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1 | INTRODUCTION

The bounded derived category of coherent sheaves on a smooth projective variety X has a tri-
angulated structure and encodes much information about the geometry of X. In 1997, Bondal
and Orlov proved that smooth projective varieties with ample (anti)canonical bundle and equiv-
alent bounded derived categories are isomorphic [13]. Similar reconstruction statements, called
Categorical Torelli theorems, have been obtained for admissible subcategories of the bounded
derived category, arising as residual components of exceptional collections in semiorthogonal
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decompositions, of certain Fano threefolds and fourfolds [3, 6, 10, 11, 19, 33, 46, 55] (see [54] for a
survey on this topic).

It is often convenient to associate higher categorical structures to a triangulated category 7 .
The easiest one yields the notion of dg enhancement, which is a dg category with the same set of
objects as 7 and whose homotopy category is equivalent to 7. One first advantage of passing to
the dg level is that we gain a functorial notion of cone of a morphism [30, Paragraph 2.9].

Not all triangulated categories have a dg enhancement (see, e.g., [56] for counterexamples).
However, if A is an abelian category, then an enhancement of DP(A) is given by the Drin-
feld quotient of the dg category of bounded complexes in A over its full dg subcategory of
acyclic complexes.

Once an enhancement exists, it is also natural to ask whether it is unique. This has been proved
for DP(A) by Lunts and Orlov in 2009 when A is a Grothendieck abelian category with a small
set of compact generators [45], generalized in 2015 by Canonaco and Stellari for any Grothendieck
abelian category A in [28], and finally proved in 2018 for any abelian category by Antieau in [2].
Recently, Canonaco, Neeman, and Stellari have given a new proof of this result in [22].

The first result of this paper is a criterion that guarantees that an admissible subcategory K of
the derived category of an abelian category is itself equivalent to the derived category of an abelian
category. Clearly, [2] implies that K has a unique enhancement. Using the construction in [22],
we can further show that K as in Theorem 1.1 has a unique enhancement in a strong sense (see
Definition 2.2), as stated below.

Theorem 1.1 (Theorems 3.8 and 3.12). Let T be the derived category of an abelian category. Assume
that T is essentially small. Let K be an admissible subcategory of T having a stability condition
o = (A, Z), whose heart A is the restriction of a heart on T and satisfying Assumption 3.4. Then there

is an exact equivalence DP(A) = K. Moreover, we have that K has a strongly unique enhancement.

In the second part of this paper, we apply Theorem 1.1 to several interesting geometric examples
defined over C. The first and most famous is represented by the Kuznetsov component of a cubic
fourfold X c P, defined as the full admissible subcategory,

Ku(X) := (0%, 0x(1), (9)((2))l ={E € KulX) : Hom]')b(X)(OX(i),E) =0 foreveryi =0,1,2}

of DP(X), where Ox(n) := Ops(n)|x for every n € Z (see Example 2.8). We also consider
the Kuznetsov components of GM varieties and of quartic double solids, which are defined
analogously (see Examples 2.9, 2.10, and 2.11). We have the following main result.

Theorem 1.2 (Theorem 4.9). Let Ku(X) be the Kuznetsov component of a cubic fourfold or of a GM
variety or of a quartic double solid defined over C. Then there is an equivalence Ku(X) = D(A),
where A is the heart of a stability condition on Ku(X). Moreover, we have that Ku(X) has a strongly
unique enhancement.

Theorem 1.2 has interesting consequences on the characterization of exact equivalences
between these Kuznetsov components as functors of Fourier-Mukai type (see Definition 3.13).
In fact, the most important exact functors in the geometric context are of Fourier—-Mukai type.
In 1996, Orlov proved that every exact fully faithful functor with adjoints between the bounded
derived categories of coherent sheaves on smooth projective varieties is of Fourier-Mukai type
[49]. Since then this result has been further generalized, see [23, 25, 34, 45]. In particular, the
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key point in [45] was showing the existence of a dg lift of the functor (see Definition 2.3) to the
enhancements, which implies that it is of Fourier-Mukai type by the work of Toén [57].
In our setting, we can prove a version of Orlov’s result for the studied Kuznetsov components.

Theorem 1.3. Let X, X, be two cubic fourfolds or GM varieties of even dimension defined over C.
Then every fully faithful exact functor Ku(X,) — Ku(X,) is of Fourier-Mukai type.

Theorem 1.4. Let X, X, be two GM varieties of odd dimension or quartic double solids defined
over C. Then every exact equivalence Ku(X;) - Ku(X,) is of Fourier-Mukai type.

Motivations and related works. In [38, Definition 3.1], Kuznetsov defined the notion of splitting
functor that is a generalization of that of fully faithful functor. Motivated by Orlov’s result, he
conjectured in [38, Conjecture 3.7] that a splitting functor between bounded derived categories of
coherent sheaves on smooth projective varieties is of Fourier-Mukai type. Note that equivalences
among Kuznetsov components, composed with the embedding functor of the Kuznetsov compo-
nent in the derived category and its left adjoint, are splitting functors. Thus, Theorems 1.3 and 1.4
prove the above-mentioned conjecture in the considered geometric cases.

In the case of the quartic double solid, it was observed in [19, Theorem 7.2] that Theorem 1.4
implies the failure of original Fano threefolds Kuznetsov’s Conjecture [39, Conjecture 3.7]. Note
that Fano threefolds Conjecture has been disproved in [58] and [15], independently, in a stronger
sense, namely, that the Kuznetsov component of a quartic double solid is never equivalent to that
of a GM threefold.

Making a speculation, there could be a connection between Theorem 1.2 and a proof of the
formality conjecture for polystable objects in the Kuznetsov components of cubic fourfolds and
GM varieties of even dimension. Recall that the formality conjecture, formulated for the first time
by Kaledin and Lehn, states that the differential graded algebra of derived endomorphisms of
polystable objects in the bounded derived category of a K3 surface is formal. In [21], the authors
proved this conjecture, using Orlov’s result on strong uniqueness of the enhancement. In the case
of cubic fourfolds and GM varieties of even dimension, the formality conjecture follows from the
general results in [29]. Nevertheless, Theorem 1.2 could be useful to provide a direct and simpler
proof of this conjecture in these cases. Moreover, the description in Theorem 1.2 as the bounded
derived category of a heart of a stability condition makes the Kuznetsov component much more
explicit and manageable.

An interesting question arisen in [22] is whether there exist admissible subcategories of the
bounded derived category of coherent sheaves on a smooth projective scheme over a field with a
nonunique enhancement. Theorem 1.1 could be helpful to find an answer to this question.

Finally, we believe that Theorem 1.1 could be applied to the Kuznetsov component of a cubic
threefold, although we cannot yet show this, because of the lack of a control of the semistable
objects (see Remark 4.10).

Strategy of the proofs. In [7], Beilinson constructed a functor, known as realization functor, from
the derived category of an abelian category in a triangulated category 7 to 7. Note that this con-
struction makes use of the structure of filtered derived category on 7, see Remark 3.2. To prove
the first part of Theorem 1.1, we show that the realization functor is an equivalence under suit-
able assumptions, which are listed in Assumption 3.4. To summarize, we require the existence of
a stability condition on the admissible subcategory K with ‘sufficiently many’ semistable objects,
namely, Assumption 3.4 (b), and whose heart has homological dimension < 2. Assuming this, we
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show that the HornfC between objects in .4 are generated by elements in Ex‘[}4 through Yoneda’s
composition, which implies that the realization functor is an equivalence by [32, IV, Exercise 2].

The second part of Theorem 1.1 follows from the first part of Theorem 1.1, the construction in
[22] of the quasi-isomorphism between the enhancements, and a criterion in [26] for the extension
of isomorphisms of functors.

We prove that Assumption 3.4 holds for the Kuznesov component of a cubic fourfold and of a
GM variety of even dimension using [9, 10, 51]. In the case of GM varieties of odd dimension and
quartic double solids, stability conditions are known to exist by [10]. We make use of [53] and [55]
to control the homological dimension of the heart, and of [52] where we show the density of the
set of semistable objects. This provides the proof of Theorem 1.2.

We remark in Proposition 3.14 that the strongly uniqueness of the enhancement implies that
equivalences have a dg lift, and these are of Fourier-Mukai type. This implies Theorems 1.3 and

1.4. O

Plan of the paper. In Section 2, we recollect the introductory material on enhancements, Fourier-
Mukai functors, and stability conditions we need in the next, and the definitions of the Kuznetsov
components of cubic fourfolds, GM varieties, and quartic double solids. In Sections 3.1 and 3.2, we
prove Theorem 1.1. In Section 3.3, we explain how to deduce from the second part of Theorem 1.1
the characterization of equivalences as Fourier-Mukai functors. Section 4 is devoted to the proof
of Theorems 1.2, 1.3, and 1.4.

Convention. Throughout the paper, we assume that all triangulated categories are essentially
small, that is, they are equivalent to categories in which the class of objects is a set. In particular,
in Section 3, we assume that 7 is essentially small.

2 | PRELIMINARIES ON DG ENHANCEMENTS, STABILITY
CONDITIONS, AND KUZNETSOV COMPONENTS

In this section, we recollect some definitions and known results on dg enhancements and stability
conditions. Finally, we list the examples of geometric categories to investigate in this paper.

2.1 | Enhancements and Fourier-Mukai functors

Let K be a field. Recall that a differential graded (dg) category is a K-linear category £ such that
for every pair of objects A, B € £ the space of morphisms Hom,(A, B) has the structure of Z-
graded K-module with differential d : Homg(A, B) - Hom,(A, B) of degree 1 and such that the
composition maps Hom (B, C) ®, Homg(A, B) - Hom, (A, C) are morphisms of complexes for
every A,B,C € £.

The homotopy category of a dg category £, denoted by H°(€), is the category with the same set
of objects as £ and such that Homyyo(¢)(A, B) = H°(Homg(A, B)) for every A,B € €.

Note that if € is a pretriangulated dg category (see [35, Section 4.5]), then H(&) is triangulated.
In this case, we have the following definitions.

Definition 2.1. A (dg) enhancement of a triangulated category 7 is a pair (&, €), where € is a
pretriangulated dg category and € : H(€) — 7 is an exact equivalence.
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Recall that a dg functor F : £ — &' between two dg categories &, £’ is a functor such that for
every pair of objects A, B € £, themap F, 3 : Homg(A, B) — Homg (F(A), F(B)) is a morphism
of complexes of K-modules. A dg functor F is a quasi-equivalence if FF p is a quasi-isomorphism
for every A, B € € and H(F) is an equivalence.

We denote by Hge the localization of the category of small dg categories with respect to quasi-
equivalences. Morphisms in Hqe are called quasi-functors.

Definition 2.2. A triangulated category 7 has a unique enhancement if given two enhancements
(&,¢), (&', €"), there exists a quasi functor F : €& — &’ such that the induced exact functor HO(F) is
an equivalence. We say that 7 has a strongly unique enhancement if in addition F can be chosen
with the property that there is an isomorphism of functors ¢/ o HO(F) ~ ¢.

Definition 2.3. Let 7 and 7" be triangulated categories with enhancements (&, ¢) and (&/,¢’),
respectively. Let ®: 7 — 7’ be an exact functor. A quasi-functor F : € — &’ is a dg lift of @ if
there is an isomorphism of exact functors ® = ¢/ o HY(F)oe™!.

Let ®: DP(X) — DP(X’) be an exact functor between the bounded derived categories of two
smooth projective K-schemes X and X’. Recall that ® is of Fourier-Mukai type if there exists
K € DP(X x X’) and an isomorphism of functors

®(-) = p,(K®p*(-)), @

where p: X XX’ - X, p’': X x X' —» X' are the projections. All functors here are derived. Let
(€,¢) and (€',¢’) be enhancements of DP(X) and DP(X”), respectively. By [47, 57] (see also [27,
Proposition 6.1]), we have that ® : DP(X) — DP(X’) is a Fourier-Mukai functor if and only if ®
has a dg lift.

We suggest the interested readers to consult the excellent survey [27] for more details and
examples on these topics.

2.2 | Stability conditions on triangulated categories

Let 7 be a triangulated category. In this section, we recall the notions and first properties of
stability conditions on 7', introduced by Bridgeland in [17].

Definition 2.4. A t-structure on 7 is a pair of full subcategories (7<9, 7>°) satisfying the
following conditions:

L 70 75%[-1] and 72° 2 T>°[-1];
2. Hom;(X,Y)=0forX € 7, Y € 7>°[-1];
+
3. for any object T € T, there exists an exact triangle X - T - Y —, where X € 7 and Y €
7>°[-1].

The heart of a t-structure (7<%, 729) is the full subcategory A := 729N T7<0, A t-structure is
bounded if

7 =7t

a<sb

where 7120 : = 7<0[—p] N T>0[—aq].
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By [5], the heart of a t-structure is an abelian category. Given a t-structure (7<%, 7>0), there
exist functors

Teo: T=>T9=al, 7.4: 7T - T7°-d]

called truncation functors, which are right adjoint and left adjoint to the inclusion functors
T<9—a] - T and 72°[—a] — T, respectively. For every object T € T, there exists an exact
triangle of the form

+
To(T) =T - 7,(T) —

(see [32,IV.4.5.Lemmal]).
Fix a finite rank lattice A with a surjective morphism w : K(7) - A, where K(7") denotes the
Grothendieck group of 7.

Definition 2.5. A stability condition (with respect to A) on 7 is a pair 0 = (A, Z), where A is the
heart of a bounded t-structure on 7 and Z : A — C is a group morphism called central charge,
satisfying the following properties:

1. Forany0 # E € A, we have SZw(E) > 0, and in the case that SZw(E) = 0, we have RZw(E) <
0 (we will write Z(—) instead of Zw(—) for simplicity).
The slope of a nonzero object E € A is defined as

_RZE)  ire
1) (E) = 325) if §Z(E) > 0,
+00 otherwise.
An object E € T is o-(semi)stable if E is nonzero, E[k] € A for some k € Z, and for every
nonzero proper subobject F C E[k] in A, we have u,(F) < (<) u,(E[k]/F).
2. Every object of E € A has a unique filtration

0=E,>E, % ..E, < E, =E,

where A; := E;/E;_; is o-semistable and u}(E) := uz(A;) > ... > pz(A,) =: u,(E).
3. (Support Property) There exists a quadratic form Q on A ® R such that the restriction of Q to
the kernel of Z is negative definite and Q(E) > 0 for all o-semistable objects E in A.

The objects A; in Definition 2.5 are called Harder-Narasimhan factors of E.
Given a stability condition o = (A, Z) on T, we can associate a slicing as follows. Recall that
the phase of a nonzero object E € A is

$(E) = {%Arg@@» it SZ(E) > 0,
1 otherwise.

If F =E[k] for E € A, then ¢(F) = ¢(E) + k. We define the collection P, = {P_,(¢)} of full
additive subcategories P_(¢) C T for ¢ € R such that:
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1. if ¢ € (0, 1], the subcategory P,(¢) is the union of the zero object and all o-semistable objects
with phase ¢;
2. for¢g + nwith¢ € (0,1] and n € Z, set P (¢ +n) := P (¢)[n].

We write P_(I), where I C R is an interval, to denote the extension-closed subcategory of 7
generated by the subcategories P_(¢) with ¢ € I. Note that P_((0, 1]) = A.

Note that P_(¢) has finite length for every ¢ € R." In particular, every object E € P_(¢) has
a (nonunique) finite filtration in o-stable objects of the same phase ¢, which are called Jordan-
Holder factors.

Now let X be a smooth projective variety defined over the field of complex numbers C. Assume
that 7 is a full admissible subcategory of the bounded derived category DP(X), in other words,
the inclusion functor 7 — DP(X) is fully faithful and has left and right adjoint. The Grothendieck
group K,(7") comes equipped with a well-defined Euler pairing y : K,(7) X K((7) — Z defined
as follows:

([EL[F]) := )’ (=1)" dim Hom(E, F[n]).

nez

The numerical Grothendieck group K, ,,(7) := K(7)/ ker(y) is isomorphic to a subgroup of
K,umX) that is a finitely generated free abelian group. Let o = (A, Z) be a stability condition on
T with respect to the numerical Grothendieck group K, ,,,(7) of T. For v € K,,,,(T), consider
the functor

M (T,v): (Sch)® - Gpd

from the category of schemes over C to the category of groupoids, which associates to a scheme
S the groupoid M (T, v)(S) of all perfect complexes E € D(X x S) such that, for every s € S, the
restriction E of E to the fiber X X {s} belongs to 7, is o-semistable of phase ¢ and v(E;) = v. In
the examples we will consider in this paper, the functor M (7, v) admits a good moduli space
M,(T,v), in the sense of [1], which is a proper algebraic space over C. We will denote by M} (7T, v)
the locus of classes of o-stable objects in M (7, v).

Denote by Stab(7") the set of stability conditions on 7" with respect to K, ,,(7). By Bridgeland
deformation theorem [17], the set Stab(7") (given that it is nonempty) has the structure of complex
manifold of dimension equal to the rank of K, ,,,(7).

Denote by GL;([R) :={g € GL,(R) | det(g) > 0}. Let GI:;([R{) be the universal cover of
GL;([R). We have the following right group action of 6]:;([1%) on Stab(7"). Given g = (¢9,M) €

ﬁ;(R) with M € GL;(R) and g: R — R increasing with g(¢ + 1) = g(¢) + 1, the action on
o = (P,((0,1]),Z) € Stab(T) is given by

-7 = (P((9(0), gV, M~ 0 2).

In particular, o and o - ¢ have the same set of semistable objects but with different phases.

See [12, Lemma A.4] for the equivalent definitions of support property. Definition A.2 in [12] implies that the slice is
Artinian directly.
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2.3 | Semiorthogonal decompositions and Kuznetsov components
Let 7 be a K-linear triangulated category, where K is a field.

Definition 2.6. A semiorthogonal decomposition for 7, denoted by 7 = (73,...,7T,,), is a
sequence of full triangulated subcategories 77, ..., 7,,, of 7 such that:

1. Hom;(E,F) =0, forallEE€ T,F € TJ andi > j;
2. forany E € T, there is a sequence of morphisms

0=E,—-E,.,——=E —-E,=E,

such that Cone(E; — E;_;) € T;for1 <i < m.

Definition 2.7. An object E € T is exceptional if Hom(E, E[k]) = 0 for all integers k # 0, and
Hom(E,E) = K. An exceptional collection is a collection of objects Ey, ..., E,, in 7 such that E;
is an exceptional object for all i, and Hom(E;, E;[k]) = 0 forall k and i > j.

Assume that 7 is a proper K-linear triangulated category, that is, for every A, B € T, the vector
space @; Hom(A, B[i]) is finite-dimensional. Given an exceptional collection E,, ..., E,, in T, we
have the semiorthogonal decomposition

T =(K,E,,...,E,),

where K := (Ey,...,E,)t ={F € T : Hom;(E;,F) =0foralli =1,...,m}.

We now recall some explicit examples of semiorthogonal decompositions associated to excep-
tional collections, which define the Kuznetsov components we will consider in the next. In all of
them, we assume that X is a variety defined over C."

Example 2.8. Let X C P> be a cubic fourfold, in other words, a smooth cubic hypersurface in P°.
By [40], the bounded derived category of X has a semiorthogonal decomposition of the form

D°(X) = (Ku(X), Ox, Ox (1), 0x(2)),
where Oy, Ox (1), Ox(2) are an exceptional collection of line bundles on X and
Ku(X) 1= (O, Ox(1), 0x(2))*

is known as the Kuznetsov component of X. The Serre functor of Ku(X) satisfies Sy,x) = [2]. In
addition, Ku(X) has Hochschild cohomology isomorphic to that of the bounded derived category
of a K3 surface [42, Proposition 4.1]. For these reasons, we say that Ku(X) is a noncommutative K3
surface. Stability conditions on Ku(X) have been constructed in [10] and the associated moduli
spaces of stable objects have been studied in [9].

7 The following examples can be stated more generally over an algebraically closed field of characteristic 0 or large enough
positive characteristic. However, we need to work over C to have the results on moduli spaces which we will use in
Section 4.
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Example 2.9. The second example of noncommutative K3 surface is given by the Kuznetsov
component of a GM variety of even dimension. Recall that a GM variety of dimension 2 <n <6
is a smooth intersection of the form

X =CG(2,5)nQ C P,

where CG(2, 5) denotes the cone over the Grassmannian G(2, 5) embedded via the Pliicker embed-
ding in a 10-dimensional projective space P'°, and Q is a quadric hypersurface in a projective space
P**+4 c Pl of dimension n + 4. By [36], the bounded derived category of X has the semiorthogonal
decomposition

D°(X) = (Ku(X), Ox, Uy, ..., Ox(n = 3), Uy (n - 3)).

Here, U'; denotes the pullback of the dual of the rank-two tautological bundle on the Grassman-
nian. If n is even, then the Serre functor of Ku(X) is isomorphic to the homological shift [2].
Moreover, stability conditions and their related moduli spaces have been constructed and studied
in [51].

Example 2.10. We can also consider the Kuznetsov component of a GM variety X of odd dimen-
sion, namely, a GM threefold or fivefold. In this case, the Serre functor of Ku(X) is the composition
of an involutive autoequivalence and the homological shift by 2, see [36]. We call Lu(X) a 2-
Enriques category, or simply Enriques category, see [44, Definition 4.2] for more details. Stability
conditions on Ku(X) have been constructed in [10, Section 6].

Example 2.11. Another example of Enriques category is given by the Kuznetsov component of a
quartic double solid X, which is the double cover of P3 ramified in a smooth quartic surface. By
[39, Corollary 3.5], there is a semiorthogonal decomposition of the form

D°(X) = (Ku(X), O, Ox(1)),
where Ku(X) is the Kuznetsov component. Its Serre functor is the composition of an involutive

autoequivalence and the homological shift by 2 by [43, Corollary 4.6]. Again, stability conditions
on Ku(X) have been constructed in [10, Section 6].

3 | PROOF OF THE GENERAL RESULTS

In this section, we prove Theorem 1.1 that is split in Theorems 3.8 and 3.12.

3.1 | Admissible subcategories and hearts

Let 7 be the derived category of an abelian category, and let K be an admissible subcategory of
T . Suppose that there exists a heart A, of a bounded t-structure on 7, and the intersection of
Az with K is a heart A of a bounded t-structure on K. We denote by (X<, £>°) the bounded
t-structure on K whose heart is .A.
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The following lemma is a direct consequence of [7].

Lemma 3.1. There exists a t-exact functor F: DP(A) — K, whose restriction to the heart A C
DP(A) is identity to the heart A C K.

Proof. Since T is the derived category of an abelian category, there exists a filtered derived category
over 7. Then by [7, Statement A 6] (see [5, Proposition 3.1.10] for the proof), there is an exact
functor F; : D°(A;) — T, which is t-exact with respect to the standard t-structure on D°(A ;)
and that defining the heart A, in 7, whose restriction to .4 is the identity.

Now the inclusion .4 C A, induces a natural exact functor G : D’(A) — DP(A,). Since by
definition A = A, N K, the composition F := F; oG : DP(A) — T is t-exact and is the identity
on A.

It remains to show that F factors through K. Equivalently, we show that Ry. o F = 0, where R
is the right mutation functor with respect to K. Note that if A € A, then RiF(A) = Rx(A) =0,
as F is the identity on A and A € K. Since A is the heart of a bounded t-structure on D°(A), this
implies that Ry o F = 0 as we wanted. O

Remark 3.2. The assumption that 7 is the derived category of an abelian category is used to ensure
the existence of a filtered derived category over it, which allows constructing the functor using [7].
Alternatively, we can assume that 7 is the homotopy category of a stable co-category to obtain a
similar result.

To see when the functor F is an equivalence, we will use the following lemma, which is well
known to the experts, also see in [32, IV.4, Exercise 2, p. 286].

Lemma 3.3. The functor F : DP(A) — K constructed in Lemma 3.1 is an equivalence if and only
if for any two objects A, B in A, and any morphism f € Hom-(A, B[n]) for n > 2, there exist objects
Ay=A A, A,,...,A, =Bin A, and morphisms f; € Homy.(A;_, A;[1]) fori =1,2,...,n, such
that f is the composition of the f,’s.

Proof. We outline the proof for the sake of completeness. Assume that F is an equivalence. Then
F induces an isomorphism

no.
FA,B'

Hompp( 4)(A, B[n]) = Homy.(A, B[n])
for every pair of objects A, B in Db(A), n € Z.1f A, B € A, then by definition,
Home(A)(A,B[n]) = Ext”A(A,B)

and by Yoneda interpretation (see [32, II1.5.Theorem (c)]), every extension f’ € Ext’;t (A,B)isgen-
erated by extensions in Ext! , in other words, there exist objects Ay = A, A}, Ay, ..., A, =Bin A,
and morphisms flf € Extit(Al-_l,Ai) fori =1,2,...,n, such that

f! :f;l[n_l]o f;[l]of{

Thus, for every f € Hom.(A, B[n]), there exists f” € Ext’, (4, B) such that f = F’; ,(f’) and
f’ is the composition of extensions f l’ as above. Setting f; := F}L‘ (f l’ ), since F is a functor,
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we have

F=F () = FLy(fln =10 . Fl y(fIl o FL y(f1) = fuln =110 .. fol1]o £,
where f; € Homy(A;_;, A4;[i]). This proves the first implication.

On the other hand, assume the second condition holds. We first show that F is fully faithful.
Indeed, by definition of DP(.A), it is enough to show that F', - is an isomorphism for every A, B
in A, n € Z. Note that

Hom.(A,B[-n]) =0 = Ext;t”(A,B) forn>0
since A is the heart of a bounded t-structure, and

Home(A)(A,B) =~ Hom 4(A,B) 2 Homy.(A, B)

since A is a full subcategory of both DP(A) and K. Now note that every f € Hom-(A, B[1])
corresponds to a triangle

4L, B[] = cone(f) 5 .
Then C := Cone(f)[—1] isin .4, since A and B are. Thus, C corresponds to the extension
0-B->C—->A-0
in A and defines f’ € Extit(A,B) = Hompp( 4)(A, B[1]). Since F is the identity on A, it fol-

lows that F}LB(f’) = f. If n > 2, by assumption, every f € Hom.(A, B[n]) can be written as a
composition

f=faln=1l0 .. fr1]0 f,
with f; € Homy(A;_;, A;[1]) and Ay = A, A, A,,...,A, =B in A. Since F induces an iden-

tification Homy(A4;_,, A;[1]) = Ext!, (4;_;, A;), there exists f/ € Ext!,(4;_;,4;) such that f; =
1 : .
FA,B(flf). Setting ' := f][n—1]o ... fi[1] o f], we have

Fip(f) = Fy p(fln =10 . F) y(f)[1] 0 F) 5(f) = fuln—1]o ... f5r[1]0 f; = f.
This shows that
FZ,B : Ext”A(A,B) = Hompp 4)(A, B[n]) — Hom.(4, B[n])
is surjective for every n.
Note that FZ B is also injective. To show this, we argue by induction on n. The case n <1

has already been shown. Let n > 2 and assume that F "l p is injective for every m < n. Let f "e
Ext', (A, B) such that F'} ,(f") = 0. By Yoneda interpretation, f” is of the form

/= fil1le f': A— A|[1] - Bn],
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where f] € Bxt!, (4, 4,), A; € Aand f, € Ext""'(A;,B).SetK := Cone(f’)[—1]. Then we have
the short exact sequence

0—- 4, i K—->A-0
in A and the exact triangle
!

f 1 +
A= A1) o K[1] —

in DP(A). Then, we have
0=F} ,(f") = F} x(f3[1lo f1) = Fi 2 (f1 o F) 5(f)).

It follows that F'} 1(f2)[1] lifts to a morphism g[1] € Hom-(K[1], B[n]) such that

Fi (f)I] = gl1] o F y(a)[1].

Since FZ\,_BI is surjective, there exists g’ € EXt”A’l(K ,B) such that F’}, 1( g') = g. It follows that

Fip (fI1 = Fi 5 (gD o FY y(@)[1] = Fi 5 (¢ e a)[1].

By induction hypothesis, the map F” ! is injective, so we deduce that f! = 5= = ¢’ o a. Then, we have

f'=fillefl = ¢'llealllof, =0

since a[l]o f; = 0. We conclude that FZ’B is an isomorphism for every n, and thus, F is
fully faithful.

We now show that F is essentially surjective. We argue as in [5, Section 3.1.15]. By definition of
bounded t-structure, we have

K= Kclebl,

a<sb

thus if K € K, then K € Kl%t] for some a < b. We argue by inductiononl=b —a > 0.Ifl =
then K = A[a] for some A € A. Since F is the identity on .4, the object K is in the essential i 1mage
of F. If I > 1, assume that the statement holds for every nonnegative integer < I. Take a <c < b
and consider the truncation functors 7, and 7., .. Then we have the triangle

T K-> K-1, K L T K[1].
By the induction hypothesis, there exist K;, K, € D°(A) such that F(K;) = 7K and F(K,) =

7. K. Since F is fully faithful, there exists f’ : K, — K;[1] such that F(f’) = f. Then applying F
to the triangle

Cone(f)-1] = K, 2 Ky [1] 5,
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we get the commutative diagram

F(f'

F(Cone(f)[-1]) —— F(K,) — 23 F(&,)[1] ——
|
¥ f +
K 7..K 7 K[1] ——.

By Axiom TR3 of triangulated categories, we have an induced morphism F(Cone(f’)[-1]) -
K, which is an isomorphism. We conclude that F is essentially surjective, and thus, F is an
equivalence as we wanted. O

The key observation is that to ensure the condition in Lemma 3.3, it suffices to have a stability
condition on K with certain special properties. More precisely, suppose that there exists a stability
condition o on K with heart .A. Denote by Z the central charge of o and by u the associated slope.
Further assume the following holds for o:

Assumption 3.4.

(a) The image of the central charge Z : K, ,,(K) — C is discrete.

(b) For every nonzero object E in .A and every real number s, there exists a g-stable object F in
A satisfying u(F) < s, and Hom.(F, E) # 0.

(c) Forany o-stable objects E and F in A, we have Hom-(E, F[m]) = 0for m > 3. If u(E) < u(F)
in addition, then we have Hom.(E, F[2]) = 0.

We will write Z = —deg + irk. Denote by §,(c) := inf{rk(E)|E € K, rk(E) > 0}. Note that
when §,(0) # 0, the image of rk in R consists of integral multiples of §,(c), hence discrete.
We say that a stability condition o satisfies the Assumption 3.4 if

* §y(0) # 0 and o satisfies (a-c) as above;
* or §,(0) = 0 and there exists an open neighborhood U in G\I:Jr(z, R) of the lift of the identity
such that o - § satisfies (a—c) for every j € U.

Our goal is to show that under the above assumptions, the condition in Lemma 3.3 is satisfied,
and the functor F : DP(A) — K is an equivalence.

Lemma 3.5. Let o be a stability condition on K satisfying the Assumption 3.4. Then for every nonzero
object A in A and every real number s, there exists an object C in A satisfying:

1L ut(C)<s;
2. there exists a surjective morphism C — Ain A.

We first prove a lemma that will be used twice in the proof of Lemma 3.5.

Lemma 3.6. Let o be a stability condition on K satisfying the Assumption 3.4. Let A, be a subobject
of A in A and denote the quotient by A, = A/A,. Then for every real number s, if the statement in
Lemma 3.5 holds for A, with respect to s and for A, with respect to all real numbers, then it holds for
A with respect to s.
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Proof. By assumptions, there is an object C; with u*(C;) < s and a surjective morphism f, : C; —
A, in A. Denote by K := ker f,. Then in particular, u*(K;) < s as well.

By assumptions, there exists C, in A with u*(C,) < u~(K;) and a surjective morphism
f>: C, = A, in A. Denote by K, := ker f,.

Note that for all Harder-Narasimhan factors C) of C, and K| of K;, we have u(C}) < u(K}).
By Assumption (c), Hom(C}, K/[2]) = 0. It follows that Hom.(C5, K;[2]) = 0. Therefore, the
composition e : C, - A, - A [1] liftsto é: C, — C;[1]. In particular, we get the commutative
diagram:

K, K, [1]
c—Cc, —5 )

Lo

A— A — A1

By the octahedral axiom (see [5, Proposition 1.1.11] or [48, Section 2]), the commutative square can
be completed to a 3 X 3 (possibly noncommutative) diagram of distinguished triangles. We have
the distinguished triangle

K-cLl as ki,

el-1
where C = Cone(C,[—1] ﬂ) C))and K = Cone(K,[—1]— K,). In particular, both objects C and

K are in A. It follows that f is surjective. One also has
WF(C) < max{ut (Cy), wH(CY} < s.

So, the statement in Lemma 3.5 holds for A with respect to s. O

Proof for Lemma 3.5. We first prove the case of §, # 0. Take an element § = (g, M) of ﬁ+(2, R)
such that ¢(0) = 0 and the image of g~! o Z is contained in Z + iZ by Assumption (a). Note that
the heart of o - g is the same as that of o and o - § still satisfies Assumption 3.4. Without loss of
generality, we may assume that the image of the central charge of o is contained Z + iZ.

Make induction on (rk,deg) of A with lexicographic order. When (rk(A), deg(A)) = (0,1),
then A is stable. By Assumption (b), there exists a o-stable object C in .A with u(C) < s and
Hom-(C, A) # 0. Since A is a simple object, it has no nontrivial quotient object in .A. Therefore,
every nonzero morphism from C to A is surjective.

Now assume that the statement holds for all objects with rk = 0 and deg < m. Then when A
has (rk, deg) = (0, m), by Assumption (b), for every real number s, there is a o-stable object C;
with ¢(C;) < s and Hom-(C;, A) # 0. Choose a nonzero morphism and denote its image in A as
A.

If A, = A, then there is nothing to prove. Otherwise, we may write A as a short exact sequence

0-A,-A—->A,—>0

in A, where both A; and A, have rk = 0 and deg < m.
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By induction, the statement holds for both A;. By Lemma 3.6, the statement holds for A.
Now we have finished the induction for the case of rk = 0. We may assume that the statement
holds for all objects with rk < r. When rk(A) = r, we have the short exact sequence

0-A, -A->A_-0

in A, where A is the Harder-Narasimhan factor with 4 = 4+o0. In particular, we have rk(A,) = 0
and u*(A_) < +o0. By induction, the statement holds for A,. So, if the statement holds for A_,
then by Lemma 3.6, it will hold for A.

Now we may assume u*(A) < +oo. By Assumption (b), for every real number s, there exists
a o-stable object C; with u*(C;) < s and Hom,(C;, A) # 0. Choose a nonzero morphism, and
denote its image in A as A; and the quotient as A,. In particular, the statement holds for A; with
respect to s.

Since u*(A) < +o00, we must have rk(A4;) > 0. Hence, rk(4,) < rk(A). By induction, the state-
ment holds for A,. By Lemma 3.6, the statement holds for A with respect to s. As the s can be an
arbitrary real number, the statement holds for A. We finish the induction.

We then prove the case of §, = 0. Let t € (0, 1) be a real number sufficiently small such that:

1. —cot(xt) < min{s, u=(A)};
2. the image of e~ Z is infinite on the real axis.

Denotebyo, := (P,((t,t + 1]),e " Z). In particular, the image of e~ Z can be Z-linear spanned
by one of its images on the real axis and another image not on the real axis with the smallest
absolute value of the imaginary part. So, o, satisfies Assumption 3.4 with §, # 0.

Since — cot(rrt) < u~(A), the object A is in P, ((t,1]) C P,((¢, ¢ + 1]). By the statement in the
8y # 0 case, there exists an object C in P,((t,t + 1]) with ,u;t(C) < —cot(cot™!(—s) — txr) and a
surjective morphism f: C — Ain P_((t,t + 1]).

Note that the object C is in P,((t,1]) C A and u}(C) = — cot(cot‘l(—/,t;t (C)) + tm) < s. The
kernel of f is in P_((t, % cot™!(—s))). Therefore, the morphism f is surjective in A as well. We
finish the proof of the statement. [l

Corollary 3.7. Let o be a stability condition on K satisfying the Assumption 3.4. Then, for every A, B
in A, we have that Hom (A, B[2]) is generated by compositions of extensions between objects in A.

Proof. Lets = u~(B) > —oo, we may pick C as thatin Lemma 3.5. Let f : C — A be the surjective
morphism and denote by K the kernel of f in .A. Applying Hom,-(—, B) to the short exact sequence
0-K—->C—->A-0,weget

-- - Homy (K, B[1]) - Hom(A, B[2]) - Hom.(C,B[2]) — ....

By the choice of C and Assumption (c), Hom(C,B[2]) = 0. In particular, the last map
Hom(K, B[1]) —» Hom,(A, B[2]) is a surjection and the claim holds. O

As a consequence of the previous computations, we get our first main result.

Theorem 3.8. Let T be the derived category of an abelian category. Let K be an admissible sub-
category of T having a stability condition o = (A, Z), whose heart A is induced from a heart Ay
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on T and satisfying the Assumption 3.4. Then the functor F : DP(A) — K defined in Lemma 3.1 is
an equivalence.

Proof. By Lemma 3.3, the functor F defined in Lemma 3.1 is an equivalence if and only if for
every A, Bin A, n > 2, we have that Hom,-(A, B[n]) is generated by degree 1 extensions of objects
in A. First note that Homy-(A, B[n]) = 0 for every n > 3. Indeed, up to pass to the stable factors,
it is enough to have this vanishing for every pair of o-stable objects A, B € A, which holds by
Assumption (c).

On the other hand, by Corollary 3.7, we have that Hom-(A, B[2]) is generated by compositions
of extensions between objects in .A. We conclude that the condition in Lemma 3.3 is satisfied, and
thus, F is an equivalence. Ol

3.2 | Enhancements

Assume that K satisfies the conditions in Theorem 3.8. By [2], the bounded derived category
of an abelian category has a unique enhancement (see also [22] for the same result without
the boundedness condition). Together with Theorem 3.8, this directly implies that K has a
unique enhancement.

Using [22, 26], we further prove in this section that £ has a strongly unique enhancement,
namely, the second part of Theorem 1.1.

Let us first recall the notion of almost ample sequence from [26].

Definition 3.9 [26, Definition 2.9]. Given an abelian category A and a set I, a subset {C;};; of
objects C; € A is an almost ample set if, for every A € A, there exists i € I satisfying:

(i) there exist k € N and a surjection Cka > A;

If A is the heart of K asin Theorem 3.8, by Lemma 3.5 forany A € A, thereis C, € A satisfying
conditions (i) and (ii). Indeed, it is enough to choose s < u~(A) and apply Lemma 3.5 to construct
C , together with a surjection to A; then Hom(A,C,) = 0, as u*(C,) < s.

Now note that the object C, only depends on the isomorphism class [A] of A € A, namely,
for A~ A’ € A, we have that C, satisfies (i) and (ii) of Definition 3.9 with respect to A’. So, we
change the notation to Cp,4; and set

I:={[A],A € A}

Since A is a full subcategory of K that is essentially small as 7 is, it follows that .4 is essentially
small, so I is a set. Thus, the collection

{Crapiajer (3)

is an almost ample set.
The notion of almost ample set plays a key role in the extension of isomorphisms of functors.
The next result is a special case of [26, Proposition 3.3].
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Proposition 3.10 [26, Proposition 3.3]. Let A be an abelian category with finite homological dimen-
sion. Assume that {C;};c; is an almost ample set and let C be the corresponding full subcategory of
DP(A). Let F be an autoequivalence of DP(A) such that there is an isomorphism of functors

£ Fle = id,.
Then there exists an isomorphism of functors F = idpp 4 extending f.

Recall that the Drinfeld quotient Dgg(A) 1= ng(A) / Acgg(A) is an enhancement of DP(A) (see
[30, Section 3] for the definition of the quotient), and thus, by Theorem 3.8 of K. Here, ng(A)
denotes the dg category of bounded complexes in .4, and Acgg(.A) C ng(A) its full dg subcat-
egory of acyclic complexes. In fact, the homotopy category of ng(A) is the homotopy category
of complexes HO(ng(A)) = KP(A). This implies the natural identification HO(Dgg(A)) =DP(A)

(see, e.g., [27, Section 1.2]).
By [22], if (€, €) is another enhancement of DP(.A), then there exists a quasi-functor

F: Di(A)— &, (4)

whose construction is explained below, such that HO(F) is an equivalence (thus F is an isomor-
phism in Hge). In order to recall the definition of F, we need to introduce some technical notions
from [22].

Let VP(A) c KP(A) be the full subcategory whose objects have zero differential. Let

Q: K°(4) — D*(A)
be the quotient functor and set
B"(A) 1= Q(V*(A)),

which is a full subcategory of DP(A), having the same objects as V°(.4) (but with different mor-
phisms), see [22, Section 1.1]. We will use the notation A* for objects in V°(.4) and thus of B(A).
Note that the full dg subcategory Vgg(A) of ng(A) consisting of complexes with trivial differential

is in a natural way an enhancement of V°(A).

In [22, Section 4], the authors construct a dg enhancement ng(A) of BP(A), whose defini-
tion depends on the pair (&,¢) (but we omit this from its notation for simplicity), and such
that Perf(ng(A)) ~ £ in Hqe (see [22, Remark 4.3]).” Using this construction, the isomorphism
Perf(Vgg(A)) =] ng(.A) in Hqge, and the morphism Perf(Vgg(A)) - Perf(ng(A)) in Hqe, they
define in [22, (5.2)] the functor

g1 Co(A) — € 5)

TIf C is a dg category, we denote by Perf(C) the smallest full dg subcategory of the dg category of h-projective dg C-
modules, containing the image of the dg Yoneda embedding, closed under homotopy equivalences, shifts, cones, and
direct summands in the homotopy category.
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by composing the previous (iso)morphisms in Hqe. Moreover, as checked in [22, Section 5.3], the
functor g factors through the quotient Dgg(A), so that g is the composition

g1 CP(A) > Db (A) S €. )
dg dg

They finally show that HO(F) : DY(A) — H%(€) is an equivalence.
Our goal is to show the following lemma that implies D’(A) = K has a strongly unique
enhancement.

Lemma 3.11. Let T be the derived category of an abelian category. Let K be an admissible sub-
category of T having a stability condition o = (A, Z), whose heart A is induced from a heart A,
on T and satisfying the Assumption 3.4. Let (€,¢) be an enhancement of D’(A). Then there is an
isomorphism of functors € o HO(F) idpp( 1), where F is defined in (4).

Proof. Set G’ := ¢ o HO(F). By Proposition 3.10, to prove the statement, it is enough to show that
there is an isomorphism between the restriction functors G| = id., where C is the full subcat-
egory of D(A) defined by the almost ample set (3). This isomorphism is a consequence of the
construction of F in [22].

Indeed, set G := ¢ o H%(g), where g is defined in (5). Since H°(¢g) = H(F) o Q by (6), we have
G = G’ 0 Q. By [22, Lemma 5.1], there is an isomorphism of functors

O: G|Vb(.A) i QlVb(_A)

(in their notation, G is F; and Q is F,). As a consequence, for every A* € B’(A), we have that 6 .
induces an isomorphism G’(A*) = A* as objects in DP(A).

We now claim that 8 induces an isomorphism of functors between the restriction of G’ to BP(.A)
and the identity. Indeed, consider a € Homgy( 4)(A}, A5) = Hompp( 4)(A], A7) for AT € BP(A).
We can represent « as a roof in KP(A) of the form

P
VN
Ay A

where P € V°(A) and f; € Homyy( 4)(P, A7) for i = 1,2. Now by [22, Corollary 5.3], there is an
isomorphism 61’4* : G(A]) = A? such that the diagram

G(P) 2, Grar

QPJ leixl*
P Q(f) A;k
commutes in DP(A) for i = 1, 2. This implies that in D(4), we have the commutative diagram

G/ 22, 61(ar) |
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Thus, 8 induces a natural transformation 8’ : G’ |Bb( A) = ide( A) which is an isomorphism of
functors. Since C is a full subcategory of BP(A4), it follows that 8’ induces an isomorphism of
functors f : G’|, = id.. This implies the statement. O

We are now ready to prove the second part of Theorem 1.1.

Theorem 3.12. Let T be the derived category of an abelian category. Let K be an admissible subcat-
egory of T having a stability condition o = (A, Z), whose heart A is induced from a heart on T and
satisfying Assumption 3.4. Then K has a strongly unique enhancement.

Proof. Let (£,€) be an enhancement of K. Consider the quasi-functor F defined in (4). By
Lemma 3.11, there is an isomorphism of functors € o H(F) = idpb( 4y, giving the statement.  []

3.3 | Fourier-Mukai functors

Let X; and X, be smooth projective schemes over a field K. Let X; € 7; := DP(X;) and K, C
T, := D°(X,) be admissible subcategories that are components of a semiorthogonal decompo-
sition. For j = 1,2, denote by i;.‘ : T; > K; the left adjoint functor of the inclusion i;: K; &
T;.

Definition 3.13. A functor ®: K; — K, is of Fourier-Mukai type if the composition

iy ) i
h—K—=K,—=T,

is a Fourier—-Mukai functor as in (1).

Note that if ® is an equivalence, then the composition i, o ® oi} is a splitting functor in the
sense of [38, Definition 3.1]. We now remark the following property that is probably well known
to the experts.

Proposition 3.14. Assume that K, has a strongly unique enhancement. Then every equivalence
d: KL, — K, is of Fourier—-Mukai type.

Proof. Let (& »€ j) be the natural enhancement of Tj for j = 1,2. Denote by (Fj, ) j) the enhance-
ment of X; induced from (€}, ¢;). By definition, 7; is the dg subcategory of £; whose objects

belong to K; via the equivalence ¢; and is a full admissible subcategory of £;. The functor i€ is
J

the natural embedding of 7; in £; and ¢; o Ho(ifg) factors through K; defining ;. Note also that

the composition i; o i;’.‘ : T; — T is a Fourier-Mukai functor by [41, Theorem 7.1]. In particular, it

has a dg lift lI‘;lg by [57] and [27, Proposition 6.11]. By definition, le.lg factors through 7; defining
the projection i;dg : & — F; such that llij.lg = i?g o i;dg and which is a dg lift of i7.

s o1
Note that (F,, §,) is an enhancement of K;, because of the equivalence H(F,) BN K, — K;.

Since K, has a strongly unique enhancement, there exists a quasi-functor F : 7; — F, such that
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HO(F) is an equivalence sitting in the following commutative diagram:

HO(F) 2 HO(Ry)

On the other hand, by definition of (F,, §,), we have the commutative diagram

H“(i;lg)

H(F,) —— H(&) .
T

Analogously, we have the commutative diagram

07:+dg
L)

HY(
H(&) —— H(F) .
lel ~J{51
73 ;) Kl
Putting everything together, we have

ho®oil = ¢, 0 HO(iS®) o HUF) o HO(I[*®) 0 (€))7

Thus igg oFoi] % isadglift of iyo®o i¥. By [57] and [27, Proposition 6.11], we conclude that the
latter is of FM type. O

From the previous results, we deduce the following characterization.
Corollary 3.15. Let X, and X, be smooth projective schemes over a field K. Let K| be an admissible

subcategory of T, := DP(X,) having a stability condition o = (A, Z) whose heart A is induced from
a heart A7, on T, and satisfying the Assumption 3.4. Let K, be an admissible subcategory of DP(X,).

Then every equivalence K, = K, is of Fourier—-Mukai type.

Proof. This is a consequence of Theorem 3.12 and Proposition 3.14. O

4 | GEOMETRIC APPLICATIONS

In this section, we apply the general results proved in the previous section to interesting geometric
situations, listed in Examples 2.8-2.11, providing the proof of Theorems 1.2-1.4. The key point is to
show that the Kuznetsov components of the varieties in these examples satisfy Assumption 3.4.
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To make a universal argument for most of the cases at once, we make the following assumption
on the stability conditions that turns out to be easy to check. Denote by K, ,,,(A) the numerical
Grothendieck group. Recall that the Euler pairing y([E], [F]) := Eiez(—l)i dim Hom(E, F[i]) is
well defined on K, ,,(A). Let o = (A4, Z) be a stability condition on K with heart .4. We make the
following assumption on o.

Assumption 4.1.

(a0) There exists 4; and 4, in K ,,,,(A) such that the image of Z is a rank 2 lattice spanned by
Z(A;) and Z(1,).
(bl) The Euler paring y is symmetric on K,,,,(A) and is negative definite on span,{4,, 4,}.
(b2) There exists ¢ € Z such that for any primitive v in K ,,,(A) with y(v,v) < ¢, there exists
o-stable object E in K with [E] = v.
(c) Same as that of Assumption 3.4 (c).

Recall that we write Z = —deg + itk and §,, : = inf{rk(E)|E € K, rk(E) > 0}.

Lemma 4.2. Let g be a stability condition on K satisfying the Assumption 4.1. Then, for every
nongzero object E in A, real number s and § > &, there exists a o-stable object F in A with u(F) < s
and rk(F) < & such that y(F,E) # 0.

Proof. In the case of §, > 0, by Assumption (a0), the numbers rk(4,) and rk(4,) are Q-linear
dependent, so there exists nonzero v with rk(v) = 0. Among all such v’s with deg(v) < 0, we may
choose one with the largest deg.

So, there exist nonzero w and v in span,{1,, 4,} such that

rk(w) = §,, rk(v) = 0, and deg(v) < 0.

In particular, their images Z(v) and Z(w) also span the image of Z.

Note that K, ,(\A) can be spanned by w, v and elements in Ker(Z). Since y is nondegenerate on
K, um(A) by definition, if y(v, E) = 0, then there exists x; € Ker(Z) satistying y(w + x, E) # 0.
If y(v,E) # or y(w, E) # 0, then we may set x; = 0.

Let n be sufficiently negative such that

1. y(nv 4+ w4+ xg, nv + w + k) < c and nv + w + xy is primitive;
2. y(nv+w+xg,E) #0;
3. u(nv+w +xg) <s.

The first condition can be satisfied because the left-hand side of the inequality is
n?x(v,v) + 2ny(L, w + xz) + YW + x5, W + xz),

and tends to —oo when n tends to —oo by Assumption (bl). As Z(nv + w + xg) = Z(nv + w) is
primitive in the lattice of the image of Z, the character nv + w + xj; is primitive.

The second condition can be satisfied since either y(v, E) # 0 or y(w + kg, E) # 0 by the choice
of xz.

The third condition can be satisfied since lim,,_,_, u(nv + w + x5)/n = deg(v)/4,.
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By Assumption (b2) and the first condition, there exists a o-stable object F € .A with numerical
class nv + w + xg. By the choice of n, we have u(F) < s, tk(F) = §, < §, and y(F,E) # 0.

In the case of §, = 0, there exists a sequence of primitive characters w, = a,4; + b, 4, such
that

rk(w,,) > 0, deg(w,) < 0and nhl}l rk(w,) = 0.
—>+00

As §, = 0, it follows that

_ . b rk(4,) .
lm deg(u) = —oo. lim 2% =~y =i gand i la| = +oo

Note that if g = T~ is rational, then &, > |&W/}2)|. Sogq ¢ Q.

Note that K, ,,,(A) is spanned by 4,, 1, and elements in Ker(Z). Since y is nondegenerate
on K, ,,(A) by definition, if y(4,,E) = x(4,,E) = 0, then there exists x; € Ker(Z) satisfying
X(xg, E) #0.1f x(4,,E) or y(1,,E) # 0, then we set kp = 0.

Let n be sufficiently large such that

1. y(w, + x5 w, +xp) <c;
2. y(w, +xg,E) #0;
3. u(w, +xg) < sand rk(w, +x5) < 6.

Note that the left-hand side of the inequality in the first condition is y(w,, w,) + 2y (w,, xz) +
x(xg, xg). Divided by |a,,|?, it tends to y(4, + g1,,4, + g4,) when n tends to co. This value is
negative by Assumption (bl). Therefore, the first condition can be satisfied.

Since q is not a rational number, if y(4,, E) or y(4,, E) # 0, then y(w,,, E) is not constantly zero.
If both y(4,,E) and x(4,,E) = 0, then y(xg,E) # 0 by the choice of k. Therefore, the second
condition can be satisfied.

The third condition can be satisfied by the choice of w,,.

By Assumption (b2) and the first condition, there exists a o-stable object F € .A with numerical
class w, + xg. By the choice of n , we have u(F) < s, rk(F) < 6, and y(F,E) # 0. O

Proposition 4.3. Let o be a stability condition satisfying the Assumption 4.1, then for every § €
ﬁ+(2, R), the stability condition o - § satisfies the Assumption 3.4.

Proof. By definition, Assumption 3.4 (a) and (c) hold automatically. Note that the conditions
in Assumption 4.1 are preserved by the 61:; (R)-action. We only need to check that o satisfies
Assumption 3.4 (b).

By taking the Harder-Narasimhan filtration of E with respect to o, we only need to prove that
Assumption 3.4 (b) holds for every o-semistable object E in .A. By taking a Jordan-Holder factor
that is also a subobject of E, we only need to prove that Assumption 3.4 (b) holds for every o-
stable object E in .4. Namely, we are going to prove the statement that for every o-stable object
E in A and every real number s, there exists a o-stable object F in A satisfying u(F) < s, and
Hom.(F,E) # 0.

Fix a real number sy, we define the order < for complex numbers in R, - ¢!©71 as follows:

¢ Ifc, € Ry - €@ (550D and ¢, € Ry, - el (=071 then ¢, <5, Co-
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* Ifbothc; =a; +ib; €R, - eilcot™ (=s0).7l for j = 1,2, then

a a
€ <5, ¢ & by <byand —b—1<—b—2.
1 2
ol cot™'(—sy)
Cc //
Re
0}

Numbers in both light and dark gray areas are < c.

Let us go back to the proof of the statement. Note that if u(E) < sy, namely, Z(E) € Ry, -
¢i(0.cot™!(=50))  then we may just let F = E and there is nothing to prove.

By Assumption (a), for any complex number c € R, - eilcot™ (=507 the area of the light gray
part is finite. There are only finitely many Z(v)’s of numerical characters v € K,,,,,(A) satisfying
Z(v) & R, - ei0ot™'(=%0) and Z(v) <, ¢ We may make induction on Z(E) with respect to the
order <g .

Assume that for every o-stable object E’ € A satisfying Z(E") < s, Z(E), the statement holds. In
other words, there exists a o-stable object F’ satisfying u(F’) < s, and Hom.(F’, E") # 0.

In the case that §, > 0, wesetd = %50 and s < min{s,, %((rk(E) + &)y — deg(E))}. In the case
that §, = 0, we set s = s, and sufficiently small § > 0 sucﬁ that the image of Z does not intersect
the area

fa+ib | rk(E) < b < tk(E) + 8, s < —% < W(E)}.

ol cot ™! (—s)

Re

The choice of § when 6, = 0.
Bullet points stand for the image of Z.

Apply Lemma 4.2 for E, s and &, we get a o-stable object F, in A such that u(F,) < s, rtk(F,) < &
and y(F,,E) # 0. Note that this in particular forces rk(F,) = §, when &, > 0.
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If x(Fy,E) >0, then by Assumption (c), Hom(F,, E[m]) =0 for all m # 0,1. Hence,
Hom.(Fy, E) # 0 and the statement holds.

Otherwise, by Assumption 4.1 (bl), we have y(E,F,) = y(F,,E) <0 and by Assumption
(c), Hom(E, Fy[m]) = 0 for all m # 0,1, 2. Hence, we have Hom.(E, Fy[1]) # 0. Let e be a

nonzero morphism in Hom.(E[—1],F,) and G be Cone(E[—1] 5 Fy). So, there is a short exact
sequence

0->F,—G—E—0, ™)

and the object G isin A.
If G is o-stable, then we may let F = G. Indeed, we always have Hom;.(G, E) # 0. In the case of
8y > 0, by the choice of s and §, we have rk(F)) = §, and deg(F,) = u(Fy)rk(F,) < s&,. It follows
deg(E)+deg(F,) _ deg(E)+deg(F) deg(E)+sd,

that u(G) = KEkE) ke, | < kB, < S0 In the case of §, = 0, by the choice of

s and &, we must have u(G) < s,. The statement holds.

If G is not o-stable, then we consider one of the Jordan-Holder factors Gt of G with a
maximal slope that is also a subobject of G. Note that u(G*) > u(G) > u(F,), it follows that
Hom(G™, F;) = 0. Apply Hom(G*, —) to (7), we get 0 # Hom;-(G*,G) & Hom.(G*, E). We may
let f be a nonzero morphism in Hom,.(G*, E). The image of f is a nonzero subobject E,, of E in
A. Let EJ be one of the Jordan-Holder factors of E, with a maximal slope that is a subobject of
E,. Then E; is also a subobject of E in A as well.

In the case of §, > 0, we have rk(G*) < rk(G) — &, = rk(E). Since e # 0, the sequence (7) does
not split. It follows that u(G*) < u(E). Hence, the object EJ is a proper subject of E. In the case
of §, = 0, it follows by the choice of s and § that rk(G*1) < rk(E). Hence, the object E(;r is a proper
subject of E in this case as well.

If u(E;) < sy, then we may let F = E and the statement holds. Otherwise, we have Z(E") <5
Z(E). The statement holds by induction. O

Example 4.4. Let X be a K3 surface and o, 4 be a stability condition as that defined in [18]. When
@, € Q- H for an ample divisor H, the stability condition o,, g satisfies Assumption 4.1. Hence,
Db(Aa,,ﬁ) = DP(X). Note that this statement has already been proved in [14, Corollary A.4] by a
very different argument. We would like to thank Georg Oberdieck to point out this example for us.

Lemma 4.5. Let X be a cubic fourfold defined over C. Then the stability conditions o = (A,Z) on
Ku(X) constructed in [10] satisfy Assumption 4.1.

Proof. Recall that the numerical Grothendieck group K,,,,,(Ku(X)) contains two classes 1, and
A, spanning an A,-lattice
-2 1
1 -2

with respect to the Euler pairing y by [4]. The image of the central charge is spanned by the image
of 4, and A,. As the Serre duality on Ku(X) is [2], the Euler pairing on K, ,,, (Ku(X)) is symmetric.
Hence, Assumptions (a0) and (b1) hold.

Assumption (b2) follows by [9, Theorem 1.6].
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Finally, Assumption (c) follows by Serre duality: for any o-stable objects E and F in .A, we have
Hom.(E, F[m]) % Homy(F,E[2—m]) =0
form > 3, and if u(E) < u(F), form > 2. O

Lemma 4.6. Let X be a GM fourfold defined over C. Then the stability conditions o on Ku(X)
constructed in [51] satisfy Assumption 4.1.

Proof. The numerical Grothendieck group K,,,,,,(Ku(X)) contains two classes 4; and 1, spanning
an A?z-lattice
-2 0
0 -2

with respect to the Euler pairing y by [36, Lemma 2.27] and [50]. The image of the central charge
is spanned by the image of A; and 4,, see [51, Section 4]. As the Serre duality on Ku(X) is [2], the
Euler pairing on K, (Ku(X)) is symmetric. Hence, Assumptions (a0) and (b1) hold.
Assumption (b2) follows by [51, Theorem 1.5].
Finally, Assumption (c) follows from Serre duality as that in Lemma 4.5. [l

Lemma 4.7. Let X be a GM threefold defined over C. Then the stability conditions o on Ku(X)
constructed in [10] satisfy Assumption 4.1.

Proof. Recall that K,,,,(Ku(X)) has rank 2 by [39, Proposition 3.9] and a basis is given by

where H is the class of a hyperplane and P is the class of a point in X. The intersection matrix

with respect to y is
-1 0
(A’l’/12> - < 0 _1> .

Assumptions (a0) and (b1) hold as the central charge is not degenerate.

Assumption (b2) follows by [52, Theorem 1.3].

Assumption (c) follows from Serre-duality and the fact that the property of being stable with
respect to o is preserved by the Serre functor. Indeed, if E is o-stable, then Sy, x)(E) is o-stable
by [53, Theorem 1.1]. Since SIZCM(X) = [4], it is easy to check (see, e.g., [55, Lemma 5.9]) that ¢(E) <

¢(SlCu(X)(E)) < ¢(E) + 2. Then
Hom(E, F[m]) 2 Hom(F[m], Siyx)(E)) = 0
for m > 3, and if u(E) < u(F), form > 2. O

Lemma4.8. Let X be a quartic double solid defined over C. Then the stability conditions g on Ku(X)
constructed in [10] satisfy Assumption 4.1.
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Proof. Denote by H the class of a hyperplane and by P the class of a point. By [39, Proposition 3.9],
we have that

is a basis for K, ,,, (Ku(X)) with intersection form

ain=(2) 2

with respect to y. Then, Assumptions (a0) and (bl) hold as the central charge is not degenerate.
Assumption (b2) follows by [52, Theorem 1.1].
Assumption (c) can be proved as in Lemma 4.7 using that o is Serre invariant by [55, Proposition

5.7]. (]
We are now ready to prove Theorem 1.2-1.4.

Theorem 4.9. Let Ku(X) be the Kuznetsov component of a cubic fourfold or of a GM variety or of
a quartic double solid defined over C. Then there is an equivalence F : Ku(X) = DP(A), where A is
the heart of a stability condition on Ku(X) and F is defined in Lemma 3.1. Moreover, we have that
Ku(X) has a strongly unique enhancement.

Proof. Note that if X is a GM fivefold (resp. sixfold), then its Kuznetsov component Ku(X) is
equivalent to that of a GM threefold (resp. fourfold). This is a consequence of the duality con-
jecture proved in [37, Theorem 1.6], as explained in [51, Proof of Theorem 4.18]. Thus, we reduce
to prove the statement in this case. Note that the heart of the stability conditions constructed in
[10, 51] is induced on the Kuznetsov component from the heart of DP(X) obtained by double-
tilting Coh(X) (see [10, Theorem 6.9, Proof of Theorem 1.2] and [51, Theorem 4.12]). Then, it is a
consequence of the above lemmas, Proposition 4.3, Theorem 3.8, and Theorem 3.12. O

Proof of Theorem 1.3 and Theorem 1.4. The proof of Theorem 1.4 is a direct consequence of Corol-
lary 3.15. Now assume that X, X, are cubic fourfolds or GM varieties of even dimension. Let
F: Ku(X;) - Ku(X,) be a fully faithful exact functor. We claim that F is an equivalence. Indeed,
first note that the Oth Hochschild cohomology of Ku(X;) is HH’(Ku(X;)) = C, as computed in [42,
Proposition 4.1] and [36, Corollary 2.11]; thus, Ku(X;) is connected. Since Ku(X;) is Calabi-Yau,
by [43, Proposition 5.5], it follows that Ku(X;) is indecomposable.

Note also that Xu(X;) is (right) saturated,” as it is an admissible subcategory of Db(Xl-) that
is saturated (see [20] and [8, Proposition 2.8]). Then F admits left and right adjoints. Indeed,
since Ku(X,) is saturated, for every A, € Ku(X,), the functor Hom(F(—), A,) is representable
by a unique A; € Ku(X;). By Yoneda lemma, this defines a functor G : Ku(X,) - Ku(X;) such
that G(A,) = A;, which is right adjoint to F (see [24, Proposition 3.5]). Since Ku(X;) has Serre
functor, denoted as Sy, x,), the left adjoint of F is H := S]‘Ci ) ° G o Sky(x,)- By [16, Theorem
3.3], this implies that F is an equivalence. The result then follows from Corollary 3.15. O

TWe say that a triangulated category 7 is right saturated if every contravariant cohomology functor of finite type
is representable.
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Remark 4.10. Note that Theorem 3.8 could potentially be applied to the Kuznetsov component
of a cubic threefold. The main missing ingredient is the nonemptiness of moduli spaces of stable
objects for the constructed stability conditions. This is part of the work in progress [31].
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