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Colorectal cancer (CRC) remains one of the major causes of cancer death worldwide. Chemotherapy continues to serve as the
primary treatment modality, while immunotherapy is largely ineffective for the majority of CRC patients. Seminal discoveries have
emphasized that modifying DNA damage response (DDR) mechanisms confers both cell-autonomous and immune-related
vulnerabilities across various cancers. In CRC, approximately 15% of tumours exhibit alterations in the mismatch repair (MMR)
machinery, resulting in a high number of neoantigens and the activation of the type I interferon response. These factors, in
conjunction with immune checkpoint blockades, collectively stimulate anticancer immunity. Furthermore, although less frequently,
somatic alterations in the homologous recombination (HR) pathway are observed in CRC; these defects lead to genome instability
and telomere alterations, supporting the use of poly (ADP-ribose) polymerase (PARP) inhibitors in HR-deficient CRC patients.
Additionally, other DDR inhibitors, such as Ataxia Telangiectasia and Rad3-related protein (ATR) inhibitors, have shown some
efficacy both in preclinical models and in the clinical setting, irrespective of MMR proficiency. The aim of this review is to elucidate
how preexisting or induced vulnerabilities in DNA repair pathways represent an opportunity to increase tumour sensitivity to
immune-based therapies in CRC.
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INTRODUCTION
DNA repair mechanisms are central to suppressing tumour onset
by restricting the emergence of mutations due to physiological
DNA replication and/or caused by endogenous and exogenous
sources of DNA damage [1]. The inactivation of DNA repair
mechanisms is associated with cancer initiation and progression in
many types of cancer [1, 2]. A subset of colorectal cancers (CRCs) is
characterized by germline and/or somatic genetic defects in DNA
damage response (DDR) genes. The prevalence of somatic DDR
defects in colorectal cancer (CRC) ranges between 10 and 30%
[3–5] and the prevalence of DDR gene alterations is affected by
the side of the colon where the disease emerges. There is
evidence that the histology and molecular and immunological
landscapes of CRCs arising on the right or left side of the colon are
distinct [6].
In CRC, mismatch repair (MMR) was the first DNA repair pathway

to be linked to prognosis and response to therapy [7]. Notably,
genetic alterations and epigenetic silencing of genes belonging to
the MMR machinery are frequent in CRCs, with 15% of cancers in
stages I-III being MMR-deficient (MMRd). These tumours are
associated with right-sided primary tumours, older age at
diagnosis and female sex [8]. In the clinic, MMRd tumours exhibit
high response rates to immune checkpoint blockade (ICB). For

example, pembrolizumab, an anti-programmed death 1 (PD-1)
agent, has shown remarkable efficacy in MMRd patients in whom
two or more lines of treatment have failed [9]. In addition,
pathogenic variants of other DDR pathways, such as homologous
recombination (HR), are also frequent in CRC [5]. HR is a DNA
repair process that provides high-fidelity, template-dependent
repair or tolerance of complex DNA damage, including DNA gaps,
DNA double-strand breaks (DSBs), stalled replication forks and
DNA interstrand crosslinks [10]. The contribution of HR alterations
in CRC was highlighted by the association of germline pathogenic
variants of the breast cancer gene 1 (BRCA1), a key player in the HR
machinery, with an increased risk of CRC in a meta-analysis [11].
Unlike MMRd, HR deficiency (HRd) is not associated primarily with
the side of the primary tumour, and recent studies have
elucidated how HRd can be exploited to treat CRC [5, 12, 13]. As
observed in ovarian and breast tumours, targeting poly (ADP-
ribose) polymerase 1 (PARP1) in tumours with BRCA1 and breast
cancer gene 2 (BRCA2) inactivation selectively causes cancer cell
death, showing promise in clinical settings [14, 15]. This
mechanism, known as synthetic lethality, is due to the simulta-
neous loss of function of two genes. In this context, the
pharmacological blockade of PARP1 generates DNA single-
strand breaks (SSBs), whose persistence results in DSBs that
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cannot be properly repaired when HR is inactive [5]. In this review,
we address how alterations in DNA repair affect the immune
system of the host (Fig. 1). Several findings suggest that the high
number of neoantigens in MMRd tumours is crucial for the

immune response [16, 17]. In addition, micronuclei (nucleus-like
structures) arise from fragmented chromosomes upon DNA
damage. The chromosomes contained in the micronuclei acquire
DSBs and, following the disruption of the micronuclei envelope,
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trigger the molecular activation of intracellular pathways, such as
the cyclic GMP-AMP synthase-stimulator of interferon gene (cGAS-
STING) pathway, which is also linked to immune surveillance
(Fig. 1, orange panel) [18, 19]. Whether and to what extent these
concepts can be translated from MMR to other DDR pathways
have been the focus of recent studies and are addressed in the
following sections. Moreover, ongoing clinical strategies aimed at
increasing immunogenicity and sensitivity to ICB by inducing DNA
damage via chemotherapy/radiotherapy will also be presented.
In summary, this review highlights mechanistic, translational,

and clinical studies describing how the DDR can be targeted in
CRC in combination with ICB to trigger antitumour immunity.

The unique biological and clinical features of MMR-
deficient CRC
Mismatch repair is a multicomplex protein system that is required
for the detection and replacement of single-nucleotide mis-
matches, in addition to large and small deletions that escape
proofreading during replication [20]. Both genetic and epigenetic
alterations in MMR genes occur early in colorectal carcinogenesis,
influencing subsequent genetic events [21]. For this reason, CRCs
are classified into two subgroups: (a) MMR proficient (MMRp)
tumours, which maintain a constant length of microsatellites and
are thus defined as microsatellite stable tumours (MSS), in which
chromosomal instability is the main driver of genomic instability,
and (b) MMRd tumours, in which the length of the microsatellite
regions changes frequently during cell division, inducing micro-
satellite instability (MSI) [20]. At the genomic level, MMRd tumours
accumulate many frameshifts (FSs) and single-nucleotide variants
(SNVs) and are characterized by a high mutational burden [20, 22].
The majority of MMRd/MSI CRCs are the result of somatic
mutations in MMR genes or the epigenetic downregulation of
MutL Homolog1 (MLH1) expression [23].
As many as 28% of MMRd/MSI CRCs occur within the context of

hereditary nonpolyposis colorectal cancer (HNPCC), also known as
Lynch syndrome (LS) [24]. LS is a hereditary cancer syndrome
characterized by heterozygous germline mutations in MLH1, MutS
protein homologue 2 (MSH2), MutS protein homologue 6 (MSH6)
or PMS1 Homologue 2 (PMS2) [24]. In addition, a small fraction of
patients develop MSI-high tumours due to biallelic mismatch
repair deficiency (BMMRD) syndrome, which is associated with the
very early onset of gliomas and colorectal and endometrial
tumours [25]. The relative abundance of MMRd tumours decreases
from 15% (stages I-III) to 5% in advanced (metastatic) settings,
establishing MMRd status as a positive prognostic factor in local
disease [26–28]. Notably, the involvement of the immune system
was not systematically considered until a decade ago, despite the
long-known abundance of lymphocyte infiltration in MMRd/MSI
CRC [29–31]. The initial causative association between MMRd
status and immunogenicity stems from a series of observations
that were rightfully connected: the finding that somatic mutations

are substantially increased by 10-100-fold in MMRd tumours
compared with MMRp tumours [32, 33] and the realization that
somatic mutations found in tumours can be recognized by the
patient’s own immune system [34]. These observations were
contextualized when examining the complete response in a single
patient with metastatic CRC, in a molecularly unselected popula-
tion, during an early phase clinical trial with an anti-PD-1 agent
[35], paving the way for the first successful clinical trial assessing
anti-PD-1 treatment for MMRd tumours [9]. Several investigations
have mechanistically associated the inactivation of the MMR
system with the accumulation of neoantigens, which are the
drivers of the immune response upon immunotherapy [17, 36]. We
recently reported that MMRd immunogenicity relies not only on
canonical neoantigens (derived from the coding part of the
genome) but also on noncanonical neoantigens (derived from
introns, 5ʹ and 3ʹ UTRs, or alternative readings of the coding
regions), which represent the majority of the total neoantigens
generated by MMR inactivation (Fig. 1, blue panel) [37].
Furthermore, the role of dendritic cell activity in expanding the
diversity of CD8+ T cell responses and harnessing neoantigen
content for therapeutic benefit in MMRd tumours has recently
been explored [38].
In parallel, while it is widely accepted that the high number of

neoantigens in MMRd tumours represents the main trigger for
initiating an immune reaction, other mechanisms that contribute
to effective antitumour immunity have been proposed. Recently,
the impact of c-GAS-STING pathway activation following the
release of cytosolic DNA has been highlighted as central to
generating a robust immune reaction in MMRd cancers by
activating the type I interferon (IFN-I) response (Fig. 1, orange
panel) [19, 39, 40]. Gajewski and colleagues elegantly described
the role of cGAS-STING pathway activation in cancer, emphasizing
how cancer outcomes are influenced by the successful priming of
T cells by activated antigen-presenting cells in the tumour
microenvironment. In particular, they showed that the activation
of pathways involving dendritic cells (DCs) that lead to the
production of IFN-I is pivotal for antigen-mediated priming of
CD8+ T cells [41]. Additionally, cGAS-STING activation enhances
natural killer (NK) cell activation, cytotoxicity, and antitumour
effects in many tumour models independently of CD8+ T cells
(Fig. 1, orange panel) [42]. Kwart and colleagues reported that
cGAS-STING activation and the IFN-I response can transform
immunosuppressive monocytes into immunostimulatory mono-
cytes [43], whereas another group reported that IFN-I attenuates
regulatory T cell function [44]. How a favourable microenviron-
ment in MSI-high tumours affects the positive outcomes of these
tumour types was examined by Llosa and colleagues [45]. The
differential expression of immune checkpoint proteins between
MMRd and MMRp tumours has been demonstrated. Cytotoxic
T-lymphocyte antigen 4 (CTLA-4), PD-1 and its ligand (PD-L1), and
lymphocyte-activation gene 3 (LAG3) are expressed at higher

Fig. 1 Defective DNA repair pathways can reshape the immune microenvironment of CRCs. Radiotherapy, chemotherapy, and targeted
agents against DNA repair pathways can potentially engage the host’s immune system when combined with immune modulator molecules.
Impairing the DDR leads to micronuclei formation and cytosolic DNA fostering cGAS-STING activation and consequently releasing cytokines
that are part of the type I IFN response (orange panel). This, in turn, promotes NK activation, immune activating monocyte polarization and
dendritic cell maturation, facilitating the presentation of MHC class II neoantigens to CD4+ T cells (orange panel). DNA mutations are a source
of canonical and non-canonical neoantigens in Mismatch Repair deficient tumours (blue panel). Chemotherapy and radiotherapy can lead to
promote the neoantigen levels in cancer (blue panel). Moreover, chemotherapy treated or mismatch repair deficient tumours show high
expression of immune checkpoints such as CTLA-4, PD-1, PD-L1 and LAG3 on tumour infiltrating lymphocytes (green panel). Additionally, the
radiation-mediated upregulation of PD-L1 on cancer cells is impaired by ATR inhibitors, which dramatically decrease the number of tumour-
infiltrating Tregs (green panel). Altered DDR pathways may be involved in the immunogenic cell death programme through the release of
HMGB1, ATP and calreticulin exposure on the cell surface. This engagement activates innate and adaptive immune cells, enhancing anti-
tumoural immune control (red panel). Additionally, DDR alterations induce autophagy, augmenting antigen presentation and increasing the
survival function while regulating the homoeostasis of CD8+ T cells (red panel). Conversely, autophagy can inhibit type I IFN response and
degrades MHC class I leading to immune escape (red panel). Sup. Mono suppressive monocytes, Stim. Mono stimulatory monocytes,
Mφ macrophages, Ag antigen.
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levels in tumour-infiltrating lymphocytes, in the stroma and in the
invasive front of MMRd tumours than in MMRp tumours (Fig. 1,
green panel) [45]. This effect is likely a consequence of the
immune-responsive tumour microenvironment due to the high
neoantigen levels of these tumour types rather than the direct
upregulation of immune checkpoint expression in MMRd cancers
[45]. Interestingly, the biology of MMRd tumours differs from that
governing other immunogenic tumour types. Indeed, we and
others have shown that MMRd CRCs can respond to ICB despite
frequent alterations in antigen-presenting genes. Notably, we
found that patients whose tumours had impaired beta 2
microglobulin (B2M) expression responded to ICB treatment, even
in the absence of antigen-presenting machinery, and the same
results were reported in mice lacking the CD8+ T cell compart-
ment [46]. Consistent with these findings, the Voest’s laboratory
recently demonstrated that MSI-high tumours with loss of B2M
still respond to ICB, and that this effect was associated with an
elevated frequency of activated γδ T cells in ICB-naïve tumours
and an increased presence of γδ T cells in the tumour
microenvironment after ICB treatment [47].
This wealth of biological information on the mechanisms of

MMRd immunogenicity has been paralleled by the clinical
development of ICB in the management of early [48, 49] and
advanced CRC [50–52], leading to the approval of anti-PD-1 +/-
anti-CTLA-4 blocking antibodies in the treatment of MMRd/MSI-H
CRCs. In addition, in 2017 the Food and Drug Administration (FDA)
approved pembrolizumab (an anti-PD-1 agent) for the treatment
of MSI or MMRd tumours regardless of histology or anatomical
location, making this the first tissue-agnostic indication in
oncology [53].
The relationship between the genetic features and response to

immunotherapy of CRC tumours has been confirmed in multiple
prospective trials. In the metastatic setting, approximately 45% of
MSI CRCs present a tumour objective response upon first-line ICB,
with a duration of response that exceeds 36 months in more than
75% of patients [51]. These results indicate that ICB treatment has
great therapeutic success in a small subgroup of MMRd metastatic
CRCs (<5% of the total), although primary and acquired resistance
restrict the efficacy of the treatment, as thoroughly discussed
elsewhere [54–56].

The majority of CRC patients do not benefit from ICB
therapies
As discussed, ICB is ineffective in MMRp CRC patients, who
account for the vast majority (85–95%) of cases [9, 57, 58]. The
evidence of the insensitivity of CRC patients to ICB emerged in a
pivotal study by Le, where the immune-related objective response
rate and 20-week progression-free survival rate were 0% and 11%
respectively, for patients with MMRp CRC [9]. The immunological
background behind the unresponsiveness of the majority of
MMRp CRC patients to ICB is characterized by a paucity of immune
cells [45]. Furthermore, seminal observations from the Jack’s group
highlighted how MSS CRC patients contain clonal neoantigens.
However, these neoantigens are broadly expressed at lower levels
than in MMR-deficient cancer patients, thus affecting productive
cross-priming and driving T cell dysfunction [59]. Despite this
limitation, the authors demonstrated that the administration of
anti-CD40 improves the efficacy of anti-PD-1 and anti-CTLA-4 in
terms of primary tumour and metastasis formation in CRC without
MMR deficiency [59]. The authors hypothesized that agonist
antibody against CD40 receptor enhances the costimulatory
function of antigen-presenting cells by generating new T cell
responses against weak affinity or poorly expressed neoantigens
[59].
However, some exceptions are emerging regarding the

immunogenicity of MMRp CRCs [58, 60, 61]. In the NICHE trial
(ClinicalTrials.gov: NCT03026140), Chalabi and colleagues reported
that up to 27% of early (stage I-III) MMRp CRCs exhibited a

pathological response to the combination of nivolumab and
ipilimumab given as neoadjuvant treatment [60]. With respect to
metastatic MMRp CRC, recent evidence supports the efficacy of
new ICB agents in treating this typically immune refractory disease
at the metastatic stage. In particular, the combination of
balstilimab (an anti-PD-1 antibody) with botensilimab (a novel
Fc-enhanced anti-CTLA-4 antibody) has shown an overall response
rate (ORR) of 22% in a population of patients with non-liver
metastases (NLMs), who were preferentially enroled in the
expansion phase of the trial [61]. Fc-enhanced anti-CTLA-4, in
addition to blocking CTLA-4 ligand interactions, has an increased
affinity for FcγRs on antigen presenting cells (APCs) and NK cells
[61]. This promotes T cell priming, activation, and memory
formation through improved coengagement of APCs and T cells
[62]. Interestingly, the potential activity of ICB agents in NLM MSS
metastatic CRC (mCRC) patients has already been reported in
another early phase trial, based on a different ICB regimen [63].
The same detrimental effect of liver metastases in response to ICB
has been noted in patients with MSI CRCs treated with ICB as a
first-line therapy [64]. However, a molecular explanation regarding
the difference in response to immunotherapy in patients with and
without liver metastases is not yet available but may be related to
the different features of the tumour microenvironment (TME), as
already shown for non small cell lung cancer (NSCLC) [65].
Regarding the relationship between cancer-specific molecular
drivers and immunogenicity, experimental evidence is accumulat-
ing regarding the impact of genetic dependencies in the beta-
catenin, RAS/BRAF or PI3K/PTEN pathways on the composition of
the TME [66, 67]. However, we still lack the clinical correlation
needed to incorporate such information as potential biomarkers in
the management of MMRp or MMRd CRCs.

Beyond the dichotomy between MMRp and MMRd tumours
Different genetic or epigenetic degrees of deficiency of the MMR
system are emerging as relevant factors in determining the
response of MMRd tumours to ICB treatment [16, 68]. Interestingly,
clinical results in glioma patients with constitutive BMMRD, which
characterize the most hypermutant tumours (typically 100-1000
mutations per Mb), suggest that ICB treatment can be effective by
retreatment with ICB in combination with other agents even after
tumour progression [69]. These results suggest that different types
and degrees of MMR inactivation are correlated with distinct
immunogenic levels.
Although cancers can be classified as MMRp or MMRd, recent

findings point to the presence of heterogeneous (functional or
nonfunctional) status of the MMR machinery within the same
tumour. In fact, evidence suggests that cells, expressing or not
MMR proteins, can coexist in the same tumour [70–73]. While in
some cases atypical MMR immunohistochemical staining is due to
technical artefacts, tumours containing cells with different
molecular backgrounds and MMR statuses indeed exist as
observed by several authors; this has multiple biological, clinical,
and therapeutic implications [71, 74, 75]. In 2014, Joost and
colleagues analysed areas of a CRC with heterogeneous MLH1
protein expression, and reported that areas lacking MLH1
expression presented Mlh1 promoter methylation and a shift in
microsatellite length [76]. The heterogeneous loss of MMR protein
expression can be classified as intraglandular (within or between
glandular formations), clonal (in whole glands or groups of glands)
or compartmental (in larger tumour areas/compartments or
between different tumour blocks) [76]. We recently reported that
the coexistence of MMRp and MMRd cells in the same tumour
niche affects immune infiltration and immune surveillance in a
preclinical model of CRC [77]. Our results suggest that the immune
response against the MMRd component could also be effective
towards the MMRp counterpart and indicate that CD8+ and γδ
T cells are involved in antitumoural immune response. However,
whether this is the result of a bystander effect or by other
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mechanisms requires further investigation [77]. Interestingly,
albeit limited to a few cases, clinical data are available on the
impact of MMR heterogeneity on the immune response in CRC.
For example, Loupakis and colleagues described a case in which a
patient harbouring a metastatic CRC tumour characterized by
MMR heterogeneity and treated with nivolumab and ipilimumab
experienced prolonged disease control [75].
The loss of expression of MMR proteins can have different layers

of complexity. Berrino and colleagues reported that spatial
heterogeneity of one of the four main MMR proteins (MLH1,
MSH2, MSH6, or PMS2) could be identified in the context of the
complete loss of expression of other components of the MMR
system [78]. This observation led to the identification of an MMR
heterogeneous pattern characterized by areas of double loss of
expression of MMR proteins in MMRd tumours. Importantly, the
authors reported that “double loss MMR” tumours harboured
increased levels of exhausted CD8+ T cells, suggesting that these
tumours may be less responsive to ICB [78].
MMR heterogeneity can also be observed at the intraindivi-

dual level, resulting in a discordant MMR status between the
primary tumour and secondary lesions [79, 80], but it can also
occur at the intertumour level in patients with synchronous or
metachronous multiple primary CRCs [81]. This evidence
suggests that ideally, in the presence of multiple lesions
(metastases or multiple primary tumours), an assessment of
the MMR status of each tumour site would be informative of the
tumour biology and possibly pivotal in designing a personalized
therapeutic approach for each patient.
On the other hand, intratumour MMR heterogeneity is

relatively infrequent [74, 75], although the number of MMR
heterogeneous CRCs described could be underestimated for
several reasons. First, pathological investigations are usually
performed on a single tumour block or on endoscopy biopsies
and may therefore not adequately represent the complexity of
the tumour mass [74]. Second, variability in pathological
evaluation across different institutions could underestimate the
extent of this phenomenon [74]. Accordingly, efforts to improve
liquid biopsy procedures for monitoring the presence of tumour
components with different MMR status in the blood might be
beneficial in clinical practice, especially in cases characterized by
genetic alterations in MMR genes. In conclusion, while the
existence of MMR heterogeneity is recognized, its impact on
tumour immune surveillance and the response to immunother-
apy remains to be thoroughly dissected.

Altered DNA double-strand repair triggers an immune-fertile
microenvironment in CRC
Double-strand breaks resulting from exogenous and endogenous
DNA damage can be repaired through nonhomologous end
joining (NHEJ) or HR mechanisms [1]. NHEJ, is a rapid and high-
capacity pathway that joins two DNA ends with minimal sequence
homology, whereas HR requires extensive homology through a
sister chromatid template [82]. The utilization of these repair
pathways is dependent on the cell cycle phase and the nature of
the DNA ends [83]. The classical NHEJ (cNHEJ) pathway is initiated
by the Ku70-Ku80 heterodimer, which binds the DNA ends and
recruits DNA-dependent protein kinases (DNA-PKcs). Additional
proteins, such as the nuclease Artemis and DNA polymerases Polμ
or Polλ are involved in the generation of compatible ends, which
are finally ligated by the complex including DNA ligase IV and
other factors [82, 84]. Alternatively, DSBs can be resected, resulting
in 3’ single-stranded DNA available for HR, single-strand annealing
(SSA), and alternative end-joining (alt-EJ) repair mechanisms. HR is
initiated by the MRN (MRE11, RAD50 and NBS1) complex,
c-terminal binding protein (CTBP) interacting protein (CTip) and
other exonucleases, whose activity generates 3’-single-stranded
DNA. This acts as a substrate for coating and stabilization, which is
mediated by replication protein A (RPA). BRCA2 promotes the

replacement of RPA with RAD51, a nucleoprotein that catalyses
strand invasion and permits the extension of the DNA end via the
intact sequence on the sister chromatid as a template. SSA is a
long homology-directed repair that results in the loss of genetic
material and involves RAD52 and DNA ligase I [84].
Classical NHEJ is the major DSB repair pathway in the G0/G1 cell

cycle phases but also functions in the S/G2 phases. HR is active in
S/G2 cell cycle phases where sister chromatids are in proximity,
providing a homologous template. Except DSBs produced by
replication fork collapse, which are almost exclusively repaired by
HR [85], the competition between cNHEJ and HR for repairing
DSBs in S/G2 phases is managed by CYREN, a cell cycle-dependent
inhibitor of cNHEJ [86].
Alt-EJ is a microhomology direct repair mechanism in which

PARP1, X-ray repair cross-complementing protein 1 (XRCC1) and
DNA ligase III lead to the insertion and deletion of large fragments
affecting DNA fidelity. NHEJ is considered error-prone due to
potential sequence gain or loss, whereas HR is defined as error
free, utilizing a sister chromatid template. However, this is
considered an oversimplification considering that the quality of
DSBs (DSBs with complementary overhangs for NHEJ and perfect
homology for HR) affects the quality of the repair independently
of the DNA damage response pathway involved [85].
Importantly, NHEJ plays a critical role in repairing naturally

occurring DSBs, as observed in variable diversity-joining recombi-
nation. During this process, DSBs are intentionally created to
generate antigen receptor genes of early B and T cells and to
enable class switching [87]. These pathways are frequently
mutated in cancer, and alterations via chromosomal aberrations
and/or genetic and epigenetic inactivation of the aforementioned
proteins lead to HRd in multiple tumours [88]. Like MMRd, HRd is
characterized by distinct genomic features such as loss of
heterozygosity, telomeric allelic imbalance, and large-scale state
transitions [5]. These features, together with the presence of
inactivating mutations in the BRCA1 and BRCA2 genes, are
captured by genomic diagnostic tests currently used in clinical
practice to identify HRd ovarian and breast tumours that are more
likely to benefit from PARP1 inhibitors [5]. Notably, a single
heterozygous mutation in HR genes does not translate to HRd
status, and only biallelic alterations result in the acquisition of the
genomic features of ineffective HR [89]. This is of particular
interest in CRC, in which biallelic alterations are present in only
approximately 3% of cases [89], whereas monoallelic mutations in
HR genes are found in as many as 86% of cases, more commonly
in BRCA2, ARID1A, ataxia-telangiectasia mutated (ATM) and BRCA1
associated RING domain 1 (BARD1) [90]. Another recent study
revealed that among 9321 CRC patients, 1270 (13.6%) and 8051
(86.4%) were HRd and HR proficient, respectively, when a 33-gene
panel was used [12]. Furthermore, when considering MMRp
tumours, only 9.5% exhibited HRd characteristics, alongside a high
tumour mutational burden (TMB), PD-L1 positivity and infiltration
by immune cells and fibroblasts [12]. In the TRIBE2 trial, patients
with MMRp/HRd tumours (10.7%) exhibited longer overall survival
upon intensive treatment with the FOLFOXIRI triplet regimen than
did patients with MMRp/HR-proficient tumours [12]. An additional
analysis of patient data revealed that patients with MSS/HR-
mutated tumours had significantly longer overall survival (OS)
after ICB treatment than did those with MSS/HR-proficient
tumours. The MSS/HR mutation group also presented a high
TMB alongside infiltration of CD4+ T cells, which likely explains
the anticancer immune response [91]. BRCA1- and BRCA2-altered
tumours have shown enhanced immunosurveillance in several
preclinical studies, but a correlation between ICB treatment and
patient outcome was not evident [92]. In a pancancer cohort of
patients treated with ICB from the Memorial Sloan Kettering
Cancer Centre, BRCA1 was not associated with OS, whereas
patients with BRCA2-altered tumours had a longer OS than those
with wild-type BRCA2 [92]. Interestingly, patients with a low TMB
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but BRCA2 mutation had the same OS as patients with highly
mutated tumours did, suggesting neoantigen-independent
mechanisms of immunogenicity [92]. Importantly, comutations
in DDR pathways such as the HR and MMR pathways or the HR
and base excision repair (BER) pathways are associated with
increased TMB, neoantigen levels, and immune responses [93].
These findings were confirmed by analysing publicly available
genomic data from a cohort treated with ICB [94]. These analyses
revealed that DDR pathways were mutated in 36.4% of CRCs and
that DDR mutations were associated with higher TMB levels and
increased immune cell infiltration and immune checkpoint
molecule expression [94]. Moreover, survival analysis revealed
that DDR mutation was correlated with longer OS in patients with
CRC treated with ICB. Overall, the impact of alterations in a single
DDR pathway other than MMR on CRC immune surveillance
remains largely undetermined.

Can chemotherapy turn cold CRC (immune refractory) into hot
CRC (immune responsive)?
The connection between DNA damage induced by chemother-
apy and/or radiotherapy and immune surveillance is a focal
point of multiple investigations. These studies are aimed to
identify potential strategies to increase immunogenicity in
immune-refractory tumours [95, 96]. Such approaches deserve
attention because they intercept nonantigen-mediated (e.g.,
release of cytosolic DNA and c-GAS/STING activation) and
antigen-dependent (e.g., adaptive impairment of DNA repair
and neoantigen generation) mechanisms of immune sensitiza-
tion by inducing sustained DNA damage or interfering with DNA
repair proficiency (Fig. 1). In this setting, chemotherapy and/or
radiotherapy are used as priming agents that precede or are
given in combination with ICB [95, 96]. There are clinical studies
that emphasize how the addition of ICB to anti-VEGF therapy
and chemotherapy is promising in terms of OS (12 months) and
progression-free survival (PFS) (6 months) in MMRp CRC patients
[58]. The AtezoTRIBE (NCT03721653) is a multicentric, open-
label, controlled, phase 2 study in which patients were
randomized to receive first-line FOLFOXIRI and bevacizumab
with or without atezolizumab (an anti-PD-L1 antibody). In this
study, the median progression-free survival in the overall
population was 13.1 months (80% CI 12.5–13.8) in the
atezolizumab group and 11.5 months (80% CI 10.0–12.6) in the
control group, with a significant hazard ratio (0.71, 80% CI
0.58–0.87, p= 0.015); however, no significant difference in OS
was found [97, 98]. Interestingly, a post-hoc exploratory analysis
identified high TMB and immunoscore as biomarkers associated
with benefit for MMRp CRCs treated with atezolizumab [99].
Similarly, the results from the phase II CheckMate 9 × 8 trial
(NCT03414983) investigating the addition of nivolumab (anti-
PD-1) to FOLFOX and bevacizumab in first-line therapy failed to
demonstrate a PFS benefit, although favourable trends in both
the ORR and PFS rate at 18 months were observed in the
nivolumab arm [100]. Additionally, studies with comparable
designs, such as the NIVACOR trial (NCT4072198), are currently
investigating similar hypotheses in the same patient population
(Table 1) [101]. These clinical results warrant a better selection of
patients with MMRp/MSS CRC who may benefit from the
addition of ICB to first-line chemotherapy.
Preclinical studies have used a different approach to turn cold

immune refractory MMRp/MSS tumours into hot tumours, by
hijacking mechanisms of resistance to alkylating agents to induce
hypermutation and foster immune surveillance [17, 102]. This
approach has been clinically investigated in two independent
phase II trials (ARETHUSA and MAYA) [103, 104]. Both trials are
based on the emergence of MMR genetic defects as a mechanism
of resistance to treatment with the alkylating agent temozolomide
(TMZ) in patients with MMRp CRCs. Specifically, TMZ treatment
was performed in patients whose cancers displayed silencing of

O6-methylguanine-DNA methyltransferase (MGMT), which is a
DNA repair enzyme with a key role in chemoresistance to O6-
alkylating agents such as TMZ [17]. Notably, TMZ induces
alkylation of guanine at O6-methylguanine, which mismatches
with thymine during DNA replication. In the case of functional
MMR, these mismatches are repaired, initiating a futile cycle.
Conversely, if MMR is not functional, these mismatches are fixed in
DNA, affecting the mutational landscape and consequently the
neoantigen repertoire of cancer cells [105]. In the ARETHUSA trial,
a cohort of 30 MGMT-silenced, MMRp and RAS-mutant metastatic
CRC patients received TMZ treatment as priming therapy; at the
time of disease progression, patients advanced to the ICB phase
with pembrolizumab only in the case of a TMB increase above 20
mutations per megabase [104]. In ARETHUSA, the TMB and
mutational signatures analysed in tissue biopsy samples and
circulating tumour DNA revealed the induction of alterations in
MMR genes and tumour hypermutation. In 94% of the cases
where TMZ mutational signature emerged, a p.T1219I MSH6
variant was detected. Results from the initial analysis revealed that
among the first six patients treated with pembrolizumab, four
experienced disease stabilization [104]. In the MAYA trial, patients
who achieved disease control after two cycles (8 weeks) of TMZ
treatment were enroled to receive a combination of ipilimumab,
nivolumab and TMZ, with no mandatory biomarker assessment.
Notably, the ORR was 45% in 33 evaluable patients who received
combined chemoimmunotherapy, with an 8-month PFS rate (the
primary endpoint of the trial) of 36% [103]. The studies (completed
and ongoing) that use chemotherapy to turn a cold tumour into
hot are listed in Table 1.

Enhancing tumour microenvironement dynamics with
radiotherapy
The effects of radiotherapy on the immune system of cancer
patients have been extensively described in numerous reports
[18, 106–108]. Radiation induces cell death and the release of
damage-associated molecular patterns (DAMPs), such as calreti-
culin, high mobility group box 1 (HMGB1), ATP, and cytokines and
chemokines, which modulate the TME through the infiltration of
DCs, macrophages, cytotoxic T cells and suppressive immune cells
such as regulatory T cells and myeloid-derived suppressor cells
(MDSCs) [106, 107, 109–111].
The primary effect of DAMPs is on DC priming and the

activation of adaptive immunity (CD4+ and CD8+ T cells and NK
activation). Specifically, HMGB1, along with calreticulin, is known
to be pivotal for immunogenic cell death (ICD) in CRC treated with
oxaliplatin by triggering Toll-like receptor 4 in the immune
compartment [112]. ATP release, which acts as a ‘find me’ signal
for immature macrophages other than DCs, facilitates the
recruitment of myeloid cells to the TME, and ultimately culminates
in the activation of CD8+ T cells and γδ T cells (Fig. 1, red panel)
[113]. Moreover, additional proteins can contribute to ICD in CRC,
as demonstrated by treatment with a novel topoisomerase
inhibitor that induces the release of Annexin A1 (ANXA1), as well
as HMGB1 and calreticulin (Fig. 1, red panel) [114]. Numerous
clinical and preclinical investigations have explored the combina-
tion of radiotherapy and immunotherapy for treatment of CRCs
[115].
Radiotherapy also affects DNA integrity by creating double- and

single-strand breaks, inducing micronuclei formation and cGAS-
STING activation through the rapid entrance of cGAS into
micronuclei after the loss of membrane integrity [18]. Importantly,
the main downstream effect of ICD is the activation of the IFN-I
response. The role of IFN-I response in radiotherapy-induced
immunity has been studied by Burnette and colleagues, who
demonstrated that IFNα/β is required for tumour eradication
following local radiotherapy as well as for the cross priming of
tumour- infiltrating dendritic cells enabling CD8+ T cell activation
[116].
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In the context of DNA damage tumours may undergo
autophagy, a self-degradative process that is key for balancing
sources of energy in response to nutrient stress and has an
impact on several metabolic and cancer-promoting pathways
[117, 118]. Autophagy has implications for adaptive immunity, as
neoantigens can be delivered to the major histocompatibility
complex class II (MHC-II) compartment and presented to
CD4+ T cells via autophagosomes (Fig. 1, red panel) [119]. The
inhibition of autophagy results in impaired proliferation and the
disrupted function of T cell receptor-stimulated CD8+ and
CD4+ T cells, respectively (Fig. 1, red panel) [120]. However, in
CRC cell lines, DSBs trigger a pro-survival autophagy signal upon
treatment with ionizing radiations (IR) in an ATM- and p53-
dependent manner [121]. In addition, another study revealed
that, in MSS CRC, autophagy is a mechanism of immune evasion;
the authors reported that inhibiting a core autophagy gene,
ATG16L1, restored IFN-driven immune responsiveness (Fig. 1,
red panel) [122]. Despite this evidence, in CRC, the pro- or anti-
tumoural role of autophagy is not well defined and depends on
AKT and mTOR activation [123]. On this basis, whether and to
what extent irradiation-driven autophagy in CRC can perturb
immune attractiveness must be fully elucidated at the
molecular level.
The direct contribution of radiotherapy to the neoantigen

landscape in cancer has been debated. Combining ICB and
radiation upregulates tumour-associated antigen-MHC com-
plexes, enhances antigen cross-presentation in the draining
lymph node, and increases T cell infiltration into tumour [124].
Furthermore, the functional analysis of an NSCLC patient treated
with radiotherapy and an anti-CTLA-4 agent revealed an
expansion of CD8+ T cells specific for a neoantigen encoded
in a gene upregulated by radiation [125]. Cancer cells targeted
by IR can represent a source of new peptides that are presented
on the tumour cell surface [126]. The clonality of mutations is
emerging as a key factor of response across several cancer types
[127, 128]. Despite this evidence, we cannot exclude the
possibility that radiation-derived subclonal neoantigens might
increase tumour heterogeneity, thereby distracting the immune
system [128]. However, the ability of radiotherapy to induce the
release of DAMPs, rewire the TME, and trigger a IFN-I response
could affect the response to ICB in irradiated tumours against
both neoantigens and preexisting tumour-associated antigens
(Fig. 1, red panel). Furthermore, we have evidence in other
cancer types that radiation-induced neoantigens are capable of
triggering a CD8+ cytotoxic response and immune surveil-
lance even at the subclonal level (Fig. 1, blue panel) [129];
however further studies are needed to better dissect the impact
of radiation-induced neoantigens on the immune response
towards radiated tumours.
Interestingly, the antigen-independent immunogenic mechan-

isms elicited by radiotherapy are not limited to the irradiated fields
and may also sustain immune surveillance towards cancer lesions
localized outside the irradiated sites—the so-called abscopal effect
[130]. In a phase II single-arm study, 24 chemorefractory MMRp
metastatic CRC patients received durvalumab (anti-PD-L1), treme-
limumab (anti-CTLA-4), and radiotherapy. Only 2 patients achieved
an objective response, characterized by increased CD8+ T cell
activation and proliferation, an effector memory phenotype, and
the reinvigoration of exhausted cells. Importantly, treatment led to
the shrinkage of distant nonirradiated CRC tumours [131].
Nonirradiated tumour shrinkage was also observed in two other
studies involving MMRp metastatic CRC patients, despite the
phenomenon occurring in a limited number of patients (1/11 with
an ORR of 9% in the first study [132] and 4/27 patients with an
ORR of 15% in the second study [133]). Several studies are
currently testing this hypothesis by combining hypofractionated
radiotherapy at primary or metastatic disease sites with ICB, with
or without chemotherapy (Table 1).

Although most of these approaches are still being investigated,
attempts to increase the immunogenicity of MMRp CRC via
chemotherapy/radiotherapy have not led to transformative
results, suggesting that additional strategies should be pursued.
For a list of completed and ongoing studies exploiting this
treatment approach, see Table 1.

Can PARP inhibition spark antitumour immunity in CRC?
In addition to chemotherapy and radiotherapy, the direct
blockade of DDR pathways is being considered in CRC [134]. A
clear cell autonomous effect of PARP inhibitors has been
demonstrated in non-CRC tumours [135, 136]; however, recent
findings suggest that the efficacy of PARP inhibitors may depend
on STING-driven CD8+ T cell recruitment in triple-negative breast
cancer [137]. Given that approximately 10% of MMRp CRCs
harbour alterations in HR, it is imperative to address whether
similar results can be achieved in CRC. Although PARP1 is the most
studied isoform, 17 other isoforms that share homology with the
catalytic domain of PARP1 have been identified [138]. PARP1 is
generally activated during the early phase of DNA damage
recognition to repair SSBs. Binding to altered DNA increases the
catalytic activity of PARP1, which uses nicotinamide adenine
dinucleotide (NAD+ ) as a substrate to synthesize polymers of
poly (ADP-ribose) transferred to PARP itself, histone H1, or other
transcription factors [5]. The main mechanism of action of PARP
inhibitors involves the impairment of PARP1 enzymatic activity
and the “trapping” of inactive PARP1 on ssDNA, which is
correlated with the cytotoxic potential of different inhibitors
[139]. Whether and to what extent PARP inhibitors may sensitize
tumour cells to chemotherapy was demonstrated by Wei and
colleagues. They investigated the effect of Src homology-2
domain-containing protein tyrosine phosphatase-2 (SHP2) on
tumour cell–intrinsic STING pathway activity and DNA repair in
colon cancer. SHP2 was able to bind dephosphorylated PARP after
DNA damage, preventing DNA repair and activating the STING
pathway [140]. Importantly, the authors demonstrated in vitro and
in vivo that an agonist of SHP2, lovastatin, led to excessive DNA
damage and STING pathway activation enhancing the efficacy of
irinotecan in preclinical CRC models. Sheng and colleagues
demonstrated that PARP inhibition induced cytosolic double-
stranded DNA, thereby activating the STING pathway and
promoting tumour-infiltrating lymphocytes and antitumour
immunity [141]. These antitumoural effects were further enhanced
through ICB [141]. Recently, senescence has emerged as a cell-
autonomous effect of PARP inhibitors in CRC [142]. Treatment with
talazoparib (a PARP inhibitor) restricted p53 ubiquitination and
activated p21-induced senescence in multiple CRC cell lines [142].
This phenotype was increased when a CDK4/6 inhibitor was used
in combination with PARP inhibitor, resulting in the increased
infiltration, activation, and proliferation of CD8+ T cells. Further-
more, the release of IFN-I cytokines (IFN-α and IFN-β) and IFN-γ,
which regulate PD-L1 expression, led to the clearance of
senescent cells after the addition of anti PD-L1, ultimately
resulting in a potent antitumour effect [142]. Additionally, findings
from murine preclinical models have shown that MEK inhibitors
amplify DNA damage induced by PARP inhibitors, cytosolic DNA
accumulation, STING activation and of CD8+ T cell recruitment
[143]. Moreover, MEK inhibitors decrease the infiltration of MDSCs
by reducing the release of IL-6 and GM-CSF [143]. Notably, the
PARP inhibitor niraparib, combined with IR, produces excessive
cytoplasmic double-stranded DNA in CRC, which is sensed by
cGAS, thereby eliciting a cGAS-mediated antitumour immune
response through the increased infiltration and activation of
cytotoxic CD8+ T cells [144]. Caster and colleagues reported that
pretreatment with veliparib (a PARP inhibitor) significantly
augmented the increase in major histocompatibility complex
class I (MHC-I) and PD-L1 expression in CT26 and MC38 tumours
treated with IR. The concurrent administration of veliparib and
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radiation therapy substantially delayed tumour growth induced by
anti-PD-1 therapy (Fig. 1, green panel) [145]. A case report
described the efficacy of combined treatment involving a PARP
inhibitor and immunotherapy in a patient with MSS mCRC
carrying a BRCA2 mutation, showing a major response to
treatment with the PARP inhibitor olaparib and the anti-PD-1
agent tislelizumab [146]. The combination of ICB with PARP
inhibitors in patients with HRd mCRC is currently being
investigated in several clinical trials (Table 2). Interestingly, in
the PEMBROLA trial (NCT05201612), the definition of HRd as a
relevant biomarker was performed via a functional test of HR
proficiency (the RAD51 score), which was previously shown to
perform better than the genomic test in identifying PARP inhibitor
sensitive breast cancers [147].
Overall, targeting synthetic lethal vulnerabilities in HRd CRCs via

PARP inhibition with or without other DNA damage treatments
(Table 2) is emerging as a promising strategy to increase
immunogenicity in otherwise immune refractory MMRp CRCs.

Combining standard-of-care therapeutic options with DDR
targeting to enhance the immune recognition of CRCs
Current therapeutic options for mCRC patients are based on
various chemotherapeutic agents such as 5-fluorouracil (5-FU)/
capecitabine, irinotecan, and oxaliplatin, which can be combined
with targeted agents such as bevacizumab, cetuximab, or
panitumumab [148]. Among these drugs, oxaliplatin causes
interstrand and intrastrand DNA cross-links that block DNA
replication and transcription, leading to apoptotic cell death and
consequently to ICD [112]. Interestingly, a loss-of-function
genetic screening of kinomes revealed that Ataxia telangiectasia
and Rad3-related protein (ATR) inhibition synergizes with
oxaliplatin to induce cancer cell death [149]. In addition, the
authors highlighted the synergistic effects of oxaliplatin and the
ATR inhibitor VE-822 in many colorectal cancer cell lines,
demonstrating the occurrence of cytosolic DNA release, CD8+ T
cell infiltration and reduced tumour growth in immune
competent mice [149]. While oxaliplatin can induce ICD and
the biological features typical of this peculiar type of tumour cell
death, irinotecan-mediated killing does not occur via ICD
[150, 151]. However, although the cytotoxic effect of irinotecan
is known to be linked to nonimmunogenic mechanisms, recent
evidence indicates that treatment with SN38 (the active
metabolite of irinotecan) impacts MHC-I exposure and the
expression of NK ligands [152].
ATR plays a central role in the cellular replication stress

response by activating cell-cycle checkpoints and DNA replica-
tion processes to control cell division and safeguard genomic
integrity. ATR is activated in the presence of single-stranded
DNA (ssDNA) breaks at sites of stalled replication forks or in
resected double strand DNA ends inducing a cascade of events
that lead to cell cycle arrest and replication fork stabilization,
thereby permitting DNA repair [153]. The rationale behind
targeting ATR in cancer is that the inhibition of ATR may lead to
genomic instability, DSBs, and replication fork collapse. Novel
findings suggest that the ATR inhibitor ceralasertib (AZD6738)
induces micronuclei formation and radiosensitization in pre-
clinical models [154]. In another study, the same ATR kinase
inhibitor combined with radiation therapy attenuated radiation-
induced CD8+ T cell exhaustion and potentiated CD8+ T cell
activity in CT26. Moreover, ceralasertib blocked radiation-
induced upregulation of PD-L1 expression on tumour cells and
dramatically decreased the number of tumour-infiltrating
regulatory T cells [155]. The relevance of inhibiting ATR was
also demonstrated in a study in which WEE1 was also targeted
[156]. WEE1 is a protein kinase that regulates the G2/M cell cycle
checkpoint, causing cell cycle arrest so that DNA damage repair
can be properly executed [157]. The authors reported that the
dual inhibition of ATR and WEE1 promoted cytosolic double-Ta
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strand DNA, which activated the STING pathway and led to the
production of IFN-1, thereby favouring CD8+ T cell infiltration
[156]. Finally, in that study, the dual inhibition of WEE1 and ATR
induced PD-L1 expression on tumour cells, and blocking PD-L1
enhanced the effects of chemotherapies [156].
Another potential target is ATM, which is activated during

radiation and promotes DNA damage repair through the HR and
NHEJ pathways in a cell cycle-dependent manner [158]. However,
despite evidence supporting the cell-autonomous effect of ATM
inhibition on radiosensitization, its impact on the immune
microenvironment remains largely unclear [159].
Overall, the combination of cytotoxic agents and/or radio-

therapy with DDR inhibitors such as ATR inhibitors is emerging as
a potential new avenue to leverage antigen-independent
immunogenic mechanisms with the aim of enhancing anticancer
immune surveillance.

CONCLUSIONS
Currently, the vast majority (95%) of mCRC patients are not eligible for
immunotherapy. Accordingly, increasing the fraction of patients who
may benefit from the transformative curative potential of immu-
notherapy constitutes an unmet and urgent clinical need in the CRC
field. Emerging evidence highlights how DNA repair alterations,
beyond MMR, can create a permissive microenvironment by (a)
triggering intracellular pathways that developed to restrict pathogen
infection and are capable of unleashing the immune system against
cancer cells; (b) inducing immunogenic cell death or autophagy in
cancer cells; and (c) modulating immune checkpoint molecules,
thereby allowing ICB engagement. This paves the way for exploring
whether the presence of altered DNA repair pathways, other than
MMR, may be promising molecular substrates for enroling or
stratifying patients in immune-activating therapeutic programmes.
Inhibiting DDR mechanisms in cancer is considered a promising
strategy and many clinical trials are currently testing the efficacy of
these drugs in establishing immune sensitization [160]. Overall,
chemotherapy and radiotherapy remain the primary therapeutic
options for mCRC patients. However, evidence that a better
characterization of the DDR pathways beyond MMR may be relevant
to inform a more rational therapeutic approach for CRC is
accumulatimg both at the preclinical and clinical levels. In the next
few years, identification of CRCs in which the occurrence of
dysfunctional DDR pathways leads to immune surveillance could
increase the fraction of patients benefitting from immunomodulatory
therapies.
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