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Abstract
We prove a general criterion that guarantees that
an admissible subcategory  of the derived category
of an abelian category is equivalent to the bounded
derived category of the heart of a bounded t-structure.
As a consequence, we show that  has a strongly
unique dg enhancement, applying the recent results of
Canonaco, Neeman, and Stellari. We apply this crite-
rion to the Kuznetsov component 𝑢(𝑋) when 𝑋 is a
cubic fourfold, a GM variety, or a quartic double solid.
In particular, we obtain that these Kuznetsov compo-
nents have strongly unique dg enhancement and that
exact equivalences of the form 𝑢(𝑋)

∼
�→ 𝑢(𝑋′) are of

Fourier–Mukai type when 𝑋, 𝑋′ belong to these classes
of varieties, as predicted by a conjecture of Kuznetsov.
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14F08, 14J30, 14J35, 14J45, 18G80 (primary)

1 INTRODUCTION

The bounded derived category of coherent sheaves on a smooth projective variety 𝑋 has a tri-
angulated structure and encodes much information about the geometry of 𝑋. In 1997, Bondal
and Orlov proved that smooth projective varieties with ample (anti)canonical bundle and equiv-
alent bounded derived categories are isomorphic [13]. Similar reconstruction statements, called
Categorical Torelli theorems, have been obtained for admissible subcategories of the bounded
derived category, arising as residual components of exceptional collections in semiorthogonal
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decompositions, of certain Fano threefolds and fourfolds [3, 6, 10, 11, 19, 33, 46, 55] (see [54] for a
survey on this topic).
It is often convenient to associate higher categorical structures to a triangulated category  .

The easiest one yields the notion of dg enhancement, which is a dg category with the same set of
objects as  and whose homotopy category is equivalent to  . One first advantage of passing to
the dg level is that we gain a functorial notion of cone of a morphism [30, Paragraph 2.9].
Not all triangulated categories have a dg enhancement (see, e.g., [56] for counterexamples).

However, if  is an abelian category, then an enhancement of Db() is given by the Drin-
feld quotient of the dg category of bounded complexes in  over its full dg subcategory of
acyclic complexes.
Once an enhancement exists, it is also natural to ask whether it is unique. This has been proved

for Db() by Lunts and Orlov in 2009 when  is a Grothendieck abelian category with a small
set of compact generators [45], generalized in 2015 by Canonaco and Stellari for any Grothendieck
abelian category in [28], and finally proved in 2018 for any abelian category by Antieau in [2].
Recently, Canonaco, Neeman, and Stellari have given a new proof of this result in [22].
The first result of this paper is a criterion that guarantees that an admissible subcategory  of

the derived category of an abelian category is itself equivalent to the derived category of an abelian
category. Clearly, [2] implies that  has a unique enhancement. Using the construction in [22],
we can further show that  as in Theorem 1.1 has a unique enhancement in a strong sense (see
Definition 2.2), as stated below.

Theorem 1.1 (Theorems 3.8 and 3.12). Let  be the derived category of an abelian category. Assume
that  is essentially small. Let  be an admissible subcategory of  having a stability condition
𝜎 = (, 𝑍), whose heart is the restriction of a heart on  and satisfyingAssumption 3.4. Then there
is an exact equivalenceDb()

∼
�→ . Moreover, we have that has a strongly unique enhancement.

In the second part of this paper, we apply Theorem 1.1 to several interesting geometric examples
defined over ℂ. The first and most famous is represented by the Kuznetsov component of a cubic
fourfold 𝑋 ⊂ 𝐏5, defined as the full admissible subcategory,

𝑢(𝑋) ∶= ⟨𝑋,𝑋(1),𝑋(2)⟩⟂ = {𝐸 ∈ 𝑢(𝑋) ∶ Hom∙
Db(𝑋)

(𝑋(𝑖), 𝐸) = 0 for every 𝑖 = 0, 1, 2}

of Db(𝑋), where 𝑋(𝑛) ∶= 𝐏5(𝑛)|𝑋 for every 𝑛 ∈ ℤ (see Example 2.8). We also consider
the Kuznetsov components of GM varieties and of quartic double solids, which are defined
analogously (see Examples 2.9, 2.10, and 2.11). We have the following main result.

Theorem 1.2 (Theorem 4.9). Let𝑢(𝑋) be the Kuznetsov component of a cubic fourfold or of a GM
variety or of a quartic double solid defined over ℂ. Then there is an equivalence 𝑢(𝑋) ≅ Db(),
where is the heart of a stability condition on𝑢(𝑋). Moreover, we have that𝑢(𝑋) has a strongly
unique enhancement.

Theorem 1.2 has interesting consequences on the characterization of exact equivalences
between these Kuznetsov components as functors of Fourier–Mukai type (see Definition 3.13).
In fact, the most important exact functors in the geometric context are of Fourier–Mukai type.
In 1996, Orlov proved that every exact fully faithful functor with adjoints between the bounded
derived categories of coherent sheaves on smooth projective varieties is of Fourier–Mukai type
[49]. Since then this result has been further generalized, see [23, 25, 34, 45]. In particular, the
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2148 LI et al.

key point in [45] was showing the existence of a dg lift of the functor (see Definition 2.3) to the
enhancements, which implies that it is of Fourier–Mukai type by the work of Toën [57].
In our setting, we can prove a version of Orlov’s result for the studied Kuznetsov components.

Theorem 1.3. Let 𝑋1, 𝑋2 be two cubic fourfolds or GM varieties of even dimension defined over ℂ.
Then every fully faithful exact functor𝑢(𝑋1) → 𝑢(𝑋2) is of Fourier–Mukai type.

Theorem 1.4. Let 𝑋1, 𝑋2 be two GM varieties of odd dimension or quartic double solids defined
over ℂ. Then every exact equivalence𝑢(𝑋1) → 𝑢(𝑋2) is of Fourier–Mukai type.

Motivations and related works. In [38, Definition 3.1], Kuznetsov defined the notion of splitting
functor that is a generalization of that of fully faithful functor. Motivated by Orlov’s result, he
conjectured in [38, Conjecture 3.7] that a splitting functor between bounded derived categories of
coherent sheaves on smooth projective varieties is of Fourier–Mukai type. Note that equivalences
among Kuznetsov components, composed with the embedding functor of the Kuznetsov compo-
nent in the derived category and its left adjoint, are splitting functors. Thus, Theorems 1.3 and 1.4
prove the above-mentioned conjecture in the considered geometric cases.
In the case of the quartic double solid, it was observed in [19, Theorem 7.2] that Theorem 1.4

implies the failure of original Fano threefolds Kuznetsov’s Conjecture [39, Conjecture 3.7]. Note
that Fano threefolds Conjecture has been disproved in [58] and [15], independently, in a stronger
sense, namely, that the Kuznetsov component of a quartic double solid is never equivalent to that
of a GM threefold.
Making a speculation, there could be a connection between Theorem 1.2 and a proof of the

formality conjecture for polystable objects in the Kuznetsov components of cubic fourfolds and
GM varieties of even dimension. Recall that the formality conjecture, formulated for the first time
by Kaledin and Lehn, states that the differential graded algebra of derived endomorphisms of
polystable objects in the bounded derived category of a K3 surface is formal. In [21], the authors
proved this conjecture, using Orlov’s result on strong uniqueness of the enhancement. In the case
of cubic fourfolds and GM varieties of even dimension, the formality conjecture follows from the
general results in [29]. Nevertheless, Theorem 1.2 could be useful to provide a direct and simpler
proof of this conjecture in these cases. Moreover, the description in Theorem 1.2 as the bounded
derived category of a heart of a stability condition makes the Kuznetsov component much more
explicit and manageable.
An interesting question arisen in [22] is whether there exist admissible subcategories of the

bounded derived category of coherent sheaves on a smooth projective scheme over a field with a
nonunique enhancement. Theorem 1.1 could be helpful to find an answer to this question.
Finally, we believe that Theorem 1.1 could be applied to the Kuznetsov component of a cubic

threefold, although we cannot yet show this, because of the lack of a control of the semistable
objects (see Remark 4.10).

Strategy of the proofs. In [7], Beilinson constructed a functor, known as realization functor, from
the derived category of an abelian category in a triangulated category  to  . Note that this con-
struction makes use of the structure of filtered derived category on  , see Remark 3.2. To prove
the first part of Theorem 1.1, we show that the realization functor is an equivalence under suit-
able assumptions, which are listed in Assumption 3.4. To summarize, we require the existence of
a stability condition on the admissible subcategorywith ‘sufficiently many’ semistable objects,
namely, Assumption 3.4 (b), and whose heart has homological dimension ⩽ 2. Assuming this, we
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DERIVED CATEGORIES OF HEARTS ON KUZNETSOV COMPONENTS 2149

show that the Hom2

between objects in are generated by elements in Ext1


through Yoneda’s

composition, which implies that the realization functor is an equivalence by [32, IV, Exercise 2].
The second part of Theorem 1.1 follows from the first part of Theorem 1.1, the construction in

[22] of the quasi-isomorphism between the enhancements, and a criterion in [26] for the extension
of isomorphisms of functors.
We prove that Assumption 3.4 holds for the Kuznesov component of a cubic fourfold and of a

GM variety of even dimension using [9, 10, 51]. In the case of GM varieties of odd dimension and
quartic double solids, stability conditions are known to exist by [10]. We make use of [53] and [55]
to control the homological dimension of the heart, and of [52] where we show the density of the
set of semistable objects. This provides the proof of Theorem 1.2.
We remark in Proposition 3.14 that the strongly uniqueness of the enhancement implies that

equivalences have a dg lift, and these are of Fourier–Mukai type. This implies Theorems 1.3 and
1.4. □

Plan of the paper. In Section 2, we recollect the introductorymaterial on enhancements, Fourier–
Mukai functors, and stability conditions we need in the next, and the definitions of the Kuznetsov
components of cubic fourfolds, GM varieties, and quartic double solids. In Sections 3.1 and 3.2, we
prove Theorem 1.1. In Section 3.3, we explain how to deduce from the second part of Theorem 1.1
the characterization of equivalences as Fourier–Mukai functors. Section 4 is devoted to the proof
of Theorems 1.2, 1.3, and 1.4.

Convention. Throughout the paper, we assume that all triangulated categories are essentially
small, that is, they are equivalent to categories in which the class of objects is a set. In particular,
in Section 3, we assume that  is essentially small.

2 PRELIMINARIES ON DG ENHANCEMENTS, STABILITY
CONDITIONS, AND KUZNETSOV COMPONENTS

In this section, we recollect some definitions and known results on dg enhancements and stability
conditions. Finally, we list the examples of geometric categories to investigate in this paper.

2.1 Enhancements and Fourier–Mukai functors

Let 𝕂 be a field. Recall that a differential graded (dg) category is a 𝕂-linear category  such that
for every pair of objects 𝐴, 𝐵 ∈  the space of morphisms Hom (𝐴, 𝐵) has the structure of ℤ-
graded 𝕂-module with differential 𝑑∶ Hom (𝐴, 𝐵) → Hom (𝐴, 𝐵) of degree 1 and such that the
composition mapsHom (𝐵, 𝐶) ⊗𝕂 Hom (𝐴, 𝐵) → Hom (𝐴, 𝐶) are morphisms of complexes for
every 𝐴, 𝐵, 𝐶 ∈  .
The homotopy category of a dg category  , denoted byH0(), is the category with the same set

of objects as  and such that HomH0()(𝐴, 𝐵) = H0(Hom (𝐴, 𝐵)) for every 𝐴, 𝐵 ∈  .
Note that if  is a pretriangulated dg category (see [35, Section 4.5]), thenH0() is triangulated.

In this case, we have the following definitions.

Definition 2.1. A (dg) enhancement of a triangulated category  is a pair ( , 𝜖), where  is a
pretriangulated dg category and 𝜖∶ H0() →  is an exact equivalence.

 14697750, 2023, 6, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12804 by C

ochraneItalia, W
iley O

nline L
ibrary on [06/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



2150 LI et al.

Recall that a dg functor 𝐹∶  →  ′ between two dg categories  ,  ′ is a functor such that for
every pair of objects 𝐴, 𝐵 ∈  , the map 𝐹𝐴,𝐵 ∶ Hom (𝐴, 𝐵) → Hom ′ (𝐹(𝐴), 𝐹(𝐵)) is a morphism
of complexes of 𝕂-modules. A dg functor 𝐹 is a quasi-equivalence if 𝐹𝐴,𝐵 is a quasi-isomorphism
for every 𝐴, 𝐵 ∈  and H0(𝐹) is an equivalence.
We denote by Hqe the localization of the category of small dg categories with respect to quasi-

equivalences. Morphisms in Hqe are called quasi-functors.

Definition 2.2. A triangulated category  has a unique enhancement if given two enhancements
( , 𝜖), ( ′, 𝜖′), there exists a quasi functor 𝐹∶  →  ′ such that the induced exact functorH0(𝐹) is
an equivalence. We say that  has a strongly unique enhancement if in addition 𝐹 can be chosen
with the property that there is an isomorphism of functors 𝜖′ ◦H0(𝐹) ≅ 𝜖.

Definition 2.3. Let  and  ′ be triangulated categories with enhancements ( , 𝜖) and ( ′, 𝜖′),
respectively. Let Φ∶  →  ′ be an exact functor. A quasi-functor 𝐹∶  →  ′ is a dg lift of Φ if
there is an isomorphism of exact functors Φ ≅ 𝜖′ ◦H0(𝐹) ◦ 𝜖−1.

Let Φ∶ Db(𝑋) → Db(𝑋′) be an exact functor between the bounded derived categories of two
smooth projective 𝕂-schemes 𝑋 and 𝑋′. Recall that Φ is of Fourier–Mukai type if there exists
𝐾 ∈ Db(𝑋 × 𝑋′) and an isomorphism of functors

Φ(−) ≅ 𝑝′∗(𝐾 ⊗ 𝑝∗(−)), (1)

where 𝑝∶ 𝑋 × 𝑋′ → 𝑋, 𝑝′ ∶ 𝑋 × 𝑋′ → 𝑋′ are the projections. All functors here are derived. Let
( , 𝜖) and ( ′, 𝜖′) be enhancements of Db(𝑋) and Db(𝑋′), respectively. By [47, 57] (see also [27,
Proposition 6.1]), we have that Φ∶ Db(𝑋) → Db(𝑋′) is a Fourier–Mukai functor if and only if Φ
has a dg lift.
We suggest the interested readers to consult the excellent survey [27] for more details and

examples on these topics.

2.2 Stability conditions on triangulated categories

Let  be a triangulated category. In this section, we recall the notions and first properties of
stability conditions on  , introduced by Bridgeland in [17].

Definition 2.4. A t-structure on  is a pair of full subcategories ( ⩽0,  ⩾0) satisfying the
following conditions:

1.  ⩽0 ⊆  ⩽0[−1] and  ⩾0 ⊇  ⩾0[−1];
2. Hom (𝑋, 𝑌) = 0 for 𝑋 ∈  ⩽0, 𝑌 ∈  ⩾0[−1];
3. for any object 𝑇 ∈  , there exists an exact triangle 𝑋 → 𝑇 → 𝑌

+
�→, where 𝑋 ∈  ⩽0 and 𝑌 ∈

 ⩾0[−1].

The heart of a t-structure ( ⩽0,  ⩾0) is the full subcategory  ∶=  ⩾0 ∩  ⩽0. A t-structure is
bounded if

 =
⋃
𝑎⩽𝑏

 [𝑎,𝑏],

where  [𝑎,𝑏] ∶=  ⩽0[−𝑏] ∩  ⩾0[−𝑎].
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DERIVED CATEGORIES OF HEARTS ON KUZNETSOV COMPONENTS 2151

By [5], the heart of a t-structure is an abelian category. Given a t-structure ( ⩽0,  ⩾0), there
exist functors

𝜏⩽𝑎 ∶  →  ⩽0[−𝑎], 𝜏⩾𝑎 ∶  →  ⩾0[−𝑎]

called truncation functors, which are right adjoint and left adjoint to the inclusion functors
 ⩽0[−𝑎] →  and  ⩾0[−𝑎] →  , respectively. For every object 𝑇 ∈  , there exists an exact
triangle of the form

𝜏⩽0(𝑇) → 𝑇 → 𝜏⩾1(𝑇)
+
�→

(see [32, IV.4.5.Lemma]).
Fix a finite rank lattice Λ with a surjective morphism 𝜔∶ 𝐾( ) ↠ Λ, where 𝐾( ) denotes the

Grothendieck group of  .

Definition 2.5. A stability condition (with respect toΛ) on  is a pair 𝜎 = (, 𝑍), where is the
heart of a bounded t-structure on  and 𝑍∶ Λ → ℂ is a group morphism called central charge,
satisfying the following properties:

1. For any 0 ≠ 𝐸 ∈ , we haveℑ𝑍𝜔(𝐸) ⩾ 0, and in the case thatℑ𝑍𝜔(𝐸) = 0, we haveℜ𝑍𝜔(𝐸) <
0 (we will write 𝑍(−) instead of 𝑍𝜔(−) for simplicity).
The slope of a nonzero object 𝐸 ∈  is defined as

𝜇𝑍(𝐸) =

{
−ℜ𝑍(𝐸)
ℑ𝑍(𝐸)

if ℑ𝑍(𝐸) > 0,

+∞ otherwise.

An object 𝐸 ∈  is 𝜎-(semi)stable if 𝐸 is nonzero, 𝐸[𝑘] ∈  for some 𝑘 ∈ ℤ, and for every
nonzero proper subobject 𝐹 ⊂ 𝐸[𝑘] in, we have 𝜇𝑍(𝐹) < (⩽) 𝜇𝑍(𝐸[𝑘]∕𝐹).

2. Every object of 𝐸 ∈  has a unique filtration

0 = 𝐸0 ↪ 𝐸1 ↪ …𝐸𝑚−1 ↪ 𝐸𝑚 = 𝐸,

where 𝐴𝑖 ∶= 𝐸𝑖∕𝐸𝑖−1 is 𝜎-semistable and 𝜇+𝑍 (𝐸) ∶= 𝜇𝑍(𝐴1) > … > 𝜇𝑍(𝐴𝑚) =∶ 𝜇
−
𝑍
(𝐸).

3. (Support Property) There exists a quadratic form 𝑄 on Λ⊗ℝ such that the restriction of 𝑄 to
the kernel of 𝑍 is negative definite and 𝑄(𝐸) ⩾ 0 for all 𝜎-semistable objects 𝐸 in.

The objects 𝐴𝑖 in Definition 2.5 are called Harder–Narasimhan factors of 𝐸.
Given a stability condition 𝜎 = (, 𝑍) on  , we can associate a slicing as follows. Recall that

the phase of a nonzero object 𝐸 ∈  is

𝜙(𝐸) =

{
1

𝜋
Arg(𝑍(𝐸)) if ℑ𝑍(𝐸) > 0,

1 otherwise.

If 𝐹 = 𝐸[𝑘] for 𝐸 ∈ , then 𝜙(𝐹) = 𝜙(𝐸) + 𝑘. We define the collection 𝜎 = {𝜎(𝜙)} of full
additive subcategories 𝜎(𝜙) ⊂  for 𝜙 ∈ ℝ such that:

 14697750, 2023, 6, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12804 by C

ochraneItalia, W
iley O

nline L
ibrary on [06/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



2152 LI et al.

1. if 𝜙 ∈ (0, 1], the subcategory 𝜎(𝜙) is the union of the zero object and all 𝜎-semistable objects
with phase 𝜙;

2. for 𝜙 + 𝑛 with 𝜙 ∈ (0, 1] and 𝑛 ∈ ℤ, set 𝜎(𝜙 + 𝑛) ∶= 𝜎(𝜙)[𝑛].

We write 𝜎(𝐼), where 𝐼 ⊂ ℝ is an interval, to denote the extension-closed subcategory of 
generated by the subcategories 𝜎(𝜙) with 𝜙 ∈ 𝐼. Note that 𝜎((0, 1]) = .
Note that 𝜎(𝜙) has finite length for every 𝜙 ∈ ℝ.† In particular, every object 𝐸 ∈ 𝜎(𝜙) has

a (nonunique) finite filtration in 𝜎-stable objects of the same phase 𝜙, which are called Jordan–
Hölder factors.
Now let𝑋 be a smooth projective variety defined over the field of complex numbers ℂ. Assume

that  is a full admissible subcategory of the bounded derived category Db(𝑋), in other words,
the inclusion functor  → Db(𝑋) is fully faithful and has left and right adjoint. The Grothendieck
group K0( ) comes equipped with a well-defined Euler pairing 𝜒 ∶ K0( ) × K0( ) → ℤ defined
as follows:

([𝐸], [𝐹]) ∶=
∑
𝑛∈ℤ

(−1)𝑛 dimHom(𝐸, 𝐹[𝑛]).

The numerical Grothendieck group Knum( ) ∶= K0( )∕ ker(𝜒) is isomorphic to a subgroup of
Knum(𝑋) that is a finitely generated free abelian group. Let 𝜎 = (, 𝑍) be a stability condition on
 with respect to the numerical Grothendieck group Knum( ) of  . For 𝑣 ∈ Knum( ), consider
the functor

𝜎( , 𝑣)∶ (Sch)op → Gpd

from the category of schemes over ℂ to the category of groupoids, which associates to a scheme
𝑆 the groupoid𝜎( , 𝑣)(𝑆) of all perfect complexes 𝐸 ∈ D(𝑋 × 𝑆) such that, for every 𝑠 ∈ 𝑆, the
restriction 𝐸𝑠 of 𝐸 to the fiber 𝑋 × {𝑠} belongs to  , is 𝜎-semistable of phase 𝜙 and 𝐯(𝐸𝑠) = 𝑣. In
the examples we will consider in this paper, the functor 𝜎( , 𝑣) admits a good moduli space
𝑀𝜎( , 𝑣), in the sense of [1], which is a proper algebraic space over ℂ. We will denote by𝑀𝑠

𝜎( , 𝑣)

the locus of classes of 𝜎-stable objects in𝑀𝜎( , 𝑣).
Denote by Stab( ) the set of stability conditions on  with respect to Knum( ). By Bridgeland

deformation theorem [17], the set Stab( ) (given that it is nonempty) has the structure of complex
manifold of dimension equal to the rank of Knum( ).
Denote by GL+

2
(ℝ) ∶= {g ∈ GL2(ℝ) | det(g) > 0}. Let G̃L+2 (ℝ) be the universal cover of

GL+
2
(ℝ). We have the following right group action of G̃L

+

2 (ℝ) on Stab( ). Given g̃ = (g ,𝑀) ∈

G̃L
+

2 (ℝ) with 𝑀 ∈ GL+
2
(ℝ) and g ∶ ℝ → ℝ increasing with g(𝜙 + 1) = g(𝜙) + 1, the action on

𝜎 = (𝜎((0, 1]), 𝑍) ∈ Stab( ) is given by

𝜎 ⋅ g̃ = (𝜎((g(0), g(1)]),𝑀
−1 ◦𝑍).

In particular, 𝜎 and 𝜎 ⋅ g̃ have the same set of semistable objects but with different phases.

† See [12, Lemma A.4] for the equivalent definitions of support property. Definition A.2 in [12] implies that the slice is
Artinian directly.
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DERIVED CATEGORIES OF HEARTS ON KUZNETSOV COMPONENTS 2153

2.3 Semiorthogonal decompositions and Kuznetsov components

Let  be a 𝕂-linear triangulated category, where 𝕂 is a field.

Definition 2.6. A semiorthogonal decomposition for  , denoted by  = ⟨1, … , 𝑚⟩, is a
sequence of full triangulated subcategories 1, … , 𝑚 of  such that:

1. Hom (𝐸, 𝐹) = 0, for all 𝐸 ∈ 𝑖 , 𝐹 ∈ 𝑗 and 𝑖 > 𝑗;
2. for any 𝐸 ∈  , there is a sequence of morphisms

0 = 𝐸𝑚 → 𝐸𝑚−1 → ⋯→ 𝐸1 → 𝐸0 = 𝐸,

such that Cone(𝐸𝑖 → 𝐸𝑖−1) ∈ 𝑖 for 1 ⩽ 𝑖 ⩽ 𝑚.

Definition 2.7. An object 𝐸 ∈  is exceptional if Hom (𝐸, 𝐸[𝑘]) = 0 for all integers 𝑘 ≠ 0, and
Hom (𝐸, 𝐸) ≅ 𝕂. An exceptional collection is a collection of objects 𝐸1, … , 𝐸𝑚 in  such that 𝐸𝑖
is an exceptional object for all 𝑖, and Hom (𝐸𝑖, 𝐸𝑗[𝑘]) = 0 for all 𝑘 and 𝑖 > 𝑗.

Assume that  is a proper 𝕂-linear triangulated category, that is, for every𝐴, 𝐵 ∈  , the vector
space⊕𝑖 Hom(𝐴, 𝐵[𝑖]) is finite-dimensional. Given an exceptional collection 𝐸1, … , 𝐸𝑚 in  , we
have the semiorthogonal decomposition

 = ⟨, 𝐸1, … , 𝐸𝑚⟩,
where ∶= ⟨𝐸1, … , 𝐸𝑚⟩⟂ = {𝐹 ∈  ∶ Hom (𝐸𝑖, 𝐹) = 0 for all 𝑖 = 1, … ,𝑚}.
We now recall some explicit examples of semiorthogonal decompositions associated to excep-

tional collections, which define the Kuznetsov components we will consider in the next. In all of
them, we assume that 𝑋 is a variety defined over ℂ.†

Example 2.8. Let 𝑋 ⊂ ℙ5 be a cubic fourfold, in other words, a smooth cubic hypersurface in ℙ5.
By [40], the bounded derived category of 𝑋 has a semiorthogonal decomposition of the form

Db(𝑋) = ⟨𝑢(𝑋),𝑋,𝑋(1),𝑋(2)⟩,
where 𝑋,𝑋(1),𝑋(2) are an exceptional collection of line bundles on 𝑋 and

𝑢(𝑋) ∶= ⟨𝑋,𝑋(1),𝑋(2)⟩⟂
is known as the Kuznetsov component of 𝑋. The Serre functor of𝑢(𝑋) satisfies 𝑆𝑢(𝑋) ≅ [2]. In
addition,𝑢(𝑋) has Hochschild cohomology isomorphic to that of the bounded derived category
of a K3 surface [42, Proposition 4.1]. For these reasons, we say that𝑢(𝑋) is a noncommutative K3
surface. Stability conditions on 𝑢(𝑋) have been constructed in [10] and the associated moduli
spaces of stable objects have been studied in [9].

† The following examples can be statedmore generally over an algebraically closed field of characteristic 0 or large enough
positive characteristic. However, we need to work over ℂ to have the results on moduli spaces which we will use in
Section 4.
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2154 LI et al.

Example 2.9. The second example of noncommutative K3 surface is given by the Kuznetsov
component of a GM variety of even dimension. Recall that a GM variety of dimension 2 ⩽ 𝑛 ⩽ 6
is a smooth intersection of the form

𝑋 = CG(2, 5) ∩ 𝑄 ⊂ ℙ10,

whereCG(2, 5) denotes the cone over theGrassmannianG(2, 5) embedded via the Plücker embed-
ding in a 10-dimensional projective spaceℙ10, and𝑄 is a quadric hypersurface in a projective space
ℙ𝑛+4 ⊂ ℙ10 of dimension𝑛 + 4. By [36], the boundedderived category of𝑋 has the semiorthogonal
decomposition

Db(𝑋) = ⟨𝑢(𝑋),𝑋, ∨
𝑋
, … ,𝑋(𝑛 − 3),

∨
𝑋
(𝑛 − 3)⟩.

Here, ∨
𝑋
denotes the pullback of the dual of the rank-two tautological bundle on the Grassman-

nian. If 𝑛 is even, then the Serre functor of 𝑢(𝑋) is isomorphic to the homological shift [2].
Moreover, stability conditions and their related moduli spaces have been constructed and studied
in [51].

Example 2.10. We can also consider the Kuznetsov component of a GM variety 𝑋 of odd dimen-
sion, namely, aGM threefold or fivefold. In this case, the Serre functor of𝑢(𝑋) is the composition
of an involutive autoequivalence and the homological shift by 2, see [36]. We call 𝑢(𝑋) a 2-
Enriques category, or simply Enriques category, see [44, Definition 4.2] for more details. Stability
conditions on𝑢(𝑋) have been constructed in [10, Section 6].

Example 2.11. Another example of Enriques category is given by the Kuznetsov component of a
quartic double solid 𝑋, which is the double cover of ℙ3 ramified in a smooth quartic surface. By
[39, Corollary 3.5], there is a semiorthogonal decomposition of the form

Db(𝑋) = ⟨𝑢(𝑋),𝑋,𝑋(1)⟩,
where 𝑢(𝑋) is the Kuznetsov component. Its Serre functor is the composition of an involutive
autoequivalence and the homological shift by 2 by [43, Corollary 4.6]. Again, stability conditions
on𝑢(𝑋) have been constructed in [10, Section 6].

3 PROOF OF THE GENERAL RESULTS

In this section, we prove Theorem 1.1 that is split in Theorems 3.8 and 3.12.

3.1 Admissible subcategories and hearts

Let  be the derived category of an abelian category, and let  be an admissible subcategory of
 . Suppose that there exists a heart  of a bounded t-structure on  , and the intersection of
 with  is a heart  of a bounded t-structure on . We denote by (⩽0,⩾0) the bounded
t-structure on whose heart is.
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DERIVED CATEGORIES OF HEARTS ON KUZNETSOV COMPONENTS 2155

The following lemma is a direct consequence of [7].

Lemma 3.1. There exists a t-exact functor 𝐹∶ Db() → , whose restriction to the heart  ⊂

Db() is identity to the heart ⊂ .

Proof. Since  is the derived category of an abelian category, there exists a filtered derived category
over  . Then by [7, Statement A 6] (see [5, Proposition 3.1.10] for the proof), there is an exact
functor 𝐹 ∶ Db( ) →  , which is t-exact with respect to the standard t-structure on Db( )

and that defining the heart in  , whose restriction to is the identity.
Now the inclusion  ⊂  induces a natural exact functor 𝐺∶ Db() → Db( ). Since by

definition =  ∩, the composition 𝐹 ∶= 𝐹 ◦𝐺∶ Db() →  is t-exact and is the identity
on.
It remains to show that 𝐹 factors through. Equivalently, we show that R ◦𝐹 = 0, where R

is the right mutation functor with respect to . Note that if 𝐴 ∈ , then R𝐹(𝐴) = R(𝐴) = 0,
as 𝐹 is the identity on and 𝐴 ∈ . Since is the heart of a bounded t-structure on Db(), this
implies that R ◦𝐹 = 0 as we wanted. □

Remark 3.2. The assumption that  is the derived category of an abelian category is used to ensure
the existence of a filtered derived category over it, which allows constructing the functor using [7].
Alternatively, we can assume that  is the homotopy category of a stable∞-category to obtain a
similar result.

To see when the functor 𝐹 is an equivalence, we will use the following lemma, which is well
known to the experts, also see in [32, IV.4, Exercise 2, p. 286].

Lemma 3.3. The functor 𝐹∶ Db() →  constructed in Lemma 3.1 is an equivalence if and only
if for any two objects𝐴, 𝐵 in, and any morphism 𝑓 ∈ Hom(𝐴, 𝐵[𝑛]) for 𝑛 ⩾ 2, there exist objects
𝐴0 = 𝐴, 𝐴1, 𝐴2,… ,𝐴𝑛 = 𝐵 in , and morphisms 𝑓𝑖 ∈ Hom(𝐴𝑖−1, 𝐴𝑖[1]) for 𝑖 = 1, 2, … , 𝑛, such
that 𝑓 is the composition of the 𝑓𝑖 ’s.

Proof. We outline the proof for the sake of completeness. Assume that 𝐹 is an equivalence. Then
𝐹 induces an isomorphism

𝐹𝑛
𝐴,𝐵
∶ HomDb()(𝐴, 𝐵[𝑛]) ≅ Hom(𝐴, 𝐵[𝑛])

for every pair of objects 𝐴, 𝐵 in Db(), 𝑛 ∈ ℤ. If 𝐴, 𝐵 ∈ , then by definition,

HomDb()(𝐴, 𝐵[𝑛]) = Ext
𝑛

(𝐴, 𝐵)

and by Yoneda interpretation (see [32, III.5.Theorem (c)]), every extension𝑓′ ∈ Ext𝑛

(𝐴, 𝐵) is gen-

erated by extensions in Ext1

, in other words, there exist objects 𝐴0 = 𝐴, 𝐴1, 𝐴2,… ,𝐴𝑛 = 𝐵 in,

and morphisms 𝑓′
𝑖
∈ Ext1


(𝐴𝑖−1, 𝐴𝑖) for 𝑖 = 1, 2, … , 𝑛, such that

𝑓′ = 𝑓′𝑛[𝑛 − 1] ◦ …𝑓
′
2[1] ◦𝑓

′
1.

Thus, for every 𝑓 ∈ Hom(𝐴, 𝐵[𝑛]), there exists 𝑓′ ∈ Ext𝑛(𝐴, 𝐵) such that 𝑓 = 𝐹𝑛
𝐴,𝐵
(𝑓′) and

𝑓′ is the composition of extensions 𝑓′
𝑖
as above. Setting 𝑓𝑖 ∶= 𝐹1𝐴,𝐵(𝑓

′
𝑖
), since 𝐹 is a functor,
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2156 LI et al.

we have

𝑓 = 𝐹𝑛
𝐴,𝐵
(𝑓′) = 𝐹1𝐴,𝐵(𝑓

′
𝑛)[𝑛 − 1] ◦ …𝐹

1
𝐴,𝐵(𝑓

′
2)[1] ◦𝐹

1
𝐴,𝐵(𝑓

′
1) = 𝑓𝑛[𝑛 − 1] ◦ …𝑓2[1] ◦𝑓1,

where 𝑓𝑖 ∈ Hom(𝐴𝑖−1, 𝐴𝑖[𝑖]). This proves the first implication.
On the other hand, assume the second condition holds. We first show that 𝐹 is fully faithful.

Indeed, by definition of Db(), it is enough to show that 𝐹𝑛
𝐴,𝐵

is an isomorphism for every 𝐴, 𝐵
in, 𝑛 ∈ ℤ. Note that

Hom(𝐴, 𝐵[−𝑛]) = 0 = Ext
−𝑛

(𝐴, 𝐵) for 𝑛 > 0

since is the heart of a bounded t-structure, and

HomDb()(𝐴, 𝐵) ≅ Hom(𝐴, 𝐵) ≅ Hom(𝐴, 𝐵)

since  is a full subcategory of both Db() and . Now note that every 𝑓 ∈ Hom(𝐴, 𝐵[1])

corresponds to a triangle

𝐴
𝑓
�→ 𝐵[1] → Cone(𝑓)

+
�→ .

Then 𝐶 ∶= Cone(𝑓)[−1] is in, since 𝐴 and 𝐵 are. Thus, 𝐶 corresponds to the extension

0 → 𝐵 → 𝐶 → 𝐴 → 0

in  and defines 𝑓′ ∈ Ext1

(𝐴, 𝐵) = HomDb()(𝐴, 𝐵[1]). Since 𝐹 is the identity on , it fol-

lows that 𝐹1
𝐴,𝐵
(𝑓′) = 𝑓. If 𝑛 ⩾ 2, by assumption, every 𝑓 ∈ Hom(𝐴, 𝐵[𝑛]) can be written as a

composition

𝑓 = 𝑓𝑛[𝑛 − 1] ◦ …𝑓2[1] ◦𝑓1

with 𝑓𝑖 ∈ Hom(𝐴𝑖−1, 𝐴𝑖[1]) and 𝐴0 = 𝐴, 𝐴1, 𝐴2,… ,𝐴𝑛 = 𝐵 in . Since 𝐹 induces an iden-
tification Hom(𝐴𝑖−1, 𝐴𝑖[1]) ≅ Ext

1

(𝐴𝑖−1, 𝐴𝑖), there exists 𝑓′𝑖 ∈ Ext

1

(𝐴𝑖−1, 𝐴𝑖) such that 𝑓𝑖 =

𝐹1
𝐴,𝐵
(𝑓′
𝑖
). Setting 𝑓′ ∶= 𝑓′𝑛[𝑛 − 1] ◦ …𝑓

′
2
[1] ◦𝑓′

1
, we have

𝐹𝑛
𝐴,𝐵
(𝑓′) = 𝐹1𝐴,𝐵(𝑓

′
𝑛)[𝑛 − 1] ◦ …𝐹

1
𝐴,𝐵(𝑓

′
2)[1] ◦𝐹

1
𝐴,𝐵(𝑓

′
1) = 𝑓𝑛[𝑛 − 1] ◦ …𝑓2[1] ◦𝑓1 = 𝑓.

This shows that

𝐹𝑛
𝐴,𝐵
∶ Ext𝑛


(𝐴, 𝐵) = HomDb()(𝐴, 𝐵[𝑛]) → Hom(𝐴, 𝐵[𝑛])

is surjective for every 𝑛.
Note that 𝐹𝑛

𝐴,𝐵
is also injective. To show this, we argue by induction on 𝑛. The case 𝑛 ⩽ 1

has already been shown. Let 𝑛 ⩾ 2 and assume that 𝐹𝑚
𝐴,𝐵

is injective for every 𝑚 < 𝑛. Let 𝑓′ ∈
Ext𝑛


(𝐴, 𝐵) such that 𝐹𝑛

𝐴,𝐵
(𝑓′) = 0. By Yoneda interpretation, 𝑓′ is of the form

𝑓′ = 𝑓′2[1] ◦𝑓
′
1 ∶ 𝐴 → 𝐴1[1] → 𝐵[𝑛],
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DERIVED CATEGORIES OF HEARTS ON KUZNETSOV COMPONENTS 2157

where 𝑓′
1
∈ Ext1


(𝐴,𝐴1),𝐴1 ∈  and 𝑓′

2
∈ Ext𝑛−1


(𝐴1, 𝐵). Set𝐾 ∶= Cone(𝑓′

1
)[−1]. Then we have

the short exact sequence

0 → 𝐴1
𝑎
�→ 𝐾 → 𝐴 → 0

in and the exact triangle

𝐴
𝑓′
1
��→ 𝐴1[1]

𝑎[1]
����→ 𝐾[1]

+
�→

in Db(). Then, we have

0 = 𝐹𝑛
𝐴,𝐵
(𝑓′) = 𝐹𝑛

𝐴,𝐵
(𝑓′2[1] ◦𝑓

′
1) = 𝐹

𝑛−1
𝐴,𝐵

(𝑓′2)[1] ◦𝐹
1
𝐴,𝐵(𝑓

′
1).

It follows that 𝐹𝑛−1
𝐴,𝐵

(𝑓′
2
)[1] lifts to a morphism g[1] ∈ Hom(𝐾[1], 𝐵[𝑛]) such that

𝐹𝑛−1
𝐴,𝐵

(𝑓′2)[1] = g[1] ◦𝐹0
𝐴,𝐵
(𝑎)[1].

Since 𝐹𝑛−1
𝐴,𝐵

is surjective, there exists g ′ ∈ Ext𝑛−1

(𝐾, 𝐵) such that 𝐹𝑛−1

𝐴,𝐵
(g ′) = g . It follows that

𝐹𝑛−1
𝐴,𝐵

(𝑓′2)[1] = 𝐹
𝑛−1
𝐴,𝐵

(g ′)[1] ◦𝐹0
𝐴,𝐵
(𝑎)[1] = 𝐹𝑛−1

𝐴,𝐵
(g ′ ◦𝑎)[1].

By induction hypothesis, the map 𝐹𝑛−1
𝐴,𝐵

is injective, so we deduce that 𝑓′
2
= g ′ ◦𝑎. Then, we have

𝑓′ = 𝑓′2[1] ◦𝑓
′
1 = g ′[1] ◦𝑎[1] ◦𝑓′1 = 0

since 𝑎[1] ◦𝑓′
1
= 0. We conclude that 𝐹𝑛

𝐴,𝐵
is an isomorphism for every 𝑛, and thus, 𝐹 is

fully faithful.
We now show that 𝐹 is essentially surjective. We argue as in [5, Section 3.1.15]. By definition of

bounded t-structure, we have

 =
⋃
𝑎⩽𝑏

[𝑎,𝑏],

thus if 𝐾 ∈ , then 𝐾 ∈ [𝑎,𝑏] for some 𝑎 ⩽ 𝑏. We argue by induction on 𝑙 = 𝑏 − 𝑎 ⩾ 0. If 𝑙 = 0,
then𝐾 = 𝐴[𝑎] for some𝐴 ∈ . Since 𝐹 is the identity on, the object𝐾 is in the essential image
of 𝐹. If 𝑙 ⩾ 1, assume that the statement holds for every nonnegative integer < 𝑙. Take 𝑎 ⩽ 𝑐 < 𝑏
and consider the truncation functors 𝜏⩽𝑐 and 𝜏>𝑐. Then we have the triangle

𝜏⩽𝑐𝐾 → 𝐾 → 𝜏>𝑐𝐾
𝑓
�→ 𝜏⩽𝑐𝐾[1].

By the induction hypothesis, there exist 𝐾1, 𝐾2 ∈ Db() such that 𝐹(𝐾1) = 𝜏⩽𝑐𝐾 and 𝐹(𝐾2) =
𝜏>𝑐𝐾. Since 𝐹 is fully faithful, there exists 𝑓′ ∶ 𝐾2 → 𝐾1[1] such that 𝐹(𝑓′) ≅ 𝑓. Then applying 𝐹
to the triangle

Cone(𝑓′)[−1] → 𝐾2
𝑓′

��→ 𝐾1[1]
+
�→,
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2158 LI et al.

we get the commutative diagram

By Axiom TR3 of triangulated categories, we have an induced morphism 𝐹(Cone(𝑓′)[−1]) →
𝐾, which is an isomorphism. We conclude that 𝐹 is essentially surjective, and thus, 𝐹 is an
equivalence as we wanted. □

The key observation is that to ensure the condition in Lemma 3.3, it suffices to have a stability
condition onwith certain special properties. More precisely, suppose that there exists a stability
condition 𝜎 onwith heart. Denote by 𝑍 the central charge of 𝜎 and by 𝜇 the associated slope.
Further assume the following holds for 𝜎:

Assumption 3.4.

(a) The image of the central charge 𝑍∶ Knum() → ℂ is discrete.
(b) For every nonzero object 𝐸 in and every real number 𝑠0, there exists a 𝜎-stable object 𝐹 in

 satisfying 𝜇(𝐹) < 𝑠0 and Hom(𝐹, 𝐸) ≠ 0.
(c) For any 𝜎-stable objects 𝐸 and 𝐹 in, we haveHom(𝐸, 𝐹[𝑚]) = 0 for𝑚 ⩾ 3. If 𝜇(𝐸) < 𝜇(𝐹)

in addition, then we have Hom(𝐸, 𝐹[2]) = 0.

We will write 𝑍 = −deg + 𝑖rk. Denote by 𝛿0(𝜎) ∶= inf {rk(𝐸)|𝐸 ∈ , rk(𝐸) > 0}. Note that
when 𝛿0(𝜎) ≠ 0, the image of rk in ℝ consists of integral multiples of 𝛿0(𝜎), hence discrete.
We say that a stability condition 𝜎 satisfies the Assumption 3.4 if

∙ 𝛿0(𝜎) ≠ 0 and 𝜎 satisfies (a-c) as above;
∙ or 𝛿0(𝜎) = 0 and there exists an open neighborhood 𝑈 in G̃L

+
(2, ℝ) of the lift of the identity

such that 𝜎 ⋅ g̃ satisfies (a–c) for every g̃ ∈ 𝑈.

Our goal is to show that under the above assumptions, the condition in Lemma 3.3 is satisfied,
and the functor 𝐹∶ Db() →  is an equivalence.

Lemma3.5. Let𝜎 be a stability condition on satisfying theAssumption 3.4. Then for every nonzero
object 𝐴 in and every real number 𝑠, there exists an object 𝐶 in satisfying:

1. 𝜇+(𝐶) < 𝑠;
2. there exists a surjective morphism 𝐶 → 𝐴 in.

We first prove a lemma that will be used twice in the proof of Lemma 3.5.

Lemma 3.6. Let 𝜎 be a stability condition on satisfying the Assumption 3.4. Let𝐴1 be a subobject
of 𝐴 in and denote the quotient by 𝐴2 = 𝐴∕𝐴1. Then for every real number 𝑠, if the statement in
Lemma 3.5 holds for𝐴1 with respect to 𝑠 and for𝐴2 with respect to all real numbers, then it holds for
𝐴 with respect to 𝑠.

 14697750, 2023, 6, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12804 by C

ochraneItalia, W
iley O

nline L
ibrary on [06/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



DERIVED CATEGORIES OF HEARTS ON KUZNETSOV COMPONENTS 2159

Proof. By assumptions, there is an object𝐶1with𝜇+(𝐶1) < 𝑠 and a surjectivemorphism𝑓1 ∶ 𝐶1 →
𝐴1 in. Denote by 𝐾1 ∶= ker 𝑓1. Then in particular, 𝜇+(𝐾1) < 𝑠 as well.
By assumptions, there exists 𝐶2 in  with 𝜇+(𝐶2) < 𝜇

−(𝐾1) and a surjective morphism
𝑓2 ∶ 𝐶2 → 𝐴2 in. Denote by 𝐾2 ∶= ker 𝑓2.
Note that for all Harder–Narasimhan factors 𝐶′

2
of 𝐶2 and 𝐾′1 of 𝐾1, we have 𝜇(𝐶

′
2
) < 𝜇(𝐾′

1
).

By Assumption (c), Hom(𝐶
′
2
, 𝐾′

1
[2]) = 0. It follows that Hom(𝐶2, 𝐾1[2]) = 0. Therefore, the

composition 𝑒∶ 𝐶2 → 𝐴2 → 𝐴1[1] lifts to 𝑒∶ 𝐶2 → 𝐶1[1]. In particular, we get the commutative
diagram:

(2)

By the octahedral axiom (see [5, Proposition 1.1.11] or [48, Section 2]), the commutative square can
be completed to a 3 × 3 (possibly noncommutative) diagram of distinguished triangles. We have
the distinguished triangle

𝐾 → 𝐶
𝑓
�→ 𝐴 �→ 𝐾[1],

where𝐶 =Cone(𝐶2[−1]
𝑒[−1]
�����→ 𝐶1) and𝐾 ≅Cone(𝐾2[−1] �→ 𝐾1). In particular, both objects𝐶 and

𝐾 are in. It follows that 𝑓 is surjective. One also has

𝜇+(𝐶) < max{𝜇+(𝐶1), 𝜇
+(𝐶2)} < 𝑠.

So, the statement in Lemma 3.5 holds for 𝐴 with respect to 𝑠. □

Proof for Lemma 3.5. We first prove the case of 𝛿0 ≠ 0. Take an element g̃ = (g ,𝑀) of G̃L
+
(2, ℝ)

such that g(0) = 0 and the image of g−1 ◦𝑍 is contained in ℤ + 𝑖ℤ by Assumption (a). Note that
the heart of 𝜎 ⋅ g̃ is the same as that of 𝜎 and 𝜎 ⋅ g̃ still satisfies Assumption 3.4. Without loss of
generality, we may assume that the image of the central charge of 𝜎 is contained ℤ + 𝑖ℤ.
Make induction on (rk, deg) of 𝐴 with lexicographic order. When (rk(𝐴), deg(𝐴)) = (0, 1),

then 𝐴 is stable. By Assumption (b), there exists a 𝜎-stable object 𝐶 in  with 𝜇(𝐶) < 𝑠 and
Hom(𝐶, 𝐴) ≠ 0. Since 𝐴 is a simple object, it has no nontrivial quotient object in. Therefore,
every nonzero morphism from 𝐶 to 𝐴 is surjective.
Now assume that the statement holds for all objects with rk = 0 and deg < 𝑚. Then when 𝐴

has (rk, deg) = (0,𝑚), by Assumption (b), for every real number 𝑠, there is a 𝜎-stable object 𝐶1
with 𝜇(𝐶1) < 𝑠 andHom(𝐶1, 𝐴) ≠ 0. Choose a nonzero morphism and denote its image in 𝐴 as
𝐴1.
If𝐴1 = 𝐴, then there is nothing to prove. Otherwise, wemay write𝐴 as a short exact sequence

0 → 𝐴1 → 𝐴 → 𝐴2 → 0

in, where both 𝐴1 and 𝐴2 have rk = 0 and deg < 𝑚.
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2160 LI et al.

By induction, the statement holds for both 𝐴𝑖 . By Lemma 3.6, the statement holds for 𝐴.
Now we have finished the induction for the case of rk = 0. We may assume that the statement

holds for all objects with rk < 𝑟. When rk(𝐴) = 𝑟, we have the short exact sequence

0 → 𝐴+ → 𝐴 → 𝐴− → 0

in, where𝐴+ is theHarder–Narasimhan factor with 𝜇 = +∞. In particular, we have rk(𝐴+) = 0
and 𝜇+(𝐴−) < +∞. By induction, the statement holds for 𝐴+. So, if the statement holds for 𝐴−,
then by Lemma 3.6, it will hold for 𝐴.
Now we may assume 𝜇+(𝐴) < +∞. By Assumption (b), for every real number 𝑠, there exists

a 𝜎-stable object 𝐶1 with 𝜇+(𝐶1) < 𝑠 and Hom(𝐶1, 𝐴) ≠ 0. Choose a nonzero morphism, and
denote its image in 𝐴 as 𝐴1 and the quotient as 𝐴2. In particular, the statement holds for 𝐴1 with
respect to 𝑠.
Since 𝜇+(𝐴) < +∞, we must have rk(𝐴1) > 0. Hence, rk(𝐴2) < rk(𝐴). By induction, the state-

ment holds for 𝐴2. By Lemma 3.6, the statement holds for 𝐴 with respect to 𝑠. As the 𝑠 can be an
arbitrary real number, the statement holds for 𝐴. We finish the induction.
We then prove the case of 𝛿0 = 0. Let 𝑡 ∈ (0, 1) be a real number sufficiently small such that:

1. −cot(𝜋𝑡) < min{𝑠, 𝜇−(𝐴)};
2. the image of 𝑒−𝜋𝑖𝑡𝑍 is infinite on the real axis.

Denote by 𝜎𝑡 ∶= (𝜎((𝑡, 𝑡 + 1]), 𝑒−𝜋𝑖𝑡𝑍). In particular, the image of 𝑒−𝜋𝑖𝑡𝑍 can beℤ-linear spanned
by one of its images on the real axis and another image not on the real axis with the smallest
absolute value of the imaginary part. So, 𝜎𝑡 satisfies Assumption 3.4 with 𝛿0 ≠ 0.
Since −cot(𝜋𝑡) < 𝜇−(𝐴), the object 𝐴 is in 𝜎((𝑡, 1]) ⊂ 𝜎((𝑡, 𝑡 + 1]). By the statement in the

𝛿0 ≠ 0 case, there exists an object 𝐶 in 𝜎((𝑡, 𝑡 + 1]) with 𝜇+𝜎𝑡 (𝐶) < − cot(cot
−1(−𝑠) − 𝑡𝜋) and a

surjective morphism 𝑓∶ 𝐶 → 𝐴 in 𝜎((𝑡, 𝑡 + 1]).
Note that the object 𝐶 is in 𝜎((𝑡, 1]) ⊂  and 𝜇+𝜎 (𝐶) = − cot(cot

−1(−𝜇+𝜎𝑡
(𝐶)) + 𝑡𝜋) < 𝑠. The

kernel of 𝑓 is in 𝜎((𝑡,
1

𝜋
cot−1(−𝑠))). Therefore, the morphism 𝑓 is surjective in  as well. We

finish the proof of the statement. □

Corollary 3.7. Let 𝜎 be a stability condition on satisfying the Assumption 3.4. Then, for every𝐴, 𝐵
in, we have thatHom(𝐴, 𝐵[2]) is generated by compositions of extensions between objects in.

Proof. Let 𝑠 = 𝜇−(𝐵) > −∞, we may pick 𝐶 as that in Lemma 3.5. Let 𝑓∶ 𝐶 → 𝐴 be the surjective
morphism and denote by𝐾 the kernel of𝑓 in. ApplyingHom(−, 𝐵) to the short exact sequence
0 → 𝐾 → 𝐶 → 𝐴 → 0, we get

⋯→ Hom(𝐾, 𝐵[1]) → Hom(𝐴, 𝐵[2]) → Hom(𝐶, 𝐵[2]) → … .

By the choice of 𝐶 and Assumption (c), Hom(𝐶, 𝐵[2]) = 0. In particular, the last map
Hom(𝐾, 𝐵[1]) → Hom(𝐴, 𝐵[2]) is a surjection and the claim holds. □

As a consequence of the previous computations, we get our first main result.

Theorem 3.8. Let  be the derived category of an abelian category. Let  be an admissible sub-
category of  having a stability condition 𝜎 = (, 𝑍), whose heart  is induced from a heart 
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DERIVED CATEGORIES OF HEARTS ON KUZNETSOV COMPONENTS 2161

on  and satisfying the Assumption 3.4. Then the functor 𝐹∶ Db() →  defined in Lemma 3.1 is
an equivalence.

Proof. By Lemma 3.3, the functor 𝐹 defined in Lemma 3.1 is an equivalence if and only if for
every𝐴, 𝐵 in, 𝑛 ⩾ 2, we have thatHom(𝐴, 𝐵[𝑛]) is generated by degree 1 extensions of objects
in. First note that Hom(𝐴, 𝐵[𝑛]) = 0 for every 𝑛 ⩾ 3. Indeed, up to pass to the stable factors,
it is enough to have this vanishing for every pair of 𝜎-stable objects 𝐴, 𝐵 ∈ , which holds by
Assumption (c).
On the other hand, by Corollary 3.7, we have thatHom(𝐴, 𝐵[2]) is generated by compositions

of extensions between objects in. We conclude that the condition in Lemma 3.3 is satisfied, and
thus, 𝐹 is an equivalence. □

3.2 Enhancements

Assume that  satisfies the conditions in Theorem 3.8. By [2], the bounded derived category
of an abelian category has a unique enhancement (see also [22] for the same result without
the boundedness condition). Together with Theorem 3.8, this directly implies that  has a
unique enhancement.
Using [22, 26], we further prove in this section that  has a strongly unique enhancement,

namely, the second part of Theorem 1.1.
Let us first recall the notion of almost ample sequence from [26].

Definition 3.9 [26, Definition 2.9]. Given an abelian category  and a set 𝐼, a subset {𝐶𝑖}𝑖∈𝐼 of
objects 𝐶𝑖 ∈  is an almost ample set if, for every 𝐴 ∈ , there exists 𝑖 ∈ 𝐼 satisfying:

(i) there exist 𝑘 ∈ ℕ and a surjection 𝐶⊕𝑘
𝑖

↠ 𝐴;
(ii) Hom(𝐴, 𝐶𝑖) = 0.

If is the heart of as in Theorem 3.8, by Lemma 3.5 for any𝐴 ∈ , there is𝐶𝐴 ∈  satisfying
conditions (i) and (ii). Indeed, it is enough to choose 𝑠 < 𝜇−(𝐴) and apply Lemma 3.5 to construct
𝐶𝐴 together with a surjection to 𝐴; then Hom(𝐴, 𝐶𝐴) = 0, as 𝜇+(𝐶𝐴) < 𝑠.
Now note that the object 𝐶𝐴 only depends on the isomorphism class [𝐴] of 𝐴 ∈ , namely,

for 𝐴 ≅ 𝐴′ ∈ , we have that 𝐶𝐴 satisfies (i) and (ii) of Definition 3.9 with respect to 𝐴′. So, we
change the notation to 𝐶[𝐴] and set

𝐼 ∶= {[𝐴], 𝐴 ∈ }.

Since  is a full subcategory of  that is essentially small as  is, it follows that  is essentially
small, so 𝐼 is a set. Thus, the collection

{𝐶[𝐴]}[𝐴]∈𝐼 (3)

is an almost ample set.
The notion of almost ample set plays a key role in the extension of isomorphisms of functors.

The next result is a special case of [26, Proposition 3.3].
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2162 LI et al.

Proposition 3.10 [26, Proposition 3.3]. Let be an abelian category with finite homological dimen-
sion. Assume that {𝐶𝑖}𝑖∈𝐼 is an almost ample set and let  be the corresponding full subcategory of
Db(). Let 𝐹 be an autoequivalence of Db() such that there is an isomorphism of functors

𝑓∶ 𝐹| ≃
�→ id .

Then there exists an isomorphism of functors 𝐹
≃
�→ idDb() extending 𝑓.

Recall that theDrinfeld quotientDb
dg
() ∶= Cb

dg
()∕Acb

dg
() is an enhancement ofDb() (see

[30, Section 3] for the definition of the quotient), and thus, by Theorem 3.8 of . Here, Cb
dg
()

denotes the dg category of bounded complexes in , and Acb
dg
() ⊂ Cb

dg
() its full dg subcat-

egory of acyclic complexes. In fact, the homotopy category of Cb
dg
() is the homotopy category

of complexes H0(Cb
dg
()) = Kb(). This implies the natural identification H0(Db

dg
()) = Db()

(see, e.g., [27, Section 1.2]).
By [22], if ( , 𝜖) is another enhancement of Db(), then there exists a quasi-functor

𝐹∶ Db
dg
() →  , (4)

whose construction is explained below, such that H0(𝐹) is an equivalence (thus 𝐹 is an isomor-
phism in Hqe). In order to recall the definition of 𝐹, we need to introduce some technical notions
from [22].
Let Vb() ⊂ Kb() be the full subcategory whose objects have zero differential. Let

𝑄∶ Kb() → Db()

be the quotient functor and set

Bb() ∶= 𝑄(Vb()),

which is a full subcategory of Db(), having the same objects as Vb() (but with different mor-
phisms), see [22, Section 1.1]. We will use the notation 𝐴∗ for objects in Vb() and thus of Bb().
Note that the full dg subcategoryVb

dg
() ofCb

dg
() consisting of complexeswith trivial differential

is in a natural way an enhancement of Vb().
In [22, Section 4], the authors construct a dg enhancement Bb

dg
() of Bb(), whose defini-

tion depends on the pair ( , 𝜖) (but we omit this from its notation for simplicity), and such
that Perf(Bb

dg
()) ≅  in Hqe (see [22, Remark 4.3]).† Using this construction, the isomorphism

Perf(Vb
dg
()) ≅ Cb

dg
() in Hqe, and the morphism Perf(Vb

dg
()) → Perf(Bb

dg
()) in Hqe, they

define in [22, (5.2)] the functor

g ∶ Cb
dg
() →  (5)

† If  is a dg category, we denote by Perf() the smallest full dg subcategory of the dg category of h-projective dg -
modules, containing the image of the dg Yoneda embedding, closed under homotopy equivalences, shifts, cones, and
direct summands in the homotopy category.
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DERIVED CATEGORIES OF HEARTS ON KUZNETSOV COMPONENTS 2163

by composing the previous (iso)morphisms in Hqe. Moreover, as checked in [22, Section 5.3], the
functor g factors through the quotient Db

dg
(), so that g is the composition

g ∶ Cb
dg
() → Db

dg
()

𝐹
�→  . (6)

They finally show that H0(𝐹)∶ Db() → H0() is an equivalence.
Our goal is to show the following lemma that implies Db() ≅  has a strongly unique

enhancement.

Lemma 3.11. Let  be the derived category of an abelian category. Let  be an admissible sub-
category of  having a stability condition 𝜎 = (, 𝑍), whose heart  is induced from a heart 

on  and satisfying the Assumption 3.4. Let ( , 𝜖) be an enhancement of Db(). Then there is an
isomorphism of functors 𝜖 ◦H0(𝐹) ≅ idDb(), where 𝐹 is defined in (4).

Proof. Set 𝐺′ ∶= 𝜖 ◦H0(𝐹). By Proposition 3.10, to prove the statement, it is enough to show that
there is an isomorphism between the restriction functors 𝐺′| ≅ id , where  is the full subcat-
egory of Db() defined by the almost ample set (3). This isomorphism is a consequence of the
construction of 𝐹 in [22].
Indeed, set 𝐺 ∶= 𝜖 ◦H0(g), where g is defined in (5). Since H0(g) = H0(𝐹) ◦𝑄 by (6), we have

𝐺 = 𝐺′ ◦𝑄. By [22, Lemma 5.1], there is an isomorphism of functors

𝜃∶ 𝐺|Vb() ∼
�→ 𝑄|Vb()

(in their notation, 𝐺 is 𝐅1 and𝑄 is 𝐅2). As a consequence, for every𝐴∗ ∈ Bb(), we have that 𝜃𝐴∗
induces an isomorphism 𝐺′(𝐴∗) ≅ 𝐴∗ as objects in Db().
We now claim that 𝜃 induces an isomorphism of functors between the restriction of𝐺′ toBb()

and the identity. Indeed, consider 𝛼 ∈ HomBb()(𝐴∗1, 𝐴
∗
2
) = HomDb()(𝐴

∗
1
, 𝐴∗

2
) for 𝐴∗

𝑖
∈ Bb().

We can represent 𝛼 as a roof in Kb() of the form

where 𝑃 ∈ Vb() and 𝑓𝑖 ∈ HomKb()(𝑃, 𝐴∗𝑖 ) for 𝑖 = 1, 2. Now by [22, Corollary 5.3], there is an
isomorphism 𝜃′

𝐴∗
𝑖

∶ 𝐺(𝐴∗
𝑖
) ≅ 𝐴∗

𝑖
such that the diagram

commutes in Db() for 𝑖 = 1, 2. This implies that in Db(), we have the commutative diagram
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2164 LI et al.

Thus, 𝜃 induces a natural transformation 𝜃′ ∶ 𝐺′|Bb() ≅ idBb(), which is an isomorphism of
functors. Since  is a full subcategory of Bb(), it follows that 𝜃′ induces an isomorphism of
functors 𝑓∶ 𝐺′| ≅ id . This implies the statement. □

We are now ready to prove the second part of Theorem 1.1.

Theorem 3.12. Let  be the derived category of an abelian category. Let be an admissible subcat-
egory of  having a stability condition 𝜎 = (, 𝑍), whose heart is induced from a heart on  and
satisfying Assumption 3.4. Then has a strongly unique enhancement.

Proof. Let ( , 𝜖) be an enhancement of . Consider the quasi-functor 𝐹 defined in (4). By
Lemma 3.11, there is an isomorphism of functors 𝜖 ◦H0(𝐹) ≅ idDb(), giving the statement. □

3.3 Fourier–Mukai functors

Let 𝑋1 and 𝑋2 be smooth projective schemes over a field 𝕂. Let 1 ⊂ 1 ∶= D
b(𝑋1) and 2 ⊂

2 ∶= D
b(𝑋2) be admissible subcategories that are components of a semiorthogonal decompo-

sition. For 𝑗 = 1, 2, denote by 𝑖∗
𝑗
∶ 𝑗 → 𝑗 the left adjoint functor of the inclusion 𝑖𝑗 ∶ 𝑗 ↪

𝑗 .

Definition 3.13. A functor Φ∶ 1 → 2 is of Fourier–Mukai type if the composition

1

𝑖∗
1
��→ 1

Φ
�→ 2

𝑖2
�→ 2

is a Fourier–Mukai functor as in (1).

Note that if Φ is an equivalence, then the composition 𝑖2 ◦Φ ◦ 𝑖∗
1
is a splitting functor in the

sense of [38, Definition 3.1]. We now remark the following property that is probably well known
to the experts.

Proposition 3.14. Assume that 1 has a strongly unique enhancement. Then every equivalence
Φ∶ 1

∼
�→ 2 is of Fourier–Mukai type.

Proof. Let (𝑗, 𝜖𝑗) be the natural enhancement of 𝑗 for 𝑗 = 1, 2. Denote by (𝑗, 𝛿𝑗) the enhance-
ment of 𝑗 induced from (𝑗, 𝜖𝑗). By definition, 𝑗 is the dg subcategory of 𝑗 whose objects
belong to 𝑗 via the equivalence 𝜖𝑗 and is a full admissible subcategory of 𝑗 . The functor 𝑖

dg
𝑗
is

the natural embedding of 𝑗 in 𝑗 and 𝜖𝑗 ◦H0(𝑖
dg
𝑗
) factors through𝑗 defining 𝛿𝑗 . Note also that

the composition 𝑖𝑗 ◦ 𝑖∗𝑗 ∶ 𝑗 → 𝑗 is a Fourier–Mukai functor by [41, Theorem 7.1]. In particular, it

has a dg lift Ψdg
𝑗
by [57] and [27, Proposition 6.11]. By definition, Ψdg

𝑗
factors through 𝑗 defining

the projection 𝑖∗dg
𝑗
∶ 𝑗 → 𝑗 such that Ψ

dg
𝑗
= 𝑖

dg
1

◦ 𝑖∗dg
𝑗

and which is a dg lift of 𝑖∗
𝑗
.

Note that (2, 𝛿2) is an enhancement of1, because of the equivalenceH0(2)
𝛿2
��→ 2

Φ−1

����→ 1.
Since1 has a strongly unique enhancement, there exists a quasi-functor 𝐹∶ 1

∼
�→ 2 such that
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DERIVED CATEGORIES OF HEARTS ON KUZNETSOV COMPONENTS 2165

H0(𝐹) is an equivalence sitting in the following commutative diagram:

On the other hand, by definition of (2, 𝛿2), we have the commutative diagram

Analogously, we have the commutative diagram

Putting everything together, we have

𝑖2 ◦Φ ◦ 𝑖∗1 = 𝜖2 ◦H
0(𝑖

dg
2
) ◦H0(𝐹) ◦H0(𝑖∗dg

1
) ◦ (𝜖1)

−1.

Thus 𝑖dg
2

◦𝐹 ◦ 𝑖∗dg
1

is a dg lift of 𝑖2 ◦Φ ◦ 𝑖∗
1
. By [57] and [27, Proposition 6.11], we conclude that the

latter is of FM type. □

From the previous results, we deduce the following characterization.

Corollary 3.15. Let𝑋1 and𝑋2 be smooth projective schemes over a field 𝕂. Let1 be an admissible
subcategory of 1 ∶= Db(𝑋1) having a stability condition 𝜎 = (, 𝑍) whose heart is induced from
a heart1

on 1 and satisfying the Assumption 3.4. Let2 be an admissible subcategory ofDb(𝑋2).

Then every equivalence1

∼
�→ 2 is of Fourier–Mukai type.

Proof. This is a consequence of Theorem 3.12 and Proposition 3.14. □

4 GEOMETRIC APPLICATIONS

In this section, we apply the general results proved in the previous section to interesting geometric
situations, listed in Examples 2.8–2.11, providing the proof of Theorems 1.2–1.4. The key point is to
show that the Kuznetsov components of the varieties in these examples satisfy Assumption 3.4.
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2166 LI et al.

Tomake a universal argument for most of the cases at once, wemake the following assumption
on the stability conditions that turns out to be easy to check. Denote by Knum() the numerical
Grothendieck group. Recall that the Euler pairing 𝜒([𝐸], [𝐹]) ∶=

∑
𝑖∈ℤ(−1)

𝑖 dimHom(𝐸, 𝐹[𝑖]) is
well defined onKnum(). Let 𝜎 = (, 𝑍) be a stability condition onwith heart. Wemake the
following assumption on 𝜎.

Assumption 4.1.

(a0) There exists 𝜆1 and 𝜆2 in Knum() such that the image of 𝑍 is a rank 2 lattice spanned by
𝑍(𝜆1) and 𝑍(𝜆2).

(b1) The Euler paring 𝜒 is symmetric on Knum() and is negative definite on spanℤ{𝜆1, 𝜆2}.
(b2) There exists 𝑐 ∈ ℤ such that for any primitive 𝑣 in Knum() with 𝜒(𝑣, 𝑣) < 𝑐, there exists

𝜎-stable object 𝐸 in with [𝐸] = 𝑣.
(c) Same as that of Assumption 3.4 (c).

Recall that we write 𝑍 = −deg + 𝑖rk and 𝛿0 ∶= inf {rk(𝐸)|𝐸 ∈ , rk(𝐸) > 0}.

Lemma 4.2. Let 𝜎 be a stability condition on  satisfying the Assumption 4.1. Then, for every
nonzero object 𝐸 in, real number 𝑠 and 𝛿 > 𝛿0, there exists a 𝜎-stable object 𝐹 in with 𝜇(𝐹) < 𝑠
and rk(𝐹) < 𝛿 such that 𝜒(𝐹, 𝐸) ≠ 0.

Proof. In the case of 𝛿0 > 0, by Assumption (a0), the numbers rk(𝜆1) and rk(𝜆2) are ℚ-linear
dependent, so there exists nonzero 𝑣 with rk(𝑣) = 0. Among all such 𝑣’s with deg(𝑣) < 0, we may
choose one with the largest deg.
So, there exist nonzero 𝑤 and 𝑣 in spanℤ{𝜆1, 𝜆2} such that

rk(𝑤) = 𝛿0, rk(𝑣) = 0, and deg(𝑣) < 0.

In particular, their images 𝑍(𝑣) and 𝑍(𝑤) also span the image of 𝑍.
Note thatKnum() can be spanned by𝑤, 𝑣 and elements inKer(𝑍). Since𝜒 is nondegenerate on

Knum() by definition, if 𝜒(𝑣, 𝐸) = 0, then there exists 𝜅𝐸 ∈ Ker(𝑍) satisfying 𝜒(𝑤 + 𝜅𝐸, 𝐸) ≠ 0.
If 𝜒(𝑣, 𝐸) ≠ or 𝜒(𝑤, 𝐸) ≠ 0, then we may set 𝜅𝐸 = 0.
Let 𝑛 be sufficiently negative such that

1. 𝜒(𝑛𝑣 + 𝑤 + 𝜅𝐸, 𝑛𝑣 + 𝑤 + 𝜅𝐸) < 𝑐 and 𝑛𝑣 + 𝑤 + 𝜅𝐸 is primitive;
2. 𝜒(𝑛𝑣 + 𝑤 + 𝜅𝐸, 𝐸) ≠ 0;
3. 𝜇(𝑛𝑣 + 𝑤 + 𝜅𝐸) < 𝑠.

The first condition can be satisfied because the left-hand side of the inequality is

𝑛2𝜒(𝑣, 𝑣) + 2𝑛𝜒(𝑣, 𝑤 + 𝜅𝐸) + 𝜒(𝑤 + 𝜅𝐸,𝑤 + 𝜅𝐸),

and tends to −∞ when 𝑛 tends to −∞ by Assumption (b1). As 𝑍(𝑛𝑣 + 𝑤 + 𝜅𝐸) = 𝑍(𝑛𝑣 + 𝑤) is
primitive in the lattice of the image of 𝑍, the character 𝑛𝑣 + 𝑤 + 𝜅𝐸 is primitive.
The second condition can be satisfied since either𝜒(𝑣, 𝐸) ≠ 0 or𝜒(𝑤 + 𝜅𝐸, 𝐸) ≠ 0 by the choice

of 𝜅𝐸 .
The third condition can be satisfied since lim𝑛→−∞ 𝜇(𝑛𝑣 + 𝑤 + 𝜅𝐸)∕𝑛 = deg(𝑣)∕𝛿0.
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DERIVED CATEGORIES OF HEARTS ON KUZNETSOV COMPONENTS 2167

ByAssumption (b2) and the first condition, there exists a 𝜎-stable object 𝐹 ∈ with numerical
class 𝑛𝑣 + 𝑤 + 𝜅𝐸 . By the choice of 𝑛, we have 𝜇(𝐹) < 𝑠, rk(𝐹) = 𝛿0 < 𝛿, and 𝜒(𝐹, 𝐸) ≠ 0.
In the case of 𝛿0 = 0, there exists a sequence of primitive characters 𝑤𝑛 = 𝑎𝑛𝜆1 + 𝑏𝑛𝜆2 such

that

rk(𝑤𝑛) > 0, deg(𝑤𝑛) < 0 and lim
𝑛→+∞

rk(𝑤𝑛) = 0.

As 𝛿0 = 0, it follows that

lim
𝑛→+∞

deg(𝑤𝑛) = −∞, lim
𝑛→+∞

𝑏𝑛
𝑎𝑛

= −
rk(𝜆1)

rk(𝜆2)
=∶ 𝑞 and lim

𝑛→+∞
|𝑎𝑛| = +∞.

Note that if 𝑞 = 𝑛

𝑚
is rational, then 𝛿0 > | rk(𝜆2)

𝑚
|. So 𝑞 ∉ ℚ.

Note that Knum() is spanned by 𝜆1, 𝜆2 and elements in Ker(𝑍). Since 𝜒 is nondegenerate
on Knum() by definition, if 𝜒(𝜆1, 𝐸) = 𝜒(𝜆2, 𝐸) = 0, then there exists 𝜅𝐸 ∈ Ker(𝑍) satisfying
𝜒(𝜅𝐸, 𝐸) ≠ 0. If 𝜒(𝜆1, 𝐸) or 𝜒(𝜆2, 𝐸) ≠ 0, then we set 𝜅𝐸 = 0.
Let 𝑛 be sufficiently large such that

1. 𝜒(𝑤𝑛 + 𝜅𝐸,𝑤𝑛 + 𝜅𝐸) < 𝑐;
2. 𝜒(𝑤𝑛 + 𝜅𝐸, 𝐸) ≠ 0;
3. 𝜇(𝑤𝑛 + 𝜅𝐸) < 𝑠 and rk(𝑤𝑛 + 𝜅𝐸) < 𝛿.

Note that the left-hand side of the inequality in the first condition is 𝜒(𝑤𝑛,𝑤𝑛) + 2𝜒(𝑤𝑛, 𝜅𝐸) +
𝜒(𝜅𝐸, 𝜅𝐸). Divided by |𝑎𝑛|2, it tends to 𝜒(𝜆1 + 𝑞𝜆2, 𝜆1 + 𝑞𝜆2) when 𝑛 tends to ∞. This value is
negative by Assumption (b1). Therefore, the first condition can be satisfied.
Since 𝑞 is not a rational number, if𝜒(𝜆1, 𝐸) or𝜒(𝜆2, 𝐸) ≠ 0, then𝜒(𝑤𝑛, 𝐸) is not constantly zero.

If both 𝜒(𝜆1, 𝐸) and 𝜒(𝜆2, 𝐸) = 0, then 𝜒(𝜅𝐸, 𝐸) ≠ 0 by the choice of 𝜅𝐸 . Therefore, the second
condition can be satisfied.
The third condition can be satisfied by the choice of 𝑤𝑛.
By Assumption (b2) and the first condition, there exists a 𝜎-stable object 𝐹 ∈ with numerical

class 𝑤𝑛 + 𝜅𝐸 . By the choice of 𝑛 , we have 𝜇(𝐹) < 𝑠, rk(𝐹) < 𝛿, and 𝜒(𝐹, 𝐸) ≠ 0. □

Proposition 4.3. Let 𝜎 be a stability condition satisfying the Assumption 4.1, then for every g̃ ∈
G̃L

+
(2, ℝ), the stability condition 𝜎 ⋅ g̃ satisfies the Assumption 3.4.

Proof. By definition, Assumption 3.4 (a) and (c) hold automatically. Note that the conditions
in Assumption 4.1 are preserved by the G̃L+2 (ℝ)-action. We only need to check that 𝜎 satisfies
Assumption 3.4 (b).
By taking the Harder–Narasimhan filtration of 𝐸 with respect to 𝜎, we only need to prove that

Assumption 3.4 (b) holds for every 𝜎-semistable object 𝐸 in. By taking a Jordan–Hölder factor
that is also a subobject of 𝐸, we only need to prove that Assumption 3.4 (b) holds for every 𝜎-
stable object 𝐸 in . Namely, we are going to prove the statement that for every 𝜎-stable object
𝐸 in  and every real number 𝑠0, there exists a 𝜎-stable object 𝐹 in  satisfying 𝜇(𝐹) < 𝑠0 and
Hom(𝐹, 𝐸) ≠ 0.
Fix a real number 𝑠0, we define the order ≺𝑠0 for complex numbers in ℝ>0 ⋅ 𝑒

𝑖(0,𝜋] as follows:

∙ If 𝑐1 ∈ ℝ>0 ⋅ 𝑒𝑖(0,cot
−1(−𝑠0)) and 𝑐2 ∈ ℝ>0 ⋅ 𝑒𝑖[cot

−1(−𝑠0),𝜋], then 𝑐1 ≺𝑠0 𝑐2.
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2168 LI et al.

∙ If both 𝑐𝑗 = 𝑎𝑗 + 𝑖𝑏𝑗 ∈ ℝ>0 ⋅ 𝑒𝑖[cot
−1(−𝑠0),𝜋] for 𝑗 = 1, 2, then

𝑐1 ≺𝑠0 𝑐2 ⟺ 𝑏1 ⩽ 𝑏2 and −
𝑎1
𝑏1
< −

𝑎2
𝑏2
.

Let us go back to the proof of the statement. Note that if 𝜇(𝐸) < 𝑠0, namely, 𝑍(𝐸) ∈ ℝ>0 ⋅
𝑒𝑖(0,cot

−1(−𝑠0)), then we may just let 𝐹 = 𝐸 and there is nothing to prove.
By Assumption (a), for any complex number 𝑐 ∈ ℝ>0 ⋅ 𝑒𝑖[cot

−1(−𝑠0),𝜋], the area of the light gray
part is finite. There are only finitely many 𝑍(𝑣)’s of numerical characters 𝑣 ∈ Knum() satisfying
𝑍(𝑣) ∉ ℝ>0 ⋅ 𝑒

𝑖(0,cot−1(−𝑠0)) and 𝑍(𝑣) ≺𝑠0 𝑐. We may make induction on 𝑍(𝐸) with respect to the
order ≺𝑠0 .
Assume that for every 𝜎-stable object 𝐸′ ∈  satisfying 𝑍(𝐸′) ≺𝑠0 𝑍(𝐸), the statement holds. In

other words, there exists a 𝜎-stable object 𝐹′ satisfying 𝜇(𝐹′) < 𝑠0 and Hom(𝐹
′, 𝐸′) ≠ 0.

In the case that 𝛿0 > 0, we set 𝛿 =
3

2
𝛿0 and 𝑠 < min{𝑠0,

1

𝛿0
((rk(𝐸) + 𝛿0)𝑠0 − deg(𝐸))}. In the case

that 𝛿0 = 0, we set 𝑠 = 𝑠0 and sufficiently small 𝛿 > 0 such that the image of 𝑍 does not intersect
the area

{𝑎 + 𝑖𝑏 | rk(𝐸) ⩽ 𝑏 ⩽ rk(𝐸) + 𝛿, 𝑠 ⩽ −𝑎
𝑏
< 𝜇(𝐸)}.

Apply Lemma 4.2 for 𝐸, 𝑠 and 𝛿, we get a 𝜎-stable object 𝐹0 in such that 𝜇(𝐹0) < 𝑠, rk(𝐹0) < 𝛿
and 𝜒(𝐹0, 𝐸) ≠ 0. Note that this in particular forces rk(𝐹0) = 𝛿0 when 𝛿0 > 0.
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DERIVED CATEGORIES OF HEARTS ON KUZNETSOV COMPONENTS 2169

If 𝜒(𝐹0, 𝐸) > 0, then by Assumption (c), Hom(𝐹0, 𝐸[𝑚]) = 0 for all 𝑚 ≠ 0, 1. Hence,
Hom(𝐹0, 𝐸) ≠ 0 and the statement holds.
Otherwise, by Assumption 4.1 (b1), we have 𝜒(𝐸, 𝐹0) = 𝜒(𝐹0, 𝐸) < 0 and by Assumption

(c), Hom(𝐸, 𝐹0[𝑚]) = 0 for all 𝑚 ≠ 0, 1, 2. Hence, we have Hom(𝐸, 𝐹0[1]) ≠ 0. Let 𝑒 be a
nonzero morphism in Hom(𝐸[−1], 𝐹0) and 𝐺 be Cone(𝐸[−1]

𝑒
�→ 𝐹0). So, there is a short exact

sequence

0 → 𝐹0 → 𝐺 → 𝐸 → 0, (7)

and the object 𝐺 is in.
If 𝐺 is 𝜎-stable, then wemay let 𝐹 = 𝐺. Indeed, we always haveHom(𝐺, 𝐸) ≠ 0. In the case of

𝛿0 > 0, by the choice of 𝑠 and 𝛿, we have rk(𝐹0) = 𝛿0 and deg(𝐹0) = 𝜇(𝐹0)rk(𝐹0) < 𝑠𝛿0. It follows
that 𝜇(𝐺) = deg(𝐸)+deg(𝐹0)

rk(𝐸)+rk(𝐹0)
=

deg(𝐸)+deg(𝐹0)

rk(𝐸)+𝛿0
<

deg(𝐸)+𝑠𝛿0
rk(𝐸)+𝛿0

< 𝑠0. In the case of 𝛿0 = 0, by the choice of
𝑠 and 𝛿, we must have 𝜇(𝐺) < 𝑠0. The statement holds.
If 𝐺 is not 𝜎-stable, then we consider one of the Jordan–Hölder factors 𝐺+ of 𝐺 with a

maximal slope that is also a subobject of 𝐺. Note that 𝜇(𝐺+) ⩾ 𝜇(𝐺) > 𝜇(𝐹0), it follows that
Hom(𝐺+, 𝐹0) = 0. ApplyHom(𝐺+,−) to (7), we get 0 ≠ Hom(𝐺

+, 𝐺) ↪ Hom(𝐺
+, 𝐸). Wemay

let 𝑓 be a nonzero morphism in Hom(𝐺
+, 𝐸). The image of 𝑓 is a nonzero subobject 𝐸0 of 𝐸 in

. Let 𝐸+
0
be one of the Jordan–Hölder factors of 𝐸0 with a maximal slope that is a subobject of

𝐸0. Then 𝐸+0 is also a subobject of 𝐸 in as well.
In the case of 𝛿0 > 0, we have rk(𝐺+) ⩽ rk(𝐺) − 𝛿0 = rk(𝐸). Since 𝑒 ≠ 0, the sequence (7) does

not split. It follows that 𝜇(𝐺+) < 𝜇(𝐸). Hence, the object 𝐸+
0
is a proper subject of 𝐸. In the case

of 𝛿0 = 0, it follows by the choice of 𝑠 and 𝛿 that rk(𝐺+) < rk(𝐸). Hence, the object 𝐸+0 is a proper
subject of 𝐸 in this case as well.
If 𝜇(𝐸+

0
) < 𝑠0, then we may let 𝐹 = 𝐸+0 and the statement holds. Otherwise, we have 𝑍(𝐸

+
0
) ≺𝑠0

𝑍(𝐸). The statement holds by induction. □

Example 4.4. Let𝑋 be a K3 surface and 𝜎𝜔,𝛽 be a stability condition as that defined in [18]. When
𝜔, 𝛽 ∈ ℚ ⋅𝐻 for an ample divisor 𝐻, the stability condition 𝜎𝜔,𝛽 satisfies Assumption 4.1. Hence,
Db(𝜔,𝛽) = D

b(𝑋). Note that this statement has already been proved in [14, Corollary A.4] by a
very different argument.Wewould like to thankGeorg Oberdieck to point out this example for us.

Lemma 4.5. Let 𝑋 be a cubic fourfold defined over ℂ. Then the stability conditions 𝜎 = (, 𝑍) on
𝑢(𝑋) constructed in [10] satisfy Assumption 4.1.

Proof. Recall that the numerical Grothendieck group Knum(𝑢(𝑋)) contains two classes 𝜆1 and
𝜆2 spanning an 𝐴2-lattice

(
−2 1

1 −2

)

with respect to the Euler pairing𝜒 by [4]. The image of the central charge is spanned by the image
of 𝜆1 and 𝜆2. As the Serre duality on𝑢(𝑋) is [2], the Euler pairing onKnum(𝑢(𝑋)) is symmetric.
Hence, Assumptions (a0) and (b1) hold.
Assumption (b2) follows by [9, Theorem 1.6].
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2170 LI et al.

Finally, Assumption (c) follows by Serre duality: for any 𝜎-stable objects𝐸 and𝐹 in, we have

Hom(𝐸, 𝐹[𝑚]) ≅ Hom(𝐹, 𝐸[2 − 𝑚]) = 0

for𝑚 ⩾ 3, and if 𝜇(𝐸) < 𝜇(𝐹), for𝑚 ⩾ 2. □

Lemma 4.6. Let 𝑋 be a GM fourfold defined over ℂ. Then the stability conditions 𝜎 on 𝑢(𝑋)

constructed in [51] satisfy Assumption 4.1.

Proof. The numerical Grothendieck groupKnum(𝑢(𝑋)) contains two classes 𝜆1 and 𝜆2 spanning
an 𝐴⊕2

1
-lattice

(
−2 0

0 −2

)
with respect to the Euler pairing 𝜒 by [36, Lemma 2.27] and [50]. The image of the central charge
is spanned by the image of 𝜆1 and 𝜆2, see [51, Section 4]. As the Serre duality on𝑢(𝑋) is [2], the
Euler pairing on Knum(𝑢(𝑋)) is symmetric. Hence, Assumptions (a0) and (b1) hold.
Assumption (b2) follows by [51, Theorem 1.5].
Finally, Assumption (c) follows from Serre duality as that in Lemma 4.5. □

Lemma 4.7. Let 𝑋 be a GM threefold defined over ℂ. Then the stability conditions 𝜎 on 𝑢(𝑋)

constructed in [10] satisfy Assumption 4.1.

Proof. Recall that Knum(𝑢(𝑋)) has rank 2 by [39, Proposition 3.9] and a basis is given by

𝜆1 ∶= 1 −
1

5
𝐻2, 𝜆2 ∶= 2 − 𝐻 +

5

6
𝑃,

where 𝐻 is the class of a hyperplane and 𝑃 is the class of a point in 𝑋. The intersection matrix
with respect to 𝜒 is

⟨𝜆1, 𝜆2⟩ = (
−1 0

0 −1

)
.

Assumptions (a0) and (b1) hold as the central charge is not degenerate.
Assumption (b2) follows by [52, Theorem 1.3].
Assumption (c) follows from Serre-duality and the fact that the property of being stable with

respect to 𝜎 is preserved by the Serre functor. Indeed, if 𝐸 is 𝜎-stable, then 𝑆𝑢(𝑋)(𝐸) is 𝜎-stable
by [53, Theorem 1.1]. Since 𝑆2

𝑢(𝑋)
= [4], it is easy to check (see, e.g., [55, Lemma 5.9]) that 𝜙(𝐸) <

𝜙(𝑆𝑢(𝑋)(𝐸)) ⩽ 𝜙(𝐸) + 2. Then

Hom(𝐸, 𝐹[𝑚]) ≅ Hom(𝐹[𝑚], 𝑆𝑢(𝑋)(𝐸)) = 0

for𝑚 ⩾ 3, and if 𝜇(𝐸) < 𝜇(𝐹), for𝑚 ⩾ 2. □

Lemma4.8. Let𝑋 be a quartic double solid defined overℂ. Then the stability conditions𝜎 on𝑢(𝑋)
constructed in [10] satisfy Assumption 4.1.
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DERIVED CATEGORIES OF HEARTS ON KUZNETSOV COMPONENTS 2171

Proof. Denote by𝐻 the class of a hyperplane and by 𝑃 the class of a point. By [39, Proposition 3.9],
we have that

𝜆1 ∶= 1 −
1

2
𝐻2, 𝜆2 ∶= 𝐻 −

1

2
𝐻2 −

2

3
𝑃

is a basis for Knum(𝑢(𝑋)) with intersection form

⟨𝜆1, 𝜆2⟩ = (
−1 −1

−1 −2

)
with respect to 𝜒. Then, Assumptions (a0) and (b1) hold as the central charge is not degenerate.
Assumption (b2) follows by [52, Theorem 1.1].
Assumption (c) can be proved as in Lemma 4.7 using that 𝜎 is Serre invariant by [55, Proposition

5.7]. □

We are now ready to prove Theorem 1.2–1.4.

Theorem 4.9. Let 𝑢(𝑋) be the Kuznetsov component of a cubic fourfold or of a GM variety or of
a quartic double solid defined over ℂ. Then there is an equivalence 𝐹∶ 𝑢(𝑋) ≅ Db(), where is
the heart of a stability condition on 𝑢(𝑋) and 𝐹 is defined in Lemma 3.1. Moreover, we have that
𝑢(𝑋) has a strongly unique enhancement.

Proof. Note that if 𝑋 is a GM fivefold (resp. sixfold), then its Kuznetsov component 𝑢(𝑋) is
equivalent to that of a GM threefold (resp. fourfold). This is a consequence of the duality con-
jecture proved in [37, Theorem 1.6], as explained in [51, Proof of Theorem 4.18]. Thus, we reduce
to prove the statement in this case. Note that the heart of the stability conditions constructed in
[10, 51] is induced on the Kuznetsov component from the heart of Db(𝑋) obtained by double-
tilting Coh(𝑋) (see [10, Theorem 6.9, Proof of Theorem 1.2] and [51, Theorem 4.12]). Then, it is a
consequence of the above lemmas, Proposition 4.3, Theorem 3.8, and Theorem 3.12. □

Proof of Theorem 1.3 and Theorem 1.4. The proof of Theorem 1.4 is a direct consequence of Corol-
lary 3.15. Now assume that 𝑋1, 𝑋2 are cubic fourfolds or GM varieties of even dimension. Let
𝐹∶ 𝑢(𝑋1) → 𝑢(𝑋2) be a fully faithful exact functor.We claim that𝐹 is an equivalence. Indeed,
first note that the 0thHochschild cohomology of𝑢(𝑋𝑖) is HH0(𝑢(𝑋𝑖)) = ℂ, as computed in [42,
Proposition 4.1] and [36, Corollary 2.11]; thus, 𝑢(𝑋𝑖) is connected. Since 𝑢(𝑋𝑖) is Calabi–Yau,
by [43, Proposition 5.5], it follows that𝑢(𝑋𝑖) is indecomposable.
Note also that 𝑢(𝑋𝑖) is (right) saturated,† as it is an admissible subcategory of Db(𝑋𝑖) that

is saturated (see [20] and [8, Proposition 2.8]). Then 𝐹 admits left and right adjoints. Indeed,
since 𝑢(𝑋1) is saturated, for every 𝐴2 ∈ 𝑢(𝑋2), the functor Hom(𝐹(−), 𝐴2) is representable
by a unique 𝐴1 ∈ 𝑢(𝑋1). By Yoneda lemma, this defines a functor 𝐺∶ 𝑢(𝑋2) → 𝑢(𝑋1) such
that 𝐺(𝐴2) = 𝐴1, which is right adjoint to 𝐹 (see [24, Proposition 3.5]). Since 𝐾𝑢(𝑋𝑖) has Serre
functor, denoted as 𝑆𝑢(𝑋𝑖), the left adjoint of 𝐹 is 𝐻 ∶= 𝑆−1

𝑢(𝑋1)
◦𝐺 ◦ 𝑆𝑢(𝑋2). By [16, Theorem

3.3], this implies that 𝐹 is an equivalence. The result then follows from Corollary 3.15. □

†We say that a triangulated category  is right saturated if every contravariant cohomology functor of finite type
is representable.
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2172 LI et al.

Remark 4.10. Note that Theorem 3.8 could potentially be applied to the Kuznetsov component
of a cubic threefold. The main missing ingredient is the nonemptiness of moduli spaces of stable
objects for the constructed stability conditions. This is part of the work in progress [31].
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