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Purpose of review

The introduction in clinical practice of anti-HER2 agents changed the prognosis of patients with HER2-
positive (HER2þ) breast cancer in both metastatic and early setting. Although the incomparable results
obtained in the last years with the approval of new drugs targeting HER2, not all patients derive benefit
from these treatments, experiencing primary or secondary resistance. The aim of this article is to review the
data about cotargeting HER2 with different pathways (or epitopes of receptors) involved in its oncogenic
signaling, as a mechanism to overcome resistance to anti-HER2 agents.

Recent findings

Concordantly to the knowledge of the HER2þ breast cancer heterogeneity as well as new drugs, novel
predictive biomarkers of response to anti-HER2 treatments are always raised helping to define target to
overcome resistance. Cotargeting HER2 and hormone receptors is the most well known mechanism to
improve benefit in HER2þ/HRþ breast cancer. Additional HER2-cotargeting, such as, with PI3K pathway,
as well as different HERs receptors or immune-checkpoints revealed promising results.

Summary

HER2þ breast cancer is an heterogenous disease. Cotargeting HER2 with other signaling pathways
involved in its mechanism of resistance may improve patient outcomes. Research efforts will continue to
investigate novel targets and combinations to create more effective treatment regimes.
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INTRODUCTION

Approximately 20% of breast cancers overexpress
the human epidermal growth factor receptor 2
(HER2) defining theHER2-positive (HER2þ) subtype
[1]. HER2þ breast cancer were historically associated
with poor prognosis. The introduction of HER2-
targeted therapies, including monoclonal antibod-
ies (mAb, trastuzumab, pertuzumabmargetuximab),
tyrosine kinase inhibitors (TKIs, lapatinib, neratinib
tucatinib), and antibody-drug conjugates (ADC,
trastuzumab emtansine (TDM1) or deruxtecan
(Tdxd)) overturned the patients’ outcomes with
HER2þ disease [2,3]. Nonetheless, de-novo or
acquired resistance to anti-HER2 therapies repre-
sents a major hindrance in the treatment of this
cancer type, leading to early recurrence in up to 25%
of patients with early breast cancer (EBC) and pro-
gression in metastatic breast cancer (MBC) [4,5].
Understanding mechanisms involved in resistance
to HER2-targeted therapies is crucial for developing
strategies to overcome it, improving the patients’
outcomes. This review provides an overview of the
uthor(s). Published by Wolters Kluwe
current knowledge on the mechanisms of resist-
ance to HER2-agents, focusing on the opportunities
offered by cotargeting approaches to improve treat-
ment efficacy in both the early and metastatic
settings.
r Health, Inc. www.co-oncology.com
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KEY POINTS

� HER2-positive breast cancer is a heterogenous disease.

� Response to anti-HER2 agents is affected by various
elements that can induce to primary or
secondary resistance.

� Cotargeting HER2 with pathway of signaling involved
in its resistance may be effective to restore the
sensitivity to HER2-agents.

� The use of novel anti-HER2 based combination
strategies is continuedly under investigation.

Breast cancer
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OFF-TARGET RESISTANCE TO ANTI-HER2
AGENTS AND RATIONALE FOR
COTARGETING

HER2 signaling

Binding between growth factors and the HER2-tyro-
sine kinase receptor (RTK) induces HER2 oncogenic
signaling by HER2 homo or heterodimerization
with other receptors of the human epidermal
growth factor (EGFR) family (HER1/EGFR, HER3,
and HER4) (Fig. 1), activating the downstream
PI3K/AKT and MAP kinase pathways.

EGFR upregulation activates HER2-signaling
and its overexpression has been observed in both
preclinical and clinical HER2þ breast cancer resist-
ant to trastuzumab [6–9].

HER3 and HER2 overexpression are strictly
related and associated with inferior outcomes in
HER2þ breast cancer [10–13]. HER3/ERBB3 is the
main partner involved in HER2 heterodimerization,
inducing a stronger HER2-signaling, particularly
activating PI3K/AKT-pathway [12,14,15].

The role of HER4/ERBB4 is controversial, with
limited data suggesting reduced anti-HER2 sensitiv-
ity in the context of ERBB4 overexpression in
preclinical models [10,16,17].

Anti-HER2 agents inhibit HER2 oncogenic sig-
naling in different ways. Trastuzumab-based agents
inhibit HER2-signaling upfront, blocking the extrac-
ellular subdomain IV of the HER2 receptor. Pertu-
zumab, binding the subdomain II of the HER2
receptor, avoids heterodimerization especially with
HER3. All HER2-TKIs block the intracellular ATP-
binding pocket of HER2 or panHER- RTK. Thus,
resistance to anti-HER2 agents can include different
mechanisms involving altered HER2-expression
(heterogeneity and stability of the target), HER2 -
homo/heterodimerization, disrupted downstream
pathways or collateral RTK signaling, and alterations
in tumor microenvironment (especially mAbs and
ADCs that can elicit immune-mediated effects). One
462 www.co-oncology.com
mechanism of action of trastuzumab is the stimu-
lation of antibody-dependent cell cytotoxicity
(ADCC), leading to INF and TGFb release, which
induces high PDL1-expression in tumor cells medi-
ating trastuzumab-resistance [18,19]. Notably, dif-
ferent from other anti-HER2 agents, the efficacy of
ADCs targeting HER2 seems not to be influenced
mostly by altered downstream pathways but rather
from tumor-heterogeneity including target expres-
sion, deregulation of tracking proteins or lysosomes
[20]. These different ways involved in altered HER2
signaling and resistance to anti-HER2 agents create
the rationale to potential new treatment combina-
tions. ADCC mechanism by trastuzumab induces
the cross presentation of HER2 specific epitopes
by dendritic cells explaining a possible role in the
combination of active immunotherapy, such as vac-
cines, with HER2-mAb [21]. Preliminary data dem-
onstrated the safety and synergy of action between
HER2-derivated vaccine (peptide, allogeneic breast
cancer and dendritic cells vaccines) and trastuzumab
[22]. Moreover, the use of sequential or combined
ADCwith same or different targeting or payloads can
help to overcome anti-HER2 resistance [23].
Hormone receptors cross-talk

Approximately 50% of HER2þ breast cancer cells
co-express hormone receptors (HR), named also tri-
ple-positive breast cancer [24]. Crosstalk between
hormone receptors andHER2 signaling entails resist-
ance to both endocrine therapy and anti-HER2
agents. Hormone receptors can activateHER2-signal-
ing both via G-protein interactions or by activating
downstream HER2-mediators [25,26]. Moreover,
upregulation of hormone receptors has been
described in HER2þ tumor cells following exposure
to anti-HER2-agents to drive resistance [27]. This
concept is further validated by clinical trials, with
triple-positive breast cancer showing lower response
to anti-HER2 regimes in the context of high HRs
expression (either by immunohistochemistry or
mRNA)l [28–30]. Many studies have described the
biology behind the triple-positive breast cancer sub-
type influenced by various factors (e.g., intrinsic
molecular subtypes, immune, or tumor gene signa-
tures expressions) determining distinct behavior
[31,32].
Downstream pathways
PI3K/AKT/mTOR

The PI3K/AKT/mTOR pathway is involved in the
downstream signaling of HER2, and its hyperactiva-
tion determines HER2-independent activation of
Volume 35 � Number 6 � November 2023



FIGURE 1. Cotargeting strategies in HER2-positive breast tumors. Keys. (1) HER2 is activated through homo or
heterodimerization, leading to activation of the PI3K/AKT and MAPKK pathways. (2) Hormone receptors play a pivotal role in
HER2 signaling either by activating G-proteins to activate upstream HER2 signaling or by influencing downstream mediators. (3)
Intracellular pathways converge to activate cell cycle mediators such as cyclins and CDKs. These pathways offer compelling
reasons for selective targeting strategies. AIs, aromatase inhibitors; AKTi, AKT inhibitors; CDK4/6, cyclin-dependent kinase; E2F,
elongation factor 2; HER TKIs, human epidermal growth factor receptor tyrosine kinase inhibitor; HER2 ADC, HER2 antibody
drug conjugate; HER2 BsAb, HER2 bispecific antibodies; HER2 mAB, HER2 mAbs; HRs, hormone receptors; mTORi, mTOR
inhibitors; PIK3CAi, PIK3CA inhibitors; RB1, retinoblastoma 1; SERD, selective estrogen receptor degrader.

HER2-positive breast cancer Zagami et al.
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the mTOR pathway, mediating anti-HER2 therapy
resistance [33,34]. Alteration of the PI3K/AKT/
mTOR pathway occurs in approximately 40% of
HER2þBC, mostly with mutations in the a subunit
of phosphatidylinositol 3-kinase (PI3K) enzyme
(PIK3CA-gene), as well as loss of phosphatidylinosi-
tol-3,4,5-trisphosphate 3-phosphatase (PTEN), a
regulator of this pathway [35,36]. In HER2þ EBC,
PIK3CA mutation is associated with reduced
response to anti-HER2 therapy, translating in lower
pathologic complete rate (pCR), with controversial
results in long-term outcomes often driven by HRs
co-expression [37–41]. In the metastatic setting,
data are more consistent, with PIK3CA-mutations
associated with lower progression-free survival (PFS)
following treatment with lapatinib or anti-HER2
mAbs-based regimens, but not with TDM1 [42,43].
Deregulation of this pathway can derive also from
the activation of non-HER2 RTK, such as insulin-like
1040-8746 Copyright © 2023 The Author(s). Published by Wolters Kluwe
growth factor I receptor (IGF-1R), often overex-
pressed in solid tumor [44,45].

In contrast to PIK3CA, conflicting data are avail-
able regarding the role of PTEN loss in anti-HER2
sensitivity in both early and advanced settings
[42,46,47].

Cyclin-dependent kinase

HER2-signaling converges to activate the cell cycle.
Upon activation of HER2, increased levels of cyclin
D1 actives cyclin-dependent kinases (CDKs) to phos-
phorylate retinoblastoma (Rb), resulting in the
release of elongation transcription factors (E2F) to
promote cell cycle progression. CDK4/6 have been
implicated in resistance to HER2-targeted therapies,
and their inhibition combined with HER2-targeting
agents demonstrated to re-sensitize HER2þ tumor
cells to anti-HER2 regimens in preclinical models
[48–52]. Other CDKs, such as CDK2, CDK7, and
r Health, Inc. www.co-oncology.com 463
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CDK12 may drive resistance to anti-HER2 therapies,
with preliminary data suggesting that their inhib-
ition may lead to higher HER2-sensitivity [53,54].
COTARGETING STRATEGIES IN THE
HER2R EARLY BREAST CANCER

The use of dual HER2 blocking with pertuzumab and
trastuzumab, targeting two different epitopes of
HER2 receptor, led to improved outcomes in HER2þ
breast cancer. Other efforts were made to design
clinical trial investigating novel combination
regimes.
HER2 and PD(L1) cotargeting

Modulation of the tumor microenvironment is a
pursued strategy to overcome HER2 resistance.
Few data are available regarding the use of immu-
notherapy in HER2þ EBC. A single-arm study with
neoadjuvant pertuzumab, trastuzumab, docetaxel,
and atezolizumab achieved a pCR-rate of 61%
among 67 women, with modest toxicity [55

&&

].
The phase III IMpassion 050 trial, which random-
ized 454 patients to receive trastuzumab, pertuzu-
mab, and dose-dense chemotherapy, with or
without atezolizumab was prematurely interrupted
for futility results. No difference in pCR in either the
intention-to-treat (ITT) (62.7 vs. 62.4%; P¼0.9551)
or in PD-L1-positive population (72.5 vs. 64.2%;
P¼0.1846) was observed. With a median follow-
up of 15.7months, event-free survival (EFS) events
occurred in 5.3 and 3.1% of patients receiving ate-
zolizumab or not, respectively [56

&&

]. The phase II
Keyriched-1 trial investigated four cycles of neoad-
juvant chemo-free regimen of pembrolizumab, tras-
tuzumab, and pertuzumab in 48 HER2þ tumors,
selected by PAM50 HER2-enriched subtype. Forty-
six patients achieved a pCR, higher among HR-
tumors (58.5 vs. 38.5%) [57].
HER2 and PI3K/AKT/mTOR cotargeting

Following encouraging preclinical results with the
use of PI3K-inhibitors (PI3Ki) and trastuzumab in
HER2þ tumors, clinical trials have been conducted
with this combination [58]. The randomized phase
II NeoPHOEBE trial investigated the addition of
buparlisib, a pan-PI3K inhibitor, to trastuzumab
for 6 weeks, followed by the addition of chemo-
therapy to each treatment arm. The trial was pre-
maturely interrupted for unacceptable toxicity and
clinical futility, as no pCR differences were observed
(32 vs. 40% with and without buparlisib, respec-
tively; P¼0.811) [59]. Notably, a significant reduc-
tion in Ki67% with a trend in response was observed
464 www.co-oncology.com
after the first 6weeks of treatment, opening a spe-
cific setting in which PI3Ki could be effective [59].
The addition of the mTOR-inhibitor, everolimus, to
trastuzumab in the neoadjuvant setting did not
improve pCR in the RADHER trial (P¼0.727), but
the presence of PI3KCA-mutations was associated
with trastuzumab resistance [60

&

].
In the adaptive clinical trial platform I-SPY2, the

pan-AKT inhibitor, MK-2206, was tested in combi-
nation with neoadjuvant trastuzumab and pacli-
taxel. Among 34 HER2þ EBCs, the addition of
MK-2206 improved pCR from 29 to 48% [61].
HER2 and CDK4/6 cotargeting

In the early setting, CDK4/6-inhibitors (CDK4/6i)
and antiHER2-agents have been mainly tested
among triple-positive breast cancer.

The single-arm phase II NA-PHER2 trial inves-
tigated a neoadjuvant regimen with pertuzumab,
trastuzumab, fulvestrant, and palbociclib in
HER2þ/HRþ EBC. Twenty-seven percent of 30
enrolled patients achieved pCR, along with a sig-
nificant decrease in Ki67% expression at 2 weeks of
treatment [62]. Differently, neoadjuvant combina-
tion of palbociclib, letrozole ,and trastuzumab was
prematurely interrupted due to futility (7.7% pCR
among 27HER2þ/HRþ EBC) [63].

Altogether, these data suggest potential novel
cotargeting options for selected patients, although
need for further data from the trials is undergoing
(Table 1).
COTARGETING STRATEGIES IN THE
HER2R METASTATIC BREAST CANCER

HER2 and hormone receptors cotargeting

The role of hormone receptors in establishing cross-
talks to drive resistance to anti-HER2 agents pro-
vides the rationale for combining endocrine
therapies (ET) and anti-HER2 therapies. In the TAn-
DEM, eLecTRa, and EGF3008 trials, the addition of
trastuzumab or lapatinib to aromatase inhibitors,
respectively, resulted in a well tolerated and effec-
tive treatment [64–66]. The randomized SYSUCC-
002 trial demonstrated the noninferiority of ET with
trastuzumab compared with trastuzumab and che-
motherapy as first-line treatment (median PFS 19.2
vs. 14.8months, respectively; P<0.001) [67]. Fol-
lowing the results of the CLEOPATRA trial with a
double-anti-HER2 blockade, the phase II PERTAIN
and phase III ALTERNATIVE trials tested the addi-
tion of pertuzumab or lapatinib, respectively,
to aromatase inhibitor and a trastuzumab-based
regimen. In both studies, aromatase inhibitor and
Volume 35 � Number 6 � November 2023
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double-anti-HER2 blockade resulted in superior PFS
benefits than single anti-HER2 agent plus aromatase
inhibitor [66,68].
HER2 and CDK4/6 cotargeting

Following the signals of activity demonstrated by
abemaciclib in a phase I trial in HER2þ/HRþ breast
cancer subgroup [69], the phase II randomizedmon-
arcHER was designed. Among 237HER2þ/HRþ
MBC, the addition of abemaciclib to trastuzumab
and fulvestrant (arm A), as at least third-line treat-
ment, resulted in PFS benefits compared with tras-
tuzumab and chemotherapy (arm C) (8.3 vs. 5.7
months, P¼0.051) [70]. In a sub-analysis, arm B
(abemaciclib and trastuzumab without ET) did not
yield superior benefits compared with armC, under-
lining the rationale for cotargeting hormone recep-
tors and HER2 in triple-positive diseases [70].

In a phase Ib trial, ribociclib was tested with
trastuzumab in 13 heavily pretreated HER2þ
patients, showing no objective responses [71].

The SOLTI-1303 PATRICIA trial enrolled
patients with HER2þ MBC to receive palbociclib
and trastuzumab (arm A), with the addition of ET
(cohort B2) or not (cohort B1) if HRþ. The addition
of palboclicib resulted in longer 6-month PFS
among HER2þ/HRþ diseases than HER2þ/HR-
tumors (Arm A: 33%; B1: 42.8%; B2: 46.4%) [72].
In the phase Ib LORDSHIP trial, the addition of
dalpiciclib to pyrotinib and letrozole in HER2þ/
HRþ MBC resulted in overall response rate (ORR)
of 86 and 50% in the first-line and second-line
settings, respectively, with high toxicity [73]. Con-
sistently in monarcHER and PATRICIA trials, lumi-
nal tumors defined by PAM50-subtyping correlated
with higher CDK4–6i benefit [74,75]. In the phase
III DETECT V trial, 153HER2þ/HRþ MBCs in the
first-line to third-line setting were randomized to
receive trastuzumab and pertuzumab and either che-
motherapy (arm A) or ET (arm B), with maintenance
treatment with trastuzumab, pertuzumab, and ET.
Following a trial amendment, ribociclibwas added in
themaintenance (armA) andupfront setting (armB).
At the interim analysis, including 33 patients after
the amendment, no differences were observed in
long-term outcomes. Notably, study interruptions
occurred more frequently in the chemotherapy
arm (72.2 vs. 43.9%, P¼0.001) [76].

A pivotal phase Ib study investigating the use of
palbociclib, letrozole and tucatinib in HER2þ/HRþ
MBC with or without brain metastasis showed
encouraging activity (central nervous system- PFS:
8months) [77,78]. Preliminary results were observed
with the combination of palbociclib and TDM1 as
well [79]. Larger prospective clinical trials are
r Health, Inc. www.co-oncology.com 467
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ongoing to validate alternative approaches in triple-
positive MBC (Table 1).
HER2 and PI3K/AKT/mTOR cotargeting

Data about cotargeting HER2 with PI3K are more
extensive in HER2þ MBC. The addition of everoli-
mus to trastuzumab and chemotherapy did not
result in PFS benefits in the phase III BOLERO-1
and BOLERO-3 trials; yet, dysregulation of the
PI3K/AKT pathway predicted everolimus-benefits
[hazard ratio 0.67; 95% confidence interval (95%
CI) 0.48–0.93) [80–82]. The addition of buparlisib
to trastuzumab in pretreated HER2þ breast cancer
unselected for PI3K/AKT alterations resulted in dis-
appointing results, leading to premature interrup-
tion of the trial for futility results [83]. In contrast,
the addition of buparlisib to lapatinib in a similar
population resulted in a disease control-rate (DCR)
of 79%, with a clinical benefit rate (CBR) of 29%,
observed more frequently among PIK3CA-mutated
and HR- breast cancer [84]. Stable disease for
16 weeks was observed in 50% of the 12 patients
treated with trastuzumab and panPIK3i; copanlisib
is in the phase Ib PantHER trial [85].

Several trials tested the selective PIK3CA-inhib-
itor alpelisib inHER2þMBC. In part 1 of the EPIK-B2
trial, alpelisib and trastuzumab and pertuzumab as
first-line maintenance therapy following induction
with taxane and double HER2-blokade demon-
strated preliminary positive results opening the sec-
ond part of the trial restricting to PIK3CA-mutated
HER2þtumors [86].

In a phase I trial, alpelisib was tested in combi-
nation with TDM1 in trastuzumab-resistant patients
unselected for PIK3CA-mutation, demonstrating
substantial response (43% ORR) and clinical benefit
(60% CBR in pretreated-TDM1), although at cost of
high toxicity [87]. Preliminary results about
MEN1611 (panPI3Ki sparing the delta isoform) com-
bined with trastuzumab with or without fulvestrant
(if HRþ), derived from the B-PRECISE01 trial, enroll-
ing HER2þ/PIK3CA-mutated MBC at more than
third line. Among 41 patients, median OS and PFS
was 22 and 5.6m, similar in the triple-positive BC
and shorter in HER2þ/HR- group (OS 11.9 and PFS
3.9m) with no unexpected toxic events [88]. Nota-
bly, a phase I study investigated the combination of
trastuzumab, alpelisib, and LJM716 (anti-HER3)
with promising antitumor activity but limited tol-
erability [89].
HER2 and PD(L)1 cotargeting

The phase Ib JAVELIN trial investigated the use of
the anti-PD-L1 avelumab as a single agent among 26
468 www.co-oncology.com
highly pretreated HER2þ tumors unselected for PD-
L1, with no clinical response [90]. Similarly, the use
of trastuzumab and durvalumab (anti-PD-L1) did
not show activity in pretreated HER2þ MBC [91].
In the phase Ib/II PANACEA trial, an ORR of 15%
was observed with pembrolizumab and trastuzumab
only among 40 PD-L1-positive tumors [92]. In the
phase II KATE2 trial, atezolizumab added to TDM1
in 202 pretreated patients provided a numerically
superior PFS in the PD-L1-positive population (8.5
vs. 4.1months, P¼0.099) but not among PD-L1-
negative (6.8 vs. 8.2months) [93].

A phase Ib trial investigated the addition of
atezolizumab to TDM1 or pertuzumab, trastuzu-
mab, and docetaxel, resulting in an ORR of 30%
(7/20) and 100% (6/6) in the two arms, respectively
[94].

Differently, the addition of pembrolizumab to
TDM1 in 20 HER2þ MBC (pretreated with trastuzu-
mab and a taxane) resulted in an ORR of 29 and 33%
among PD-L1 at least 1% and less than 1% tumors,
respectively [95]. Nivolumab was tested in combi-
nation with Tdxd in a phase I trial. Among 32
heavily pretreated HER2þ patients, an ORR of
59.4% was observed, with a mPFS of 8.6m [96].
HER2 and HER3 cotargeting

Cotargeting HER2 with other EGRF receptors may
overcome resistance by blocking hetero-dimeriza-
tion and downstream pathways. In this context, a
new class of agents, namely bispecific antibodies,
targeting two epitopes of the same or different anti-
gens, have been introduced.

Patritumab, an anti-HER3 mAb, was tested in a
phase I trial of 18 HER2þ patients pretreated with at
least one line of therapy. In combination with tras-
tuzumab and paclitaxel, patritumab resulted in an
ORR of 37% and mPFS of 9m [97].

In a phase I/II trial, the bispecific mAb zenocu-
tuzumab, targeting HER2 and HER3, yielded a CBR
of 70% among 10 heavily pretreated HER2þMBC as
a single agent [98]. In a phase II study, zenocutuzu-
mab in combination with trastuzumab and vinor-
elbine resulted in a DCR of 77% in 30 heavily
pretreated HER2þ MBC [99,100].
HER2 cotargeting with bispecific antibodies

With the same rationale to combine pertuzumab
and trastuzumab, bispecific anti-HER2 antibodies
have been designed. Zanidatamab, BsAb-targeting
subdomain II and IV of HER2, is the most inves-
tigated agent of this subclass. In a phase Ib/II trial,
among 22 HER2þBC, zanidatamab alone or in com-
bination with docetaxel elicited an ORR of 85 and
Volume 35 � Number 6 � November 2023
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89%, respectively, as a first-line treatment, with a 6-
month PFS of 90.9% [101]. Zanidatamab was further
tested among 36 triple-positive patients pretreated
with trastuzumab, pertuzumab, and TDM1, achiev-
ing an ORR of 33% and a mPFS of 9.6m [102].
Another BsAb with a similar specificity, KN026,
was tested in a phase I trial among 63 heavily pre-
treated patients, resulting in an ORR of 28.1% [103].
In the first-line setting among 55 HER2þ MBC,
KN026 with docetaxel, showed an ORR of 76.4%,
mPFS, and a 18-month OS-rate of 19.3m and 88.3%,
respectively [104].
FUTURE PROSPECTIVE AND CONCLUSION

Novel HER2-targeting therapies have yielded unpre-
cedented results in HER2þ tumors, ultimately lead-
ing to better survival outcomes. The emergence of
off-target resistance mechanisms has become
increasingly recognized and remains a significant
challenge for the treatment of HER2þ breast cancer.
The increasing knowledge about the heterogeneity
of HER2þ breast cancer as well as the discovery of
new predictive/prognostic biomarkers may help to
define new targets to overcome resistance.

By addressing off-target resistance, cotargeting
strategiesmay potentially delay or prevent resistance
to anti-HER2 treatments to ultimately improve
patient outcomes. In some cases, a molecular-
selected population, such as by specific mutations
or intrinsic molecular subtypes, may refine patient
selection.

New combinations and agents, such as bispecific
antibodies, are currently under investigation for
cotargeting purposes. Further research is needed
to identify optimal biomarkers, develop more effec-
tive cotargeting strategies, and improve patient
selection criteria for existing therapies.
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