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Abstract: Radiomics and genomics represent two of the most promising fields of cancer research,
designed to improve the risk stratification and disease management of patients with prostate cancer
(PCa). Radiomics involves a conversion of imaging derivate quantitative features using manual or
automated algorithms, enhancing existing data through mathematical analysis. This could increase
the clinical value in PCa management. To extract features from imaging methods such as magnetic
resonance imaging (MRI), the empiric nature of the analysis using machine learning and artificial
intelligence could help make the best clinical decisions. Genomics information can be explained
or decoded by radiomics. The development of methodologies can create more-efficient predictive
models and can better characterize the molecular features of PCa. Additionally, the identification of
new imaging biomarkers can overcome the known heterogeneity of PCa, by non-invasive radiological
assessment of the whole specific organ. In the future, the validation of recent findings, in large,
randomized cohorts of PCa patients, can establish the role of radiogenomics. Briefly, we aimed to
review the current literature of highly quantitative and qualitative results from well-designed studies
for the diagnoses, treatment, and follow-up of prostate cancer, based on radiomics, genomics and
radiogenomics research.
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1. Introduction

Prostate cancer (PCa) is the most frequently diagnosed cancer in Western Europe, the
Americas, Australia, and the Central African continent, recognized as the second leading
cause of death after lung cancer [1]. Only in the United States, 248,530 patients will be
diagnosed with PCa in 2021, with a 5% increase compared to 2020 and 34,130 estimated
deaths [2]. Based on the prostate-specific antigen (PSA) values at diagnosis, and the biopsy
results and clinical stage, patients with PCa are stratified in risk categories and treated
according to their disease prognosis [3]. Active surveillance (AS) is considered the gold
standard treatment for patients with low-risk, indolent disease. Active treatment with
radical prostatectomy (RP) or radiation therapy should be considered for patients with
intermediate-risk PCa. Finally, multimodal therapies, including active treatment to the
prostate and systemic therapies, may be necessary for patients harboring adverse high-risk
diseases [4,5]. The main directions for all the studied cancers are those regarding the
methods that guide the implementation of well-designed studies [6]. For this purpose, the
image biomarker standardization initiative (IBSI) (35) will possibly lead to a consensus and
a standardization of radiomics features and image processing [7]. The TRIPOD (transparent
reporting of a multivariable prediction model for individual prognosis or diagnosis) state-
ment is intended for studies to validate multivariable prediction models [8]. All studies
point to a conclusion that radiogenomics is a part of the desired current precision medicine.

In the last years, the introduction of advanced imaging techniques, such as multi-
parametric magnetic resonance of the prostate (mpMRI) and prostate-specific membrane
antigen positron emission tomography (PSMA-PET) scans, in addition to the availability
of novel molecular markers, have shifted the paradigm of PCa screening, diagnosis, and
treatment to a more individualized approach. According to the latest guidelines, every
man at risk of PCa should undergo magnetic resonance of the prostate (MRI) prior to
prostate biopsy [4,5]. If the MRI is positive, additional cores are taken from suspicious
MRI lesions to improve prostate sampling. Additionally, MRI has been proven to pro-
vide higher staging accuracy compared to digital rectal examination (DRE), allowing a
more conservative dissection in patients undergoing RP [9]. On the other hand, while
Gleason grading and histological analysis are based on glandular architecture and the
phenotypic appearance of PCa, novel techniques for the high-throughput sequencing of ri-
bonucleic acid (RNA) and deoxyribonucleic acid (DNA) extracted from cancer cells helped
to characterize PCa at a genotypic level [10]. Being the latest studied in PCa genomics, the
concept of the heterogeneity of PCa, the intratumoral modifications, clonal and subclonal
alterations, microheterogeneity, macroheterogeneity, the multifocal nature of PCa, and the
inter-tumoral heterogeneity need to be matched between imaging and molecular pathology,
for establishing the clinical implications [11–13].

Therefore, radiomics and genomics represent two of the most promising fields of
cancer research. With advanced computational methods, it is now possible to extract
quantitative features from patients scans, and to analyze the high quantity of data coming
from these novel diagnostic tools to ultimately improve the risk stratification and disease
management of patients with PCa. The combination of these fields, namely, radiogenomics,
founds its foundation on the correlation between advanced image texture analysis, molecu-
lar characteristics, and patients’ outcomes. Radiogenomics have been studied in only a few
cancers, such as glioblastoma [14–17], breast cancer [18–21], renal cancer [22–24], and other
common neoplasms, which are summarized in a review by Shui et al. [6].

In recent years, radiomics features have been linked to the molecular characteristics
of cancer tissue, genomics, proteomics, and metabolomics. This new ongoing field of
research for PCa is an extension of radiomics, and its main focus is a tailored approach in
the diagnosis of aggressive PCa [25], and the prediction of prognosis [26], progression [27],
and treatment response [25]. The term radiogenomics may be correctly referred to in two
different types of studies. Those who evaluate the correlation of the imaging quantitative
features and molecular characteristics of visible and non-visible cancer foci, and those
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who aimed to develop radiogenomic models to predict disease outcomes, combining
complementary information coming from radiomics and genomics [28,29].

The aim of this review was to summarize the current evidence regarding radio-
genomics and its application in patients with PCa, and to give an overview of the current
evidence and future directions of radiogenomics. This will emphasize the role of the present
application of radiogenomics in clinical settings, with the need to better understand the
combination between radiomics and genomics in PCa development, detection, treatment,
and follow-up of PCa patients, to better adapt the management of these patients.

2. Results

A total of 1066 research papers were identified. Fourteen duplicate files were removed
and 1052 abstracts were screened for eligibility. One hundred and twenty-five met the
criteria for quantitative analysis using radiomics, radiogenomics, PCa, genomics, MRI,
PET-CT as the keywords (Figure 1). After full-text examination, a total of 61 papers were
ultimately included.
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2.1. Radiomics

Radiomics is the extraction of the quantitative image analysis of textures and features
(region size, shape or location, histogram of volume intensity, texture analysis, transform
analysis, fractal analysis) [30], provided by imaging tools (e.g., mpMRI) that focus on
the improvement of the analysis of large datasets through semi-automatic or automatic
software [31,32], with the aim of pinpointing the localization of the PCa and assessing its
aggressiveness [33,34]. These models were already studied in a variety of cancers [35–39].
The recent rise in artificial intelligence (AI) and machine learning (ML) algorithms has
introduced new classifications for PCa, regarding the differentiation of favorable from
unfavorable disease [40,41]; the quantitative assessment of information predicting the
tumor Gleason score [31,32,42–44] and biochemical recurrence (BCR)-free survival [45];
the identification of tumors through mpMRI [43,46]; the development of new detection
features, such as advanced zoomed diffusion-weighted imaging (DWI) and conventional
full-field-of-view DWI [47]; texture analysis of prostate MRI in the prostate imaging report-
ing and data system (PIRADS) for PI-RADS 3 score lesions [48]; the creation of frameworks
for automated PCa localization and detection [49]; and, finally, the management of radio-
therapy treatment and toxicity [50–56], and the prediction of BCR [57–65]. Additionally,
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radiomics and AI algorithms will help to limit the discrepancies between different read-
ers [66]. Indeed, mpMRI of the prostate, which has gained popularity as the most reliable
imaging technique for PCa diagnosis and treatment, provides qualitative and quantita-
tive parameters. The qualitative aspect is linked to the ability of an expert radiologist to
provide an accurate scoring for the lesion images in the prostate tissue [26]. Quantitative
measurements, such as tumor size, prostate volumes, and radiomics features are computed
directly from the image [67] and could be considered reader-independent. A summary of
specific medical expressions is accessible in Table 1.

Table 1. Short definitions for specific medical terms.

Terminology Short Definition

Radiomics Quantitative approach to medical imaging, enhancing existing
data through mathematical analysis [68].

Genomics

Study of whole genomes, including elements from genetics.
Genomics uses a combination of recombinant DNA, DNA

sequencing methods, and bioinformatics to sequence, assemble,
and analyze the structure and function of genomes [69–71].

Radiogenomics
Genomics information that can be explained or decoded by

radiomics and to develop methodology to create more-efficient
predictive models [72].

DNA = deoxyribonucleic acid.

Despite the reported advantages, challenges remain in deeply identifying the prognos-
tic and predictive factors for individual patients, developing markers to tailor the diagnosis
and treatment of low-risk and high-risk PCa patients.

2.2. Radiomics in Prostate Cancer Management

Although it is beyond the purpose of this review to focus on the radiomics technical terms,
we have briefly provided a reminder of them because they represents the starting point in this
research field. Articles that studied radiomics in PCa are just briefly reminded and not analyzed
in detail, and we had them incorporated in a table, along with their clinical outcomes and results.
In PCa, the use of radiomics aids prostate volume selection and segmentation [30,40,46,73–76],
PCa screening [28,77,78], detection and classification [29,77,79–81], in addition to its role in risk
stratification [61,76,82,83], treatment [59,75,78,84–86], and prognosis. One of the first studies
that analyzed the imaging features for PCA was performed by Khalvati et al. [87], with the
goal of creating a radiomics-based auto detection method utilizing an mpMRI feature model
that combined computed high b-value DWI (diffusion-weighted imaging) and correlated
diffusion imaging, which was then evaluated through a support vector machine (SVM) classifier.
The study reported good results in terms of sensitivity (95% CI 0.76–0.91), specificity (0.86
95% CI 0.82–0.91), and area under the curve (AUC) (0.90 95% CI 0.88–0.93). mpMRI-based
radiomic features need, however, to still be largely tested, in order to assess the robustness
and reproducibility of methods and workflow; therefore, a proper standardization of MRI
image acquisition across institutions should be encouraged as an initial step. [75]. Similarly,
more data are required from clinical trials to accurately distinguish cancerous versus benign
lesions, to assess the robustness of radiomics-based predictive models, and to standardize
features as the automatic segmentation of gross tumor volume [50,88–90]. In the detection of
clinically significant PCa, the combination of radiological and clinical radiomic models was,
indeed, among the best methods to predict clinically significant PCa in patients with a PIRADS
score of three or more. The development of different models in an automatic fashion, using
ML and AI techniques, and the construction of nomograms [91] could further improve the
radiomic potential on this issue. The currently existing data are promising, with radiomics
outperforming PIRADS v2 in the detection of high-grade versus low-grade PCa, although some
limitations remain regarding the standardization of data, and further studies are required to
confirm the performance of radiomics compared to conventional radiological analysis [92].
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Moreover, radiomics models are useful in the detection of prostate extracapsular extension
(ECE), and allows predictive models to be build for the pretreatment detection of ECE, focusing
on a combined model of clinical, conventional radiology and radiomics [93–95].

In Table 2, we incorporated the details of the current research on the potential of
radiomics to detect PCa, differentiating between aggressive and indolent disease, and ECE,
reporting clinical outcomes of interest, accuracy, and imaging modality.

Table 2. Clinical results of radiomics studies.

Author Clinical Outcomes Type of Image Acquisition Results

Radiomics in diagnosis and detection of prostate cancer

Zhang et al. [29] Upgrading Gleason score from biopsy
to RP MRI

AUC: combined clinical and
radiomics model 0.910, clinical model

0.646, radiomics model 0.868

Dulhanty et al. [80] Detection of PCa MRI
Zone-discovery radiomics model

(AUC 0.86) > clinical heuristics model
(AUC 0.79)

Bagher-
Ebadian et al. [79]

Detection of dominant
intraprostatic lesions and normal

tissue
MRI

Comparison between conventional
model and artificial neural network
model, AUC model (0.94 and 0.95,

respectively)

Qi et al. [77]
Detection of PCa through radiomics in

prostate cancer patients with PSA
range 4–10 ng/mL

MRI
Combined model (radiomics signature

and clinical radiological risk factors)
AUC 0.933, p < 0.05

Chen et al. [81]
Diagnosis of

intermediate-/high-grade
(GS ≥ 7) tumors

MRI

Radiomics-based model > PIRADS v2
model in PCa detection vs. no PCa

(AUC 0.999). Validation in
differentiating high-grade from

low-grade PCa (AUC 0.777)

Khalvati et al. [87] Detection of PCa MRI

Specificity used as performance
evaluation criteria can maximize the
results for AUC (0.90), which leads to

balanced results for sensitivity and
specificity; 0.84 and 0.86, respectively

Hu et al. [47] Detection of PCa MRI

Mixed model better compared with
mp-MRI signatures and clinically

independent risk factors alone (AUC
0.81, 0.93, and 0.94 in training sets,

and 0.74, 0.92, and 0.93 in validation
sets, respectively)

Brunese et al. [96] Gleason score prediction MRI

Gleason score prediction equal to
0.98473, 0.96667, 0.98780 and 0.97561
for, respectively, Gleason score 3 + 3,

Gleason score 3 + 4, Gleason score 4 +
3 and Gleason score 4 + 4 prediction

Radiomics and detection of clinically significant prostate cancer

Wang et al. [97]

Detection of clinically significant
PCa Gleason score ≥ 7 (3 + 4). Lesions

defined as volume > 0.5 cm3 on
histopathology.

mp-MRI

PCa vs. normal PZ + TZ
Combined: 0.978 (0.947–0.993)

PCa vs. normal PZ
Combined: 0.983 (0.960–0.995)

PCa vs. normal TZ
Combined: 0.968 (0.940–0.985)

Kwon et al. [98] Detection of clinically significant
PCa Gleason score ≥ 7 (3 + 4) MRI AUC 0.82 (random forests), 0.76

(CART), and 0.76 (adaptive LASSO)

Parra et al. [99] Detection of clinically significant
PCa Gleason score ≥ 7 (3 + 4) mpMRI

The trained models had an AUC of
0.82 and an AUC of 0.82 on validation

cohort

Penzias et al. [100] Detection of high-grade
PCa MRI

Gabor texture features identified as
most predictive of Gleason grade on

MRI (AUC of 0.69)

Cuocolo et al. [40] Detection of clinically significant
PCa Gleason score ≥ 7 (3 + 4) MRI Multivariable analysis of T2W and

ADC-derived SAVR: AUC 0.78

Giambelluca et al. [48]
Presence of clinically significant PCa

Gleason score ≥ 7 (3 + 4) in PIRADS 3
images

MRI

AUC of 0.769 and 0.817 on T2w or
0.749 and 0.744 on ADC maps images

Analysis was performed using the
GLM regression. To strengthen the
reliability of the results and avoid

over-fitting, 10-fold cross-validation
was performed
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Table 2. Cont.

Author Clinical Outcomes Type of Image Acquisition Results

Min X et al. [101] Detection of clinically significant
PCa Gleason score ≥ 7 (3 + 4) mpMRI

Logistic regression modeling yielded
AUC 0.872 in the training cohort and

0.823 in the test cohort

Brancato et al. [102]
Gleason Score ≥ 6 in PIRADS 3

images and in peripheral PIRADS 3
upgraded to PIRADS 4 images

MRI

PIRADS 3 images: sensitivity,
specificity and accuracy (0.8, 0.51, 0.71,

respectively) with AUC = 0.76. For
upgraded PIRADS 4: AUC—0.89,

sensitivity—0.87, specificity—0.62 and
accuracy—0.82

Hou et al. [103]
Detection of clinically significant PCa
Gleason score ≥ 7 (3 + 4)in PIRADS 3

lesions
mpMRI

AUC model one is 0.89 and higher
than that of model two with AUC of

0.87 (p = 0.003)

Zhang et al. [104]
Differentiation between clinically

significant PCa Gleason score ≥ 7 (3 +
4) from insignificant prostate cancer

MRI

Combination AUC of 0.95 (training
group), 0.93 (internal validation

group), and 0.84 (external validation
group). p < 0.001

Gong et al. [105] Detection of clinically significant
PCa Gleason score ≥ 7 (3 + 4) MRI

Combined clinical and radiomics
model (T2w/DWI) yielded an AUC of

0.788

Woźnicki et al. [76] Prediction of clinically significant
PCa Gleason score ≥ 7 (3 + 4) mpMRI

The model combining radiomics,
PIRADS, PSA density and DRE

showed a significantly better
performance compared to ADC for
clinically significant prostate cancer
prediction (AUC = 0.571, p = 0.022)

Bernatz et al. [106]
Discriminating clinically significant
PCa Gleason score ≥ 7 (3 + 4) versus

indolent disease
mpMRI

Three classification models were
trained and a subset of shape features
improved the diagnostic accuracy of

the clinical assessment categories
(maximum increase in diagnostic

accuracy ∆AUC = +0.05, p < 0.001)

Gugliandolo et al. [43] Predictive of Gleason score, PIRADS
v2 score, and risk class mpMRi Gleason score, PIRADS v2 score, and

risk class; AUC 0.74 to 0.94

Krauss et al. [73]
PSA level in patients with low

suspicion for clinically significant PCa
Gleason score ≥ 7 (3 + 4).

MRI

Five radiomic features were
significantly correlated with PSA level
(r: 0.53–0.69, p < 0.05). The regression

model significantly improves the
explanatory value for PSA level (p <

0.05)

Song et al. [91]
Differentiate clinical significant PCa

Gleason score ≥ 7 (3 + 4) from
indolent disease

mpMRI
AUC on training, validation, and test

dataset achieved results of 0.838, 0.814,
and 0.824, respectively

Castillo et al. [92] Differentiate high-grade versus
low-grade lesions mpMRI

The three single-center models
obtained a mean AUC of 0.75,

outperforming expert radiologist

Li et al. [107] Prediction of clinically PCa Gleason
score ≥ 7 (3 + 4) Biparametric mpMRI

Both the radiomics model (AUC: 0.98)
and the clinical–radiomics combined
model (AUC: 0.98) achieved greater
predictive efficacy than the clinical

model (AUC: 0.79)

Li, Q et al. Detection of clinically significant PCa
Gleason score ≥ 7 (3 + 4) MRI

Built a linear classifier model on
these semantic traits and related

to pathological outcome to
identify clinically significant

tumors. The discriminatory ability
of the predictors was tested

using cross-validation method
randomly repeated and

ensemble values were reported

Bonekamp et al. [108]
Compare radiomics and mean ADC

for characterization of prostate lesions
(Gleason grade group ≥ 2)

MRI

Comparison of the area under the
AUC for the mean ADC (AUCglobal =

0.84; AUCzone-specific ≤ 0.87) vs. the
RML (AUCglobal = 0.88, p = 0.176;
AUCzone-specific ≤ 0.89, p ≥ 0.493)

Bleker et al. [109]
Identification of clinically significant
peripheral zone PCa Gleason score ≥

7 (3 + 4)
mpMRI

Combined model T2w and DWI
images through an auto fixed VOI

with AUC 0.870 (95% CI 0.980–0.754)
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Table 2. Cont.

Author Clinical Outcomes Type of Image Acquisition Results

Radiomics and detection of ECE

Losnegård et al. [110]
Prediction of extraprostatic extension
in non-favorable intermediate- and
high-risk prostate cancer patients

mpMRI

Best AUC for extraprostatic extension
prediction models used in

combination (MSKCC + radiology +
radiomics) 0.80

Ma et al. [94] Identification of PCa ECE mpMRI

AUC of 0.902 and 0.883 in the training
and validation cohort, respectively.

Outperforming the radiologists results
(AUC range 0.600–0.697), (75.00% vs.

46.88–50.00%, all p < 0.05),
respectively

Ma et al. [93] Identification of PCa ECE mpMRI
AUC of 0.906 and 0.821 for the

training and validation datasets,
respectively

Cysouw et al. [111]
Prediction of lymphovascular

invasion nodal or distant metastasis
and Gleason score

(18F)DCFPyL PET

Lymphovascular invasion (AUC 0.86
± 0.15, p < 0.01), nodal or distant

metastasis (AUC 0.86 ± 0.14, p < 0.01),
Gleason score (0.81 ± 0.16, p < 0.01),

and ECE (0.76 ± 0.12, p < 0.01)

ADC = apparent diffusion coefficient; AUC = area under the curve; DNA = deoxyribonucleic acid; DRE = digital rectal examination;
DWI = diffusion-weighted imaging; ECE = extracapsular extension; GLM = generalized linear model regression; LASSO = least absolute
shrinkage and selection operator; mpMRI = multiparametric magnetic resonance imaging; PIRADS v2 = prostate imaging reporting and
data system version 2; PSA = prostate-specific antigen; PZ = peripheral zone; SAVR = surface area-to-volume ratio; T2w = T2-weighted;
TZ = transitional zone; VOI = volume of interest.

2.3. Genomics and Molecular Tumor Characterization

Genomics and molecular characterization permit the detection and characterization of
PCa, improving diagnostic and prognostic accuracy. The requirement of tissue samples
through biopsy, however, limits the clinical application in everyday care [112]. Another
limitation of tissue sampling is related to the presence of tumor heterogeneity. From a
clinical, morphological, and molecular point of view, PCa is indeed a highly heterogeneous
disease. The tissue obtained via prostate biopsy could therefore lead to a biased assessment
of the samples, missing out relevant scorings and gradings of cancer [27]. The known
multifocality of prostate cancer suggests the involvement of multiple genes with different
clonal origins. Multiple foci in the prostate gland could, therefore, harbor different cancers.
Genetic profiling of PCa aims to correlate those changes in different genes expression, with
oncological outcomes, in order to achieve an improved understanding of different clonal
origins, and to improve diagnostic and therapeutic processes [11,113].

Genomic biomarkers, validated as independent predictors of oncological outcomes, are
currently being used more and more in clinical practice, in the process of decision making
of PCa patients [114]. The following four available genomic biomarkers are approved and
available: Oncotype Dx test® [115], Prolaris test® [116–119], and Decipher test® [120–123].
Another investigated tissue biomarker, the mutated tumor suppression gene phosphatase
and tensin homolog (PTEN) was assessed in prostate cancer radiogenomics [124], along with
whole-exome DNA (deoxyribonucleic acid) sequencing data [125].

2.3.1. Genomic Risk and Molecular Imaging in Prostate Cancer

mpMRI has been validated as a radiologic technique used for PCa detection, targeted
biopsy, and for better surveillance and staging of the disease [126]. AS, for low-risk PCa, is
offered with the intent of reducing treatment-related events, but 30% of patients [4,127]
are upstaged with the help of mpMRI-targeted biopsies [128]. Still, 10 to 20% of clinically
significant PCa’s are not visible by mpMRI [129]. The pathological, molecular, and micro-
environmental hallmarks are poorly understood in PCa [130]. Aggressive PCa seems
to have genomic alterations [131], and these molecular expressions, along with mpMRI
phenotypes, are likely to have a prognostic significance [132]. Parry et al. [133] used low-
pass whole-genome, exome, methylation, and transcriptome profiling of patient tissue
cores from the same glands, along with circulating free and germline DNA from patients
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serum, in order to analyze the genomic, epigenomic, and transcriptomic images that are
visible, or not, on mpMRI in PCa clinically localized disease. From the analyzed cores, 27%
(six tumors) were not visible on mpMRI, and three (50%) cores that were harvested from
non-visible tumors on mpMRI had one or more genetic alterations spotted in metastatic
castration-resistant PCa [134,135]. Radtke et al. [136] aimed to fuse the mpMRI imaging
with a multi-dimensional map of biopsies and genomic features, to compare the genomic
signals from the biopsy site, and from surrounding and other benign spots in the same
prostatic gland in patients with RP. A strong association was observed between PI-RADSv2
and the Decipher test®, and the genomic Gleason grade classifier score, and the combination
between targeted fusion biopsy and genomics showed a very good correlation with RP
and genomics [137]. These studies are summarized in Table 3 and discussed below.

Table 3. Compilations of studies on the association of imaging and genomics.

Biomarker Description Test Source Analysis Study Results

Prostate cancer
antigen 3

Prostate-specific
mRNA

quantification
Prostate biopsy Negative prior biopsy De Luca et al. [138]

Significant association between
PCA3 score and PI-RADS grade

groups 3, 4, and 5 (p = 0.006)

Two negative prostate
biopsies Alkasab et al. [139]

PCA3 not statistically correlated
with PCa diagnosis (p = 0.128)

and PCA3 associated with
high-grade PCa at final
pathology (p = 0.0435)

No prior biopsy Fernstermaker et al.
[140]

PCA3 associated with MRI
suspicion score of 2 and 3 (p =
0.004), not 4 and 5 (p = 0.340)

Negative prior biopsy Perlis et al. [141]
Normal PCA3 score gave a

negative predictive value of 100%
(p < 0.0001)

Decipher test®

22 RNA markers
for prognosis and

prediction of
metastasis

RP or prostate biopsy Low and intermediate
PCa Martin et al. [142]

Decipher® biopsy genomic test
was associated with Gleason

grade group and it was
independent of PIRADSv2 score

Defining the favorable
intermediate-risk
prostate cancer

Falagario et al. [143]

Unfavorable intermediate-risk
category (p < 0.001) and

Decipher® test (p = 0.012) were
statistically significant predictors

of adverse pathology; mpMRI
did not maintain statistical

significance (p = 0.059)

Prediction of BCR Jambor et al. [144]

Decipher® genomic score and
mpMRI could not improve
predictive performance of

biochemical recurrence compared
with the individual use of these

features

mpMRI could predict
aggressive prostate

cancer features
Beksac et al. [145]

Association of Decipher® score
was significantly with lesion size
(p = 0.03), PIRADS score (p = 0.02)
and extraprostatic extension (p =

0.01)

Correlation between
MRI phenotypes of PCa
as defined by PI-RADS

v2 and Decipher

Purysko et al. [146]

MRI-visible lesions had higher
Decipher® scores than

MRI-invisible lesions (p < 0.0001);
some lesions classified as
intermediate/high risk by

Decipher® are invisible on MRI

BCR and adverse
pathology prediction Li et al. [45]

New imaging-based nomogram;
AUC (0.71, 95% CI 0.62–0.81)

better than Decipher® AUC (0.66,
95% CI 0.56–0.77) and prostate

cancer risk assessment (CAPRA)
score AUC (0.69, 95% CI

0.59–0.79)
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Table 3. Cont.

Biomarker Description Test Source Analysis Study Results

Oncotype Dx test®

5 reference genes
and 12 cancer

genes generating a
genomic prostate

score (GPS)

Prostate biopsy
Association between

mpMRI and Oncotype
Dx test®GPS

Leapman et al. [147]

GPS differences among MRI
categories for patients with

Gleason pattern 3 + 4 (p = 0.010),
not in Gleason pattern 3 + 3

GPS to predict adverse
pathology Salmasi et al. [148] GPS is a significant predictor for

adverse pathology (p < 0.001)

ConfirmMDx® Alterations in DNA
methylation Prior negative biopsies

mpMRI PIRADS score
lesions after

ConfirmMDx®

sampling

Artenstein et al. [149]

Negative ConfirmMDx® test is in
accordance with negative MRI
results (71.4%). ConfirmMDx®

sampling may be useful as a
fusion-targeted biopsy rather

than systematic biopsy

Prolaris test® 46-mRNA genomic
test Prostate biopsy

Associations between
MRI and the expression
levels of cell cycle genes

Wibmer et al. [150]

In the RP subgroup, ECE on MRI
(p ≤ 0.001–0.001) and cycle genes

risk scores (p = 0.049) were
significantly associated with
Gleason score 4 + 3 or higher,

ECE and lymph node metastases

AUC = area under the curve; BCR = biochemical recurrence; DNA = deoxyribonucleic acid; ECE = extracapsular extension; GPS = genomic
prostate score; mpMRI = multiparametric magnetic resonance imaging; mRNA = micro ribonucleic acid; PCA3 = prostate cancer antigen 3;
PIRADS v2 = prostate imaging reporting and data system version 2; RP = radical prostatectomy.

Prostate Cancer Antigen 3 (PCA3)

PCA 3 is an mRNA expression analysis of patients who are suspicious of having PCa,
with a negative prior biopsy, from the post-DRE urine sample [151]. Researchers aimed to
evaluate the combination between MRI and PCA3 in different settings. De Luca et al. [138]
determined, in 282 patients with a negative prior biopsy, the association of PCA3 score,
PI-RADS grade, and Gleason score, undergoing MRI/TRUS fusion-targeted biopsy, finding
a statistically significant association between PCA3 score and PIRADS grade groups 3, 4,
and 5 (p = 0.006). Alkasab et al. [139] looked at the potential of combined PCA3 and mpMRI,
in PCa patients with two negative biopsies. The results were limited, with a positive PCA3
associated with high-grade PCa at the final pathology (p = 0.0435), but not with an overall
PCa diagnosis (p = 0.128) and a positive PCA3 associated with high-grade PCa at the final
pathology (p = 0.0435). The combination of PCA3 and mpMRI in 187 patients with no prior
prostate biopsy, published by Fernstermaker et al. [140], found that PCA3 is associated with
an MRI suspicion score of two and three (p = 0.004), but not four and five (p = 0.340), with
roughly no significant addition in cancer diagnoses. Perlis et al. [141] analyzed a cohort of
470 men with mpMRI and PCA3, and identified that the PIRADS score and PCA3 score
were independently associated with clinically significant PCa on a second biopsy. Clinically
significant PCa on the biopsy was not identified in patients with negative mpMRI and a
normal PCA3 score, with a negative predictive value of 100% (p < 0.0001).

Decipher Test®

Decipher® is a clinical–genomic risk grouping system, consisting of the analysis of
22 RNA markers that were originally obtained from radical prostatectomy samples and,
lately, from prostate biopsy, to predict mortality and metastasis [123]. Martin et al. [142]
explored the association between PIRADS v2 score, histological grade, and Decipher® score
in biopsy samples from low- and intermediate-risk PCa patients, finding an association
between the Decipher® biopsy genomic test and Gleason grade group, independently from
the PIRADS v2 score. In a larger trial, by Falagario et al. [143], Decipher® test and mpMRI
were analyzed, in order to better define a favorable intermediate-risk PCa in a cohort
of 509 patients, reporting multivariable analysis, unfavorable intermediate risk category
(p < 0.001), and Decipher test® (p = 0.012) as statistically significant predictors of adverse
pathology, while mpMRI did not achieve statistical significance (p = 0.059). Similarly,
Jambor et al. [144] explored the use of a routine clinical prostate mpMRI and Decipher®

genomic classifier score to predict biochemical recurrence in 91 patients who underwent
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radical prostatectomy (of which 48 developed biochemical recurrence), concluding the
absence of improvement in the predictive performance of both tests combined, compared
to individual utilization. Beksac et al. [145] retrospectively analyzed the association of
Decipher® score, which was significantly correlated with lesion size (p = 0.03), PIRADS
score (p = 0.02), and extraprostatic extension (p = 0.01), reporting, in addition, increased
activity of the PI3K-AKT-mTOR, WNT-b, and E2F signaling pathways in PIRADS 5 lesions,
and of estrogen and inflammation/stress (NFkB and UV response) pathways in PIRADS 4
lesions. Moreover, in research by Purysko et al., it was found that MRI-visible lesions had
higher Decipher® scores than MRI-invisible lesions (p < 0.0001), but some lesions were still
classified as intermediate/high risk by Decipher® and were not identifiable by mpMRI.
This suggests that Decipher® added on to MRI will probably not lead to significantly more
detections of cancer. Conversely, despite technical advancements in prostate imaging, such
as MRI, not appearing to be superior to Decipher® testing in the prediction of adverse
pathology, recently, Li et al. [45] proposed a new imaging-based nomogram to predict
biochemical recurrence and adverse pathology, reporting promising results with an AUC
(0.71, 95% CI 0.62–0.81) higher than Decipher® AUC (0.66, 95% CI 0.56–0.77) and prostate
cancer risk assessment (CAPRA) score AUC (0.69, 95% CI 0.59–0.79).

Oncotype Dx Test®

The Oncotype Dx test® prostate cancer assay includes 5 reference genes and 12 cancer
genes, and it was validated using predefined acceptance criteria [152], to predict PCa
aggressiveness [115]. Leapman et al. [147] aimed to evaluate the association between
mpMRI findings and a biopsy-based RT-PCR assay comprised of a 17- gene (Oncotype
Dx test®) genomic prostate score, among men with clinically favorable PCa, following the
initial diagnosis. The results show that genomic prostate score differences were reported
among MRI categories for patients with the Gleason pattern 3 + 4 (p = 0.010), but not for
the Gleason pattern 3 + 3, while no differences were reported among androgen signaling
or proliferation genes. Salmasi et al. [148] investigated the ability of the genomic prostate
score to predict adverse pathology in 134 patients undergoing MRI-guided prostate biopsy,
resulting in the multivariate analysis that confirmed that the genomic prostate score is a
significant predictor for adverse pathology (p < 0.001).

ConfirmMDx®

ConfirmMDx® is a tissue-based gene assay that screens for epigenetic modifications
identified in a prostate tissue sample. Alterations in DNA methylation in tumor suppressor
genes (GSTP1, GASSF1, and APC) are identified by this assay, with the aim to stratify
the risk of men with prior negative biopsies [153,154]. An original research by Artenstein
et al. [149], using mpMRI PIRADS score lesions after ConfirmMDx® sampling, indicates
that a negative ConfirmMDx® test was somehow in accordance with negative MRI results
(71.4%). In addition, PIRADS 5 lesions were identified in the anterior base of the prostate,
confirming the usefulness of ConfirmMDx® sampling in a fusion-targeted biopsy setting.

Prolaris Test®

Prolaris test® is a 46-mRNA genomic test that analyzes prostate biopsy tissue [155]. It
generates a risk score that has been associated with BCR, metastasis, and cancer-specific
survival in PCa patients [156]. To date, one significant study has been published, from
Wibmer et al. [150], which has studied the associations between MRI and the expression
levels of cell cycle genes. In the prostatectomy subgroup, ECE on MRI (p ≤ 0.001–0.001)
and cycle genes risk scores (p = 0.049) were significantly associated with the Gleason score
4 + 3 or higher, ECE, and lymph node metastases.

The available data on combining genomics and imaging show that PCA3 and MRI
features are limited, and with little evidence on the actual comparative research between
genomic risk tests and MRI. The results point out the fact that there is a real potential in
combining PCA3 and MRI scores. The Decipher genomic score is good at predicting the



Int. J. Mol. Sci. 2021, 22, 9971 11 of 26

Gleason grade group and adverse pathology [157], but the combination with mpMRI could
not improve the predictive performance of BCR; a wide and overlapping distribution of
GPS results were observed across PIRADS scores in some studies, and only one study
showed an association with PIRADS score. For ConfirmMDx® test and ConfirmMDx®,
only two studies showed that in the RP subgroup, some MRI features and cycle genes
risk scores were associated with clinically significant PCa, and ECE and lymph node
metastases, and that a negative ConfirmMDx® test is in accordance with negative MRI
results, respectively. Most of the studies are of retrospective design, but to determine the
potential ability of combining genomics with imaging, in improving PCa diagnosis, there
is a need for well-designed randomized controlled trials.

2.3.2. Radiogenomics in Prostate Cancer Management

In PCa research, several papers focused on the differential expression of genomic markers
in MRI-visible and -invisible lesions. One of the first experiences with radiogenomics was
reported by McCann et al., who performed a retrospective analysis of 30 patients with proven
PCa at biopsy and MRI performed prior to RP [124]. The aim was to investigate associations
between the quantitative imaging features of multiparametric MRI and the PTEN expression
of PCa. They found a correlation between Gleason score and PTEN expression (r = −0.30,
p = 0.04), and between kep and PTEN expression (r = −0.35, p = 0.02).

Stoyanova et al. [158] reported quantitative mpMRI features and gene expression in
biopsy tissue. The authors introduced the concept of habitat, which is a combination of
images from multiple modalities, compiling pieces of orthogonal information. In radio-
genomic analysis, genes were significantly associated with radiomic features (p < 0.05).
This was the first study that correlated radiogenomic parameters with prostate cancer in
men with MRI-guided biopsy.

In another work by Renard-Penna et al. [119], prognostic biomarkers were identified
through radiogenomics, with a Gleason score > 3 associated with a longer median tumor
diameter and a lower ADC (both p < 0.0001). The authors also found an association
between Prolaris® cell cycle progression score, Gleason score (r = 0.199, p = 0.04), and
PIRADS score (r = 0.26, p = 0.007). This paper states that mpMRI is able to predict low-
and high-risk Gleason scores in the tumor, and suggests that the management of the early
stages prostate cancer could strongly benefit, by performing MRI-targeted biopsy coupled
with molecular analysis.

Jamshidi et al. [125] performed a research study where a multi-region spatial map was
created with mpMRI images and histopathology of the prostate gland, after RP combined
with whole-exosome DNA sequencing, performed on the regions of interest. No statistically
significant linear correlation was identified between individual mutations and mpMRI
imaging parameters or PIRADS scores (p = 0.3). This article is one of the few that have
performed MRI and whole-exome sequencing. It shows a continuum of mutations across
regions that were found, via histologic analysis, to be high grade and normal.

Houlahan et al. [130] identified small nucleolar RNAs that were significantly more
likely to have elevated abundance in visible tumors (odds ratio (OR) 4.4; FDR = 0.002;
Fisher’s exact test). Two small nucleolar RNAs (snoRNAs) that were identified (SNORA37
and SNORA12) were prognostic; a high abundance was associated with early BCR in an
independent intermediate-risk PCa cohort (hazard ratio (HR) 2.00 and 2.00; p = 0.053 and
0.051). Another interesting finding was that a snoRNA signature accurately predicted
PIRADS v2 score of 5 for PCa tumors, with 76% accuracy. Noncoding transcripts were asso-
ciated with mpMRI visibility. The authors introduced a new term, nimbosus, characterized
by the combination of pathological, molecular, and micro-environmental events, including
intraductal carcinoma and cribriform architecture, genomic instability, SCHLAP1 expres-
sion, and hypoxia. The signature of snoRNAs associated with nimbosus hallmarks seems
to have the potential to differentiate visible from non-visible tumors. This paper observed
that MRI findings are associated with the biological features of aggressive prostate cancer.
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Li P et al. [159] also investigated the visibility of tumors on MRI and their biology, and
identified four genes (PHYHD1, CENPF, ALDH2, GDF15) that predict MRI visibility (AUC:
0.86) and progression-free survival (in the following two external datasets: GSE21034 and
GSE40272 genes). The four genes define two groups with significantly different BCR-free
survival (HR = 2.53 (1.55–4.11), p < 0.001, and HR = 1.3 (1.04–1.63) p = 0.021, respectively),
concluding that MRI visibility was associated with the genetic features that were linked to
poor prognosis. This article looked at the genes involved in PCa prognosis and metastasis,
indicating that MRI visibility has prognostic significance and is linked to poor prognosis.

Eineluoto et al. [160] determined the association between PTEN and ETS-related gene
(ERG), with visible and invisible PCa lesions on MRI. A retrospective analysis of 346
patients with pre-RP MRI, PTEN and ERG tissue microarray staining, was performed.
Patients with MRI-invisible lesions had less PTEN loss and ERG-positive expression com-
pared with patients with MRI-visible lesions (17.2% vs. 43.3%, p = 0.006; 8.6% vs. 20.0%,
p = 0.125). This study shows that PTEN loss, BCR, and non-organ-confined disease were
more often encountered with MRI-visible lesions.

Hectors et al. [161] retrospectively analyzed a cohort of 64 patients to evaluate the
predictors of the final pathology Gleason score. Several MRI radiomics features, based
on both T2w and DWI sequences, were found to be significantly associated with the
pathological Gleason score, prognostic gene expression signatures, including Decipher®,
and 698 PCa-related gene expression levels. Machine learning was used to develop a model
to predict a Gleason score of 8 or greater, with a fair performance (AUC 0.72), and excellent
performance to predict a Decipher® score of 0.6 or greater (AUC 0.84). This study found 14
MRI imaging radiomics features correlated with Gleason score.

Li L et al. [162] evaluated radiomic feature-derived MRI T2w and ADC maps of the
prostate, to distinguish different Decipher® risk groups (low, intermediate, and high).
Their model outperformed the prediction using PIRADS v2 (AUC = 0.67), but showed
comparable performance with the Gleason grade group (AUC = 0.80), and the best discrim-
inating radiomic features were correlated with gland morphology and gland packing on
corresponding histopathology (R = 0.43, p < 0.05). Sun et al. [163] studied full transcriptome
genetic profiles that were obtained using next-generation sequencing and texture features
(obtained from T2w images and parametric maps from functional mpMRI). Immunohis-
tochemistry identified only a weak association between mpMRI features and hypoxia
gene expression (p < 0.05). This study proposed a model comprised of radiomic features
derived from T2 and ADC images, to distinguish different Decipher risk groups, and it
outperformed the risk prediction of PIRADS v2.

Fischer et al. [27] studied a radiogenomic model including clinical, imaging, and
genomic (gene and miRNA expression) datasets for 298 PCa patients. Four biomarkers
(Alanyl membrane aminopeptidase, microRNA-mir-217, mir-592, mir-6715b) were found to
be able to differentiate between the T2c and T3b PCa stages, which were highly correlated
(average r = ±0.75) with aggressiveness on related radiomics imaging features. This
research proposed a model that found that a radiogenomic approach using four biomarkers
can improve the prediction accuracy for disease stage and the characterization of PCa
aggressiveness.

Wibmer et al. [150] analyzed, retrospectively, the association of cell cycle risk score
(Prolaris® test) and PIRADS v2 score, ECE, and quantitative metrics. Patients with ECE
on their MRI had a significantly higher mean cell cycle risk score (reader 1: 3.9 vs. 3.2,
p = 0.015; reader 2: 3.6 vs. 3.2, p = 0.045). This paper found that the radiomic phenotypes of
ECE on MRI indicate a more aggressive genotype of PCa.

VanderWeele et al. [164] investigated the risk of aggressive PCa prior to prostatectomy,
using a radiomic model to assess the immunohistochemical analysis of cells expressing
PTEN, obtaining two perfusion imaging contrast uptake parameters that mathematically
correlated with PTEN expression (r = 0.25, p < 0.1 and r = 0.43, p < 0.01), and T2w uneven-
ness also showed some correlation tendency (r = −0.25, p < 0.1). This preliminary article
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suggests that a fast contrast uptake of cancer on DCE-MR imaging and a T2w imaging
feature are potentially associated with prostate cancer PTEN expression.

Switlyk et al. [165] investigated PTEN expression in PCa patients. Forty-three patients
who underwent pre RP MRI were included. Based on bead arrays (p = 0.006) and real-time
quantitative polymerase chain reaction (RT-qPCR) (p = 0.03) data, a significantly lower
ADC, derived from DWI, was found in tumors with low PTEN expression. ADC was
negatively correlated with Gleason score (p = 0.001) and tumor size (p = 0.023). This article
found that in aggressive PCa, due to PTEN loss, ADC derived from DWI may be useful in
detecting these patients.

The summary articles with the molecules studied and imaging performed, and the
methodology and results, are available in Table 4.

Table 4. Overview of radiogenomic literature on prostate cancer.

Reference Molecule Studied Imaging
Performed Results Approach Method

McCann et al. [124] PTEN MRI

Perfusion imaging
contrast uptake,

T2-weighted
signal-intensity

skewness

Classical Radiomic

Stoyanova et al. [158] General gene
expression MRI Radiomic signatures Classical Radiomic

Renard-Penna et al.
[119]

RNA expression signature
derived from cell cycle

proliferation genes (Prolaris®)
mpMRI

Correlation with Gleason score (r = 0.199, p =
0.04) and PIRADS sum score (r = 0.26, p =

0.007)
Classical Radiomic

Jamshidi et al. [125] Whole-exosome DNA
sequencing mpMRI

No statistically significant linear correlation
between individual mutations and mpMRI
imaging parameters or PIRADS scores (p =

0.3)

Classical Radiomic

Houlahan et al. [130] Small nucleolar RNAs mpMRI
Elevated snoRNA abundance may be a novel

hallmark of nimbotic tumors (AUC: 0.87;
95%CI: 0.75–0.99)

Classical Radiomic

Li P et al. [159] Differentially expressed genes MRI

MRI visibility (AUC: 0.86), progression-free
survival HR = 2.53 (1.55–4.11), p < 0.001

BCR-free survival HR = 1.3 (1.04–1.63), p =
0.021

Classical Radiomic

Eineluoto et al. [160] PTEN and ERG MRI

MRI-invisible lesions had less PTEN loss and
ERG-positive expression compared with

patients with MRI-visible lesions (17.2% vs.
43.3%, p = 0.006; 8.6% vs. 20.0%, p = 0.125)

Classical Radiomic

Hectors et al. [161]
40 gene expression signatures

plus Decipher® MRI
Prediction of Gleason score of 8 or greater
(AUC 0.72) and prediction of a Decipher®

score of 0.6 or greater (AUC 0.84).
Classical Radiomic

Li L et al. [162] Decipher® MRI

Model outperformed the prediction using
PIRADS v2 (AUC = 0.67), and comparable

performance with Gleason grade group
(AUC = 0.80)

Classical Radiomic

Sun et al. [163] Full transcriptome genetic
profiles mpMRI Weak association of mpMRI features and

hypoxia gene expression (p < 0.05). Classical Radiomic

Fischer et al. [27]

Gene and miRNA expression
(Alanyl membrane

aminopeptidase,
microRNA-mir-217, mir-592,

mir-6715b)

mpMRI
T2c and T3b prostate cancer stages being
highly correlated with aggressiveness on

related imaging features (average r = ± 0.75)
Classical Radiomic

Wibmer et al. [150] Prolaris® test MRI
ECE on MRI had significantly higher mean
cell cycle risk score (reader 1: 3.9 vs. 3.2, p =

0.015; reader 2: 3.6 vs. 3.2, p = 0.045)
Classical Radiomic

Vander-Weele et al.
[164] PTEN mpMRI

Imaging uptake parameters showing
mathematical correlation with PTEN

expression (r = 0.25, p < 0.1 and r = 0.43, p <
0.01), and T2w unevenness also showed

some correlation tendency (r = −0.25, p < 0.1)

Classical Radiomic

Switlyk et al. [165] PTEN MRI ADC was negatively correlated with Gleason
score (p = 0.001) and tumor size (p = 0.023) Classical Radiomic

ADC = apparent diffusion coefficient; AUC = area under the curve; DNA = deoxyribonucleic acid; ECE = extracapsular extension; ERG =
ETS-related gene; mpMRI = multiparametric magnetic resonance imaging; miRNA = micro ribonucleic acid; PIRADS = prostate imaging
reporting and data system; PTEN = phosphatase and tensin homolog; T2w = T2-weighted.
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3. Discussion

Radiogenomics has been thoroughly studied in prostate cancer, with investigations
between quantitative image features and single gene expression, which delivered promising
results. In particular, regarding the characterization of PTEN expression, a weak, but
significant, association has been reported between imaging features and the Gleason score
of a peripheral zone PCa [124]. Similarly, a significantly lower ADC (negatively correlated
with Gleason score and tumor size) was found for tumors with low PTEN expression,
which was, in addition, negatively correlated with lymph node involvement [165]. Another
study showed that imaging uptake parameters reported a mathematical correlation with
PTEN expression (r = 0.25, p < 0.1 and r = 0.43, p < 0.01, and T2w unevenness also showed
some correlation tendency (r = −0.25, p < 0.1) [164]. Other studies also correlated radiomic
features with Gleason score and PIRADS sum score [119]. The development of genome
sequencing studies looked at the genomic profile, with the help of radiomics, in order
to investigate broader aspects of the genomics potential, while earlier research studied a
small number of patients and a small number of genes [158]. Radiogenomic models can
determine the gene expression profiles from biopsy samples. In early studies, one gene
was selected to be studied [166]. Lately, genomic research showed that gene expression
is not influenced much by sampling tumor heterogeneity [167]. Retrospective articles
that classified gene expression in low- or high-risk scores, using the Decipher® genetic
risk profile, could predict a Gleason score of 8 or greater (AUC 0.72) and a Decipher®

score of 0.6 or greater (AUC 0.84), and had comparable performance with the Gleason
grade group (AUC = 0.80), but these are modest results. Some of the results of radiomic
studies can distinguish the genomic signatures associated with high-risk disease [130] and
hypoxia gene expression [34]. A study reported that quantitative mpMRI features and
gene expression in biopsy tissue and in radiogenomic analysis genes were significantly
associated with radiomic features [158], while the other identified biomarkers were able
to differentiate between the T2c and T3b prostate cancer stages [27]. Some retrospective
radiogenomic research identified those visible mpMRI lesions, and the genes that can
predict visibility, and allows the identification of high risk patients of harboring aggressive
disease [130,159,160]. Research being performed on the association between prostate MRI
and tissue-based gene expression shows that genomic testing can reveal more about the
disease biological processes [168–170]. These two possibilities can enhance the pace of
monitoring the patients, especially in active surveillance, which can indicate those at greater
risk of harboring aggressive disease, and could potentially be more strictly followed after
diagnoses. Finally, the combination of MRI and the genomic test could raise the health-care
systems burden [171]. At this point, radiogenomics is an emerging field that studies the
correlation between image phenotypes and genomics inside a tumor. The translation from
clinical studies into clinical practice is still a challenge, because matching data from imaging
and whole-genome sequencing is very complex. The different imaging techniques and
machines used to provide imaging data make it difficult to allow standardized results. The
low number of patients included in the radiogenomic research also limits the validity of
the results. Some limitations of this review have to be addressed. Only a few databases and
online search engines were used to retrieve relevant data. The search for the above topic
was performed manually, by two independent researchers. Scrutinizing more databases
and registries, using a software search, may have provided more relevant data for the
subject.

Current Challenges/Limitations and Future Perspectives

Radiogenomics holds great promise, but it is a new area of research, which means that
it is, therefore, facing several limitations [172]. In the last 5 years, only a few studies have
been published on radiogenomics in PCa, and, up to date, no application in the clinical
setting has been properly established. Even in this case, this is due to several limitations
associated with radiogenomic analysis [173].
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Radiomic flow is a complex process, and every aspect of the image acquisition, such
as defining and contouring the regions of interests, and choosing the best features to be
extracted and the proper statistics to be applied, remains challenging. Lately, explainable
AI (XAI), using DNNs (deep neural networks), may help radiomics in classification and
prediction in the clinical setting [174,175], and a controllable and explainable probabilistic
radiomics framework was proposed, through which a 3D CNN feature is extracted upon
the lesion region only and is used to approximate the ambiguity distribution over human
experts [176]. These new features will have to be further validated. The heterogeneity that
limits the standardization of the results obtained, and applying it for every scenario, leads
to a domain shift, which represents the difference between the training data distribution
and the distribution of where a model is employed [175]. Currently, there are methods that
try to solve the problem of domain shift by using domain adaptation and fine-tuning meth-
ods [177,178]. A significant time is required for experienced radiologists to obtain a proper
manual delineation, and the inter-observer variability in reading and segmenting regions
of interest represent the major drawback. Similarly, the different protocols designed to im-
prove the specificity and sensitivity of radiomic features performed in the studies evaluated,
without appropriate standardization, could further limit the results obtained [179,180].
The utilization of different acquisition protocols, scanners, and radiomic studies represent
another risk, which could compromise the results and predictive performances, due to
the presence of random errors/noise occurring in excessively complex models (such as
having too many parameters or forcing a linear model for non-linear data). To further
complicate the research, gene expression and signaling pathways [181] are intrinsically
and extremely complex. Matching the data from whole-genome sequencing with imaging
data is difficult, due to the large amount of data and features, and due to the differences in
patient characteristics and imaging protocols. The small patient cohort and retrospective
nature of radiogenomic studies represent another limit to the standardization of the pro-
tocols [179]. However, despite those difficulties, radiogenomics is trying to overcome the
known heterogeneity of PCa with a non-invasively radiological assessment of the whole
specific organ [26].

The future of radiogenomics could be its integration into everyday clinical practice, if
larger prospective, multicenter studies and protocol standardization of the imaging features
extracted will be performed, permitting the validation of the potential of this technique in
the identification of relevant imaging biomarkers. The possibility to access large public
databases of imaging and genome data will further ease this process [182,183]. The Inter-
national Cancer Genome Consortium (ICGC), for example, provides the information of
genomic, transcriptomic and epigenomic abnormalities, and somatic mutations in prostate
cancer [184–187]. Some patients from these genome databases have both radiomic and
genomic data [83,188]. Lately, the AI and big public databases with genomics and imaging
features could be used to develop CAT, to ease the translation of results into clinical practice
and to aid in the clinical decision. This also comes with a number of drawbacks, as follows:
a lack of standardization, and imaging and reporting protocols that differ significantly
among institutions. The process of contouring the regions of interest is mainly performed
in a manual/classic fashion, and the user inter-variability is unfortunately still high. Auto-
matic and semi-automatic computer designed software has been proposed to overcome
these pitfalls [189]. All the present studies utilized conventional radiomic features [27,165]
and, in the future, adding deep learning techniques may improve the results. By imple-
menting models to label the region of interest, using deep learning methods, with the help
of clinicians to establish the ground truth, would probably improve the performance of
large-scale datasets from genomic and imaging databases [190–193]. A summary of the
advantages and limitations of radiogenomics is listed in Table 5.
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Table 5. Advantages and limitations of radiogenomics compared to actual management of PCa risk stratification.

Radiogenomics Advantages Limitations

Could provide accurate imaging biomarkers,
substituting for genetic testing with lower cost

[179]
Lack of prospective studies [6]

AI and deep learning using big public databases
with genomics and imaging features will be used

to develop computer-aided tools for clinical
practice translation [27]

Image acquisition for defining and contouring the
regions of interests need expert radiologists [26]

Automatic and semi-automatic computer designed
software used to reduce drawbacks (lack of

standardization, imaging and reporting protocols
which differ significantly among institutions) [189]

Significant time used for proper manual
delineation [179]

Radiomics/radiogenomics biomarkers may
predictrisk and outcomes and may be used to

personalize treatment options [179]

High inter-observer variability in reading and
segmenting regions of interest [180]

Insights into the tumor genome requires biopsies,
an invasive procedure that may increase patient

morbidity. Radiogenomics can predict tumor
genomic alterations [26]

Lack of repeatability and reproducibility—no
standardization—different acquisition protocols,

scanners and radiomic studies [194,195]

Availability of whole-tumor information with
aradiomics-based approach that can

providepredictive and prognostic data [196]

Matching the data from whole-genome sequencing
with imaging data is difficult due to different

patient characteristics and imaging protocols [179]

4. Material and Methods

A literature search was performed in June 2021 using PubMed, Google Scholar, and
Web of Science. A free text strategy was deemed to be most suitable for the following
purpose: “Radiomics and PCa and Genomics and Radiogenomics and MRI”. We focused on
papers published in the last five years. After literature search and duplicates removal, the
abstract of each study was assessed to evaluate the eligibility. Finally full texts of selected
articles were retrieved and screened. Additional papers were included by reference lists
if deemed appropriate. In this literature review we had included the radiomics data
grouped in a summary table in order to emphasize the early importance of this research,
radiogenomics data (MRI and PET-CT), including data from leading studies later than five
years, genomic tests, commercially available and novel genetic and transcriptomic [197]
and metabolomic [198] biomarkers studied in conjunction with imaging.

5. Conclusions

We had identified a lot of blank space in the radiogenomics literature, when it comes
to research in prostate cancer. No prospective randomized control trials were published.
At this moment, we do not have any utility or validity for the use of radiogenomics in
clinical practice. Many gaps remain to be filled, probably some of them by using models
that consist of clinical, radiomic, and genomic biomarkers, combined or alone, to improve
predictive capacities. The rise in AI in medicine, especially deep learning techniques, could
address those limitations and permit the clinical implementation of radiogenomics.
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Abbreviations

AAN Artificial neural network
ADC Apparent diffusion coefficient
AI Artificial intelligence
BCR Biochemical recurrence
CCP Cell cycle progression
CT Computed tomography
DCE Dynamic contrast-enhanced
DSC Dynamic susceptibility contrast
DNA Deoxyribonucleic acid
DRE Digital rectal examination
DNN Deep neural network
DWI Diffusion-weighted imaging
ECE Extracapsular extension
f-DWI Full-field-of-view
z-DWI Zoomed diffusion-weighted imaging
LASSO Least absolute shrinkage and selection operator
ML Machine learning
MRI Magnetic resonance imaging
mpMRI mpMRI
PCa Prostate cancer
PIRADS Prostate imaging reporting and data system
PSA Prostate-specific antigen
PSMA PET-CT Prostate-specific membrane antigen positron emission computed tomography
PTEN Phosphatase and tensin homolog
RF Random forest
RNA Ribonucleic acid
ROI Region of interest
RP Radical prostatectomy
SAVR Surface area-to-volume ratio
SVM Support vector machine
T2w T2-weighted
TCGA The Cancer Genome Atlas
TCIA The Cancer Imaging Archive
TRUS Transrectal ultrasonography
VOI Volume of interest
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