ conceptions can be in 
various transitional states, which, for this project, are book-ended by synthetic conceptions and 
analytic conceptions. The strategic design of prompts for students to respond to and the kind of data 
extracted from student submissions is useful for characterizing students’ conceptual evolution related 
to a topic. We use a framework that involves concept images and definitions, and critical and non-
critical characteristics to analyze and categorize student work. 

Keywords: Formative evaluation, Education technology, Mathematics, Automatic feedback. 

Introduction 
Automatic assessments of closed-ended (e.g., multiple choice or fill-in the blank) mathematical 
problems have been used in large-scale assessments since the popularization of scantron machines. 
Automatic evaluation techniques for close-ended items have also been implemented in computerized 
tasks to provide immediate feedback (Farrús & Costa-jussà, 2013) to students to facilitate rapid 
student reflection and learning opportunities. However, automatic assessment has less commonly 
been used in classroom-based formative assessment of open-ended tasks.  

Technological advancements make this a very exciting time to develop or implement computerized 
tasks and assessments, if the capacity of our current technology is utilized, rather than replicate paper-
pencil tasks in digital form (see Sangwin et al., 2010). We contend that technology has progressed 
beyond merely verifying that student responses match a particular range of programmed answers 
(e.g., numerical submissions). Now is the time to consider uses for today’s computational 
developments to automatically assess the work of open-ended math problems. There is more that 
today’s technology can do in evaluating student work beyond just measuring their answers. One 
reason to do so is that automatic evaluation of assessments implemented as part of a course can 
provide valuable instructional information and potentially alleviate time demands on teachers and 
allow them to focus their efforts on demands that are more difficult to automate.  

This paper shares our work developing one formative assessment through the Seeing the Entire 
Picture program, an online platform developed by researchers at the Mathematics Education Research 
and Innovation Center at the University of Haifa, which uses sophisticated coding and strategically 
developed applets to extract data from student work to continue to alleviate teacher time-demands 
and support their analysis of student conception (Olsher, Yerushalmy, & Chazan, 2016). 
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Framework for the assessment 

Sangwin and colleagues (2010) describe the value of digital technologies to automatically assess 
student work when “a student creates mathematical objects (e.g. an algebraic expression or synthetic 
figure) using a computer; then the computer automatically establishes mathematical properties of 
these objects; on the basis of these properties it assigns outcomes, including feedback” (Sangwin et 
al., 2010, p. 229). We strive to use such mathematical properties strategically and systematically to 
provide teachers and students with information on students’ concept images and definitions through 
the work they submit. The design of our task is centered around automatically assessing responses to 
open-ended math tasks that at times provide immediate feedback to students as well as assess where 
students are in their concept evolution. We further aim for the program to report a summary for the 
whole class in terms of the progression of their conceptions.  

Our structure to characterize student work uses concept image and concept definition, as well as what 
Hershkowitz and Vinner (1983) call critical and non-critical characteristics. Tall and Vinner (1981) 
describe concept image as “the total cognitive structure that is associated with the concept, which 
includes all the mental pictures and associated properties and processes” (p. 152). Tall and Vinner 
define concept definition as “the form of words that the student uses for his own explanation of his 
(evoked) concept image” (p. 152). The images one envisions lends itself to flexibility of one’s 
mathematical work, because a larger array of mental depictions suggests more options to apply to 
general and specific scenarios. Understanding a students’ concept definition allows one to align the 
mental depictions with appropriate contexts.  

We focus our work on analyzing viewable products that students provide on the assessment and then 
use these products as opportunities for learning through feedback. A central product we use are 
examples and non-examples that students submit. Boaler (2016) prioritized the value of students 
seeing multiple examples as well as non-examples, which could be student-created and shared with 
the class. These opportunities allow students to consider not only the typical, but examples and non-
examples that push the boundary of the topic of focus. When the boundary between examples and 
non-examples gets fuzzy, the definition must be revisited for both teachers and students to expand or 
narrow the breadth of examples that fit a definition (Hess-Green & Olsher, 2018). In classroom 
instruction, the interplay between mathematical definitions and examples requires students to 
renegotiate meaning as their definitions evolve.  

In our assessment, we elicit examples and non-examples from students to develop an understanding 
of their concept images and definitions. This connects with findings in Dahlberg and Housman’s 
(1997) study, who interviewed a small group of high performing math majors around a novel function 
family to study students’ learning about that function family. They found that example generation 
appeared to be the most impactful of four strategies students displayed in understanding the new 
concept, also highlighting the value of examples in math. For us, examples serve a dual purpose, they 
are data to represent a student’s concept image and can be used for classroom discourse or individual 
reflections based on immediate feedback from a program.  

Specifically, our assessment of students’ understandings of tangency builds on research on this topic. 
Biza (2011) provides 8 tangent definitions initiated by students as pre-conceptions and definitions 
that evolved through class discussion that range from tangents being “a line that has only one common 
point with the graph” (p. 136) to definitions that use limits to describe the slope. Such a range of 
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concept definitions suggest diversity in students’ concept images. In a study about undergraduate 
mathematics majors’ proof writing abilities, Moore (1994) suggests an applicable use of concept 
images and definitions by stating that “students' ability to use the definitions in proofs depended on 
their knowledge of the formal definitions, which in turn depended on their informal concept images” 
(p. 262). Moore further indicates that students in his study “needed to develop their concept images 
through examples… before they could understand the formal verbal or symbolic definitions” (p. 262), 
indicating the importance of students experiencing a variety of relevant examples.  

The display or use of varying examples alone does not build deep conceptual understanding, it 
requires engaging with examples in varying contexts. Curricular discontinuities, shifts or changes in 
a concept’s definition or practical use from one course or topic to another (Tall, 2002), provides a 
natural opportunity to evaluate student progress in learning a new topic. For example, the meaning 
of tangent is different in Euclidean geometry than in calculus. In Euclidean geometry, tangent lines 
are introduced in the context of circles, where a circle may be seen as all on one side of a tangent line 
and a tangent line may be thought of as only intersecting the circle in one point. In the context of the 
calculus, tangents are connected to the derivative and may intersect a function at more than one point.  

A student might pass their calculus class with a geometric conception of tangent, yet, their 
understanding of tangent is then limited. This illustrates the need to address such gaps; there is value 
and an opportunity for student engagement and discussion as they navigate between two meanings. 
However, these gaps must first be identified and done so efficiently. We use the notion of two 
endpoints of a concept to describe students' transition as they navigate from one conception to a new 
one. For this project, we developed a tangency task and used synthetic as one endpoint and analytic 
as another, aligned with differences between synthetic and analytic geometry: synthetic is bound by 
Euclidean structures, analytic involves the assignment of coordinates and algebraic symbols 
(Giovanni, 2016). Student conceptions may align with one, the other, or in-between. 

Using a critical characteristics analysis, a synthetic view of tangency is where the tangent line and a 
function skim or touch only one point and do not cross the function. In this view, the derivative is not 
associated with tangency and thus the equality of the value of the derivative and the slope of the 
tangent line at a point is a non-critical characteristic. Whereas an analytic view requires the derivative 
at the point of tangency to have a shared value there and be equal to the slope of the tangent line–if 
the function is differentiable–and may cross through the function. Table 1 summarizes the differences 
between synthetic and analytic perspectives on tangency.  

Transitioning from synthetic to analytic requires space for student thinking to evolve, and therefore, 
mechanisms to consider evolving student examples is necessary. Traditional automatic assessment 
programs may not give credit when parts of the submission are valuable. However, researchers are 
trying to overcome such oversights. Kajetanowicz and Wierzejewski (2006) grappled with allowing 
partial credit for computer assessed exams. Sangwin and colleagues (2010) describe a computer aided 
assessment tool that provides feedback to partially correct answers. Farrús and Costa-jussà (2013) 
describe a framework for a web-based tool that provides immediate feedback to students. They use 
the term “Latent Semantic Analysis/Indexing” to evaluate open-ended student work. This technique 
works for long written responses, short responses do not have enough data to use latent analysis, we 
think there are options for combining shorter responses that link elements of the concept together. 
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Table 1: Where students’ concept image and definition fall 
 

Analytic conception of tangency Synthetic conception of tangency 

Definition “Derivative MUST be same as slope of tangent” & 
“y-values must match at the point of tangency” 

“Graph can only be on one side of 
tangent” OR “tangent line and 

graph only coincide at one point” 

Critical 
characteristics 

• y-values of function & tangent are the same  

• the derivative of the function and the slope of 
tangent line are equal 

 

A function and tangent line: 
•  touch/coincide at one point  

• do not cross  
 

Design of the formative assessment 
The task we created asks students to respond to a series of both closed and open-ended prompts with 
the aim of approximating students’ understandings of the concepts of tangency when it comes to lines 
and functions graphed on a coordinate plane. Questions prompt students to decide whether three 
provided examples display tangency or not, submitting examples and non-examples of lines tangent 
to graphs, choosing characteristics that must be true of graphs and lines that are tangent, and finally 
a choice of the best definition for tangency between a line and the graph of a function. Across these 
questions, we consider the consistency of students’ responses (De Bock et al., 2016) to various 
elements that focus on the same concept. 

Task layout  

The design of the tangency task has three provided graphs that depict a function (quadratic, absolute 
value, cubic) and the line y=0 that runs through the vertex or inflection point of the function. These 
graphs are embedded applets developed by the second author. The task also includes a multiple 
selection question about characteristics of tangents (e.g., see Figure 1) and a multiple-choice question 
about the definition (e.g., see Figure 2). Finally, each task includes a prompt for students to submit 
up to two examples and two non-examples to represent their thinking around tangents: “use the 
diagram to submit up to 2 different examples of where the graph of a function, g(x), and a line, f(x), 
have points of tangency.” Students are asked to mark points of tangency. 

 
Figure 1: Characteristic questions about tangency 
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Figure 2: Definition questions about tangency 

Indicators to capture data 

The platform and the embedded applets collect various data on student submissions to build a case 
for where student work falls on the spectrum between synthetic and analytic conception. Intentionally 
developed conditions are used to assess student work for building that case use JavaScript in the 
platform to communicate how students interacted with the embedded applets or selections they made 
within the platform. The applets give students the capacity to enter the expression for a line, as well 
as the expression for the graph of a function, and to mark up to 2 points on each graph and label them 
as points of tangency. All these actions by students in the applet are saved as variables that the applet 
exports to the STEP platform to support automatic assessment. 

Ultimately, the automatic scoring provides information regarding how students’ submissions align 
with characteristics associated with synthetic or analytic conceptions (see Table 1). Aligning 
students’ work characteristics requires evaluating a series of indicators that are flagged as present 
when submissions match a particular characteristic. The more aligned with one conception (synthetic 
or analytic), the more confident the representing score in Table 1 is about the conception they hold.  

Currently, we have only conceptualized the most consistent and univocal cases, further data analysis 
will help us develop a range of outputs in-between. Table 2 displays the extremes of the analysis and 
with which characteristics and submissions we place high confidence in student conception, where 
student work is in complete agreement with the identified conceptions. Deviations from those total 
agreement scenarios result in lower confidence and therefore may identify student work as analytic 
or synthetic, but with less certainty, demonstrating less consistency. However, student work may be 
inconclusive if the work submitted does not match enough of the identified characteristics, or if 
programmed conditions report student work as contradictory.  

The degree of agreement is built into the automatic assessment of student responses within tasks. If 
the student examples show tangent lines only lying on one side of the function, or that the tangent 
intersects (or touches) the graph at only one point, their work will be scored on the synthetic side of 
Table 2. If their non-examples include a line that is mathematically tangent to a graph (e.g., a line is 
tangent and cuts through the graph) that is very strong evidence for the synthetic conception, because 
this shows they do not consider such submissions to count as examples of tangencies, though they 
are. By contrast, if their non-examples are functions and lines that do not share any common points, 
it is harder to assess their conception, we do not know whether the submitted non-examples well 
represent their understanding of what distinguishes examples from non-examples. 
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Table 2: Items evaluated and their alignment to conception scoring buckets 

Prompt:   (analytic) Tangent  (synthetic) Tangent 

Cubic (x^3) 
(Interactive Graph) 

“Yes” and marks (0,0) “No” 

|x| (Interactive Graph) “No” “Yes” and marks (0,0) 

Quadratic shifted 2 
units to the right 
(Interactive Graph) 

“Yes” and marks (2,0) “Yes” and marks (2,0) 

What must be true? 
(Multiple Select) 

“Derivative MUST be same as slope of tangent” 
& “y-values must match at the point of 
tangency” 

“Graph can only be on one side of tangent” 
& “tangent line and graph only coincide at 
one point” 

Definition (Multiple 
Choice) 

y-values of the function & tangent are same & 
derivative of the function and slope of tangent 
line are equal (See Figure 2) 

A function and tangent line touch/coincide 
at one point and do not cross locally (see 
Figure 2) 

Examples (Interactive 
Graph) 

2 examples where there are marked points of 
tangency and the function and line have the same 
y-values and the value of the derivative of the 
function matches the slope of the tangent, and 
there is at least 1 point of tangency where the 
tangent crosses the graph of the function. 

2 examples where points of tangency are 
marked at a point where the graph and the 
line meet and the graph is all on one side 
of the line, and has at least 1 such labeled 
tangent point is where the derivative of the 
function does not have a value.  

Non-examples 
(Interactive Graph) 

2 non-examples where, at least one has the graph 
and the line intersect, but the value of the 
derivative does not match the slope of the line.   

2 non-examples where, in at least one, the 
graph and the line are technically tangent, 
for example at a point of inflection.   

Pilot results 

Our pilot data consists of submissions from 137 undergraduate students who just completed a calculus 
course. When given a choice to select only one choice from 3 definitions (see Row 5 in Table 2), 130 
students answered, 7 students did not respond. Of the 130, 47 chose the analytic response (the first 
choice), 24 chose “a tangent line coincides with the graph of a function at only one point and the 
graph of the function is all on one side of the tangent line,” and 55 chose “points of tangency are 
where the tangent line just skims the graph of the function and touches it only at one point.” That is, 
79 students selected definitions aligned with synthetic conceptions.  

For characteristics (Row 4 in Table 2), students could select any or all of the given items, and 116 
selected “at a point of tangency, the value of the derivative of the function MUST be the same as the 
slope of the tangent line,” 76 selected “at a point where a line is tangent to the graph of a function, 
the y-value[s must be the same],” 73 indicated “a tangent line and the graph of a function MUST 
coincide… at ONLY ONE point,” and 42 indicated the function must be all on one side of the tangent 
line. These multiple choice and multiple select options, alone do not tell us enough about student 
conceptions of tangencies. To know more, we look at specific responses together. 
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Coordinating rows 4 and 5 in Table 2, of those who selected the analytic definition, 9 indicated that 
the function must only be on one side of the tangent line, and 17 said that the tangent and the function 
can only intersect at one point (5 chose both), this disagreement between the analytic definition and 
synthetic characteristics may be caused by students recognizing “derivative” from class discussions, 
but may not have fully developed that analytic conception of tangency yet. This evidence is bolstered 
by the combination of the two synthetic definitions and the large groups of students choosing the 
characteristic that also includes “derivative” in it (47 of the 55 who chose the skimming definition 
and 20 of the 24 who chose the only one intersection definition). Additionally, in utilizing the unique 
automatic assessment and filtering structures of the platform, we find that 20 of the 47 students who 
chose the analytic definition provided at least one example where the tangent line and the derivative 
of the function did not have the same slope at the indicated point of tangency, while only 13 students 
submitted examples that did. The discrepancy suggests students may select the correct definition 
based on contextual conversations in class, those whose responses are in conflict suggest conceptions 
that are still evolving, or their concept image or definition may be too broad. 

Combining students’ submissions across the top five rows of Table 2, of the 137 submissions, 11 
students submitted responses completely consistent with an analytic conception, while 8 students 
submitted responses completely consistent with a synthetic conception. This suggests that in 
determining the scores that include students’ submissions of examples and non-examples it will be 
important not to seek scores that are completely consistent, but instead to determine empirically how 
to provide instructors with scores that are pedagogically useful, while acknowledging that in a multi-
item assessment with many judgment points there can always be errors. 

Conclusion and next steps 
The work we do is centered around both providing students with diverse opportunities to express their 
thinking authentically, and automatic analysis of student submissions that captures more than just 
submitted answers. The variety of prompts, combining different modes of interaction with the 
concepts, have the potential to provide robust evidence for the current understanding of a concept.  

This work shows great promise in pushing the use and implementation of automatic assessment for 
digital tasks and assessments to meaningful learning and consideration of math concepts. By focusing 
on characteristics and an array of student responses, instead of solely emphasizing correct or incorrect 
responses to a single prompt, we illustrate the possibility for identifying additional insight into student 
thinking. We argue that the example eliciting opportunities and the filtering capabilities of the 
platform also provide teachers an effective mechanism to share student submissions (that can be 
anonymized) for class discussions to further the learning opportunities. 

One of our next steps is to use the filters and conditions to provide an output reading to teachers about 
both where students in the whole class are in terms of synthetic or analytic conception of tangency 
and individual student location on that spectrum. We are confident about the extremes of the 
summaries but must next calibrate student data with outputs that are not at one extreme or the other. 
We project that in the end, we can provide teachers a printout that helps them make next instructional 
decisions based on their understanding of students’ conception. We are also at the cusp of piloting a 
similar task to the one described here that focuses on the intersection of a line and the graph of a 
function that may also help us better understand the sorts of data discussed here. 
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The present paper reports on the observation of two students when solving a mathematics problem 
in a visual programming environment, namely Scratch. Attention was given to different types of 
students’ reasoning and how they utilized the computer-generated feedback. Results indicated that 
students’ certain kinds of reasoning when solving a mathematics problem through programming were 
associated with certain ways of using computer-generated feedback.  

Keywords: programming, Scratch, creative mathematics reasoning, utilization of feedback. 

Introduction 
As the inclusion of elements of programming is now more common in mathematics instruction, there 
has been a growing interest in conducting studies investigating the relationship between programming 
and mathematics learning (Moreno-León & Robles, 2016). It has been argued that integrating 
programming into mathematics instruction may help students develop general problem-solving skills 
and enhance their mathematics learning (Feurzeig et al., 2011). However, the circumstances under 
which these promises are fulfilled are unfortunately not well understood. 

A possible way in which the integration of programming may facilitate the learning of mathematics 
is through its potential to foster students’ practice of experimental approaches to solving problems 
(Kaufmann & Stenseth, 2021). When students solve mathematics problems with the help of 
programming, they will receive instant feedback after having executed a sequence of code. If students 
are able to use this feedback to reason on mathematical grounds, it may benefit their learning since 
certain types of mathematical reasoning have been shown to enhance learning (Jonsson et al., 2020).  

The present study focuses on students’ problem-solving in Scratch, a popular visual programming 
environment, and reports on the initial results of investigating different types of reasoning students 
may engage in and the various ways students use feedback generated by Scratch. 

Background 
Programming has been known for a long time as a viable alternative for practicing problem-solving. 
It contains cognitively demanding activities such as preparing problems and debugging codes when 
a program runs unexpectedly (Cui & Ng, 2021). During programming, one can create, observe, and 
modify computational objects and explore the mathematical ideas underlying the objects (Feurzeig 
et al., 2011). Educators, therefore, have identified the potential of programming to enhance students’ 
problem-solving skills in mathematics (e.g., Kaufmann & Stenseth, 2021). 

The use of programming for teaching and learning mathematics got a renaissance after declining 
enthusiasm in the 1990s. One possible reason is that programming is considered a practical way of 
introducing students to computational thinking (Cui & Ng, 2021), which is increasingly recognized 
as an important skill in today’s technology-driven world. In addition, the availability of visual 
programming platforms allows students to program without additional prior syntax instructions 
(Moreno-León & Robles, 2016). One such popular visual programming platform is Scratch, which 
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allows one to create programs through tinkering blocks (Moreno-León & Robles, 2016). Scratch 
provides several representations of mathematical ideas simultaneously, and with appropriate 
mathematical tasks, it has the potential to facilitate students’ engagement in mathematical reasoning 
(see, for example, Herheim & Johnsen-Høines, 2021). 

Lithner (2008) presented a framework that characterizes different types of students’ reasoning. 
Reasoning is defined as “the line of thought adopted to produce assertions and reach conclusions in 
task solving.” According to the framework, the process of solving a task can be structured into four 
non-linear steps: (1) a problematic situation where it is unclear for the individual how to proceed; (2) 
strategy choice, which can be supported by predictive arguments; (3) strategy implementation, which 
can be supported by verificative arguments; and (4) conclusion. Lithner (2008) identified different 
types of students’ reasoning, one notable type of which is creative mathematics reasoning (CMR), 
where students create their own solutions when encountering new problems. CMR is characterized 
by three criteria: (1) novelty, meaning a student creates a new solution method or recreates a forgotten 
method; (2) plausibility, meaning that the student makes arguments supporting the choice of solution 
method; and (3) anchoring, which requires the arguments to be anchored in mathematical properties. 
Reasoning that is not CMR (henceforth referred to as non-CMR) can, for example, be recalling a 
known algorithm, imitating an example, or guessing. There is empirical evidence that practicing 
mathematical problem-solving with CMR tasks leads to better recall of procedures and conceptual 
understanding of mathematics than practicing non-CMR tasks (Jonsson et al., 2020). Lithner (2017) 
added that tasks that can promote CMR should have suitable challenges in terms of creativity (the 
level of ingenuity), conceptual (the understanding of mathematical properties to construct the 
solution), and justification (the difficulty of generating predictive and/or verificative arguments).  

When one attempts to solve tasks in a visual programming environment, one would like to prepare 
and submit specific inputs to the computer. As a result, the computer may generate information that 
can be used as feedback. Such a situation has been studied in dynamic geometry software. In a study 
about students’ problem-solving in GeoGebra, Olsson (2017) adapted Shute’s (2008) features of 
formative feedback to categorize how students use feedback generated by a computer. Shute (2008) 
categorized feedback as verification (to judge whether an answer is correct) or elaboration (providing 
relevant information to guide the learner to obtain the correct answer). In Olsson’s (2017) study, 
feedback from a computer is considered neutral; it is up to the students to choose whether and how 
to use the feedback. They may use it merely to verify whether the submitted input is accurate or to 
elaborate on the feedback to predict the next step in solving mathematics tasks. Furthermore, Olsson 
(2017) also revealed that different types of students’ reasoning are associated with various feedback 
uses. Students who engaged in non-CMR tended to use feedback from the computer only for 
verification, and students who used CMR used the feedback both for verification and elaboration.  

In the present study, Lithner’s (2008) framework of CMR, together with Olsson’s (2017) adoption of 
Shute’s (2008) characterization of the use of feedback, were employed to provide initial insight into 
answers to the following research question: How is students’ reasoning associated with their 
utilization of Scratch-generated feedback? 

Method 
To get data on students’ reasoning and use of feedback during problem-solving with Scratch, a 
problem-solving session where this could be done was arranged. Before the problem-solving session, 
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basic Scratch programming skills were introduced to fifty eighth-grade students at a lower secondary 
school in Indonesia. The students were then offered to participate in the problem-solving session. 
Sixteen students, six males and ten females, divided into eight pairs, voluntarily agreed to participate. 
Permission and informed consent were obtained from both parents and students. There was no 
evidence that participants had previous experience with Scratch, and they had not gotten any special 
training in mathematical reasoning apart from what is common in Indonesian schools. 

The present paper concentrates on one pair, Anna and Jenny (both are pseudonyms), and their efforts 
to draw some polygons and generalize a rule to draw any regular polygon. The pair were chosen since 
they engaged in different types of reasoning, and they used the feedback as verification or elaboration. 

Data collection 

Students were asked to solve a mathematics problem in Scratch. The problem requires students to 
draw three regular polygons and find a rule that can help them draw any regular polygon in Scratch 
(Figure 1). Parts of the problem can also be found in similar studies on problem-solving through 
LOGO or Scratch (see, for example, Herheim & Johnsen-Høines, 2021).  

Solve the problem using Scratch!    

1. Create a program that allows the cat to draw three of the following eight shapes! 

- Equilateral triangle - Regular heptagon 

- Square - Regular octagon 

- Regular pentagon - Regular nonagon 

- Regular hexagon - Regular decagon 

2. Construct a rule/formula that can help you draw a regular polygon in Scratch!    

3. Use the formula to draw another regular polygon. Write the formula on paper, and make sure you and your 

group mates agree with the formula you made! 

Figure 1: The problem 

The problem was chosen for its potential to elicit students’ CMR and allow them to apply CMR to 
find its solutions. The first subproblem asked students to draw regular polygons. In Scratch, 
the main programmable entity, sprite, defaults to a cat. One can program it by dragging and dropping 
the available blocks into the script area. Drawing a geometrical shape in Scratch can be done by 
utilizing pen blocks and programming the sprite to move in specific ways; the trace of 
the sprite’s movement results in a geometrical shape. For example, to draw a square, one can program 
the cat to put the pen down and repeat a stack of moving and turning 90-degree blocks four times. 
The second subproblem invites students to find the total turtle trip theorem (Papert, 1972), namely 
that the sum of the total exterior angle in any regular polygon is 360°. The problem, therefore, has 
desirable challenges for CMR tasks (Lithner, 2017): students can solve the problem step-by-step 
rather than relying on a single, far-fetched trick (suitable creativity challenge), and they can utilize 
their existing knowledge of mathematical properties such as distance, angle, and shape, and produce 
arguments based on this prior knowledge (suitable creativity and justification challenges). 
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The web version of Scratch was used in this study, and students had a maximum of two hours to solve 
the problem. Students worked in pairs to solve the problem outside of their regular classroom. 
Students could stop anytime they wanted. The author stayed in the room to provide support if needed. 
However, since the association between students’ reasoning and the use of computer-generated 
feedback is the focus of this study, the author’s intervention was kept to a minimum. When the 
students got stuck, the author did not immediately provide a response that led to a particular solution. 
Instead, students were encouraged to explain their actions so far and what actions they wanted to take 
to continue solving the problems. The students’ conversations and computer screens were recorded 
during the problem-solving, and their work off-screen was also noted. 
Data analysis 
The data analysis started by transcribing the students’ conversations and screen recordings into 
written text and then importing them into the software Atlas.ti. The analysis focused on the moments 
before students executed the code blocks and what they did after Scratch subsequently displayed the 
resulting output on the screen. Lithner’s (2008) framework was then used to structure the data. 
Students’ activities, including working away from the computer, selecting and dragging the blocks 
into the scripts area, modifying the values of certain blocks, and triggering an event to execute the 
blocks, were considered either as students’ strategy choice (SC) or strategy implementation (SI). 
Students’ arguments during both SC and SI were then identified and later used to categorize whether 
the students’ reasoning was CMR or non-CMR. The reasoning is CMR if there is a sign that the 
students’ argumentation was anchored in mathematical properties, even if the sign of anchoring is 
vague. This includes natural phrases indicating that students tried to relate various mathematical 
properties in the Scratch environment, such as “it is wider” and “why are there more?”. In contrast, 
the reasoning is non-CMR if any of the requirements are not met.  

Furthermore, students’ use of feedback from Scratch was analyzed following Olsson’s (2017) 
adaptation of Shute’s (2008) characterization of feedback, focusing on the moment students receive 
feedback from the computer after executing the blocks. The use of feedback was categorized as 
verification when students merely used the feedback to justify whether their solution method was 
correct. In contrast, the use of feedback for elaboration was indicated by students using the output to 
extend previous ideas and plan how to proceed with the next step of solving the problem. 

To answer the research question, the pair’s reasoning (CMR or non-CMR) before executing the code 
was linked to their use of Scratch-generated feedback (for verification and/or elaboration).  
Results 
Anna and Jenny solved the first subproblem by drawing a square, an equilateral triangle, a regular 
hexagon, and a regular pentagon. In the second subproblem, they generalized that the number of sides 
of a regular polygon is inversely proportional to the rotation angle of the sprite. In this section, two 
episodes illustrate different types of reasoning and their association with different kinds of use of 
feedback. The first depicts the pair’s non-CMR reasoning and their use of feedback as mere 
verification when drawing a regular hexagon. The second shows the pair engaging in CMR and using 
feedback as both verification and elaboration when drawing a regular pentagon.    
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Drawing a hexagon 

Anna and Jenny’s initial approach to solve the first subproblem was to create a sequence of pen down, 
move, turn, and wait blocks, then assign various values to the degree of the turn block. With this 
approach, they successfully drew a square and an equilateral triangle. Next, they started to draw a 
regular hexagon with a similar approach. The following excerpt shows their discussion after trying 
some values for the turning angle to draw a regular hexagon.  

1.  Anna: Just [choose] 30 (changing the turning angle to 30, then executing the blocks) 
After executing the blocks, the pair realized that the blocks did not result in the intended hexagon. 

2. Anna: How much do you mean? [it] means 30, not 50; it means 60 (resetting sprite’s 
position) 

3. Jenny: But it looks like, (inputting 60 as the turning angle, executing the blocks) 
Anna and Jenny got a correct regular hexagon by choosing 60 as the turning angle, but they did not 
realize the drawing was correct. Instead, Anna thought that they had just drawn a pentagon.  

4. Anna: Look, it is five sides again.  
5. Jenny: One, two, three (counting the sides). It is six sides!   
6. Anna: But the line does not meet. Look! If I remove the cat (removing the sprite that 

covers the hexagon) 
7. Jenny: Ah (clapping and laughing after realizing that they drew a regular hexagon)  

The excerpt shows that the pair developed their own strategy to draw a regular hexagon, meaning the 
students’ reasoning meets the novel criteria. However, there was no articulated argumentation of how 
the value they input would produce a correct hexagon, which means that the second and third criteria 
of CMR were absent. Therefore, students’ reasoning in this stage is considered non-CMR.  
In line 2, the pair made no visible attempt to understand why inputting 30 as the turning angle did not 
produce a regular hexagon. There was also no articulation that they used the result of their previous 
attempts to consider 60 as the following value for the turning angle. Lines 3-7 show that when 
choosing 60 as the turning angle, the group did not expect the blocks to produce the correct hexagon. 
This shows how Anna and Jenny only used the feedback generated by Scratch to verify their strategy 
without further elaboration.  
In summary, Anna and Jenny did not use CMR, and their use of feedback was only for verification. 
The excerpts also showed that the pair’s reasoning after using the feedback remained non-CMR.  

Drawing a pentagon 
After finishing drawing a square, an equilateral triangle, and a regular hexagon, Anna and Jenny 
attempted to solve the second subproblem: constructing a rule that may help them draw any regular 
polygon. However, they got stuck and later decided to continue working by drawing a regular 
pentagon. Initially, they used a similar approach as when they drew other polygons, that is, by trying 
different values for the turning angle of the sprite. During these attempts, the pair showed signs of 
their efforts to connect the value they input in the turning block with the shape produced by the sprite. 
Below is an excerpt from after Anna and Jenny had tried 70 and then 75 as the turning angle.   

8. Anna: Why isn’t it the same? Wait, 75 was bigger. So, 65. 
They tried 65 and 80 as the turning angles, and Anna further reflected on their work.  

9. Anna:  How was it? I don't know... 70 was actually correct, almost there. If it’s 
almost correct, just add 3, not up to 5, [or] 10.  
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The pair continued working by trying 70, 73, 75, 74, and 68 as the turning angle. At one point, the 
author encouraged them to look at the codes they had created and asked if they could find something 
to help them determine the correct angle for the regular pentagon. Anna listed each value of the repeat, 
move, and turn blocks on paper, paying attention to the values of the repeat and turn blocks in the 
code used to draw the square, the equilateral triangle, and the hexagon (see Table 1).  

Table 1: List of values of repeat, move, and turn blocks made by Anna and Jenny 

 Equilateral triangle Square Hexagon 

Repeat 3 4 6 

Move 200 200 100 

Turn 120 90 60 

10. Anna: Six, five, four, three. Imagine if there is a pentagon, imagine six, five, four, 
three [are] the turn; each move is 200. It should be 75; (mentioning values in 
order) 60, 75, 90, 120.” 

The pair were likely to see a pattern in the table. Realizing that the pentagon has five sides (between 
the number of sides of the square and the hexagon), Anna and Jenny predicted that the turning angle 
should be between 90 and 60. They used this prediction and stated that 75, which sits in the middle 
of 90 and 60, should be the correct value. However, they did not choose 75 for the next attempt since 
they had already tried it, and it did not produce the correct pentagon. They then decided to retry 
inputting 73, which had been tested in their previous attempt and resulted in a “very small difference.” 

11. Jenny: 73? 
12. Anna: We have tried 73. It was, the difference [of] 73 is really small. [It’s] not like 

this (pointing to the screen that shows the result of choosing 68 as the angle) 
They tried 73 as the turning angle and realized the resulting shape was “too much.” 

13. Anna: It means too much. Then, it should be 72.5. 
14. Jenny: 72 
15. Anna: We have tried 72 
16. Jenny: No, we haven’t  

The pair then input 72 as the turning angle and got the correct pentagon. 
Anna and Jenny’s reasoning is novel since they developed their strategy, and it is based on predictive 
arguments that, to some extent, are anchored in the properties of the exterior angle of a polygon. They 
expressed their anchoring using natural language, as shown in lines 8, 9, 12, and 13. Furthermore, the 
sum of the exterior angles of a polygon is always 360°, implying an inverse proportion of the number 
of sides of a regular polygon to its exterior angle. Anna’s argument in line 10 indicates an anchoring 
to this property. Thus, students’ reasoning in this episode is classified as CMR. 
The pair used the feedback from Scratch as verification and found that inputting 73 did not produce 
the correct pentagon. They then started elaborating on the feedback by comparing the result with 
their previous attempts using various angles. In the earlier attempts, they found that 70 almost 
produced the correct pentagon, and later, they used it as a reference value by conducting trial and 
error with values around it. Since inputting 73 resulting a pentagon with “too much” turn, they were 
likely to try finding a value between 70 and 73, which led them to successfully draw a regular 
pentagon by choosing 72 as the turning angle. 
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Anna and Jenny, in this episode, used CMR, and their use of feedback was both for verification and 
elaboration. The CMR was shown to be maintained after students used the feedback for elaboration.  

Concluding Discussion 
The results of the present article show that programming in Scratch provides an environment that 
allows students to experiment with their mathematics ideas when solving a mathematics problem, 
reinforcing the conclusion drawn from previous studies (e.g., Herheim & Johnsen-Høines, 2021). 
Anna and Jenny used Scratch to ignite their reasoning by creating and modifying computational 
objects that suit the requirements of the problem. The reasoning students developed did not 
necessarily require them to reflect on mathematics ideas underlying the computational objects. 
Instead, they sometimes used a trial-and-error approach in their problem-solving. With this approach, 
students merely used the feedback generated by Scratch to verify their solution method, and 
elaboration on the feedback was absent. This finding resonates with the previous study in the 
GeoGebra environment (Olsson, 2017), which found that students tended not to elaborate on the 
feedback when they did not articulate any predictive or verificative argumentation.   

With the trial-and-error approach, Anna and Jenny successfully drew an equilateral triangle, a square, 
and a regular hexagon. However, creating a regular pentagon in Scratch requires more effort from 
these students. To some extent, determining the turning angle for an equilateral triangle, a square, 
and a regular hexagon is more intuitive than for a regular pentagon, likely because their exterior 
angles are multiples of ten. This can also be explained by referring to Herheim & Johnsen-Høines 
(2021), who also involved students drawing a pentagon in Scratch in their study. The study indicated 
that drawing a pentagon invites students to engage in productive struggle. Solving through trial and 
error in Scratch is insufficient to find the correct external angle for the regular pentagon, and more 
in-depth reasoning is required to get 72° as the exact turning of the sprite. When drawing the regular 
pentagon, Anna and Jenny used CMR several times to decide what value of the turning angle they 
should input in their next attempt. The anchoring aspect in their arguments was either clear (as shown 
in line 10) or vague (i.e., indicated by natural language such as “small” and “too much” in lines 12 
and 13). The students’ CMR was followed by interpreting the feedback generated by Scratch and then 
using the interpretation to plan their next attempt to solve the problem. This finding supports Olsson’s 
(2017) study of students’ problem-solving in a different digital environment, which showed that 
students who engage in the CMR were more prepared to interpret and elaborate on the feedback 
generated by the computer.  

When adopting Shute’s (2008) framework, Olsson (2017, p.718) described a unique feature of 
feedback generated by computers as “being implicit,” without any explicit purpose to give students 
information on how to proceed. The absence of explicit guidance implies that elaborating on Scratch-
generated feedback entails attempts to understand mathematical ideas underlying the computational 
objects to obtain what Shute (2008, p.158) described as “relevant cues” toward a correct solution. 
Meanwhile, one of CMR’s criteria is anchoring in mathematical properties, and engaging in CMR 
means that one needs to fasten arguments in data of mathematical objects, transformations, or 
concepts (see Lithner, 2008, p.261). This can help explain the association of CMR and the elaborative 
use of feedback: CMR triggers students to make efforts to comprehend mathematical ideas among 
different representations in Scratch; thus, they tend to use feedback elaboratively. 
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To sum up, this article provides insight into how different types of students’ reasoning are associated 
with how students utilize computer-generated feedback in Scratch. Further studies could be 
conducted to investigate various conditions that might realize the proposed benefits of the inclusion 
of programming in teaching and learning mathematics. This includes its potential to foster 
computational thinking skills among students, which seems to be a growing demand internationally.  
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Elementary, Euclidean geometry has been traditionally the context to learn, to practice and to foster 

mathematics reasoning in the classroom, through the formulation, verification and understanding of 

challenging geometric statements. In this regard, locus computation seems to provide a quite suitable 

source of interesting problems in the context of a human/machine collaboration for learning through 

addressing geometric problems. Some explicit examples of the cooperation of Dynamic Geometry 

Software (DGS) with students addressing locus computation tasks are described in El-Demerdash et 

al. (2019), or in Ferrarrello et al. (2017). On the other hand, subsection 4.3, or section 5, in Leung et 

al. (2023), describe situations that implicitly involve locus computation with DGS (e.g. “…(T) Let 

ABCD be a quadrilateral such that each pair of interior opposite angles add up to 180◦.  Find a way 

to prove that ABCD must be a cyclic quadrilateral.”, an exploration that could be also described as 

the search for the locus of D when ABCD have supplementary opposite angles). 

The large accessibility and popularization of algorithmic tools for automatically dealing with 

elementary geometry statements, such as those implemented in GeoGebra Discovery1  (Kovács et al., 

2022), also related to Artificial Intelligence (A.I.) bots (Botana & Recio, 2024), makes it necessary 

to reconsider the conventional approach to this topic, as already remarked by Carvalho (2024), Hanna 

& Yan (2021), or Hanna et al. (2023).  GeoGebra Discovery is an app, web page and application, 

freely available at smartphones, tablets and computers, that is able a) to automatically obtain the 

equation and to display the graph of a proposed geometric locus, b) to confirm or deny, with 

mathematical rigor, the truth of a geometric assumption formulated by the user, c) to mechanically 

discover and output large collections of geometric properties holding on a given figure. 

In this context, the main goal of this poster is to highlight/provide arguments and examples to revisit 

the traditional educational protocol on the cooperation DGS/students for locus computation: “locus 

construction/conjecturing/confirming or denying by dragging/” in view of the current performance of 

GeoGebra Discovery. Let us notice that in the standard protocol, as described above, the first two 

steps are to be accomplished by the student, with the concourse of the machine, by dragging the figure 

in the DGS; while the final step, confirming/denying the formal correctness of the locus equation 

conjectured by the user, is considered as a human-only part of the task. 

From our perspective, using GeoGebra’s automated reasoning tools, this strict separation of the roles 

of machines and humans along the different steps for locus computation, needs to be overcome.  Thus, 

in the new setting, the DGS can also provide conjectures. Moreover, once human intelligence has 

 

1 https://kovzol.github.io/geogebra-discovery/  
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accepted/formulated a certain conjecture about the nature of the computed/displayed locus, GeoGebra 

can also contribute to verify its correctness. And, if the answer is negative, the loop: 

“experimentation/conjecturing/verification”, should have to be launched again, involving in each step 

human/machine cooperation.  

In this poster we will illustrate this new protocol through of a few examples from the above-

mentioned references, that would allow us to highlight some comparisons between the previous, and 

our current, proposals. 
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Math trails  
Math trail is an engaging group outdoor activity for students and also for the general public. Math 

trails can be enacted using the free MathCityMap application. It allows mobile devices to display 

maps, task assignments and photos of objects related to the task. Trail participants solve a series of 

mathematical tasks related to real-world objects (Ludwig, Jablonski, 2019). They collaborate, 

communicate, use different measurement tools, and look for the best strategies to solve given tasks. 

Users get instant feedback as they enter their solution. Math trails increase interest in mathematics 

(Gurjanow, Zender, Ludwig, 2020) and based on the task included in the trails students can see how 

is mathematics related to the objects around them and therefore see use of mathematics in real-life. 

Intervention programme 
The main aim of the intervention programmes is to develop various competences, e.g. scientific 

thinking or metacognitive knowledge. In the process of intervention, the experience and inquiry are 

used. The aim is to use a variety of activities that are reasonably structured to reinforce social and 

communication skills and promote students' resilience to overexertion (Braun et al., 2014). Students 

need to be sufficiently motivated and therefore the student-oriented activities should be involved.  

At the Faculty of Natural Sciences and Informatics Constantine the Philosopher University in Nitra 

the intervention programme in science and mathematics have been designed and piloted since 2022. 

The programme has been created based on design-research principles. The first round of the program 

was implemented in the school year 2022/23, the second in 2023/24 and the final round will be 

conducted in 2024/25. There are two student groups involved in the programme, the group for primary 

(grades 2-5) and for secondary (grades 6-9) students.  

The programme is implemented in the form of weekly 60-minutes sessions that are led by the main 

teacher following the whole programme and one or two co-teachers, experts in various fields of 

mathematics and science, i.e. physics (introductory physics, material physics, astronomy), biology 

(genetics, botany), geography (pedology), computer science (hardware, computational thinking), and 

mathematics (functions, geometry, fractions, combinatorics and probability). Each topic is developed 

during two to four consecutive sessions.  

Inclusion of math trails in the programme 
During solving the problems in math trail students need to distribute the work in the groups, 

collaborate in measuring and solving of the mathematical problems. So, math trails offer affordances 

in developing the soft skills of the involved students and therefore we decided to include the math 

trails in the intervention programme as a mean to develop 21st century skills, including 

communication, collaboration and social skills. The trails were included in two mathematical topics 

(combinatorics and fractions) and in introductory physics.  
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Combinatorics 
The combinatorics trails include tasks with different implicit combinatorial model, i.e. selection, 

distribution, partition (Batanero et al., 1997). The tasks in primary and secondary trails mostly use 

the same objects and their difficulty is based on the dimension of the task, e.g. primary-school 

students look for all the possibilities how to arrange 3 while secondary-school students how to arrange 

5 friends on the same bench.  

Fractions 
In the task focused on fractions the tasks were aimed to work with various interpretation of part-

whole relation. There were tasks to find the whole when the fraction and the part were given; to find 

the part when whole and fraction were given; and to find the fraction when the part and whole were 

given. The tasks were aimed not only at the amount of objects, but tasks where the fraction-as-the-

operator (enlarge the number of seats by one third) were included (Švecová et al., 2022).   

Interdisciplinary trail in math and physics 
The interdisciplinary trail was focused on measure, as the content common for both, math and 

physics. The main focus was on measuring time and length. While primary students stopped in this 

phase, secondary students used the obtained data to calculate volume, density and speed. 
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Introduction 
For approximately two decades researchers have explored the opportunities of augmented reality for 

mathematics education (Bulut & Borromeo, 2023). There are various forms of augmented reality, 

each involving a blend of real-world objects with digital visualizations. Augmented reality has the 

potential to bridge the gap between real-world phenomena and mathematical representations (Swidan 

et al., 2023).  

At the Freudenthal Institute, we explore the Augmented Reality Sandbox (AR Sandbox), which 

originated at UC Davis, as a learning environment. The AR Sandbox consists of a sandbox with a 

stereo camera and a projector mounted above. The stereo camera generates a digital 3-dimensional 

representation of the sandscape2 or any other object present in the sandbox. The projector then 

projects suitable images onto the sandscape or object, like height lines, height colors, or flowing water 

(see Figure 1). This setup allows students to manipulate real-world objects, with added mathematical 

information that updates in real time.  

 

Figure 1. A disc in the AR Sandbox with projected height lines   

In a previous study (Bos et al., 2022), we investigated how a student makes sense of the parameters 

!, # and $ in a plane equation % = !	( + #	( + $, and the corresponding gradient vector (!, #), 
building on sensorimotor experiences in the AR Sandbox as an embodied learning environment.  For 

 

2 This beautiful neologism means the landscape formed by the sand in the sandbox. 
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example, by rolling a ball down the circular plane in various positions, one can discover that the 

steepest way down (i.e. the direction opposite of the gradient) is always perpendicular to the height 

lines. An essential part of the learning trajectory is to connect intentional motions (actions) to 

mathematical constructs, like connecting a rotation of the plane—while keeping the height lines 

parallel to a side of the sandbox—to the parameter ! or # in the equation. The first stage of embodied 

design is to develop a degree of fluency in such motor skills; in the next, perceptions that facilitate 

the execution of these actions are developed into mathematical constructs. While our case student 

showed progress in making sense of the plane equation and the gradient, the visual projection of 

coordinate systems and symbols was not facilitated within the AR Sandbox as a learning 

environment, and here we find our next challenge. 

Current study 
As the AR Sandbox was initially developed for geography demonstrations, the software mostly 

allowed projecting “landscape information”. To show more mathematical information, we are 

developing new features. These features include projecting a coordinate system; when a stick is 

positioned in the sandbox, projecting a vector presentation associated with this stick as a line; when 

a plastic plane is positioned in the sandbox, projecting an equation or a vector presentation associated 

with it. While in our initial design students switched from AR Sandbox to paper and pen as soon as 

the symbolic presentations of the plane and the gradient were addressed, these improvements should 

enrich the AR Sandbox as a learning environment to facilitate further investigations of the connection 

between directed actions and symbolic notations, like plane rotations and translations, and parameters 

in the plane equation % = !	( + #	, + $. 

The embodied learning environment we are developing allows for a unique situation consisting of 
real-world tactile objects augmented with projected real-time digital mathematical feedback of 
symbolic and non-symbolic nature. We aim to contribute to the questions of what opportunities 
such an environment has for teaching calculus and geometry, and how students’ learning is affected 
by working in such an environment. Our poster will show our initial designs and preliminary results 
of pilot studies.  
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Introduction 
In many countries, mathematics has been given a particular responsibility for students’ knowledge 

and skills in programming. In Norway, the curriculum in mathematics provides a set of competence 

aims for each grade level, and one of these, the last one in each grade, is clearly connected to 

programming. Additionally, the curriculum includes a set of core elements, similar to the 

mathematical competencies proposed by the Danish KOM-project (Niss & Højgaard, 2019). The core 

elements specify what should be most important in the subject (Smestad, 2018), including 

competencies such as exploration and problem solving, modelling, reasoning, representation, 

generalization and abstraction. Despite the name “core elements”, most teachers seem to focus their 

teaching on subject matter. Some may find subject matter more important, while others find it difficult 

to teach the core elements. Hence, when I recently challenged a group of in-service teachers in 

primary education to design, plan and test a teaching session where programming was to be used to 

promote mathematical reasoning competence, all the teachers prepared teaching sessions with other 

goals, focusing on subject matter, and not on reasoning.  

Theoretical framework 
This study utilizes Chevallard’s (2006) framework of how knowledge is transposed between different 

instances of the educational system (Kilhamn et al. 2022). Chevallard’s (2006) notion of praxeology 

describes how human doing, including the didactics of mathematics, can be categorized into “two 

main, interrelated components” described as (1) praxis, meaning “what people do, and how they do 

it” and (2) logos meaning “what they think, and how they do so”. The idea in the current study is that 

“depending on the relation between praxis and logos, a task can induce quite different kinds of 

learning” (Kilhamn et al. 2022). When I challenged the in-service teachers to create a teaching plan 

focusing on mathematical reasoning, reasoning was “my” logos, but I soon realized that my logos 

was different from the teachers’. Their logos was subject matter, and in particular multiplication as 

repeated addition. Rather than initiating a (potentially endless) discussion on which logos are better, 

we decided to investigate if we can “do it all”: develop teaching sessions that uses programming to 
teach subject matter in a way that also promotes development of mathematical competencies.  

Demonstration and results 
One group of teachers had created a teaching session centered around an algorithm that would 

“program” a student to draw a rectangle of crosses on the floor corresponding to the multiplication 

problem 3 ⋅ 4 (Algorithm 1). This was their praxis, and multiplication as repeated addition was their 

logos. What can we do to facilitate mathematical competence development as well?  
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As a starting point, we can investigate how the algorithm change if we want to create a new rectangle, 

say a 5 ⋅ 2 instead of 3 ⋅ 4. This requires extensive changes, showing that the algorithm generalizes 

poorly. To create a general algorithm for this problem, a main challenge is the alternating turning 

between left and right in each line. Instead of trying to overcome this challenge at once, we can utilize 

a mathematical problem-solving technique: “try to solve first some related problem” (Polya, 2004, p. 

114), and first formulate an algorithm to draw a line of ! ⋅ # crosses (Algorithm 2), where we visualize 

the grouping by adding a separator (a vertical line) between the crosses. This makes the algorithms 

significantly simplified, and it now generalizes well for an ! ⋅ #	rectangle.  

Similarly, changing representation from the freely defined 2D space (the floor, a blank sheet of paper, 

etc.), to the well-known structure of a lined sheet of paper or text-based programming where the 

operator line break is well defined, can help create a general algorithm (Algorithm 3).  

Furthermore, reasoning competence can be promoted by letting students explain what an algorithm 

will do and what will happen if a variable is changed, as well as proving that an algorithm works/fails.  

Conclusion 
This study illustrates how tasks and teaching sessions can change when we change our logos. By 

changing our logos to include mathematical competencies, we can be successful in utilizing 

programming activities to promote mathematical competence development and at the same time teach 

subject matter. 
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Algorithm 1: Original algorithm developed by the teachers  
Go 4 steps forward (and draw a cross), Turn left 
Go 1 step forward (and draw a cross), Turn left 
Go 3 steps forward (and draw a cross), Turn right 
Go 1 step forward (and draw a cross), Turn right 
Go 3 steps forward (and draw a cross) 

 

Algorithm 2: Problem solving technique to simplify the problem  
Repeat a times: 
     Go b steps forward (and draw a cross) 
     Draw a vertical line 

 

Algorithm 3: Change representation, lined sheet/text programming 
Repeat a times: 
     Draw b crosses 
     Make a line break 

x x x x 
x x x x 
x x x x 
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Context  
This research is part of an ongoing project aiming at evaluating the contribution of Calcularis3, an 

online adaptive computer-based program, to teaching and learning basic arithmetic skills (number 

concept and calculation) at primary school. Previous research (Rauscher et al., 2016; Gardes et al., 

2022) shows positive effects of the use of Calcularis on students’ development of spatial 

representation of numbers and mental calculation. Calcularis also embeds a learning analytics 

dashboard (LAD) providing information about students’ behavior and learning, based on collected 

data such as students’ connection time, learning time, tasks worked out, and provided answers. 

However, Calcularis being designed for an individual use mostly by students with mathematics 

learning disabilities, the LAD turned out not to be fully adapted for a classroom use. For this reason, 

a new LAD is being designed, drawing on the concepts of usefulness, usability and acceptability.  

Usefulness, usability and acceptability of a digital tool 
Tricot et al. (2003) highlight three different, though interrelated, dimensions that need to be 

considered when evaluating a digital tool: usefulness, i.e., a possibility to achieve the goal for which 

it has been designed, usability, i.e., ease of its manipulation, its user-friendliness, and acceptability, 

i.e., the decision to use it. Clearly, perceptions of usefulness and usability of a tool affect its 

acceptability, but the latter is also sensitive to factors such as culture, values, motivations, or practices 

in which it will be integrated. These dimensions guide the design of the new LAD in Calcularis.   

Calcularis dashboard – design choices 
Our aim is to design LAD that is useful, usable, and acceptable for the primary school teachers. For 

the sake of space limitation, we only focus on the usefulness (the poster will document design choices 

underpinned by all three dimensions).  

We consider that an LAD is useful for teachers when it allows monitoring the class and each student 

without overloading teachers and supports their decision making. To this end, the LAD should detect 

students struggling at the behavior and the cognitive levels. At the level of the behavior, collected 

data allow detecting students with unusual behavior, either compared to their own previous behavior, 

or compared to students’ average. It has been decided to call for teacher’s attention when a student 

shows too many short sessions (less than 5 minutes, a full session lasting 20 minutes), low 

productivity (too few answers provided) or too many incorrect answers compared to either the 

individual value or the general reference value. In either of these cases, the teacher will be warned by 

a message such as “Need support in Activity, 5 out of 17 learners” (Figure 1, upper left). At the 

 

3 https://www.mathetmots.com/eu-en/calcularis  
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cognitive level, a student is detected as struggling when she is not progressing anymore. This can be 

detected thanks to the personalized learning path computed by the application. When a student fails 

in solving a task, let us say T, related to a given skill, the application provides her with another tasks 

in which pre-requisite skills are trained. When these tasks are successfully solved, the task T is 

proposed again. When the student fails solving it three times and remains in a loop, teacher’s 

intervention is crucial. Therefore, a message such as “Need support in Progress, 3 out of 17 learners” 

is displayed calling attention to students falling in loops (Figure 1, upper right). 

 

Figure 1. Sreenshot of the Calcularis learning analytics dashboard 

Pilot experimentation of Calcularis with the new LAD will be carried out from March to June 2024 

in two primary schools in Switzerland. Preliminary results will be presented at the conference.  
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Our study fits within the strand of research linking large-scale assessments and mathematics 

education. In particular, our research is based on the use, in teacher professional development courses, 

of a online database, Gestinv and on the ways in which its informed use can contribute to increasing 

the mathematics specialized knowledge of teachers and future teachers. The main outcome of the 

research is the design of a model for teacher professional development. 

The Gestinv database contains all the data from the Italian INVALSI large-scale assessments. In 

details, Gestinv includes items administered in INVALSI standardized assessments assembly 

together with results, comments, educational insights, metadata, statistics and analysis. Regarding the 

mathematical area, the database, to date, contains 1469 mathematics items from the INVALSI surveys 

conducted from 2008 to the present. Within the database, for each survey there is a PDF of the 

complete test and each item is accompanied by detailed results, statistical data, and classifications 

into different categories. Referring to each item there is the figure of the question, the content area, 

the process, the reference to the National Guidelines, some key words characterizing the content 

involved, the text of the question, the correct answer or the figure of the correct answer, the national 

response rates and other statistical data. The ways in which the database can be used are manifold. 

By entering in the mathematics section, it is possible to search by National Guidelines, by keyword 

(there are about 200 keywords that identify the main content for each item), by full-text (it is possible 

to do a full-text search of all questions, processes, keywords) and by “guided search” (it is possible 

to do a cross-search, with connectors and/or, of all parameters in reference to each item and other 

characteristics, such as national response rates). Up to now are currently enrolled 410631 pre-service 

and in-service teacher.  

 Research shows how the use of Gestinv can help increase specialized knowledge for teaching 

mathematics (i.e. Ferretti, Martignone & Viola, 2023); starting the main literature findings, a 

professional development model for teachers and prospective teachers, based on informed use of the 

database, has been designed and implemented. What also guided the design of the teacher 

professional development model is the analysis of the responses to a questionnaire designed to 

investigate training needs in this area. To date, 150 teachers and prospective teachers of mathematics 

from all school grades have responded to the questionnaire. 

The teachers’ professional development model with the use of Gestinv 
The macro-phenomena highlighted and quantified by INVALSI test results - that are relevant from 

an educational perspective - which can also be observed by teachers, and related to their own 
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classroom experience. Our model, which is developed from the studies of Ferretti, Gambini and Santi 

(2019) uses the Gestinv database within a Jaworski’s Community of Inquiry (Jaworski, 2006). The 

focus underpinning the design of our model concern the influence that the informed use of Gestinv 

can have on mathematics teachers’ expert knowledge by critically reflecting on the complexity of 

standardized assessments with the support of research findings in mathematics education. The 

theoretical framework by which we frame the specialized knowledge of teachers and prospective 

teachers of mathematics is the Mathematics Teacher Specialized Knowledge model of Carrillo-Yañez 

and colleagues (2018). During the training activities, teachers can question and confront each other, 

discussing mathematical content and it is teaching vertically in different school grades, assessment 

methods and results, teaching strategies and methodologies, cognitive processes, and student errors 

and difficulties. In developing our model, we adopt an evolutionary approach that stimulates teachers 

and educators to a deeper awareness of their own actions, motivations and goals. The practices were 

designed in order to improve and complement teachers’ awareness of both subdomains of the MTSK 

model.  

This model is the core of the design for the research activities of the Project “Mathematics 

standardized assessment as tool for teachers’ professional development”, that won the PRIN 2022, 

funded by the European Union and the Italian Ministry of Education and University and it is currently 

the subject of two research-training tracks carried out within the activities of the Ferrara Mathematics 

PLS. 
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Introduction and rationale 
In today’s rapidly evolving world, the emphasis on rote knowledge has shifted towards cultivating 

competencies such as independent and critical thinking, creativity, and adaptability. Moreover, the 

potential of standardized tests to assess and promote students’ mathematical learning is extensively 

recognized. However, teaching is inherently intertwined with culture, and its complexity extends also 

to mathematics education, which varies significantly from one country to another. International 

comparisons of mathematics education may shed light on these differences and provide insights into 

how to enhance mathematics achievement globally (e.g., Sacristan et al., 2023). With these 

motivations, we have developed a project which embarks on a comparative analysis of school 

systems, traditions, and cultures in Italy and Portugal, with a particular focus on teaching mathematics 

and improving students’ mathematical learning, especially through technology. In particular, to ignite 

discussions on enhancing students’ mathematical learning experiences, and by analysing our data, we 

endeavour to identify guidelines that harness the potential of technology to enhance mathematics 

education through standardized assessment. At its core, this research delves into the perspectives and 

beliefs of teachers regarding assessment in mathematics education. Drawing upon selected items from 

standardized tests, our study aims to elucidate how standardized assessment data can serve as 

effective tools to enhance teaching and learning processes. In this work, we present early findings 

from this comparative study focusing on standardized assessment and the impact of cultural, 

educational, and technological factors on students’ difficulties. 

Elements of comparative studies and theoretical framework  
Comparative analysis allows researchers to estimate theory generalizability and understand the 

complexity of reality by comparing interpretations of different cases (Jablonka et al., 2018). This 

approach offers a nuanced understanding of educational phenomena beyond traditional case studies. 

In our study, special emphasis was placed on document analysis, providing a comprehensive 

description of the process and detailing the types of documents that proved beneficial in augmenting 

the research data. Document analysis involves systematically reviewing documents to elicit meaning 

and develop empirical knowledge. It is often used in qualitative research, particularly in mixed-

methods studies and qualitative case studies. Documents serve multiple purposes in research, 

including providing context, suggesting research questions, offering supplementary data, tracking 

change, and verifying findings. In our study, materials from Eurydice and national education ministry 

websites provided crucial background information. Descriptions of national curriculum guidelines in 

Italy and Portugal highlighted unique educational contexts. Overall, document analysis 

complemented our study, supporting theory-building and enhancing our understanding of the research 
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context. The study is also framed by research results concerning the role of errors in mathematics 

teaching and learning: confronting difficult problems and learning from mistakes is essential for 

knowledge development and recognizing the types of errors students make is crucial for targeted 

teaching strategies (Gagatsis & Kyriakides, 2000). 

Research questions and methods 
This study aims to investigate two critical questions regarding the influence of cultural, educational, 

and technological factors on standardized test performance. Firstly, we seek to determine whether 

varied cultural and educational backgrounds, coupled with enhanced technology literacy among both 

students and teachers, can lead to improved outcomes in standardized testing. Secondly, we aim to 

explore how teachers’ beliefs and educational choices impact students’ problem-solving abilities, as 

they can be elicited by standardized tests. By addressing these questions, we aim to contribute to a 

deeper understanding of how cultural, educational, and technological factors intersect to shape 

student achievement in mathematics education. Methodologically, the research employs a 

combination of literature review, document analysis, and data collection (students’ protocols and a 

survey for teachers). To collect our data, we developed and implemented across multiple classrooms 

in Italy and Portugal, a research tool to investigate 10th-grade students’ responses to standardised tests 

and discern their mathematics teachers’ perceptions of test difficulty and student errors.  

Results and discussion 
Preliminary qualitative analysis reveals insights into the needs of students and teachers, and explores 

the influence of cultural and technological contexts on test performance. We observed that Portuguese 

students outperformed Italian students on standardized tests, possibly due to their exposure to 

technology and alternative teaching methods. Despite being allowed to use graphic calculators during 

the test, Portuguese students demonstrated varied problem-solving strategies, while Italian students 

struggled with non-standard questions. The qualitative data also aligned with teachers’ opinions, 

indicating a need to rethink traditional teaching practices and incorporate technological tools to foster 

problem-solving skills. We conclude with implications for leveraging technology integration and 

assessment strategies to foster improved mathematics learning outcomes internationally. 

References  

Gagatsis, A., & Kyriakides, L. (2000). Teachers’ attitudes towards their pupils’ mathematical errors. 

Educational Research and Evaluation, 6(1), 24–58. 

Jablonka, E., Andrews, P., Clarke, D., & Xenofontos, C. (2018). Comparative studies in mathematics 

education. In T. Dreyfus, M. Artigue, D. Potari, S. Prediger, K. Ruthven (Eds.), Developing Research in 

Mathematics Education (pp. 223–238). Routledge. 

Sacristán, A.I., Faggiano, E., Santacruz-Rodríguez, M., Rocha, H. (2023). Policies and Implementations for 

Technology Integration in Mathematics Education: Perspectives from Around the World. In B. Pepin, G. 

Gueudet, J. Choppin (Eds.), Handbook of Digital Resources in Mathematics Education. Springer 

International Handbooks of Education. https://doi.org/10.1007/978-3-030-95060-6_52-1 

 



                          Proceedings of the 17th ERME Topic Conference MEDA4, 3-6 September 2024, Bari, Italy                          ISBN 978-88-6629-080-3

  
430 

An analysis of a commonly used Norwegian professional platform for 
mathematics teachers and its reported use by those teachers 

Siri-Malen Høynes 1 and Birgit Pepin2 

Norwegian University of Science and Technology, Department of Teacher Education, Trondheim, 
Norway; 1 siri.m.hoynes@ntnu.no; 2 b.e.u.pepin@tue.nl 

Keywords: Digital resources, professional platforms, connectivity, lesson planning.  

Introduction 
In the European-funded project MaTeK (https://projectmatek.eu/), a survey across the five countries 

was conducted concerning mathematics teachers’ use of resources for their teaching (Çakıroğlu, et 

al. 2023). The survey revealed that, from a sample of 161 mathematics teachers in Norway, 

professional platforms were the most used digital resources by those teachers (Figure 1). When asked 

how often they use different resources when preparing their lessons, this was the most frequently 

used digital resource. Follow-up interviews were conducted to see how teachers (n=10) integrated 

those resources in their teaching, in particular how their used them for their lesson planning. From 

the interviews it appeared that a particular platform, called Campus Inkrement 

(https://campus.inkrement.no), was most commonly used. This was analyzed by the authors using the 

‘connectivity framework’ (Gueudet et al. 2018) and associated with what teachers said, i.e. in which 

ways the different features of the platform were used and beneficial (or not) for teachers. This was 

done in order to answer the research question:  

How do professional (digital) platforms support mathematics teachers in and for their teaching?    

   

Figure 1: Percentage of respondents (n=161) reporting the use of digital resources in/for their teaching 

Results 
Results from the ‘connectivity analysis’ of the platform revealed the following features (Table 1):  

Table 1: Connections at macro and micro levels 

Connections (C) @ macro level 
(refers to the potential of linking to and between users and 
resources outside the platform; it includes the potential to create 

C @ micro level  
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virtual communities, connecting users with users (both teachers 
and students), as well as users and designers, and the platform’s 
interaction with other resources, via web links, for example.) 
(Gueudet et al. 2018) 

(refers to connections made inside the platform; it concerns the specific 
mathematical content, i.e., that the platform offers different kinds of combined 
materials (e.g., definitions, properties, exercises) and also software files, 
videos, etc.). (Gueudet et al. 2018) 

C across grades: different topics appear again at 
different grades 

C between different topic areas: rarely, but in videos 

C to the National curriculum: explicit C between different semiotic representations (e.g. text, figures, 
static, and dynamic): yes 

C to assessment systems: previous national 
examinations 

C between different software/s for carrying out a particular 
task: yes, e.g. Geogebra and Scratch 

C to other resources: files to download C in terms of different strategies for problem solving (e.g., 
procedural vs problem-solving tasks): yes, class activities and 
in particular the discussion feature where students discuss 
different answers to given tasks 

C to other teacher resource systems: explicit  C in terms of different moments of appropriating a given 
concept (e.g., spiral progression, progressively deepening a 
concept instead of proposing a complete presentation of it in 
the same chapter): yes, e.g. functions and equations are both in 
year 8 and 10, with deepening of the concepts in year 10 

C to other teachers for collective work: yes  C to assessments (concerning the particular mathematical 
content studied): yes, self-assessment, auto-assessment of 
tasks, examination training module, designing tests 

C between teachers and students: yes C to different students’ needs: yes, tasks at different difficulty 
levels and the examination training module  

The teachers interviewed, and in particular teacher 2, used Campus Inkrement like an e-textbook, in 

and out of the classroom: in the classroom for working with pupils and providing differentiated tasks 

adapted for individual levels, and for automatic analyzing/overseeing their results; outside the 

classroom for letting pupils prepare the following lesson via videos (flipped classroom) and allowing 

the teacher to prepare or choose tests. In particular, the videos were highly appreciated. At the same 

time teachers found it difficult to work on problem solving and open-ended tasks, as the automatic 

task grading function in Campus Inkrement does not assess these kinds of tasks. In the poster we will 

present quotes from teachers, how they used the platform: for example, teacher 2 used the entire 

platform for his teaching and lesson preparation, no other textbook was used. Another teacher, teacher 

6, selected certain features of the platform and integrated them into his/her teaching.  

We claim that Campus Inkrement offers teachers rich possibilities for planning their lessons (e.g. 

including videos), analyzing student work and keeping track of their progress, offering tasks and tests 

adapted to individual student needs, and providing students with opportunities for self-evaluation. 
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Introduction 
The integration of 3D printers offers novel opportunities for enhancing teaching and learning, 

particularly in mathematics classrooms. Through our work with pre-service teachers, in-service 

teachers, and K-12 students, we recognize that this integration varies dramatically.  In this article, we 

will share three key approaches to integrating 3D printing in classroom instruction, including 

examples of each approach for mathematics classrooms. We recognize that the integration of 3D 

printing technology varies dramatically. Subsequently, we encourage teachers’ judicious integration 

in support of the curriculum standards by purposefully make choices about the use and availability 

of tools to enhance teaching and learning. This article is intended to serve as a resource for teachers 

seeking to extend their practice beyond their current integration of 3D printing to include additional 

approaches and increase opportunities for teaching and learning.  

Approaches 
In a classroom setting, the mathematics content is the focus of the activities, not 3D printing 

technology. Classrooms without 3D printers can still use computer aided design (CAD) programs to 

create models. With the lens of focus on the content through years of work with K-12 teachers, K-12 

students, preservice teachers, and teacher educators, Wan and Ivy (2021) categorized activities 

utilizing 3D modeling and printing to enhance teaching and learning of content areas like mathematics 

into three approaches: machine function, teacher-created models, and student-created models.  

Machine Function 

“Machine function” approaches to activities use 3D printer parts, 3D printer construction, and 3D 

printing processes like servo motor movements and slicer settings to enhance content area instruction. 

Although it would be useful to have a 3D printer in front of the students, there are plenty of activities 

like comparing print volumes of 3D printers, accomplished through a web search, slicer settings 

through free print slicing software like CURA and Slic3r, and temperature settings for various 3D 

printers and filaments.  

Teacher-Created Models 

In the teacher-created model approach, teachers produce the 3D model for student use. (i) Teachers 

can print existing models from websites like Thingiverse, where no knowledge of CAD is required. 

(ii) Teachers can modify existing models with CAD programs or slicing software and print for student 

use. (iii) Teachers can design in a CAD program. Models that were created by teachers can then be 

printed for student use or students can interact with the models virtually in the CAD program. 
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Student-Created Models 

In the student-created model approach, students produce 3D models, either in a CAD program or a 

physical print. Students may use sites like Thingiverse, like teacher-created models to print a model 

that demonstrates curriculum content. Students go through guided modeling to create models in CAD 

with general guidance like modeling a fidget spinner or creating models of simple machines. In design 

focus modeling, students create a model in CAD with criteria like modeling a fidget spinner that fits 

with a specific sized ball bearing or a battery-powered 3D printed scale model car. 

Takeaways 
In considering your commitment to enhancing teaching and learning through 3D printing, keep in 

mind the thoughtful and judicious integration of 3D printing. Ball and Stacey (2005) proposed that 

technology use should be used for “reasons that include increased opportunities for learning, 

increased opportunity for real-world problem solving, and orientation to the future” (p. 1). We 

challenge you to expand and extend your use of 3D printing in your classroom beyond the approaches 

you most frequently use. If you do not currently integrate 3D printing, teacher-created models are a 

great place to start. If you are already creating and adapting tools for your classroom, we encourage 

you to allow your students to create and refine their own models.  
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3D print and augmented reality in mathematical modelling 
Mathematical modelling allows students to experience mathematics in different ways: There are 

unique artifacts in many places which might be a site of interest, such as landmarks, roadways, or 

areas (Zheng et al., 2016) where mathematics can be experienced in a real-life context. To stay up 

with current mobile technological breakthroughs, this connection of reality and mathematics lessons 

may be enhanced using Augmented Reality (AR) and 3D printing technologies (Cahyono & Lavicza, 

2023). Students can use digital simulations in different stages of the modelling cycle to study the 

impact of changing variables in the system or environment, as well as in terms of visualization of a 

real situation (Greefrath & Siller, 2018). For the latter, AR technology enables computer-generated 

virtual image information to be layered onto a live direct or indirect real-world environment in real 

time (Azuma, 1997). Also, 3D printing technology as a rapid prototyping technology has made its 

way into education in various contexts (Ford & Minshall, 2019), besides others modelling. It opens 

further visualizing possibility through enabling the analyzation of 3D models, e.g., the dimensions, 

aspect ratios or elements involved in the model.  

Research goal 
Based on previous research in the scope of different visualizations of reality in modelling tasks, it 

could be seen that different modelling activities can be observed during the students’ solution 

processes (Jablonski, 2023). This is especially evident in terms of the data collection and the 

interpretation of perspective and scale when working with these representations. Still, the results are 

limited to the visualizations of real objects themselves, photos and 3D printed models. So, it is 

possible to make assumptions about the comparison between different sizes and dimensions in the 

representations. Still, all visualizations are analogue – an involvement of digital visualizations and 

their role in the modelling process of students is still pending. It is the research goal of the planned 

study to focus on a comparison of the 3D printed model and a technological model realized with AR.  

The pilot study 
To gain first insights into the work processes of students working with a 3D print model and an 

augmented reality model, a pilot study with two grade six students (13 years) was conducted in 

January 2024. The students solved two geometric modelling tasks – one using a 3D print and the 

other through an augmented reality model (see Figure 1 left and middle). In the first tasks, the students 

were asked to determine to volume of St. Paul’s church in reality. The second task asked students to 

determine the surface area of Candi Borobudur in reality. In both cases, the models were enriched by 

a cube with side lengths 1 cm to allow estimations of sizes and a scale was given. While solving the 
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tasks, the students were filmed by a student assistant. The videos are the basis for the data analysis in 

terms of the students’ undertaken modelling steps and activities therein.  

 

Figure 1: 3D print model of St. Paul’s church (left), AR model of Candi Borobudur (middle) and students 

working with the 3D model (right) 

First results and outlook 
From the first analysis of data, the following main differences emerge. Concerning the students’ 

movement, we can see that they actively manipulate the 3D print model and the cube. For example, 

they rotate the cube along the church tower to determine its height (cf. Figure 1 right). In addition, 

they use the 3D print model to draw the ground plan of the church and determine its area on a piece 

of sheet. In contrast, the AR model cannot be manipulated in the same way, which leads the students 

to change their own perspective to the object and walk around it. This resembles the research findings 

of Jablonski (2023) in the work on a real object outside the classroom. In addition, the relation 

between the object and the cube cannot be changed – therefore, data collection happens more by 

means of estimations, using the fingers on the screen as well as zooming. The first results are taken 

up and particularly analyzed in the context of modalities and embodiment during modelling. These 

results are – together with plans for a follow-up study with a larger sample – presented in the poster.  
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One possibility to improve the spatial reasoning seems to be programming movements of robots 

(Francis et al., 2021). This makes it possible to profitably combine the important issue of promoting 

spatial thinking with promoting computational thinking. Following the design science approach in 

our study we develop a learning environment for third and fourth grade primary school students (age 

8 to 10) using the educational robot Ozobot and reconstruct in an interpretative approach the learning 

processes of the children regarding perspective taking and computational thinking. So, the study aims 

to develop a learning environment to enhance students’ perspective taking and computational 

thinking skills by using the educational robot Ozobot and evaluate the Ozobot as a form of digital 

media in terms of perspective taking and computational thinking. It is designed in the tradition of 

design-based research. 

Theoretical and empirical background 
An important component of spatial reasoning is the ability to take perspective. To describe spatial 

constellations, a frame of reference must be chosen. There are three types of spatial reference systems: 

object-centred (intrinsic), viewer-centred (relative) or environment-centred (absolute) (Bender & 

Beller, 2013). For spatial perspective taking tasks, the intrinsic reference system is used, which means 

that the perspective of another object is taken to describe spatial constellations. Findings suggest that 

a common mistake of students by spatial perspective taking tasks is the using of the relative reference 

system (e.g. Rost, 1978).  

Computational thinking involves the thought process of solving a problem. The solution is 

represented as computational steps and algorithms (Aho, 2012). The skill of computational thinking 

is fundamental for everyone (Wing, 2006) and the four key computational thinking techniques 

(decomposition, pattern recognition, abstraction and algorithms) have interactions to elementary 

mathematics (Pugalee, 2023). The use of educational robots offers potential for promoting 

computational thinking, because educational robots can be used as a tool to justify or disprove 

conjectures in problem solving activities (Yanik et al., 2017).   

The empirical results therefore suggest that the promotion of perspective taking can be profitably 

combined with the promotion of computational thinking through the use robots. Initial considerations 

for learning environments already exist (Eilerts et al., 2022). However, it has not yet been 

systematically investigated how exactly a learning environment for inclusive primary school classes 

can be designed so that the children benefit on the basic of their different potentials. Also, little is 

known about the extent to which the findings in relation to both learning subjects are mutually 

dependent and complementary. 
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Insight in the learning environment 
In essence, the learning environment is about programming paths in a city that consist of horizontal 

and vertical streets (Wittmann et al., 2022), to compare programmed paths and to find starting points 

and finishing points with given instructions in the town. Differentiated tasks encourage the children 

to program paths with the instructions turn right, turn left, straight ahead and stop so that the Ozobot 

arrives at the desired destination. By programming paths, students must choose the right instruction 

and must program the color code in the correct relation from the perspective of the Ozobot, so that 

the students (mentally) take the perspective of the Ozobot. As the Ozobot can locate in different 

positions on the map and can move in different directions (own view direction, sideways 90°/270°, 

opposite 180°), the students continuously realign the intrinsic reference system during programming 

ways. When the Ozobot executes the program, the students receive feedback to their perspective 

taking. Simultaneous, determining whether or not a solution or algorithm was successful in relation 

to the goal(s), is one of the components of computational thinking. Integrated into mathematics 

lessons, thus students IT skills are enhanced. 

Outlook  
The evaluation of the design experiments in the teaching and learning laboratory at Paderborn 

University serves to elaborate students’ individual conceptual understanding of perspective taking 

and computational thinking, evaluate the Ozobot as a form of digital media in terms of perspective 

taking and computational thinking and give indications for prospective planned and taught lessons to 

perspective taking und computational thinking in primary schools.  
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A growing number of countries are integrating programming into their curricula, recognizing its 

importance across subjects. This study examines how pre-service teachers (PSTs) benefit from 

workshops introducing them to block-based programming with micro:bit. Further, we measure the 

impact of micro:bit on four dimensions: problem-solving skills, motivation, collaboration, and 

learning by discovery. Data were collected via online questionnaires, showing strong positive trends 

in these areas. 

Introduction and focus 
Computational thinking (CT) is a crucial skill for problem-solving and system design and is therefore 

an essential component of education (Wing, 2006). CT involves the decomposition of problems, 

pattern recognition, abstraction, algorithm design, and debugging (Hsu et al., 2018). Programming, 

particularly with tools like micro:bit, enhances CT and supports mathematical learning and teaching 

(Sacristán et al., 2022). The integration of programming into curricula on a global scale serves to 

highlight its importance (Kaufmann & Stenseth, 2021; Weintrop et al., 2016).  

This study employed workshops at the University of Education Schwäbisch Gmünd, Germany, which 

were attended by 50 PSTs who were previously unfamiliar with micro:bit. The workshops were 

structured into three segments and were designed to guide participants from basic to advanced levels. 

Data was collected through pre- and post-surveys, which assessed the PSTs' perceptions of micro:bit's 

impact on problem-solving, motivation, discovery-based learning, and collaboration. 

Findings 
The findings revealed that PSTs rated micro:bit as significantly enhancing problem-solving skills. 

Activities such as creating LED displays, simulating dice rolls, and developing step counters required 

algorithmic thinking and practical programming skills. PSTs also recognized micro:bit’s potential to 

foster these skills, which are essential for both teaching and learning in the modern educational 

landscape. Moreover, micro:bit was seen as a tool to increase student motivation. PSTs found the 

device engaging and noted its potential to inspire students to explore programming beyond the 

classroom. This motivation is critical for sustaining interest in programming and related fields. The 

workshops also emphasized teamwork, with PSTs acknowledging micro:bit’s role in promoting 

collaborative learning environments. The activities required cooperative problem-solving, which 

fostered teamwork skills crucial for educational and professional success. Micro:bit facilitated hands-

on, discovery-based learning. PSTs valued the opportunity to explore and experiment, finding that 

such approaches significantly enhanced their engagement and understanding of programming 

concepts. The PSTs rated micro:bit as engaging and reported an increase in their self-confidence to 
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teach block-based coding after the workshop. It is our contention that such experiences are necessary 

for PSTs to effectively pass on these skills and confidence to their future students. 

Outlook 
Furthermore, the integration of micro:bit in educational settings aligns with broader educational 

goals, such as preparing students for future careers in STEM fields. By engaging with micro:bit, PSTs 

not only learn programming skills but also develop critical thinking, creativity, and collaboration 

skills, which are transferable to various aspects of their professional lives. The workshops provided 

a platform for PSTs to experience the joy of learning through discovery, thereby reinforcing the value 

of hands-on, experiential learning in education. The positive feedback from PSTs indicates that 

micro:bit can be a valuable tool in modern education, facilitating the transition from theoretical 

knowledge to practical application. As our study indicates, when teachers are confident and 

motivated, they are more likely to inspire the same qualities in their students. Thus, equipping PSTs 

with the skills and confidence to teach programming is an essential step towards fostering a generation 

of learners who are proficient in CT and prepared for the challenges of the future. 

In conclusion, our study suggests that micro:bit workshops may be an effective way to enhance PSTs' 

problem-solving abilities, motivation, collaboration, and engagement in discovery-based learning. 

These workshops could potentially prepare PSTs to integrate programming into their teaching, 

fostering their personal and professional development. By developing CT and related skills, PSTs 

may be better equipped to engage their future students in programming, ultimately supporting broader 

educational goals. 
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Introduction 

In this poster, we explore the mathematical capabilities of the Large Language Model GPT-4 and its 

interface, the chatbot ChatGPT. Some recent works focus on answering questions as Bellettini et al. 

(2023) in computer science domain: they analyzed tasks with images that could be described with a 

text to submit to the model. Given the relevance of graphical representations in mathematics, we want 

to submit images themselves and discuss here, from a Mathematics education point of view: is 

ChatGPT able to generate a coherent, student-comparable answer when challenged with a picture 

based mathematical reasoning task? We compared its first answers to some tasks extracted from the 

Italian semi-final phase of the individual, out-of-school math competition for students "Campionati 

Internazionali di Giochi Matematici 2023", with the ones given by participants. 

Theoretical Framework 

GPT can be seen as a learner in the environment of a didactic conversation, gaining information from 

the question itself, from the context (the prompt) and from previous similar situations (internal 

weights are adapted in the neural network according to users' previous searches). We underline that 

the model lacks semantic (human-comparable) capacity and doesn’t permanently absorb the contents 

provided by users; therefore, every semantic and learning operation here represents a search path in 

the training database and in the conversation. User's interaction with the interface produces what we 

can call signs (i.e. new paths in the model's "conversational memory"), like the Vygotskian notion in 

the theory of semiotic mediation (Bartolini Bussi & Mariotti, 2008).  

The test 
We chose and submitted five tasks (Tasks 5, 6, 8-10, available here https://giochimatematici.unibocc 

oni.it/images/campionati/2023/Semifinali/Testi_Semifinali23.pdf) to ChatGPT with the prompt: 

“You are a participant in a math competition. You have to solve the task by looking at the picture.”: 

we wanted the model to have information that participants get from the context, as it works better if 

provided with such knowledge (Marvin et al., 2024).  

Table 1: GPT-4's answers and student’s correct answers in tasks 

 Task 5 Task 6 Task 8 Task 9 Task 10 

13-15 71 (100%) 39 (55%) 8 (11%) 3 (4,2%) 39 (54%) 

      GPT-4 Not given Wrong Not given Correct Not given 

In Table 1 we compared correct answers of 71 participants aged 13-15 with first answers of GPT, 

classified as correct, wrong or not given; the latter refers to GPT stopping its computation, probably 
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due to automatic shutdown. Pictures in the tasks include graphs (tasks 5 and 10), tokens numbered, 

shaped and colored in different ways (task 6), numbered tokens (task 9), sequences of digits that, 

when flipped, still represent a digit (task 8). 

Preliminary results and analysis 

In task 5, that all students got right, GPT inconsistently described connections between elements in 

the given graph, and then stopped computing. We did not get any attempt for tasks 10 and 8. In task 

6 it extracted data from the picture coherently, but at some point, as if determined to give an answer, 

contradicts itself and arrives at a false conclusion. In task 9, the most difficult for students, GPT 

correctly identified numbers in the tokens, the problem request and how to solve it, and produced a 

correct calculation. According to what we observed we can state that GPT-4, when the task doesn’t 

cause an overload, can provide an adequate answer to a picture based mathematical reasoning task: 

in its explanations, even the partial one in task 5, it finds the aim of the task and a sensible approach 

to solve it, even if incomplete and if the final computation is incorrect. On the other hand, we observed 

that GPT-4 makes mistakes counting and connecting elements in a picture (graph in task 5). 

Regarding GPT’s overload, it would be appropriate to seek other strategies and perhaps to design a 

prompt with some hints for pictures’ interpretation. These initial results raise a further research 

question: is GPT capable of engaging in a conversation and interacting with a user about a task as 

described? The chatbot offers the opportunity to give suggestions to GPT, producing new signs that 

can be followed by the model to change or correct its answers; besides, its tendency to accommodate 

the user’s requests even in a nonsensical way (task 6) represents a limit for its use as a bearer of 

knowledge, showing similarities with students who feel obliged to provide an answer by an implicit 

didactic contract (Brousseau, 1986). We can say that these features reveal GPT-4’s potential in terms 

of promotion of critical thinking, enabling the detection of mistakes and development of 

argumentative skills, but only if students and teachers use it with awareness. 
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First year students of “service mathematics” (here: any tertiary mathematics class for students who 

are not majoring nor minoring in mathematics) have a plethora of resources to their avail in addition 

to lectures and recitations: textbooks, digital learning environments, software, videos, tutoring, etc. 

On the other hand, students often drop out of STEM programmes because they fail mathematics, and 

failure follows from mathematics being “scary”, from low perceived self-efficacy, from lower 

resilience to stressors by students with social disadvantage (Tariq, 2005; Schwarzer & Warner, 2013).  

Inglis et al. (2011) show that — in their particular context of undergraduate multivariate calculus — 

students that relied mainly on online lectures (OLs) performed worse that the students who mainly 

attended live lectures (LLs) but better than students that did not make heavy use of any available 

learning resource. 

Upkeeping digital resources that were created for emergency pandemic teaching is costly (in term of 

time or money): is it worth it? I.e., do students actually make use of them? Are they helping frail 

students, say those with low perceived self-efficacy or with math anxiety? Does the use of resources 

correlate positively with success (defined as: passing the exam within the year — students are allowed 

to sit an exam as many times as they wish, with our university imposing at least six dates a year)? 

Digital curriculum resources 
I have been teaching calculus in the “Natural Sciences” programme at the University of Milan since 

2015; the programme is known for attracting students which are quite weak in mathematics. Because 

of pandemic teaching, 35 short (10’–18’) videos have been created to allow the implementation of 

the flipped classroom, with lecture time devoted in part to a formative assessment cycle based on 

short quizzes, and mostly to working on problems relevant to the students (Rizzo, 2023).  

Besides the 35 mentioned videos used as OLs, students had access to class notes, an asynchronous 

version of the Wooclap quizzes used during LLs, past (unsolved and solved) tests; online exercises 

are being created (only exercises on differential calculus were available at the end of the term). The 

OL videos, besides being assigned lecture by lecture through the Learning Management System 

(LMS), are available on YouTube. This implies that on one side, students could reach to them at any 

point, even before they were assigned, on the other that the number of visualisations does not 

correspond to the number of visualisations by the class students. 

Method 
I collected the log of all activities on the LMS from the first day of class up to the day of the second 

high stake partial exam (which was after the end of classes), and the log of YouTube visualisations 

in the same time frame. Wooclap asynchronous quizzes were not considered as the number of 

respondents is too low (N=5 for most of them). Only the data from LMS carry the identity of students, 

so YouTube visualisations can be used only in aggregate form. Students were submitted non 
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anonymous Likert scale questionnaires about perceived self-efficacy, math anxiety, attitude towards 

the flipped classroom. Correlation between the use of curriculum resources, results in tests, and 

answers to a questionnaire on perceived self-efficacy, Math anxiety, attitude towards the flipped 

classroom was computed: the data set was too small to draw sound statistical conclusions, so data 

will have to be aggregated over the years. 

Results 
With 75 students enrolled, LL attendance drops from 65 to 28 midterm before stabilising; numbers 

are similar with respect to views to OLs. The sharp decrease in attendance had been observed also in 

previous years and, according to informal discussion with students, can be attributed both to students 

giving up and to fatigue. The latter can be confirmed by the distribution of views of OL during the 

term: while OLs were assigned for specific dates, only half the class did so for the first (out of five) 

part of the syllabus, but numbers were much lower for the other four parts; views rebounded in the 

week prior to partial tests and after the midterm (high stake) partial exam. 

Correlation results hint that the availability of OLs affects students in rather different ways:  

• Students who suffer from low perceived self-efficacy and high math anxiety are possibly 

profiting at the beginning of the class from OLs but could be led to believe that watching the 

videos is enough to get a good score for the later part of the class.  

• Students who enjoy high perceived self-efficacy and low math anxiety are possibly showing 

a strong inverse correlation between the use of OLs  and results of the first partial exam ( the 

p-value is too high to afford more than an educated guess): possibly they underestimate the 

difficulty of the class, but a low result in the first partial puts them back to work, and they are 

able to make good use of digital resources. 
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Introduction 
The emergence of Dynamic Geometry Environments (DGE) has led to a shift in perspective in 
geometry education research and geometry teaching and learning (Sinclair et al., 2017). While it has 
become a mainstream of research, there are still issues that have not been addressed (Sinclair et al., 
2016), most notably the “little research that has focused on geometric constructions, despite their 
central role in geometry” (Sinclair et al., 2017, p. 480). 

Due to its relevance and the reported gap in research, this study focuses on geometric construction, 
which we consider both a process and an object, as pointed out by Martin (1998), who refers to this 
duality as a geometric algorithm or a drawing that illustrates a theorem. 

While dragging has been a key feature in investigations using DGE, other elements have also been 
recognized as important in broadening the scope and depth of investigations of geometric 
constructions, such as dynamic behavior, dependency relationships, construction sequence, geometric 
relationships, and geometric properties (Hölzl et al., 1994; Jones, 2001; Talmon & Yerushalmy, 
2002). 

In addition to the above, it is also necessary to move from the “typical passive emphasis on vocabulary 
(naming and classifying shapes according to their properties) towards a more active orientation in 
producing geometric meanings” (Sinclair & Bruce, 2015, p. 320) in geometry education research. 
Accordingly, we adopt a social theoretical approach focused on people´s practices, specifically we 
use our own theoretical proposal, called the Geometric Practices Model, which is based on the 
abstract-concrete dialectic that characterizes geometry, as described in its historical development 
(Ostermann & Wanner, 2012), in the method used in Euclid's Elements (Martin, 1998), in the 
properties of geometric objects (Laborde, 2005) and in geometric reasoning (Arzarello et al., 2002). 

For geometric construction in DGE, this Model states that the practice of construction allows the 
transition from the abstract to the concrete, and the practice of deconstruction allows the transition 
from the concrete to the abstract. In general terms, practices are a set of organized doings—what 
people perform directly with their bodies—and are materially mediated (Schatzki, 2002). 

In the case of this research, the geometric practices of construction and deconstruction are made up 
of a set of geometric doing associated with the elements that characterize geometric construction in 
DGE, which are defined as follows: 

The Practice of constructing: 
1. State or identify the geometric properties of 

the construction or diagram. 
2. Establish the geometric relationships that link 

the objects of the construction and 
operationalize the geometric properties in the 
diagram. 

3. Establish a construction sequence appropriate 

The Practice of deconstructing: 
1. Determine the dynamic behavior of 

the diagram and its constituent 
objects. 

2. Conjecture about the dependency 
relationships between the objects in 
the diagram. 

3. Conjecture a sequence of diagram 
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to the geometric properties of the diagram. 
4. Establish dependency relationships between 

the objects that make up the diagram to 
ensure that the geometric properties are 
represented correctly. 

5. Explore the dynamic behavior of the diagram 
and verify its geometric properties. 

construction. 
4. Infer the geometric relationships 

between the objects in the diagram. 
5. Determine and dynamically verify 

the geometrical properties of the 
diagram. 

 

Based on these geometric practices, the present research aims to elaborate a design to study geometric 
doings and their organization when developing tasks on geometric constructions in DGE, which 
corresponds to the following stages of the research. 
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Introduction and theoretical background 
A digital escape game is an interactive online problem-solving experience where players use logic 

and teamwork to solve problems and complete tasks within a digital environment to "escape" from a 

themed scenario in a limited amount of time. Digital escape games hold many potentials to support 

the learning of mathematics. For example, the playful story-based approach can support motivation, 

engagement, immersion, and flow experience (Sidekerskienė & Damaševičius, 2023). Moreover, the 

integration of interactive tasks and visualizations as well as automatic feedback can support increased 

cognitive activation and a stronger focus on conceptual understanding (rather than mere rote learning) 

(Sidekerskienė & Damaševičius, 2023). However, one major challenge is to provide individual 

support to students in digital escape games, especially, when working on problem-solving tasks. To 

date, support elements in digital escape games (as in many digital learning environments in general) 

are usually “hard-coded” and, therefore, limited in flexibility and adaptivity (for example, pre-

programmed hints that appear after a predefined time or after a certain number of failed attempts). 

This research project aims to investigate how large language models (LLMs) can be used in digital 

escape games to offer highly individualized support for students when working on problem-solving 

tasks. LLMs are a kind of artificial intelligence (AI) that are trained to process and generate natural 

language. They are an innovative digital technology for mathematics education that offer different 

opportunities, for example, by using the natural language to present questions and answers associated 

with the mathematical challenge (Matzakos et al., 2023). A further development of LLMs is retrieval-

augmented generation (RAG), an AI framework that improves the quality of LLM-generated 

responses by grounding on external sources of knowledge. Such RAG allows us to tailor the LLM to 

specific domains of functioning. However, so far, there has been little research on the design and 

integration of RAG-enhanced LLM-based support elements (LLM-SE) and students’ use of them in 

digital mathematical escape games (and in mathematics education in general). 

Research goal and methodology 
We will develop a RAG-enhanced LLM-SE that takes the form of a game character (for example a 

magician) that students can interact with	through	text-chatting	if	they	require	assistance	in	their	
problem-solving	process. We utilize a design-based research approach (Prediger et al., 2015) and 

address the following research questions. 

1. What are relevant design principles for the LLM-SE to support the students’ problem-solving 

processes? How can these design principles be realized in specific design elements in the 

digital escape game?  
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2. How do students use the LLM-SE in their problem-solving process while playing a digital 

mathematical escape game and which potentials and limitations can be identified? 

We develop a digital mathematical escape game for grade 6 in the field of geometry to answer these 

research questions. This escape game focuses on various mathematical problems that deal with the 

context of symmetry (in the plane). For one of these mathematical problems, an RAG-enhanced 

LLM-SE (in the form of a game character) is designed according to the following initial design 

principles: A) “Principle of providing minimal help”: The LLM-SE should progress from 

motivational and more strategic support gradually to more content-specific support. B) “Multiple 

representations to foster conceptual focus” (Prediger et al., 2022): The LLM-SE should focus on 

deepening and connecting the mathematical content and the underlying concepts by offering helpful 

visualizations and encouraging students to make connections between them. C) “Enhancing language 

for developing conceptual understanding” (Prediger et al., 2022): The LLM-SE should engage 

students in rich discourse practices and connect different language registers, for example, academic 

and everyday language. 

The study will utilize a clinical setting where two students will play the game together. The problem-

solving process, the interaction between the students and the LLM-SE, and the communication with 

the LLM-SE are videographed and transcribed for the following analysis. Based on the results, we 

will refine and research the LLM-SE in further design cycles.  
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Introduction 
The study presented in this text is part of an ongoing doctoral research that investigates the didactic 

potential underlying the use of multiple artefacts in teaching and learning geometric constructions. 

We hypothesize that the synergy emerging from such an articulation might influence students’ 

comprehension and would help them to better grasp mathematical ideas. We are concerned with 

exploring the types of articulations, scrutinizing emerging mediations and unveiling particular 

inscriptions and gestures associated with geometric constructions. We illustrate our work by 

presenting one out of three case studies whose analysis will provide us with more focused answers to 

our research questions and will enrich the discussion during MEDA conference. 

Theoretical frameworks  
The overarching theoretical framework for our study is the instrumental approach wherein 

instruments occupy an intermediary mediating position between the subject and the object of his 

activity (Rabardel & Bourmaud, 2003). We focus on object-oriented mediations that relate to the 

mathematics’ teacher and the students when integrating multiple artefacts within their activities. The 

double approach adapted to technologies (DAaT) will allow us to better grasp teachers’ practices in 

technology-based environments (Abboud-Blanchard, 2014). As teaching and learning form a holistic 

unit, we examine the semiotic sets activated by the teacher and the students through the lens of the 

semiotic bundle (Arzarello, 2006). 

Methodology 
The data for the case study comes from grade 7 wild class observations in a French middle school. 

The math topic is “Constructing parallelograms”. Seven periods were videotaped: one camera 

focused on the whiteboard and the teacher, Laure, and three other cameras were focused on three 

students. We also had an a priori and a posteriori interviews with Laure who provided us with her 

scope and sequence as well as her lesson plan. 

Case study 
We distinguish three analysis levels: macro, meso and micro. The macro level highlights the global 

synchronic and diachronic articulation of artefacts by Laure and her students in class and outside class 

over the seven periods taking into account different classroom environments that we break down into 

non-technological (NT), techno-neutral (TNE) and techno-operant (TOE) (see Figure 1). Our 

preliminary findings indicate that this articulation varies according to the intended cognitive route of 

the teacher (Abboud-Blanchard, 2014).  
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Figure 1: Macro synoptic diagram 

The meso level analysis is performed over one chosen period. Every task is divided into subtasks in 

order to spot key moments pertinent to the fine-grained micro analysis. We examine closely different 

instrumental functions. We recognize a synergic aspect related to the multiple functions attributed to 

GeoGebra. We further spot a resonance aspect related to different subjects using different instruments 

simultaneously in order to achieve the same objective. Moreover, we discern some inter-instrumental 
mediations emanating from the continuous dynamic interactions between the combined use of 

different instruments within a subject’s activity. These mediations help to bridge the gap between 

traditional and virtual artefacts on one hand and physical experience and formal mathematics on the 

other hand. 

The micro-analysis of key moments addresses the articulation of artefacts as part of the semiotic sets 

activated by both actors. We shed light on some difficulties encountered by students during their 

construction activities and on the solutions provided by the teacher. We perceive the double role of 

“sketching” for students as a simple inscription and as a symbolic artefact mediating their 

construction task. We identify a particular type of writing gestures emerging when the teacher 

elaborates a construction procedure and simulates the action produced by an evoked artefact to foster 

students’ instrumental manipulation. 
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Introduction 
Technology integration in classrooms has significantly introduced fresh possibilities for mathematics 

learning. We examine its impact on learning and pedagogical practices in integrated classrooms. 

Theoretical Framework 
Mayer’s (2002) Cognitive Theory of Multimedia Learning posits that learning is enhanced through 

multiple modalities, interaction, and framing questions for cognitive transfer. 

Side-by-side comparison technique 

by Schmidt et al. (2013), Visual 

Analysis for Image Comparison  

(VAICo), offers effective data 
Figure 1: Image datasets (Schmidt et al., 2013, p. 6) 

analysis across domains using similarity metrics (Fig 1). Research by Rittle-Johnson et al. (2017) 

shows comparison boosts conceptual learning. Singapore mathematics model method, inspired by 

Greeno's schemas (Nesher et al., 1982; Kintsch & Greeno, 1985), uses rectangular bars to visualize 

mathematical relationships, aiding abstraction (Table 1). 

Table 1: Comparison model (Kho et al., 2014, p. 227) 
 

The larger quantity is 3 times the smaller, making the smaller one-third 
of the larger, e.g., if the larger is 3 units, the smaller is 1 unit, totaling 
4 units, with a difference of 2 units. 

Research Questions: 1) How does using side-by-side screens support student-led learning? 2) How 

can teachers leverage technology to analyse students’ conceptual deficiencies?  

Methods 
A program piloted at a Czech elementary school involved nine Grade 8 participants using bar model 
virtual manipulative apps on tablets for word problems. Activities were recorded via screencast.  
 
Results 

RQ1: Side-by-side screens provide 

opportunity for student-led learning 

through discussion. Screenshots are 

selected using similarity metrics. 

Analysis used reflective prompts 

i.e. cognitive transfer and image 

comparison (Table 2a & 2b). 

                  
                Figure 2: Tereza’s & Jakub’s screens 
                       Note. From MathsBot.com (Hall, 2013) 
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Table 2a: Analysis of students’ contributions                 Table 2b: Analysis of teacher’s contributions           

Table 3: Reflections on significant interactions 

RQ2: How can teachers leverage 

classroom connectivity to effectively 

analyse students’ conceptual 

deficiencies in word problem solving 

utilising bar model virtual 

manipulatives? (Table 3). 

 
Discussion and initial findings 
Unobtrusive monitoring of student learning offers authenticity. Gradual screen capture showcased 

Jakub’s conceptual potential, not only errors. Side-by-side screen prompted students’ contributions. 

Conclusion 
Our research identified constraints in screencast scalability in larger classrooms. App's limited tools 

hinder students’ authentic mathematical practices and full digital problem-solving expression. 
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Introduction 
3D Modelling and Printing (3DMP) presents a novel approach to creating educational materials (Ng, 

2017) and integrating them into pre-service mathematics teachers (PMTs) training. However, there 

is a need for research on how the integration of this technology affects the knowledge of PTMs (Ford 

& Minshall, 2019). As part of the initial training of mathematics teachers in Upper Austria, a course 

on 3DMP for PMTs (1 ECTS) was designed and implemented during two semesters in the academic 

year 2022/2023. The course introduced PMTs to the technological and didactical aspects of the 3DMP 

process and required the design of a task integrating this digital tool (DT) as a final assignment. A 

design-based research approach (Fowler et al., 2023) was employed to refine the course design and 

implementation. This practical application of 3DMP in teacher education accompanies the broader 

narrative on task design with DT (Günster & Weigand, 2020), emphasising the transformative 

potential of DT in enhancing mathematical education. By focusing on the development of innovative 

technological tasks, such as those involving 3DMP, teacher education programs can equip PMTs with 

the skills and knowledge necessary to incorporate DT into their future teaching practices effectively.  

This study delves into the integration of 3DMP within mathematics teacher education, guided by the 

research question: Which specific areas of the Knowledge for Teaching Mathematics with Technology 
are mobilised by a PMT when creating a lesson plan on functions incorporating 3DMP? It not only 

aims to examine the variety and depth of knowledge that the PMT engages with and develops when 

designing a task with 3DMP technology but also to contribute to the refinement of our 3DMP course. 

Identifying the specific knowledge areas used in task creation helps to refine course content, 

pedagogical strategies, and the integration of other digital technologies.  

Theoretical framework 
The Knowledge for Teaching Mathematics with Technology (KTMT; Rocha, 2023) model was 

considered to analyse the lesson plan (LP). This model is selected for its focus on the intersection of 

four basic domains, delineating categories such as mathematics and technology knowledge (MTK) 

and teaching and learning and technology knowledge (TLTK). The MTK emphasises how DT 

influences mathematics, for example, by looking at the representations created by the DT and its 

fidelity to the mathematical objects. The TLTK focuses on how DT affects the teaching and learning 

process, for instance, considering the affordances that DT brings to the teaching process. 

Task analysis 
A LP section created by a 22-year-old female PMT in the 3DMP course was selected to illustrate the 

analysis. The LP dealt with power functions for a 6th-grade middle school class. It contemplated using 
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function stamps that the PMT modelled and 3D printed, analysing function properties, and having 

students create their own stamps through GeoGebra and TinkerCAD. 

The MTK appears in the PMT work when she analyses the sequence of content and the 

representational fluency, as shown in this extract from her LP: “The pupils go through different forms 

of representation while working out the power functions. […] According to Bruner’s E-I-S principle, 

they go through three levels: enactive, iconic and symbolic.” It is also possible to see her reflection 

on the issues that technology requires students to deal with, the potential of technology in teaching 

and learning mathematics and the lack of mathematical fidelity of the 3D printed object, showing the 

relevance of the TLTK and the MTK in the process of integrating 3DMP for this lesson, as it appears 

in the following text from her LP: “The discussion about the advantages and disadvantages of a model 

should show the students that a model is a simplified representation of reality. This can promote or 

support understanding”. 

Discussion 
As shown in the two extracts from the LP, the PMT’s reflections and knowledge about 3DMP in 

connection with teaching and learning (TLTK), power functions, and the characteristics of the printed 

object (MTK) allowed her to anticipate possible topics of discussion for the implementation of the 

lesson regarding the lack of mathematical fidelity (Rocha, 2023) and the student’s process on the 

task. This investigation contributes to the broader discourse on task design with DT and teachers’ 

professional development (Günster & Weigand, 2020). It aims to inform effective practices for 

integrating emerging technologies into mathematics education, thus enriching the knowledge base of 

mathematics teachers and the theoretical foundations of teacher programs (Ford & Minshall, 2019). 
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Introduction 
With the development of AI many aspects of daily life have been changed. Social robots are part of 

that development. They are tools with embodied AI capable of collecting, producing and analyzing 

data from the surrounding reality and interacting with it. For this reason, social robots can also be an 

excellent tool to be used in educational contexts (AIED, Artificial intelligence in Education), for 

formative assessment. Social robots, through their ability to interact with users and provide 

personalized responses can revolutionize the formative assessment process (Black & Wiliam, 1998). 

One challenging point is to use these social robots as short- and long-term observers of the learners’ 

learning process. It is critical, therefore, to understand whether and how social robots are able to 

produce personalized actions for the individual learner. For example, they could offer suggestions for 

solving a specific task, autonomously understand when a particular skill has been achieved and, 

automatically, move on to the next task. Furthermore, they could use an appropriate emotional 

support strategy according to the user's state of mind, assist with a meta-cognitive learning strategy, 

decide when to take a break and encourage appropriate help-seeking behavior. 

A research project 
Our research project fits into the AIED paradigm. This research work seeks to make a contribution 

on the progress of AI (social robots) in education with the aim of improving school practices focused 

on assessment. Our aim is to use social robots for developing adaptive learning environments that are 

inclusive and effective. Some of the key points we focused on are: tasks for personalized learning; 

intelligent tutoring systems and tools-assistants for learners with special educational needs. In 2014, 

Brown and Howard used the humanoid robot DARwIn - OP (Darwin) as a SIRT (Socially Interactive 

Robot Tutor) in an educational setting. They analyzed learner engagement in interactive activities 

with Darwin compared to standard (non-interactive) methods. Their results show that the use of the 

social robot Darwin promoted student engagement through the use of adaptive learning techniques. 

Our research is still in her early stage and closely follows the work proposed by Brown and Howard 

(2014). The idea is to design intelligent tutoring systems that are able to monitor learners’ progress. 

Our intent is to address both technological and pedagogical aspects in an integrative way, especially 

considering the pedagogical ones, that is, the relationship between the user (teacher/learner) and the 
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robot and how the user perceives this relationship. We are working with the social robot Pepper: it is 

a semi-humanoid robot designed for interacting with people. Through the operation of sensors, 

Pepper can interact with the user multimodally at various levels: through a tablet, using gestures, 

words, sounds. It can interact with users by orienting its head, it can make funny gestures with its 

arms, and, thanks to the presence of lights that turn on following well-defined specifications, it can 

provoke in the user emotions of joy, serenity, interest, motivation, confidence, enthusiasm, and 

amusement. Pepper’s potential to provide appropriate feedback to students could be exploited. 

Moreover, Pepper looks very much like a person and can make ‘social’ movements (Brignone et al., 

2021). Due to its graceful and reassuring appearance, it could provide not only situational but also 

emotional feedback (Lehmann & Svarny, 2021). Thus, the aim is to work with students also on 

affective aspects (Hannula, 2020) by exploiting Pepper’s potential. From the context described, our 

research questions are as follows: to what extent is the robot Pepper able to identify students 

difficulties at an early stage and adapt the mathematical task according to their responses (RQ1); to 

offer personalized feedback from a formative assessment perspective (RQ2); to encourage students 

from an affective point of view (RQ3); to promote students’ meta-cognitive reflections (RQ4). To 

answer these questions, we will carry out experimentations with students from different school 

grades. We will implement personalized mathematics sessions (learning activities) with Pepper, 

focusing on student interaction and learning. The sessions will be recorded using Pepper’s sensor. 

The robot will provide dynamic tasks and continuous feedback. Some hypothetical Pepper’s feedback 

could be: “Are you sure about your answer?”;  “Could you explain your reasoning?”. If Pepper notices 

a level of difficulty that is too high for the student, it might say: “This task was complicated for you, 

now I will show you an easier one”. At the end of the sessions, Pepper could propose metacognitive 

questions, for example: “What was the key idea that enabled you to solve the task?”; “What were 

your difficulties?”; “How did you overcome them?”. We will analyze students’ behavior, emotional 

reactions, participation and task performance. We will engage the teachers of the classes involved. 

They will discuss the results with us and long-term work sessions will be set up to monitor progress 

and evaluate effectiveness and adapt personalized programmes. 
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Introduction 
In the digital age, students prefer to use educational tools that resemble their everyday lives, such as 

instructional videos, e.g. on YouTube (Wetzel & Ludwig, 2024). A common criticism regarding these 

videos is that they tend to force students into the role of passive recipients not actively constructing 

their own knowledge (Bersch et al., 2020). Some authors suggest that certain strategies can enable 

students to become more active in the process of learning with this medium such as controlling the 

flow of the video (rewinding, fast-forwarding, pausing), solving related tasks or taking notes (e.g. 

Bergmann & Sams, 2012). While some studies have investigated whether learners use these 

strategies, there is a lack of in-depth analyses, especially in the field of mathematics education. As a 

first step to address this issue, we aim to answer the following research question:  

What kind of notes (if any) do students take while watching an instructional mathematics video? 

Methods  
To examine the effects of interactive tasks and a comprehension-oriented design of instructional 

mathematics videos, a pretest-posttest study was conducted with 20 classes of German ninth graders 

in 2023. A description of the study and the materials used as well as the results of a pilot study can 

be found in Wetzel and Ludwig (2024). Participating students watched a ten-minute video on the 

topic of systems of linear equations on an iPad with headphones. The video focuses on the meaning 

and determination of the solution set, the latter especially regarding the substitution method. Students 

were given a blank sheet of paper and instructed that they could use it to take notes while watching 

the video if they wished, but that there was no obligation to take notes. The sheets were collected 

after the students had finished watching the video. We analysed the notes of eight classes (n = 177) 

in depth. Using an inductive approach, we first identified note type categories. We then assigned each 

student sheet to one or more categories by dividing the note into meaningful subparts. Each subpart 

was then assigned exactly one note type.  

Results  
Of the 177 note sheets collected from the students, 76 were returned blank, so 101 (57,1%) of the 

students had taken notes. We deduced three main content-related categories and 14 subcategories4, 

see Table 1. The mean number of segments into which we divided a single sheet of notes was M = 

3.2 (SD = 2.1, Min = 1, Max = 10). The frequencies in Table 1 indicate unique occurrences of a note 

type, so if more than one segment on a sheet was assigned the same type, it was counted only once. 

The mean number of unique types assigned per sheet is M = 2.6 (SD = 1.6, Min = 1, Max = 7). All 

three main types of notes occurred almost equally often. The most common types of notes were 

copying a calculation from the screen and summarising the relationship between the orientation of 

 

4 We also deduced three off-topic subcategories such as doodling which are excluded from the analysis. 
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the lines of the graphs of the equations and the number of solutions, which was the central theme of 

the video. Reviewing the results on a class-level provides further insights: The number of students in 

each class who took notes varies enormously from 20.0% to 90.4% (M = 55.3%, SD = 24.2%). This 

suggests that there may be some kind of note-taking culture or other norms or rules within a class that 

influence the note-taking behaviour of the whole class. 

Copy of content (52) Summary of content (55) Calculation (50) 

Copy of calculation (30) 

Copy of larger section of video (18) 

Incomplete copy of a section (17) 

Copy of the steps of the method of 
substitution in words (7) 

 

Orientation of lines in relation to 
number of solutions (30) 

Interpretation of set of solutions (26) 

Summary of audio-only content (17) 

Own definition of a term (15) 

Own words for the steps of the 
method of substitution (13) 

What is a solution check (5) 

Solving an equation (21) 

Solving a system of linear equations 
(19) 

Doing a solution check (16) 

Other kind of calculation (11) 

Table 1: Deduced types of content-related notes and frequency of unique occurrences  

Discussion and outlook 
The presented results are preliminary findings that must be analysed in more detail in future work. 

Regarding the study context in which the data was collected, it will be interesting to investigate 

whether the amount and type of notes taken predict success in the posttest. Furthermore, given that 

some students received an interactive video, it will be interesting to see whether this is a predictor 

variable for the observed note-taking behaviour. Overall, it is a promising result that more than half 

of the students took notes. However, we cannot conclusively say whether this reflects students’ 

typical video-watching behaviour or whether this stems from the formal setting of the study. 
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Introduction 
Many students struggle to grasp the relevance of abstract mathematical concepts when they seem 

disconnected from real-world applications. In response, a DecisionTheatreLab aims to bridge this 

gap between theoretical mathematics education and real-world societal challenges. By immersing 

high school students in the exploration of pressing issues using computer-aided mathematical models 

and large-scale data visualizations, the program offers a three-part format comprising a Decision 

Theatre and supplementary workshops in mathematics and computer science. This innovative IT-

supported approach not only promotes students' awareness of the impact of mathematically informed 

decisions but also fosters active participation. We present a practical implementation of a 

DecisionTheatreLab on infection spreading. 

Decision Theatre: Behind the scenes of infection control 
In our Decision Theatre on the spread of infections we created an interactive web application5 to 

engage students with a scientific model enabling them to discuss and eventually agree on political 

measures in a decision-making situation. The underlying model is the GEoReferenced Demographic 

Agent-based model (GERDA) that takes into account a selection of different non-pharmaceutical 

interventions including various lockdown options, use of face masks, social distancing and 

acceptance or disobedience of measures (Goldenbogen et al., 2022). 

Figure 1: decision theatre and school labs  

 

 

5 https://pandemie.streamlit.app 
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In a first step the students gain insight into the basic mechanics and outputs of GERDA and perform 

a guided sensitivity analysis. Then students are allowed to simulate up to three scenarios in small 

groups and examine the results before deciding on infection control measures.  

Supported by large-scale visualizations of simulation results of GERDA the students reconstruct and 

discuss the effects of different political measures on potential future evolutions. The students finally 

evaluate the benefits and limitations of the model against the background of a complex set of societal 

interests. 

Mathematics and computer science school labs 
The use of GERDA to support a political exchange requires mathematical competencies only for the 

stochastic analysis of the generated SIRD curves. To highlight the importance of mathematics for the 

development of such a model, the Decision Theatre is accompanied by two school labs. In a 

mathematics course, the students first develop a propaedeutic understanding of agent-based 

modelling in an interactive experiment (Figure 1, center-right). They are then instructed to develop a 

simple infection model based on elementary probability theory, reconstructing the essential 

mechanics of the professional model.  

In addition to the mathematical basics, students can also gain an insight into the implementation of 

an agent-based model in a special computer science course. There they receive the basic scaffold of 

an agent-based infection model in StarLogo, which they can modify to solve various coding 

challenges (Figure 1, right). 

In our prior work, we established a DecisionTheatreLab addressing sustainable mobility (Gürtler et 

al., 2023). Our ongoing efforts are dedicated to crafting distinct modules within the 

DecisionTheatreLab that are tailored for seamless integration into school lessons and online 

accessibility. 
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Introduction 
According to Wing (2006), computational thinking (CT) is an essential skill that everyone should 

possess, just like reading, writing, and arithmetic. Additionally, there have been efforts to 

operationalize CT in order to make it more accessible in the classrooms (Bocconi et al., 2016). 

Furthermore, Bocconi et al. (2016) found that CT was taught in a variety of ways across countries; 

some include it as a separate subject or include it as a component of a subject.  

Over the last five years, there has been an increase in research into integrating CT into mathematics 

education (Subramaniam et al., 2022). Subramaniam et al. (2022) discovered that coding and 

programming are the most popular ways to incorporate CT into mathematics lessons, and it is argued 

that this is the best strategy for improving CT skills while learning mathematics. We implement this 

strategy by programming in Microsoft Excel (MS Excel).  

Ye et al. (2023) conducted a literature review that summarized general programming software like 

Scratch, Arduino, and Phyton, as well as specific mathematics software like GeoGebra, Geometer 

Sketchpad, MATLAB, and spreadsheets to enhance CT in mathematics lessons. These programs have 

been shown to help students learn CT and mathematics (Wang et al., 2022; Ye et al., 2023). In this 

study, we used MS Excel to assist students in learning CT and mathematics.  

Theoretical Framework  
Shute et al. (2017) proposed a CT framework that guided the development of our math CT lessons. 

Their framework has six facets: decomposition, abstraction, algorithm, debugging, iteration, and 

generalization. In addition to this framework, we utilized Kynigos' (2007) half-baked approach. It 

allows students to work on an incomplete design but requires them to finish it. Our spreadsheet file 

was already filled with formulas, but they did not perform optimally, requiring students to fix them.  

Methodology 
This study employed the educational design research (EDR) approach proposed by McKenney and 

Reeves (2018). This method is suitable for conducting developmental innovation research. We 

selected a math topic for junior high school students in Indonesia: numbers and place values. Prior to 

this study, in an interview with junior high school students, we asked them to read specific numbers, 

such as 723 and 794231. Our preliminary findings revealed that students struggled to read numbers 

and place values. As a result, we used this context to prompt students to write a program that reads 

numbers in Microsoft Excel. For example, if we type the number "1" into one cell, another cell will 

display the text "One". Students received a spreadsheet file and began working on the sheets. The file 

contained three sheets: Section 1, Section 2, and Section 3. Section 1 was to improve a program that 
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could read numbers one through nine but not four. Students had to identify and fix the problem. Later, 

students had to modify Section 1 to read number 10. Section 2 was similar to Section 1, but in order 

to improve the program, read 1 to 20, and the modulo formula "=mod(number,divisor)" was 

introduced to them. Section 3 extended students' reading numbers from 1 to 30.  

Report and Analysis  
The report will highlight the students' performances in using the MS Excel program to read numbers. 

Some groups found it difficult to read the formulas. Section 1 was straightforward for students to 

correct the formula. Meanwhile, students struggled with sections 2 and 3.  

Proposal  
The poster will display the formulas that students used to complete the spreadsheet program that reads 

numbers from 1 to 30. Furthermore, CT facets by Shute et al. (2017), would be elaborated on what 

students have been working on in our math CT lesson using spreadsheets.  
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