PHOTOREDOX CATALYZED SYNTHESIS OF **INDOLE-BASED AZAHELICENES**

S. Meraviglia,^a V. Pirovano,^a E. Brambilla,^a G. Abbiati^a, M. Magni^b

^aDipartimento di Scienze Farmaceutiche, Sezione di Chimica Generale e Organica "A. Marchesini", Via G. Venezian 21, 20133, Milano, Italy; ^bDepartment of Enviromental Science and Policy, Università degli Studi di Milano, Via Celoria 2, 20133, Milano, Italy; e-mail: silvia.meraviglia@unimi.it

Introduction

In recent years, photoredox catalysis has spread as an essential tool for the synthesis of heterocyclic structures.¹ In particular, azahelicenes constitute a class of heteroaromatic molecules which are characterized by an extended conjugated system. These compounds find application in many field due to their large conductivity and polarizability.² We are developing a method for the preparation of different **benzo[c]carbazoles** and **indole-based azahelicenes** under photoredox conditions.

Asymmetric

catalysis

Optoelectronics

Screening of the reaction conditions

Reaction conditions: 1a (0.2 mmol), photocatalyst (5 mol%), solvent (2 ml, 0.1 M) at rt for 18 h under 40 W blue led irradiation (λ max = 440 nm).

Entry	Catalyst (mol%)	Solvent	Yield (%)
1	TPT	CH ₃ NO ₂ /HFIP 10:1 (0.1 M)	44
2	TPT	DCE	20
3	TPT	CH ₃ CN	14
4	ТРТ	CH ₃ NO ₂	63
5	4-F-TPT	CH ₃ NO ₂	68
6	4-OMe-TPT	CH ₃ NO ₂	30

Scope of the reaction

Polymers

Future perspectives

- Expansion of the scope for the synthesis of other indole-based azahelicenes
- Evaluation of the optical properties of the products
- Separation of the enantiomers through chiral HPLC

Acknowledgements

We acknowledge MUR-Italy (PostDoc fellowship to E.B.) for financial support. Donatella Nava and Lucia Feni (Università degli Studi di Milano) are thanked for NMR and mass analyses.

References

1. C. K. Prier, D. A. Rankic, D. W. C. MacMillan, Chem. Rev. 2013, 113, 5322; M. H. Shaw, J. Twilton, D. W. C. MacMillan, J. Org. Chem. 2016, 81, 6898; Y. Xiao-Ye,

C. Jia-Rong, X. Wen-Jing, Chem. Rev. 2021, 121, 506.

2. S. Yun, C. Chuan-Feng, Chem. Rev. 2012, 112, 1463; F. Fontana, B. Bertolotti,

3. P. Patel, D. Patel, K. Chikhalia, ChemistrySelect 2023, 8, e202204963