
Author queries:
Q1: OK as edited here? Or “annotator’s”?
Q2: Unnecessary line break?
Q3: Unnecessary line break?
Q4: Unnecessary line break?
Q5: Unnecessary line break?
Q6: Unnecessary line break?
Q7: Is the phrase “is sensible” okay? Would “is sensitive to” be preferable?
Q8: Arxiv URL okay?



SIAM J. MATH. DATA SCI. © 2023 Society for Industrial and Applied Mathematics
Vol. 0, No. 0, pp. 1--26

Probabilistic Registration for Gaussian Process Three-Dimensional Shape1

Modelling in the Presence of Extensive Missing Data\ast 2

Filipa M. Valdeira\dagger , Ricardo Ferreira\ddagger , Alessandra Micheletti\dagger , and Cl\'audia Soares\S 

3

Abstract. We propose a shape fitting/registration method based on a Gaussian processes formulation, suitable4
for shapes with extensive regions of missing data. Gaussian processes are a proven powerful tool,5
as they provide a unified setting for shape modelling and fitting. While the existing methods in6
this area prove to work well for the general case of the human head, when looking at more detailed7
and deformed data, with a high prevalence of missing data, such as the ears, the results are not8
satisfactory. In order to overcome this, we formulate the shape fitting problem as a multiannotator9
Gaussian process regression and establish a parallel with the standard probabilistic registration.10
The achieved method, the shape fitting Gaussian process (or SFGP), shows better performance11
when dealing with extensive areas of missing data when compared to a state-of-the-art registration12
method and current approaches for registration with GP. Experiments are conducted both for a13
two-dimensional small dataset with several transformations and a three-dimensional dataset of ears.14
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1. Introduction. Consider the problem of predicting a complex shape, like a human ear,18

from a dataset of similar point clouds and partially observed points of this shape. In this19

setting, we face both the registration and modelling of different point clouds. There are20

increasing areas of application for three-dimensional (3D) shape modelling, in particular when21

it comes to the human body, spread over medical applications (segmentation [15], prosthesis22

design [42], surgical planning [10]), surveillance (face recognition [34], tracking [21]), or human-23

machine interaction (expression/emotion detection [38], virtual humans [37]). A large number24

of approaches focuses on the human head, with particular incidence on the face region, and25

increasingly better models have been achieved for coarse-grained requirements [6, 36].26

However, small and detailed areas are still not accurately represented and attempts to27

tackle this problem are currently emerging [35]. Our driving example is the modelling of an ear,28

representative of a fine-detailed region with extensive data problems. Given the challenging29
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shape of this face segment, the 3D scan procedure leads to broad regions of missing data and30

a high level of noise. Our approach is nonetheless generic enough to be applied to any other31

shape, as seen in Figure 5 of section 5 with the 2D fish data.32

A standard approach to obtain a statistical shape model from a given dataset is through33

3D morphable models (3DMM), first proposed in [4]. Although they include both a shape34

and an appearance component, here the focus is only on the former. Given a set of scans,35

the standard procedure to obtain a 3DMM entails two main steps: dense correspondence and36

modelling . During the former, the original samples of unorganized point clouds are set into37

correspondence, i.e., a reparametrization is found such that points with the same index have38

the same semantic meaning (for instance, point i of each scan represents the tip of the nose).39

This is a requirement for the subsequent modelling step where the deformations of each sample40

are studied, in order to express shape variability in a lower dimension. Correspondence across41

a dataset can be achieved by deforming a generic reference shape to each target scan, without42

prior information on the shape characteristics. This approach is a subclass of correspondence43

methods denoted as registration [40] and the standard choice for shape modelling pipelines [4,44

34]. Given that no shape prior is taken into account, registration is by itself a broad area of45

study, developed separately from the modelling setting.46

Therefore, traditional approaches to 3DMM directly employ a state-of-the-art registration47

method, followed by principal component analysis, to find a low-dimensional representation of48

shape variability [4, 34]. Further developments on the modelling side have included increasing49

the size of the training set [6] for higher variability, using part-based models [41, 7] instead50

of global ones or the use of different shape spaces [20, 33]. Nonetheless, and particularly for51

shapes with nonrigid deformations, correspondence remains an open challenge and a limit-52

ing step on the quality of the resulting model [22]. This has motivated proposals on dense53

correspondence specifically tailored for 3D faces in recent years [11, 13, 12].54

However, regardless of the registration method in place, an underlying model restricts de-55

formations of the reference shape, such that infeasible shapes are avoided. In fact, the process56

of registration can be understood, on a higher level of abstraction, as model fitting [32, 19],57

i.e., deforming the reference shape according to a preexisting model to resemble a given sam-58

ple. The main difference between these two concepts is that restrictions to deformations are59

enforced by data (or specific shape characteristics) in model fitting and by a regularization60

parameter (independent of shape) in registration. Despite this close relationship, they are61

distinct branches of the literature since, initially, the raw data is not registered and corre-62

spondence must be achieved without access to a previous model (which can only be obtained63

upon registration). This originates complex pipelines, where different models and assumptions64

on the shape deformations are sequentially considered, for increasing refinement. A unified65

framework is desirable to achieve more principled approaches, as suggested in [25].66

We shall now formalize the previously stated conceptual problem and introduce the unified67

framework, as well as the motivation for its use in our setting. We consider a reference68

R = \{ r1, . . . , rNR
\} \subset \BbbR d and a target shape S = \{ s1, . . . , sNS

\} \subset \BbbR d, with a possibly different69

number of points NR and NS , respectively. The former is a representative example of the70

shape being studied, as close as possible to any other shape, without missing data, outliers,71

or noise, while the latter is any sample of the dataset. In previous work [42] with ear data72

scans, we have shown that most of the effects of translations and rotations can be previously73
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removed, so it is here considered that the target shape and reference were already preprocessed.74

Additionally, scaling is kept in the model, as it represents differences in ear size. Consequently,75

only nonrigid deformations between the reference and a shape are explicitly modelled.76

Under these assumptions, any shape is obtained from a reference through a reparametriza-77

tion and a set of nonrigid deformations \theta . In the discrete setting, a reparametrization can78

be represented by a permutation matrix P . Thus, the problem is formulated as finding the79

optimal deformations between S and R80

(1.1) P \ast , \theta \ast \in argmin
P,\theta 

d(\scrT (PR,\theta ), S),

where d(R,S) is a measure of dissimilarity quantifying the differences between two shapes and81

\scrT (PR,\theta ) is the transformed reference after application of the deformations \theta and permutation82

P .83

The solution of (1.1) provides a deformed reference whose points are in correspondence84

with the target shape. However, as stated above, this problem is generally not tackled in85

a unified way. On the registration side, a generic constraint is applied to the deformations,86

while P is retrieved, disregarding any knowledge of the particular shape. On the fitting side,87

correspondence is assumed (for example, by previously applying a registration method) or88

retrieved in a trivial manner (e.g., by taking the closest point). Both of these options entail89

that the correspondence is obtained with a different model \scrT (PR,\theta ) than the fitting. Looking90

at the two processes in the same setting may be beneficial as it allows both of them to benefit91

from additional information. In [25], the authors propose to formulate the unified framework92

through the use of Gaussian processes (GP). The core idea is that by designing an appropriate93

kernel, prior beliefs about the shape structure can be incorporated independently from the94

registration algorithm, allowing the shape fitting and registration to leverage the same model.95

This framework has proven successful and has led to increasingly improved models of96

the human head [4, 36]. However, developments have been made on the modelling side by97

increasing the size of training datasets [6] or improving model combination [36], i.e., how to98

bring together models originating from different datasets. By applying the GP modelling to99

3D ear point clouds, we have observed that indeed this is the most promising setting [42], but100

it calls for an improved outlook on the registration procedure. When models of the full head101

are considered, ears are a small detail that is often overlooked or disregarded [4, 13], so a102

straightforward correspondence method is enough to provide acceptable accuracy, explaining103

the limited advances on this area. It is worth noticing that a recent approach within the GP104

framework extends the head model to include ears [35]; however, it requires the identification105

of 50 manual landmarks for registration of the ear region. Besides, we approach the problem106

under a different perspective, where the ear scans are first reconstructed and the model is107

subsequently retrieved, while in [35] a preexisting head model is augmented with an additional108

ear model.109

On the other hand, the registration field has seen considerable improvements in recent110

years, and state-of-the-art methods are capable of dealing with increasingly larger ratios of111

outliers, noise, and missing data [45, 28]. Probabilistic approaches (a subclass of registration112

methods) have proven to be particularly suitable to this scenario. However, being decoupled113

from the modelling setting, they do not allow for extensive prior information regarding the114
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shapes. This knowledge is usually limited to the expected overall magnitude of deformations115

applied to the reference, controlled by a set of algorithm parameters. Instead, modelling with116

kernels allows for the inclusion of additional prior beliefs in a straightforward and convenient117

manner. Upon the development of a fitting method with a generic kernel, the replacement118

with a tailored one is immediate and does not call for alterations to the method itself.119

Multiannotation is a popular concept in the machine learning setting, where a given data120

point is labelled by different sources (annotators), i.e., there is not a unique and true label121

assignment, but several possible ones. By modelling registration as a GP multiannotator122

problem, we show that it is possible to perform probabilistic registration completely within123

the GP framework. This unified approach benefits both from a complex prior through the124

kernels and from the nice properties of probabilistic assignment, particularly when dealing125

with outliers and noise.126

1.1. Related work. Throughout this section, we review closely related work under the two127

main areas of interest: registration within the GP framework and probabilistic approaches to128

the generic registration problem.129

1.1.1. Registration within the GP framework.130

Nonrigid registration with iterative closest point. A proposed approach to tackle the problem131

registration problem/model fitting for the GP framework is a nonrigid application of the132

Iterative closest point (ICP) [3], where the transformation part is obtained through Gaussian133

process regression (GPR). This means that to each point in the reference we attribute the134

closest target point, based on their Euclidean distance. These correspondences are then taken135

as observations and GPR is used to compute deformations for the entire shape (the mean of136

the posterior is the reference used in the next iteration). Our approach relates to this method,137

in the formulation of the problem but not in the way the correspondences are retrieved. For138

ear shapes, given the large regions of missing data and the highly nonrigid deformations, the139

closest point approach leads to undesirable results [42], particularly on the bottom region,140

where the missing points from the posterior section cause the deformed reference to collapse.141

Registration as an optimization problem. In another proposed approach in [25], the authors142

formulate the registration problem/model fitting for both surfaces and images. Here, we focus143

on the surface formulation. First, the authors do a low-rank approximation, obtaining a144

parametric approximation of the original kernel. The problem is then posed as a maximum a145

posteriori (MAP) estimation problem, where the likelihood expresses some distance measure146

between the target and reference shapes, and the prior is given by the GP. The authors chose147

the mean squared Euclidean distance from the reference to the closest target point and solve148

the problem with an L-BFGS optimizer [23]. Therefore, the restriction of hard-assignment149

when choosing correspondences is maintained in this approach, leading to similar problems as150

faced in the previous one.151

1.1.2. Probabilistic registration. The previous approaches imply a deterministic attribu-152

tion of correspondences between points, while a soft-assignment may improve robustness to153

noise and outliers [45].154

This leads, in the registration area, to probabilistic registration methods, of which the most155

used and representative is the coherent point drift (CPD) [31], which considers the alignment156
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of two sets as a probability density estimation problem. This approach takes R (the reference)157

as a set of centroids coming from a Gaussian mixture model (GMM) and S (any shape) as158

points generated by the centroids. An important detail is that the centroids are forced to159

move coherently as a group, thus preserving the topological structure of the points (motion160

coherence constraint over the velocity field). The goal is to estimate the centroid from which161

each point in X was generated, thus resulting in a correspondence output.162

While considered state-of-the-art, CPD still presents difficulties in overcoming a high163

incidence of outliers and missing data, as well as a different number of points between the164

reference and target. Consequently, variants of CPD have been developed in recent years165

to deal with such drawbacks by assigning different membership probabilities [27] or using166

k-connected neighbors [1] to enforce the preservation of local structures. Other variants are167

only applicable to rigid registration [30, 24, 44] and, consequently, do not conform to our168

assumptions.169

An interesting recent work [18] proposes a Bayesian formulation of CPD (BCPD). Under170

this setting, the authors guarantee convergence of the algorithm, introduce more interpretable171

parameters, and reduce sensitivity to target rotation. Besides, this formulation is amenable to172

kernels beyond the Gaussian, thus presenting a close relationship to our work. In fact, we shall173

see that it is possible to establish a parallel between BCPD and our approach, under a given174

set of assumptions. Interestingly, in [17] we see an improved version of BCPD, where GPR is175

used. However, note that the introduction of GPs has the single purpose of accelerating the176

algorithm. The point sets are initially subsampled, after which standard BCPD is conducted.177

The final step employs GPR to extend the retrieved deformations to the full shape.178

Finally, in [2] the authors propose a probabilistic registration method, using a point dis-179

tribution model (PDM) as a kernel, instead of the traditional squared exponential kernel used180

in [31]. PDMs are the standard approach to retrieve statistical shape models from data in181

correspondence, through the application of principal component analysis (PCA). They also182

propose the use of anisotropic GMMs, oriented according to the surface normals, thus taking183

into account surface information. This method is closely related in the sense that it constitutes184

a probabilistic approach with an underlying shape modelling, thus merging soft-assignment185

with prior shape knowledge.186

1.2. Our method. From the previous introduction, it is possible to conclude that propos-187

als for registration within the GP framework target hard assignment and assume a one-to-one188

correspondence between a shape and reference, thus motivating their extension with a soft189

assignment. On the other hand, probabilistic registration methods do not consider detailed190

prior knowledge specific to the shape. This observation motivated us to develop the shape191

fitting Gaussian process (SFGP), a probabilistic shape fitting/registration method within the192

GP framework, where one can benefit both from a complex kernel prior and a soft assignment193

in the correspondences. A schematic view of the main idea behind our method is presented194

in Figure 1.195

Our main contributions are the following:196197

\bullet Shape registration/model fitting as a multiannotator GPR. We show how the problem198

of registration with soft assignment can be understood within the GP framework as a199

multiannotator Gaussian process regression (section 2).200
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R - reference 

S - shape  

(a) Registration scheme.

R - reference 

S - shape  

(b) Multi-annotator concept.

Figure 1. Schematic view of our method. The registration concept is illustrated on the left, where a reference
point set R is put into correspondence with a generic shape S. The main goal is to retrieve the deformation
applied to the reference so that it resembles the target shape, as well as the matching between the two point sets.
Note the existence of missing data, i.e., points found in R but not in S, and outliers, i.e., points found in S but
not in R, introducing additional challenges to the registration procedure. On the right, the main concept behind
our method is depicted. For each reference point with correspondence, rCi, several possible deformations are
considered, referring to the different target shape points. Each deformation (label) has an associated variance
(\sigma j

i )
2 related to the level of confidence in that particular annotation.

\bullet Parallel between probabilistic registration and our method, SFGP.We provide a parallel201

between BCPD and our algorithm, under a few assumptions, which allows us to benefit202

from the probabilistic setting (section 4). We further show how their differences lead203

to a good performance in the presence of extensive missing data (section 5).204

\bullet Application to a difficult registration problem---3D ears registration. We show that205

our method is suitable for the registration of 3D point clouds with highly nonrigid206

deformations, high occurrence of missing data and outliers, by performing simulations207

with 3D point sets of human ears. The results show improvement with respect to208

state-of-the-art proposals (section 5).209

2. Registration within the GP framework. In this section we present the formulation of210

our problem within the GP framework. This extends the approach in [25] with the explicit211

modelling of missing data and the incorporation of multiple annotators to model probabilistic212

correspondences.213

2.1. Gaussian processes. A GP is a collection of random variables, any finite number of214

which have a joint Gaussian distribution. A GP u(x) is fully specified by its mean \mu (x) and215

covariance function k(x,x\prime ) defined as216

\mu (x) =\BbbE [u(x)],
k(x,x\prime ) =\BbbE [(u(x) - \mu (x))(u(x\prime ) - \mu (x\prime ))]

and usually written as217

u(x)\sim \scrG \scrP (\mu (x), k(x,x\prime )).

We refer to [39] for a more thorough introduction to the theory of Gaussian processes.218



PROBABILISTIC REGISTRATION FOR GAUSSIAN PROCESSES 7

Outputs in higher dimensions. GPs have initially been defined for scalar outputs, but they219

can be extended to the vector-case under certain assumptions so that the results obtained for220

the scalar case remain valid [16]. In particular, a useful class of covariance functions for the221

vector-valued case arises from the scalar-valued covariance functions [29]. Let A \in \BbbR d\times d be a222

symmetric, positive definite matrix and l a real-valued covariance function. It can be shown223

that the matrix-valued function K \in \BbbR d\times d with entries kij defined by kij =Aijl(x,x
\prime ) is a valid224

covariance, with Aij representing the correlation between the ith and jth output component.225

Therefore, under the assumption that different dimensions have no correlation, it is possible226

to use any preexisting scalar kernel and set A as the identity matrix.227

2.2. Problem formulation and notation. We consider that any shape S = \{ s1, . . . , sNS
\} 228

can be obtained from a reference shape R = \{ r1, . . . , rNR
\} , where si, ri \in \BbbR d. In particular,229

the shape S is obtained by adding deformations u(r) to the reference points, where u(r) is230

modelled as a GP defined by a mean function \mu :\BbbR d\rightarrow \BbbR d and a kernel K :\BbbR d \times \BbbR d\rightarrow \BbbR d\times d,231

and written as u(r)\sim GP (\mu (r),K(r, r\prime )).232

Note that we are working in the case of nonscalar output, but as stated above the results233

obtained for scalar outputs may be applied, as long as the kernel K is ensured to be valid.234

We further assume that we can get noisy observations of the deformations235

(2.1) \delta (ri) = u(ri) + \epsilon ,

where \epsilon \sim \scrN (0, \sigma 2
n) and \sigma 2

n is the noise variance.236

Under the traditional GP setting perspective, the reference points ri can be viewed as237

the input data, while the respective deformations \delta (ri) correspond to the labels or output238

variables.239

Modelling missing data and outliers. In [25] the authors assume a one-to-one correspondence240

between target shape and reference, so each point si is attributed to a reference point as241

S = \{ r+ u(r) | r \in R\} . However, in challenging scenarios such as the ears, this assumption is242

far from true, given the large ratio of missing data and outliers found on the target shapes.243

Therefore, we consider the existence of reference points without correspondence in the target244

and vice versa. We formulate this assumption by splitting the reference R into two subsets245

\{ RC , RM\} , where the former set contains points with correspondence and the latter refers246

to missing data. In the same way, we split S into the corresponding points and outliers as247

S = \{ SC , SO\} , such that S\mathrm{C} presents a one-to-one correspondence with RC . Under these248

assumptions, the observed deformations can be expressed as249

(2.2) \delta =

\left[   \delta C1

...
\delta CC

\right]   =

\left[   srC1
 - rC1

...
srCC

 - rCC

\right]   ,
where RC = \{ rC1, . . . , rCC\} and srCi

is the shape point corresponding to the reference point250

rCi. A list of the notation used from this section onward can be found in Table 1.251

2.2.1. Registration problem. Within this framework, and because of the Gaussianity of252

the distributions, for which the mode and mean coincide, the shape fitting and registration253
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Table 1
Notation table.

Variable Description

S = \{ s1, . . . , sNS\} \subset \BbbR d The target shape point set, with its respective vector

representation s= (sT1 , . . . , s
T
NS

)T \in \BbbR NSd

R= \{ r1, . . . , rNR\} \subset \BbbR d The reference point set, with its respective vector

representation r= (rT1 , . . . , r
T
NR

)T \in \BbbR NRd

RC = \{ rC1, . . . , rCC\} Set of reference points with correspondence to target,
where C is the number of points with correspondence

SC = \{ srC1 , . . . , srCC\} Set of shape points with correspondence to the reference,
where srCi is the target point corresponding to the
reference point rCi

\Delta = \{ \delta C1, . . . , \delta CC\} \subset \BbbR d The deformations for each reference point with
correspondence, with its respective vector representation

\delta = (\delta TC1, . . . , \delta 
T
CC)

T \in \BbbR NRd

D\sigma 2
n
=diag(\sigma 2

C1, . . . , \sigma 
2
CC) Diagonal matrix of observation noise, where \sigma 2

Ci
is the

variance of noise for observed deformation \delta Ci

\scrC i = \{ j : sj \in S,pi,j >PMIN\} Set of indices of target shape with correspondence with
reference point ri

K =KRR = [k(ri, ri)]
NR
i=1 \in \BbbR NRd\times NRd The kernel matrix of the entire reference point set, i.e.,

containing all the points in R

KRCRC = [k(rCi, rCi)]
C
i=1 \in \BbbR Cd\times Cd The kernel matrix of the reference points with

correspondence
Id The identity matrix of size d
\omega Outlier probability
D\varsigma 2 =diag(\varsigma 21 , . . . , \varsigma 

2
NR

) The diagonal matrix of registration noise, where \varsigma 2i is the
variance associated to reference point ri

\~A=A\otimes Id The Kronecker product of matrix A with Id
1N The vector of ones with size N

problem can be formulated as a MAP problem [26], that is,254

max
u

p(u | R,S).

In particular, the dependence is only on the observed points and deformations (not over the255

entire reference shape), so that256

max
u

p(u | RC , \delta ).

However, the correspondences are not known beforehand and they depend on the deformations257

themselves, leading to258

(2.3) argmax
u

p(u | RC(u), \delta (u)).

In an ICP-like approach, we split our problem into two, where u is kept fixed in the inner259

maximization and RC , \delta are kept fixed in the outer optimization. Consequently, the final260

formulation of the fitting problem is written as261

(2.4) max
u

\Biggl\{ 
max
RC ,\delta 

p(u | RC(u), \delta (u))

\Biggr\} 
.
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In the outer problem, the current correspondence is used to estimate the transformations on262

the reference. Conversely, the inner maximization computes likely correspondences, given the263

currently transformed reference shape.264

3. Formulation with multiannotators. Given the conceptual formulation in (2.4), it is265

necessary to define the correspondence procedure to effectively solve the optimization. In266

section 3.1 we consider a hard-assignment that is then extended through multiannotators to267

a probabilistic one in section 3.2.268

3.1. Correspondence with hard-assignment. Let us first consider the case where there269

is single correspondence for the reference inliers. Regardless of the method used to establish270

a matching, the output will be a vector of observed deformations \delta with the same size as RC ,271

as expressed in (2.2). By (2.4) and for fixed RC and \delta , we are interested in the MAP of the272

GP posterior. In particular, given a set of observed inputs RC and outputs \delta , the goal is273

to find the most likely deformations for unobserved points RM . This corresponds to noisy274

GPR, where u is the GP and RC , \delta are the training dataset. In GPR, a Bayesian approach is275

followed to retrieve the predictive equations for test points (in this case RC). Applied to our276

setting and for the full shape input R, these equations correspond to [39]277

u\ast | RC , \delta ,R\sim \scrN (\mu p,\Sigma P ),

where \mu p \in \BbbR NRd and \Sigma p \in \BbbR NRd\times NRd are given as278

\mu p =KT
RCR(KRCRC

+ \sigma 2
nICd)

 - 1\delta ,

\Sigma p =KRR  - KT
RCR(KRCRC

+ \sigma 2
nICd)

 - 1KRCR,
(3.1)

where KRCRC
= [k(rCi, rCi)]

C
i=1 \in \BbbR Cd\times Cd is the kernel matrix of the observed points, KRRC

=279

[k(rj , rCi)]
NR,C
j,i=1 \in \BbbR NR\times C is the kernel matrix of the predicted and observed points, KRCR =280

KT
RRC

its transpose, and ICd is the identity matrix of size Cd. The deformed reference is then281

obtained as \=r= r+\mu p, to be used in the inner iteration for computation of the correspondences282

(e.g., by taking the closest point).283

Remark on the kernel matrices. Note that throughout the fitting procedure, only the points284

contained in R are taken into account. Thus, we lie in the discrete setting and the prediction285

outputs \mu p and \Sigma p can be written as a vector and matrix, instead of functions. In the same286

way, KRR, the kernel matrix of all reference points, is constant and all other kernel matrices287

(KRCRC
,KRCR) are subsets of KRR. For this reason, KRR is simply denoted as K. Despite288

this observation, we note that the formulation with GPs (instead of its discrete counterpart,289

i.e., the multivariate normal distribution) is relevant, as the extension to a continuous surface290

is desired at later steps of the pipeline.291

3.2. Introducing soft-assignment. Introducing a soft-assignment equates to attributing292

different possible target points to a reference point, each with a different probability of corre-293

spondence. In particular, we assume that a reference point ri has NS possible deformations,294

corresponding to a match with each target point. In the traditional machine learning setting,295

this idea can be expressed as multiannotation. The concept refers to the multiple labellings296

of the same data point when there is no exact ground truth available (e.g., the attribution of297

a label is subjective). In this situation, a common approach is to obtain a collection of labels298
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rC1

uC1

\sigma j
C1

\delta jC1

\scrC 1

. . .

rCC

uCC

\delta jCC

\sigma j
CC

\scrC C

rM1

uM1

yM1

rMM

uMM

yMM

. . .

Figure 2. Graphical model for the GP with multiple annotators in the context of shape modelling. The model
follows the notation proposed in [39] for GP graphical models, where the horizontal bold line represents a set of
fully connected nodes. Squared nodes represent measurements (empty squares) or constants (filled squares) and
circles are latent ones. Template points with correspondence are identified with blue, while missing points are
identified with orange to facilitate visual recognition. The plates represent the repetition of contained variables
and, in this case, refer to the multiple annotations j of a given reference point.

for each data point, provided by different annotators, with (possibly) different levels of confi-299

dence. The data points correspond to the reference points in R, while the labels correspond300

to the different possible deformations with respect to the target shape points. For a visual301

representation of the described model, we refer the reader to the respective graphical model302

in Figure 2.303

Therefore, we consider \delta jCi as the deformation between the reference point rCi and the304

shape point sj , with an associated variance (\sigma j
Ci)

2. The final variance and deformation of305

point ri is then retrieved by weighting all of the j contributions. By appropriately defining306

this relationship we are able to obtain predictive equations that follow the same structure as307

the GPR in (3.1). Following [14], we define these two quantities as308

(3.2)
1

\sigma 2
Ci

=
\sum 
j\in \scrC i

1

(\sigma j
Ci)

2
, \^\delta Ci = \sigma 2

Ci

\sum 
j\in \scrC i

\delta jCi

(\sigma j
Ci)

2
,

where \delta jCi = sj  - \=rCi. The variance (\sigma j
Ci)

2, corresponding to the annotator's confidence in309

the original formulation, represents here the probability of correspondence between point Ci310

and sj . Note that while the variance of annotator j is often considered the same across the311

data points i, here we consider that annotator j of point Ci is not necessarily the same as312

annotator j of point Ck, i.e., there can be at most NR \times NS annotators.313

The predictive equations can readily be obtained by assuming annotators provide the314

labels independently from each other, leading to the likelihood as315

p(\delta | u) =
NR\prod 
i=1

\prod 
j\in \scrC i

\scrN (\delta jCi| ui, (\sigma 
j
Ci)

2).
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Considering this expression and the prior on u, the predictive equations for an input R follow316

\scrN (\^\mu p, \^\Sigma p), with mean and covariance [14]317

\^\mu p =KT
RCR(K

 - 1
RCRC

+ \~D\sigma 2
n
) - 1 \~D\sigma 2

n

\^\delta ,

\^\Sigma p =KRR  - KT
RCR(K

 - 1
RCRC

+ \~D\sigma 2
n
) - 1KRCR,

where D\sigma 2
n
= diag(\sigma 2

C1, . . . , \sigma 
2
CC),

\~D\sigma 2
n
=D\sigma 2

n
\otimes Id and \^\delta = [\^\delta C1, . . . , \^\delta CC ]

T , where \sigma 2
Ci and

\^\delta Ci318

are given by (3.2). The kernel matrices are defined in (3.1). We can see that these equations319

differ from (3.1) only on the noise covariance matrix and label vector, but follow exactly the320

same structure.321

In order to complete our algorithm, two points need to be addressed: how to define the322

correspondence set RC and how to compute (\sigma j
Ci)

2. The computation of this value will be323

detailed in the next section.324

4. Computation of variance. In order to obtain a theoretically sound update for elements325

\sigma j
Ci in (3.2) we reformulate our problem in the standard probabilistic approach. This frame-326

work is first introduced in section 4.1 and then applied to our setting in section 4.2. In section327

4.3 we derive the parameter estimation for the previous formulation. Finally, in section 4.3 we328

establish a parallel between the GP formulation in section 3.2 and the probabilistic approach329

presented in this section. We follow the Bayesian formulation proposed in [18], instead of the330

original in [31], as the Bayesian setting has a strong connection to the GPs. Throughout this331

section, we keep the notation introduced in section 2 whenever the variables refer to the exact332

same elements.333

4.1. Probabilistic shape registration. Under the probabilistic formulation, a reference334

shape (R), upon an appropriate transformation, can be seen as a set of centroids of a GMM,335

where the target points of any shape (S) correspond to data generated by the centroids.336

Further, a point sj can be an outlier with probability \omega , in which case it is generated from an337

outlier probability distribution pout(sj). If sj is not an outlier, then it corresponds to a point338

ri with probability \alpha i (membership probability).339

In [18] the authors consider explicit similarity transformations and nonrigid ones, such340

that a point i of the transformed reference is given as341

(4.1) \scrT (ri) = \beta \Gamma (ri + vi) + \eta ,

where ri is the original reference point, \beta is a scale factor, \Gamma is a rotation matrix, \eta is a342

translation vector, and vi is a displacement vector for nonrigid transformations. We use \rho =343

(\beta ,\Gamma , \eta ) to denote the set of similarity transformations. According to GMM, the generation of344

a target point sj follows a multivariate normal distribution with mean \scrT (ri)---the transformed345

reference point---and covariance matrix \varsigma 2Id, so the probability distribution to generate sj346

starting from ri is347

(4.2) \phi ij(sj ;\scrT (ri), \varsigma 2) =
1

(\varsigma 
\surd 
2\pi )d

exp
\Bigl( 
 - \| sj  - \scrT (ri)\| 

2

2\varsigma 2

\Bigr) 
.

In order to explicitly introduce correspondences, two aditional variables are added: c \in 348

\{ 0,1\} NS , an indicator variable that takes a value of 1 for cj if point sj is an outlier, and349
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e\in \{ 1, . . . ,NR\} NS , where ej = i if the jth target point corresponds to the ith reference point.350

Taking the outlier assumptions into account, we obtain the joint distribution for (sj , ej , cj) as351

(4.3) p(sj , ej , cj | R, \varsigma 2, v, \rho ) = \{ wpout(sj)\} 1 - cj
\Bigl\{ 
(1 - w)

NR\prod 
i=1

(\alpha i\phi ij)
\gamma i(ej)

\Bigr\} cj
,

where \gamma i is an indicator function, taking a value of 1 if ej = i and 0 otherwise, and \alpha i is the352

probability that ej = i, with
\sum NR

i=1\alpha i = 1. The authors take p(\alpha ) as a Dirichlet distribution353

and set a prior on the deformations as354

p(v| R) = \phi (\delta ; 0, \lambda  - 1G\otimes Id),

where G= (gii\prime ) \in \BbbR NR\times NR , with gii\prime = k(ri, r
\prime 
i) and k(x,x\prime ) a kernel function; \lambda is a positive355

constant.356

Finally, the full joint is given as357

(4.4) p(S,T, \theta )\propto p(\delta | R)p(\alpha )

NS\prod 
j=1

p(sj , ej , cj | R,v, \varsigma 2, \alpha , \rho ),

where \theta = (v, \varsigma 2, \alpha , \rho , c, e).358

4.2. Formulation. We shall briefly detail the assumptions and problem formulation used359

in this approach, by deriving equivalents of (4.1) through (4.4) according to our assumptions.360

This will lead to the final expression for the joint distribution in (4.8).361

Transformation model. We do not consider similarity transformations, so the transforma-362

tion acting on the reference is merely given by the displacement vector vi363

(4.5) \scrT i = ri + vi.

Gaussian mixture model. According to the GMM we obtain a similar expression to (4.2)364

(4.6) \phi ij(sj ;\scrT (ri), \varsigma 2i ) =
1

(\varsigma i
\surd 
2\pi )d

exp
\Bigl( 
 - \| sj  - \scrT (ri)\| 

2

2\varsigma 2i

\Bigr) 
,

but we introduce an individual variance for each reference point given as \varsigma 2i . In section 5 it will365

become clear that this has a positive impact when dealing with large regions of missing data.366

Regarding the outliers, we follow the same assumptions as in BCPD, but for simplification,367

we take pout(sj) = 1/NS , as was previously taken in CPD. Besides, we take equal membership368

probabilities \alpha i = 1/NR, meaning that a point in the target is expected to be associated with369

any point of the reference with equal probability. This is also the assumption in CPD and is370

here taken for simplification on this first formulation of the framework. Thus, we obtain the371

joint distribution372

(4.7) p(sj , ej , cj | R,v, \varsigma 2) =
\Bigl\{ w

NS

\Bigr\} 1 - cj\Bigl\{ (1 - w)

NR

NR\prod 
i=1

(\phi ij)
\gamma i(ej)

\Bigr\} cj
.
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Prior distributions. The prior on deformations is expressed with the previously defined373

kernel k(r, r\prime ), except that \lambda is taken as 1, since it can be included within the kernel. Therefore,374

\lambda  - 1G \otimes Id can simply be denoted as K(r, r\prime ), as defined in 2.2 and the prior is given as375

p(v| r) =\scrN (0,K).376

4.2.1. Full joint distribution. Finally, the full joint distribution is obtained as377

(4.8) p(s, r, \theta )\propto p(v| r)
NS\prod 
j=1

p(sj , ej , cj | r, v, \varsigma 2),

where \theta = (v, \varsigma 2, c, e) are the parameters to be estimated.378

4.3. Solving the problem with variational Bayesian inference. In order to estimate the379

parameters \theta in (4.8), we resort to variational Bayesian inference (VBI) [5, 43], a useful tool380

when dealing with challenging posterior distributions. We start by providing an overview of381

VBI and its formulation for out problem, followed by the update equations obtained through382

this approach.383

4.3.1. Background. The idea behind VBI is to use a distribution q(\theta ) to approximate384

the true posterior p(\theta | S,R), where the closeness between the two distributions is measured by385

the Kullback--Leibler (KL) divergence. Therefore, the goal is to minimize the KL divergence386

between q and p, i.e.,387

q\ast (\theta ) = argmin
q(\theta \in Q)

KL(q(\theta ) | | p(\theta | S,R))

= argmin
q(\theta \in Q)

\BbbE [log q(\theta )] +\BbbE [log p(\theta ,R,S)] + log p(S,R),

where Q is a predefined set of distribution families to which q belongs. However, since388

log p(S,R) may not be computable, the evidence lower bound (ELBO) is maximized instead389

ELBO(q) =\BbbE [log p(\theta ,R,S)] - \BbbE [log q(\theta )].

The ELBO is equivalent to the negative KL divergence up to a constant, and therefore max-390

imizing the former is equivalent to minimizing the latter. The choice of a suitable form for391

Q is fundamental, as it should ideally lead to a sufficiently simple ELBO, while being flexible392

enough to provide a good approximation to the original posterior distribution.393

Here, we assume that q has a strong separation form, i.e., the latent variables are mutually394

independent and governed by different factors. This leads to q(\theta ) =
\prod M

i=1 qi(\theta i), where qi(\theta i)395

is the distribution for the variable \theta i. In particular, we consider396

q(\theta ) = q1(v)q2(c, e)q31(\varsigma 
2
1 ) . . . q3i(\varsigma 

2
i ) . . . q3NR

(\varsigma 2NR
).

A standard method to maximize the ELBO, and the one followed here, is the coordinate397

ascent variational inference. If we fix all other qj , then we know that the optimal qi is398

(4.9) qi(\theta i)
\ast \propto exp\{ \BbbE  - i[log p(\theta i| \theta  - i, S,R)]\} \propto exp\{ \BbbE  - i[log p(\theta i, \theta  - i, S,R)]\} ,

where \BbbE  - i[log p(\theta ,S,R)] is the expectation of the joint probability with respect to the remain-399

ing qj \not =i and \theta  - i corresponds to all parameters in \theta except \theta i. Hence, each qi is updated400

iteratively by computing \BbbE  - i[log p(\theta ,S,R)], until convergence is reached.401
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4.3.2. Update equations. We present the updates for each component of q(\theta ) in Propo-402

sitions 1, 2, and 3. The proofs follow [18, 5] and can be found in the supplementary material.403

The final equations exhibit a similar structure to those in [18], except that \varsigma 2, taken as a404

scalar in [18], is replaced by the diagonal matrix D\varsigma 2 .405

For ease of notation, and in preparation for the subsequent equations, we define pij =406

\BbbE [cj\gamma i(ej)] as the probability of correspondence between reference point i and target point407

j, with the respective probability matrix P = [pij ]
NR,NS

i,j=1 \in [0,1]NR\times NS . We further define408

\nu i =
\sum NS

j=1 pij , representing the expected number of target points corresponding with ri, as409

well as \nu = P1NS
, the corresponding vector.410

Proposition 1. The deformations v follow a normal distribution \scrN (\mu v,\Sigma v), with the update411

equations for mean and covariance given as412

\mu v =\Sigma v
\~D\nu 

\~D - 1
\varsigma 2 ( \~D - 1

\nu 
\~Ps - r),

\Sigma v = (K - 1 + \~D\nu 
\~D - 1
\varsigma 2 ) - 1,

(4.10)

where D\varsigma 2 =diag(\varsigma 21 , . . . , \varsigma 
2
NR

) and D\nu =diag(\nu 1, . . . , \nu NR
).413

Proposition 2. The update for the correspondence probability is414

(4.11) pij =
(1 - w)\langle \phi ij\rangle 

NR

NS
w+ (1 - w)

\sum NR

i\prime =1\langle \phi i\prime j\rangle 
,

where \langle \phi ij\rangle = \phi ij(sj ;\scrT (ri), \varsigma 2i ) exp
\Bigl\{ 
 - \mathrm{T}\mathrm{r}(\Sigma i

v)
2\varsigma 2i

\Bigr\} 
, \scrT (ri) = r+\mu v, \Sigma 

i
v is the submatrix of \Sigma v related415

to the vi component, and Tr(\cdot ) is the trace of the matrix.416

Proposition 3. The update for each variance term \varsigma 2i is given as417

(4.12) \varsigma 2i =
1

d

\Biggl( 
[ \~Pdiag(s)s]i  - 2\=rTi [

\~Ps]i
\nu i

+ \| \=ri\| 2 +Tr(\Sigma i
v)

\Biggr) 
,

where [A]i refers to the ith row of matrix A.418

4.4. Parallel with GP framework. If we assume that there are no missing points, then it is419

possible to establish a parallel between the previous formulation and the GP framework. With420

this aim, we reformulate our expressions in order to obtain a similar structure to Propositions 1421

through 3. Note that the update step of pij can be understood as the ``getting correspondence""422

part, i.e., the inner optimization of problem (2.4).423

Proposition 4. Considering no missing points, i.e., RC =R, and if the variance (\sigma j
Ci)

2 in424

(3.2) is taken as425

(4.13) (\sigma j
Ci)

2 =
\varsigma 2i
pij

,

where pij is given by (4.11), then an equivalent exists between the update equations in Propo-426

sitions 1, 2, and 3 and the update equations for multiannotator GPR in (3.1).427
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Proof. When RC = R, and since KT = K, the posterior mean and covariance in (3.1)428

become429

\mu p =K(K + \~D\sigma 2
n
) - 1\^\delta ,

D\sigma 2
P
=K  - K(K + \~D\sigma 2

n
) - 1K,

where D\sigma 2
n
= diag(\sigma 2

1, . . . , \sigma 
2
NR

), with \sigma 2
i and \^\delta i given by (3.2) and here restated without the430

notation for correspondences (as there are no missing points)431

1

\sigma 2
i

=
\sum 
j\in NS

1

(\sigma j
i )

2
, \^\delta i= \sigma 2

i

\sum 
j\in NS

\delta ji

(\sigma j
i )

2
.

Taking the variance as in (4.13), we can write the previous equations as432

1

\sigma 2
i

=
Pi1Ns

\varsigma 2i
=

\nu i
\varsigma 2i
,

\^\delta i = \nu  - 1
i

\sum 
j

pij(sj  - ri) = \nu  - 1
i

\~Pis - \nu  - 1
i

\sum 
j

pijri = \nu  - 1
i

\~Pis - ri,

where Pi refers to the ith row of matrix P . Therefore, we have that D\sigma 2
n
= D\varsigma 2D

 - 1
\nu and433

\^\delta = \~D - 1
\nu 

\~Ps - r. The posterior deformations in (1) can then be written as434

\mu p =K(K + \~D\varsigma 2
\~D - 1
\nu ) - 1\delta 

=KK - 1
\Bigl[ 
1 + \~D\varsigma 2

\~D - 1
\nu K - 1

\Bigr]  - 1
\delta 

=
\Bigl[ 
K - 1 + \~D\nu 

\~D - 1
\varsigma 2

\Bigr]  - 1
\~D\nu 

\~D - 1
\varsigma 2 ( \~D - 1

\nu 
\~Ps - r)

and the covariance as435

D\sigma 2
P
=K  - K(K + \~D\varsigma 2

\~D - 1
\nu ) - 1K

=K  - 
\Bigl[ 
K - 1 + \~D\nu 

\~D - 1
\varsigma 2

\Bigr]  - 1
\~D\nu 

\~D - 1
\varsigma 2 K

=
\Bigl[ 
K - 1 +D\nu D

 - 1
\varsigma 2

\Bigr]  - 1\Bigl[ 
K(K - 1 + \~D\nu 

\~D - 1
\varsigma 2 ) - \~D\nu 

\~D - 1
\varsigma 2 K

\Bigr] 
=
\Bigl[ 
K - 1 + \~D\nu 

\~D - 1
\varsigma 2

\Bigr]  - 1
,

thus being equivalent to the expressions for \mu v and \Sigma v in (4.10). This entails that v and \delta ,436

under the assumption of no missing data, refer to the same variable and are updated with437

equivalent equations. Therefore, if pij and \varsigma 2i are updated according to Propositions 2 and 3438

(respectively), there is an equivalence between the two methods.439

Although this is established for the case of no missing data, we take (4.13) as a reasonable440

update for the annotators' variance, together with the necessary updates for pij and \varsigma 2i . AQ1441

4.5. Missing data points. Given the probability matrix P , we apply a predefined442

threshold PMIN , such that pairings with a lower value than PMIN are identified as non-443

corresponding. So, for each point ri, the considered correspondences to the target are444

\scrC i = \{ j : sj \in S,pij > PMIN\} . Then if a point ri has no elements in \scrC i, it is considered a445

missing point, meaning that RM = \{ ri : ri \in R, | \scrC i| = 0\} and RC = \{ ri : ri \in R, | \scrC i| > 0\} .446
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Algorithm 4.1 SFGP.

Input: r, s,K,D\varsigma 20
, \omega ,PMIN

1: \=r= r, D\sigma 2
P
= 0

2: while some stopping criterion is not met do

3: RC , \^\delta ,D\sigma 2
n
= get correspondences (r, s, \=r,D\sigma 2

P
,D\varsigma 2 , \omega ,PMIN )

4: \mu p =KT
RCR(KRCRC

+ \~D\sigma 2
n
) - 1\^\delta 

5: D\sigma 2
P
=KRR  - KT

RCR(KRCRC
+ \~D\sigma 2

n
) - 1KRCR

6: \=r= r+ \mu p

7: \varsigma 2i =
1
d

\Bigl( 
[ \~P\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}(s)s]i - 2\=rTi [ \~Ps]i

\nu i
+ \| \=ri\| 2 +Tr(D\sigma 2

P
)
\Bigr) 

8: end while

Algorithm 4.2 get\.correspondences.

Input: r, s, \=r,D\sigma 2
P
,D\varsigma 2 , \omega ,PMIN

Output: D\sigma 2
n
=diag(\sigma 2

C1, . . . , \sigma 
2
CC),

\^\delta = (\^\delta TC1, . . . ,
\^\delta TCC)

T ,RC

1: for (i, j)\leftarrow (1,1) to (NR,NS) do

2: \phi ij(sj ; \=ri, \varsigma 
2) = 1

(\varsigma i
\surd 
2\pi )d

exp
\Bigl( 
 - \| sj - \=ri\| 2

2\varsigma 2i

\Bigr) 
3: \langle \phi ij\rangle = \phi ij exp

\Bigl\{ 
 - 1

2\varsigma 2Tr(\sigma 
2
Pi
Id)
\Bigr\} 

4: pij =
(1 - w)\langle \phi ij\rangle 

NR
NS

w+(1 - w)
\sum NR

i\prime =1
\langle \phi i\prime j\rangle 

5: (\sigma j
i )

2 = \varsigma 2i
pij

6: end for
7: \scrC i = \{ j : sj \in S,pij >PMIN\} 

RC = \{ ri : ri \in R, | \scrC i| > 0\} 
8: for i\in RC do
9: 1

\sigma 2
Ci

=
\sum 

j\in \scrC i

1
(\sigma j

Ci)
2

10: \^\delta Ci = \sigma 2
Ci

\sum 
j\in \scrC i

\delta jCi

(\sigma j
Ci)

2

11: end for

4.6. Algorithm for SFGP. The pseudocode for our method is found in Algorithms 4.1 and447

4.2, where the former contains the main outer steps and the latter details the computation448

for the correspondence part.449

5. Experimental results and discussion. In this section we present the results of exper-450

iments with both 2D and 3D data, with the respective discussion. For each subsection, we451

first describe the datasets and settings, following with an analysis of the results.452

5.1. 2D data.453

5.1.1. Dataset. As 2D data, we take the fish dataset [8], where the reference is a 2D454

fish with 98 points. The target point sets are then generated by applying different kinds of455
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Table 2
Brief description of the different methods used in the experiments. For BCPD, the absence of normalization

means that the shapes maintain their relative size, i.e., they are both normalized with respect to the target shape
size, as recommended by the authors.

Name Description

SFGP Full SFGP in its complete version
SFGP bcpdReg SFGP, where the registration variance \varsigma 2 is taken as a scalar instead of a vector,

computed according to BCPD equations
GPReg noTresh SFGP without the threshold for missing points PMIN

GPClosestPnt Registration with GPR, but where the correspondence part is achieved by
taking the closest point, i.e., not considering multiannotators

BCPD Standard BCPD method with the standard parameters
BCPD Opt Norm BCPD method with optimized parameters for the fish dataset, with

normalization of both shapes
BCPD Opt noNorm BCPD method with optimized parameters for the fish dataset, without

normalization of both shapes, since this is not used in our method and could
potentially benefit it in some cases

alterations to the data. Nonrigid deformations are generated by warping the reference points

AQ2

AQ3

AQ4

AQ5

AQ6

456
with a Gaussian radial basis function. The dataset has four other variations considering457

outliers, missing data, rotation, and noise, all of them with a moderate level of deformations458

included.1 In order to accurately replicate the ear data challenges, we further create a new459

dataset, based on the noise level 2 of the fish dataset. Here, we introduce structured missing460

data in the following way: we choose one point of the reference as the center and increasingly461

set the width of a squared bounding box around this point---all the points within the box are462

removed.463

5.1.2. Setting. We consider different variations of our method, as well as different varia-464

tions of BCPD, in order to show the relevance of each modification. Their description can be465

found in Table 2. To fairly compare our method with BCPD, we set their parameters with the466

same value whenever possible---consequently, we use the squared exponential kernel for our467

model. The remaining parameters and initial values for VBI are tuned with the deformation468

level 1 for both methods, by grid search. A detailed description of all settings can be found469

in the supplementary material.470

5.1.3. Metrics. For the evaluation of results, we mainly look at the Euclidean distance471

error between corresponding deformed reference \=ri points and the ground truth s\ast i , i.e., the472

complete and deformed target shape without noise, averaged over the shape, so d(s, t) =473
1

NR

\sum NR

i=1 \| s\ast i  - \=ri\| 22. This is then averaged over the entire dataset, consisting of 100 samples.474

However, it should be noted that BCPD will occasionally not lead to a successful registration,475

in which case it does not produce an output or does not produce correspondence for any476

point. Since this result will not be taken into account for the distance metric and often occurs477

in the most challenging settings, we also present the fraction of successful registration. Our478

1A more detailed description of the dataset can be found in [8].
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method does not consider a failed registration unless there are no deformations found in the479

first iteration.480

5.1.4. Discussion. The results for all the considered methods and data variations can481

be found in Figures 3 and 4. Our main focus is the dataset with an increasing level of482

missing regions (Figure 3(a)), as this closely replicates the challenges in the ear reconstruction483

problem. While for the lowest level it is evident that BCPD (when optimized) performs better,484

as we increase the missing area, our method presents a progressive advantage. Comparing485

SFGP Full , SFGP bcpdReg, and SFGP noTresh it becomes clear why those modifications are486

advantageous when facing extensive missing regions. It is also evident that the closest point487

approach has the poorest performance overall.488

It is also interesting to look at the results in the presence of outliers (Figures 4(a) and489

4(b)), for which we tested all methods with \omega = 0.1 and \omega = 0.3 (with the exception of490

GPClosestPnt , where this is not applicable), since this parameter reflects the expected outlier491

probability. While BCPD outperforms SFGP when \omega is adequately adjusted to the real outlier492

occurrence, we note that the behavior of our method is not as dependent on this parameter.493

Thus, in the absence of prior knowledge, SFGP is found to be a more suitable choice.494

Looking at the variation of noise (Figure 3(c)) and deformations (Figure 3(b)), we see495

that overall an adequately fitted BCPD outperforms our method and is able to achieve lower496

errors, even when both parameters are previously tuned. We also note that the two variations497

of our method always perform better than the full proposal for these scenarios---the pro-498

posed alterations do not bring an advantage when we are not dealing with structured missing499

data. However, this decrease in performance is deemed acceptable given the gain it provides500

in Figure 3(a) and when compared with the closest point proposal always leads to lower501

error.502

An intuition on why our method is able to cope well with extensive missing data is of-503

fered in Figure 5, where we compare the fitting results from BCPD with different levels of504

deformation and our proposed method. It is clear that the main challenge in achieving an505

adequate fitting with BCPD is that a high level of deformations leads to the collapse of the506

missing regions, while lower values do not provide enough flexibility to fit small details found507

in the nonmissing parts. With SFGP, collapsing is prevented, while allowing enough nonrigid508

deformation to accurately fit fine details.509

Furthermore, in Figure 6 we present additional metrics for the missing region version of510

this dataset. The high performance on both recall and precision presented by SFGP tells511

us that the lower distance error previously observed relates to an accurate identification of512

missing points. Additionally, we notice that the GP with closest point correspondence exhibits513

a very high precision, but at the cost of a low recall.514

5.2. 3D Ear simulated data.515

5.2.1. Dataset. In this section, we test our method with 3D ear data, the main goal of our516

work. The dataset is obtained from the ear dataset in [9], with subsequent transformations517

to achieve more realistic shapes, mimicking the real-life challenges observed in raw scans.518

We denote the transformed shapes as simulated dataset and an example may be found in519
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(a) Increasing level of missing region.
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(b) Increasing level of deformations.
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(c) Increasing level of noise.

Figure 3. Results for the fish dataset with different types of modifications. The x-axis always depicts an
increase in a given data modification, while the y-axis provides the ratio of successful items registered and the
average distance error. Variants of SFGP are depicted with full lines, variants of BCPD are depicted with thin
dashed lines, and GP with closest point is depicted with a thick dashed line. Increasing levels of missing region
refer to increasing widths of the bounding box surrounding the selected reference points (width ranging from
0.1 to 0.4); increasing levels of deformations refer to increasing variance of the warping Gaussian radial basis
function; and increasing levels of noise refer to increasing variance of the additive Gaussian noise (standard
deviation ranging from 0 to 0.05).
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(a) Increasing fraction of outliers, for \omega = 0.1.
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(b) Increasing fraction of outliers, for \omega = 0.3.

Figure 4. Results for fish dataset with increasing fraction of outliers. The x-axis always depicts an increase
in a given data modification, while the y-axis provides the ratio of successful items registered and the average
distance error. Variants of SFGP are depicted with full lines, variants of BCPD are depicted with thin dashed
lines, and GP with closest point is depicted with with a thick dashed line. Increasing levels of outliers refer to
the increasing ratio of outlier points with respect to the reference points (ranging from 0 to 2).

Figure 8. The transformations applied include missing data, outliers, measurement noise, and520

a slight rotation, translation, and scaling---a more detailed description can be found in the521

supplementary material (see SM2.2.1).522

To facilitate computation, the dataset and reference were subsampled to around 3000523

points. Further, we consider as possible targets only a subset of the initial 500 samples524

contained in the dataset, to account for the lack of variability observed between shapes (see525

our previous work [42] for a more detailed explanation), i.e., to ensure that the reference does526

not closely resemble the target shapes, we select samples presenting larger deformations with527

respect to the reference (measured as the average of Euclidean distance between corresponding528

shape points). The reference was chosen as the first shape of the dataset. Usually, one tries529

to achieve a reference as close as possible to all shapes in the dataset (e.g., mean shape) in530

order to improve shape fitting. However, since we face a problem of lack of variability in our531

dataset, we opt for this strategy to increase the shape difference to the targets.532
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(a) BCPD registration with low \lambda .
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(b) BCPD registration with high \lambda .
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(c) Our registration.

Figure 5. Example for missing data performance with fish dataset. The target can be seen in blue circles,
while the deformed reference after registration is represented with red and green crosses. Points with and without
correspondence are identified both for the reference and target shape. The two results for BCPD are run with
different values of parameter \lambda responsible for controlling the expected length of the deformation---small values
of \lambda allow for more deformation and vice versa. With BCPD we can either get enough nonrigidity to fit the
existing points, at the cost of collapsing the missing region, or preserve the shape of this segment at the cost of
a rigid transformation that cannot appropriately fit the observed points. With SFGP, it is possible to allow a
level of nonrigid deformations that fits the shape details, while correctly identifying the missing regions.
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Figure 6. Recall and precision for increasing missing region. A high recall indicates that the method is able
to identify most of the missing points, while a high precision means that most of the points identified as missing
are in fact missing.

5.2.2. Discussion. Figure 7 presents the fitting results with SFGP, BCPD [18], and533

ANISO [2] for the simulated dataset. For fairness, we consider the SFGP with both a squared534

exponential kernel and a sum of a squared exponential and PCA kernel. The PCA kernel535

is obtained from the sample covariance of the training dataset: a subset of the original ear536

dataset not included in the possible targets of the experiment. While the squared exponential537

kernel introduces a similar prior to BCPD, the PCA kernel does so for ANISO. The distance538

error is presented separately for the missing and nonmissing regions, for additional insight539

into the behavior of each method.540

A first comparison is due between SFGP without the PDM kernel and BCPD. While the541

nonmissing points present a slightly higher error for our method, this is largely compensated542

for by the distance error occurring in the missing regions. In practice, this entails that543

unreasonable shapes are less likely to be originated from the fitting with SFGP, thus proving544

its advantage for this particular setting of extensive missing data.545

Second, the comparison between SFGP and ANISO evidences the need for a tailored546

method to handle outliers and missing data. The mere addition of a shape model to the547

probabilistic registration is not enough to overcome such obstacles (even with the anisotropic548

variance proposed by the authors).549

As expected, we note that the addition of a shape model to SFGP improves the registration550

results, particularly for the nonmissing regions. Under this prior, our method presents a lower551

distance error not only for the missing regions but for the complete shape.552

Finally, we include an example of registration with SFGP and the closest point approach553

in Figure 8. The limitations of the latter are clearly evidenced, as well as the capability of554

our method to overcome them. SFGP avoids the collapse of the posterior section when large555

regions of the ear are missing and adequately fits the anterior regions. Despite this, there is556
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Figure 7. Results for the fitting of a reference to the simulated dataset with a probabilistic registration
method (BCPD), SFGP using a squared exponential kernel (SFGP), SFGP using a PCA kernel (SFGP PCA),
and probabilistic registration with PCA kernel and anisotropic variance (PCA ANISO). The boxplot is obtained
from the mean Euclidean distance between the true target shapes and the deformed reference, for the entire
dataset. On the left, we consider only the subset of points that are missing and, on the right, the remaining
ones. The bottom row contains a zoom-in of the top plots along the y-axis, for better visualization of the first
three methods.

still room for improvement as seen on the top front region, where the deformed reference does557

not entirely fit the target.558

A remark on computational time is also due. While BCPD takes around 10 seconds per559

shape with acceleration and 20 minutes without, SFGP currently requires around 100 minutes.560

However, this is an unoptimized version and does not employ any method to deal with the561

high dimensionality of the data, to which GPR is sensible. On one hand, the same acceleration AQ7562
used to obtain P in BCPD will reduce computational time. On the other, several GPR tools563

for large data settings already exist and could be included to reduce time complexity. Both564

of these should be contemplated in future work.565



24 VALDEIRA, FERREIRA, MICHELETTI, AND SOARES

(a) Ground truth shape. (b) Closest Point. (c) Our method, SFGP.

Figure 8. Lateral view of shape fitting for a 3D ear shape. On the left, the ground truth mesh is represented
in yellow and the simulated ear as a point cloud in red (with noise, missing data, and outliers). In the middle,
the result obtained from the GP with closest point approach is depicted as a blue mesh. On the right, the result
from the application of SFGP is represented in green. The middle approach presents three main limitations,
indicated by white arrows. Near the top, it fails to completely fill the front part, which our method can only
partly overcome. However, large improvements are seen in the two bottom problematic regions. The large
missing area (middle arrow) and the presence of data only for the front part of the ear (bottom arrow) both
cause the reference to collapse for the middle approach. SFGP is able to overcome these challenges, leading to
an increased resemblance to the original shape.

6. Concluding remarks and future work. We developed a method that bridges the gap566

between the Gaussian process framework used in 3D morphable models and the probabilistic567

registration methods, by formulating the shape fitting problem in a GPR multiannotator set-568

ting. This allows us to benefit from advantages on both sides and obtain a method particularly569

suited for shape fitting in the presence of extensive missing data---a useful tool for challenging570

shapes such as the human ear.571

Naturally, even if the missing points are correctly identified, the shape prediction in those572

regions will be as good as the prior model. Therefore, it is beneficial to have a more complex573

and accurate model, able to express more knowledge regarding the particular shape. As stated,574

the GP framework offers a very suitable setting, with kernels expressing intuitive properties575

of the shapes. So, defining a more appropriate kernel is the logical next step. It would also be576

pertinent to study how the parallel with the probabilistic registration holds when we introduce577

the missing point set and the threshold, to have a more theoretical insight into the properties578

of our method.579
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