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Abstract

In the Telecom context, the problem of Customer Churn Prediction (CCP)

(or customer defection prediction) can be addressed by using not only well-

established domain expert knowledge, but also by exploiting the potential

wealth represented by customer-related data and applying Machine Learn-

ing Techniques. In this work, we used a TIM S.p.A. real-world dataset

to train models that could predict which customers can defect. We com-

pared the outcomes of a considerable number of classification algorithms

on our real-world dataset. Furthermore, we applied the causal reasoning

on the real dataset identifying actionable features by indirect confirmation

of the domain experts. Another need of the telecom stakeholders is to un-

derstand the reasons why a customer might defect. This calls for the use

of Causal Analysis: thanks to Causal Analysis – and more specifically to

Causal Calculus – one can try to extract the direct and indirect causes

from observational data. For such an analysis to be possible, one needs

beforehand to count on the availability of a Structural Causal Model, or to

extract causal graph and other information from the data. Causal discovery

can be performed using a number of algorithms, based on different prin-

ciples, which, when reconstructing sufficiently large graphs, can produce

discordant outcomes.

In this work, we contribute a causal discovery method that takes advantage

of topology-related information generated by an ensemble of causal discov-

ery algorithms to identify which topology is closest to the ground truth.
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Abstract

The method relies on the results of the discovery algorithms, considered as

a committee of experts, and on a supervised learning approach consisting

of stacking of a multi-label classifier on the outcomes of the ensemble.

Ideally, this discovery method could also be used on Telecom data; how-

ever, since for our data the ground truth (GT) was not available, we limited

ourselves to validating the method on synthetic data, generated by a spe-

cialized library. Applying our method to the synthetic data we found that

we could considerably improve the accuracy of the discovery with respect

to the use of individual discovery algorithms.
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Chapter 1.

Introduction

In this study, we utilized a real-world dataset from TIM S.p.A. to antic-

ipate customer defection, employing various machine learning algorithms.

We conducted a thorough comparison of numerous classification algorithms

using our dataset. While predicting churn is significant, companies are of-

ten more concerned with understanding why customers might defect and

the impact of marketing strategies, such as discounts, on the likelihood of

churn. In our research, we introduce a method for causal discovery that

leverages topology-related insights derived from a collection of causal dis-

covery algorithms to identify the topology closest to ground truth. This

method relies on the outcomes of the discovery algorithms, treated as a

committee of experts, and utilizes a supervised learning approach involving

the stacking of a multi-label classifier on the ensemble results. Addition-

ally, it involves the identification of a centroid graph. Due to the absence

of ground truth (GT) for our real dataset, we validated the method using

synthetic data generated by a specialized library. The causal discovery al-

gorithms considered include GES, GOLEM, LINGAM, Notears, and PC.

We framed the problem as a multi-label classification task, with each algo-

rithm representing a label, including the CENTROID graph, resulting in six

labels in total. We employed two common approaches for multi-label classi-

fication: Binary Relevance (BR) and Classifier Chain (CC). After selecting
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a representative label from the predicted set based on classifier precision,

we evaluated its distance from the ground truth (defined as the Hamming

distance between adjacency matrices, i.e., in terms of edges). Our findings

indicate a significant improvement compared to individual algorithms, par-

ticularly CENTROID. The mean distance of the algorithm selected by our

method using BR and using CC are both closely aligned with the actual av-

erage minimum distance of the best-performing algorithm in the set (which

is initially unknown), improving the results obtained by the CENTROID.

Comparable observations apply when normalizing distances by the actual

number of edges. Furthermore, we applied the causal reasoning on the

real dataset identifying actionable features by indirect confirmation of the

domain experts.

1.1. Motivation

In recent years, the introduction of smartphones has changed the dynamics

of the telecommunications market. Based on the fact that the customer is

a fundamental source of income for the company, it is vital to secure a wide

customer base; to do this, companies invest a huge amount of resources into

both marketing and retention programs. Especially for the retention pro-

grams it is important to focus on the customers which are likely to quit the

contract. Customer Churn, is the term normally used to refer to customer

defection from a service company. In the literature, it is also known as

customer attrition, or customer turnover. The phenomenon, physiological

for any service business, is of great relevance for companies. Its quantifica-

tion enters into one of the typical Key Performance Indicators (KPI), the

Churn Rate (CR). CR is the percentage of customers that stopped using a

company’s product or service during a certain period.
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1.1. Motivation

Customer churn has a substantial impact on all aspects of the business

of a company. Losing customers entails opportunity costs; not only do

company sales decrease; but it is also not easy to compensate by attracting

new customers: the acquisition of a new customer is usually 5 to 6 times,

but even up to 20 times [114] more expensive than keeping an existing

one [119].

For this reason, companies adopt specific strategies for customer retention,

and among them those that aim at predicting which customers are at risk

of defection are of great interest.

It is common sense that a “churner” is a customer who changes from one

service provider to another due to the competitive market and the large offer

of service/product availability [9]. This is why Customer Churn Prediction

(CCP) is a challenge in general and even a harder challenge in the TelCo

domain: the TelCo market in the last few decades has behaved as a rapidly

evolving and increasingly competitive ecosystem, where the diffusion of

smartphones in the last decade has made this evolution more hectic and

erratic.

In this context, the problem of the CCP cannot be addressed only by us-

ing well-established domain expert knowledge, but also by exploiting the

potential wealth represented by customer-related data.

The abundance, fine-grained character, and diversity of those data, with

the consequent difficulty for humans to detect characteristic patterns, call

for the use of methods that go beyond simple Data Analytics and bring the

challenge into the arena of Machine Learning.

Machine learning is the branch of Artificial Intelligence that uses inductive

methods to learn models from the data: e.g., a predictive churn model could

3
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be learned, in principle, by looking at a large number of historical data of

customers ending in a defection or not.

Depending on the available data and the precise definition of the problem,

many techniques can be applied for this purpose.

Moreover, considering the additional business requirements, many different

challenges would arise. In addition to the obvious requirement of prediction

accuracy, the requirement of trustworthiness and the interpretability of the

learned model are important.

1.2. Research Questions

The aim of customer churn prediction naturally raises a number of research

questions. Among them are the following.

Research Question 1 (RQ1) What algorithms and features can be used

to optimize Customer Churn Prediction in the telecommunication sector?

Research Question 2 (RQ2) Is it possible to explain the reasons behind

Customer Churning based on observational data of the telecommunication

sector?

To answer the RQs the present thesis aims to investigate, in the first part,

the prediction of customer churn by applying various Machine Learning

algorithms and inspecting their performance. This part will create the

baseline for answering RQ2, in which a new methodology is provided

by developing a technique for Ensemble Discovery of Causal Graphs.

Causal graphs are Direct Acyclic Graphs (DAGs) whose nodes represent

variables and whose directed links between two nodes signify that the first
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variable causes the second directly. The DAG in our case contains a target

variable, which reports about customers leaving or not leaving the company.

Causal analysis focused on the target will be used.

1.3. Problem formalization

Companies usually have very large customer data sets, which can include

millions of records. Based on the customer’s information they consist of

huge number of heterogeneous features, such as information regarding: the

phone line (type, seniority, orders, offers), services and products associated

with the line, phone traffic, and many more (see Chapter 3).

The aim of this thesis is to exploit a large telecom dataset to predict churn-

ers by applying different Machine Learning (ML) techniques and to per-

form an explanatory analysis based on Causal Reasoning. The reasons

why a customer can abandon is of great interest to the company itself, be-

cause they can guide the retention strategies and make them more effective

and focused.

1.4. Background: Telecommunication Business
Context

In the following we will introduce the necessary background knowledge on

the business and technical context of this thesis.

The telecommunication business context is rapidly changing due to the

highly competitive market scenario. Customers can be overwhelmed by a

wide variety of offers and can easily switch from one company to another.

The customer churn has a substantial impact on all the aspects of busi-
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Real Telecom Dataset

Preprocessing

Train / Test
Dataset

Customer
Churn

Prediction

Causal
Discovery

Causal Inference

Why customer churns?

Figure 1.1.: The general pipeline.

ness of a company – e.g., telecommunication services (i.e. Offering a range

of communication services), customer Acquisition and Retention (i.e. mar-

keting and sales efforts), Customer Support (i.e. to address issues, resolve

complaints, and assist with technical problems, etc.). The customers are

the company’s fuel, so it is important to investigate some business ques-

tions. We discussed with TIM S.p.A. domain expert the relevant business

questions to focus on. The main ones are the following:
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1.4.1. Business Question 1 (BQ1)

Given a customer, what is the likelihood that (s)he leaves the company?

(who might leave?)

Motivation

We are trying to predict the total number of effective churners. This ques-

tion is very important from the company’s technicians’ perspective. The

more accurate the prediction, the more they can help the business lines

make targeted proposals.

1.4.2. Business Question 2 (BQ2)

How can we prevent customer churn?

(why would the customer prefer to leave?)

1.4.3. Business Question 3 (BQ3)

What is the total amount of expenses of customers who leave from the

company’s perspective?

Motivation

Based on the company’s business perspective one has to focus to achieve

more targeted campaigns. The ability to predict that a customer may leave

can help to estimate the related money losses, and may be also to save

customers and increasing future profits. However, for TIM S.p.A., this

point is actually less relevant than the other two BQs, mainly because it

depends both on the performance of the existing models that they are using
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and on the effectiveness of the actual campaigns which they have built on

them.

These business questions will be considered throughout this thesis as a

motivation and boundary for the technical solution to answer RQs. However

the main focus will be on question RQ1.

1.5. Structure of the thesis

The remaining structure of the thesis is as follows. Chapter 2 describes

the literature on Machine Learning methods for Customer Churn Predic-

tion (CCP) within the scope of the Telecommunication (TelCo) domain.

Chapter 3 illustrates both the experimental setup based on a real telecom-

munication dataset and shows the Predictive Analysis. Chapter 4 presents

the main definitions and concepts which define the causal reasoning’s

main tasks, in particular, the causal discovery and the causal infer-

ence. Chapter 5 proposes a new methodology by applying Ensemble

Discovery Methods to telecommunication data. Chapter 6 describes the

results. Chapter 7 illustrates the application of causal inference using the

real data set. Chapter 8 provides the summary of the central contributions

and discoveries provided in the thesis, including a perspective on future

research directions.

In the context of this PhD thesis, the paper: A Decade of Churn Predic-

tion Techniques in the TelCo Domain: A survey has to appear in Springer

Nature Computer Science (SNC), and influenced Chapter 2.
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Related Work

The challenge of the Customer Churn Prediction (CCP) cannot be ad-

dressed only by using well-established domain expert knowledge: there is

the opportunity to exploit the potential wealth represented by customer-

related data. The abundance, fine-grained character, and diversity of those

data, with the consequent difficulty for humans to detect characteristic pat-

terns, calls for the use of methods that go beyond simple data analysis and

bring the challenge into the arena of Machine Learning.

Predicting churn is rarely the end goal from the perspective of the busi-

ness, which is more interested in assessing the impact of a marketing action

(e.g. discounts, extra-GB, etc.) on a customer’s churn risk [40]. For ex-

ample, knowing that long-term customers are less likely to churn than new

customers is not an actionable insight because the company cannot inter-

vene. Instead, what the company wants to know is how a treatment (or

treatments) affects churn, also known as uplift [49]. In uplift modeling,

only customers who react positively to the campaign are considered [32].

The aim of this chapter is to provide a survey of the literature on Machine

Learning methods for CCP within the scope of the TelCo domain and in

the approximate period of the last decade. In particular, it pertains to the

issue of prediction. If such information is available, research papers may
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also attempt to tackle other associated inquiries. The following research

works described in the Section 2.2 constitute the building block for the

uplift models.

2.1. Systematic Literature Review Methodology

In this Section we aim to highlight the Research Scope, furthermore know-

ing that the introduction and affirmation of smartphones have changed the

dynamics in recent years, and therefore considering this decade is not only

motivated but complementary with other surveys [69], [40], [42]. We are

looking for areas not covered by current techniques to verify their effective-

ness. Based on the awareness that the customer is a fundamental source

of income for the company. The following questions arise: (1) What are

the most effective ML algorithms in Customer Churn Prediction (according

to a variety of metrics)? (2) Considering a predictive algorithm, given a

customer at risk, what factors make him/her more likely to churn? (3) Is

it possible to quantify the effect of possible interventions on those variables

that are actionable from the point of view of the company?

The articles we considered addressed the above research questions. Other

obvious questions would refer to the possible interventions by the TelCo

company: after predicting the likely defection of a part of the customers, a

natural step would be to adopt countermeasures aimed at their retention;

typically, those measures consist of suitable offers.

Customer retention is normally addressed using Machine Learning based

recommender system algorithms. However, the problem of customer re-

tention and the use of recommender system algorithms falls outside of the

scope of this work which focuses on the prediction of customer churn.
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2.1.1. Contributions

The main contributions of this chapter are the following: (1) Review of

Machine Learning techniques applied to the Churn prediction problem, fo-

cusing on the techniques and on the specification of data they use. (2)

The ML models are presented and analyzed, describing the capabilities of

the model, the list of assumptions involved in each model, and other rele-

vant aspects. (3) Future research directions for the field are outlined and

discussed. The structure of this work is illustrated in the next subsection.

2.1.2. Schema

The elements that are reported about each paper are Algorithms, Datasets,

Methods, Metrics, and Results, see Figure 2.1:

• Algorithms and Methods – The main focus of the survey of each

paper. The relation between techniques and articles is shown in the

summary in Table 2.2.

• Datasets – Real data relating to TelCo customers are often incom-

plete, noisy, and unstructured. For each paper, is reported syntheti-

cally on the data used. A longer description of the data, when avail-

able, is provided in the Supplementary Material.

• Metrics – Several performance metrics were proposed in the liter-

ature. Some works do not consider only the usual metrics, such as

precision and recall, but also cost-related metrics.

• Results – The results presented in each research article are discussed

and compared.

A particular set of techniques both to foster customer loyalty and reten-
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tion is that of recommender systems that aim to tailor the service offers

according to a specific customer profile; this area of research falls outside

the scope of this work.

Algorithms and Methods

Datasets

Metrics

Results

Figure 2.1.: The General Schema.

The criteria used to gather material for this chapter are reported in the

following sections.

2.1.3. Inclusion Criteria

The selected papers meet the following inclusion criteria: (1) the selection

of the first quartile and the second quartile journals using Scopus; (2) the

classes’ conferences are A++, A+, A and B; (3) studies that analyze any

customer churn prediction aspect related to the TelCo domain; (4) liter-

ature review papers, which summarize the results of the previous studies;

(5) papers that describe machine learning techniques; (6) English written

studies; (7) studies published as Journal papers, conference proceedings,

Workshop proceedings; (8) studies published in computer science venues;

(9) peer-reviewed studies; (10) studies with one or two citations;
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2.1.4. Exclusion Criteria

The papers discarded in our survey meet the following exclusion criteria:

(1) book chapters, work-in-progress papers, posters, Master theses, P.h.D.

theses (to avoid the double count of the ones published as papers); (2) short

versions of long version papers; (3) discussion papers;

2.1.5. Research Selection Process

I searched using “Google Scholar” as it offers a number of options to combine

multiple search terms with Boolean operators. The basic search string

used was: “customer” AND “churn” AND “prediction” AND (“telco” OR

“telecom”); the search is restricted to the last 15 years. The final number

of papers considered is 28.

2.1.6. Acronyms

In the following Table 2.1 is the list of the used acronyms.

Table 2.1.: The acronyms that are used in the survey.

AUC Area Under ROC Curve
ANN Artificial Neural Network
BN Bayesian Network
CART Classification And Regression Tree
CCP Customer Churn Prediction
DL Deep Learning
DT Decision Tree
GBM Gradient Boosted Machine
GP Genetic Programming
KNN K-Nearest Neighbors
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LDA Linear Discriminant Analysis
LR Linear Regression
LoR Logistic Regression
MCC Matthews Correlation Coefficient
NB Naïve Bayes
NN Neural Network
NPS Net Promoter Score
PCA Principal Component Analysis
PCALB Principal Component Analysis Load Balancing
POL Polynomial Kernel
PSM Propensity Score Matching
PSO Particle Swarm Optimization
RA Regression Analysis
RBF Radial Basis Function
RF Random Forest
SIG Sigmoid Kernel
SRI Single Rule Induction
SMO Sequential Minimal Optimization
SNA Social Network Analysis
SOM Self-Organizing Maps
SVM Support Vector Machine
TelCo Telecommunication

2.2. Relevant Research Papers

Due to their increasing success, Machine Learning techniques are widely

used in almost every domain such as telecommunication, finance, banking,

marketing, and user behavior analytics. ML techniques are also useful and

can help with the Customer Churn Prediction (CCP) problem in the TelCo

domain [8]. In particular, the recognition of the customers that are going to
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churn is essential for a company and can help in applying effective retention

strategies that keep the customers for a long period of time.

2.2.1. Articles description

Several studies present the challenge of predicting churn as a binary classi-

fication task, distinguishing between churn and non-churn instances. Com-

monly employed conventional classification techniques include Decision Trees

(DT), Random Forest (RF), Classification And Regression Tree (CART),

Logistic Regression (LoR), Naïve Bayesian classifiers (NB), K-Nearest Neigh-

bor clustering (KNN), and Support Vector Machines (SVM). Additionally,

the application of advanced methods such as Artificial Neural Networks

(ANN), Self-Organizing Maps (SOM), and Evolutionary Algorithms (EA)

is also prevalent. A common issue often encountered is class imbalance,

where the churn class is typically underrepresented in the available data

due to obvious reasons. Numerous articles emphasize the distinct impacts

of type I errors (false positives) and type II errors (false negatives) on busi-

ness outcomes. The papers are sorted based on which kind of algorithms

performs the best, to show the changes in the literature scenario, the related

trends and the different approaches adopted. The Table 2.2 groups each

paper by the algorithms used. The Table 2.3 represents the information

related to telephony. In particular, the Fixed, Mobile, Mixed (i.e. Fixed

and Mobile), Unspecified (i.e. if Fixed or Mobile are not indicated) and

Other Fields (i.e. if the analysis are performed in other domains) according

to the corresponding data set that is used in each paper.

Table 2.2.: Comparison table of algorithms including the surveys.

Algorithm Papers

ANN [113, 25, 69, 95, 106, 51, 114, 10, 6, 67, 15,
46, 29, 42, 5, 7]
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Algorithm Papers

AdaBoost [59, 73]
BN [71, 25, 59, 123]
CART [82]
CatBoost [73]
Cluster Analysis [51]
DTs [113, 71, 95, 114, 28, 2, 10, 106, 70, 51, 114,

2, 123, 15, 46, 73, 42, 79]
Extra Tree [73]
GBoost Machine Tree [2, 7]
Genetic Programming [59]
K-Nearest Neighbor [6, 123, 67, 15, 46, 42, 82, 5, 7]
K-means Clustering [95, 106]
LDA [82]
Literature Review [51, 40, 69, 42]
LR [95, 46, 5]
LoR [95, 114, 28, 11, 51, 114, 11, 101, 15, 63, 73,

129, 29, 42, 79, 82, 128, 33]
Logit Boost [5]
NB [5, 71, 114, 59, 6, 15, 46, 73, 29, 42, 7]
PCALB [5]
PSM [79]
PSO [123]
RF [59, 2, 10, 11, 63, 73, 29, 42, 79, 33]
Regression Analysis [114]
RotBoost [59]
Rotation Forest [59, 46]
Self Organizing Maps [111]
SRI [7]
Support Vector Machines [111, 22, 114, 25, 10, 11, 6, 46, 63, 73, 29, 42,

5]
XGBoost [2, 63, 73, 42, 5]

16



2.2. Relevant Research Papers

Algorithm Papers

Table 2.3.: Information of Fixed, Mobile and Mixed (Fixed and Mobile)
telephony according to the corresponding data set that is used
in each paper.

Telephony Author

Fixed (F) [120, 71]
Mobile (Mo) [79, 63, 1, 25, 28, 95]
Mixed (Mi) [12, 128, 46, 58]
Unspecified (if F or Mo) [73, 29, 78, 67, 112, 106, 9, 114, 22, 113, 5, 7]
Other Fields [44, 15, 122, 98, 61, 101]

2.2.2. Existing Surveys

The paper by Geiler et al. [42] is a survey that provides general and prac-

tical recommendations on a churn prediction pipeline based on ensemble

learning. Not only they review the recent literature, but they also evaluate

and compare multiple alternatives within the machine learning churn anal-

ysis pipeline. The authors employ publicly accessible datasets pertaining to

churn across various domains (Telecommunication, Music Streaming, Hu-

man Resources, Newspaper). Furthermore, by framing the churn problem

as anomaly detection problem they challenge with different datasets: Bank

Marketing, a Credit Card Fraud Detection and a thyroid disease, which they

categorize as churn-like. They include semi-supervised techniques (iFor-

est and DevNet) and supervised algorithms (K-Nearest Neighbors (k-NN),

Gaussian Naïve Bayes (GNB), Logistic Regression (LR), Support Vector

Machine with Radial Basis Function kernel (SVM-rbf) and without kernel
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(SVM), Decision Tree (DT), Random Forest (RF), XGBoost, a feedfor-

ward neural network (NN) and Generalized Extreme Value Neural Network

(GEV-NN)) in association with different undersampling, oversampling, and

hybrid sampling strategies, to compensate for the class unbalance when the

issue is not already addressed by the algorithm (GEV-NN, Forest, and De-

vNet are specifically designed for imbalance binary classification or anomaly

detection). The authors focus on the association between base machine

learning techniques, sampling strategies, and datasets. Lastly they focus

on an ensemble method based on the four main outperforming approaches,

LR, XGBoost, RF, and ANN. Based on the algorithms’ performance re-

sults, they recommend using the ensemble LR, XGBoost, and RF with no

sampling to analyze novel churn-like datasets. The work focuses on predict-

ing churn and does not investigate the causes of defection nor discuss

actionable features or interventions.

The paper of Hashmi et al. [51] aims to survey the pros and cons of

renowned data mining techniques used to build predictive customer churn

models in telecommunication. They highlight the use of customer call de-

tails, demographic, complaints, billing information, and contractual data

for the mobile domain. Fixed-line service providers have customers’ call

details and billing information. Classification techniques such as Deci-

sion Trees, Neural Networks, Logistic Regression, and Cluster Analysis are

mostly used to analyze continuous and qualitative data. Scientists face sev-

eral challenges, such as missing or incomplete datasets, data confidentiality,

and dataset size (i.e., very large datasets containing noisy or imbalanced

data which affect the reliability of the predictive model). This survey aims

to provide a roadmap for researchers to accumulate knowledge on data

mining techniques in the TelCo domain.

The survey proposed by García et al. [40] considers the customer churn

issue by taking into account the correct application of information-based
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knowledge extraction in the form of business analytics. They highlight as a

competitive advantage both the importance of anticipating the customer’s

intention to abandon the provider and the launch of retention-focused ac-

tions. For this reason the anticipation can be the result of the correct ap-

plication of information-based knowledge extraction in the form of business

analytics.

A great assistance for the churn management could consist in the adop-

tion of Intelligent Data Analysis (IDA), (i.e. pattern recognition (PR),

machine learning (ML), statistics and related approaches) or data mining

(DM), for the analysis of market-surveyed information. The work aims to

provide both business analysts and data scientists, with a thorough survey

and review of churn analysis applications of IDA techniques.

The described DM methodology based on IDA may become a useful knowl-

edge and information management tool for knowledge extraction from do-

main data. The paper has surveyed and reviewed recent literature in which

the use of IDA to build predictive models has been proposed to address the

churn problem, with a (non-exclusive) focus on the use of CI techniques.

A detailed survey of recent applications of business analytics to churn, with

a focus on computational intelligence methods, is provided. Furthermore,

authors contribute by giving an in-depth discussion of churn in the con-

text of customer continuity management. They discuss predictive methods

used: for standard techniques (Regression Analysis, Decision Trees, etc.);

computational intelligence (CI) methods (Artificial neural networks, Sup-

port vector machines, Data mining by evolutionary learning and Bayesian

networks (DMEL)); and for alternative ones (Semi-Markov processes, Mix-

ture transition distribution and Goal-oriented sequential pattern). And

fields of application: telecommunications, banking, and other areas of ap-

plication. They also provide a discussion on the main issues of: identifying
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and obtaining the best data (i.e. the relevance of adequate data gathering

and attribute selection procedures); considering that the churn should be

treated as a dynamic process that naturally evolves over time; developing a

predictive model and validating the results. Finally they express in favour

of the use of several methods for performance comparison purposes or as

alternative model combination methods such as those of the Ensemble

Learning family.

The study proposed by Kamalraj et al. [69] aims to identify the different

algorithms used in the churn prediction scenario, conduct a literature

review and focus on the implementation and understanding of existing

models. The management department suggestion is to use identified churns

and invest in appropriate efforts considering the customer’s lifetime value

in combination with the prediction of churn. Thus, to reduce the cost of

an excessive retention effort in both customers who are not leaving but are

considered churners and in customers who are not considered churners, but

are real churners.

2.2.3. Decision Trees

In the research of Umayaparvathi et al. [113] data mining techniques (DT

and ANN) are investigated and decision trees are observed to outperform

the Neural Network model. The dataset is acquired from a PAKDD – 2006

data mining competition and aggregated for 6 months duration. A total

of 24.000 customers is used, and 252 attributes (i.e. customer demography,

bill and payment, call detail record, customer service, etc.). Authors use

Information gain and Entropy of the attributes as there are no statistical

methods applied to the selection of feature sets. Data is aggregated over

six months: Customer behavior during the previous 6 months is used to

predict churners during the next month (7th month).

20



2.2. Relevant Research Papers

Confusion matrix, accuracy, and error rate are calculated: for the DT accu-

racy is 98.88% and error rate of 1.11167% false positive of 0.93% and false

negative of 2.23%. For the ANN model the predicted precision is 98.43%,

the false positive is 1.26%, and the false negative is 3.40%. And the error

rate is 1.5616%

The paper of Qureshi et al. [94] presents data mining techniques to iden-

tify customers who are going to churn. The proposed algorithms are LR,

LoR, ANN, KNN, DT, CART, Chi-squared, Automatic Interaction Detec-

tor (CHAID), Exhaustive CHAID and Quick, Unbiased, and Efficient Sta-

tistical Tree (QUEST). The dataset is provided by a TelCo operator with

approximately 106000 customers (active and disconnected). Traffic type

(outgoing, incoming, voice, SMS (Short Message Service), data), traffic

destination (on-net, competition), rate plan, loyalty, traffic behavior, etc.

In particular, they have 100.264 active users (94.1%) and 6231 churners

(5.9%). The dataset (106000 customers along with their usage behavior for

3 months) is divided into two subdatasets: “churn dataset1” with the traffic

figures for 3 months (approximately 300000 records) and “churn dataset2”

with the profile variables for each customer (rate plan, contract renewal

date, status, deactivation date, value segment, etc.). Customer_ID is the

key variable for the two subdatasets.

The customers are classified by status (active or churn). A customer is

“Active” if he/she continues to use the network; “Churner” in case the con-

tract with the network is terminated. Authors classify churners and active

customers to solve the problem of class imbalance by randomly oversam-

pling the minority class (by keeping the churners in an active ratio to 40:60

approximately). The best results are obtained with the Exhaustive CHAID

algorithm (accuracy about 70%).

The following methods of evaluation are considered: precision, recall, and
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F1-score. The p-value is calculated with respect to the target variable.

The Spearman correlation is computed to identify variables that are closely

correlated with the status of the customer (the main variables 5: Credit

Score; No. of penalties for non-payment; No. of outgoing calls to rival net-

works; No. of Incoming SMS from rival networks; No. of days of outgoing

activity).

The results show that the Exhaustive CHAID algorithm is the most accu-

rate algorithm (about 70%), and to increase accuracy, they introduce new

variables.

Recall of results based on the variables derived for active users is 76.9%, and

for users it is 8.5%, which increases from the best result earlier to 68.5%.

The recall in the test set for active customers is 76.3% and for churners is

60.5%. The general accuracy is 75.4%.

In the study of Kirui et al. [71] the development of precise and reliable

predictive models is fundamental. The paper proposes a careful selection

of features to improve the detection of possible churners. They considered

the phone traffic figure and customer profile data and extracted a set of new

features: contract-related, call pattern description, and call pattern changes

description. The results of the Naïve Bayes and Bayesian networks are

compared to the C4.5 decision tree. The results show improved prediction

rates for all models, higher true positive rates for the probabilistic classifiers,

and better overall accuracy for the decision tree. They remark to consider

that the minority class of the churners skews the dataset, so higher true

positive rates and lower false positive rates are better than the general

precision.

The dataset used was obtained from a European TelCo company and col-

lected in a period of three months from August to October 1997. The

dataset consists of 112 attributes and 106.405 instances of which 5.6%
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churners and remaining active subscribers. Additional features are added

to the original dataset (consisting of two subsets: call traffic figures and

customer profiles).

A complete feature set is obtained for every customer based on the customer

id.

They used the C4.5 decision tree, Naïve Bayes, and Bayesian Networks to

test the features and perform two experiments: In the first experiment, a

modified sampled dataset is used to compare the performance of the new

feature subsets. Features based on their call types: calls to competition

(CMP), fixed line calls (FIXED), international calls (INTER), on-net calls

(ONNET), and value-added service calls (VAS). They tested the new pro-

posed features altogether (NEW), either the features that describe user

activity (ACTIVITY + NUM_EVENTS) or customer profiles (CP). The in-

formation gain attribute selection technique is used to select the first 60

attributes with the highest information gain for both the original and mod-

ified datasets.

ROC curves are used, and the NEW subset (representing the proposed

features) plays the most significant role. Information gain measure (select

the top 60 attributes with the highest information gain). The study of

Dahiya et al. [28] presents a new framework for the churn prediction model

using WEKA (Waikato Environment for Knowledge Analysis) data mining

software. A discussion of various prediction models, a comparison of quality

measures such as regression analysis, and decision trees is proposed. They

demonstrate that the J − 48 decision tree technique is more efficient with

respect to logistic regression analysis due to higher accuracy. They aim

to use hybrid classification techniques to highlight a possible association

between customer lifetime value and churn prediction. The dataset for

this study is acquired from the KDD Cup 2009. It is used to analyze the
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marketing tendency of customers from the large databases of the French

TelCo company Orange with a total of 18000 attributes. Decision Tree and

Logistic Regression are used.

The test records counts predicted correctly and incorrectly are evaluated

on the performance of a classification model.

The authors use three small, medium, and large datasets with varying at-

tributes: 10 numeric variables and 50 instances for the small dataset. There

are 50 numeric variables and 200 instances for the medium dataset. For

the large dataset, 100 variables (numeric variables and categorical variables)

and 608 instances. The 10-fold cross-validation is used.

The paper publishes the confusion matrix and the following metrics: ac-

curacy (number of true outcomes/total number of predictions) and error

rate (Number of False Outcomes/Total Number of Predictions); Precision;

Recall; F1-score; ROC Area. The J48 tree and a logistic regression clas-

sifier are applied for all dataset analysis. For the small dataset, obtain:

J48-tree: Correctly classified Instances (%): 43; 94 Incorrectly classified

Instances (%): 7; 6 Kappa statistic: 0.8598 Mean absolute error: 0.0846

Root mean square error: 0.2435 Relative absolute error: 19.8912% Root

relative square error: 52.845% Total number of instances: 50 Accuracy (de-

tailed by class) Precision: 0.875; 0.971 Recall: 0.933; 0.943 F1-score: 0.903;

0.957 ROC area: 0.934; 0.932

Logistic regression classifier: Correctly classified instances (Incorrectly

classified instances (Kappa statistic: 0.6847; Mean absolute error: 0.2284;

Root mean square error: 0.3591; Relative absolute error: 53.6768%; Root

relative square error: 77.9236%; Total number of instances: 50; Precision:

0.722; 0.938; Recall: 0.867; 0.857; F1-score: 0.788; 0.896; ROC area: 0.848;

0.848.
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For the medium dataset: J48 tree: Correctly classified instances (Incor-

rectly classified instances (Kappa statistic: 0.9537; Mean absolute error:

0.0237; Root mean square error: 0.1225; Relative absolute error: 5.4733%;

Root relative square error: 26.3704%; Total number of instances: 200; Pre-

cision: 0.968; 0.985; Recall: 0.968; 0.985; F1-score: 0.968; 0.985; ROC area:

0.998; 0.998;

Logistic regression classifier: Correctly classified instances: 186; 93 In-

correctly classified instances (Kappa statistic: 0.8419 Mean absolute error:

0.124 Root mean square error: 0.253 Relative absolute error: 28.6819%

Root relative square error: 54.4542% Total number of instances: 200 Pre-

cision: 0.855; 0.969 Recall: 0.937; 0.927 F1-score: 0.894; 0.948 ROC area:

0.94; 0.94

For the Large dataset: J48 tree: Correctly classified Instances (%): 606;

99.6711% Incorrectly classified instances (Kappa statistic: 0.9926 Mean ab-

solute error: 0.0057 Root mean square error: 0.0586 Relative absolute error:

1.2838% Root relative square error: 12.4278% Total number of instances:

608 Precision: 0.99; 1 Recall: 1; 0.995 F1-score: 0.995; 0.998 ROC area:

0.999; 0.999

Logistic regression classifier: Correctly classified instances (Incorrectly

classified instances (Kappa statistic: 0.9334 Mean absolute error: 0.0477

Root mean square error: 0.1475 Relative absolute error: 10.7272% Root

relative square error: 31.2657% Total number of instances: 608 Precision:

0.956; 0.978 Recall: 0.956; 0.978 F1-score: 0.956; 0.978 ROC area: 0.978;

0.978.

In conclusion, results show that the accuracy achieved with a decision tree

is much higher than the logistic regression, so a decision tree is considered

to be an efficient technique.
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The paper of Ahmad et al. [1] develops a churn prediction model of cus-

tomers who are likely to quit their subscription to Syriatel and MTN.

They use Decision Tree, Random Forest, GBM and XGBOOST algorithms

(on spark 2.3 framework and integrated it with ML library) on the big data

platform and create a new way of feature engineering and selection.

The aim of this study is to find both the factors that increase customer

abandonment and the adoption of the necessary actions to reduce it.

The dataset includes all information from prepaid customers collected over

9 months, 78 categorical features and 32 categories are considered (the

first 31 most frequent and the remaining categories are replaced with a new

category). Customers considered churners are defined as being in idle phase

after 2 months of the investigation period.

Non-churned customers are labeled as active customers (customers acquired

in the last 4 months are excluded).

The total amount of the sample is 5 million customers: 300.000 churned

customers and 4.700.000 active customers.

The volume of the dataset is about 70 terabyte in the HDFS “Hadoop

distributed file system” (data formats: structured, semi-structured and un-

structured).

Having a large dataset is a positive aspect, on the other hand, big data poses

new challenges: volume: 70 Terabyte; variety : structured, semistructured

(XML-JSON) or unstructured (CSV-Text); class unbalance: the churning

customers are about 5% of the entire dataset; extensive number of features:

10.000 columns before the preprocessing step (i.e., service, product, offer

related to calls, SMS, MMS, Internet, personnel, and demographic infor-

mation); missing values: e.g. not all customers have the same subscription.
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To face all the mentioned challenges: a suitable big data platform is used.

The dataset is aggregated to extract features for each customer. A data

warehouse system (i.e., aggregates billing data, Calls/SMS/Internet, and

complaints) is used to decrease the churn rate in SyriaTel. Data Mining

techniques applied on top of the Data Warehouse systems do not allow to

have sufficiently good results using this data.

The big social networks (15 million nodes (customers) that represent Syria-

tel, MTN, and Baseline numbers and more than 2.5 Billion edges (transac-

tions)) are considered one of the fundamental components of the graphs of

the big data network. Furthermore, the authors calculate all the social net-

works of customers and features, such as degree centrality measures,

similarity values, and customer network connectivity for each cus-

tomer. The traditional data warehouse system still suffers from deficiencies

in computing the essential SNA measures on large-scale networks.

The metric used is the area under the receiver operating characteristic curve

“AUC” to estimate the model performance. A predictive system is built us-

ing the Hortonworks Data Platform (HDP). In particular, they use a cus-

tomized package of HDP-installed systems and tools: SYTL-BD framework

(SyriaTel’s big data framework).

During the feature engineering phase, the authors investigated the selection

of a proper sliding window for historical data to extract statistical and Social

Networking Analysis (SNA) features.

Results of a predictive model using: Statistical characteristics (extracted

using the last 6 months of the raw dataset) related to different historical

periods (AUC: 84%); SNA characteristics, extracted using the last four

months of that dataset (AUC: 75.3%); combining SNA features with the

statistical features, the results increase significantly (AUC was 93.3%).
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The data imbalance problem is faced by under-sampling or oversampling

without rebalancing. XGBOOST algorithm (without rebalancing) performs

with an AUC value of 93.3%; Decision tree (undersampling, AUC: 83%),

Random Forest (undersampling, AUC: 87.76%), Gradient Boosted Machine

Tree (without rebalancing, AUC: 90.89%).

System evaluation using a new up-to-date dataset (prepaid SyriaTel cus-

tomers without exception: 7.5 million customers without knowing what

their status will be after 2 months). The dataset for customers who are

most likely predicted to churn is divided into two datasets (Offered and

NotOffered). Marketing experts act proactively to retain customers who

are predicted to leave the ’Offered’ dataset, and the other ’NotOffered’

dataset left without action. The results of the test were compared with

the customer status after two months for the two datasets. The best AUC

value of SyriaTel New Data ’NotOffered’ is 89% for XGBOOST and most

of the cases are correctly predicted. XGBOOST (89%); GSM (85.5%);

Random Forest (83.4%); Decision Tree (79.1%). The percentage of cus-

tomers retained in the "Offered" dataset is 47%, which increases revenue

and decreases the churn rate by about 1.5%. The performance of the model

increases from 84% to 93.3% when using features of SNA. XGBoost out-

performs the remaining algorithms tested.

Sniegula et al. [106] investigate which machine learning techniques are

most suited to predict customer churn in the TelCo domain. They compare

three machine learning techniques on a single churn dataset in the context of

the telecommunication industry, in particular, K-means, Decision Tree, and

Artificial Neural Network. The dataset is taken from the "bigml" database,

a platform dedicated to machine learning. The file has 3333 records with 20

attributes (16 numerical attributes, one text attribute, and three boolean

attributes, one of them contains information about the customer churn).
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Compared different approaches: K-means method (using Java programming

language, version 8), CART decision trees, and artificial neural network

(Python programming language).

They aim to answer the following questions: “Is it really necessary to

turn towards the complex neural networks?”; “Can satisfactory results be

achieved with the use of simpler statistical approaches?”; “Which approach

is the best choosing between classification or clustering?”. To answer these

questions they compare the K-means, DT, and ANN. The metrics used

are accuracy, sensitivity, specificity, precision and F1-score. K-means:

(four different distance metrics are tested (16 tests were conducted: 4

tests for each metric: Euclidean, Chebyshev, Manhattan, and cosine.); Re-

sults: Accuracy (60%); the F1-score<30%. Best results of the average val-

ues of the performance measures: Accuracy: 62.65%; Sensitivity (recall):

83.44%; Specificity: 70.46%; Precision: 16.73%; F1-score: 27.85%. Deci-

sion Trees: 28 tests are performed. The best results are achieved with the

following configuration: min_samples_leaf; AreaCode; TotalEveMinutes

and TotalDayCalls. Accuracy: 94.98%; Sensitivity (recall): 78.92%; Speci-

ficity: 98.77%; Precision: 90.97%; F1-score: 80.80%. Clients that did not

churn are classified better. Neural network: 33 tests performed. Accu-

racy: 87.11%; Sensitivity (recall): 74.07%; Specificity: 97.81%; Precision:

68.68%; F1-score: 45.38%.

Asghar et al. [123] focus on the customer churn problem using machine

learning techniques, in particular the wrapper-based feature selection ap-

proach with Particle Swarm Optimization (PSO) is used to find the best

feature subset. Decision Tree (DT), Naïve Bayes, K-Nearest Neighbor, and

Logistic Regression are used to evaluate the goodness of the feature subset.

The use of different classifiers helps in improving the performance (wrapper-

based approaches are classifier dependent). They use the customer churn

prediction dataset 2020 of a TelCo company: 19 characteristics and 4250
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samples by assessing a 10-fold cross-validation, the dataset is divided into

10 random (and equal) partitions. The algorithm runs 10 times using the

first partition as the test set and the remaining 9 partitions as the train set.

All the experiments are performed using WEKA software (Waikato Envi-

ronment for Knowledge Analysis): they use the wrapper-based approach

and choose PSO as a search criterion with a specific classifier (Decision

Trees, K-Nearest Neighbors, Logistic Regression, and Naïve Bayes), they

use the default parameters.

The PSO-DT achieves the highest accuracy (94.56%) by selecting the least

number of features (only 8 features): international plan, total day minutes,

total eve charge, number-vmail messages, total intl charge, total night min-

utes, total intl calls. The authors use the confusion matrix, dimension

reduction (DR) to assess the performance of all the methods. A graphical

comparison of all methods in terms of accuracy and dimension reduction

achieved (PSO-DT and PSO-NN reduced the feature dimensions by more

than 50% with a high accuracy of 94.56% and 89.2%). PSO-LR selected

a high number of features (DR = 42.1%), relatively, achieving the low-

est accuracy (87.18%). PSO-NB achieved the lowest DR by only 26.32%,

although it achieved better accuracy than PSO-LR.

Simulations show that the PSO method works better with DT, identify-

ing the best feature and improving the classification performance (highest

accuracy 94.56% and lowest number of selected features).

The approach is advantageous in forecasting the churners for the exponen-

tially increasing competition of TelCo firms.

The paper of Gu et al. [46] compares the accuracy and efficiency of sev-

eral commonly used algorithms. Decision Tree C4.5, Decision Tree CART,

K-nearest neighbor (KNN), Linear Regression, SVM (SVC, SVR), Naïve

Bayes (GaussianNB, BernoulliNB), random forest, neural network. The
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dataset includes 221.770 users, of which 11.282 (5%) are churn customers,

with 37 features. Data include attributes, consumption data, and consump-

tion characteristic data, such as customer age, consumption, online time,

online time period, online traffic, etc.

The authors found that the Decision Tree (CART) algorithm is fast, accu-

rate (82%), and well suited to predict customer churn.

The CART algorithm is simple and does not require huge computational

resources, so it is suitable for data support personnel at all levels to quickly

analyze big data for customer churn.

DecisionTree (C4.5, CART), KNN, Linear, SVM (SVC, SVR), Naïve Bayes

(GaussianNB, BernoulliNB), RandomForest, Neural Network.

221.770 user data through the support of the superior company, of which

11.282 are churn customers, involving 37 features. Data include attributes,

consumption data, and consumption characteristic data, such as customer

age, consumption, online time, online time period, online traffic, and other

37 types of data.

The same data is used to compare the accuracy and operating efficiency of

the mentioned algorithms. Python is used to develop a big data analysis

program on each algorithm before and after cleaning the data.

They also discuss a quick method of cleaning abnormal values (Inter-Quartile

Ranger, IQR); in order to adjust abnormal data (outliers) to the non-

abnormal range.

The original dataset contains null values and extremely large values (Inter-

net traffic and deposits), which need to be cleaned up. The data before and

after data cleaning are compared to test each algorithm separately.
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The train-test split is 70%-30% (221.770 pieces which were divided into

161.770 pieces of training data (around 73%) and 60.000 pieces of test

data (around 27%)). Features analysis and multi-feature analysis based on

experience are performed and 37 features are selected. They analyze the

accuracy of the train, the accuracy of the test, the AUC, and the run time

of each algorithm.

Decision Tree C4.5. The researchers first used the simpler C4.5 algorithm

and the training accuracy of 85%, the test accuracy of 83%, the AUC (AUC

stands for "Area under the ROC curve") of 78%, and the ROC (Receiver

Operating Characteristic).

Scientists found that the Decision Tree (CART) algorithm is the fastest,

most accurate (82%) and is well suited to predict customer churn. Further-

more, this algorithm is simple and does not require huge computational

resources, so it is suitable for data support personnel at all levels to quickly

analyze big data for customer churn.

Jain et al. [62] discuss the performance of various algorithms and build the

best model for the prediction of churn in the TelCo, banking, and IT sec-

tors. They highlight the importance of preventing customer churn. They

discuss four machine learning algorithms: Random Forest (RF), logistic

regression (LR), SVM, and XGBoost. In the TelCo sector, XGBoost is

the best algorithm with a precision of 82.942%, RF for the banking sector

with a precision of 86.312%, and logistic regression for the IT sector with

a precision of 90.136%. The suggestion to stop attrition is to adopt re-

tention strategies developed by extensive use of explanatory analysis. This

study uses the Orange dataset, which is publicly available. The dataset

contains 3333 subscriber entries and 21 attributes. The target attribute is

“Churn”, there are 20 independent attributes and 483 churners. The experi-

ments include several models: a hybrid model of Decision Tree and Logistic
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Regression; Principal Component Analysis (PCA) with Logistic Regression

and Logit Boost; Deep Learning CNN-VAE (Convolutional Neural Network

with Variational Autoencoder); Logistic Regression; Logit Boost; XGBoost

and Random Forest.

The scientists perform the feature engineering and selection at one place

and work on improving the model performance, Feature Importance and

Correlation Matrix, handling categorical and continuous features for feature

extraction. This study uses multiple experiments: hybrid methods and

some single techniques.

The performance of the experiments is compared before and after feature

selection and with similar literature work. Every prediction model starts

the process with the acquisition and processing of the dataset.

Accuracy, Precision, Recall rate, F1-score, Confusion matrix, Macro aver-

age, and Weighted average.

The study has been shown to have better results compared to previous

models. Random Forest outperforms by achieving 95% accuracy and in all

other experiments very good results are produced. This study states the

importance of data mining techniques for a churn prediction model and

proposes a very good comparison model.

The research of Lalwani et al. [73] proposes a six-phase methodology to

predict customers that are likely to leave the company’s services, in partic-

ular in the TelCo Industry. They propose a comparative study of customer

churn considering the following phases: identification of most suitable data;

cleaning and filtering; feature selection; development of predictive models;

cross-validation; evaluation of predictive models on the test set. In particu-

lar, they use machine learning techniques such as logistic regression, Naïve

Bayes, support vector machines, decision trees, random forest, XGBoost
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Classifier, CatBoost Classifier, AdaBoost Classifier, and Extra Tree Classi-

fier. The results show that Adaboost and XGboost Classifiers outperform

others in terms of performance measures (accuracy (81.71% and 80.8%,

respectively), precision, recall, F1-score, AUC score (84%, is achieved by

both)).

In the study of Melian et al.[79] they determine the prediction of customer

churn on a dataset of a major telecommunication company in Romania.

They highlight the importance of correct identification of customers who

could ’leave’ the network. As a consequence, companies can propose a series

of personalized offers, based on the customer’s profile, to prevent abandon-

ment. A Romanian mobile dataset is analyzed: a sample of 10715 postpaid

customers (out of five million active subscribers of an anonymized database

containing historical data). The number of churners is 1468 individuals

(13.70% of the sample). They gather Demographic data, Information about

the customer’s lifecycle, financial strength, and interactions with competing

TelCo clients (calls versus or received). The analysis performed determines

the indicators that can best underline the attitude of churn. Clustering

of k-means is applied (the set is divided into three clusters) and several

algorithms are used: Logistic Regression, Decision Trees, Random Forest,

Balanced Random Forest, and Propensity Score Matching (PSM).

The 1505 individuals who have not previously been contacted for one year

by the TelCo service provider have been selected in the control group.

The logistic regression outlines the characteristics that influence the cus-

tomer’s defection: the time span the company’s services (Tenure), the

month’s number since changing the last offer (MonthsO), the minute’s num-

ber consumed outside the company (MinR), the value of the invoice paid

for the services used (Invoice), the minutes received outside the network

(MinR), and the value of the extra costs paid for off-network services (Ex-
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traCosts). The decision tree is used to find the variables that answer the

question What are the features that influence the churn action?.

MonthsO is the main indicator (months number since the last offer was

changed: change in service), the national minutes received, the additional

cost and the invoice value. Customers who are not contacted by the com-

pany to change their offer, whose last service renewal is about 40 months

earlier, are prone to churn. MinR: customers near completion of 12 months

in the network are prone to churn. The number of minutes used to speak

with other people outside the provider network is greater than 73.47% of

the total number of minutes used within the network. Indicates that the

customer could act as a churner in the very near future. Customer’s

decision makers for churn: MonthsO, Invoice, MinR, ExtraCosts. In

particular, people without a re-offer over their contract in the last 37.3

months are prone to churn. Customers with an additional cost greater

than 15.28 euros and a percentage of calls received greater than 82.06% are

churners. In the event of an invoice higher than 51.21 euros, while the Ex-

tra Cost is between 15.28 euros and 37.3 euros, individuals are susceptible

to follow this behavior. Exceptions: some individuals with the percent-

age of MinR smaller than 19.78% and the additional costs (ExtraCosts)

smaller than 6.75 euros are arranged to churn. The Random Forest and

Balanced Random Forest provide the variables which answer the question

"Which of the dataset variables requires the rule in the model?"

MinR (for the Random Forest) and MonthsO and MinC (in the case of

the Balanced Random Forest). Random forest (higher accuracy) helps in

finding those variables that influence the churning process, observing which

"impose the rules" when a customer decides to churn. MinC produces the

greatest influence, but also Age and Tenure. Balanced Random Forest finds

out that the leading variables in churners identification are MonthsO and

MinC which best discriminate between churner and nonchurner. Propen-

sity Score Matching (PSM) determines MonthsO, invoice value (average
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invoice), and tenure, as the three indicators explaining the net effect on the

churn action of the applied treatment: "customers have not been contacted

for 12 months". Furthermore, the 12-month contact policy, the treatment

that some individuals have undergone, has affected the customers’ decision

to leave the network. They conclude that MonthsO, invoice, and tenure

are the main indicators that explain the net effect produced by the applied

treatment (the customers have not been contacted for 12 months) on the

churn action.

The paper of Mustafa et al. [82] investigates which variables in the Net

Promoter Score (NPS rating, which is a measure of customer satisfaction

and loyalty using a ten-point scale) influence directly or indirectly the cus-

tomer churn. Customer churn is high for customers with a low NPS. They

based their study on an NPS dataset from a Malaysian telecommunications

company (gathered on September 2019 and September 2020) consisting of

7776 records with 30 fields. They develop a propensity method for customer

churn comparing the following algorithms: Logistic regression (LR), linear

discriminant analysis (LDA), K-nearest neighbors classifier (KNN), clas-

sification and regression trees (CART), Gaussian Naïve Bayes (NB) and

support vector machines (SVM). Predictive analytics uses demographic,

transactional data, and NPS: in general 33 variables (including the target

churn variable). An original trait of their study is that they study the me-

diation effects of some factors. They identify the causing factors (treated

as independent variables) that result in customer churn (the dependent

variable representing the effect), but also mediator variables: churn predic-

tors may impact customer churn directly, indirectly, or in both ways. To

this purpose, in their analysis, they distinguish among "determinants" of

customer churn, which may directly influence the defection, and indirect

effects of NPS feedback. Another original trait of their analysis is the cat-

egorization of the customer based on the NPS score into three classes: de-
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tractor (0–6), passive (7–8), promoter (9–10), and the definition of "partial

defection", corresponding to a downward change of class of the customer.

Specifically, we have partial defection if the NPS feedback rating changes

from promoter to passive, and we have total defection if it changes from

passive to detractor. This NPS feedback status is hypothesized to be one of

the mediators of the relationship and link between churn predictors and

customer loss. More in detail: the NPS feedback rating change partially

mediates the effect of the customer churn of the variables Duration, Reply

Shift, Service Request Type, Helpdesk Staff ID, and Assigned Officer. The

authors find that using their model, the CART algorithm outperforms the

algorithms tested with an accuracy of 98%.

2.2.4. Support Vector Machines

According to the research of Brandusoiu [21], an advanced methodology

is proposed to predict customer churn. The predictive model implemen-

tation consists of a Support Vector Machines algorithm with four kernel

functions: Radial Basis Function Kernel (RBF), Linear kernel (LIN), Poly-

nomial Kernel (POL) and Sigmoid Kernel (SIG). They focus on the impor-

tance of understanding and preparing the dataset and then building and

evaluating the models. The polynomial kernel function performs better

(accuracy of 88.56%). RBF, LIN, and POL have a very good performance

(around 80%). The dataset used is from the University of California, De-

partment of Information and Computer Science, Irvine, CA, is complete,

and no attributes are missing. It contains call details records and has 21

attributes for each of its 3333 subscribers. In particular, historical records

of customer churn, how they turned out in hindsight, i.e., their previous be-

havior if it turned out that they are churners or not. For each subscriber,

they have information about their corresponding inbound/outbound calls

count, inbound/outbound SMS count, and voice mail. Regarding the data
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preparation and model building, IBM SPSS (Statistical Product and Ser-

vice Solutions) is used. The minority class is oversampled. And visualize

the performance of the models on the testing set by using the confusion ma-

trix, gain measure (models that use RBF and polynomial kernel functions

perform better: 80% for RBF and POL, compared to 60% for LIN and

50% for SIG). For the prediction of churners and non-churners, the model

that uses the polynomial kernel function performs best, having an overall

accuracy of 88.56%. RBF, LIN, and POL have a very good performance

(around 80%).

The paper of Brandusoiu et al. [25] proposes a new methodology to predict

likely to churn subscribers in the prepaid mobile sector by applying their

own neural network architecture to the call details records dataset. Model

performance is evaluated using the confusion matrix. The gain measure and

the ROC curve are used to evaluate the predictive model. The overall per-

formance to predict between churner and non-churner is 99.55%. The pre-

diction of churners on prepaid mobile devices is approximately 99%. Three

types of machine learning algorithms are explored: neural networks (multi-

layer perceptron, MLP), support vector machines parameters are learned by

means of a divide-and-conquer approach: sequential minimal optimization

(SMO) algorithm and Bayesian networks learned by Iterative Parent-Child-

Based Learning of Markov Blanket (IPC-MB). The University of California,

Department of Information and Computer Science, Irvine, California pro-

vided the dataset. The authors investigate a dataset of pre-paid mobile call

details records that consists of 3333 customers with 21 attributes each. It

contains information on the usage of a mobile telecommunication system

and has a total number of 3333 subscribers with 15 continuous and 5 dis-

crete variables each, and the Churn dependent variable with two classes

Yes/No. Three discrete variables (state, area code, and phone) are omitted

(because of the inconsistent information contained). For each subscriber,
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they found information on the inbound/outbound call count, the inbound

/ outbound SMS count, and voice mail (Call Detail Record). Gain

measure and ROC curve are considered to evaluate the predictive model.

Performance is evaluated using the confusion matrix. Scientists propose

an advanced data mining methodology to predict churn in the prepaid mo-

bile telecommunications industry. The sensitivity and specificity of SVM

are 100%, the sensitivity for MLP and BN is approximately 99% and the

specificity is 100% for MLP and 99% for BN. By evaluating the results, the

models have an overall precision of 99.10% for BN, 99.55% for MLP and

99.70% for SVM. Models have very good performance (from 99% to 100%)

in predicting churners.

The evaluation measures used are: Sensitivity/recall; Specificity; Precision;

Accuracy; Misclassification error; F1-score; Coverage.

The Information Gain Attribute Evaluator (Feature Ranking Method) us-

ing a Weka toolkit makes it possible to select the most appropriate at-

tributes. The authors evaluate four different algorithms for rule generation

with an RST-based classification approach. A comparison of four rule gen-

eration algorithms (i.e. GA, CA, EA, LA) with RST-based classification is

performed.

GA with the RST has shown a more suitable predictive capacity. LA gives

the maximum accuracy which is about 0.993; however, it has a coverage of

66.8% of customers (which means that it has only classified 668 instances

while 332 customers are ignored).

The covering algorithm classified 64% customers with 0.878 precision which

is the least accurate among the four rule generation algorithms. Although

the EA achieves less accuracy (i.e. 92.6%) as compared to LA; nevertheless,

the EA method performs better than both algorithms (i.e. LA and CA) in

terms of coverage, recall, and F1-score.
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The work of Apurva Sree et al. [12] focuses on churn prediction prob-

lems using machine learning algorithms such as Support Vector Machines,

Random Forest, and Logistic Regression. Different factors can be found

that affect the rate of churning. The IBM Watson dataset contains 7000

customers, with 26.6% of customers which moved from one service provider

to another.

The accuracy gained by each algorithm is: Logistic Regression: 80.75%;

Random Forest: 80.88%; Support Vector Machine: 82%. They find the

relationship between the factors influencing churn prediction. The churn

rate is higher for customers which have a month-to-month contract, senior

citizens churn more than younger people.

This fact allows TelCo companies to adopt effective strategies that lead to

the creation of innovative applications of machine learning techniques.

In the research of Amin et al. [6] the Just-in-Time (JIT) approach uses

datasets from across companies to address the problem of customer churn.

This method requires historical data to obtain the best performance of the

classification model. However, JIT can provide answers at the initial stage

for a new company or for those that lack historical data archives. The

prediction performance of SVM as a base classifier in the heterogeneous

ensemble is better, compared to SVM applied as an individual classifier

or homogeneous ensembles. They use publicly available datasets of two

TelCo companies: Dataset Source and KDDCup (1999). Dataset 1 No. of

samples (size): 3333; No. of input variables: 21; No. of numerical features:

16; No. of discrete features: 4; No. of independent variables: 20; No. of

dependent variables: 1; No. of independent variables values: 2; Dataset 2

No. of samples (size): 5784; No. of input variables: 250; No. of numerical

features: 214; No. of discrete features: 35; No. of independent variables:
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249; No. of dependent variables: 1; No. of independent variables values: 2;

Independent variables in dataset 1 are 20 and dataset 2 are 249.

Evaluation measures are as follows: Accuracy; Classification error; Kappa;

Precision; Recall; F1-score; Sensitivity; Specificity;

The psep (parameter specifies) is the sum of the positive and negative pre-

diction values minus one. It can be mathematically expressed as: psep =

ppv+npv−1 where ppv means positive prediction value and npv is a refer-

ence to negative predictive value. Standard Error (SE): it is the standard

deviation of the sampling distribution of the mean, σx− = σ√
n

where σ is the

standard deviation of the population and n is the size of the sample. They

visualize the difference in feature space of the cross-company training set,

where they consider the feature space of the imbalanced training set, and

it represents the features space before using the random under-sampling

(RUS) method, the feature space after applying the RUS method in case of

the feature space of the balanced training set. The classifier(s) is trained on

enough historical data stored in the well-organized CRM of a company and

applies the same with the extracted knowledge on the newly established

company data. They compare the performances of the homogeneous en-

semble method (bagging in JIT-CCP) and the heterogeneous ensemble

method (stacking).

Classifiers used in the heterogeneous ensemble Classifier: K-nearest neigh-

bors(kNN); Naïve Bayes (NB); Neural net (NN); Support Vector Machine

(SVM). They compare the standard deviation (SD) versus accuracy(AC)

and F1-score (FM) of all the applied methods. Here SD-FM means standard

deviation versus F1-score, and SD-AC represents standard deviation versus

accuracy. The highest accuracy, the measure F, and the lowest standard

deviation represent the best model performance of individual base classifier

(i.e. SVM), homogeneous, and heterogeneous ensemble methods. The re-
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sults show that the JIT-CCP model without any ensemble methods achieves

the best performance (i.e. accuracy: (55.3 ± 7.13)%, F1-score: (47.26 ±

11.12)%, psep: 0.117 ± 0.16 and kappa: 0.106), but with the application of

a homogeneous ensemble method which has improved the performance of

the JIT-CCP model by 3.94% in accuracy, 3.94% in misclassification error

rate and 9.47% in the F1-score. The heterogeneous ensemble method is

applied, which further improves the performance of the proposed JIT-CCP

model to 18.03% in accuracy, 14.69% in the F1-score, and also reduces the

misclassification error rate to 18.03%. The results reveal that the effective-

ness of the heterogeneous method is more useful and practical, compared

to homogeneous ensemble or individual classifier approach.

2.2.5. Artificial Neural Networks

Vafeiadis et al. [114] present a comparative study on the most popular ma-

chine learning methods: Artificial Neural Networks (ANN), Support Vector

Machines (SVM), Decision Trees Learning (DTs), Naïve Bayes (NB), Re-

gression Analysis (RA), and Logistic Regression (LR) Analysis. They first

evaluate these classifiers through cross-validation. Then, test the perfor-

mance with boosting. Finally, Monte Carlo simulations are performed to

determine the most efficient approach. They test BPN, SVM, DT, NB,

and LR models using boosting techniques, NB and LR cannot be boosted

because of the lack of free parameters to be tuned. The AdaBoost.M1 al-

gorithm is applied to BPN, SVM, and DT. The boosting technique signifi-

cantly improves the classification performance. The SVM is a powerful tool

compared to the other models explored. The dataset originally from the

UCI Machine Learning Repository (converted to MLC++ format1), which

is included in package C50 of the R language, contains 5000 samples.

Precision, recall, accuracy, and F1-score (estimated averages) for 100 Monte
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Carlo realizations of BPN, SVM-RBF, SVM-POLY, DT, NB, and LR; and

with boosting (BPN, SVM-RBF, SVM-POLY, DT-C5.0). Two of the best

performing methods in terms of the corresponding testing error are the

two-layer back propagation network with hidden units 15 and the Decision

Tree classifier; both methods achieve the accuracy of 94% and the F1-score

of 77%. The Support Vector Machines classifiers (RBF and POLY kernels)

obtain an accuracy of about 93% and an approximate F1-score of 73%. The

Naïve Bayes and logistic regression methods fail shortly with approximation

accuracy 86% and an F measure of approximately 53% and 14%. Using the

AdaBoost.M1 algorithm, the comparative results showed an improvement

in performance for the three remaining classifiers due to boosting. Accuracy

improves between 1% and 4%, while F measures between 4.5% and 15%.

The best classifier is the boosted SVM (SVM-POLY with AdaBoost) with

an accuracy of almost 97% and an F1-score greater than 84%.

The article of Andrews et al. [10] describes different kinds of machine

learning techniques in particular the effectiveness of RF, SVM and KNN

compared to DL models that perform similarly to conventional classifiers

such as SVM and random forest. Traditionally, various types of machine

learning approach like Decision trees, Random Forest, Bagging, etc., are

applied to predict churned customers. Deep learning approaches have bet-

ter accuracy and less processing time. The Boost calculation is proposed to

prepare classifiers that show achievement in churn prediction. The dataset

is certified by a TelCo Company in Belgium and contains more than 3000

information that was mimicked by 10.000. With a total of 22 factors from

10.000 customers. The test set contains around 2% churners, 200 among

10.000 customers. The entire dataset in which 29% of customers are churn-

ers.

In the study of Shah et al. [101] is proposed a set of generic features which

can be used for most all non-subscription business settings for developing
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churn prediction systems. In addition, the application of causal reasoning

helps in predicting the possible causes that act as critical reasons for a

customer to churn.

In this paper, the authors focus on Non-contractual and continuous

business: where both the sale amount and the purchase interval can

vary.

The data is about sale and payment of a dealer, per day, per month or on

some other time granularity. A dealer is someone who acts as a trader

between the business and the end user. The aim of the study is to predict

the churn of these dealers.

The data contain sales and payment transactions from April 2016 to De-

cember 2018. Dealers who have not transacted from September 30th are

considered churned. A total of 6000 customers’ sales data is analyzed. The

proposed method uses a minimal set of data to generate enough features

to build a basic churn prediction system. The problem is approached as

typical classification problem in which training data is generated from his-

torical sales and payment data, one sample per customer, and assign a

label to each customer whether has churned or not. The sales and payment

data of a business-to-business large-scale non-contractual and continuous

business are used.

Generic features can be extracted from sales and payment data of almost

all non-subscription-based business.

The feature set is based on RFM analysis (Recency, Frequency, Monetary is

a marketing technique used to determine quantitatively which customers are

the most valuable ones by examining how recently a customer has purchased

(recency), how often they purchase (frequency), and how much the customer

can spend (monetary)).
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The network is trained for dealers with no sales transactions in the last

120 days. Due to the unavailability of the target field (churn), a novel

unsupervised method is proposed.

The last transaction date of the dealer is not taken as a training feature,

because the target field is derived from that date (not available during

inference). The recency of the features is considered 6 months.

A 5 layers (MLP) feedforward backpropagation neural network is used, with

the input layer that contains all input fields. The output layer contains the

target. (Hidden layers: 200; activation function: ReLu in hidden layers and

softmax in the output layer; Learning rate: 0.01; Signature cross entropy

as an optimization Algorithm). TensorFlow library is used.

The metrics used are: Accuracy; Precision; Recall; F1-score.

By selecting 500 epochs and after performing a certain number of exper-

iments, the accuracy of the test set is 79.65%. Evaluation metrics of the

best configuration are favorable for the nonchurn class: Precision (77.47%);

Recall (85.29%); F1-score (80.63%)

A system for causal analysis of churn predicts a set of causes that may

have led to the customer churn and helps to derive customer retention

strategies. The Number of Complaints; Salesman or point of contact changed;

Orders canceled due to understock; Returns due to defective material are

mentioned to be the main causal factors. The authors propose two mod-

els specifically for causality analysis of customer churn: Counterfactuals-

based causal model and cause prediction using Bayes theorem. They

experimented with both of the proposed methods using our data on two

different causes of customer churn.

The counterfactuals model is used for order blockage (the cause). Un-
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blocking orders will change the payment and sales data of those customers,

which in turn changes the features used for churn prediction.

Using the "new feature" vectors to predict the churn, around 45% of cus-

tomers, whose orders were blocked and were predicted as churned before

unblocking, have been predicted as non-churned after unblocking.

There is an average reduction of 0.3 in the overall customer churn score

using counterfactuals on blocked orders.

Using the Bayes method on return due to defect (as a cause), about 64%

of customers who returned their orders due to defect and have churned have

this as a possible cause of churning.

In the study of Jolfoo et al. [66], firstly, they review various algorithms

used for customer churn prediction in the TelCo sector. Second, they pro-

pose a hybrid approach of Artificial Neural Network (ANN) and K-Nearest

Neighbor (KNN) algorithms. The ANN model is constructed using multi-

layer perceptron in SPSS (Statistical Package for Social Sciences) statistics.

They train the model through a backpropagation learning algorithm and

adjust the synaptic weights through the descent of gradient to reduce the

error through the transformation function. The churn prediction model

is constructed using the KNN algorithm, as it can perform classification

without prior knowledge about the data distribution. The accuracy of the

prediction of churn is estimated by the ratio of correct predictions to the

total number of cases evaluated. They conclude by emphasizing the impor-

tance of customer retention. Companies must concentrate on identifying

the reasons behind the customer’s behavior, actuating appropriate changes

in their strategies.

Bauer et al. [15] propose a novel method for CLV customer lifetime value

(CLV) prediction customized using deep learning approach based on encoder-
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decoder sequence-to-sequence recurrent neural networks (RNNs) with aug-

mented temporal convolutions. This model is then combined with gradient

boosting machines (GBMs) and a set of novel features in a hybrid frame-

work. A wrapper-based feature selection approach with Particle Swarm

Optimization (PSO) is proposed. Decision Tree (DT), Naïve Bayes, KNN,

and logistic regression 10 times cross-validation classifiers (PSO-DT, PSO-

NN, PSO-LR, PSO-NB). Despite this work is not focusing on the churn

prediction the proposed methods can be applied to the telecommunication

scenario. Real-world data from a larger e-commerce company and a pub-

lic dataset from the domain of online retail, the CDNOW dataset. They

included the BG/NBD model (i.e. advanced RFM model) as one of the

baselines in performance comparison. In the datasets used for evaluation,

information about churn is also not available, which is why churn is modeled

implicitly in the approach when the future CLV is predicted to be zero at

some point in time. That is the way they process the available time series

data. Most of the features are dynamic, that is, change over time. They

do not consider the number of children of a customer as a static feature

that is computed only once, but derive the feature values for every point

in time considered in the past, e.g., each day or week. Features are based

on: customer attributes; orders (item purchases); other item interactions.

Most features are related to orders and other types of customer behavior

and represent aggregated values, e.g., the number of purchases or the total

profit that was made. Thus, this leads to very large feature vectors and the

problem of data sparsity.

The approach is evaluated on two publicly available datasets (Children

dataset) and proprietary. Public datasets that include profit or revenue

information, essential for CLV prediction, are generally scarce. The dataset

(European e-Commerce company selling products for children and families),

having over one million customers. The corresponding purchase data is
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recorded over three years. The results are validated on UKRetail (smaller

dataset). A total number of 541.909 purchase records by more than 4.000

customers of a UK company are recorded for a period of about one year.

For the smaller UKRetail dataset, a model based on daily data was built for

the UKRetail dataset. For the large Children dataset, weekly aggregates

are used instead of making the computational processes more efficient. For

the same reason, only selected features of high importance are used in the

RNN model for the Children dataset. To avoid bias of the results, the

authors focused on regular customers and excluded wholesale customers.

Empirically-determined models are applied and capture long-term trends

in purchasing behavior, for example, a steady increase in order volume over

time, as well as periodic patterns.

The proposed method(s) outperform all baselines in this comparison on

both measures and for both datasets, and the lowest (best) RMSE and

MAE values are obtained in both cases with the stacked combination of

the GBM and sequence-to-sequence RNN model (GBM-S2S).

In the paper by Dalli et al. [29], the authors investigate how the hyper-

parameters’ tuning affects the performance of deep learning models. They

compare several ML algorithms and techniques: traditional machine learn-

ing techniques (Random Forest, Logistic Regression, Support Vector Ma-

chines, and Naïve Bayes), Ensemble Learning, and Deep Learning. Based

both on the approaches and the results in the literature, they select Deep

Learning techniques as a robust and effective solution. However, while

the usage of Neural Networks has been deep-routed, they notice that lit-

tle investigation has been done on the impact of different hyperparameter

selection, also on the Neural Network performance tuning for an improved

network.
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Some papers confirm analogous findings as they use the same Deep Learning

methods to predict customer churn in the TelCo business. Thus, it proves

that the Neural Network hyperparameters’ configuration approaches are

lacking when dealing with telecommunication customer defection.

In particular, due to the lack of configuration of hyperparameters in Neu-

ral Networks, they contribute by analyzing the impact of three aspects:

"different combinations of activation functions on the performance of the

ANN model"; "several batch sizes used on the ANN model performance";

"different optimizers on the performance of the ANN model". The applied

methodology is already suited in the publication of Domingos et al. for the

prediction of customer churn in the banking sector.

They consider the open-source database “Crowd Analytix”, a dataset of cus-

tomer churn that contains 21 characteristics (one dependent variable). The

’Churn’ feature is either the churn rate or the non-churn rate of the cus-

tomers (14.5% is the percentage of ’Churn’, while 84.5% is ’non-churn’). In

the preprocessing step, they consider several aspects, in particular: Miss-

ing values: they removed features with more than 95% missing values in

the data considered. Outliers: they exclude the notably different data

points. Category variable: binary input where a categorical variable

has been safely transformed to binary variables using the dummy variable

approach. There are (n–1) dummy variables at once (n is the number of

distinct values in categorical variables). Standardization: to uniformly

standardize the data, that is, total number of calls (thousands) and

total call time in minutes (millions), the MAX-MIN scaling approach is

used. Class imbalance: the churner ratio is lower than the non-churner

ratio, so to balance the classes, the synthetic minority oversampling method

(SMOTE) is applied to the training set. Feature selection: they elimi-

nate highly correlated features (justifying that these increase the compu-

tational workload both without extra effort and without improving accu-
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racy). Finally, they reduce to 10 the standardized values to use as input

to the NN, and the Churn to train the model. They use the accuracy met-

ric (the number of correct predictions made as the ratio of all predictions

made). Impact of Activation Function: they aim to investigate the

impact of the configuration of alternative activation functions (Sigmoid,

ReLu, Tanh) on the extreme performance of the neural network model.

The best prediction accuracy of 86.8% is derived from the combination

of a hidden Rectifier (ReLu) layer and a Sigmoid Output layer. Impact

of Batch Size: They adjust the batch size from 3 to 230, the average

accuracy of 84.52% is achieved once the batch size ranges from 3 to 40

and decreases for higher values. Impact of Optimizers: the dataset is

divided into 10 parts during the training phase. To use the k-fold cross-

validation technique, the model is trained on nine flaps and tested on the

tenth. The algorithms considered for optimizers are stochastic gradient

descent (SGD), adaptive gradient (AdaGrad), Adadelta, root mean square

propagation (RMSProp) and Adam and AdaMax. RMSProp, chosen as a

training algorithm, achieves higher accuracy (86.45%). In conclusion, the

authors want to generate meaningful heuristic knowledge to anticipate cus-

tomer attrition. Contributing to improving the NN’s hyperparameter tun-

ing and accuracy. They suggest that a human’s configuration-based hybrid

architecture would autonomously pick the perfect and very best hyperpa-

rameters so as to train, test, and improve the model’s performance. Inves-

tigation of the impact of sinusoidal activation functions (sine and spline)

would have an effect on various types of activation functions. And finally,

they suggest using the proposed framework to predict the loyalty of the

customer (not loyal, loyal, or very loyal).

According to the research of Tsai et al. [111], a hybrid data mining tech-

nique is applied and combined with feedforward artificial Neural Networks

(ANN) and self-organizing maps (SOM). In particular, they combine two
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ANNs (ANN+ANN) and ANN+SOM. The first part of the hybrid model

filters out unrepresentative data or outliers and evaluates a prediction model.

Hybrid data mining models combine clustering and classification data min-

ing to improve performance. This paper proposes hybrid models: ANN with

artificial Neural Networks and ANN with self-organizing maps (SOM). The

hybrid models outperform the single Neural Network in terms of accuracy

and type I and type II errors. The ANN+ANN model performs better and

is more stable. They considered a CRM dataset provided by American

TelCo companies, containing 51.306 subscribers, including 34.761 churn-

ers and 16.545 non-churners, from July 2001 to January 2002. Customers

which have been with the TelCo company for at least six months are defined

as mature customers. Churn is calculated based on whether the subscriber

left the company during the period 31–60 days after the subscriber was

originally sampled.

2.2.6. Genetic Programming

The study of Idris et al. [59] proposes an efficient churn prediction ap-

proach, based on exploiting powerful searching capabilities of genetic pro-

gramming (GP) supported by an AdaBoost-based iterative approach. It

identifies customers who are ready to quit, based on Orange and Cell2Cell

datasets. The Orange dataset comprises 50.000 instances where only 3276

are churners. Cell2Cell includes 40.000 instances where 20.000 are churn-

ers.

This new methodology combines genetic programming (GP) and AdaBoost

(search and classify) to evolve a high-performance churn prediction sys-

tem with improved churn identification capabilities. The majority class of

the Orange dataset is undersampled by using Particle Swarm Optimiza-

tion (PSO) (based on the undersampling method) to address the class im-
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balance. This method is combined with the GP-AdaBoost algorithm and

provides the ChP-GPAB churn prediction system (i.e. ChP means Churn

Prediction). The algorithms used are as follows: Random forest; Rotation

Forest; RotBoost and GP-AdaBoost. By applying GP-AdaBoost it is pos-

sible to identify the characteristics that represent the reasons for the churn

behavior of customers. The final results are computed by accumulating the

results over all iterations of 10 fold cross-validation. GP-AdaBoost ensemble

classifier in combination with PSO-based undersampling is able to interpret

customer churn behavior and achieve improved prediction performance.

Sensitivity and specificity measures and AUC and ROC curves are used.

The results show that all the classifiers (Random forest; Rotation forest;

RotBoost and GP-AdaBoost) show deteriorated performance on the Orange

dataset (imbalanced). On the other hand, algorithms perform well on the

Cell2Cell (balanced) dataset, and GP-AdaBoost achieves higher prediction

performance. Ch-GPAB attains sensitivity scores of 89% (Orange) and 93%

(Cell2Cell), the best prediction performance (in terms of AUC) reported in

the datasets. AUC obtained by GP-AdaBoost ranges from 70% to 91% over

30 independent simulations. Ch-GPAB efficiently predicts TelCo churners

and is also effective for investigating churn behavior.

The AUC is studied in the Orange dataset by making a comparison based on

Ch-GPAB (0.751), gradient boost machine (0.737), decision stump-based

model (0.725), decision tree-based model (0.715), Bayesian net (BN) based

approach (0.714). They compare the performance of the Ch-GPAB (AUC:

0.910) and Naïve Bayes (NB) based approach (AUC 0.818) on the Cell2Cell

dataset. A McNemar statistical test is performed to evaluate the confidence

level of the Ch-GPAB system’s prediction performance. A comparison of

Ch-GPAB with Chr-PmRF (Churn Particle Swarm Random Forest) [58]

and RUS-Boost (Random Under Sampling Boost) is made. McNemar’s con-

fusion matrices show: 10.200 instances are correctly predicted by the pro-
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posed Ch-GPAB, but incorrectly classified by Chr-PmRF for the Cell2Cell

dataset. A total of 1300 instances are correctly classified by Ch-GPAB and

incorrectly predicted by Chr-PmRF for the Orange dataset. Furthermore,

450 (Cell2Cell) and 22 (Orange) are incorrectly predicted by the proposed

Ch-GPAB but correctly predicted by Chr-PmRF. The proposed Ch-GPAB

correctly classified 3.125 instances, while only 11 instances are correctly

classified by RUS-BOOST which are incorrectly classified by CP-GPAB in

the Orange dataset.

The paper by Amin et al. [5] proproses a novel Adaptive Customer Churn

Prediction (ACCP) model with the ability to learn continuously (i.e., brain-

like improving knowledge boundary). The Machine Learning at prediction

time without retraining the CCP model several times with minimal data

loss. In particular, an adaptive learning approach by using the NB clas-

sifier with a Genetic Algorithm (subclass of an Evolutionary Algorithm)

based feature weighting approach (i.e. FWAGA: Features Weight Assign-

ment using GA). They employ the self-learned optimum attribute weighting

technique using a genetic algorithm without losing data and keeping the at-

tribute independence. Furthermore, the model maintains good prediction

accuracy. Additionally, the authors perform a literature review on the pre-

diction of customer churn. The ACCP performance is evaluated on publicly

available data sets, considered as a benchmark, BigML Telco churn, IBM

Telco, and Cell2Cell, justifying that private real-world telecommunication

data sets prevent reproducibility and extrapolation. The ACCP is com-

pared to the baseline classifiers: NB with default setting, Deep-BP-ANN,

CNN, NN, LR, XGBoost, KNN, Logit Boost, SVM, and PCALB. They use

accuracy, precision, recall, MCC. Achieving the results of average precision,

for each data set: 0.97, 0.97, 0.98, a recall rate of 0.84, 0.94, 0.97, and F1-

score of 0.89, 0.96, 0.97, an MCC of 0.89, 0.96, 0.97, and accuracy 0.95,

0.97, 0.98 respectively. They conclude that the overall performance of the
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ACPP approach is better by 30% in terms of average precision compared

to the baseline classifier with default setting.

2.2.7. Bayesian Models

In the paper by Amin et al. [7] they discuss the Cross-Company Churn

Prediction (CCCP) as an alternative handling of the bottleneck in Within

Company Churn Prediction (WCCP). CCCP means that one company (the

target) lacks enough data and can use the data of another company (the

source) to successfully predict customer churn (i.e., training data from one

company and applying it to the target data of another company). For this

reason, they develop a model for CCCP using data transformation (DT)

methods, i.e. z-score, log, rank and box-cox. The last three methods sig-

nificantly improve the performance of CCCP. The authors both validate

the impact of these transformation methods in CCCP and evaluate the

performance of the underlying baseline classifiers: NB, KNN, GBT, SRI,

and DL using publicly available datasets (i.e., Subject Dataset-1 and Sub-

ject Dataset-2). Specifically, Subject Dataset-1 is used as the target and

contains 2850 churners and 483 non-churners. Subject Dataset-2 is used

as the source and contains 15760 non-churners and 2240 churners. The

evaluation measures used are Confusion Matrix, Probability of Detection

(POD), Probability of False Alarm (POF), AUC and G-Mean (GM). The

NB classifier outperforms on transformed data in terms of AUC values 0.51,

0.51, 0.513 in raw, log and Box-Cox, respectively. The DP, KNN, and GBT

classifiers outperform on average, while the SRI classifier does not show sig-

nificant results in terms of the commonly used evaluation measures (i.e.,

POD, POF, AUC, and GM). The SRI classifiers achieve the maximum per-

formance (i.e. AUC value of 0.541) in the single DT method (i.e. Z-score)

and obtain the lowest level of performance (i.e. AUC values of 0.45, 0.44,

0.357, 0.455 in raw, log, rank and box-cox). In conclusion, they suggest
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that a company that lacks the necessary data for the learning purpose of

the classifier can use the data of a mature company. In addition, method-

ological practices are provided to assess and link the significant advantage in

existing and future data transformation methods in the context of telecom-

munication companies. A comment is made on the data requirements that

need to be considered from the researcher’s perspective, as the cross-firm

data should be managed in an appropriate way for empirical analysis and

the development of novel models. The proposed approach provides a clear

picture of the expected scientific consequences of increased data normality

in terms of increased predictive model performance.

2.2.8. Logistic Regression

The research of Zhao et al. [129] predicts high-value customer churn and

identifies the potential churned customers putting forward targeted win-

back strategies, it uses a logistic regression algorithm combined with TelCo

big data analysis and historical information estimation of customers. The

article analyzes the trends and causes of churn and answers the questions

how customer churn occurs using data mining techniques, what

influencing factors are worth considering, and how enterprises can

win back customers who left. The study helps customer relationship

management identify “high-risk churn” customers in advance, improves cus-

tomer loyalty and viscosity, maintains “high value” customers, continues to

provide customers with “value”, and reduces the cost of maintaining cus-

tomers. Loyal customers can help enterprises tune the expenses (cost of

publicity and negotiation, etc.) and attract more new customers with a

herd mentality. By analyzing the characteristics of the churn behavior, the

paper identifies potential churned customers in the customer library and

helps enterprises to take targeted win-back measures according to the char-

acteristics of the potential churned customers. They consider the top 20%
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of high-value customers in the dataset.

The churn reasons or factors can be price, personal, service, product, mar-

ket, marketing strategy and market intervention of competitors. Correct

discovery of these factors is the key to both recover the churned customers

and reduce the churn rate.

The influence factors can be focused on three aspects: consumption-

related variables (call duration and consumption amount), customer statis-

tical variables (identity information and age, customer income and customer

satisfaction), and enterprise-related variables (channel operation ability and

purchase of related products). They analyze the cause of customer churn

and use the logistic regression to predict the trend of churn.

The study provides a theoretical reference based on which the TelCo in-

dustry can thwart the phenomenon of customer churn, develop the winning

strategy, maintain the share of users and strengthen competitiveness in the

market.

The authors consider the customer value as an important criterion and

keep in mind that not all workers are worthy of return.

They suggest focusing on a limited number of people defined as high value

customers (golden assets, around the 20% of their dataset) and having to

be the main target to be won back.

The analysis is based on historical data and the average monthly consump-

tion of all customers. High-value customers are the key customer group

to be maintained, and minimum average monthly consumption (RMB 60:

threshold) is the judgment criterion. The average monthly consumption

higher than the threshold is the analysis object. In particular, they take

11255 random samples (in the middle of 2020) on RMB 60 for three consecu-
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tive months. They use the linear correlation between variables (correlation

coefficient). The correlation between the current package value and the

ARPU (0.5) is the highest.

Based on the awareness that the enterprise managers’ inductive reasoning

experience might be unreliable, resources invested in winning back those

customers with a high possibility of churn have to be well-meditated and

streamlined.

Logistic regression predicts the trend in customer churn, assists enterprises

in finding the early warning signals of customer churn, and determines the

tendency of a customer to churn. A positive correlation exists between

ARPU and customer churn, complaint and customer churn, and negative

correlation exists between discharge of usage (DOU), current package value

(pack-type), convergence business (contract) and customer churn.

They use the confusion matrix, Total precision (TP), Area Under the ROC

Curve (AUC), precision, sensitivity, and specificity.

The research results show that the churn rate increases when the monthly

consumption increases and customer satisfaction is low. On the other hand,

factors such as a high dependency on products, a high package value, and

a signed bundling contract decrease the abandonment.

The price is a key factor in customer churn on the premise of the same

quality of products (provided by other companies); the building of the cor-

porate brand is still important, which will focus on customer demands, and

different special products will be launched for varied market segments to

improve the dependence of customers on products. The suggested approach

is to consider the perspective of “the customer is always right”. Based on

this advice, build a series of efficient strategies and actions. In particular,

the identification of “high-value" customers, their value, their index of con-
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tribution, their needs, and complaints help the company to allocate more

resources, improve satisfaction, and adopt the convergence business strat-

egy that increases the dependency on the products and the transfer cost for

abandoning the network. Furthermore, efficient complaints handling plays

a key role in winning back customers.

The paper of Zhang et al. (2022) [128] focuses on producing a suitable

customer segmentation to improve churn predictions based on discriminant

analysis and logistic regression and investigates statistical methods, such as

factor analysis, to identify the most significant factors in customer’s profile

description. The used data is collected from 2007 to 2018 from the three

main Chinese TelCo companies (China Mobile, China Unicom and China

Telecom),it includes information of 4126 customers (184 women (28.7%)

and 2942 men (71.3%), aged 9 to 107 (the most common ages ranging

from 20 to 60 years). Furthermore, they use demographic information

and business-related information (Sex, Age, Career, Fixed and/or mo-

bile lines, Non-fixed/Fixed monthly fee), and data on the customer’s call

traffic and SMS/MMS activity (Monthly minutes in local/long distance

calls using mobile/fixed lines, Minutes of Usage (i.e. MOU), number of SM-

S/MMS). The hypothesis behind the customer’s segmentation is that cus-

tomers with similar consumption–expense behaviors have a similar propen-

sity to churn. The main criterion for the segmentation is the expense-related

characteristics. They assume that the following factors influence the cus-

tomer loss: total fee receivable for the month; fixed monthly cost; local

fee; roaming fee; network/company fees; fixed-line fee; total monthly caller:

minutes of usage (MOU); total monthly called MOU; the total local caller

MOU; SMS quantity. Starting from this set of quantities, apply the first

common factor analysis, which consists of seeking the fewest factors that

can account for the common variance of a set of correlated variables. Using

to this purpose the Data Analysis Statistical Package for Social Sciences
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(SPSS) they find by linear regression a collection of independent variables:

non-monthly fixed cost (F1); monthly fixed cost (F2); the calls MOU (F3);

long-distance and roaming call (F4); SMS (F5); China Unicom’s MMS (F6).

The Kaiser–Meyer–Olkin (KMO) and Bartlett Sphericity tests are also ap-

plied to conclude that these factors are suitable for factor analysis. Authors

perform the Factor Analysis to characterize: the Expense (i.e. monthly

fee, package type, mobile terminal price data), Call and SMS attributes.

The selected Expense-related factors (total fee receivable for the month,

fixed monthly costs, local fee, roaming fee, Unicom’s network fee, China

Mobile’s fee and fixed line fee) are used to conduct factor analysis and de-

termine the characteristics of the cost factors. Based on the cumulative

variance and the component score coefficient matrix they concluded that

common factor of non-monthly fixed costs and common factor of monthly

fixed costs could characterize the expense attribute. Customer Calls such

as data for total monthly calls, long-distance calls, and roaming are useful

to understand the customer’s preferences for the service provider (i.e.,

better call quality and service will positively influence customer loyalty).

The Call-related factors such as: total monthly traffic MOU (minutes of

usage); total monthly caller MOU; total monthly called MOU; total local

MOU; total local called MOU; total long-distance MOU; total roaming

MOU. The Kaiser–Meyer–Olkin (KMO) and Bartlett sphericity tests are

applied to identify whether these factors are suitable for factor analysis.

The common extracted factor values: the results are considered scientific

and representative, as the loss rate for each variable is low.

Based on the cumulative variance and the matrix of the coefficient of the

components score, they concluded that the common factors of the called

MOU and the common factors of long-distance and roaming call charac-

terize the Call attribute. Customer SMS and MMS data SMS-related

factors: the quantity of SMS of China Unicom, the quantity of SMS of
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China Mobile, the quantity of SMS of China Telecom, the quantity of MMS

of China Unicom and CRBT (Caller Ring Back Tone) were used to perform

factor analysis and analyze the characteristics of the cost factor.

Given those factors and the factor Gender, the authors apply first the Fisher

discriminant analysis to the dimensionally reduced data. This classification

technique projects high-dimensional data onto a line and performs classifi-

cation in this one-dimensional space: the projection used is one that max-

imizes the distance between the means of the two classes while minimizing

the variance within each class. The authors then use the same data to learn

a classifier based on standard logistic regression. According to the results,

the TelCo customer churn model constructed by logistic regression has a

higher prediction accuracy (93.94%) and better results compared to Fisher

discriminant equations (75%).

The summary of the literature search of this chapter is proposed in Ta-

ble 2.2.

2.2.9. Uplift Models

The paper of [33] discusses the limitations of traditional customer churn

prediction models and suggests the use of uplift models. They use a fi-

nancial institution. It consists of records containing customer information,

including a churn indicator and a variable determining whether a customer

was targeted with a retention campaign. Total number of observations (i.e.

200, 903), Total number of variables (i.e. 162), Number of control group

observations (i.e. 118, 809), Control group churn rate (i.e. 25.52%), Num-

ber of treatment group observations (i.e. 82, 094), Treatment group churn

rate (i.e. 13.25%), Overall Uplift (12.27%). They apply random strati-

fied sampling to the treatment and control groups to obtain training and

test sets including 2
3 and 1

3 of records. They use Logistic Regression and
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Random Forests to develop Customer Churn Prediction (CCP) and Cus-

tomer Churn Uplift (CCU) models. Finally, the results evaluation is made

both with profit curves according to maximum profit (MP) and maximum

profit uplift (MPU) performance measures. They assess the churn rate and

the corresponding lift and uplift curves. Finally, they focus on the rank

correlation between different setups.

They highlight that traditional churn prediction models aim to identify cus-

tomers who are likely to churn based on their historical data and predictive

analytics.

A problem of these models often consists of failing to provide actionable

insights for businesses because they only identify the potential churners

without providing guidance on how to effectively intervene to retain them.

Uplift models (i.e. persuasion modeling or incremental modeling) focus on

identifying customers who are most likely to be influenced positively (i.e.

persuadables) by targeted interventions, such as marketing campaigns or

loyalty programs. By distinguishing between customers who are responsive

to interventions and those who are not, uplift models enable businesses to

allocate resources more efficiently and achieve better results in customer

retention efforts.

In particular, they propose a new paradigm that improves predictive an-

alytics by a novel, profit-driven evaluation measure called the maximum

profit uplift measure.

The importance of shifting from churn prediction to uplift modeling in

customer retention strategies maximize the effectiveness of marketing efforts

and improve overall business outcomes.
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2.3. Discussion and Conclusion

In this chapter we surveyed the literature on Machine Learning methods for

the CCP within the scope of the TelCo domain in the approximate period

of the last decade.

An interesting observation is that, despite numerous articles addressing this

issue, they often fail to build upon each other’s findings. The diverse struc-

tures of datasets, such as the inclusion or exclusion of call center contact

data and details about economic offers, prevent the identification of a “best

algorithm”.

In the few cases where the same public dataset has been utilized, the huge

variety of algorithms, variants, and hyper-parameter configurations con-

founds the ability to provide a definitive answer regarding algorithm fitness

to the problem.

In conclusion, the best algorithm is dataset dependent. Even when

considering the dataset of a single company over a sufficiently extended

period, determining the “best algorithm” is challenging due to the dynamic

nature of the TelCo services landscape. Thus, the quest for the best algo-

rithm is time-specific, company-specific, and perspective-dependent, relying

on the subset of company data under consideration.

However, the definition of churner is not always unambiguous: in fixed

line services, there is a clear distinction of customer departure, whereas in

prepaid mobile services this doesn’t happen. In particular, the definitions

distinguish from one another in the number of months passed since the

customer used the service the last time.

Moreover, in the realm of fixed line services, additional uncertainties arise.

Instances have been documented where certain companies maintain cus-
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tomers on their records even after they have switched to other providers,

and they agree to formally terminate the contract only after complaints

have been lodged.

In addition, in the fixed line services additional ambiguities arise. Instances

have been documented where certain companies maintain customers on

their records [31] even after they have switched to other service providers,

and they agree to formally terminate the contract only after complaints

have been lodged. This situation can introduce potential distortions in

churn prediction, as there may be a spike in communications just before

the customer’s official departure, which an algorithm might incorrectly in-

terpret as an indicative signal for predicting churn. In reality, the customer

has already left the company and is merely expressing dissatisfaction. In

addition, while many studies demonstrate remarkably effective results after

setting apparently reasonable definitions of churners there is a notable ab-

sence in the literature of sensitivity studies to assess whether these stud-

ies adopted overly conservative definitions of churners. Another aspect to

take into account refers to preprocessing issues and techniques, since

the prediction algorithms represent the tip of the iceberg. Setting aside

common data preprocessing problems, a variety of data preparation ap-

proaches emphasize that finding a good representation of the data before

using statistical learning algorithms is beneficial in several cases. The fea-

ture selection and feature extraction techniques (almost all the articles

present their own) provide this representation. Additionally, Deep Learning

algorithms [62] are able of learning this representation upfront, leading to

considerable improvement in the outcomes.

Additional available strategies exist for enhancing prediction and target

business value without trying to select the best algorithm. Prioritizing

valuable customers appears to be a sensible approach, particularly because
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this customer group [129], seems more straightforward to characterize for

predictive purposes.

However, many aspects of the problem remain unexplored from a business

perspective, often due to the absence of suitable datasets that provide rel-

evant information.

The structure and pricing of service offerings, along with potential service

bundles, play a critical role in the customer’s decision-making process, yet

such data is rarely publicly accessible. Even within large firms, consolidat-

ing diverse data into a cohesive repository poses a challenge. Additionally,

customers always have to face the dilemma of ’stay or go’ which involves

both the structure and the pricing of the service offer, as well as potential

service bundles (e.g. making choices based on competitive offerings). For

these reasons the acquisition of contextual data with accurate timing

information in today’s dynamic market is nearly impractical.

Focusing on value customers appears to be a sensible strategy, also be-

cause the group of those customers [129] seems easier to characterize for

the purpose of prediction.

From a technical point of view, a notable gap in the literature is represented

by the limited number of attempts to address the problem through causal

reasoning. Only the work of Mustafa [82] attempts a mediation analy-

sis approach. However, to do so, it does not use neither the Structural

Causal Models nor the Causal Inference, but relies on correlation-based

studies involving a ready available variable, the Net Promoter Score, which

captures domain expert knowledge on the customers.

In summary, despite the fact that the problem has a long history and that

several works address its multifaceted issues, still much room is left for

investigation.
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The works described in this chapter are used as the baseline for the imple-

mentation of the model and analysis pipeline discussed in Chapter 3 and

Chapter 6.
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Chapter 3.

Experimental Setup

3.1. Telecom Dataset Description

The work of this thesis presents a real data-driven modelling. The com-

putational power of learning method is secondary compared to the data

quality: the resulting model would be ineffective if the data are not infor-

mative enough [17]. For these reasons the experimental design (i.e., the

data observation and the data collection) is crucial step [17].

In this scenario, we received the dataset from the Telecom Italia Mobile

company TIM S.p.A. so we had to rely on the data collection capability

of the company (i.e. observational setting) [17], [39]. Behind an observation

setting, there is the strong implicit assumption that the observations are

independent identically distributed (i.i.d.) samples of a stationary (i.e.

invariant) stochastic process [17]. In real case scenario, this assumption

can not be valid (at least not for a long time), and the nonstationarity,

drift should be considered in the learning process. Furthermore, we can

think about the poor causal value of inferences made in an observational

setting, e.g. in situations of sampling bias or non-observable variables

(e.g., in causal discovery). The purpose of using this dataset is to provide

a case study to be investigated to predict the customers that leave the
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company by applying machine learning techniques. Furthermore, to explain

the possible reasons of the customer’s abandon by using the causal inference

approach. With the aim to provide to the company’s technicians both an

“alert" and a toolkit to apply to real big-datasets (i.e. 7/8 millions of

records as mentioned by the domain expert).

3.2. Structure of the dataset

The dataset contains the information and characteristics of the Business

customers related to the Mobile lines, necessary to address the research

questions (dataset relevance). The entire dataset available in the Pro-

duction Department includes more than one million of records. Due

to Privacy concerns, in the dataset available in the Development De-

partment, which provided the sample, the number of the customers which

expressed consent to profilation is lower respect to the initial value.

The dataset contains five months summary of customers’ activity, it com-

prises one entry per customer and per month, and a total of 5 months are

present for the year 2022. About 255500 entries are present. The target

variable, churn, is represented as a 1 if the customer leaves or 0 if the

customer remains.

Features and Data Domains

This section is based on the summary of the unstructured interview made

with the domain expert of the company. The data is provided in .parquet

format, the dataset’s structure contains 255500 rows and 87 columns. The

87 features can be grouped into categories. We denote each variable by let-

ters corresponding to its category, in particular: 4 features (’anag_m_’) are

included in the Anagrafica Linea (i.e. Registry Telephone line) domain
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which contains information regarding the phone line: type, seniority, etc.

17 features (’cns_m_’) are included in Consistenza ed Ordini (i.e. Con-

sistency and Orders) domain which contains information on orders, offers,

services and products associated with the line. 12 features are included in

Traffico (i.e. Traffic) domain which contains the line value and volume

traffic indicators, incoming and outgoing (calls, data (MByte)), denormal-

ized over the month.

8 features (’usg_m_’) are included in Usage domain which contains Data

traffic usage indicators divided into the various Rating Groups (i.e. News

websites, streaming websites, etc.) related to the specific "url" visited by

the line. 4 features (’esi_m_’) are included in the Esigenze (i.e. Needs,

or the hystorical information) domain which contains information related

to needs open from the line with the Customer Relationship Management

(CRM) (i.e. info requests, malfunctions: call to 187 and 191 service num-

bers provide a mast before talking to the operator, in which the customer

is routed to a specific need type).

The customers which also have a fixed line are included in the Business In-

tegrato (i.e. Integrated Business), in particular 14 features (’anag_cli_’)

are included in the Anagrafica Cliente (i.e. Customer Data) domain

which includes the Customer information (company) holder of the line.

3 features (’cerved_int’) are included in Cerved domain, which con-

tains information about the Italian companies registered in the Register of

Companies held by the Chambers of Commerce and the NOREA subjects

present in the Cerved archives on: companies registry, reliability classes and

assessments, ateco and sector performance, future scenarios, budgets.

23 features (’jakala_int’) are included in Jakala domain, which refers

to the demographic and economic information of the Istat sections associ-

ated with customers (only for companies on Cerved databases), both from
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data collections and estimates, both provided by Jakala. We have explored

the dataset to understand its characteristics, distributions, and patterns.

And visualized the key features to gain insights into the data, Figure 3.1,

Figure 3.2, Figure 3.3, Figure 3.4 and Figure 3.5.

Figure 3.1.: Distribution of variables by churn: anag_cli_m_var_2,
trf_m__var_3, trf_m__var_4 and trf_m__var_5.

The variable anag_cli_m_var_2, see Figure 3.1, presents a high peak in 0,

the frequency of churners (red) is slightly higher respect to the non-churners

(green), the two distributions are overlapping in the range [0, 6] and it is not

possible to distinguish between them. The variable trf_m__var_3, see

Figure 3.1, presents two distinct peaks (where the two populations overlap)

when x-axis is 0 and −1, the frequency of non-churners (i.e. 0.95 and 1.35)

overcomes the churners (i.e. 0.36 and 0.75). The two populations present

opposite trends along the x-axis. The variable trf_m__var_4, see Figure

70



3.2. Structure of the dataset

3.1, presents a high peak in 0, the frequency of churners (i.e. 0.24) is higher

respect to the non-churners (i.e. 0.17), the two distributions are overlapping

in the range [0, 6].

Figure 3.2.: Distribution of variables by churn: anag_cli_m_var_1,
trf_m__var_7, trf_m__var_8 and trf_m__var_9.

The variable anag_cli_m_var_1, see Figure 3.2, presents two distinct

peaks in 0.25 and 0.75 respectively. The frequency of churners (red) is 1

in the first peak while for the non-churners reaches 0.85. The second peak

presents a higher frequency for non-churners (i.e. 1.3) with respect to the

churners which is 0.9. There seems to be a decreasing trend along the x-axis,

where the churner class is more frequent than the non-churner class, except

for the last peak. The variable trf_m__var_7, see Figure 3.2, shows

gaussian-like distribution of frequencies, except for two distinct peaks in
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−2 and 3 where the non-churner class outnumbers the churning one. The

variable trf_m__var_8, see Figure 3.2, shows a similar bell distribution,

with higher values in the churning class. We can also identify two peaks

around −0.2 and 1.2, where the non churning frequency is substantially

higher. The variable trf_m__var_9, see Figure 3.2, shows a long tail

distribution, with higher frequencies of churners around 0. We can identify

two peaks of non-churners around 1 and 5.

Figure 3.3.: Distribution of variables by churn: trf_m__var_10,
anag_cli_f_var_11, anag_cli_m_var_12 and
anag_cli_m_var_13.

The variable trf_m__var_10, see Figure 3.3, presents a high peak in

0, the frequency of churners (0.015) is higher respect to the non-churners

(0.010), the two distributions are overlapping in the range [0, 100], and it is

possible to distinguish between them. The variable anag_cli_f_var_11,
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see Figure 3.3, shows a peak in 0, the frequency of churners reaches 1.1,

while the frequency of non-churners reaches 0.63. The churner distribution

decreases following a long-tail distribution, while the non-churner distribu-

tion decreases more slowly. The variable anag_cli_m_var_12, see Figure

3.3, presents for the churner distribution a decreasing trend similar to a neg-

ative exponential, while the non-churners distribution presents a U-shape

trend in the range [−0.5, 1]. he variable trf_m__var_13, see Figure 3.3,

exhibits a peak in 0, the frequency of the churners (0.26) is higher that the

non-churners (0.08).

Figure 3.4.: Distribution of variables by churn: cns_m_var_22,
anag_cli_m_n_var_15, anag_m_num_var_16 and
cerved_int_var_17.

The variable cns_m_var_22, see Figure 3.4, shows a similar bell distri-

bution, with higher values in the churning class. We can also identify a
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distinct peak in −0.6 where the non-churners frequency is the highest. The

frequency of churners (red) is higher in the range [−0.4, 0.6]. The vari-

able anag_cli_m_n_var_15, see Figure 3.4, illustrates a peak in −1, the

two distributions are overlapping and show a decreasing trend.The variable

anag_m_num_var_16, see Figure 3.4, presents a peak in 0 in the churner

class (i.e. 0.16) while non-churner class (i.e. 0.11) follows a U-shape dis-

tribution. The variable cerved_int_var_17, see Figure 3.4, shows a peak

in 0 the churners distribution reach 0.05 while the non-churners reach 0.03,

the two classes are overlapping but it is possible to distinguish between

them.

Figure 3.5.: Distribution of variables by churn: cns_m_var_18,
cns_m_var_19, cns_m_var_20, and cns_m_var_21

The variable cns_m_var_18, see Figure 3.5, shows gaussian-like distribu-

tion of frequencies, the churner class outnumbers the non-churning one in
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0, the frequency of churners (1.75) is higher respect to the non-churners

(1.15). While we can distinguish a peak in −0.75 where the frequency of

non-churner class (1.00) outnumbers the churning ones (0.53). The vari-

able cns_m_var_19, see Figure 3.5, shows gaussian-like distribution of

frequencies where the churner class outnumbers the non-churning one in

the range [−4, 4]. The variable cns_m_var_20, see Figure 3.5, shows

two left skewed-like distributions of frequencies, the churner class outnum-

bers the non-churning one. The variable cns_m_var_21, see Figure 3.5,

shows gaussian-like distribution of frequencies for the non-churners and a

right skewed-like distribution for the churner class, which outnumbers the

non-churning one.

A more detailed description of the dataset can’t be provided

because it is Privacy related and subject to a non-disclosure-

agreement. The dataset has undergone some operations, which are de-

scribed in the following to make it processable according to the procedures

to be used.

The Table 3.1 provides some details on how this dataset (i.e. Churn) situ-

ates with respect to the public churn datasets. These datasets have diverse

number of instances, number of features, and percentage of churners [41].

The number of Features range from 13 of SATO dataset to 230 of K2009.

The number of Samples range from 1, 401 of DNS to 255, 500 of Churn

dataset to Churn dataset. Finally the column churn
nonchurn ranges from 0.03 of

Orange Belgium dataset to 1 of SATO and DNS datasets.

3.3. Predictive Analysis

This section describes all the undertaken steps of predictive analysis

applied to the real telecommunication dataset to achieve the most signifi-
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Table 3.1.: Public datasets on churn prediction

Dataset Features Samples churn
nonchurn Citation

Churn 87 255, 500 0.12

Orange Belgium 178 11, 896 0.03 [115]

K2009 230 50, 000 0.08 [50]

UCI 20 5, 000 0.16 [114]

TelE 19 190, 776 0.19 [41]

TelC 20 7, 043 0.37 [41]

SATO 13 2, 000 1 [3]

DSN 15 1, 401 1 [41]

cant features that will be used in the causal discovery and causal inference

simulations.

As we know, the goal of a ML predictor is not (only) the prediction, e.g.

any physician is not concerned with determining the precise probability of

a heart attack, but rather on influencing subsequent decision-making, such

as deciding whether a patient should take a particular drug [18].

Nowadays, the assessment and improvement in the prediction accuracy is

achieved through the use of large size datasets, statistical insight and com-

putational resources [18]. Such attitude relies on the implicit assumption

that the more accurate the learner, the higher will be the reward of the se-

lected action [18].

In this context, we have to be aware of several aspects: the probability

estimation uncertainty’s reduction; the error of prediction reduction; the

use of huge amount of computational resources for training over-sized deep-

learning models obtaining imperceptible accuracy improvements [18].
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There is an important difference between the notion of probability condi-

tional on observation, Prob{y | x = x} and probability conditional

on manipulation, Prob{y | do(x) = x}. These quantities are different

and being overconfident (confusing them) can provide wrong outcomes that

negatively affect the decision making [17].

Another aspect to consider is what can be the cost of a false positive or a

false negative, and how misunderstanding these quantities can affect the

company’s strategies and the following incomes. An accurate prediction

(whatever the network) does not imply an accurate understanding either

good decision making. The data mining aim of “drowning” in data and

starving for knowledge” can be reformulated as “drowning in associations

and starving for causality” [17]. In general, the idea is to undertake a focus

shift from a pure accuracy-driven (or obsessed) approach [18] to a causal

reasoning methodology.

3.4. Problem formulation

The problem formulation is the preliminary and the most critical step

of a learning procedure [17]. The model designing process consists of

several phases. The choice of a particular application domain, e.g. the

telecommunication domain. The selection of a phenomenon of inter-

est that we need to study, e.g. the customer’s abandon. Finally, making

hypothesis that exists an unknown dependency (e.g. between the socio-

economic status (SES) of the customer and the satisfaction (SAT ) for the

services provided) which is to be estimated from experimental data [17].

The domain-specific knowledge and experience have a key role in this

phase, that’s whyweasked all the specifics to the company’s domain experts

by unstructured interviews.
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3.5. Experimental Design

As we know data is the “fuel” of Machine Learning, for this reason we have

to rely on data quality: the resulting model would be ineffective if the data

is not informative enough [17], see Chapter 3 for more details. Thus, the

experimental design (i.e. the data observation and the data collection) is

a crucial step [17]. As mentioned, I had, to rely on the data collection

capability of the company (i.e. observational setting) [17], [39].

3.6. Classification Models

In the classification steps we compared the Decision Tree, Random Forest,

Logistic Regression, K-Nearest Neighbours, Gradient Boost and Easy En-

semble classifiers described in the following sections.

3.6.1. Decision Tree Classifier

The decision tree learning is a supervised learning approach used in statis-

tics, data mining and machine learning. Decision tree classifiers are widely

used in various fields due to their simplicity, interpretability, and effective-

ness in both classification and regression tasks. A classification decision

tree is used as a predictive model to draw conclusions about a set of ob-

servations [64]. The goal of decision tree classifier is to create a model that

predicts the value of a target variable based on several input variables [23].

The input space is divided into regions, and each region is associated with

a specific class. The decision tree makes decisions by recursively splitting

the data based on the values of input features. To make an example of

classification tree we can consider a scalar outcome, Y , and a p-vector of
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explanatory variables, X. By assuming that Y ∈ K = {1, 2, . . . , k}. The

subsets created by the splits are called nodes. The subsets which are not

split are called terminal nodes. Each terminal nodes is assigned to one

of the classes. A classification tree partitions the X-space and provides a

predicted value, e.g. argmaxsPr(Y = s | X ∈ Ak) in each region [23].

3.6.2. Random Forest Classifier

Random Forests (RFs) [54] learn to build ensembles of decision trees that

fit training data according to supervisions. In particular, RFs grow many

classification trees using a probabilistic scheme [23]. They classify a new

object from an input vector by putting the input vector down each of the

trees in the forest. Each tree gives a classification (i.e. the tree votes for

a class) [23]. Finally the forest selects the classification having the most

votes over all the trees in the forest.

3.6.3. Logistic Regression Classifier

Logistic regression is a statistical model used for probabilistic prediction.

A logistic regression classifier uses the predicted probability to produce a

binary outcome (e.g. yes/no, true/false, success/failure, etc.) based on one

or more independent variables (i.e. features or predictors). It assigns a

probability to each point in the input space. The probability of an input

vector x = [x1, . . . , xn] is calculated by applying a sigmoid function (f(x) =
1

1+e−x ) to a linear combination of the values in x. Each variable Xi is

assigned a coefficient wi, and an intercept coefficient w0 is also defined.

The predicted probability is calculated in the Equation 3.1:

s(x) =
1

1 + exp(−(w0 + w1x1 + · · ·+ wnxn))
(3.1)

79



Chapter 3. Experimental Setup

The weights w0, . . . , wn can be learned by maximizing their log-likelihood

given a set of learning examples using the gradient descent algorithm [100].

3.6.4. K-Nearest Neighbours Classifier

The k-nearest neighbor (KNN) algorithm is used for data classification. It

assigns a label to each new data point based on the similarity (or proximity)

of its k closest neighbors in a training dataset. In particular, a k-nearest

neighbours classifier assigns the k nearest neighbours a weight 1
k and all

others 0 weight [30]. This can be generalised to weighted nearest neighbour

classifiers [108], [118], where the ith nearest neighbour is assigned a weight

wni where
∑n

i=1wni = 1. KNN is a popular non-parametric, lazy learning,

and instance-based method. It does not make any assumptions about the

underlying data distribution. However, KNN can suffer from high compu-

tational cost, curse of dimensionality, and sensitivity to noise and

outliers.

3.6.5. Gradient Boost Classifier

Gradient boosting techniques [55] combine predictions from multiple

weak models [55], typically decision trees, to enhance the overall accuracy

and generalization of the classification task. A gradient boost classifier is

based on the concept of boosting, an ensemble method that iteratively

adds new models to existing ones and assigns higher weights to instances

misclassified by previous models. The gradient boost classifier is distinct

from other boosting methods because it uses the negative gradient of a

differentiable loss function, such as logistic loss for binary classification, as

the pseudo-residuals to fit the new models. This approach enables it to op-

timize any arbitrary loss function that measures the discrepancy between

the true labels and the predicted probabilities. The gradient boost classifier
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is a versatile and potent technique that can handle various types of data

and problems. However, it requires careful tuning of hyperparameters, such

as the number and depth of trees, the learning rate, and the subsampling

ratio.

3.6.6. Easy Ensemble Classifier

Easy Ensemble Classifier applies the idea of ensemble learning to deal

with imbalanced data sets. It is a variant of the AdaBoost algorithm

that creates balanced bootstrap samples [76] from the original data set

and trains a weak classifier, usually a decision tree, on each sample. The

final prediction is obtained by aggregating the votes of all the classifiers in

the ensemble. The Easy Ensemble Classifier can enhance the classification

performance of the minority class while maintaining reasonable accuracy

for the majority class.

3.7. Data Preprocessing

We conducted preprocessing on the initial dataset to address outliers,

handling missing or misshaped data, and then standardized the input data

for the machine learning models.

Specific steps have been undertaken, as outlined in the procedural pipeline

of the Figure 3.6.

The preprocessing pipeline is made up of the following steps: data cleaning

and identification of −999 values (i.e. the customer’s abandon is not hap-

pended yet), filling with NANs, Drop NANs higher than a certain threshold,

NANs filling with median value, categorical values mapping, normalization

and feature selection. The last step helps in reducing the complexity in
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Data Cleaning

-999 Filling with NANs

Drop NANs higher
than a fixed threshold

Filling NANs with median value
generated by SimpleImputer

Categorical Values
Mapping: OHE

Normalization

Feature Selection by Classification

Model Training

Performance Analysis
and Visualization

Figure 3.6.: The General Pipeline.

the analysis and also minimizes the memory needed for models to execute

operations. A general scheme is described in Figure 3.6. And the pipeline

implementation is shown in Algorithm 1.

Certain operations have been conducted on the dataset to eliminate un-

informative features, to ensure compatibility with the machine learning

procedures. The features chosen align with those used by TIM’s systems
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Algorithm 1: Preprocessing Pipeline implementation
pipeline = Pipeline([
("dataset-ridotto", ColumnTransformer([

("selected-features", "passthrough", selected_features)
], verbose_feature_names_out=False)),
("ct-999", ColumnTransformer([

("fill-999", SimpleImputer(
missing_values=-999,
fill_value=np.nan), fill_999)

], remainder="passthrough", verbose_feature_names_out=False)),
("drop-na-perc", DropNaPerc(threshold=70.0)),
("ct-filler", ColumnTransformer([

("nan_02p", Pipeline([
("imputer", SimpleImputer(strategy=’median’)),
("scaler", RobustScaler())

]), optional_column_selector(feature_numeriche)),
], remainder="passthrough", verbose_feature_names_out=False)),
("tree-feature-selection", SelectFromModel(

ExtraTreesClassifier(n_estimators=50, random_state=42),
max_features=60))

])
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to address data compatibility concerns.

3.7.1. Data Cleaning and Missing data treatment

The real settings often happens to have some input values that are miss-

ing [17]. For a huge amount of data (i.e. big data) it is possible to ignore

and drop the missing values higher than a certain threshold. The missing

values are filled with NANs, in particular columns can contain NANs in

different proportions. We found two features that contain approximately

0.2%, three features with 10%, eleven features with 20% and three features

with 90%. In accordance with a threshold of 70%, all the columns with the

NANs percentage higher than the given threshold are dropped.

The columns with 0.2%, 10% and 20% are filled with the median value

of the column (which is more robust respect to mean value which is more

prone to the outliers).

3.7.2. Categorical variables Encoding

I transformed the categorical data by using the One Hot Encoding (OHE),

which is performed to prevent categorical values from being incorrectly

mapped (e.g. considering the average on categorical values: if we have fea-

tures which contain only values −1, 0 and 1, by applying the mean, we will

question on the value 0.5 that we have to assign to which one of the two

values: what does it correspond to?).

3.7.3. Normalization

Data are normalized to mean µ = 0 and standard deviation σ = 1 to ensure

that all features have a similar scale (Figure 3.1, Figure 3.2, Figure 3.3, Fig-
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ure 3.4 and Figure 3.5), which is important for certain machine learning al-

gorithms. When the features are on different scales, some algorithms might

give more weight to features with larger magnitudes, potentially leading to

biased or less accurate results. Normalizing the data helps in mitigating

this issue, making the features comparable and preventing certain features

from dominating the learning process.

The final dataset after the preprocessing step contains 27 features and

255500 rows.

3.7.4. Outliers Handling

Outliers are unusual data values that deviate from the majority of obser-

vations [17]. Typically, these outliers result from inaccuracies in measure-

ment procedures, errors in storage, or malfunctions in coding [17]. The

common strategies used to deal with outliers are: outlier detection and

removal in the preprocessing step [38], [17] or by adopting robust method-

ologies [56], that are by design insensitive to outliers in the model identi-

fication level [17]. Here we used a LocalOutlierFactor estimator [24]. In

particular, the local deviation of the density of a given sample with re-

spect to its neighbors is measured by this method. The anomaly score is

dependent on how isolated the object is with respect to the surrounding

neighborhood, making it a local measure [24]. The locality is determined

by k-nearest neighbors, and their distance is used to estimate the local

density. By comparing the local density of a sample to the local densities

of its neighbors, it is possible to identify outliers that have a substantially

lower density than their neighbors. We found that the percentage of out-

liers though were negligible respect to the total number of customers, for

this reasons we decided to maintain all the data.
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3.7.5. Feature Selection through classification

This section illustrates the final step taken to achieve the most significant

features (i.e. 27) that will be used in the causal discovery and causal infer-

ence simulations in Chapter 6 and Chapter 7.

The dataset contains historical information (see Section 3.2, Esigenze for

further details) about the interaction between the customer and the com-

pany (e.g. if the customer calls the Customer Service for an issue to be

solved, after solving the problem the operator of the contact center can ac-

tuate a marketing action: a new promotion, extra minutes calls, extra GB,

etc. These data were available in the company’s dataset but the ones that

were provided were filtered by feature selection pipeline, because turned out

to be not significant. these features were not used in the final analysis.

I used the SelectFromModel() which is a meta-transformer for select-

ing features based on their importance weights [36]. In particular, an

ExtraTreesClassifier() meta estimator is trained on the dataset [43]. It

fits a number of 50 randomized decision trees (i.e. extra-trees) on various

sub-samples of the dataset and uses averaging to improve the predictive

accuracy and control over-fitting. The estimator provides a measure of the

importance for each feature for the further analysis.

3.8. Model Training

The chapter is divided in two parts based on the fact that we first aim to

assess the reproducibility within the company (i.e. the use case) and later

within the literature scenario. In particular, the company provided dataset

is already processed. The dataset was resampled to a final number of 10%
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of churners, as shown in Table 3.1, while in the literature comparison we

use a 50% ratio to balance the test set.

The models are trained by applying the train_test_split() function of scipy

and a train_size of of 80% and test_size of 20%.

Table 3.2.: Decision Tree’s parameters: param_grid

Argument Name Values

criterion [’gini’, ’entropy’]

max_depth [1, 10, 50]

min_samples_split [2, 3, 5]

Table 3.3.: Random Forest’s parameters: param_grid

Argument Name Values

criterion [’gini’]

n_estimators [10, 50, 100]

max_depth [1, 5, 10]

min_samples_split [2, 3, 5]

min_samples_leaf [1, 2, 3]

Table 3.4.: KNN’s parameters: param_grid

Argument Name Values

n_neighbors [1, 5, 10]

weights [’uniform’, ’distance’]

p [1, 2]

Grid Search Cross Validation (Grid_Search_CV) is applied to each model

for hyperparameters tuning, with k-fold cross validation of 5 and optimizing
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Table 3.5.: XGB’s parameters: param_grid

Argument Name Values

learning_rate [0.1, 0.3, 0.5]

max_depth [1, 5, 10]

min_child_weight [1, 2]

subsample [0.1, 0.5, 1]

n_estimators [50, 100, 150]

Table 3.6.: Easy Ensemble’s parameters: param_grid

Argument Name Values

n_estimators [10, 20, 50]

estimator [AdaBoostClassifier(),
LogisticRegression(max_iter=1000)]

sampling_strategy [0.2, 0.5, 1]

for the accuracy, as illustrated in Table 3.2, Table 3.3, Table 3.4, Table 3.5

and Table 3.6 respectively for the models Decision Tree, Random Forest,

K-Nearest Neighbors, XGBoost, Easy Ensamble.

3.9. Performance Analysis and Visualization:
Company’s case-study

In the following Table 3.7 the summary of the performance of the classi-

fication for each algorithm: accuracy, precision, F1-score and ROC curves

(see Section 3.9.1) of each algorithm: Decision Tree, Random Forest, KNN,

XGB and Easy Ensemble applied on the real dataset.
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Table 3.7.: Summary of the metrics: accuracy, precision, recall, F1-score of
the majority class “non-churner” i.e. 0 and the minority class
“churner” i.e. 1 for Decision Tree, Random Forest, K-Nearest
Neighbours, XGBoost and Easy Ensemble algorithms.

Algorithm Accuracy Class Precision Recall F1-Score

DT 0.88
0 0.90 0.98 0.94
1 0.53 0.20 0.29

RF 0.90
0 0.90 1.00 0.95
1 1.00 0.15 0.27

KNN 0.91
0 0.90 0.98 0.94
1 0.53 0.20 0.29

XGB 0.91
0 0.91 1.00 0.95
1 0.94 0.28 0.43

Easy 0.88
0 0.89 0.99 0.94
1 0.63 0.09 0.16

As shown in Table 3.7, the best performing algorithms in terms of accuracy

of 0.91 are the KNN and XGB. RF achieves a the highest value in term of

Precision for the class 1 (i.e. churner), while for the class 0 the XGB achieves

0.91. The Recall of class 0 is 1.0 both for the RF and XGB algorithms. It

reaches for the XGB algorithm the value 0.28 for the class 1. Finally the

F1-Score is 0.95 for the class 0 for the RF and XGB algorithms and 0.43

for class 1 for the XGB algorithm.

3.9.1. ROC curves

The Receiver operating characteristics (ROC) graphs help in visualizing,

organizing and selecting classifiers based on their performance [37]. The

ROC curves are insensitive to changes in the class distribution [37]. If the

proportion of positive to negative instances in a test set changes, the ROC
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curves will not change [37]. The ROC plots are two-dimensional graphs

in which the true positives (tp) rate is plotted on the y-axis and the false

positives (fp) rate is plotted on the x-axis. A ROC graph shows the relative

tradeoffs between benefits (true positives) and costs (false positives).

The ROC curve of the DT, RF, KNN, XGBOOST and EasyEnsemble al-
gorithms are illustrated respectively from Figure 3.7a to Figure 3.7e. The
AUC score is presented in Table 3.8.

Table 3.8.: ROC curve of the DT, RF, KNN, XGBOOST and EasyEnsem-
ble algorithms

Algorithm AUC score Figure

DT 0.76 3.7a
RF 0.81 3.7b

KNN 0.78 3.7c
XGB 0.82 3.7d
Easy 0.76 3.7e

In Table 3.8, we can observe that the DT and Easy Ensemble algorithms ob-
tain the worst result in terms of AUC score i.e. 0.76, while the XGBOOST
algorithm obtains the best result of 0.82.

3.10. Performance Analysis and Visualization:
Balanced Test set

In the previous Section each algorithm presents very good accuracy values
and very low Recall for class 1 (churners) instances. In the context of a
literature scenario comparison, a low recall score suggests that a model
fails to detect a significant number of actual churners (i.e. actual positives,
identified churners, etc.). In this scenario, we can note that despite the
company provided dataset was previously balanced, we still have a highly
imbalanced dataset, where the negative class (non-churners) significantly
outnumbers the positive class (churners), and models can achieve a low
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(a) ROC curve of DT classifier. (b) ROC curve of RF classifier.

(c) ROC curve of KNN classifier. (d) ROC curve of XGB classifier.

(e) ROC curve of Easy Ensemble classi-
fier.

Figure 3.7.: The ROC curves of case-study.

FPR by simply predicting the majority class (non-churners) most of the
time. As consequence models might appear to perform well in terms of
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ROC AUC because a low FPR is maintained while potentially increasing
the TPR, even if it’s not effectively identifying the positive class. For these
reasons, in the next section we investigate the performances on a balanced
subset of the data, and inspect PR-AUC metric. As mentioned in Section
3.8, we use a 50% ratio to balance the training set.

(a) ROC curve of DT classifier. (b) Precision-Recall curve of DT classi-
fier.

Figure 3.8.: ROC and Precision-Recall curves of DT model.

(a) ROC curve of RF classifier. (b) Precision-Recall curve of RF classi-
fier.

Figure 3.9.: ROC and Precision-Recall curves of RF model.
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(a) ROC curve of KNN classifier. (b) Precision-Recall curve of KNN clas-
sifier.

Figure 3.10.: ROC and Precision-Recall curves of KNN model.

(a) ROC curve of XGB classifier. (b) Precision-Recall curve of XGB clas-
sifier.

Figure 3.11.: ROC and Precision-Recall curves of XGB model.

The ROC curve of balanced dataset used by the DT, RF, KNN, XGBOOST
and EasyEnsemble algorithms are illustrated respectively from Figure 3.8
to Figure 3.12. The AUC score and the GridSearchCV(AP) are presented
in Table 3.9, XGB is the best performing algorithm with AUC score of 0.90
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(a) ROC curve of Easy Ensemble classi-
fier.

(b) Precision-Recall curve of Easy En-
semble model.

Figure 3.12.: ROC and Precision-Recall curves of Easy Ensemble model.

and AP of 0.91.

Table 3.9.: ROC and Precision-Recall curves of the DT, RF, KNN, XG-
BOOST and EasyEnsemble algorithms

Algorithm AUC score AP

DT 0.77 0.74
RF 0.80 0.79

KNN 0.83 0.84
XGB 0.90 0.91
Easy 0.75 0.72

Synthesis of balanced test set performances

As we can see in Table 3.10 XGB is the best performing algorithm in terms
of accuracy of 0.71, it achieves good results in terms of Precision i.e. 0.98
and Recall i.e. 0.43 for the class 1 (i.e. churner) and F1-score of 0.77 for the
class 0. Despite RF achieves the highest value of Precision of 1.0 for class
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Table 3.10.: Summary of metrics for the balanced dataset: accuracy, pre-
cision, recall, F1-score of the majority class “non-churner” i.e. 0
and the minority class “churner” i.e. 1 for Decision Tree, Ran-
dom Forest, K-Nearest Neighbours, XGBoost and Easy En-
semble algorithms.

Algorithm Accuracy Class Precision Recall F1-Score

DT 0.55
0 0.53 0.99 0.69
1 0.95 0.10 0.19

RF 0.53
0 0.52 1.00 0.68
1 1.00 0.06 0.12

KNN 0.68
0 0.61 0.99 0.76
1 0.97 0.38 0.54

XGB 0.71
0 0.64 0.99 0.77
1 0.98 0.43 0.60

Easy 0.68
0 0.73 0.57 0.64
1 0.65 0.79 0.71

1 the accuracy is low 0.55. Easy Ensemble achieves the highest values in
terms of Precision i.e. 0.73 for the class 0, both for Recall of 0.79 and F1-
score of 0.71 for the class 1. Table 3.10 shows that DT and Easy Ensemble
algorithms obtain the worst result in terms of ROC AUC score i.e. 0.77 and
0.75 respectively, while the XGBOOST algorithm obtains the best result of
0.90. In terms of Precision-Recall, the average precision (AP) both of DT
and Easy Ensemble are the worst, i.e 0.74 and 0.72. The algorithm XGB
presents the best AP value, i.e. 0.91.
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Chapter 4.

Preliminary Concepts in Causality

4.1. Introduction

This chapter introduces the main definitions and concepts to define the
causal reasoning’s main tasks: the causal discovery and the causal
inference.

The causal part of the thesis is focused on discovery, one of the building
blocks of churn prediction, such as counterfactuals [126] and the uplift mod-
els [116]. Moreover changing the value of a variable changes the target, and
we do not have marketing actions examples in the data set that we per-
formed the analysis on. It would be a broad topic, but out of the scope of
this thesis.

Correlation indicates a general relationship, for example, two variables
are correlated when show an increase or decrease in their trend [4]. The
correlation between the temperature and total ice cream sales is positive:
when it’s hotter outside the total ice cream sales tends to be higher since
more people buy ice cream when it’s hot outside.

The terms cause and effect can also be used to describe Causality [87]
where the cause is partially accountable for the effect, and the effect in turn
is partially influenced by the cause [121]. Causality searches for potential
cause–effect relationships in observational data [48]. For example, regular
exercise leads to improved physical health. In this case, regular exercise is
the cause and improved physical health is the effect.

Causal inference is the process of drawing a conclusion about a causal
connection based on the conditions of the occurrence of an effect.
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The main difference between causal inference and inference of corre-
lation consists of that causal inference analyzes the response of the effect
variable once the cause is changed [81]. It is well known that “correlation
does not imply causation” .

Causal models are mathematical models representing “causal relation-
ships within an individual system or population” [124]. Causal relation-
ships entail the probabilistic (in)dependence of variables, and the effects
of interventions (change on some variables) or hypothetical interventions,
such as counterfactual claims [84].

4.2. Basic Definitions and Notations

In this section we define the basic notions, definitions and notations used
throughout the thesis.

Independence: the variables X and Y , are independent when our knowl-
edge about X does not change our knowledge about Y (and vice-
versa) [80]. In terms of probability distributions, see Equation 4.1:

P (Y ) = P (Y | X) (4.1)

the marginal probability of Y is the same as the conditional
probability of Y given X. The Equation 4.2:

P (X) = P (X | Y ) (4.2)

represents the marginal probability of X is the same as the con-
ditional probability of X given Y .

The independence, see Equation 4.3 between two variables is that
their joint distribution factorizes into the product of the marginals [77]:

P (X,Y ) = P (X)P (Y ) (4.3)

In general, we can refer to Equation 4.4:

X ⊥⊥ Y (4.4)
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Conditional Independence: is the generalization of independence, in
particular, in Equation 4.5: X and Y are conditionally indepen-
dent given Z, when assuming that we observed Z, X does not give
us any new information about Y [77].

P (X,Y | Z) = P (X | Z)P (Y | Z) (4.5)

The joint distribution of X and Y (given Z) is factorized into a prod-
uct of two simple conditionals (X|Z and Y |Z) given the property
P (X,Y ) = P (X)P (Y ) [80]. In general, we can refer to Equation 4.6:

X ⊥⊥ Y | Z (4.6)

Graphs Independence: the following notations are used in thesis:

• Independence in the distribution: ⊥⊥P

• Independence in the graph: ⊥⊥G

In particular, X and Y are independent in their distributions: X ⊥
⊥P Y ; conversely X and Y are independent in the graph: X ⊥⊥G

Y [80].

The key point is to find a mapping between the independence in
the graph and in the distribution [80].

• causal inference determines the causal impact of one set of
variables on another and relies on the fundamental connection
between graphical and statistical characteristics (e.g. by using
the information about the data-generating process, which can be
encoded as a (causal) graph: i.e. confounders can be accurately
controlled) [80].

• causal discovery, aims at recreating the causal graph from
observational and/or interventional data [80].

Based on the previous definition of conditional independence: the in-
dependence/dependence in a graph can be expressed as a func-
tion of open paths between nodes [80].
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In particular, two nodes (i.e. X and Y ) in a graph can be considered
unconditionally (or marginally) independent if there’s no open
direct or indirect connecting path [80].

Otherwise, X and Y , are conditionally independent given (a set
of) node(s) Z when Z blocks all open paths that connect X and
Y [80].

Basic Conditional Independence structures:

Chain: sequence of causally-linked events, i.e. A→ B → C,

Fork: the edge between nodes A and B is reversed compared to the
chain structure, i.e. A ← B → C, B is the common cause of
nodes A and C.

Collider: (or immorality) A→ B ← C, A and C are unconditionally
independent, when control for B, they become dependent,

4.3. Graphs

In the following the graph definitions used in this thesis.

Directed Graphs: A directed graph [20] G = {V,E} consists of a set V =
{X1 . . . Xn} of vertices (also called nodes, actors, variables, etc.), each
associated with a random variable [80]. And a set E ⊆ V × V of
directed edges (also called links, ties, marks [84], labels, etc.).

If we define an edge from a vertex i to another vertex j as i → j we
can define Vi a parent of Vj and we call Vj a child of Vi [80]. We
define any directed path i → · · · → j, with k ∈ Z+

0 (non-negative)
vertices between i and j, we call Vi an ancestor of Vj and we call Vj a
descendant of Vi. For k = 0, parents are a special case of ancestors
and children are a special case of descendants.

For a directed edge e = (u, v) ∈ E, v is called the head (source, parent,
ancestor, etc.) of e, u is called its tail (target, child, descendant, etc.),
and v is said to be adjacent to u.
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A (s, t)-path defined in Equation 4.7, is a path from a source s ∈ V
to a target t ∈ V , i.e. is an alternating sequence of vertices and edges:

s, (s, v1), v1, (v1, v2), v2, . . . , (vk, t), t (4.7)

starting with s and ending with t. The length of an (s, t)-path is the
number of edges it contains, and the distance, dist(s, t), from s to t
is defined as the minimum length of any (s,t)-path if one exists, and
undefined otherwise (if s = t implies dist(s, t) = 0).

σ(s, t) is the geodesics: number of shortest (s, t)− paths

σ(s, t | v) be the number of shortest (s, t)− paths passing through a
vertex v other than s,t.

If s = t, then σ(s, t) = 1, and if v ∈ {s, t}, then σ(s, t | v) = 0.
The shortest-path betweenness cB(v) of a vertex v ∈ V is defined
in Equation 4.8:

cB(v) =
∑
s,t∈V

σ(s, t | v)
σ(s, t)

(4.8)

where 0/0 = 0 by convention. P (Y | X) is defined as the obser-
vational conditional probability, which is the probability of how Y
would change if X is observed (e.g. cross-sectional study).

Direct Acyclic Graphs A Direct Acyclic Graph (DAG) is a completely ab-
stract mathematical object [99] sets of probability. DAGs are given
two distinct functions [107] representing either probability distri-
butions or causal structures.

The probability distributions is given by the Markov condition,
mentioned in the following paragraphs, which (in DAGs) is equivalent
to the d-separation (see next paragraphs) [85] (i.e. three disjoint
sets of vertices in a directed graph, are d-separated whether a set of
vertices Z blocks all connections of a certain type between X and Y
in the graph G. If so, then X and Y are d-separated by Z in G).

Giving DAGs a causal interpretation, d-separation is the correct
connection between a causal DAG and probability distributions [107].
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Often exist many distinct DAGs that represent exactly the same set of
independence relations, and thus the same set of distributions [107].

In general, we want both a d-separation procedure for any graph,
and an algorithm that computes all the DAGs that represent a given
set of independence relations.

Causal Markov condition, (i.e. stronger assumption than the Markov
condition), states that when DAGs are interpreted causally the Markov
condition and d-separation are the correct connection between
causal structure and probabilistic independence [107]. DAGs
causally interpreted are causal DAGs.

4.4. Causal Reasoning

Causality [92], [109], [87], can be defined as the influence by which an event
contributes to the production of other events, in particular, one event or
phenomenon known as the cause, brings about or leads to another event or
phenomenon, known as the effect [84].

4.4.1. Causal Questions

In general causal questions such as: what are the reasons why a cus-
tomer can churn?. What is the impact of a marketing campaign?.
What is the impact of a new product feature? [102].

In this context, answering the question: “What is the right model?” is
one of the biggest challenges is translating both the domain/expert knowl-
edge into a causal graph (i.e. modeling assumptions) and the implications of
these assumptions for causal identification and estimation [102]. Moreover,
causal tasks frequently lack of the ground truth for comparison, unlike
supervised machine learning models which can be assessed using separate
test data, thus there is a shift in verification and testing of the practical
aspects [102].

Therefore, checking these assumptions, the robustness and applying sen-
sitivity tests is critical to gain confidence in results [102].
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It is important to have clear in mind both the causal questions and the
following tips:

• Causal Discovery: infers a causal graph given both the data and
domain knowledge (if available) [16].

• Causal Reasoning: infers, given a causal graph, the quantitative
causal insights [16]. In particular:

– Graph Validation: validates the model assumptions, i.e. graph
structure’s rejection or types’ validation of the assigned causal
mechanisms [16].

– Attribution: attributes observed effects to their root causes [16].
In particular, includes identification in the causal graph of the
upstream nodes responsible for outcomes such as outliers, causal
influences, or identification in the causal graph [16].

– Effect Estimation: the causal effect of past treatment on a
target variable of interest is estimated [16].

Broadly speaking, it is advisable to consider a system in its entirety, tak-
ing into account all its components and interactions, not just the effect of
one variable on another [16]. In addition, we have to consider the mod-
els’ scalability which depends on the algorithms’ inference complexity, the
causal graph’s variables number, the sample size, and the causal graph’
structure[16]. For instance, by modeling cause-effect relationships be-
tween all the relevant variables into a causal graph. Then, by learning
causal mechanisms modeled by probabilistic models. And finally, use the
trained probabilistic models to answer different causal questions [16].

4.4.2. Causal Discovery

Given a set of observational data, the aim of causal discovery [125]
is to infer the causal relationship among the different variables in the
dataset [84]. In particular, any relationship across involved variables is as-
sumed, but it is inferred directly from a set of data [84]. Causal discovery
analyzes and creates models that illustrate the relationships inherent in the
data [84].
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Causal discovery is still in the early stages of development within the scien-
tific realm and has not yet achieved robust solutions for addressing general
use cases [16].

4.4.3. Causal Inference

Every decision-makers is asking a what-if question. Data-driven an-
swers to such questions require understanding the causes of an event
and how to take action to improve future outcomes. It is reasonable
to understand the sentence: “. . . we are not about trying to magically pull
causal rabbits out of a statistical hat.”, Scheines, Peter Spirtes and Clark
Glymour [99]. In this context, this thesis aims at using this powerful tool
to give hints and trace a direction for the company’s technicians of the
analytics department and for the business department.

Causal inference focuses on testing whether two variables are related and
assessing the impact of one on the other [84]. A relationship among variables
is assumed and a test and quantification of the actual relationship in the
available data is performed [84]. Finally, causal inference aims to inspect
the possible effects of altering a given system [121], [84].

Causal Inference aims to estimate the impact deriving from a change of
a certain variable over an outcome of interest. In particular, trying to
test whether two variables are related. And, trying to assess the impact
of one on the other. Causal inference assumes a relationship among vari-
ables and tries to test and quantify the actual relationship in the available
data. Causal inference aims to study the possible effects of altering a given
system [121].

4.4.4. Causal Connectivity

The causal Markov condition and the causal faithfulness condi-
tion together imply a correspondence between the (conditional) indepen-
dences in the probability distribution and the causal connectivity rela-
tions within the graph G [35]. Causal connectivity is defined both with the
d-separation and the d-connection.

The d-connection is defined as the path p that connects X and Y, given
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a conditioning set C ⊆ V \ {X,Y } if and only if both all colliders on p are
in C or have a descendent in C and no non-colliders of p are in C.

The d-separation or⊥, is defined if and only if d-connecting paths between
X and Y are missing, in general there are paths between sets of nodes
blocked by another set of nodes [80]. The d-separation allows to control
the information’s flow (i.e non-directional, which is closely related to the
notions of correlation and confounding) in a graph [80]. Two nodes in a
directed acyclic graph (DAG) G are d-separated when all paths between
them are blocked (e.g. there is a collider on a path between them or if
there’s a fork or a chain that contains another variable that we control for,
or a descendant of such a variable).

The (conditional) d-separation corresponds to (conditional) probabilis-
tic independence given the validity of both causal Markov and the
causal faithfulness assumptions: X⊥Y | C ↔ X ⊥⊥ Y | C

Definition of d-separation: is all about blocking paths between (sets of)
nodes in a DAG. Paths in a graph can be blocked by using the funda-
mental logic of the tools that we already have in our toolbox, the three
basic conditional independence structures – chains, forks, and colliders (or
immoralities). The d-separation allows us to control the flow of informa-
tion in a graph which is non-directed and strictly connected to correlation
and confounding. The d-separation effectively enables us to build
estimands.

D-separation

The directional separation or “d-separation” of two set of nodes in a
DAG G can be defined as: two sets of nodes X and Y are d-separated
by a third set of nodes Z, where X, Y and Z are pairwise disjoint, if Z is
blocking all the paths between nodes in X and X ⊥⊥G Y | Z.

We first define the “d”-separation of a trail and then we will define the “d”-
separation of two nodes in terms of that. Let P be a trail from node u to v.
A trail is a loop-free, undirected (i.e. all edge directions are ignored) path
between two nodes. Then P is said to be d-separated by a set of nodes
Z if any of the following conditions holds: P contains (but does not need
to be entirely) a directed chain, u · · · ← m ← . . . v or u · · · → m → . . . v,
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such that the middle node m is in Z, P contains a fork, u · · · ← m→ . . . v,
such that the middle node m is in Z, or P contains an inverted fork (or
collider), u · · · → m ← . . . v such that the middle node m is not in Z and
no descendant of m is in Z. The nodes u and v are d-separated by Z if all
trails between them are d-separated. If u and v are not d-separated, they
are d-connected. X is a Bayesian network with respect to G if, for any two
nodes u, v: Xu ⊥⊥ Xv | XZ where Z is a set which d-separates u and v.
(The Markov blanket is the minimal set of nodes which d-separates node v
from all other nodes).

Causal networks Although Bayesian networks are often used to represent
causal relationships, this need not be the case: a directed edge from u to
v does not require that Xv be causally dependent on Xu. This is demon-
strated by the fact that Bayesian networks on the graphs are equivalent
and impose the same conditional independence requirements: a ← b ← c
and a→ b→ c

The basic goal of causal inference is to estimate the causal effect of one
set of variables on another [121], [84]. In particular, (in)dependence in the
graph is a function of open paths between nodes in the graph, which is a
mapping between graphical and statistical properties (i.e. mapping graph-
ical (conditional) independencies into statistical (conditional) independen-
cies). Moving from statistics and using a (causal) graph, which contains
the information about the data-generating process, it is possible to accu-
rately control for variables (e.g. confounders). On the other hand causal
discovery aims at creating the causal graph from observational and/or
interventional data, which translates from statistical to graphical proper-
ties [80].

Causal Markov condition The Causal Markov condition (i.e. causal
Markov assumption or (local) Markov property) is expressed in Equation
4.9. The node, Vi, is independent (i.e. there are not open paths) of all
other nodes in the directed acyclic graph (DAG), G(V,E), excluding
the descendants and parents of this node, given its parents [80].

Vi ⊥⊥G Vj | PA(Vi)∀j ̸=i∈G(V,E)\{DE(V i),PA(V i)} (4.9)

Global Markov property In general, controlling for the parent of a node
removes the association between the two nodes. When the causal Markov
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condition is respected, we can define the global Markov property, il-
lustrated in Equation 4.10: X and Y are independent in the graph given
Z, then they are also statistically independent given Z [80].

X ⊥⊥G Y | Z ⇒ X ⊥⊥P Y | Z (4.10)

The global Markov property, the local Markov property, and the Markov
factorization property are equivalent [80], [74], [92]. But we can have un-
certainty regarding the graph’s true structure (i.e. there can be multiple
graphs that represent the same distribution) we want to retrieve because it
can be ambiguous.

Faithfulness assumption The Faithfulness assumption states that if X
and Y are independent in the distribution given Z, they are independent
in the graph given Z [80], see in Equation 4.11.

X ⊥⊥P Y | Z ⇒ X ⊥⊥G Y | Z (4.11)

Causal Minimality Condition The causal minimality assumption de-
fines when a DAG G is minimal to distribution, P, if and only if G induces
P, but no proper sub-graph of G induces P. In other words, if graph G
induces P, removing any edge from G should result in a distribution that is
different than P. Although the assumption is usually perceived as a form of
Ockham’s razor, its implications have practical significance for constraint-
based causal discovery methods and their ability to recover correct causal
structures [80].

Causal Sufficiency The Causal Sufficiency (i.e. No hidden confound-
ing) [84], [80] asserts that all the shared causes of a pair of nodes are
measured. While many techniques depend on this assumption, it may not
always be feasible to fulfill. Due to this, some methods model the exis-
tence of latent variables [84]. In particular, for a pair of observed vari-
ables X and Y , all their common causes must also be observed in the data
and modeled in a graph G [84]. In Bayesian networks the edges depict
conditional probabilities based on observations, rather than implying
causal effects through interventions. A variable X is considered to have
a causal effect on Y when altering X results in a change in the distribution
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of Y . The Causal Bayesian networks expands upon the factorization
formula, in Equation 4.12, to account for do-interventions:

P (X | do(W = w) =
∏

X∈X\W

P (X | Pa(X))1W=w (4.12)

Causal sufficiency and the causal Markov condition are related [107], [99].
The Markov equivalence class (MEC) of a set of DAGs,

D = {G0(V,E0)}, . . . , Gn{(V,En)} (4.13)

is Markov equivalent if and only if all DAGs have the same skeleton and
the same set of colliders [117]. The causal effect rule: given a graph, G,
and a set of variables, Pa (the (causal) parents of X), the causal effect of
X on Y is given by the following Equation4.14 [89]:

P (Y = y | do(X = x)) =
∑
z

P (Y = y | X = x, Pa = z)P (Pa = z)

(4.14)

Estimates, Estimators, Estimands

Estimates can be imagined as our best guesses regarding some quantities
of interest given (finite) data [80]. Estimators are “computational devices”
or “procedures” that allow us to map between a given (finite) data sample
and an estimate of interest [80]. For example, a customer wants to esti-
mate how much time he/she spends calling in a week and takes note in a
list of the calls’ duration over the week. Therefore, it is possible to apply
the arithmetic mean: the estimate of the true average calls duration.
Instead it is possible to fit a distribution to this data or apply Bayesian
statistics, i.e. compute a point-wise estimate. The arithmetic mean and
the parameters of the distribution are called Estimates. We can define
estimator the procedure (i.e. random forest, linear regression, neural net-
work models) used to achieve the estimates.

Finally, in the causal inference context, an estimand is a quantity that we
want to estimate.
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If an estimator corresponds to how, an estimand corresponds to what.

For example, in Figure 4.1 we can consider the variables: bandwidth con-
nection (BWC), customer service calls (CSC) and churn (CHU).

BWC

CSC CHU

Figure 4.1.: Graphical representation of the example, see [80].

The CSC is not causally related to CHU, we can define it as spurious
relationship which is a result of undirected (unconstrained) flow of infor-
mation (in the graph). The d-separation deconfounds the relationship
among these variables. The example can be as CSC ∼ CHU . To estimate
the causal effect of CSC on CHU, we have to understand what the change
would be in CHU if we intervene on CSC as shown in Equation 4.15.

P (CHU = chu | do(CSC = csc)) (4.15)

By applying a Naïve model, the estimand in Equation 4.16:

P (CHU = chu | do(CSC = csc)) = P (CHU = chu | CSC = csc) (4.16)

which is incorrect because the relation between CSC and CHU is spurious.
The correct estimate of CSC on CHU, is when we control for BWC, as in
Equation 4.17:

CHU ∼ CSC +BWC (4.17)

And the P (CHU = chu | do(CSC = csc)) can be expressed as in Equation
4.18:∑

bwc

P (CHU = chu | CSC = csc,BWC = bwc)P (BWC = bwc) (4.18)

The previous formula can be written as shown in Equation 4.19:

P (CHU | do(CSC)) =
∑
bwc

P (CHU | CSC,BWC)P (BWC) (4.19)
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The notation can be simplified using the causal effect rule [89]: given the
graph G and the set of (causal) parents (Pa) of X, the causal effect of X
on Y is shown in Equation 4.20: 4.20:

P (Y = y | do(X = x)) =
∑
z

P (Y = y | X = x, Pa = z)P (Pa = z) (4.20)

This example is coherent with the d-separation definition, if there’s a
fork between the two variables, X and Y , we need to control for the
middle node (in the fork) to block a path between X and Y . BWC is
the middle node in the fork between CSC and CHU. Thus, controlling
for BWC blocks the non-causal path between CSC and CHU. This
provides the model’s correct estimand (in some cases, the same model can
have multiple correct estimands).

Finding an estimand allows to compute unbiased causal effects from
observational data [80]. Estimands are different from estimators and
estimates [80]. Building a correct estimand shows both how it is related
to a more general causal effect rule and the links between estimands,
d-separation, and confounding.

The do-operator highlights the fact that we are focusing on interven-
tional distribution rather than observational distribution. Sometimes
the interventional and observational distributions might be the same: i.e.
if the true causal graph is X → Y , then P (Y = y | do(X = x)) =
P (Y = y | X = x). Once a confounding appears, we need to adjust for
its effects by controlling for additional variables.

Back-Door Criterion:

Definition: The back-door criterion aims at estimating the causal effect
of a treatment variable on an outcome while controlling for observed con-
founding factors that influence both the treatment and the outcome (i.e.
blocking spurious paths between the treatment and the outcome nodes).
It seeks to isolate the direct effect of the treatment.

Interpretation: The result of the back-door criterion answers, “What is
the causal effect of the treatment on the outcome while taking into
account observed variables that may confound the relationship?” .
It represents the direct causal effect. A set of variables, Z, satisfies the
back-door criterion, if considering a graph G, and a pair of variables,
any node in Z is a descendant of X, and Z blocks all the paths, between
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X and Y , including an arrow into X [89]. If exists a direct path from X
to Y , the path can be direct or pass through other nodes (X → · · · →
Y ). In the aforementioned example, all the paths are blocked between
CSC and CHU that contains an arrow into CSC. The node BWC is not
a descendant of CSC, and the condition that no new spurious paths are
opened is respected.

If it is sufficient to control for one of the variables (X or Y ) to obtain the
correct estimand X → Y , we can essentially estimate the causal effect
of X on Y even if one of the variables remains unobserved [80].

Equivalent Estimand:

BWC

CSC

DUS

CHU

Figure 4.2.: The graph presents a confounding pattern, see [80].

In Figure 4.2, is shown an example of confounding pattern. To estimate
the causal effect of CSC on CHU we need to look for the nodes we want
to control for. By blocking all the paths that contain an arrow into CSC,
we do not control for any descendants of CSC nor open any new paths.
We can fulfill these conditions in three different ways by controlling for:
BWC; DUS; both BWC and DUS. These options give us different, but
equivalent estimands. P (CHU | do(CSC)) is equivalent to shown in
Equation 4.21, Equation 4.22 and Equation 4.23:

∑
bwc

P (CHU | CSC,BWC)P (BWC) (4.21)

∑
dus

P (CHU | CSC,DUS)P (DUS) (4.22)

∑
bwc,dus

P (CHU | CSC,BWC,DUS)P (BWC)P (DUS) (4.23)
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In conclusion, it is possible to estimate the causal effect of CSC on CHU ,
even if there is one unobserved variable, only by controlling for one of
the variables BWC or DUS, to obtain the correct estimand for CSC →
CHU .

In the case, we need to find two or more equivalent estimands, the computed
estimates might differ slightly.

If the sample size is big enough then the differences should be negligible.
But if there are big differences then this suggests that the estimand might
be erroneous, or there is a lack of model convergence, or even errors in the
model code. In Figure 4.3, the BWC variable is unobserved.

BWC

CSC

DUS

CHU

Figure 4.3.: The graph presents an unobserved variable and a confounding
pattern, see [80].

Assuming that the global causal structure is known, if we consider BWC as
an unobserved variable and two edges (i.e. BWC → DUS and BWC →
CSC, in dashed line) are all unobserved. We know nothing about BWC
or what the functional form of BWC’s influence on CSC or DUS could
be. By assuming that BWC exists and has no other edges than the ones
pointing to CSC and DUS.

The model’s estimand, see Equation 4.24, becomes:

P (CHU | do(CSC)) =
∑
dus

P (CHU | CSC,DUS)P (DUS) (4.24)

It is worth noticing, that if the recording of a variable (e.g. CSC) is the
most expensive part of data collection process. By the back-door criterion
it is possible to skip this variable’s recording.

In addition, we have to be sure that the causal structure is valid, if the
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estimand is valid. For example, by changing the structure a bit by adding
a direct edge from BWC to CHU , the preceding estimand would lose its
validity, in fact we added a brige. Finally, by completely removing BWC
and all its edges from the model the estimand would remain valid.

By controlling for DUS removes BWC’s influence on CSC and CHU .
Removing BWC from the graph, changes anything (up to noise) in the
estimate of the relationship strength between CSC and CHU . In a graph
with a removed node (i.e. BWC), controlling for another node (i.e. DUS)
is irrelevant.

Front-Door Criterion:

Definition: The front-door criterion seeks to estimate the causal effect
of a treatment variable on an outcome by using mediators a set of vari-
ables that lie on the causal path between the treatment and the outcome.
It accounts for the indirect effects of the treatment and allows to ob-
tain a valid causal estimand, when in (some) cases the back-door criterion
fails [80] (i.e. the confounder is unobserved in the models is impossible
to deconfound it).

Interpretation: The result of a front-door criterion provides an esti-
mate of the treatment effect on the outcome through the specified medi-
ators, while controlling for potential confounders. It helps answer the
question: “What is the effect of the treatment on the outcome that
is mediated through these variables?” . In particular, the influence of
one variable X on another Y is mediated by a third variable, Z (or a set of
variables, Z), when at least one path from X to Y goes through Z [80]. We
can say that Z fully mediates the relationship between X and Y when
the only path from X to Y goes through Z. If there are paths from X to
Y that do not pass through Z, the mediation is partial [80].

In Figure 4.4, assuming that the DUS fully mediates the effects of CSC
on CHU . We can assume that BWC only affects DUS only indirectly
through CSC. If BWC would be able to influence DUS directly, front-
door would be of no help. The assumption that BWC cannot directly
change the DUS appears plausible.

The back-door and front-door criteria are special cases of a more gen-
eral and complete framework: the do-calculus [87]. If there is an identifi-
able causal effect in a given DAG, G, it can be found using do-calculus’s
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BWC

CSC DUS CHU

Figure 4.4.: The graph presents a mediator, see [80].

rules [105].

Instrumental Variable (IV) Estimand: Definition: The IV esti-
mand belongs to the family of deconfounding techniques and is used
when an instrument variable (i.e. Z) affects the treatment (X, which is
a mediator) but is not directly related to the outcome (Y ). In particular,
the effect of interest is the causal effect of X on Y .

Interpretation: The result of an IV estimand provides an estimate of
the causal effect of the treatment on the outcome. The instrument variable
Z needs to meet the following three conditions [52]: Z, is associated with
X (i.e. association rather than causation); Z, does not affect Y in any
way except through X; no common causes of Z and Y [80].

The IV estimand answers the “What is the causal effect of the treat-
ment when we use this instrument variable to isolate the exoge-
nous variation in the treatment?”

In Figure 4.4 is shown an instrumental variable:

BWC

CSCDUS CHU

Figure 4.5.: The graph presents an instrumental variable, see [80].

the variable DUS is associated with CSC, it does not affect CHU other
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than through CSC, and there are no common causes of DUS and CHU ;
therefore, DUS meets all of the criteria of being an instrument. Moreover,
DAG contains the relationship between DUS and CSC is causal and direct,
which allows us to approximate the exact causal effect (as opposed to just
bounds). To calculate the causal effect of CSC on CHU in a linear case,
all we need to do is fit two linear regression models and compute the ratio
of their coefficients. The two models are as follows: Y ∼ Z, X ∼ Z; by
dividing the coefficient for the first model by the coefficient from the second
model.

4.5. Causal interpretation

The used techniques take statistical data and output sets of directed graphs.
Everyone observed the process in action, but it is challenging to analyze the
extra assumptions needed to attribute a causal meaning to the results. In
other words, understanding how the systems would react to interventions
based on the output is not easy [99].

4.6. Sensitivity Analysis

Based on the fact that in the real dataset provided by the TIM S.p.A we
don’t know which features are confounders. For example, in Figure 4.6,
considering the underlying causal model: X is the treatment, Z is the set
of measured features which are confounders, U is the set of unmeasured
features which are confounders, and Y is the outcome. The sensitivity
analysis helps in assessing the robustness of the results with respect to
unmeasured confounders that can exist. For instance, if we can identify
confounders that do not have an impact on the treatment X, if their effect
is lower than a fixed threshold α, they can be considered less influential or
may not substantially affect the results.

For example in Figure 4.7, if we consider a telecommunications company
offering various monthly plans to its customers. A plan denoted as GLD
(representing the treatment), is characterized as “gold” and is very rich in
services but comes with a high cost. We define a measured confounder
as Z. In this case, Z represents the customer’s socio-economic status
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Z

X

U

Yα

Figure 4.6.: Sensitivity analysis with measured (Z) and unmeasured (U)
confounders, see [80].

(SES).

The main objective is to evaluate the impact of the premium monthly plan
(GLD) on customer satisfaction. We can hypothesize that customers sub-
scribing to the premium plan (GLD) will exhibit higher satisfaction levels
(SAT ). In particular, SES whic is a measured confounder, might influ-
ence both the choice of the “gold” plan (GLD) and the customer’s sat-
isfaction SAT , consequently unsatisfied customers can churn. However,
there could be additional unmeasured factors i.e. U , such as personal
preferences or lifestyle, usage patterns, to mention a few, that might
impact the customer’s satisfaction SAT within the “gold” plan.

For this reasons, the sensitivity analysis becomes a valuable tool and
helps in assessing the robustness of results drawn from a study com-
paring the satisfaction levels (Y ) of customers on the “gold” plan (GLD)
by considering the potential unmeasured confounders (U). In particular,
we can measure the effect and find a positive effect of GLD on customer
satisfaction. The SES might not be the only factor influencing satisfaction,
infact we have to Identify Unmeasured Confounders U that can affect
both the choice of GLD and SAT . Then the for unmeasured confounders
we set a threshold α (e.g. 15%): if an unmeasured variable’s impact on
SAT is less than 15%, it is less likely to affect the results. Futher, we per-
form the Sensitivity Analysis: by exploring hypothetical scenarios where
unmeasured confounders have different degrees of impact on SAT .

Finally we assess robustness: if the results are robust it means that the
conclusions about the positive effect ofGLD on satisfaction hold even under
varying scenarios of unmeasured confounders, it strengthens our confidence
in the study’s findings. By applying sensitivity analysis, we aim to ensure
that our conclusion about the positive impact of GLD on satisfaction is
robust and not prone to unmeasured confounders.
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SES

GLD

U

SATα

Figure 4.7.: Sensitivity analysis with measured (SES) and unmeasured (U)
confounders, see [80].

4.6.1. Sensitivity assumption and problem statement

Assuming that n units (Xi, Yi(0), Yi(1), Zi, Ui) are sampled independently
from the distribution Pfull.

We define the vector of confounders: (Xi, Ui) ∈ Rd ×Rk; the real-valued
potential outcomes: (Yi(0), Yi(1)) and the binary treatment Zi ∈ {0, 1}.

Only the vector (Xi, Yi, Zi), where Yi = Yi(Zi), is observed. The con-
founders Ui are also never observed, and their dimension k may be
unknown.

The P to denotes the distribution of the observables, (Xi, Zi, Yi) ∼ P are
independent and identically distributed. We omit the subscript i to
denote a generic draw from Pfull or P .

The use of observational data helps to draw inferences about the av-
erage treatment effect, in Equation 4.25

ψATE(Pfull) = EPfull
[Y (1)− Y (0)] (4.25)

the counterfactual means, see Equation 4.26:

ψz(Pfull) = EPfull
[Y (z)], z ∈ {0, 1} (4.26)

The unmeasured confounders [34], are not functions of P alone (i.e.
point-identified) and cannot be consistently estimated. Nevertheless, they
may be bounded by imposing on the unmeasured confounders Ui the as-
sumption that measuring unobserved confounders could not change the
odds of treatment by more than the factor Λ ≥ 1. Formally, this restricts
the distribution Pfull to the marginal sensitivity model, MSM [110].
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Definition 1 (Marginal sensitivity model).

Given an observed-data distribution P and an odds ratio bound Λ ≥ 1,
the marginal sensitivity model MSM (P,Λ) is the set of distributions Pfull

on (X,Y (0), Y (1), Z, U) with U ∈ Rk for some k satisfying the following
properties, see the Equation 4.27 for Unconfoundedness and Equation
4.28 for the Bounded odds ratio, where measuring U does not change
the odds of treatment by more than a factor of Λ:

(Y (0), Y (1))Z | (X,U)underPfull (4.27)

Λ−1 ≤ Pfull(Z = 1 | X,U)

Pfull(Z=1|X,U)
Pfull(Z=0|X,U)

Pfull(Z=1|X)
Pfull(Z=0|X)

≤ Λ (4.28)

4.6.2. Causal effect and ATE

Individual Treatment Effect models the effect of treatment on the unit i:
ITEi = Y1,i− Y0,i. The Average Treatment Effect is the expectation of
the ITEs, as shown in Equation 4.29:

ATE = E[Y1 − Y0] (4.29)

Assuming a binary treatment variable T in Equation 4.30:

ATE = E[Y | do(T = 1)]− E[Y | do(T = 0) (4.30)

Average Treatment Effect on Treated is the ATE restricted on the treated
units is depicted in Equation 4.31:

ATT = E[Y1 − Y0 | do(T = 1)] (4.31)

Considering any experimental setup we denote that: “correlation does not
imply causation”, which means that causal relations can be identified.
For example, in a randomized controlled trial, each individual in the exper-
iment is randomly assigned to either the treatment or the control group and
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the effect on certain variable is measured [35]. It is worth to understand
the underlying causal relations which can support predictions about how a
system will behave when a certain intervention is performed [35]. Causal
Discovery focuses on obtaining causal knowledge directly from obser-
vational data trying to infer the causal relationship across the different
variables in the dataset. Causal discovery does not assume any relation-
ship among involved variables; rather, they are inferred directly from a set
of data. Causal discovery is responsible for analyzing and creating mod-
els that illustrate the relationships inherent in the data. In general we
would like to understand “what is the source of causal graphs in the real
world? [80]. For this reason, it worth to distinguish the different ways of
obtaining causal graphs. For instance, by both the Causal discovery and
causal structure learning used to uncover causal structure from obser-
vational or interventional data. Secondly, by the Expert knowledge
that helps in defining or disambiguate the causal relations between two or
more variables [80]. Finally, by a combination of both, some causal dis-
covery algorithms can easily incorporate the expert knowledge as a priority
(e.g. by freezing certain edges in the graph or by suggesting their existence
or a certain direction) [80].

4.7. Causal Discovery Methods

The following Section shows the Taxonomy of Causal Discovery Methods
in particular:

Constraint-based methods: or independence-based causal discovery meth-
ods focus on the graph’s independencies. This family includes algo-
rithms such as: PC-algorithm (PC) [75], Inductive Causation (IC),
FCI Algorithm (Fast Causal Inference) [27], etc.

Score-based methods: focus on the Bayesian network approach. The de-
velopment of the Greedy Equivalence Search (GES) algorithm [26]
is one of the classic examples of a score-based method, that are applied
to restrict the number of candidates. In particular, these algorithms
assign a relevance score to candidate graphs through some adjust-
ment measures (i.e. Bayesian Information Criterion (BIC)). These al-
gorithms are computationally expensive since they have to enumerate
(and score) every possible graph among the given variables.
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Functional causal discovery: it is inspired by Independent Component
Analysis (ICA) [57] and developed by [104]. Algorithms in this
family leverage various aspects of functional forms of the relationships
between variables in order to determine the causal direction. A classic
example representing this family is the Linear Non-Gaussian Acyclic
Model (LiNGAM) algorithm [103], DirectLingam [104]. LiNGAM,
the non-linear additive noise (ANM) model, and the post-nonlinear
(PNL) causal model.

Gradient-based methods: the idea is treating the graph space search as a
continuous optimization problem. Typically Gradient Descent is used
for optimization purposes: NOTEARS algorithm [130].

4.7.1. PC Algorithm

The PC algorithm [109] is a classic causal discovery algorithm which is based
on conditional independence tests [80]. It recovers structural information
from observational data and leverages the independence structure to recover
the graph.

The PC algorithm steps are presented in the following: it starts with a
fully connected graph, then the edges between unconditionally independent
variables are deleted. Further, it iterates over all remaining variable pairs
(A,B). If A ⊥⊥ B | C, given the conditioning set C, which contains only
one variable, the edge between A and B is deleted. This step is iterated by
increasing by 1 the size of C for all the remaining pairs.

We denote with the symbol ” an undirected edge and A�B�C given A and
C not adjacent. Edges are oriented as A → B ← C whenever A ⊥̸⊥ C|B
(i.e. collider). Edges are oriented as A → B�C, where A and C are not
adjacent, orient the edge between B and C as B → C (i.e. orientation
propagation) [109].

PC-algorithm is computationally feasible for sparse problems with many
nodes (i.e. variables) achieving high computational efficiency as a function
of sparseness of the true underlying DAG [68]. PC-algorithm is insensitive
to the choice of α, its single tuning parameter [68].

The limitations of Constraint-based algorithms [17]: two graphs that are
I-equivalent (if they have the same associated set of independencies) can-
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not be distinguished by constraint-based methods without resorting to ma-
nipulative experimentation or temporal information [17]. The use of con-
ditional independence tests requires an assumption on the dependence
(e.g. linear (assuming a Normal distribution) or nonlinear). In the nonlinear
case, it may be particularly expensive to have recourse to conditional tests.
Finite-sample error propagation, as for the sequential nature of these
methods, suffers from an error propagation (false positive) which is difficult
to monitor and control [17]. The asymptotic results of correctness: if
the conditional independence decisions are correct in the large sample limit,
the PC algorithm converges to the true Markov Equivalence Class in the
large sample limit, assuming i.i.d. samples and the Markov, Faithfulness,
Sufficiency assumptions [17]. Finally the dimensionality problem: the
exponential complexity nature of the algorithm makes those algorithms in-
adequate in large dimensional settings [17].

4.7.2. GES Algorithm

GES is a greedy algorithm that searches through equivalence classes of
DAGs [26]. Greedy search (generally) proceeds at each step by evaluating
each neighbor of the current state, moving to the highest scoring one if it
improves the score. The set of neighbors of each state in the search defines
the connectivity of the search space. GES consists of two phases. In the
first phase, a greedy search is performed over equivalence classes using a
given connectivity between equivalence classes. Once a local maximum is
reached, a second phase starts from the previous local maximum using a
second connectivity. This equivalence class is returned as the solution when
the second phase reaches a local maximum. We denote ε+(ε) to denote the
neighbors of state ε during the first phase of GES. This corresponds to say
that an equivalence class ε′ is in ε+(ε) if and only if there is some DAGG ∈ ε
to which we can add a single edge that results in a DAG G ∈ ε′. In other
words, G is any DAG in ε and G′ is any DAG in ε′. Then ε′ ∈ ε+(ε) if and
only if there exists a sequence of covered edge reversals followed by a single
edge addition followed by another sequence of covered edge reversals that
transformG intoG′. We use ε−(ε) to denote the neighbors of state E during
the second phase of GES. The definition of ε−(ε) is completely analogous to
that of ε+(ε), and contains equivalence classes that are obtained by deleting
a single edge from DAGs in ε, [26]. In Figure 4.8 shows a DAG. Figure
4.9 illustrates all the members ε = ε(G). Figure 4.10 shows all the DAGs
reachable by a single edge addition to a member of ε. Finally, in Figure
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4.11 we show all DAGs reachable by a single edge deletion from a member
of ε. The union of the two corresponding equivalence classes constitutes
ε−(ε) [26].

B

A C

Figure 4.8.: DAG G, see [26].

B

A C

(a)

B

A C

(b)

B

A C

(c)

Figure 4.9.: The ε = ε(G)

GES is optimal in the limit of large datasets [26]. The feasibility of applying
any search algorithm depends on the complexity of both the algorithm and
the search space. The use of greedy search algorithm over edges shows that
the total number of search states visited by GES in a domain of n variables
can never exceed n(n− 1) and the number of states visited generally grows
linearly with n. Another problem is that the complexity of the search
space: for each state visited by the algorithm we need to generate and
evaluate all states that are reachable by the application of a single operator.
In particular, if the number of the neighbor states grows very large, the
evaluation time increases largely. Another problem, is that learning the
optimal structure using the Bayesian scoring criterion is NP-hard [26];
this means that in the worst case, the connectivity of the search space
that the algorithm encounters is a problem [26]. In real-world problems
the portion of the search space traversed by GES is sparse [26]. A possible
solution provided by Chickering et al. is that the worst-case scenario will
not occur, and that for real-world problems the portion of the search space
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Figure 4.10.: The single member of ε+(ε)
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Figure 4.11.: The two members of ε−(ε)

traversed by GES will be sparse. Due to the fact that portions of the
search space can be too dense to search efficiently, it may be beneficial
to consider only a heuristically-selected subset of the candidate neighbors
at each step. However, this comes at the cost of losing the large-sample
optimality guarantee.

GES converts the PDAGs (Partially Direct Acyclic Graphs) to completed
PDAGs takes time O(|E| ∗ k2) in the worst case—where |E| is the num-
ber of edges in the PDAG and k is the maximum number of parents per
node—which could potentially be a problem for domains with a large num-
ber of variables.
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4.7.3. DirectLINGAM

The DirectLINGAM is a function-based causal discovery method [104].
It is based on the Linear Non-Gaussian Acyclic Model (LiNGAM) method
which is a non-Gaussian variant of Structural equation models (SEM) and
Bayesian networks (BN). LiNGAM estimates a causal ordering and con-
nection strengths based on non-Gaussianity. A problem arises when, most
ICA algorithms including FastICA [57] and gradient-based algorithms [26]
may not converge to a correct solution in a finite number of steps if the
initially guessed state is badly chosen [53] or if the step size is not suitably
selected for those gradient-based methods[103]. The appropriate selection
of parameters is tricky.

DirectLINGAM converges to the right solution in a fixed number of steps
i.e.equal to the number of variables if the data strictly respect the hypothesis
of: Linearity, non-Gaussianity, Acyclicity, absence of hidden Confounders
and Causal Sufficiency. Additionally for small datasets, the algorithms’ per-
mutations are not scale-invariant it means a different or wrong order of
variables depending on scales or standard deviations of variables, especially
if they have a wide range of scales.

DirectLINGAM aims to estimate a causal ordering and the connection
strengths in the LiNGAM [104] .

The complexity of the ICA-LiNGAM is presumed to be O(np3 + p4) [103].
However, in real-world scenario these strict assumptions could not be satis-
fied. DirectLiNGAM requires no prior knowledge on the structure. In the
case of some prior knowledge is provided (i.e. the number of causal orders
and connection strengths to be estimated gets smaller), DirectLiNGAM is
more efficient in learning. The cost of DirectLiNGAM would be larger than
that of ICA-LiNGAM especially when the dateset size is large.

4.7.4. NOTEARS

The NOTEARS algorithm is Non-combinatorial Optimization via Trace Ex-
ponential and Augmented lagRangian for Structure learning. This method
formulates the structure learning problem as a continuous constrained op-
timization task, leveraging an algebraic characterization of DAGs [130],
by adopting the least squares objective, which is related to but does not
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directly maximize the data likelihood. NOTEARS learns DAGs as a con-
tinuous optimization task [130] leveraging an algebraic characterization of
DAGs via exponential function. It adopts a regression-based objective, i.e.,
the least squares loss, with l1 penalty and a hard DAG constraint. The
constrained optimization problem is then solved using the augmented La-
grangian method, followed by a thresholding step on the estimated edge
weights [130]. The main advantage of NOTEARS is smooth, global search
(delegated to standard numerical solvers), as opposed to combinatorial, lo-
cal search [130]. It has numerical difficulties and illconditioning issues as
the penalty coefficient to reach infinity to enforce acyclicity [83]. Notears
performs well in small-scale experiments solving the original problem [130].
It returns a local minimizer, and the obtained solution often is very close
to the global minimizer. On real datasets NOTEARS shows advantages
over existing equivalence search algorithms. By performing global updates
(e.g. all parameters at once) instead of local updates (e.g. one edge at a
time) in each iteration, it avoids relying on assumptions about the local
structure of the graph. A limit is that the equality constrained program
(minW∈Rd×dF (W ), subject to h(W ) = 0 and that W : h(W ) = 0 is a non-
convex constraint [130]. Important advantage of NOTEARS is smooth,
global search, as opposed to combinatorial, local search [130]. NOTEARS
is specifically developed for linear DAGs, and has been extended to han-
dle nonlinear cases via neural networks [83].Furthermore, the search is
delegated to standard numerical solvers and the evaluation of the adja-
cency matrix is exponential i.e. O(d3), the computational complexity of
this method is cubic in the number of nodes [130], although the constant is
small for sparse matrices (used ). Finally, NOTEARS outperforms existing
methods (PC, GES, LiNGAM, etc.) when the in-degree (i.e the number of
edges in input in a certain node) is large [130].

4.7.5. GOLEM

This section describes a continuous unconstrained optimization method,
called Gradient-based Optimization of dag-penalized Likelihood for learning
linEar dag Models (GOLEM) [83]. It is likelihood-based with soft spar-
sity and DAG constraints asymptotically returns a DAG equivalent to the
ground truth DAG, under mild assumptions [83]. Unlike NOTEARS [130]
that requires a hard DAG constraint, GOLEM treat it as a soft constraint,
based on the hypothesis that ground truth is acyclic (under mild assump-
tions) the estimated graph (asymptotically) is a DAG [83]. An issue arises
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due to finite samples and nonconvexity [83], in particular the local solution
obtained may contain several edges with weights near zero and may not be
exactly acyclic. The the computational complexity is O(d3). GOLEM is ro-
bust to weight scaling (i.e. Structural Hamming Distance (SHD), Structural
Intervention Distance (SID) are consistently low). By using a GPU, the
computational acceleration enables to easily handle thousands of nodes.

4.7.6. DoWhy

DoWhy for causal inference uses graph-based criteria, do-calculus and sup-
ports explicit modeling and testing of causal assumptions [102] and the
identification of non-parametric causal effect [102]. DoWhy unifies graph-
ical causal models (GCM) [87], [16] and potential outcomes (PO) [60],
graph-based criteria and do-calculus for modeling assumptions and
identifying a non-parametric causal effect. For the effect estimation
(i.e. effect inference) follows a four step procedure: creating a causal
model from the data and a given graph (i.e. models a causal model);
identifying the causal effect and returns target estimands (i.e. identifi-
cation); estimating the target estimand using a statistical method (i.e.
estimation) and refuting the obtained estimate using multiple robustness
checks (i.e. refutation).

Modeling Data alone is not enough for causal inference, we need do-
main knowledge and assumptions. Since there is no ground-truth
test dataset available that an estimate can be compared to, causal in-
ference requires a series of principled steps to achieve a good estimator.
The modeling phase is quite sensitive: it encodes domain knowledge into a
causal model (i.e. graph).

The input assumptions largely affect the final outcome of a causal inference
analysis. The causal effect’s estimation, involves specifying two types of
variables: Confounders (i.e. common_causes): variables that cause both
the action (i.e. treatment) and the outcome (i.e. target). Any observed
correlation between the treatment and the target may simply be due to the
confounder variables, and not due to any causal relationship between them.
Instrumental Variables (instruments): variables that reduce the bias, in
particular cause the action, but do not directly affect the outcome. They
are not affected by any variable that affects the outcome.
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Identification A causal graph reflects the ways of conveying domain knowl-
edge (either through named variable sets of confounders and instrumental
variables, or through a causal graph). DoWhy supports the following iden-
tification algorithms: Backdoor, Frontdoor, Instrumental variable, ID algo-
rithm, Mediation (direct and indirect effects) [102].

Estimation In general, the problem that an analyst faces during the esti-
mation step is that (s)he should have already figured out how to build
a reasonable causal model from data and domain knowledge and
identified the correct estimand [102].

Furthermore, the analyst is expected to have already assessed the verifica-
tion and robustness of causal analyses. For this reason, the libraries provide
no guidance on their own, and that makes things more challenging [102].

DoWhy provides estimation methods compatible with the identification
strategy for estimating the average causal effect [102]. In particular, we
can find: Regression-based methods, Distance-based matching, Propensity-
based methods and Do-sampler.

• Distance-based matching is based on matching confounders’ values
based on distance metrics;

• Propensity-based Stratification, Propensity Score Matching, Inverse
Propensity Weighting are based on estimating the treatment as-
signment;

• Linear Regression, Generalized Linear Models (e.g. logistic regression,
etc.) are based on estimating the outcome model;

• Binary Instrument/Wald Estimator, Regression discontinuity are based
on the instrumental variable equation;

• Two-stage linear regression is specific for front-door criterion and
general mediation.

Refutation Checking for the estimate’s correctness is not possible [102],
thus it is possible to reject it: if the estimator fails the refutation test
(p-value is < 0.05), we simply can understand that there are some issues
with the estimator [102].
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As the estimate is not affected by data changes, any estimator with
a significant variation between the original data and the modified data
fails the test. Furthermore, after any changing in the data, the causal
true estimate is zero, and any significant estimator’s changes from zero let
it fails the test.

4.8. Relation between Causal Inference and
Machine Learning

Machine learning helps in building causal effect estimators, and causal
reasoning can be help in building more robust machine learning mod-
els.

The experimental and observational information fusion can synthesize an
estimate of the desired causal relation [13]. In other words, it is important
to establish a necessary and sufficient condition to decide when causal
effects in the target domain are estimable from both the statistical infor-
mation available and the causal information transferred from the experi-
ments [13].

When we perform experiments a group of subjects, e.g. the telecommuni-
cation’s customers, the issue arises whether the conclusions are applicable
to a different but somewhat related group [13].

Artificial Intelligence holds a distinct advantage in addressing this issue in
a systematic manner.

A causal graph [86], [109], [87], [72], [13] constitutes the syntactic represen-
tation of the the distinction between statistical and causal knowledge.
Graphical models offer a means of expressing distinctions and similarities
within various domains, environments, and populations [88].

The do-calculus [86], [72] is especially well-suited for integrating these
two aspects into a unified framework and creating efficient algorithms for
transferring knowledge [13].
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4.8.1. Transferability

Transferring causal knowledge between two environments
∏

and
∏∗.

In environment
∏

, experiments can be performed and causal knowledge
gathered. In

∏∗, potentially different from
∏

, only passive observations
can be collected but no experiments conducted. The problem is to infer
a causal relationship R in

∏∗ using knowledge obtained in
∏

. If noth-
ing is known about the relationship between

∏
and

∏∗, the problem is
unsolvable.

Non-transportability requires the construction of two models agreeing on
⟨P, I, P ∗⟩, while non-identifiability requires the two models to agree solely
on the observational distribution P . P represents the true distribution of
the data. I denotes the set of interventions or treatments considered. P ∗

is the distribution of potential outcomes under those interventions.

The simplest non-transportable structure is an extension of the famous
‘bow arc’ graph named here ‘s-bow arc’, see Figure 4.12. The s-bow arc
has two endogenous nodes: X, and its child Y, sharing a hidden exoge-
nous parent U, and a S-node pointing to Y. This and similar structures
that prevent transportability will be useful in our proof of complete-
ness, which requires a demonstration that whenever the algorithm fails to
transport a causal relation, the relation is indeed non-transportable. The
challenge of transportability lies in transferring two solutions, posing a hin-
drance. Regarding the addressed issue, the robustness of the conclusions
can be enhanced by quantifying their strength through sensitivity analy-
sis. The example is useful to understand that it is possible to transfer two
predictions ignoring which is transferable, by understanding the underlying
causal model. Because it is impractical to directly confirm the presence
or absence of unmeasured confounding variables for each generated model,
especially when there is suspicion of their existence, sensitivity analysis is
employed [13].

Transportability presupposes having sufficient structural understand-
ing of both domains (i.e. statistical and causal) to support the creation of
their respective causal diagrams. If there is a lack of domain knowledge,
causal discovery algorithms can be used to infer diagrams from available
data [87], [90], [109].

129



Chapter 4. Preliminary Concepts in Causality

BWC

CSC CHU

Figure 4.12.: Example of non-transportability.

The study of transportability or external validity aims to identify con-
ditions under which causal information learned from experiments can be
reused in a different environment where only passive observations can be
collected [13], which is the case study of this thesis. For Bernoulli dis-
tributions, which model binary outcomes (e.g., success/failure), the proba-
bility mass function is often denoted by P(), representing the probability
of a particular outcome. Example: P(X = 1) represents the probability
of success. For other types of distributions, especially those that represent
continuous or non-binary random variables, the expectation, E() oper-
ator is often used and represents the average value of a random variable.

In the following example Figure 4.13 shows the transfer [13] of experimental
results between two locations i.e. Milan (MI) and Rome (RO) and estimate
the causal effect of treatment CSC on outcome CHU. BWC = bwc, denoted
P(CHU|do(CSC), BWC).

We want to generalize the results to the population of Rome i.e. RO, but
we find the distribution P (CSC,CHU,BWC) in Milan, i.e. MI to be dif-
ferent from the one in RO (call the latter P ∗(CSC,CHU,BWC), because
the distribution is changed). In particular, the average of CSC in RO is
significantly higher than that in MI [13]. How can we estimate the causal
effect of CSC on CHU in RO, denoted

R = P ∗(CHU |do(CSC))

? Given the Equation 4.32:

Pi(CHU = 1 | do(CSC), BWC) (4.32)
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Overall causal effect in RO is given by the Equation 4.33:

R =
∑
BWC

P ∗(CHU |do(CSC), BWC)P ∗(BWC) = (4.33)

=
∑
BWC

P (CHU |do(CSC), BWC)P (BWC) (4.34)

The combination of experimental results from MI, P (CHU |do(CSC), BWC),
with observational aspects of RO population, P ∗(z), allows to obtain an
experimental claim P ∗(CHU |do(CSC)) about RO.

The transport formula is shown in Equation 4.35∑
BWC

P (CHU |do(CSC), BWC)P (BWC) (4.35)

In the following example 4.13: we want to know what is the impact of
the treatment, i.e. CSC, on the customer churn CHU , in particular, the
customer’s survival in five to ten years. What is the effect of CSC
respect to CHU? The BWC is the common cause, if we find something
about the influence of CSC on CHU by applying the Backdoor Criterion
by taking into account the country or the city where the study is performed.
If CSC is higher than a certain threshold and CHU is higher than e.g. 5
years. The customer which maintains the line “survives” i.e. CHU = 0.

Given the Equation 4.36, in Milan we have:∑
BWC

P (BWC)E[CHU | do(CSC = 1), BWC]− E[CHU | do(CSC = 0), BWC]

(4.36)

Given the Equation 4.37, in Rome we have:∑
BWC

P ∗(BWC)E[CHU | do(CSC = 1), BWC]− E[CHU | do(CSC = 0), BWC]

(4.37)
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BWC

CSC CHU

Figure 4.13.: Example of results transportability [80].
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Chapter 5.

Experimental setup for Causal
Discovery

The aim of this thesis is to propose a new Ensemble Discovery method for
telecommunication data. However, in this real telecom data set scenario,
we do not have the Ground Truth (GT). For this reason, I performed
experiments starting with synthetic datasets generated by the IIDSim-
ulation tool using gCastle [127]. The Ground Truth consists of a Direct
Acyclic Graph (DAG) generated by a topology generator described in
Section 5.2.

In particular, N represents the number of random datasets and for each of
them a pool of k = 5 algorithms (i.e., PC, GES, LINGAM, GOLEM, and
Notears) is applied. For each synthetic dataset, we apply the k algorithms,
and each of them produces a graph. Ideally, this should be a DAG, however
sometimes some ambiguities are left in the form of undirected edges.

We calculated the distances between the graph generated by each algorithm
and the GT. We are interested in a method for selecting the closest graph(s),
i.e., the one(s) that better approximates the ground truth, in some sense
which will be specified.

A relevant concept that supports the selection of the minimum distance
graph is the one of centroid graph: the graph that has the minimum
distance with respect to the other graphs.
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Chapter 5. Experimental setup for Causal Discovery

5.1. Outline of our study

The general structure of our study is the following:

• Generation of Ground Truth Synthetic Datasets by means of a Topol-
ogy Generator

• Causal Discovery Algorithm Selection and Setup.

• Models training with the Synthetic Datasets.

• For each of the applied algorithms an Algorithm Specific Graph
is generated.

• Graph selection based on the Ensemble method.

• Performance analysis and visualization.

The first four steps are illustrated in this chapter (Section 5.2).The others
are described in the next chapter.

5.2. The Topology Generator

The procedure relies on the generation of a high number of DAG topologic
structures (i.e. ground truth DAGs) and the simulation [19]. I have created,
by using the gCastle tool, multiple causal networks, corresponding to
multiple configurations in terms of the number of nodes, the number of
edges, topologies, non-dipendent variable distributions, and a noise (both
Gaussian and not Gaussian).

I selected 10 combinations (n, e) [n:number of nodes in the graph in N =
[n_min, . . . , n_max] and e: number of arcs in E = [e_min, . . . , e_max]]
to generate the ground truth, that is, the adjacent matrix of the graph.
We call the generic combination

(n, e)

as c in C = [(n_min, e_min), . . . , (n_max, e_max)].

I chose the combinations so as to have some variability in terms of graph size
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5.2. The Topology Generator

Figure 5.1.: Boxplot of the number of nodes NNODES.

and its graph density, so I generated graphs from a minimum of nmin = 9
nodes to a maximum of nmax = 30 nodes, and with a number of arcs
between mmin = 21 and mmax = 435.1

The distributions of the number of nodes and the number of arcs are shown
in Figure 5.1, and Figure 5.2.

For each specific combination c, 5 topologies were produced: those were
scale-free graphs. For each topology 10 variants were generated (using
IIDSimulation) each with a different probability distribution for exogenous
variables (among the distributions available in gCastle).

In this way, we created 10× 5× 10 = 500 datasets.

Due to a temporary limitation of the computational resources to be used in
the subsequent phase, we randomly chose a set of 100 datasets on which to
run the discovery algorithms. Then we ran each of the 5 algorithms under
study, that is ALGO ∈ {GES,GOLEM,LINGAM,Notears, PC}.

The dataset generator creates 100 scale-free adjacency matrices i.e. 100
Ground Truths.

At this point, we ran the following discovery algorithms: PC in Section
4.7.1, DirectLiNGAM in Section 4.7.3, GES in Section 4.7.2, GOLEM in Section

1Specifically the 10 (n, e) pairs were: (9, 21), (9, 36), (14, 48), (14, 91), (19, 86), (19, 171),
(24, 136), (24, 276), (30, 210), (30, 435).
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Chapter 5. Experimental setup for Causal Discovery

Figure 5.2.: Boxplot of the number of nodes NACTUAL_EDGES.

4.7.5 and Notears in Section 4.7.4, see Chapter 4. I used these algorithms
to create the predicted matrices to compare with the generated ground
truth.

For each discovery algorithm an Algorithm Specific Graph was gener-
ated. The model is trained for each dataset and the resulting causal matrix
is saved for the next analysis steps.

A number of times, some algorithms failed converging. Keeping only the
runs where all the 5 algorithms had converged, we were left with 78 datasets,
with the respective GT and the respective reconstructed graphs.

To each dataset was thus associated a record. Those records were the
statistical units on which we performed the analysis described in the next
chapter.

5.3. Simulations: Comparison heatmaps

The models are applied in conjunction with linear dependencies, and to
adhere to the framework suggested by gCastle, the distributions are cate-
gorized using the sem_type method. The sem_type parameter allows you
to specify the type of distribution to be used in the structural equation
model. Depending on whether the model is linear or nonlinear, it is possi-
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5.4. A simple example of GT with fixed number of nodes

ble to choose from the appropriate set of distributions [127].

sem_type: str gauss, exp, gumbel, uniform, logistic (linear);
mlp, mim, gp, gp-add, quadratic (nonlinear).

Figure 5.3.: The .sem_type() method.

For details of linear and nonlinear distributions see Appendix C.

5.4. A simple example of GT with fixed number of
nodes

Linear and nonlinear datasets, for the details see the Appendix C, are gen-
erated with IIDSimulation with the aim to compare the ground truth
and the predicted graph heatmaps. Visual inspection is useful in the cases
where we have small DAGs, for higher dimensions the comparison becomes
challenging [80].

Thus, it is preferable to use the GraphDAG tool, as it is possible to plot and
compare the heatmaps [80]. Each learned adjacency matrix generated by
the PC, GES, LINGAM, NOTEARS and GOLEM algorithms is compared
with the ground truth by visual inspection. The resulting heatmaps are bi-
nary: the value 1 indicates that the link is present and the value 0 indicates
the link absence.

5.4.1. The model evaluation metrics

There are several available metrics in MetricsDAG, further described in
Appendix D:

from castle.metrics import MetricsDAG
metrics = MetricsDAG(

B_est=pred_dag,
B_true=adj_matrix

)
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Chapter 5. Experimental setup for Causal Discovery

5.5. Predicted matrices and Ground Truth
Comparison

In case of small dimensions graphs, the visual comparison is useful. A
valid alternative consists of the heatmaps. As the adjacency matrix is un-
weighted, the heatmap is binary (0 or 1 values only). In the following, from
Figure 5.4 to Figure 5.53 are presented the heatmaps generated by each al-
gorithm (PC, GES, LINGAM, GOLEM, NOTEARS) using a Linear Gaus-
sian distribution representing the learned adjacency matrix (est_graph)
and the ground truth (true_graph).

5.6. Current Dataset: Linear Gaussian

(a) Predicted graph by PC and Ground Truth.

(b) Comparison of PC using Linear Gaussian distribution with
Ground Truth.

Figure 5.4.: Comparing PC using Linear Gaussian distribution.

Heatmaps PC vs GT In Figure 5.4a, heatmaps generated by algorithm
using a PC representing the learned adjacency matrix (est_graph)
and the ground truth (true_graph). In Figure 5.4b, a visual com-
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5.6. Current Dataset: Linear Gaussian

parison of the heatmaps generated by the algorithm using a PC rep-
resenting the learned adjacency matrix (est_graph) and the ground
truth (true_graph).

The colors refer to the comparison between the links in the true_dag
and the pred_dag: the white color means that the link is absent
from the dags; the red color means that the link is present in the
true_dag, but missing in the pred_dag; the orange color means that
the link is present in the pred_dag, but missing in the true_dag, i.e.
spurious; the green color means that the link is present in both the
dags.

(a) Predicted graph by GES and Ground Truth.

(b) Comparison of GES using Linear Gaussian distribution with
Ground Truth.

Figure 5.5.: Comparing GES using Linear Gaussian distribution.

Heatmaps GES vs GT In Figure 5.5a, heatmaps generated by algorithm
using a GES representing the learned adjacency matrix (est_graph)
and the ground truth (true_graph). In Figure 5.5b, a visual compar-
ison of the heatmaps generated by the algorithm using a GES rep-
resenting the learned adjacency matrix (est_graph) and the ground
truth (true_graph).
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Chapter 5. Experimental setup for Causal Discovery

(a) Predicted graph by DIRECTLingam and Ground Truth.

(b) Comparison of DIRECTLingam using Linear Gaussian distri-
bution with Ground Truth.

Figure 5.6.: Comparing DIRECTLingam using Linear Gaussian distribu-
tion.

Heatmaps DIRECTLingam vs GT In Figure 5.6a, heatmaps generated by
algorithm using a DIRECTLingam representing the learned adja-
cency matrix (est_graph) and the ground truth (true_graph). In
Figure 5.6b, a visual comparison of the heatmaps generated by the
algorithm using a DIRECTLingam representing the learned adjacency
matrix (est_graph) and the ground truth (true_graph).

Heatmaps Notears vs GT In Figure 5.7a, heatmaps generated by algo-
rithm using a Notears representing the learned adjacency matrix (est_graph)
and the ground truth (true_graph). In Figure 5.7b, a visual compari-
son of the heatmaps generated by the algorithm using a Notears rep-
resenting the learned adjacency matrix (est_graph) and the ground
truth (true_graph).

Heatmaps Golem vs GT In Figure 5.8a, heatmaps generated by algo-
rithm using a Golem representing the learned adjacency matrix (est_graph)
and the ground truth (true_graph). In Figure 5.8b, a visual compar-
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5.6. Current Dataset: Linear Gaussian

(a) Predicted graph by Notears and Ground Truth.

(b) Comparison of Notears using Linear Gaussian distribution
with Ground Truth.

Figure 5.7.: Comparing Notears using Linear Gaussian distribution.

ison of the heatmaps generated by the algorithm using a Golem rep-
resenting the learned adjacency matrix (est_graph) and the ground
truth (true_graph).

141



Chapter 5. Experimental setup for Causal Discovery

(a) Predicted graph by Golem and Ground Truth.

(b) Comparison of Golem using Linear Gaussian distribution with
Ground Truth.

Figure 5.8.: Comparing Golem using Linear Gaussian distribution.
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5.7. Current Dataset: Linear Exponential

5.7. Current Dataset: Linear Exponential

(a) Predicted graph by PC and Ground Truth.

(b) Comparison of PC using Linear Exponential distribution with
Ground Truth.

Figure 5.9.: Comparing PC using Linear Exponential distribution.

Heatmaps PC vs GT In Figure 5.9a, heatmaps generated by algorithm
using a PC representing the learned adjacency matrix (est_graph)
and the ground truth (true_graph). In Figure 5.9b, a visual com-
parison of the heatmaps generated by the algorithm using a PC rep-
resenting the learned adjacency matrix (est_graph) and the ground
truth (true_graph).

Heatmaps GES vs GT In Figure 5.10a, heatmaps generated by algorithm
using a GES representing the learned adjacency matrix (est_graph)
and the ground truth (true_graph). In Figure 5.10b, a visual com-
parison of the heatmaps generated by the algorithm using a GES rep-
resenting the learned adjacency matrix (est_graph) and the ground
truth (true_graph).

Heatmaps DIRECTLingam vs GT In Figure 5.11a, heatmaps generated
by algorithm using a DIRECTLingam representing the learned ad-
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Chapter 5. Experimental setup for Causal Discovery

(a) Predicted graph by GES and Ground Truth.

(b) Comparison of GES using Linear Exponential distribution
with Ground Truth.

Figure 5.10.: Comparing GES using Linear Exponential distribution.

jacency matrix (est_graph) and the ground truth (true_graph). In
Figure 5.11b, a visual comparison of the heatmaps generated by the
algorithm using a DIRECTLingam representing the learned adjacency
matrix (est_graph) and the ground truth (true_graph).

Heatmaps Notears vs GT In Figure 5.12a, heatmaps generated by al-
gorithm using a Notears representing the learned adjacency matrix
(est_graph) and the ground truth (true_graph). In Figure 5.12b, a
visual comparison of the heatmaps generated by the algorithm using
a Notears representing the learned adjacency matrix (est_graph) and
the ground truth (true_graph).

Heatmaps Golem vs GT In Figure 5.13a, heatmaps generated by algo-
rithm using a Golem representing the learned adjacency matrix (est_graph)
and the ground truth (true_graph). In Figure 5.13b, a visual compar-
ison of the heatmaps generated by the algorithm using a Golem rep-
resenting the learned adjacency matrix (est_graph) and the ground
truth (true_graph).
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5.7. Current Dataset: Linear Exponential

(a) Predicted graph by DIRECTLingam and Ground Truth.

(b) Comparison of DIRECTLingam using Linear Exponential dis-
tribution with Ground Truth.

Figure 5.11.: Comparing DIRECTLingam using Linear Exponential distri-
bution.
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(a) Predicted graph by Notears and Ground Truth.

(b) Comparison of Notears using Linear Exponential distribution
with Ground Truth.

Figure 5.12.: Comparing Notears using Linear Exponential distribution.
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5.7. Current Dataset: Linear Exponential

(a) Predicted graph by Golem and Ground Truth.

(b) Comparison of Golem using Linear Exponential distribution
with Ground Truth.

Figure 5.13.: Comparing Golem using Linear Exponential distribution.
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Chapter 5. Experimental setup for Causal Discovery

5.8. Current Dataset: Linear Uniform

(a) Predicted graph by PC and Ground Truth.

(b) Comparison of PC using Linear Uniform distribution with
Ground Truth.

Figure 5.14.: Comparing PC using Linear Uniform distribution.

Heatmaps PC vs GT In Figure 5.14a, heatmaps generated by algorithm
using a PC representing the learned adjacency matrix (est_graph)
and the ground truth (true_graph). In Figure 5.14b, a visual com-
parison of the heatmaps generated by the algorithm using a PC rep-
resenting the learned adjacency matrix (est_graph) and the ground
truth (true_graph).

Heatmaps GES vs GT In Figure 5.15a, heatmaps generated by algorithm
using a GES representing the learned adjacency matrix (est_graph)
and the ground truth (true_graph). In Figure 5.15b, a visual com-
parison of the heatmaps generated by the algorithm using a GES rep-
resenting the learned adjacency matrix (est_graph) and the ground
truth (true_graph).

Heatmaps DIRECTLingam vs GT In Figure 5.16a, heatmaps generated
by algorithm using a DIRECTLingam representing the learned ad-
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5.8. Current Dataset: Linear Uniform

(a) Predicted graph by GES and Ground Truth.

(b) Comparison of GES using Linear Uniform distribution with
Ground Truth.

Figure 5.15.: Comparing GES using Linear Uniform distribution.

jacency matrix (est_graph) and the ground truth (true_graph). In
Figure 5.16b, a visual comparison of the heatmaps generated by the
algorithm using a DIRECTLingam representing the learned adjacency
matrix (est_graph) and the ground truth (true_graph).

Heatmaps Notears vs GT In Figure 5.17a, heatmaps generated by al-
gorithm using a Notears representing the learned adjacency matrix
(est_graph) and the ground truth (true_graph). In Figure 5.17b, a
visual comparison of the heatmaps generated by the algorithm using
a Notears representing the learned adjacency matrix (est_graph) and
the ground truth (true_graph).

Heatmaps Golem vs GT In Figure 5.18a, heatmaps generated by algo-
rithm using a Golem representing the learned adjacency matrix (est_graph)
and the ground truth (true_graph). In Figure 5.18b, a visual compar-
ison of the heatmaps generated by the algorithm using a Golem rep-
resenting the learned adjacency matrix (est_graph) and the ground
truth (true_graph).
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(a) Predicted graph by DIRECTLingam and Ground Truth.

(b) Comparison of DIRECTLingam using Linear Uniform distri-
bution with Ground Truth.

Figure 5.16.: Comparing DIRECTLingam using Linear Uniform distribu-
tion.
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5.8. Current Dataset: Linear Uniform

(a) Predicted graph by Notears and Ground Truth.

(b) Comparison of Notears using Linear Uniform distribution
with Ground Truth.

Figure 5.17.: Comparing Notears using Linear Uniform distribution.
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(a) Predicted graph by Golem and Ground Truth.

(b) Comparison of Golem using Linear Uniform distribution with
Ground Truth.

Figure 5.18.: Comparing Golem using Linear Uniform distribution.
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5.9. Current Dataset: Linear Gumbel

5.9. Current Dataset: Linear Gumbel

(a) Predicted graph by PC and Ground Truth.

(b) Comparison of PC using Linear Gumbel distribution with
Ground Truth.

Figure 5.19.: Comparing PC using Linear Gumbel distribution.

Heatmaps PC vs GT In Figure 5.19a, heatmaps generated by algorithm
using a PC representing the learned adjacency matrix (est_graph)
and the ground truth (true_graph). In Figure 5.19b, a visual com-
parison of the heatmaps generated by the algorithm using a PC rep-
resenting the learned adjacency matrix (est_graph) and the ground
truth (true_graph).

Heatmaps GES vs GT In Figure 5.20a, heatmaps generated by algorithm
using a GES representing the learned adjacency matrix (est_graph)
and the ground truth (true_graph). In Figure 5.20b, a visual com-
parison of the heatmaps generated by the algorithm using a GES rep-
resenting the learned adjacency matrix (est_graph) and the ground
truth (true_graph).

Heatmaps DIRECTLingam vs GT In Figure 5.21a, heatmaps generated
by algorithm using a DIRECTLingam representing the learned ad-
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(a) Predicted graph by GES and Ground Truth.

(b) Comparison of GES using Linear Gumbel distribution with
Ground Truth.

Figure 5.20.: Comparing GES using Linear Gumbel distribution.

jacency matrix (est_graph) and the ground truth (true_graph). In
Figure 5.21b, a visual comparison of the heatmaps generated by the
algorithm using a DIRECTLingam representing the learned adjacency
matrix (est_graph) and the ground truth (true_graph).

Heatmaps Notears vs GT In Figure 5.22a, heatmaps generated by al-
gorithm using a Notears representing the learned adjacency matrix
(est_graph) and the ground truth (true_graph). In Figure 5.22b, a
visual comparison of the heatmaps generated by the algorithm using
a Notears representing the learned adjacency matrix (est_graph) and
the ground truth (true_graph).

Heatmaps Golem vs GT In Figure 5.23a, heatmaps generated by algo-
rithm using a Golem representing the learned adjacency matrix (est_graph)
and the ground truth (true_graph). In Figure 5.23b, a visual compar-
ison of the heatmaps generated by the algorithm using a Golem rep-
resenting the learned adjacency matrix (est_graph) and the ground
truth (true_graph).
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5.9. Current Dataset: Linear Gumbel

(a) Predicted graph by DIRECTLingam and Ground Truth.

(b) Comparison of DIRECTLingam using Linear Gumbel distri-
bution with Ground Truth.

Figure 5.21.: Comparing DIRECTLingam using Linear Gumbel distribu-
tion.
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(a) Predicted graph by Notears and Ground Truth.

(b) Comparison of Notears using Linear Gumbel distribution with
Ground Truth.

Figure 5.22.: Comparing Notears using Linear Gumbel distribution.
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5.9. Current Dataset: Linear Gumbel

(a) Predicted graph by Golem and Ground Truth.

(b) Comparison of Golem using Linear Gumbel distribution with
Ground Truth.

Figure 5.23.: Comparing Golem using Linear Gumbel distribution.
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5.10. Current Dataset: Linear Logistic

(a) Predicted graph by PC and Ground Truth.

(b) Comparison of PC using Linear Logistic distribution with
Ground Truth.

Figure 5.24.: Comparing PC using Linear Logistic distribution.

Heatmaps PC vs GT In Figure 5.24a, heatmaps generated by algorithm
using a PC representing the learned adjacency matrix (est_graph)
and the ground truth (true_graph). In Figure 5.24b, a visual com-
parison of the heatmaps generated by the algorithm using a PC rep-
resenting the learned adjacency matrix (est_graph) and the ground
truth (true_graph).

Heatmaps GES vs GT In Figure 5.25a, heatmaps generated by algorithm
using a GES representing the learned adjacency matrix (est_graph)
and the ground truth (true_graph). In Figure 5.25b, a visual com-
parison of the heatmaps generated by the algorithm using a GES rep-
resenting the learned adjacency matrix (est_graph) and the ground
truth (true_graph).

Heatmaps DIRECTLingam vs GT In Figure 5.26a, heatmaps generated
by algorithm using a DIRECTLingam representing the learned ad-

158



5.10. Current Dataset: Linear Logistic

(a) Predicted graph by GES and Ground Truth.

(b) Comparison of GES using Linear Logistic distribution with
Ground Truth.

Figure 5.25.: Comparing GES using Linear Logistic distribution.

jacency matrix (est_graph) and the ground truth (true_graph). In
Figure 5.26b, a visual comparison of the heatmaps generated by the
algorithm using a DIRECTLingam representing the learned adjacency
matrix (est_graph) and the ground truth (true_graph).

The result is obviously not correct because the algorithm did not
perform properly.

Heatmaps Notears vs GT In Figure 5.27a, heatmaps generated by al-
gorithm using a Notears representing the learned adjacency matrix
(est_graph) and the ground truth (true_graph). In Figure 5.27b, a
visual comparison of the heatmaps generated by the algorithm using
a Notears representing the learned adjacency matrix (est_graph) and
the ground truth (true_graph).

The result is obviously not correct because the algorithm did not
perform properly.

Heatmaps Golem vs GT In Figure 5.28a, heatmaps generated by algo-
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(a) Predicted graph by DIRECTLingam and Ground Truth.

(b) Comparison of DIRECTLingam using Linear Logistic distri-
bution with Ground Truth.

Figure 5.26.: Comparing DIRECTLingam using Linear Logistic distribu-
tion.

rithm using a Golem representing the learned adjacency matrix (est_graph)
and the ground truth (true_graph). In Figure 5.28b, a visual compar-
ison of the heatmaps generated by the algorithm using a Golem rep-
resenting the learned adjacency matrix (est_graph) and the ground
truth (true_graph).
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5.10. Current Dataset: Linear Logistic

(a) Predicted graph by Notears and Ground Truth.

(b) Comparison of Notears using Linear Logistic distribution with
Ground Truth.

Figure 5.27.: Comparing Notears using Linear Logistic distribution.
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(a) Predicted graph by Golem and Ground Truth.

(b) Comparison of Golem using Linear Logistic distribution with
Ground Truth.

Figure 5.28.: Comparing Golem using Linear Logistic distribution.
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5.11. Current Dataset: Quadratic

5.11. Current Dataset: Quadratic

(a) Predicted graph by PC and Ground Truth.

(b) Comparison of PC using Quadratic distribution with Ground
Truth.

Figure 5.29.: Comparing PC using Quadratic distribution.

Heatmaps PC vs GT In Figure 5.29a, heatmaps generated by algorithm
using a PC representing the learned adjacency matrix (est_graph)
and the ground truth (true_graph). In Figure 5.29b, a visual com-
parison of the heatmaps generated by the algorithm using a PC rep-
resenting the learned adjacency matrix (est_graph) and the ground
truth (true_graph).

Heatmaps GES vs GT In Figure 5.30a, heatmaps generated by algorithm
using a GES representing the learned adjacency matrix (est_graph)
and the ground truth (true_graph). In Figure 5.30b, a visual com-
parison of the heatmaps generated by the algorithm using a GES rep-
resenting the learned adjacency matrix (est_graph) and the ground
truth (true_graph).

Heatmaps DIRECTLingam vs GT In Figure 5.31a, heatmaps generated
by algorithm using a DIRECTLingam representing the learned ad-
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(a) Predicted graph by GES and Ground Truth.

(b) Comparison of GES using Quadratic distribution with
Ground Truth.

Figure 5.30.: Comparing GES using Quadratic distribution.

jacency matrix (est_graph) and the ground truth (true_graph). In
Figure 5.31b, a visual comparison of the heatmaps generated by the
algorithm using a DIRECTLingam representing the learned adjacency
matrix (est_graph) and the ground truth (true_graph).

Heatmaps Notears vs GT In Figure 5.32a, heatmaps generated by al-
gorithm using a Notears representing the learned adjacency matrix
(est_graph) and the ground truth (true_graph). In Figure 5.32b, a
visual comparison of the heatmaps generated by the algorithm using
a Notears representing the learned adjacency matrix (est_graph) and
the ground truth (true_graph).

Heatmaps Golem vs GT In Figure 5.33a, heatmaps generated by algo-
rithm using a Golem representing the learned adjacency matrix (est_graph)
and the ground truth (true_graph). In Figure 5.33b, a visual compar-
ison of the heatmaps generated by the algorithm using a Golem rep-
resenting the learned adjacency matrix (est_graph) and the ground
truth (true_graph).
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5.11. Current Dataset: Quadratic

(a) Predicted graph by DIRECTLingam and Ground Truth.

(b) Comparison of DIRECTLingam using Quadratic distribution
with Ground Truth.

Figure 5.31.: Comparing DIRECTLingam using Quadratic distribution.
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(a) Predicted graph by Notears and Ground Truth.

(b) Comparison of Notears using Quadratic distribution with
Ground Truth.

Figure 5.32.: Comparing Notears using Quadratic distribution.
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5.11. Current Dataset: Quadratic

(a) Predicted graph by Golem and Ground Truth.

(b) Comparison of Golem using Quadratic distribution with
Ground Truth.

Figure 5.33.: Comparing Golem using Quadratic distribution.
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5.12. Current Dataset: Multilayer Perceptron

(a) Predicted graph by PC and Ground Truth.

(b) Comparison of PC using Multilayer Perceptron distribution
with Ground Truth.

Figure 5.34.: Comparing PC using Multilayer Perceptron distribution.

Heatmaps PC vs GT In Figure 5.34a, heatmaps generated by algorithm
using a PC representing the learned adjacency matrix (est_graph)
and the ground truth (true_graph). In Figure 5.34b, a visual com-
parison of the heatmaps generated by the algorithm using a PC rep-
resenting the learned adjacency matrix (est_graph) and the ground
truth (true_graph).

Heatmaps GES vs GT In Figure 5.35a, heatmaps generated by algorithm
using a GES representing the learned adjacency matrix (est_graph)
and the ground truth (true_graph). In Figure 5.35b, a visual com-
parison of the heatmaps generated by the algorithm using a GES rep-
resenting the learned adjacency matrix (est_graph) and the ground
truth (true_graph).

Heatmaps DIRECTLingam vs GT In Figure 5.36a, heatmaps generated
by algorithm using a DIRECTLingam representing the learned ad-
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5.12. Current Dataset: Multilayer Perceptron

(a) Predicted graph by GES and Ground Truth.

(b) Comparison of GES using Multilayer Perceptron distribution
with Ground Truth.

Figure 5.35.: Comparing GES using Multilayer Perceptron distribution.

jacency matrix (est_graph) and the ground truth (true_graph). In
Figure 5.36b, a visual comparison of the heatmaps generated by the
algorithm using a DIRECTLingam representing the learned adjacency
matrix (est_graph) and the ground truth (true_graph).

Heatmaps Notears vs GT In Figure 5.37a, heatmaps generated by al-
gorithm using a Notears representing the learned adjacency matrix
(est_graph) and the ground truth (true_graph). In Figure 5.37b, a
visual comparison of the heatmaps generated by the algorithm using
a Notears representing the learned adjacency matrix (est_graph) and
the ground truth (true_graph).

Heatmaps Golem vs GT In Figure 5.38a, heatmaps generated by algo-
rithm using a Golem representing the learned adjacency matrix (est_graph)
and the ground truth (true_graph). In Figure 5.38b, a visual compar-
ison of the heatmaps generated by the algorithm using a Golem rep-
resenting the learned adjacency matrix (est_graph) and the ground
truth (true_graph).
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(a) Predicted graph by DIRECTLingam and Ground Truth.

(b) Comparison of DIRECTLingam using Multilayer Perceptron
distribution with Ground Truth.

Figure 5.36.: Comparing DIRECTLingam using Multilayer Perceptron dis-
tribution.
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5.12. Current Dataset: Multilayer Perceptron

(a) Predicted graph by Notears and Ground Truth.

(b) Comparison of Notears using Multilayer Perceptron distribu-
tion with Ground Truth.

Figure 5.37.: Comparing Notears using Multilayer Perceptron distribution.
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(a) Predicted graph by Golem and Ground Truth.

(b) Comparison of Golem using Multilayer Perceptron distribu-
tion with Ground Truth.

Figure 5.38.: Comparing Golem using Multilayer Perceptron distribution.
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5.13. Current Dataset: Multiple Instance Learning

5.13. Current Dataset: Multiple Instance Learning

(a) Predicted graph by PC and Ground Truth.

(b) Comparison of PC using MIM distribution with Ground
Truth.

Figure 5.39.: Comparing PC using MIM distribution.

Heatmaps PC vs GT In Figure 5.39a, heatmaps generated by algorithm
using a PC representing the learned adjacency matrix (est_graph)
and the ground truth (true_graph). In Figure 5.39b, a visual com-
parison of the heatmaps generated by the algorithm using a PC rep-
resenting the learned adjacency matrix (est_graph) and the ground
truth (true_graph).

Heatmaps GES vs GT In Figure 5.40a, heatmaps generated by algorithm
using a GES representing the learned adjacency matrix (est_graph)
and the ground truth (true_graph). In Figure 5.40b, a visual com-
parison of the heatmaps generated by the algorithm using a GES rep-
resenting the learned adjacency matrix (est_graph) and the ground
truth (true_graph).

Heatmaps DIRECTLingam vs GT In Figure 5.41a, heatmaps generated
by algorithm using a DIRECTLingam representing the learned ad-
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Chapter 5. Experimental setup for Causal Discovery

(a) Predicted graph by GES and Ground Truth.

(b) Comparison of GES using MIM distribution with Ground
Truth.

Figure 5.40.: Comparing GES using MIM distribution.

jacency matrix (est_graph) and the ground truth (true_graph). In
Figure 5.41b, a visual comparison of the heatmaps generated by the
algorithm using a DIRECTLingam representing the learned adjacency
matrix (est_graph) and the ground truth (true_graph).

Heatmaps Notears vs GT In Figure 5.42a, heatmaps generated by al-
gorithm using a Notears representing the learned adjacency matrix
(est_graph) and the ground truth (true_graph). In Figure 5.42b, a
visual comparison of the heatmaps generated by the algorithm using
a Notears representing the learned adjacency matrix (est_graph) and
the ground truth (true_graph).

Heatmaps Golem vs GT In Figure 5.43a, heatmaps generated by algo-
rithm using a Golem representing the learned adjacency matrix (est_graph)
and the ground truth (true_graph). In Figure 5.43b, a visual compar-
ison of the heatmaps generated by the algorithm using a Golem rep-
resenting the learned adjacency matrix (est_graph) and the ground
truth (true_graph).
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5.13. Current Dataset: Multiple Instance Learning

(a) Predicted graph by DIRECTLingam and Ground Truth.

(b) Comparison of DIRECTLingam using MIM distribution with
Ground Truth.

Figure 5.41.: Comparing DIRECTLingam using MIM distribution.
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Chapter 5. Experimental setup for Causal Discovery

(a) Predicted graph by Notears and Ground Truth.

(b) Comparison of Notears using MIM distribution with Ground
Truth.

Figure 5.42.: Comparing Notears using MIM distribution.
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5.13. Current Dataset: Multiple Instance Learning

(a) Predicted graph by Golem and Ground Truth.

(b) Comparison of Golem using MIM distribution with Ground
Truth.

Figure 5.43.: Comparing Golem using MIM distribution.
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Chapter 5. Experimental setup for Causal Discovery

5.14. Current Dataset: Gaussian Process

(a) Predicted graph by PC and Ground Truth.

(b) Comparison of PC using GP distribution with Ground Truth.

Figure 5.44.: Comparing PC using GP distribution.

Heatmaps PC vs GT In Figure 5.44a, heatmaps generated by algorithm
using a PC representing the learned adjacency matrix (est_graph)
and the ground truth (true_graph). In Figure 5.44b, a visual com-
parison of the heatmaps generated by the algorithm using a PC rep-
resenting the learned adjacency matrix (est_graph) and the ground
truth (true_graph).

Heatmaps GES vs GT In Figure 5.45a, heatmaps generated by algorithm
using a GES representing the learned adjacency matrix (est_graph)
and the ground truth (true_graph). In Figure 5.45b, a visual com-
parison of the heatmaps generated by the algorithm using a GES rep-
resenting the learned adjacency matrix (est_graph) and the ground
truth (true_graph).

Heatmaps DIRECTLingam vs GT In Figure 5.46a, heatmaps generated
by algorithm using a DIRECTLingam representing the learned ad-
jacency matrix (est_graph) and the ground truth (true_graph). In
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5.14. Current Dataset: Gaussian Process

(a) Predicted graph by GES and Ground Truth.

(b) Comparison of GES using GP distribution with Ground
Truth.

Figure 5.45.: Comparing GES using GP distribution.

Figure 5.46b, a visual comparison of the heatmaps generated by the
algorithm using a DIRECTLingam representing the learned adjacency
matrix (est_graph) and the ground truth (true_graph).

The result is obviously not correct because the algorithm did not
perform properly.

Heatmaps Notears vs GT In Figure 5.47a, heatmaps generated by al-
gorithm using a Notears representing the learned adjacency matrix
(est_graph) and the ground truth (true_graph). In Figure 5.47b, a
visual comparison of the heatmaps generated by the algorithm using
a Notears representing the learned adjacency matrix (est_graph) and
the ground truth (true_graph).

Heatmaps Golem vs GT In Figure 5.48a, heatmaps generated by algo-
rithm using a Golem representing the learned adjacency matrix (est_graph)
and the ground truth (true_graph). In Figure 5.48b, a visual compar-
ison of the heatmaps generated by the algorithm using a Golem rep-
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Chapter 5. Experimental setup for Causal Discovery

(a) Predicted graph by DIRECTLingam and Ground Truth.

(b) Comparison of DIRECTLingam using GP distribution with
Ground Truth.

Figure 5.46.: Comparing DIRECTLingam using GP distribution.

resenting the learned adjacency matrix (est_graph) and the ground
truth (true_graph).

The result is obviously not correct because the algorithm did not
perform properly.
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5.14. Current Dataset: Gaussian Process

(a) Predicted graph by Notears and Ground Truth.

(b) Comparison of Notears using GP distribution with Ground
Truth.

Figure 5.47.: Comparing Notears using GP distribution.
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Chapter 5. Experimental setup for Causal Discovery

(a) Predicted graph by Golem and Ground Truth.

(b) Comparison of Golem using GP distribution with Ground
Truth.

Figure 5.48.: Comparing Golem using GP distribution.
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5.15. Current Dataset: Gaussian Process for Additive Models

5.15. Current Dataset: Gaussian Process for
Additive Models

(a) Predicted graph by PC and Ground Truth.

(b) Comparison of PC using GP-Add distribution with Ground
Truth.

Figure 5.49.: Comparing PC using GP-Add distribution.

Heatmaps PC vs GT In Figure 5.49a, heatmaps generated by algorithm
using a PC representing the learned adjacency matrix (est_graph)
and the ground truth (true_graph). In Figure 5.49b, a visual com-
parison of the heatmaps generated by the algorithm using a PC rep-
resenting the learned adjacency matrix (est_graph) and the ground
truth (true_graph).

Heatmaps GES vs GT In Figure 5.50a, heatmaps generated by algorithm
using a GES representing the learned adjacency matrix (est_graph)
and the ground truth (true_graph). In Figure 5.50b, a visual com-
parison of the heatmaps generated by the algorithm using a GES rep-
resenting the learned adjacency matrix (est_graph) and the ground
truth (true_graph).

Heatmaps DIRECTLingam vs GT In Figure 5.51a, heatmaps generated
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Chapter 5. Experimental setup for Causal Discovery

(a) Predicted graph by GES and Ground Truth.

(b) Comparison of GES using GP-Add distribution with Ground
Truth.

Figure 5.50.: Comparing GES using GP-Add distribution.

by algorithm using a DIRECTLingam representing the learned ad-
jacency matrix (est_graph) and the ground truth (true_graph). In
Figure 5.51b, a visual comparison of the heatmaps generated by the
algorithm using a DIRECTLingam representing the learned adjacency
matrix (est_graph) and the ground truth (true_graph).

Heatmaps Notears vs GT In Figure 5.52a, heatmaps generated by al-
gorithm using a Notears representing the learned adjacency matrix
(est_graph) and the ground truth (true_graph). In Figure 5.52b, a
visual comparison of the heatmaps generated by the algorithm using
a Notears representing the learned adjacency matrix (est_graph) and
the ground truth (true_graph).

Heatmaps Golem vs GT In Figure 5.53a, heatmaps generated by algo-
rithm using a Golem representing the learned adjacency matrix (est_graph)
and the ground truth (true_graph). In Figure 5.53b, a visual compar-
ison of the heatmaps generated by the algorithm using a Golem rep-
resenting the learned adjacency matrix (est_graph) and the ground
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5.15. Current Dataset: Gaussian Process for Additive Models

(a) Predicted graph by DIRECTLingam and Ground Truth.

(b) Comparison of DIRECTLingam using GP-Add distribution
with Ground Truth.

Figure 5.51.: Comparing DIRECTLingam using GP-Add distribution.

truth (true_graph).
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(a) Predicted graph by Notears and Ground Truth.

(b) Comparison of Notears using GP-Add distribution with
Ground Truth.

Figure 5.52.: Comparing Notears using GP-Add distribution.
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5.15. Current Dataset: Gaussian Process for Additive Models

(a) Predicted graph by Golem and Ground Truth.

(b) Comparison of Golem using GP-Add distribution with
Ground Truth.

Figure 5.53.: Comparing Golem using GP-Add distribution.
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Chapter 6.

Ensemble Based Causal Discovery

We aim at performing causal structure learning based on the in principle
discordant outcomes of several causal discovery algorithms.

Our causal discovery analysis is based on a data set of 78 records, the
statistical units of our analysis. Each unit consists of a ground truth
(GT) causal model represented by a Direct Acyclic Graph (DAG) and of
the 5 DAGs reconstructed by as many causal discovery algorithms: GES,
GOLEM, LINGAM, Notears and PC.

The data had been obtained by generating a large number of examples us-
ing a GT DAG topology with different numbers of nodes (from 9 to 30)
and edges (from 7 to 435), with various functional dependencies between
parent and child nodes (including linear and quadratic), and with various
probability distributions of the exogenous variables, i.e., parentless (such as
Linear Gaussian, Linear Exponential, Linear Uniform, Linear Gumbel, Lin-
ear Logistic, Quadratic, Multilayer Perceptron, Multiple Instance Learning,
Gaussian Process and Gaussian Process for Additive Models).

6.1. The Centroid

The definition of a centroid graph and the distance from the reconstructed
graphs from it was one of the elements useful in helping to select the graph
closest to the GT.

For each DAGi we computed the sum of the d-separation bitset distances
between it and the other DAGs, si =

∑
j dij . The centroid DAG has been
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Chapter 6. Ensemble Based Causal Discovery

defined as the one with the lowest sum of distances mini si. The DAGs
corresponding to the centroid could be one or more. The dispersion of the
collection of DAGs has been evaluated using both the maximum of si and
the total sum of distances t =

∑
i si.

Thus, each record of those mentioned in the previous section was enriched
with the annotation about which algorithm (or which algorithm) would play
the role of centroid(s). To the record also the distances of all the algorithm
specific DAGs were added.

6.2. A causality oriented definition of distance

Since we investigate the performance of causal discovery algorithms a more
appropriate definition of agreement between two DAGs should be based
on causal concepts, not only adjacency matrix relationships: we defined a
distance based on the pair of nodes d-separation: given a DAG, each
pair of nodes has been evaluated for d-separation, and each DAG with n
nodes has been associated to a bitset of n(n−1)/2 bits, where each bit was
set to one in case the two nodes of that pair were d-separated. The bitset
were used as signatures of the DAG for pairwise comparing the DAGs. The
distance dij = d(DAGi, DAGj) between two DAGs i and j has been defined
as the Hamming distance between their d-separation bitsets.

The distance based on the bit-set of the d-separated pairs is much more
meaningful than the Hamming distance between the adjacency matrices.
Indeed, reversing a single edge in one of two identical dags creates a dif-
ference of exactly two elements of the adjacency matrix, but in terms of
d-separation can completely change the causal structure of the graph, af-
fecting the d-separation of many pairs (as an illustrative example, consider
two large subgraphs connected by a sequence pattern: reversing the second
edge of the sequence transforms the sequence into a collider and d-separates
all the pairs with one node in the first subgraph and one node in the sec-
ond).

Thus, in the input data later used for training, we took the adjacency
matrices information, transformed it into d-separation information for all
the node pairs of a DAG, and computed the Hamming distance between
bitsets. However, notice that when comparing the predictions of the DAGs
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6.3. Learning form the DAGs relationships to select the best performing DAG

to the GT we used the Hamming distance between adjacency matrices,
which informs directly about the topology of the graphs (i.e., measured the
difference in terms of edge difference count).

6.3. Learning form the DAGs relationships to
select the best performing DAG

In this work, we contribute a causal discovery method that takes advan-
tage of the synthesis of topology-related information about the relationships
among graphs of an ensemble captured by a suitably defined centroid graph
to identify which topology is closest to the truth of the ground.

We will focus on answering the following questions.

Question 1 Which algorithm or which algorithms have correctly predicted
the GT DAG?

Question 2 Which algorithm is the closest to the GT DAG?

We will find a method for addressing Question 2, and then look at the
candidate performance thus selected to answer to Question 1.

To this purpose, we use a supervised learning method.

Notice that the DAGs generated by the discovery algorithms can some-
times coincide with one another, whether they correspond to the ground
truth or not: thus, there is not necessarily a single correct answer to the
question of which is the ground truth or which is the algorithm closest to
the ground truth. As a consequence, we formulate the problem as a multil-
abel classification task (each algorithm plays the role of a label, there are
also 6 labels, counting the CENTROID graph). Then we use two common
approaches to address this type of classification: the Binary Relevance
(BR) approach and the Classifier Chain (CC) approach. After choosing
a representative from the set of predicted labels, using a classifier-precision-
based criterion, we used its distance from the GT (defined as the Hamming
distance between adjacency matrices, i.e., in terms of edges). Notice that
since we are using a distance based selection methodology, there might be
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ties between several solutions. This implies that we are not dealing with a
classification problem, where clear classes are defined, but we have to guess
a topologic structure.

6.4. Features Description

6.4.1. Dataset generation related variables

The variables characterizing each dataset were those described in the fol-
lowing; only the ones with a name not ending by an underscore were avail-
able to the training algorithms. Number of nodes (NNODES, integer),
see Figure 5.1, Number of possible pairs (NPOSSIBLE_PAIRS, inte-
ger), Number of actual edges (NACTUAL_EDGES, integer), see Figure
5.2, Linear or nonlinear functional dependence (Linear_, possible values
’linear’ and ’nonlinear’), statistical distribution used for extrinsic variables
(distribution).

6.4.2. Unlabeled part of the dataset

This part of the dataset contains, for each statistical unit, those variables
describing the relationships among the DAGs as reconstructed by the
five causal discovery algorithms (at least one of which is identified as cen-
troid).

The variables describing those DAG distances and their quality of centroid
are the following (notice that [ALGO] can take the values GES, GOLEM,
LINGAM, Notears, PC):

[ALGO]_SUM_DIST (integer): sum of the hamming distances
between the DAG yielded by the [ALGO] algorithm and the
other DAGs.

[ALGO]_SUM_DIST_STAND (real): previous variable divided
by NPOSSIBLE_PAIRS.

[ALGO]_IS_CENTROID (Boolean): whether the DAG
is the centroid.

See Figure 6.1 and Figure 6.2.
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6.4. Features Description

Figure 6.1.: Boxplot of [ALGO]_SUM_DIST.

Figure 6.2.: Boxplot of [ALGO]_SUM_DIST_STAND.
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Then we had variables describing the ensemble of causal discovery DAGs:

CENTROIDS_COUNT (positive integer): number of algorithms
taking the centroid role (from 1 to 5)

MAX_SUM_DIST (integer): maximum of the sums of distances
across DAGs

MAX_SUM_DIST_STAND (real): previous variable divided by
NPOSSIBLE_PAIRS

CENTROID_SUM_DIST (integer): sums of distances for the
centroid

CENTROID_SUM_DIST_STAND (real): previous variable divided
by NPOSSIBLE_PAIRS

6.4.3. Labels and GT related variables

A number of variables were used to describe the relationship of the indi-
vidual algorithms DAGs to the GT DAG. We recall that the distances
were computed as the Hamming distance between the adjacency matrices
respectively of [ALGO] and GT. Notice that here the standardization is
performed using the actual number of edges present in the GT DAG, no
longer using the number of possible node pairs. Here the values taken by
[ALGO] were the 5 algorithms in the set GES, GOLEM, LINGAM, Notears,
PC plus CENTROID. Typically, one or more of these variables, which are
not available to the learned predictor, are used as predictor targets.

[ALGO]_GT_DIST_ (integer): see above
[ALGO]_GT_DIST_STAND_ (real): previous variable divided

by NACTUAL_EDGES
[ALGO]_IS_GT_ (Boolean): whether [ALGO] has made a

correct prediction

Then we have variables describing the ensemble of causal discovery DAGs

NUM_OF_CORRECT_ (integer): n. of correct predictions
by the set of 5 algorithms

MIN_DIST_TO_GT_ (integer): minimum distance, when 0 the
prediction was correct

MIN_DIST_TO_GT_STAND_ (real): previous variable divided
by NACTUAL_EDGES

[ALGO]_IS_MIN (Boolean): whether [ALGO]’s prediction
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6.4. Features Description

Figure 6.3.: Histogram of CENTROID_COUNT.

corresponds to the minimum distance from GT
MAX_DIST_TO_GT_ (integer): maximum distance
MAX_DIST_TO_GT_STAND_ (real): previous variable divided

by NACTUAL_EDGES

We want to find whether the knowledge from the ensemble can be extracted
so as to obtain ensemble predictions which are better than the individual
algorithms’ predictions, and in affirmative case we want to find out what
level of improvement can be achieved.

We will check in a preliminary analysis that at least an algorithm (out
of the 5 considered) made a DAG prediction coinciding with the GT: the
answer will turn out to be positive in about two thirds of the times.

6.4.4. Relationships among DAGs, not considering the Ground
Truth

Here are the percentages of the datasets for which the algorithm is the
CENTROID: GES 15%, GOLEM 63%, LINGAM 63%, Notears 45%, PC
28%. There is often more than one centroid as shown in Figure 6.3.
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Chapter 6. Ensemble Based Causal Discovery

6.4.5. Features of the Ensemble relative to the Ground Truth

Here we report about the relationship between the DAGs issued by the dif-
ferent algorithms and the GT DAGs. This helps contextualize each ques-
tion: from the data it is clear that there are potentialities in the exploitation
of the knowledge of the ensemble.

6.4.5.1. Correct/incorrect reconstruction of the GT DAG

The different algorithm provides the perfectly correct solution with the
following percentages. In the same table is reported the number of times
at least one algorithm makes a perfectly correct prediction (for convenience
the rightmost column anticipates also the results of our method, which will
be discussed later). See Table 6.1.
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Chapter 6. Ensemble Based Causal Discovery

It is possible to observe that in terms of the number of correct guesses (i.e.,
in terms of precision) the CENTROID prevails over the others, but the
difference w.r.t. the second best, here GOLEM, and w.r.t LINGAM and
Notears, is not statistically significant. GES and PC are significantly
less performing than the others.

No individual algorithm among the best – GOLEM, LINGAM and Notears
– outperforms overall the others, nor selecting the centroid DAG is in av-
erage significantly better that the individual algorithms.

Nonetheless, from the Table 6.1 it is possible to see that in prin-
ciple there is room for improving the results, by a suitable case
by case selection of the algorithm. If an oracle were able to point
to the best algorithm(s) for a specific dataset one would achieve
64.10% precision. Thus there is room for approximately 15% im-
provement.

6.4.5.2. Distance variables

The picture becomes more precise as we pass from the Boolean variable
[ALGO]_IS_GT_ to the distance variables [ALGO_GT_DIST_].

Looking at the box plot of [ALGO]_GT_DIST in Figure 6.4 it is possible
to observe that GOLEM, LINGAM and CENTROID are again the best
performing algorithms. In particular, the CENTROID seems to slightly
outperform the others.

The numerical summary of the variables is the following (for convenience
the two rightmost columns anticipates also the results of our method, which
will be discussed later).

198



6.4. Features Description

Figure 6.4.: Boxplot of [ALGO]_GT_DIST.

Figure 6.5.: Boxplot of [ALGO]_GT_DIST_STAND.
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6.4. Features Description

Figure 6.6.: Histogram of the number of correct predictions.

The difference in means between CENTROID and the second best is not
statistically significant already from the fact that the two means lie
largely inside each other’s 95% confidence intervals. Performing a one-
tailed Student t-Test we find out that the two means are not significantly
different from one another at the 0.05 confidence level: indeed, the p-value
turns out to be 0.4130. So we cannot reject the hypothesis that the observed
prevalence of CENTROID over the second best is just due to chance.

Similar considerations hold for the variable [ALGO]_GT_DIST_STAND_,
obtained from [ALGO]_GT_DIST_ dividing by the number of actual
edges (for the sake of clarity, we are not reporting the standardized distance
data here). The boxplots for the variable [ALGO]_GT_DIST_STAND_
are shown in Figure 6.5.

Therefore, neither individual algorithm outperforms in average the others,
nor a simple rule such as the one of selecting the centroid DAG is in average
significantly better than the individual algorithms.

However, one can see that if one were able to select case by case
the algorithm with the minimum distance from the GT, the per-
formance would be significantly improved, see Figures 6.4 and 6.5.
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[ALGO]_IS_MIN_
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ID

n. of times True 10 44 43 49 12 48

n. of cases 78 78 78 78 78 78

Percentage True 12.82 56.42 55.13 62.82 15.38 61.54 %

stderr 4.25 6.30 6.32 6.14 4.58 6.18
Table 6.3.: The algorithms performance.

Looking at the number of times a specific algorithm turns out to be the
closest to GT sheds further light on the performance of the candidates.
LINGAM, Notears, and CENTROID are the best performing, see Table
6.3.

Despite the prevalence of the three mentioned algorithms, appears to be
not a simple strategy to select a case-by-case algorithm so as to minimize
the average distance of the selected algorithm from the GT: for instance
choosing always Notears, would get the minimum distance about 63% of
the times, but in the other 37% of the times the resulting distance could
be far from minimal, indeed (from the distance table) we know that the
average distance of Notears would be 13.10, i.e., far above the theoretically
allowed minimum of 5.38.

For these reasons, address the task of selecting case by case which al-
gorithm is the closest to GT given only the input variables by using a
supervised ML approach.

6.5. The ML task

Given the input variables that describe the relative distances based on d-
separation between pairs of DAGs, we want to select the algorithms/DAGs
closest to the ground truth (possibly coinciding with it). Several DAGs at
the same time have the same distance from the GT (or even coincide with
it), thus several labels can coexist.
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6.5. The ML task

The problem can be cast in a multi-label classification problem, with the
peculiarity that the prediction can be considered right if even just one of
the correct labels is designated by the predictor.

To address the task, we set up two approaches: One built as a variant
of Binary Relevance (BR) The other as a variant of Classifier Chain
(CC)

BR works by training a separate binary classifier – sometimes called de-
tector - for each label. Each classifier predicts whether the corresponding
label applies or not.

CC works by training a separate binary classifier for each label, similar to
BR, but also taking into account the predictions of previous classifiers in
the chain: for each label in the chain, it trains a binary classifier using the
input features and the binary labels of all preceding labels in the chain as
additional input features. For example, when training the classifier for the
third label in the chain, the input features would include the original input
features as well as the binary predictions (0 or 1) of the first and second
labels in the chain.

BR has the drawback that it does not incorporate possible label depen-
dencies: in our case, if two algorithms yield the same value of [ALGO]_
SUM_DIST their DAGS coincide (in the d-separation sense); despite this
objective condition the two independently trained detectors could in prin-
ciple predict inconsistent results (one predicting that the first label applies,
the other that the second does not apply, despite both do).

CC has some issues too: Error Propagation and Order Sensitivity. If a
classifier makes a mistake in predicting a label early in the chain, it can
lead to cascading errors in the predictions of subsequent labels, potentially
reducing overall performance. The choice of label ordering can impact the
predictive performance of the model, while finding the optimal ordering can
be computationally expensive (in our case 6 possible labels would entail 720
possible orderings). We address the latter point by ordering the classifier
chain in decreasing order of accuracy (the accuracy was determined
empirically when running BR, and we used the decreasing order of precision
in case of break-even).

Both BR and CC produce for each case a set of labels that apply to that
statistical unit. The variant we use in both cases consists in the final
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choice of a single representative of the predicted label set. In fact,
eventually, we want to take the output of the BR algorithm and choose
exactly one of the labels (then take its distance to answer Question 2, and
see whether it coincides with GT to answer Question 1).

The chosen criterion selects the [ALGO] among the candidates predicted
by the individual detectors to be closest to the GT is based on precision
and is described below.

6.5.1. The AutoML (Automated Machine Learning) approach

To choose an ideally optimal binary classifier, we adopted an AutoML
approach, for model selection and hyperparameter optimization, using the
Pycaret Python libraries (pycaret.org). This library automates the entire
learning pipeline, from data pre-processing to model deployment, making
it easier and faster to build high-performance classification models.

We decided to keep the default optimization strategy, aimed at maximizing
the accuracy through Bayesian Optimization (BO). BO uses probabilistic
modeling of the solution space to efficiently find the optimum of a costly
black-box objective function (in our case the ML model test performance)
by iteratively selecting the most promising candidates to evaluate (in our
case the data subsets) while balancing exploration and exploitation.

6.5.2. Selection criterion

The selection of [ALGO] among the candidate labels predicted by the detec-
tors works as follows. We start looking at the [ALGO] whose detector has
the highest test precision as evaluated by the optimizer (in case of break-
even, we use decreasing order of cardinality of the true positives), and if
that [ALGO] is predicted True, we assign that label to the statistical unit;
otherwise, we look at the [ALGO] with second best precision, and so on.

If no [ALGO] detector predicts TRUE (i.e., if COUNT_MIN_PRED =
0), we adopt as default the [ALGO] that performs best when all the other
detectors predict FALSE. In our case, the Notears detector significantly
stands out as the best with respect to this performance criterion: in the 17
cases where a single [ALGO] is predicted to be at the minimum distance to
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GT, where [ALGO] corresponds to Notears 10 times, Lingam 5, Golem and
CENTROID 1, GES and PC 0. Thus, we adopt Notears as default. This
choice turns out to be the best 4 times out of 5 (5 are statistical units where
no detector predicts that its [ALGO] is the minimum distance one).

6.6. Outcomes

6.6.1. Outcomes of Binary Relevance (BR) approach

We searched for the optimal binary classifier detectors of each [ALGO] using
the AutoML approach described above.

The base set of input variables is in the following:

X ={’NNODES’, ’NPOSSIBLE_PAIRS’, ’GES_SUM_DIST’,
’GES_SUM_DIST_STAND’, ’GES_IS_CENTROID’, ’GOLEM_SUM_DIST’,
’GOLEM_SUM_DIST_STAND’, ’GOLEM_IS_CENTROID’, ’LINGAM_SUM_DIST’,
’LINGAM_SUM_DIST_STAND’, ’LINGAM_IS_CENTROID’, ’Notears_SUM_DIST’,
’Notears_SUM_DIST_STAND’, ’Notears_IS_CENTROID’, ’PC_SUM_DIST’,
’PC_SUM_DIST_STAND’, ’PC_IS_CENTROID’, ’CENTROIDS_COUNT’,
’MAX_SUM_DIST’, ’MAX_SUM_DIST_STAND’, ’CENTROID_SUM_DIST’,
’CENTROID_SUM_DIST_STAND’, ’AVE_SUM_DIST_of_5’, ’AVE_SUM_DIST_STAND_of_5’,
’STD_SUM_DIST_of_5’, ’STD_SUM_DIST_STAND_of_5’, ’SKW_SUM_DIST_of_5’}

The highest accuracy configurations issued by the process were the follow-
ing.

Input variables X
Target variable CENTROID_IS_MIN_
Output variable CENTROID_IS_MIN_PRED

RidgeClassifier(alpha=1.0,
class_weight=None,
copy_X=True,
fit_intercept=True,
max_iter=None,
positive=False,
random_state=7906,
solver=’auto’,
tol=0.0001)
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Input variables X
Target variable GES_IS_MIN_
Output variable GES_IS_MIN_PRED
XGBClassifier(base_score=None,

booster=’gbtree’,
callbacks=None,
colsample_bylevel=None,
colsample_bynode=None,
colsample_bytree=None,
device=’cpu’,
early_stopping_rounds=None,
enable_categorical=False,
eval_metric=None,
feature_types=None,
gamma=None,
grow_policy=None,
importance_type=None,
interaction_constraints=None,
learning_rate=None,
max_bin=None,
max_cat_threshold=None,
max_cat_to_onehot=None,
max_delta_step=None,
max_depth=None,
max_leaves=None,
min_child_weight=None,
missing=nan,
monotone_constraints=None,
multi_strategy=None,
n_estimators=None,
n_jobs=-1,
num_parallel_tree=None,
objective=’binary:logistic’,
...)

Input variables X
Target variable GOLEM_IS_MIN_
Output variable GOLEM_IS_MIN_PRED

ExtraTreesClassifier(bootstrap=False,
ccp_alpha=0.0,
class_weight=None,
criterion=’gini’,
max_depth=None,
max_features=’sqrt’,
max_leaf_nodes=None,
max_samples=None,
min_impurity_decrease=0.0,
min_samples_leaf=1,
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min_samples_split=2,
min_weight_fraction_leaf=0.0,
n_estimators=100,
n_jobs=-1,
oob_score=False,
random_state=4223,
verbose=0,
warm_start=False)

Input variables X
Target variable LINGAM_IS_MIN_
Output variable LINGAM_IS_MIN_PRED

ExtraTreesClassifier(bootstrap=False,
ccp_alpha=0.0,
class_weight=None,
criterion=’gini’,
max_depth=None,
max_features=’sqrt’,
max_leaf_nodes=None,
max_samples=None,
min_impurity_decrease=0.0,
min_samples_leaf=1,
min_samples_split=2,
min_weight_fraction_leaf=0.0,
n_estimators=100,
n_jobs=-1,
oob_score=False,
random_state=2990,
verbose=0,
warm_start=False)

Input variables X
Target variable Notears_IS_MIN_
Output variable Notears_IS_MIN_PRED

ExtraTreesClassifier(bootstrap=False,
ccp_alpha=0.0,
class_weight=None,
criterion=’gini’,
max_depth=None,
max_features=’sqrt’,
max_leaf_nodes=None,
max_samples=None,
min_impurity_decrease=0.0,
min_samples_leaf=1,
min_samples_split=2,
min_weight_fraction_leaf=0.0,
n_estimators=100,
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n_jobs=-1,
oob_score=False,
random_state=3789,
verbose=0,
warm_start=False)

Input variables X
Target variable PC_IS_MIN_
Output variable PC_IS_MIN_PRED

DecisionTreeClassifier(ccp_alpha=0.0,
class_weight=None,
criterion=’gini’,
max_depth=None,
max_features=None,
max_leaf_nodes=None,
min_impurity_decrease=0.0,
min_samples_leaf=1,
min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=7051, splitter=’best)

In Table 6.4 the test precision and recall reported are averaged in the pos-
itive and negative classes.
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Chapter 6. Ensemble Based Causal Discovery

Individual detectors have shown the following performances on the full data
set (number of instances 78).
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Chapter 6. Ensemble Based Causal Discovery

We took the predictions from the binary classifier detectors and selected
[ALGO] as described above. The ranking in precision used by the aggrega-
tor function was PC, GES, Notears, GOLEM, Lingam, and CENTROID.
The results shown also in Table 6.1 and Table 6.2 are the following.

Although the lowest mean individual [ALGO]’s distance was CENTROID’s
10.08 the mean of the selected [ALGO]’s distance using BR was 6.62, very
close to the actual average minimum distance 5.38: this result represents
a significant improvement as shown by the standard errors and 95% confi-
dence intervals reported in Table 6.2: comparing the selected algorithm’s
and CENTROID’s distance through a one-tailed t-Student test we find that
the former distance is lower than the latter with a p-value of 0.0487, hence
below the conventional 95% (α = 0.05) confidence level threshold.

Expectedly, the selection of [ALGO] according to the above method im-
proves also the prediction of which [ALGO] perfectly corresponds to the
GT. The results are summarized in Table 6.2. Although the single most
effective individual [ALGO] in correctly predicting GT was CENTROID
with correct predictions 48.72%, the [ALGO] selected using BR is correct
61.54% of the time, very close to the actual percentage of times when at
least one algorithm in the group guesses correctly, which is 64.10%.

6.6.2. Outcomes of Classifiers Chain (CC) approach

Using the incremental approach to multilabel classification provided by CC
(ordering of targets in decreasing accuracy of their individual detectors:

PC_IS_MIN_, GES_IS_MIN_, Notears_IS_MIN_,
GOLEM_IS_MIN_,LINGAM_IS_MIN_, CENTROID_IS_MIN_),

the configurations of the highest accuracy issued by the AutoML process
turned out to be the following.

Input variables X
Target variable PC_IS_MIN_
Output variable PC_IS_MIN_PRED
RidgeClassifier(alpha=1.0,

class_weight=None,
copy_X=True, f
it_intercept=True,
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max_iter=None,
positive=False,
random_state=7467,
solver=’auto’,
tol=0.0001)

Input variables {X, PC_IS_MIN_PRED},
Target variable GES_IS_MIN_
Output variable GES_IS_MIN_PRED
XGBClassifier(base_score=None,

booster=’gbtree’,
callbacks=None,
colsample_bylevel=None,
colsample_bynode=None,
colsample_bytree=None,
device=’cpu’,
early_stopping_rounds=None,
enable_categorical=False,
eval_metric=None,
feature_types=None,
gamma=None,
grow_policy=None,
importance_type=None,
interaction_constraints=None,
learning_rate=None,
max_bin=None,
max_cat_threshold=None,
max_cat_to_onehot=None,
max_delta_step=None,
max_depth=None,
max_leaves=None,
min_child_weight=None,
missing=nan,
monotone_constraints=None,
multi_strategy=None,
n_estimators=None,
n_jobs=-1,
num_parallel_tree=None,
objective=’binary:logistic’,
...)

Input variables {X, PC_IS_MIN_PRED, GES_IS_MIN_ PRED}
Target variable Notears_IS_MIN_
Output variable Notears_IS_MIN_PRED

213



Chapter 6. Ensemble Based Causal Discovery

RandomForestClassifier(bootstrap=True,
ccp_alpha=0.0,
class_weight=None,
criterion=’gini’,
max_depth=None,
max_features=’sqrt’,
max_leaf_nodes=None,
max_samples=None,
min_impurity_decrease=0.0,
min_samples_leaf=1,
min_samples_split=2,
min_weight_fraction_leaf=0.0,
n_estimators=100,
n_jobs=-1,
oob_score=False,
random_state=3346,
verbose=0,
arm_start=False)

Input variables {X, PC_IS_MIN_PRED,
GES_IS_MIN_PRED,
Notears_IS_MIN_PRED}

Target variable GOLEM_IS_MIN_
Output variable GOLEM_IS_MIN_PRED
ExtraTreesClassifier(bootstrap=False,

ccp_alpha=0.0,
class_weight=None,
criterion=’gini’,
max_depth=None,
max_features=’sqrt’,
max_leaf_nodes=None,
max_samples=None,
min_impurity_decrease=0.0,
min_samples_leaf=1,
min_samples_split=2,
min_weight_fraction_leaf=0.0,
n_estimators=100,
n_jobs=-1,
oob_score=False,
random_state=1692,
verbose=0,
warm_start=False)

Input variables {X, PC_IS_MIN_PRED,
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GES_IS_MIN_PRED,
Notears_IS_MIN_PRED,
GOLEM_IS_MIN_PRED }

Target variable LINGAM_IS_MIN_
Output variable LINGAM_IS_MIN_PRED

ExtraTreesClassifier(bootstrap=False,
ccp_alpha=0.0, class_weight=None,

criterion=’gini’,
max_depth=None,
max_features=’sqrt’,
max_leaf_nodes=None,
max_samples=None,
min_impurity_decrease=0.0,
min_samples_leaf=1,
min_samples_split=2,
min_weight_fraction_leaf=0.0,
n_estimators=100,
n_jobs=-1,
oob_score=False,
random_state=8154,
verbose=0,
warm_start=False)

Input variables {X,
PC_IS_MIN_PRED,
GES_IS_MIN_PRED,
Notears_IS_MIN_PRED,
GOLEM_IS_MIN_PRED,
LINGAM_IS_MIN_PRED}

Target variable CENTROID_IS_MIN_
Output variable CENTROID_IS_MIN_PRED

RidgeClassifier(alpha=1.0,
class_weight=None,
copy_X=True,
fit_intercept=True,
max_iter=None,
positive=False,
random_state=7184,
solver=’auto’,
tol=0.0001)

The individual detectors have shown the following performances on the full
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data set (number of instances 78).

We took the predictions of the incrementally trained binary classifiers and
selected the [ALGO] as described above. The precision-based ranking used
by the selector function was GES, Notears, GOLEM, PC, Lingam, CEN-
TROID. The outcomes displayed also in Table 6.1 and 6.2 are the follow-
ing.

We recall that the lowest mean individual [ALGO]’s distance was CEN-
TROID’s 10.08. The mean of the selected [ALGO]’s distance using CC
was 6.36, very close to the actual average minimum distance 5.38: this re-
sult represents a significant improvement as shown by the standard errors
and 95% confidence intervals reported in Table 6.2: comparing the selected
algorithm’s and CENTROID’s distance through a one-tailed t-Student test
we find that the former distance is lower than the latter with a p-value
of 0.0387, hence below the conventional 95% (α = 0.05) confidence level
threshold. The CC result was slightly better than the BR result (6.62) but
was not significantly different from it.

As with BR, the selection of the [ALGO] according to CC improves also the
prediction of which [ALGO] perfectly corresponds to the GT. The results
are summarized in the Table 6.2. While the single most effective individual
[ALGO] in correctly guessing the GT was CENTROID with 48.72% correct
predictions, the [ALGO] selected using BR is correct 62.82% of the time,
very close to the actual percentage of times when at least one algorithm
in the group guesses correctly, which is 64.10%. Also in this respect the
result from CC was slightly better than the result by BR (61.54) but not
significantly different from it.
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Chapter 7.

Causal Discovery on Real Data

This chapter uses the real data set to apply causal inference. We refer
to the preprocessing steps to the Algorithm 1. We finally obtained 27
features. Each model PC, DirectLiNGAM, GES, GOLEM and Notears
was trained on the preprocessed data thus to obtain each corresponding
adjacency matrix. From Figure 7.1b to Figure 7.1e it is possible to see the
heatmap of the adjacency matrix obtained for each model.

For each graph we mapped the nodes with the same labels, the features of
the dataset. For each graph, we calculated the d-separation matrix iterating
on every couple of nodes. We then calculate a distance matrix between
each graph by comparing their d-separation matrices and measuring their
distance element-wise. We choose as the central graph, the one with the
minimum distance from the others.

7.1. Centroid Graph and Causal Inference by using
Real Data

Based on the central graph given by the GES algorithm we built the Causal
Model object. And we used the DoWhy tool to automatically find es-
timands for the graph. Then the estimands can be identified based on
the provided DoWhy methods: Back-door; Front-door; Instrumental vari-
able. The .identify_effect() method provides the estimands. we then
obtained the estimates based on .estimate_effect() and calculate the
value of the Estimate of the causal effect.

In the following results the variables’ discussion by integrating the domain
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(a) DLIN algorithm. (b) PC algorithm.

(c) GES algorithm. (d) GOLEM algorithm.

(e) NOTEARS algorithm.

Figure 7.1.: The Heatmaps representing the adjacency matrices obtained by
DLIN, PC, GES, GOLEM and NOTEARS algorithms applied
on real data.
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expert knowledge. we will describe step by step the simulator’s outputs
of the variables starting from showing the code snippets and commenting
each single part.

7.1.1. The analysis walkthrough of the trf_m__var_57
variable.

In the following the DoWhy output code snippet related to the variable
trf_m__var_57.

Estimand type: EstimandType.NONPARAMETRIC_ATE
### Estimand : 1
Estimand name: backdoor
Estimand expression:

d

d[trf_m__var_57]
(E[target])

Estimand assumption 1, Unconfoundedness:
If U → trf_m__var_57 and U → target then
P (target | trf_m__var_57, , U)
= P (target | trf_m__var_57, )

### Estimand : 2
Estimand name: iv
No such variable(s) found!

### Estimand : 3
Estimand name: frontdoor
Estimand expression:

E[ d
d[cns_m__var_17] (target) ·

d
d[trf_m__var_57] ([cns_m__var_17])]
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7.1.1.1. Estimand 1: Backdoor.

Estimand assumption 1, Unconfoundedness:

If U → TRF and U → target then P (target | TRF,U) = P (target | TRF )

U

TRF target

Figure 7.2.: The graph presents the backdoor with unobserved variable (U)
that points both the treatment and the target.

7.1.1.2. Frontdoor Estimand

Estimand assumption 1,
Full-mediation: cns_m__var_17 intercepts
(blocks) all directed paths from trf_m__var_57 to target.

Estimand assumption 2, First-stage-unconfoundedness:

If U → trf_m__var_57 and
U → cns_m__var_17 then
P (cns_m__var_17 | trf_m__var_57, U) =
P (cns_m__var_17 | trf_m__var_57)

Estimand assumption 3, Second-stage-unconfoundedness:

If U → cns_m__var_17 and U → target then
P (target | cns_m__var_17, trf_m__var_57, U) =
P (target | cns_m__var_17, trf_m__var_57)

To provide a more detailed insight of this sentence:
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Estimand assumption 1,
Full-mediation:
cns_m__var_17 intercepts (blocks) all directed paths
from trf_m__var_57 to target

If U → cns_m__var_17 and U → target then
P (target | cns_m__var_17, trf_m__var_57, U) =
P (target | cns_m__var_17, trf_m__var_57)

The Estimand Assumption 1: means what we are trying to estimate or
measure.
Full-Mediation: means that the variable cns_m__var_17 fully mediates
or completely explains the relationship between the trf_m__var_57 and
target.
For the sake of graphical aspect we rename trf_m__var_57 to TRF and
cns_m__var_17 to CNS.

TRF CNS target

Figure 7.3.: The graph presents a Full-mediation.

As to provide an explanation of the sentence: CNS intercepts (blocks) all
directed paths from TRF to target, see Figure 7.3. CNS: is a variable or a
factor in the analysis. Intercepts (blocks): means that CNS is acting as a
barrier or stopping point in the relationship between TRF and target. All
directed paths: based on the definition in statistical analysis, a path is a
sequence of connections between variables. Directed paths have a specific
direction, and imply a cause-and-effect relationship. From TRF to target:
this specifies the direction of the paths being blocked. In simpler terms,
CNS stops or blocks all the connections between TRF and the target,
the ultimate outcome or variable of interest. Finally, CNS fully explains
the relationship between TRF and target by blocking or intercepting all
the paths between them. This variable is a crucial link that influences the
relationship between the “treatment” and the “target”.
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Estimand assumption 2,
First-stage-unconfoundedness:

If U → trf_m__var_57 and
U → cns_m__var_17 then
P (cns_m__var_17 | trf_m__var_57, U)
= P (cns_m__var_17 | trf_m__var_57)

U

TRF CNS target

Figure 7.4.: The graph presents mediation with unobserved variable (U)
that points both to the treatment (TRF) and the mediator
(CNS).

U : represents some unobserved or hidden variable. U → TRF : means
that U influences or causes variations in the variable TRF . U → CNS:
means that U influences or causes variations in the variable CNS. P (...):
is the probability. P (CNS | TRF,U): is the probability of CNS given
TRF and the hidden variable U , equals, P (CNS | TRF ): the probabil-
ity of CNS given TRF without considering the hidden variable U . This
assumption expresses that if there are unobserved factors (U) that influ-
ence both the treatment (TRF ) and the mediating variable (CNS), then
the probability of the mediating variable given the treatment (TRF )
and the unobserved factors is the same as the probability of the mediating
variable given only the treatment (TRF ). The unobserved factors don’t in-
troduce any additional variation when considering the relationship between
the treatment and the mediating variable.

Estimand Assumption 3, Second-stage-unconfoundedness:

If U → CNS and U → target then
P (target | CNS, TRF,U) = P (target | CNS, TRF )

If U → TRF and U → target, U : is unobserved or hidden variable. U →
TRF : means that U influences or causes variations in the variable TRF .
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U

TRF CNS target

Figure 7.5.: The graph presents a Full-mediation with unobserved variable
(U) that points both to the treatment (TRF) and target.

U → target: means that U influences or causes variations in the target.
Then P (target | CNS, TRF,U) = P (target | CNS, TRF ). P (...): is the
probability. P (target | ...): is the probability of the target variable given
certain conditions. P (target | CNS, TRF,U): is the probability of the
target variable given the mediating variable CNS, the treatment TRF , and
the hidden variable U . P (target | CNS, TRF ): is the probability of the
target variable given the mediating variable and the treatment, without
considering the hidden variable U . If we have unobserved factors (U) that
influence both the mediating variable CNS and the target variable, then
the probability of the target variable given the mediating variable, the
starting point, and the unobserved factors is the same as the probability of
the target variable given only the mediating variable and the treatment. In
conclusion, unobserved factors don’t introduce additional variation when
considering the relationship between the mediating variable, the treatment
and the target variable.

Estimate of the causal effect: 0.007097120779912439

7.1.2. The variable cns_m__var_17

Estimand type: EstimandType.NONPARAMETRIC\_ATE
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### Estimand : 1
Estimand name: backdoor
Estimand expression:

d

d[cns_m__var_17]
(E[target])

Estimand assumption 1, Unconfoundedness:

If U → cns_m__var_17 and U → target then
P (target | cns_m__var_17, , U) =
= P (target | cns_m__var_17, )
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7.1.2.1. Instrumental Variable

### Estimand : 2
Estimand name: iv
Estimand expression:

For the sake of easy visualization of the formula:
usg_m__var_60 is usg60,
trf_m__var_57 is trf57,
usg_m__var_59 is usg59 and
anag_cli_f_var_9 is anag9

E[
(

d(target)
d[usg60,trf57,usg59,anag9]

)(
d[cns17]

d[usg60,trf,usg59,anag9]

)−1
]

Estimand assumption 1
As-if-random:

If U →→ target then
¬(U →→ usg_m__var_60, trf_m__var_57, usg_m__var_59,
anag_cli_f_var_9)

Estimand assumption 2
Exclusion: If we remove

usg_m__var_60,
trf_m__var_57, usg_m__var_59,
anag_cli_f_var_9→ cns_m__var_17 then
¬(usg_m__var_60, trf_m__var_57, usg_m__var_59,
anag_cli_f_var_9→ target)

### Estimand : 3
Estimand name: frontdoor
No such variable(s) found!

Estimate of the causal effect: 0.06635127533149945

An instrumental variable is a variable that is used to estimate the causal
relationship between an independent variable (treatment) and a dependent
variable (target, that we want to explain or predict).

Estimand Assumption 1: As-if-random This assumption refers to the
relationship between the instrumental variable (iv) and the target variable.
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The instrumental variable is assumed to be unrelated to any other factors
that might affect the studied outcome, except through its impact on the
independent variable (i.e. iv is treated as if it is randomly assigned).

As-if-random: If U →→ target then
¬(U →→ usg_m__var_60, trf_m__var_57, usg_m__var_59,
anag_cli_f_var_9)

“If U →→ target" means if the instrumental variable (U) affects the target
variable.
“¬(U →→ usg_m__var_60, trf_m__var_57, usg_m__var_59,
anag_cli_f_var_9)" means that the instrumental variable is not al-
lowed to have a direct impact on any of the remaining variables
(usg_m__var_60, trf_m__var_57, usg_m__var_59,
anag_cli_f_var_9).

The instrumental variable’s influence on the outcome should not come
through any other paths or variables.

In summary, the statement is emphasizing that the instrumental variable
should only impact the target variable and not have any other direct
influences on other variables related to the analysis. This is important for
ensuring that the estimated causal relationship is not confounded
by other factors.

Estimand Assumption 2, Exclusion:

The “Exclusion” assumption is about removing the impact of certain nodes
to see the real effect of target.

Exclusion: If we remove
usg_m__var_60,trf_m__var_57,usg_m__var_59,
anag_cli_f_var_9 → cns, then ¬(usg_m__var_60, trf_m__var_57,
usg_m__var_59, anag_cli_f_var_9→ target):
removing the influence of usg_m__var_60, trf_m__var_57, usg_m__var_59,
anag_cli_f_var_9 on cns then the relationship between
usg_m__var_60, trf_m__var_57, usg_m__var_59,
anag_cli_f_var_9 and the target is not maintained true. If we ignore
the impact of certain factors on one thing, then a certain relationship won’t
be true anymore.
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Exploring the impact of usg_m__var_60, trf_m__var_57,
usg_m__var_59, anag_cli_f_var_9 on the target, and the exclusion
of these nodes’ impact on cns, then a specific relationship with the target
doesn’t hold.

7.1.3. The variable anag_cli_f_var_1

### Estimand : 1
Estimand name: backdoor
Estimand expression:

d

d[anag_cli_f_var_1]
(E[target])

### Estimand : 2
Estimand name: iv
No such variable(s) found!

### Estimand : 3
Estimand name: frontdoor
No such variable(s) found!

Estimate of the causal effect: −0.013978754618979392

U

CNSZ target

Figure 7.6.: The graph presents an instrumental variable.

7.1.4. The variable anag_cli_f_var_3

Estimand type: EstimandType.NONPARAMETRIC_ATE
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### Estimand : 1
Estimand name: backdoor
Estimand expression:

d

d[anag_cli_f_var_3]
(E[target])

Estimand assumption 1, Unconfoundedness:

If U → anag_cli_f_var_3 and U → target then
P (target | anag_cli_f_var_3, , U) = P (target | anag_cli_f_var_3, )

### Estimand : 2
Estimand name: iv
No such variable(s) found!

### Estimand : 3
Estimand name: frontdoor
No such variable(s) found!

Estimate of the causal effect: −0.028959988210801715

7.1.5. The variable anag_cli_f_var_7

anag_cli_f_var_7
No directed path from [’anag_cli_f_var_7’] to [’target’] in
the causal graph.

Causal effect is zero. 0

7.1.6. The variable trf_m__var_49

trf_m__var_49
No directed path from [’trf_m__var_49’] to [’target’] in the
causal graph.

Causal effect is zero. 0
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7.1.7. The variable trf_m__var_51

trf_m__var_51
No directed path from [’trf_m__var_51’] to [’target’] in the
causal graph.

Causal effect is zero. 0

7.1.8. The variable trf_m__var_52

trf_m__var_52
No directed path from [’trf_m__var_52’] to [’target’] in the
causal graph.

Causal effect is zero. 0

7.1.9. The variable trf_m__var_53

trf_m__var_53
No directed path from [’trf_m__var_53’] to [’target’] in the
causal graph.

Causal effect is zero. 0

7.1.10. The variable trf_m__var_54

trf_m__var_54
No directed path from [’trf_m__var_54’] to [’target’] in the
causal graph.

Causal effect is zero. 0
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7.1.11. The variable trf_m__var_55

trf_m__var_55
No directed path from [’trf_m__var_55’] to [’target’] in the

causal graph.

Causal effect is zero. 0

7.1.12. The variable trf_m__var_56

trf_m__var_56
No directed path from [’trf_m__var_56’] to
[’target’] in the causal graph.

Causal effect is zero. 0

7.1.13. The variable anag_cli_f_var_0

Estimand type: EstimandType.NONPARAMETRIC_ATE

### Estimand: 1
Estimand name: backdoor
Estimand expression:

d

d[anag_cli_f_var_0]
(E[target])

Estimand assumption 1, Unconfoundedness:

If U → anag_cli_f_var_0 and U → target then
P (target | anag_cli_f_var_0, , U) =
P (target | anag_cli_f_var_0, )

### Estimand : 2
Estimand name: iv
No such variable(s) found!

230



7.1. Centroid Graph and Causal Inference by using Real Data

### Estimand : 3
Estimand name: frontdoor
No such variable(s) found!

Estimate of the causal effect: −0.029293209329663714

7.1.14. The variable anag_cli_f_var_5

anag_cli_f_var_5
No directed path from [’anag_cli_f_var_5’] to
[’target’] in the causal graph.

Causal effect is zero. 0

The anag_cli_f_var_5 variable is very relevant, for example if the cus-
tomer joined in the very recent period of time: “young status customer” it is
more probable that can churn respect to both a customer which is already
in the company from an intermediate period of time (i.e. “intermediate sta-
tus customer”) and an historical customer (i.e. “veteran status customer”)
which can be considered “lazier”, and the leaving is more difficult (e.g. they
have been there for 20 years).

7.1.15. The variable anag_cli_f_var_9

Estimand type: EstimandType.NONPARAMETRIC_ATE

### Estimand : 1
Estimand name: backdoor
Estimand expression:

d

d[anag_cli_f_var_9]
(E[target])

Estimand assumption 1, Unconfoundedness:

If U → anag_cli_f_var_9 and U → target then P (target |
anag_cli_f_var_9, , U) = P (target | anag_cli_f_var_9, )

The anag_cli_f_var_9 variable highlights the fact that the line is customer-
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level hooked. The customers that have multiple hooked lines remain more
faithful and therefore less prone to churn. For example, the customer is
a small or medium size company gaining 10 lines, all of them are under 1
single contract, for this reason the customer is less prone to cease all the
lines all together. In the case of a small dealer with a single headed line
which becomes a commodity, it is easier to be attracted by more bearish
offers and so to leave.

### Estimand : 2
Estimand name: iv
No such variable(s) found!

### Estimand : 3
Estimand name: frontdoor
Estimand expression:

E[ d
d[cns_m__var_17] (target) ·

d
d[anag_cli_f_var_9] ([cns_m__var_17])]

Estimand assumption 1, Full-mediation: cns_m__var_17
intercepts (blocks) all directed paths from anag_cli_f_var_9
to target.

Estimand assumption 2, First-stage-unconfoundedness:
If $Urightarrow {anag_cli_f_var_9} $ and
$ Urightarrow {cns_m__var_17} $ then
$ P(cns_m__var_17mid anag_cli_f_var_9,U) = $
$ P(cns_m__var_17mid anag_cli_f_var_9)$

Estimand assumption 3, Second-stage-unconfoundedness:

If U → cns_m__var_17 and U → target then
P (target | cns_m__var_17, anag_cli_f_var_9, U) =
P (target | cns_m__var_17, anag_cli_f_var_9)

Estimate of the causal effect: −0.008481039893568285.

The variable cns_m__var_17 is influenced by another SIM card, and it
treats the count of master flags as a parameter. The particular line it
focuses on is not random; it pertains to an individual, whereas the line
associated with a burglar alarm is supplementary. Neglecting to recharge
the alarm SIM card within one year results in its deactivation.
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7.1.16. The variable anag_cli_f_var_10

Estimand type: EstimandType.NONPARAMETRIC_ATE

### Estimand : 1
Estimand name: backdoor
Estimand expression:

d

d[anag_cli_f_var_10]
(E[target])

Estimand assumption 1, Unconfoundedness:

If U → anag_cli_f_var_10 and U → target then
P (target | anag_cli_f_var_10, , U) =
P (target | anag_cli_f_var_10, )

### Estimand : 2
Estimand name: iv
No such variable(s) found!

### Estimand : 3
Estimand name: frontdoor
No such variable(s) found!

Estimate of the causal effect: −0.006650086650659068

7.1.17. The variable anag_cli_f_var_13

anag_cli_f_var_13
No directed path from [’anag_cli_f_var_13’] to [’target’] in
the causal graph.

Causal effect is zero. 0
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7.1.18. The variable anag_cli_f_var_14

anag_cli_f_var_14
No directed path from[’anag_cli_f_var_14’] to [’target’] in
the causal graph.

Causal effect is zero. 0

7.1.19. The variable cerved_int__var_15

cerved_int__var_15
No directed path from [’cerved_int__var_15’] to [’target’] in
the causal graph.

Causal effect is zero. 0

This variable has no causal effect.

7.1.20. The variable cns_m__var_18

Estimand type: EstimandType.NONPARAMETRIC_ATE

### Estimand : 1
Estimand name: backdoor
Estimand expression:

d

d[cns_m__var_18]
(E[target])

Estimand assumption 1, Unconfoundedness:

If U → cns_m__var_18 and U → target then
P (target | cns_m__var_18, , U) = P (target | cns_m__var_18, )

The variable cns_m__var_18 can provide the customer’s line profile. For
example, a mobile line with multiple service cards reveals the complete
customer profile. Typically, the customer subscribes to a basic service and
has the option to activate additional services, such as an answering machine
or call message removal. Therefore, if a customer has numerous active
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services, it could indicate substantial usage of that line.

In the current landscape, unlimited data plans are rare due to various rea-
sons: they can be costly for service providers (resulting in the adoption of
tiered data plans to manage costs and revenue), and the implementation
of data caps efficiently controls network traffic. A limited number of users
with unlimited data could potentially strain the network and compromise
service quality. The restriction on data usage enhances the profitability of
service providers’ plans by offering diverse tiers of data plans at various
price points to cater to different user needs. The structure of data plans
often adapts to market trends and competition. If the prevailing trend in-
volves tiered plans, service providers are likely to adopt a similar approach
to remain competitive.

As the demand for high-bandwidth applications like streaming and gaming
continues to rise, data usage patterns evolve. It’s worth noting that while
unlimited data plans may not be as prevalent as before, some providers and
plans still offer them, especially in specific regions or for certain services.
Consumer preferences, technological advancements, and market dynamics
collectively influence the availability and structure of data plans.

For a line with a basic profile, customers are less inclined to add unnecessary
services to their service card. Adding service recalls, unlimited Gigas, or
an additional 50 Gigas indicates increased usage, reducing the likelihood of
churn. This reflects satisfaction, active services, and an engaged customer.
Conversely, having extra Gigas in services that end up being discontinued
may indicate customer dissatisfaction and the potential for churn.

### Estimand : 2
Estimand name: iv
No such variable(s) found!

### Estimand : 3
Estimand name: frontdoor
No such variable(s) found!

Estimate of the causal effect: 0.025520130920288556
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7.1.21. The variable cns_m__var_19

cns_m__var_19
No directed path from [’cns_m__var_19’] to
[’target’] in the causal graph.

Causal effect is zero. 0

The variable cns_m__var_19 shares similarities with the previously men-
tioned variable cns_m__var_17.

7.1.22. The variable cns_m__var_20

Estimand type: EstimandType.NONPARAMETRIC_ATE

### Estimand : 1
Estimand name: backdoor
Estimand expression:

d

d[cns_m__var_20]
(E[target])

Estimand assumption 1, Unconfoundedness:

If U → cns_m__var_20 and
U → target then
P (target | cns_m__var_20, , U) = P (target | cns_m__var_20, )

### Estimand : 2
Estimand name: iv
No such variable(s) found!

### Estimand : 3
Estimand name: frontdoor
No such variable(s) found!

Estimate of the causal effect: 0.019379429938147855
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7.1.23. The variable cns_m__var_21

cns_m__var_21
No directed path from [’cns_m__var_21’] to [’target’] in the
causal graph.

Causal effect is zero. 0

The cns_m__var_21 variable refers to the average percentage discount on
the fee i.e. the amount to pay (i.e. charged or scaled). Averaged percentage
discount is not on everything but on service card on average the discount
of the line’s benefits.

7.1.24. The variable usg_m__var_59

Estimand type: EstimandType.NONPARAMETRIC_ATE

### Estimand : 1
Estimand name: backdoor
Estimand expression:

d

d[usg_m__var_59]
(E[target])

Estimand assumption 1, Unconfoundedness:

If U → usg_m__var_59 and U → target then
P (target | usg_m__var_59, , U) = P (target | usg_m__var_59, )

The variable usg_m__var_59 refers to the rating group of the navigation
category (i.e. web), the customers that fall into this cluster are more prone
to churn.

### Estimand : 2
Estimand name: iv
No such variable(s) found!

### Estimand : 3
Estimand name: frontdoor
Estimand expression:
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7.1.25. The variable cns_m__var_17

Estimand assumption 1,
Full-mediation: cns_m__var_17 intercepts (blocks) all directed
paths from usg_m__var_59 to target.

The variable usg_m__var_59 arises the following issues: a qualitative
issue which refers to the most used navigation cluster by those who have
master lines; a quantitative issue which refers to the cluster in which
customers have higher traffic.

Estimand assumption 2,
First-stage-unconfoundedness:

If U → usg_m__var_59 and
U → cns_m__var_17 then
P (cns_m__var_17 | usg_m__var_59, U)
=P (cns_m__var_17 | usg_m__var_59)

Estimand assumption 3,
Second-stage-unconfoundedness:

If U → cns_m__var_17 and U → target then
P (target | cns_m__var_17, usg_m__var_59, U) =
P (target | cns_m__var_17, usg_m__var_59)

Estimate of the causal effect: 0.0033793960406430096

7.1.26. The variable usg_m__var_60

Estimand type: EstimandType.NONPARAMETRIC_ATE
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### Estimand : 1
Estimand name: backdoor
Estimand expression:

d

d[usg_m__var_60]
(E[target])

Estimand assumption 1, Unconfoundedness:

If U → usg_m__var_60 and U → target then P (target |
usg_m__var_60, , U)
= P (target | usg_m__var_60, )

### Estimand : 2
Estimand name: iv
No such variable(s) found!

### Estimand : 3
Estimand name: frontdoor
Estimand expression:

E[ d
d[cns_m__var_17] (target) ·

d
d[usg_m__var_60] ([cns_m__var_17])]

The aforementioned variables reflect both the cutomer’s personal charac-
teristics (i.e. line type, age, etc.) and the behavioral characteristics (i.e.
traffic which tells what a person does). Those characteristics are related, for
example by analogy we can consider the people playing the “playstation”,
there can be an anagraphic correlation, so here the correlation is between
the line type and the cluster of web navigations, semantic clusters, etc.
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Estimand assumption 1, Full-mediation:
cns_m__var_17 intercepts (blocks) all directed paths from
usg_m__var_60 to target.

Estimand assumption 2, First-stage-unconfoundedness:

If U → usg_m__var_60 and
U → cns_m__var_17 then
P (cns_m__var_17 | usg_m__var_60, U)
= P (cns_m__var_17 | usg_m__var_60)

Estimand assumption 3, Second-stage-unconfoundedness:

If U → cns_m__var_17 and U → target then
P (target | cns_m__var_17,
usg_m__var_60, U)
= P (target | cns_m__var_17

Estimate of the causal effect: 0.01635061546326745

7.1.27. The variable usg_m__var_61

Estimand type: EstimandType.NONPARAMETRIC_ATE

### Estimand : 1
Estimand name: backdoor
Estimand expression:

d

d[usg_m__var_61]
(E[target])

Estimand assumption 1, Unconfoundedness:

If U → usg_m__var_61 and U → target then
P (target | usg_m__var_61, , U)
= P (target | usg_m__var_61, )

### Estimand : 2
Estimand name: iv
No such variable(s) found!
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### Estimand : 3
Estimand name: frontdoor
No such variable(s) found!

Estimate of the causal effect: 0.0540562791062031

The variable pertains to the usg_m__var_61 rating groups, offering a
distinct behavioral profile indicating whether the customer is likely to churn
or not. Specifically, those most likely to churn exhibit similar behavior in
terms of phone use, particularly in the qualitative thematic area related
to the sum of phone use. The correlation is quantitative, with low values
impacting high values in a reverse correlation type.
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Chapter 8.

Conclusions

8.1. Contributions

The methodological results and contributions of this thesis are summarized
in the following.

8.1.1. Churn Prediction

The first contribution is a solution to churn prediction based on a real data
set by applying a variety of algorithms. The performance of the models was
evaluated through a standard qualitative metric and compared with the
internal solution of TIM S.p.A. The results obtained are an improvement
over the state of the art, covering the Research Question RQ1. The results
will improve the internal processes of the company, solving the Business
Question BQ1. Furthermore, the solutions obtained will constitute the
foundational guidelines for new processes for the handling of customer churn
in the company.

8.1.2. Causal Discovery

The second contribution is a novel ensemble-based methodology for causal
discovery. The model aims to identify the algorithm that can most accu-
rately reconstruct the underlying causal structure by using ground-truth
data as a benchmark for training. This methodology capitalizes on the
strengths of multiple algorithms and introduces a novel way to improve the
reliability of causal discovery processes. The causal discovery algorithms
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that we considered were as follows: GES, GOLEM, LINGAM, Notears, and
PC.

Our method improves the learning of causal structures utilizing the com-
bined results of multiple causal discovery algorithms. We analyze the dis-
tances between Directed Acyclic Graphs (DAGs) generated by these al-
gorithms and a centroid DAG, as well as the distances among the DAGs
themselves. Based on this analysis, we propose a machine learning model
that can predict the quality of directed acyclic graphs (DAGs) in new, un-
seen data.

The Direct Acyclic Graphs (DAGs) generated by the discovery algorithms
can sometimes coincide with one another, whether they correspond to the
ground truth or not: thus, there is not necessarily a single correct answer
to the question of which is the ground truth or which is the algorithm clos-
est to the ground truth. As a consequence, we formulate the problem as a
multi-label classification task (each algorithm plays the role of a label, there
are also 6 labels, counting the CENTROID graph). Then we use two com-
mon approaches to address this type of classification: the Binary Relevance
(BR) approach and the Classifier Chain (CC) approach. After choosing a
representative from the set of predicted labels, using a classifier-precision-
based criterion, we used its distance from the GT (defined as the Hamming
distance between adjacency matrices, i.e., in terms of edges) and found that
we could considerably improve with respect to the use of individual algo-
rithms. Although the best individual algorithm was CENTROID (although
close to GOLEM and LINGAM) with a mean of 10.08 edges from the GT,
the mean distance of the algorithm selected by our method was 6.62 edges
using BR and 6.36 edges using CC, both very close to the actual average
minimum distance of the algorithm of the set that performs the best (but
is a priori unknown), which was of 5.38 edges. Similar considerations hold
if we divide the distances by the actual number of edges.

The method relies on the use of existing discovery algorithms, considered as
a committee of experts, and on a supervised learning approach consisting
of stacking of a multi-label classifier on the outcomes of the ensemble.
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8.1.3. Causal Inference

The third contribution solves the Business Question BQ2, in particular,
providing advice on focusing the efforts on those customers that are most
likely to churn and exhibit similar behavior in terms of phone usage, espe-
cially in the qualitative thematic area related to the phone usage.

8.2. Future research directions

The potential for the proposed novel ensemble-based methodology for causal
discovery is to significantly enhance the field of causal inference for further
exploration and application of these techniques to a wide variety of scenar-
ios. For example, in the health assessment of patients such as in Emergency
Rooms; in the bank sector, credit card fraud detection; agricultural envi-
ronment for the optimization of crops growth.

The real-dataset availability is very scarce and limited to company’s bound-
aries. This creates a huge gap between the research fields both in the aca-
demic and in the industry. Finally, the presented methodology may be
improved by combining it with other methodologies available in the litera-
ture.

245





Appendix A.

Probability Notations

The probability function Pz describes the uncertainty of z, the use of quan-
tity is often impractical since it requires to deal with as many values as the
size of Z. It is more convenient to compute a functional (i.e. a function of
a function) of Pz. The measure of central tendency:
Definition 1 (Expected value). The expected value of a discrete random
variable z is:

E[z] = µ =
∑
z∈Z

zPz(z)

It minimizes the mean squared error:

µ = argminmE[(z −m)2]
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Appendix B.

Metrics

The evaluation of the model performance is fundamental, in the following
table B.1 some of the metrics.

A confusion matrix is a summary of the prediction results on a classifi-
cation problem [29]. The number of correct and incorrect predictions is
summarized with the count values for each class, as shown in Table 2.

The confusion matrix shows how the classification model is confused when
it makes predictions. It gives us insight not only into the errors made by a
classifier but, more importantly, into the types of error.

We can explain TP, FP, TN, and FN as follows:

• True positive (TP): if the predicted “churn customer” is actually
“churn customer,” the prediction is TP

• False positive (FP): if the predicted “churn customer” is real news,
the prediction is FP

• True negative (TN): if the predicted “no-churn customer” is actually
“no-churn customer,” the prediction is TN

• False negative (FN): if the predicted “no-churn customer” is actually
“churn customer,” the prediction is FN

Confusion matrix: It is a table with two rows and two columns that reports
the number of false positives (FP), false negatives (FN), true positives (TP),
and REFERENCE true negatives (TN). Provides the information required
to analyze the accuracy of the prediction of churn in terms of false. Accu-
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Appendix B. Metrics

racy: The accuracy of the given prediction model is defined below.

Accuracy =
TP + TN

TP + TN + FP + FN

“Precision recall statistics are useful to compare algorithms that make pre-
dictions with a confidence score. Using these statistics, performance of an
algorithms given a set threshold (confidence score) can be approximated.”

Precision is defined by:

Precision =
TP

TP + FP

and directly denotes the total classification accuracy given a confidence
threshold.

On the other hand, Recall is defined by:

Recall =
TP

TP + FN

and denotes misclassification given a threshold.

F1-score: defined below

F1 =
2 ∗ TP

2 ∗ TP + FP + FN

AUC curve: in contrast to other metrics, the AUC is not influenced by
any threshold value, as it takes into account all possible thresholds on the
predicted probabilities. “Area under the precision-recall curve, as well as
the coordinates of the precision recall curve are computed, using the scikit-
learn library tools. Note that unlike the AUROC metric, this metric does
not account for class imbalance.” Decile Lift or Lift curve: The top decile
lift focuses exclusively on the most critical group of customers and their
churn risk.
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Table B.1.: Metrics.

Classification Regression Clustering

Accuracy Score Mean Absolute Error Adjusted Rank Index
Confusion Matrix Mean Squared Error Homogeneity

Precision R2 Score V-measure
Recall Mean Average

Precision
Mean Reciprocal

Rank
F1-score Variation Mean

Reciprocal Rank
Specificity
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Appendix C.

Distributions

#sem\_type: str
# gauss, exp, gumbel, uniform, logistic (linear);
# mlp, mim, gp, gp-add, quadratic (nonlinear).

C.1. Probability Distributions and Densities

C.1.0.1. Gaussian (Normal) Distribution

’gauss’: Gaussian (Normal) Distribution – This is a commonly used distri-
bution for linear models when the assumption of normality is appropriate.

f(x) =
1√
2πσ2

e−
(x−µ)2

2σ2

C.1.0.2. Exponential Distribution

’exp’: Exponential Distribution – Used for modeling the time between
events in a Poisson process.

f(x) = λe−λx

for x > 0 and 0 elsewhere. β is the scale parameter, which is the inverse
of the rate parameter λ = 1

β . The rate parameter is an alternative, widely
used parameterization of the exponential distribution [91].
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Appendix C. Distributions

C.1.0.3. Gumbel Distribution

’gumbel’: Gumbel Distribution – Often used in extreme value theory and
can be associated with maximum or minimum values in a distributionc[47], [97].

The Gumbel (or Smallest Extreme Value (SEV) or the Smallest Extreme
Value Type I) distribution is one of a class of Generalized Extreme Value
(GEV) distributions used in modeling extreme value problems. The Gumbel
is a special case of the Extreme Value Type I distribution for maximums
from distributions with “exponential-like” tails [47], [97].

The probability density for the Gumbel distribution is

f(x) =
1

β
e
−x−µ

β e−e
−x−µ

β

where µ is the mode, a location parameter, and β is the scale parameter.

C.1.0.4. Uniform Distribution

’uniform’: Uniform Distribution – Assumes that all values within a given
range are equally likely. The probability density function of the uniform
distribution is

f(x) =
1

b− a
anywhere within the interval [a, b), and zero elsewhere [65].

’logistic’: Logistic Distribution – Frequently used in logistic regression and
other modeling scenarios.

The Logistic distribution is used in Extreme Value problems where it can act
as a mixture of Gumbel distributions, in Epidemiology, and by the World
Chess Federation (FIDE) where it is used in the Elo ranking system, as-
suming the performance of each player is a logistically distributed random
variable [97]

The probability density function is

f(x) =
e−(x−µ)/s

s(1 + e−(x−µ)/s)
2

where µ = location and s = scale.
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C.2. Nonlinear Models

C.2. Nonlinear Models

In the following the function used in gcastle to generate the nonlinear mod-
els [96]

@staticmethod
def _simulate_nonlinear_sem(W, n, sem_type, noise_scale):
"""
Simulate samples from nonlinear SEM.

Parameters
----------
B: np.ndarray

[d, d] binary adj matrix of DAG.
n: int

Number of samples.
sem_type: str

mlp, mim, gp, gp-add, or quadratic.
noise_scale: float

Scale parameter of noise distribution
in linear SEM.

Return
------
X: np.ndarray

[n, d] sample matrix
"""
if sem_type == ’quadratic’:

return IIDSimulation._simulate_quad_sem(
W, n, noise_scale)

def _simulate_single_equation(X, scale):
"""X: [n, num of parents], x: [n]"""
z = np.random.normal(scale=scale, size=n)
pa_size = X.shape[1]
if pa_size == 0:

return z
if sem_type == ’mlp’:

hidden = 100
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Appendix C. Distributions

W1 = np.random.uniform(low=0.5, high=2.0,
size=[pa_size, hidden])
W1[np.random.rand(*W1.shape) < 0.5] *= -1
W2 = np.random.uniform(

low=0.5, high=2.0, size=hidden)
W2[np.random.rand(hidden) < 0.5] *= -1
x = sigmoid(X @ W1) @ W2 + z

elif sem_type == ’mim’:
w1 = np.random.uniform(

low=0.5, high=2.0, size=pa_size)
w1[np.random.rand(pa_size) < 0.5] *= -1
w2 = np.random.uniform(

low=0.5, high=2.0, size=pa_size)
w2[np.random.rand(pa_size) < 0.5] *= -1
w3 = np.random.uniform(

low=0.5, high=2.0, size=pa_size)
w3[np.random.rand(pa_size) < 0.5] *= -1
x = np.tanh(X @ w1) + np.cos(X @ w2) +

np.sin(X @ w3) + z
elif sem_type == ’gp’:

from sklearn.gaussian_process import
GaussianProcessRegressor

gp = GaussianProcessRegressor()
x = gp.sample_y(

X, random_state=None).flatten() + z
elif sem_type == ’gp-add’:

from sklearn.gaussian_process import
GaussianProcessRegressor

gp = GaussianProcessRegressor()
x = sum([gp.sample_y(

X[:, i, None], random_state=None).flatten()
for i in range(X.shape[1])]) + z

else:
raise ValueError(’Unknown sem type.

In a nonlinear model,
the options are as follows:
mlp, mim, gp, gp-add,
or quadratic.’)

return x
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C.2. Nonlinear Models

B = (W != 0).astype(int)
d = B.shape[0]
if noise_scale is None:

scale_vec = np.ones(d)
elif np.isscalar(noise_scale):

scale_vec = noise_scale * np.ones(d)
else:

if len(noise_scale) != d:
raise ValueError(’noise scale must be
a scalar or has length d’)

scale_vec = noise_scale

X = np.zeros([n, d])
G_nx = nx.DiGraph(B)
ordered_vertices = list(nx.topological_sort(G_nx))
assert len(ordered_vertices) == d
for j in ordered_vertices:

parents = list(G_nx.predecessors(j))
X[:, j] = _simulate_single_equation(
X[:, parents], scale_vec[j] )

return X

For Nonlinear Models:

C.2.0.1. Nonlinear Models

’mlp’: Multi-Layer Perceptron (MLP)

C.2.1. Multiple Indicators Multiple Causes (MIMIC)

’mim’: Multiple Indicators Multiple Causes (MIMIC)

C.2.2. Gaussian Process

’gp’: Gaussian Process
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Appendix C. Distributions

C.2.3. Additive Gaussian Process

’gp-add’: Additive Gaussian Process

C.2.4. Quadratic Distribution

’quadratic’: Quadratic Distribution – Represents a quadratic relationship
between variables.
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Appendix D.

Metrics in gCastle

The class “MetricsDAG” computes various accuracy metrics for estimated
DAG. In particular, we can define:

• true positive (TP): an edge estimated with correct direction.

• true negative (TN): an edge that is neither in estimated graph nor in
true graph.

• false positive (FP): an edge that is in estimated graph but not in the
true graph.

• false negative (FN): an edge that is not in estimated graph but in the
true graph.

• reverse: an edge estimated with reversed direction.

The following definitions are:

• False Discovery Rate

fdr =
reverse+ FP

TP + FP

• True Positive Rate

tpr =
TP

TP + FN

• False Positive Rate

fpr =
reverse+ FP

TN + FP
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Appendix D. Metrics in gCastle

• Structural Hamming Distance is the No. of edge additions, flips, or
deletions to get from the predicted graph to the true one

shd = undirectedextra+ undirectedmissing + reverse

• No. of Non-Negative Entries

nnz = TP + FP

• Precision

precision =
TP

TP + FP

• Recall
recall =

TP

TP + FN

• F1-Score
F1 =

2 ∗ (recall ∗ precision)
(recall + precision)

• G-Score ranges from 0 to 1

gscore = max(0,
TP − FP
TP + FN

)
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Simulated values of Ground Truth
and Central
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Appendix E. Simulated values of Ground Truth and Central
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Appendix F.

Publications

[14]
Title: A Decade of Churn Prediction Techniques in the TelCo Domain: a
Survey
Authors: Annalisa Barsotti, Gabriele Gianini, Corrado Mio, Jianyi Lin,
Himanshi Babbar, Aman Singh, Fatma Taher, Ernesto Damiani
Journal: SN Computer Science, (to appear)
Year: 2024
Abstract: This work surveys the research contributions of the last decade
to the prediction of customer churn and adds a perspective toward what is
yet to be reached. The main objective of this article is to report on (1) the
methods and algorithms studied, the evaluation metrics adopted, and the
results achieved, (2) the data used, and (3) the issues and limitations iden-
tified. Furthermore, the work highlights the gaps in the current literature
and suggests a direction for future research.

[93]
Title: Retinex by Autoencoders
Authors: Claudio Pezzoni, Corrado Mio, Annalisa Barsotti and Gabriele
Gianini
Book: 2022 16th International Conference on Signal-Image Technology &
Internet-Based Systems (SITIS), pp. 140–147
Year: 2022
Abstract: The Retinex algorithms find wide applications as image en-
hancers, for their capability of preserving edges, while at the same time
attenuating smooth gradients and chromatic dominants. They are char-
acterized by the fact that the output chromatic intensity of a pixel is
not determined in isolation (or looking only at the contiguous pixels) but
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Appendix F. Publications

through an operation of comparison to different local and remote areas of
the image. This local/global comparison implies also a high computational
cost for the algorithms: their complexity is not linear with the number of
pixels; furthermore, the more systematic the comparison, the higher the
complexity. Thus, most Retinex algorithms are unfit for real-time process-
ing. The recent development of efficient Machine Learning architectures
for Image Processing has raised the question of whether one of the Retinex
“transforms” could be efficiently learned by training a feed-forward Artificial
Neural Network, thus creating a model characterized by short processing
time. Selecting a variant of the Random Spray Retinex model – FuzzyRSR
– as representative of the Retinex family, and choosing suitably structured
autoencoder neural networks, we found that we could accurately reproduce
the Retinex effects. The computational cost of the training phase was mod-
erate, while that of the inference phases was linear in the number of pixels,
and three orders of magnitude lower than the one of FuzzyRSR, thus mak-
ing the ANN implementation of Retinex suitable for real-time processing.

[45]
Title: Heterogeneous Transfer Learning from a Partial Information De-
composition perspective
Authors: Gabriele Gianini, Annalisa Barsotti, Corrado Mio and Jianyi
Lin
Book: International Conference on Management of Digital, pp. 133–146
Year: 2023
Abstract:Transfer Learning (TL) encompasses a number of Machine Learn-
ing Techniques that take a pre-trained model aimed at solving a task in a
Source Domain and try to reuse it to improve the performance of a related
task in a Target Domain An important issue in TL is that the effective-
ness of those techniques is strongly dataset-dependent. In this work, we
investigate the possible structural causes of the varying performance of
Heterogeneous Transfer Learning (HTL) across domains characterized by
different, but overlapping feature sets (this naturally determine a partition
of the features into Source Domain specific sub- set, Target Domain specific
subset, and shared subset). To this purpose, we use the Partial Informa-
tion Decomposition (PID) framework, which breaks down the multivariate
information that input variables hold about an output variable into three
kinds of components: Unique, Synergistic, and Redundant. We consider
that each domain can hold the PID com- ponents in implicit form: this
restricts the information directly accessible to each domain. Based on the
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relative PID structure of the above men- tioned feature subsets, the frame-
work is able to tell, in principle: 1) which kind of information components
are lost in passing from one domain to the other, 2) which kind of infor-
mation components are at least implic- itly available to a domain, and 3)
what kind information components could be recovered through the bridge
of the shared features. We show an example of a bridging scenario based
on synthetic data.

275





Bibliography

[1] Abdelrahim Kasem Ahmad, Assef Jafar, and Kadan Aljoumaa. Cus-
tomer churn prediction in telecom using machine learning in big data
platform. Journal of Big Data, 6(1):1–24, 2019.

[2] K. Ahmad, A. K., Jafar, A., Aljoumaa. Customer churn prediction
in telecom using machine learning in big data platform. Journal of
Big Data, 6(1):1–24, 2019.

[3] Mahreen Ahmed, Hammad Afzal, Imran Siddiqi, Muhammad Faisal
Amjad, and Khawar Khurshid. Exploring nested ensemble learners
using overproduction and choose approach for churn prediction in
telecom industry. Neural Computing and Applications, 32:3237–3251,
2020.

[4] Naomi Altman and Martin Krzywinski. Points of significance: Asso-
ciation, correlation and causation. Nature methods, 12(10), 2015.

[5] Adnan Amin, Awais Adnan, and Sajid Anwar. An adaptive learning
approach for customer churn prediction in the telecommunication in-
dustry using evolutionary computation and naïve bayes. Applied Soft
Computing, 137:110103, 2023.

[6] Adnan Amin, Feras Al-Obeidat, Babar Shah, May Al Tae, Changez
Khan, Hamood Ur Rehman Durrani, and Sajid Anwar. Just-in-time
customer churn prediction in the telecommunication sector. The Jour-
nal of Supercomputing, 76(6):3924–3948, 2020.

[7] Adnan Amin, Babar Shah, Asad Masood Khattak, Fernando
Joaquim Lopes Moreira, Gohar Ali, Alvaro Rocha, and Sajid Anwar.
Cross-company customer churn prediction in telecommunication: A
comparison of data transformation methods. International Journal
of Information Management, 46:304–319, 2019.

277



Bibliography

[8] S. Amin, A., Al-Obeidat, F., Shah, B., Adnan, A., Loo, J., Anwar.
Customer churn prediction in telecommunication industry under un-
certain situation. Journal of Business Research, 94:290–301, 2019.

[9] K. Amin, A., Anwar, S., Adnan, A., Nawaz, M., Alawfi, K., Hussain,
A., Huang. Customer churn prediction in the telecommunication sec-
tor using a rough set approach. Neurocomputing, 237:242–254, 2017.

[10] M. M. Andrews, R., Zacharias, R., Antony, S., James. Churn predic-
tion in telecom sector using machine learning. International Journal
of Information, 8(2), 2019.

[11] J. Apurva Sree, G., Ashika, S., Karthi, S., Sathesh, V., Shankar, M.,
Pamina. Churn prediction in telecom using classification algorithms.
International Journal of Scientific Research and Engineering Devel-
opment, 5:19–28, 2019.

[12] G ApurvaSree, S Ashika, S Karthi, V Sathesh, M Shankar, and
J Pamina. Churn prediction in telecom using classification algorithms.
International Journal of Scientific Research and Engineering Devel-
opment, 5:19–28, 2019.

[13] Elias Bareinboim and Judea Pearl. Transportability of causal effects:
Completeness results. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 26, pages 698–704, 2012.

[14] Annalisa Barsotti, Gabriele Gianini, Corrado Mio, Jianyi Lin, Hi-
manshi Babbar, Aman Singh, Fatma Taher, and Ernesto Damiani. A
decade of churn prediction techniques in the telco domain: a survey.
SN Computer Science, (to appear), 2024.

[15] Josef Bauer and Dietmar Jannach. Improved customer lifetime
value prediction with sequence-to-sequence learning and feature-
based models. ACM Transactions on Knowledge Discovery from Data
(TKDD), 15(5):1–37, 2021.

[16] Patrick Blöbaum, Peter Götz, Kailash Budhathoki, Atalanti A. Mas-
takouri, and Dominik Janzing. Dowhy-gcm: An extension of dowhy
for causal inference in graphical causal models. arXiv preprint
arXiv:2206.06821, 2022.

278



Bibliography

[17] Gianluca Bontempi. ‘statistical foundations of machine learning’
handbook. 2021.

[18] Gianluca Bontempi. Between accurate prediction and poor decision
making: the ai/ml gap, 2023.

[19] Gianluca Bontempi and Maxime Flauder. From dependency to
causality: a machine learning approach. J. Mach. Learn. Res.,
16(1):2437–2457, 2015.

[20] Ulrik Brandes. On variants of shortest-path betweenness centrality
and their generic computation. Social networks, 30(2):136–145, 2008.

[21] Ionut Brandusoiu and Gavril Toderean. Churn prediction in the
telecommunications sector using support vector machines. Margin,
1:x1, 2013.

[22] G. Brandusoiu, I., Toderean. Churn prediction in the telecommuni-
cations sector using support vector machines. Margin, 1, 2013.

[23] Leo Breiman. Classification and regression trees. Routledge, 2017.

[24] Markus M Breunig, Hans-Peter Kriegel, Raymond T Ng, and Jörg
Sander. Lof: identifying density-based local outliers. In Proceedings
of the 2000 ACM SIGMOD international conference on Management
of data, pages 93–104, 2000.

[25] H. Brânduşoiu, I., Toderean, G., Beleiu. Methods for churn prediction
in the pre-paid mobile telecommunications industry. 2016 Interna-
tional conference on communications (COMM), pages 97–100, 2016.

[26] David Maxwell Chickering. Optimal structure identification with
greedy search. Journal of machine learning research, 3(Nov):507–554,
2002.

[27] Diego Colombo, Marloes H Maathuis, Markus Kalisch, and Thomas S
Richardson. Learning high-dimensional directed acyclic graphs with
latent and selection variables. The Annals of Statistics, pages 294–
321, 2012.

[28] S. Dahiya, K., Bhatia. Customer churn analysis in telecom industry.
In 2015 4th International Conference on Reliability, Infocom Tech-

279



Bibliography

nologies and Optimization (ICRITO)(Trends and Future Directions),
pages 1–6, 2015.

[29] Anouar Dalli. Impact of hyperparameters on deep learning model for
customer churn prediction in telecommunication sector. Mathematical
Problems in Engineering, 2022, 2022.

[30] Belur V Dasarathy. Nearest neighbour norms. IEEE Computer Soci-
ety Press, Los Alamitos, CA, December 1991.

[31] Sophia Daskalaki, Ioannis Kopanas, M Goudara, and N Avouris.
Data mining for decision support on customer insolvency in telecom-
munications business. European Journal of Operational Research,
145(2):239–255, 2003.

[32] Matthieu Defrance. Lessons learned from empirical and theoretical
research. PhD thesis, Katholieke Universiteit Leuven, 2024.

[33] Floris Devriendt, Jeroen Berrevoets, and Wouter Verbeke. Why you
should stop predicting customer churn and start using uplift models.
Information Sciences, 548:497–515, 2021.

[34] Jacob Dorn, Kevin Guo, and Nathan Kallus. Doubly-valid/doubly-
sharp sensitivity analysis for causal inference with unmeasured con-
founding. arXiv preprint arXiv:2112.11449, 2021.

[35] Frederick Eberhardt. Introduction to the foundations of causal dis-
covery. International Journal of Data Science and Analytics, 3:81–91,
2017.

[36] Bradley Efron, Trevor Hastie, Iain Johnstone, and Robert Tibshirani.
Least angle regression. 2004.

[37] Tom Fawcett. An introduction to roc analysis. Pattern recognition
letters, 27(8):861–874, 2006.

[38] Usama Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyth. The
kdd process for extracting useful knowledge from volumes of data.
Communications of the ACM, 39(11):27–34, 1996.

[39] Valerii Vadimovich Fedorov. Theory of optimal experiments. Elsevier,
2013.

280



Bibliography

[40] David L García, Àngela Nebot, and Alfredo Vellido. Intelligent data
analysis approaches to churn as a business problem: a survey. Knowl-
edge and Information Systems, 51(3):719–774, 2017.

[41] Louis Geiler, Séverine Affeldt, and Mohamed Nadif. An effective
strategy for churn prediction and customer profiling. Data & Knowl-
edge Engineering, 142:102100, 2022.

[42] Louis Geiler, Séverine Affeldt, and Mohamed Nadif. A survey on
machine learning methods for churn prediction. International Journal
of Data Science and Analytics, pages 1–26, 2022.

[43] Pierre Geurts, Damien Ernst, and Louis Wehenkel. Extremely ran-
domized trees. Machine learning, 63:3–42, 2006.

[44] Nada Ghanem, Stephan Leitner, and Dietmar Jannach. Balancing
consumer and business value of recommender systems: A simulation-
based analysis. arXiv preprint arXiv:2203.05952, 2022.

[45] Gabriele Gianini, Annalisa Barsotti, Corrado Mio, and Jianyi Lin.
Heterogeneous transfer learning from a partial information decompo-
sition perspective. In International Conference on Management of
Digital, pages 133–146. Springer, 2023.

[46] Yuanhu Gu, Thelma Domingo Palaoag, and Josephine S Dela Cruz.
Comparison of main algorithms in big data analysis of telecom cus-
tomer retention. In IOP Conference Series: Materials Science and
Engineering, volume 1077, page 012045. IOP Publishing, 2021.

[47] Emil Julius Gumbel. Statistics of extremes. Columbia university
press, 1958.

[48] Ruocheng Guo, Lu Cheng, Jundong Li, P Richard Hahn, and Huan
Liu. A survey of learning causality with data: Problems and methods.
ACM Computing Surveys (CSUR), 53(4):1–37, 2020.

[49] Pierre Gutierrez and Jean-Yves Gérardy. Causal inference and uplift
modelling: A review of the literature. In International conference on
predictive applications and APIs, pages 1–13. PMLR, 2017.

[50] Isabelle Guyon, Vincent Lemaire, Marc Boullé, Gideon Dror, and

281



Bibliography

David Vogel. Analysis of the kdd cup 2009: Fast scoring on a large
orange customer database. In KDD-Cup 2009 Competition, pages
1–22. PMLR, 2009.

[51] Nabgha Hashmi, Naveed Anwer Butt, and Muddesar Iqbal. Customer
churn prediction in telecommunication a decade review and classifi-
cation. International Journal of Computer Science Issues (IJCSI),
10(5):271, 2013.

[52] Miguel A Hernán and James M Robins. Causal inference, 2010.

[53] Johan Himberg, Aapo Hyvärinen, and Fabrizio Esposito. Validating
the independent components of neuroimaging time series via cluster-
ing and visualization. Neuroimage, 22(3):1214–1222, 2004.

[54] Tin Kam Ho. Random decision forests. In Proceedings of 3rd inter-
national conference on document analysis and recognition, volume 1,
pages 278–282. IEEE, 1995.

[55] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer
feedforward networks are universal approximators. Neural networks,
2(5):359–366, 1989.

[56] PJ Huber and EM Ronchetti. Robust statistics, wiley: New york,
1981.

[57] Aapo Hyvarinen. Fast and robust fixed-point algorithms for indepen-
dent component analysis. IEEE transactions on Neural Networks,
10(3):626–634, 1999.

[58] Adnan Idris, Muhammad Rizwan, and Asifullah Khan. Churn pre-
diction in telecom using random forest and pso based data balancing
in combination with various feature selection strategies. Computers
& Electrical Engineering, 38(6):1808–1819, 2012.

[59] Z. Idris, A., Iftikhar, A., ur Rehman. Intelligent churn prediction
for telecom using GP-AdaBoost learning and PSO undersampling.
Cluster Computing, 22(3):7241–7255, 2019.

[60] Guido W Imbens and Donald B Rubin. Causal inference in statistics,
social, and biomedical sciences. Cambridge University Press, 2015.

282



Bibliography

[61] Muhammad Ali Imron and Budi Prasetyo. Improving algorithm ac-
curacy k-nearest neighbor using z-score normalization and particle
swarm optimization to predict customer churn. Journal of Soft Com-
puting Exploration, 1(1):56–62, 2020.

[62] Hemlata Jain, Ajay Khunteta, and Sumit Private Shrivastav. Telecom
churn prediction using seven machine learning experiments integrat-
ing features engineering and normalization. 2021.

[63] R. Jain, H., Yadav, G., Manoov. Churn prediction and retention in
banking, telecom and IT sectors using machine learning techniques.
In Advances in Machine Learning and Computational Intelligence,
137-156, 2021.

[64] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani.
An introduction to statistical learning. Springer texts in statistics.
Springer, New York, NY, 1 edition, June 2013.

[65] Mark R Jerrum, Leslie G Valiant, and Vijay V Vazirani. Random
generation of combinatorial structures from a uniform distribution.
Theoretical computer science, 43:169–188, 1986.

[66] Muhammad BA Joolfoo, Rameshwar A Jugumauth, and Khalid MBA
Joolfoo. A systematic review of algorithms applied for telecom
churn prediction. In 2020 3rd International Conference on Emerg-
ing Trends in Electrical, Electronic and Communications Engineering
(ELECOM), pages 136–140. IEEE, 2020.

[67] K. M. Joolfoo, M. B., Jugumauth, R. A., Joolfoo. A systematic review
of algorithms applied for telecom churn prediction. In 2020 3rd In-
ternational Conference on Emerging Trends in Electrical, Electronic
and Communications Engineering (ELECOM), pages 136–140, 2020.

[68] Markus Kalisch and Peter Bühlman. Estimating high-dimensional
directed acyclic graphs with the pc-algorithm. Journal of Machine
Learning Research, 8(3), 2007.

[69] N Kamalraj and A Malathi. A survey on churn prediction techniques
in communication sector. International Journal of Computer Appli-
cations, 64(5):39–42, 2013.

283



Bibliography

[70] V Kavitha, G Hemanth Kumar, G Hemanth Kumar, and M Har-
ish. Churn prediction of customer in telecom industry using machine
learning algorithms. Int. J. Eng. Res. Technol.(IJERT), 9(5):181–184,
2020.

[71] Kirui H. Kirui C., Hong, L. Cheruiyot, W. Predicting customer churn
in mobile telephony industry using probabilistic classifiers in data
mining. International Journal of Computer Science Issues (IJCSI),
10(2 Part 1):165, 2013.

[72] Daphne Koller and Nir Friedman. Probabilistic graphical models:
principles and techniques. MIT press, 2009.

[73] Praveen Lalwani, Manas Kumar Mishra, Jasroop Singh Chadha, and
Pratyush Sethi. Customer churn prediction system: a machine learn-
ing approach. Computing, 104(2):271–294, 2022.

[74] Steffen L Lauritzen, A Philip Dawid, Birgitte N Larsen, and H-G
Leimer. Independence properties of directed markov fields. Networks,
20(5):491–505, 1990.

[75] Thuc Duy Le, Tao Hoang, Jiuyong Li, Lin Liu, Huawen Liu, and Shu
Hu. A fast pc algorithm for high dimensional causal discovery with
multi-core pcs. IEEE/ACM transactions on computational biology
and bioinformatics, 16(5):1483–1495, 2016.

[76] Xu-Ying Liu, Jianxin Wu, and Zhi-Hua Zhou. Exploratory undersam-
pling for class-imbalance learning. IEEE Transactions on Systems,
Man, and Cybernetics, Part B (Cybernetics), 39(2):539–550, 2008.

[77] Christopher M. Bishop. Pattern Recognition and Machine Learning.
Information Science and Statistics. Springer, New York, NY, 1 edi-
tion, August 2006.

[78] S Mahalakshmi and M Hemalatha. Customer churns prediction in
telecom using adaptive logitboost vs peergrading regression learning
technique. IJITEE, 9(6):1025–1037, 2020.

[79] Denisa Maria Melian, Andreea Dumitrache, Stelian Stancu, and
Alexandra Nastu. Customer churn prediction in telecommunication
industry. a data analysis techniques approach. Postmodern Openings,

284



Bibliography

13(1 Sup1):78–104, 2022.

[80] Aleksander Molak. Causal Inference and Discovery in Python. Packt
Publishing, Birmingham, England, May 2023.

[81] Stephen L Morgan and Christopher Winship. Counterfactuals and
causal inference. Cambridge University Press, 2015.

[82] Nurulhuda Mustafa, Lew Sook Ling, and Siti Fatimah Abdul
Razak. Customer churn prediction for telecommunication industry:
A malaysian case study. F1000Research, 10, 2021.

[83] Ignavier Ng, AmirEmad Ghassami, and Kun Zhang. On the role of
sparsity and dag constraints for learning linear dags. Advances in
Neural Information Processing Systems, 33:17943–17954, 2020.

[84] Ana Rita Nogueira, Andrea Pugnana, Salvatore Ruggieri, Dino Pe-
dreschi, and João Gama. Methods and tools for causal discovery and
causal inference. Wiley interdisciplinary reviews: data mining and
knowledge discovery, 12(2):e1449, 2022.

[85] Judea Pearl. Probabilistic reasoning in intelligent systems: networks
of plausible inference. Morgan kaufmann, 1988.

[86] Judea Pearl. Causal diagrams for empirical research. Biometrika,
82(4):669–688, 1995.

[87] Judea Pearl. Causality. Cambridge university press, 2009.

[88] Judea Pearl and Elias Bareinboim. Transportability of causal and
statistical relations: A formal approach. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 25, pages 247–254, 2011.

[89] Judea Pearl, Madelyn Glymour, and Nicholas P Jewell. Causal in-
ference in statistics: A primer. John Wiley & Sons, 2016.

[90] Judea Pearl and Thomas S Verma. A theory of inferred causation.
In Studies in Logic and the Foundations of Mathematics, volume 134,
pages 789–811. Elsevier, 1995.

[91] Peyton Z Peebles Jr et al. Probability Random variables, and random
signal principles. 1987.

285



Bibliography

[92] Jonas Peters, Dominik Janzing, and Bernhard Schölkopf. Elements
of causal inference: foundations and learning algorithms. The MIT
Press, 2017.

[93] Claudio Pezzoni, Corrado Mio, Annalisa Barsotti, and Gabriele Gian-
ini. Retinex by autoencoders. In 2022 16th International Conference
on Signal-Image Technology & Internet-Based Systems (SITIS), pages
140–147. IEEE, 2022.

[94] Saad Ahmed Qureshi, Ammar Saleem Rehman, Ali Mustafa Qamar,
Aatif Kamal, and Ahsan Rehman. Telecommunication subscribers’
churn prediction model using machine learning. In Eighth interna-
tional conference on digital information management (ICDIM 2013),
pages 131–136. IEEE, 2013.

[95] A. Qureshi, S. A., Rehman, A. S., Qamar, A. M., Kamal, A., Rehman.
Telecommunication subscribers’ churn prediction model using ma-
chine learning. In Eighth international conference on digital infor-
mation management (ICDIM 2013), pages 131–136, 2013.

[96] Hans Reichenbach. The direction of time, volume 65. Univ of Cali-
fornia Press, 1956.

[97] Rolf-Dieter Reiss, Michael Thomas, and RD Reiss. Statistical analysis
of extreme values, volume 2. Springer, 1997.

[98] Afifah Ratna Safitri and Much Aziz Muslim. Improved accuracy
of naive bayes classifier for determination of customer churn uses
smote and genetic algorithms. Journal of Soft Computing Exploration,
1(1):70–75, 2020.

[99] Richard Scheines. An introduction to causal inference. 1997.

[100] Mark Schmidt, Nicolas Le Roux, and Francis Bach. Minimizing finite
sums with the stochastic average gradient. Mathematical Program-
ming, 162:83–112, 2017.

[101] Muzaffar Shah, Darshan Adiga, Shabir Bhat, and Viveka Vyeth. Pre-
diction and causality analysis of churn using deep learning. Comput.
Sci. Inf. Technol, 9(13):153–165, 2019.

286



Bibliography

[102] Amit Sharma and Emre Kiciman. Dowhy: An end-to-end library for
causal inference. arXiv preprint arXiv:2011.04216, 2020.

[103] Shohei Shimizu. Lingam: Non-gaussian methods for estimating causal
structures. Behaviormetrika, 41:65–98, 2014.

[104] Shohei Shimizu, Takanori Inazumi, Yasuhiro Sogawa, Aapo Hyvari-
nen, Yoshinobu Kawahara, Takashi Washio, Patrik O Hoyer, Kenneth
Bollen, and Patrik Hoyer. Directlingam: A direct method for learning
a linear non-gaussian structural equation model. Journal of Machine
Learning Research-JMLR, 12(Apr):1225–1248, 2011.

[105] Ilya Shpitser and Judea Pearl. Identification of joint interventional
distributions in recursive semi-markovian causal models. In Proceed-
ings of the National Conference on Artificial Intelligence, volume 21,
page 1219. Menlo Park, CA; Cambridge, MA; London; AAAI Press;
MIT Press; 1999, 2006.

[106] Anna Śniegula, Aneta Poniszewska-Marańda, and Milan Popović.
Study of machine learning methods for customer churn prediction in
telecommunication company. In Proceedings of the 21st International
Conference on Information Integration and Web-based Applications
Services, pages 640–644, 2019.

[107] Michael E Sobel. An introduction to causal inference. Sociological
Methods & Research, 24(3):353–379, 1996.

[108] Yang Song, Jian Huang, Ding Zhou, Hongyuan Zha, and C Lee Giles.
Iknn: Informative k-nearest neighbor pattern classification. In Euro-
pean conference on principles of data mining and knowledge discovery,
pages 248–264. Springer, 2007.

[109] Peter Spirtes, Clark N Glymour, and Richard Scheines. Causation,
prediction, and search. MIT press, 2000.

[110] Zhiqiang Tan. A distributional approach for causal inference using
propensity scores. Journal of the American Statistical Association,
101(476):1619–1637, 2006.

[111] Y. H. Tsai, C. F., Lu. Customer churn prediction by hybrid neu-
ral networks. Expert Systems with Applications, 36(10):12547–12553,

287



Bibliography

2009.

[112] Irfan Ullah, Basit Raza, Ahmad Kamran Malik, Muhammad Imran,
Saif Ul Islam, and Sung Won Kim. A churn prediction model us-
ing random forest: analysis of machine learning techniques for churn
prediction and factor identification in telecom sector. IEEE access,
7:60134–60149, 2019.

[113] V Umayaparvathi and K Iyakutti. Applications of data mining tech-
niques in telecom churn prediction. International Journal of Com-
puter Applications, 42(20):5–9, 2012.

[114] K. C. Vafeiadis, T., Diamantaras, K. I., Sarigiannidis, G., Chatzisav-
vas. A comparison of machine learning techniques for customer churn
prediction. Simulation Modelling Practice and Theory, 55:1–9, 2015.

[115] Théo Verhelst, Olivier Caelen, Jean-Christophe Dewitte, Bertrand
Lebichot, and Gianluca Bontempi. Understanding telecom customer
churn with machine learning: from prediction to causal inference.
In Artificial Intelligence and Machine Learning: 31st Benelux AI
Conference, BNAIC 2019, and 28th Belgian-Dutch Machine Learning
Conference, BENELEARN 2019, Brussels, Belgium, November 6-8,
2019, Revised Selected Papers 28, pages 182–200. Springer, 2020.

[116] Théo Verhelst, Denis Mercier, Jeevan Shrestha, and Gianluca Bon-
tempi. Partial counterfactual identification and uplift modeling: the-
oretical results and real-world assessment. Machine Learning, pages
1–25, 2023.

[117] Thomas S Verma and Judea Pearl. Equivalence and synthesis of
causal models. In Probabilistic and causal inference: The works of
Judea Pearl, pages 221–236. 2022.

[118] Jaime Vitola, Francesc Pozo, Diego A Tibaduiza, and Maribel Anaya.
A sensor data fusion system based on k-nearest neighbor pattern
classification for structural health monitoring applications. Sensors,
17(2):417, 2017.

[119] W. D. Xia, G. E., Jin. Model of customer churn prediction on support
vector machine. Systems Engineering-Theory Practice, 28(1):71–77,
2008.

288



Bibliography

[120] Hong Xu et al. Analysis and comparison of forecasting algorithms for
telecom customer churn. In Journal of Physics: Conference Series,
volume 1881, page 032061. IOP Publishing, 2021.

[121] Liuyi Yao, Zhixuan Chu, Sheng Li, Yaliang Li, Jing Gao, and Aidong
Zhang. A survey on causal inference. ACM Transactions on Knowl-
edge Discovery from Data (TKDD), 15(5):1–46, 2021.

[122] A. (2021) Yaseen. Next-wave of e-commerce: Mobile customers churn
prediction using machine learning. LGURJCSIT, 5(2):62–72, 2021.

[123] Asif Yaseen. Next-wave of e-commerce: Mobile customers churn pre-
diction using machine learning. Lahore Garrison University Research
Journal of Computer Science and Information Technology, 5(2):62–
72, 2021.

[124] Edward N Zalta, Uri Nodelman, Colin Allen, and John Perry. Stan-
ford encyclopedia of philosophy, 1995.

[125] Alessio Zanga, Elif Ozkirimli, and Fabio Stella. A survey on causal
discovery: theory and practice. International Journal of Approximate
Reasoning, 151:101–129, 2022.

[126] Guozhen Zhang, Jinwei Zeng, Zhengyue Zhao, Depeng Jin, and Yong
Li. A counterfactual modeling framework for churn prediction. In
Proceedings of the Fifteenth ACM International Conference on Web
Search and Data Mining, pages 1424–1432, 2022.

[127] Keli Zhang, Shengyu Zhu, Marcus Kalander, Ignavier Ng, Junjian Ye,
Zhitang Chen, and Lujia Pan. gcastle: A python toolbox for causal
discovery. arXiv preprint arXiv:2111.15155, 2021.

[128] Tianyuan Zhang, Sérgio Moro, and Ricardo F Ramos. A data-driven
approach to improve customer churn prediction based on telecom cus-
tomer segmentation. Future Internet, 14(3):94, 2022.

[129] Ming Zhao, Qingjun Zeng, Ming Chang, Qian Tong, and Jiafu Su. A
prediction model of customer churn considering customer value: an
empirical research of telecom industry in china. Discrete Dynamics
in Nature and Society, 2021, 2021.

289



Bibliography

[130] Xun Zheng, Bryon Aragam, Pradeep Ravikumar, and Eric P. Xing.
DAGs with NO TEARS: Continuous Optimization for Structure
Learning. In Advances in Neural Information Processing Systems,
2018.

290


	Abstract
	List of Figures
	Introduction
	Motivation
	Research Questions
	Problem formalization
	Background: Telecommunication Business Context
	Business Question 1 (BQ1)
	Business Question 2 (BQ2)
	Business Question 3 (BQ3)

	Structure of the thesis

	Related Work
	Systematic Literature Review Methodology
	Contributions
	Schema
	Inclusion Criteria
	Exclusion Criteria
	Research Selection Process
	Acronyms

	Relevant Research Papers
	Articles description
	Existing Surveys
	Decision Trees
	Support Vector Machines
	Artificial Neural Networks
	Genetic Programming
	Bayesian Models
	Logistic Regression
	Uplift Models

	Discussion and Conclusion

	Experimental Setup
	Telecom Dataset Description
	Structure of the dataset
	Predictive Analysis
	Problem formulation
	Experimental Design
	Classification Models
	Decision Tree Classifier
	Random Forest Classifier
	Logistic Regression Classifier
	K-Nearest Neighbours Classifier
	Gradient Boost Classifier
	Easy Ensemble Classifier

	Data Preprocessing
	Data Cleaning and Missing data treatment
	Categorical variables Encoding
	Normalization
	Outliers Handling
	Feature Selection through classification

	Model Training
	Performance Analysis and Visualization: Company's case-study
	ROC curves

	Performance Analysis and Visualization: Balanced Test set

	Preliminary Concepts in Causality
	Introduction
	Basic Definitions and Notations
	Graphs
	Causal Reasoning
	Causal Questions
	Causal Discovery
	Causal Inference
	Causal Connectivity

	Causal interpretation
	Sensitivity Analysis
	Sensitivity assumption and problem statement
	Causal effect and ATE

	Causal Discovery Methods
	PC Algorithm
	GES Algorithm
	DirectLINGAM
	NOTEARS
	GOLEM
	DoWhy

	Relation between Causal Inference and Machine Learning
	Transferability


	Experimental setup for Causal Discovery
	Outline of our study
	The Topology Generator
	Simulations: Comparison heatmaps
	A simple example of GT with fixed number of nodes
	The model evaluation metrics

	Predicted matrices and Ground Truth Comparison
	Current Dataset: Linear Gaussian
	Current Dataset: Linear Exponential
	Current Dataset: Linear Uniform
	Current Dataset: Linear Gumbel
	Current Dataset: Linear Logistic
	Current Dataset: Quadratic
	Current Dataset: Multilayer Perceptron
	Current Dataset: Multiple Instance Learning
	Current Dataset: Gaussian Process
	Current Dataset: Gaussian Process for Additive Models

	Ensemble Based Causal Discovery
	The Centroid
	A causality oriented definition of distance
	Learning form the DAGs relationships to select the best performing DAG
	Features Description
	Dataset generation related variables
	Unlabeled part of the dataset
	Labels and GT related variables
	Relationships among DAGs, not considering the Ground Truth
	Features of the Ensemble relative to the Ground Truth
	Correct/incorrect reconstruction of the GT DAG
	Distance variables


	The ML task
	The AutoML (Automated Machine Learning) approach
	Selection criterion

	Outcomes
	Outcomes of Binary Relevance (BR) approach
	Outcomes of Classifiers Chain (CC) approach


	Causal Discovery on Real Data
	Centroid Graph and Causal Inference by using Real Data
	The analysis walkthrough of the trf_m__var_57 variable.
	Estimand 1: Backdoor.
	Frontdoor Estimand

	The variable cns_m__var_17
	Instrumental Variable

	The variable anag_cli_f_var_1
	The variable anag_cli_f_var_3
	The variable anag_cli_f_var_7
	The variable trf_m__var_49
	The variable trf_m__var_51
	The variable trf_m__var_52
	The variable trf_m__var_53
	The variable trf_m__var_54
	The variable trf_m__var_55
	The variable trf_m__var_56
	The variable anag_cli_f_var_0
	The variable anag_cli_f_var_5
	The variable anag_cli_f_var_9
	The variable anag_cli_f_var_10
	The variable anag_cli_f_var_13
	The variable anag_cli_f_var_14
	The variable cerved_int__var_15
	The variable cns_m__var_18
	The variable cns_m__var_19
	The variable cns_m__var_20
	The variable cns_m__var_21
	The variable usg_m__var_59
	The variable cns_m__var_17
	The variable usg_m__var_60
	The variable usg_m__var_61


	Conclusions
	Contributions
	Churn Prediction
	Causal Discovery
	Causal Inference

	Future research directions

	Probability Notations
	Metrics
	Distributions
	Probability Distributions and Densities
	Gaussian (Normal) Distribution
	Exponential Distribution
	Gumbel Distribution
	Uniform Distribution

	Nonlinear Models
	Nonlinear Models
	Multiple Indicators Multiple Causes (MIMIC)
	Gaussian Process
	Additive Gaussian Process
	Quadratic Distribution


	Metrics in gCastle
	Simulated values of Ground Truth and Central
	Publications
	Bibliography

