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We design Latvian quantum finite state automata (LQFAs for short) recognizing unary regular lan-
guages with isolated cut point 1

2 . From an architectural point of view, we combine two LQFAs rec-
ognizing with isolated cut point, respectively, the finite part and the ultimately periodic part of any
given unary regular language L. In both modules, we use a component addressed in the literature
and here suitably adapted to the unary case, to discriminate strings on the basis of their length. The
number of basis states and the isolation around the cut point of the resulting LQFA for L exponentially
depends on the size of the minimal deterministic finite state automaton for L.

1 Introduction

Quantum finite automata (QFAs for short) represent a theoretical model for a quantum computer with
finite memory [3, 4]. While we can hardly expect to see a full-featured quantum computer in the near
future, small quantum components, modeled by QFAs, seem to be promising from a physical implemen-
tation viewpoint (see, e.g., [7, 15]).

Very roughly speaking, a QFA is obtained by imposing the quantum paradigm — superposition,
unitary evolution, observation — to a classical finite state automaton. The state of the QFA can be seen as
a linear combination of classical states, called superposition. The QFA steps from a superposition to the
next one by a unitary (reversible) evolution. Superpositions can transfer the complexity of a computation
from a large number of sequential steps to a large number of coherently superposed classical states (this
phenomenon is sometimes referred as quantum parallelism). Along its computation, the QFA can be
“observed”, i.e., some features, called observables, can be measured. From measuring an observable,
an outcome is obtained with a certain probability and the current superposition irreversibly “collapses”,
with the same probability, to a particular superposition (coherent with the observed outcome).

QFAs exhibit both advantages and disadvantages with respect to their classical (deterministic or prob-
abilistic) counterpart. Basically, quantum superposition offers some computational advantages on prob-
abilistic superposition. On the other hand, quantum dynamics are reversible: because of limitation of
memory, it is sometimes impossible to simulate deterministic finite state automata (DFAs for short) by
quantum automata. Limitations due to reversibility can be partially attenuated by systematically intro-
ducing measurements of suitable observables as computational steps.

In the literature, several models of QFAs are proposed, which mainly differ in their measurement
policy. The first and most simple model is the measure-once QFA (MO-QFA for short) [6, 16], where
the probability of accepting strings is evaluated by “observing” just once, at the end of input processing.
In measure-many QFAs (MM-QFAs for short) [11], instead, the acceptance probability is evaluated by
observing after each move, thus allowing the possibility of halting the computation in the middle of
input processing. An additional model is the Latvian QFA (LQFA for short) [1], which can be regarded as
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“intermediate” between MO-QFAs and MM-QFAs. In fact, as in the MM-QFA model, LQFAs are observed
after each move; on the other hand, as in the MO-QFA model, acceptance probability is evaluated at the
end of the computation only. From a language recognition point of view, it is well known that MO-QFAs
are strictly less powerful than LQFAs, which are strictly less powerful than MM-QFAs, which are strictly
less powerful than DFAs. This hierarchy is established, e.g., in [1, 6, 11].

In this paper, we investigate the architecture and size of LQFAs processing unary languages, i.e.
languages built over a single-letter alphabet. A similar investigation is presented in [5], where MM-QFAs
recognizing unary regular languages with isolated cut point are exhibited, whose size (number of basis
states) is linear in the size of equivalent minimal DFAs. Here, we show that unary regular languages
can be recognized with isolated cut point by the less powerful model of LQFAs as well, paying by an
exponential size increase. A relevant module in our construction is a LQFA recognizing with isolated cut
point the strings of length exceeding a fixed threshold. For its design, we adapt a construction in [1, 14]
to the unary case. Such a module is then suitably combined with two LQFAs taking care, respectively, of
the finite part and the ultimately periodic part any unary regular language consists of. The architecture of
the resulting LQFA turns out to be significantly different from the equivalent MM-QFAs in [5]. Moreover,
while in the MM-QFA case the isolation around the cut point is constant, for LQFAs it exponentially
decreases with respect to the size of the DFA for the finite part of the target unary regular language.
However, it should be stressed that the less powerful model of MO-QFAs cannot recognize with isolated
cut point all unary regular languages. Our results constructively prove that LQFAs and MM-QFAs have
the same recognition power, whenever restricted to recognize unary languages with isolated cut point.

The paper is organized as follows. In Section 2, we overview basics on formal language theory,
linear algebra, and quantum finite state automaton models. In Section 3, we design isolated cut point
LQFAs recognizing the strings whose length is greater than or equal to a fixed value. Then, in Section 4,
we provide the full architecture of isolated cut point LQFAs for unary regular languages, analyzing their
size, cut point, and isolation. Finally, in Section 5, we draw some concluding remarks and offer possible
research hints.

2 Preliminaries

2.1 Formal Languages

We assume familiarity with basic notions of formal language theory (see, e.g., [9]). Given a set S, we
let |S| denote its cardinality. The set of all words or strings (including the empty string ε) over a finite
alphabet Σ is denoted by Σ∗, and we let Σ+ = Σ∗ \ε . For a string w ∈ Σ∗, we let |w| denote its length and
wi its ith symbol. For any given i≥ 0, we let Σi be the set of strings over Σ of length i, with Σ0 = {ε}. We
let Σ≤i =

⋃i
j=0 Σ j; sets Σ>i and Σ≥i are defined accordingly. A language over Σ is any subset L⊆ Σ∗; its

complement is the language Lc = Σ∗ \L. A deterministic finite state automaton (DFA) is formally defined
as a 5-tuple D = (Q,Σ,q0,δ ,F), where Q is the finite set of states, Σ the finite input alphabet, q0 ∈Q the
initial state, F ⊆Q the set of accepting states, and δ : Q×Σ→Q the transition function. Denoting by δ ∗

the canonical extension of δ to Σ∗, the language recognized by D is the set LD = {w∈ Σ∗|δ ∗(q0,w)∈ F}.
It is well known that DFAs characterize the class of regular languages.

A unary language is any language built over a single letter alphabet, e.g., Σ = {σ }, and thus has the
general form L⊆ σ∗. Unary regular languages form ultimately periodic sets, as stated by the following

Theorem 1. ([9, 17]) Let L⊆ σ∗ be a unary regular language. Then, there exist two integers T ≥ 0 and
P > 0 such that, for any k ≥ T , we have σ k ∈ L if and only if σ k+P ∈ L.
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By Theorem 1, it is easy to see that any unary regular language L can be recognized by a (minimal)
DFA consisting of an initial path of T states joined to a cycle of P states; accepting states are suitably
settled on both the path and the cycle. Unary regular languages satisfying Theorem 1 with T = 0 are
called periodic languages of period P.

2.2 Linear Algebra

We quickly recall some notions of linear algebra, useful to describe quantum computational devices.
For more details, we refer the reader to, e.g., [19]. The fields of real and complex numbers are denoted
by R and C, respectively. Given a complex number z = a+ ib, with a,b ∈ R, its conjugate is denoted
by z∗ = a− ib, and its modulus by |z| =

√
z · z∗. We let Cn×m denote the set of n×m matrices with

entries in C. Given a matrix M ∈ Cn×m, for 1 ≤ i ≤ n and 1 ≤ j ≤ m, we denote by Mi j its (i, j)th
entry. The transpose of M is the matrix MT ∈ Cm×n satisfying MT

i j = M ji, while we let M∗ be the
matrix satisfying M∗i j = (Mi j)

∗. The adjoint of M is the matrix M† = (MT )
∗. For matrices A,B ∈Cn×m,

their sum is the n×m matrix (A+B)i j = Ai j +Bi j. For matrices C ∈ Cn×m and D ∈ Cm×r, their product
is the n× r matrix (C ·D)i j = ∑

m
k=1Cik ·Dk j. For matrices A ∈Cn×m and B ∈Cp×q, their direct (or tensor

or Kronecker) product is the n·p×m·q matrix defined as

A⊗B =

 A11B · · · A1mB
...

. . .
...

An1B · · · AnmB

 .

When operations are allowed by matrix dimensions, we have that (A⊗B) · (C⊗D) = A ·C ⊗ B ·D.
A Hilbert space of dimension n is the linear space Cn of n-dimensional complex row vectors equipped

with sum and product by elements in C, where the inner product 〈ϕ,ψ〉= ϕ ·ψ† is defined, for vectors

ϕ,ψ ∈Cn. The ith component of ϕ is denoted by ϕi, its norm is given by ‖ϕ‖=
√
〈ϕ,ϕ〉=

√
∑

n
i=1 |ϕi|2.

If 〈ϕ,ψ〉= 0 (and ‖ϕ‖= 1 = ‖ψ‖), then ϕ and ψ are orthogonal (orthonormal). An orthonormal basis
of Cn is any set of n orthonormal vectors in Cn. In particular, the canonical basis of Cn is the set
{e1,e2, . . . ,en }, where ei ∈ Cn is the vector having 1 at the ith component and 0 elsewhere. Clearly, any
vector ϕ ∈ Cn can be univocally expressed as a linear combination of the vectors in the canonical basis
as ϕ = ∑

n
i=1 ϕi · ei. This latter fact is usually addressed by saying that Cn is spanned by {e1,e2, . . . ,en }.

Two subspaces X ,Y ⊆Cn are orthogonal if any vector in X is orthogonal to any vector in Y . In this case,
we denote by XuY the linear space generated by X ∪Y . For vectors ϕ ∈Cn and ψ ∈Cm, their direct (or
tensor or Kronecker) product is the vector ϕ⊗ψ = (ϕ1 ·ψ, . . . ,ϕn ·ψ); we have ‖ϕ⊗ψ‖= ‖ϕ‖ · ‖ψ‖.

A matrix M ∈ Cn×n is said to be unitary if M ·M† = I(n) = M† ·M, where I(n) is the n× n identity
matrix. Equivalently, M is unitary if it preserves the norm, i.e., ‖ϕ ·M‖ = ‖ϕ‖ for any vector ϕ ∈ Cn.
Direct products of unitary matrices are unitary as well. The matrix M is said to be Hermitian (or self-
adjoint) if M =M†. Let O ∈Cn×n be an Hermitian matrix, ν1,ν2, . . . ,νs its eigenvalues, and E1,E2, . . . ,Es

the corresponding eigenspaces. It is well known that each eigenvalue νk is real, that Ei is orthogonal to E j

for every 1 ≤ i 6= j ≤ s, and that E1uE2u · · ·uEs = Cn. Thus, every vector ϕ ∈ Cn can be uniquely
decomposed as ϕ = ϕ(1)+ϕ(2)+ · · ·+ϕ(s), for unique ϕ( j) ∈ E j. The linear transformation ϕ 7→ ϕ( j) is
the projector Pj onto the subspace E j. Actually, the Hermitian matrix O is biunivocally determined by
its eigenvalues and projectors as O = ν1 ·P1 +ν2 ·P2 + · · ·+νs ·Ps. We recall that a matrix P ∈ Cn×n is a
projector if and only if P is Hermitian and idempotent, i.e. P2 = P.

Let ω = ei 2π

n be the nth root of the unity (ωn = 1) and define the Vandermonde matrix W ∈ Cn×n

whose (r,c)th component is ωrc, for 0 ≤ r,c < n. Let the n× n complex matrix Fn =
1√
n ·W. It is easy
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to see that Fn is the unitary matrix implementing the quantum Fourier transform. Throughout the paper,
it will be useful to recall that operating Fn on the jth vector of the canonical basis yields the vector
e j ·Fn =

1√
n · (ω

0,ω( j−1)·1, . . . ,ω( j−1)·(n−1)). We remark that |(e j ·Fn)k|2 = 1
n , for every 1≤ k ≤ n.

As we will see in the next section, in accordance with quantum mechanics principles (see, e.g., [10]),
the state of a quantum finite state automaton at any given time during its computation is represented by a
norm 1 vector from a suitable Hilbert space, the state evolution of the automaton is modeled by unitary
matrices, and information on certain characteristics of the automaton are probabilistically extracted by
measuring some “observables” represented by Hermitian matrices.

2.3 Quantum Finite State Automata

Here, we recall the model of a Latvian quantum finite state automaton [1] we are mostly interested in.
We then quickly introduce measure-once quantum finite state automata [6, 16] as a particular case of
Latvian automata. Finally, we overview measure-many quantum finite state automata [11].
Definition 1. Let Σ be an input alphabet, ] /∈ Σ an endmarker symbol, and set Γ = Σ∪{]}. A Latvian
quantum finite automaton (LQFA for short) is a system A =(Q,Σ,π0,{U(σ)}σ∈Γ,{Oσ}σ∈Γ,Qacc), where

• Q = {q1,q2, . . . ,qn} is the finite set of basis states; the elements of Q span1 the Hilbert space Cn,

• Qacc ⊆ Q is the set of accepting basis states,

• π0 ∈ Cn is the initial amplitude vector (superposition) satisfying ‖π0‖= 1,

• U(σ) ∈ Cn×n is the unitary evolution matrix, for any σ ∈ Γ,

• for any σ ∈ Σ, we let Oσ = ∑
kσ−1
i=0 ci(σ) ·Pi(σ) be an observable (Hermitian matrix) on Cn, where

{c0(σ), . . . ,ckσ−1(σ)} is the set of all possible outcomes (eigenvalues) of measuring Oσ , and
{P0(σ), . . . ,Pkσ−1(σ)} are the projectors onto the corresponding eigenspaces,

• we let O] = a ·Pacc(])+ r · (I(n)−Pacc(])) be the final observable, where Pacc(]) is the projector
onto the subspace of Cn spanned by the states in Qacc.

Let us briefly describe the behavior of A on an input word w]∈ Σ∗]. At any given time, the state of A is
a superposition of basis states in Q which is represented by a norm 1 vector ξ ∈Cn. We have that ξi ∈C
is the amplitude of the basis state qi, while |ξi|2 ∈ [0,1] is the probability of observing A in the basis
state qi. The computation of A on w] starts in the initial superposition π0 by reading the first input
symbol. Then, the transformations associated with each input symbol are applied in succession. The
transformation corresponding to a symbol σ ∈ Γ consists of two steps:

1. Evolution: the matrix U(σ) acts on the current state ξ of A , yielding the next state ξ ′ = ξ ·U(σ).

2. Observation: the observable Oσ is measured and the outcome ci(σ) is seen with probability
‖ξ ′ ·Pi(σ)‖2; upon seeing ci(σ), according to Copenhagen interpretation of quantum mechan-
ics [10], the state of A "collapses" to (norm 1) state ξ ′ ·Pi(σ)/‖ξ ′ ·Pi(σ)‖ and the computation
continues, unless we are processing the endmarker ].

Upon processing the endmarker ], the final observable O] is measured yielding the probability of see-
ing A in an accepting basis state. Therefore, the probability of accepting w ∈ Σ∗ is given by

pA (w) =
kw1−1

∑
i1=0
· · ·

kw|w|−1

∑
i|w|=0

∥∥∥π0 ·U(w1) ·Pi1(w1) · · · · ·U(w|w|) ·Pi|w|(w|w|) ·U(]) ·Pacc(])
∥∥∥2

.

1We can associate with the set Q = {q1,q2, . . . ,qn} of basis states the canonical basis {e1, . . . ,en } of the Hilbert space Cn

(see Section 2.2) where, for each 1≤ i≤ n, we let ei represent the basis state qi. As the canonical basis spans Cn, with a slight
abuse of notation, we say that the elements of Q spans Cn.
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The function pA : Σ∗→ [0,1] is the stochastic event induced by A . The language recognized by A with
cut point λ ∈ [0,1] is the set of words LA ,λ = {w ∈ Σ∗ | pA (w)> λ}. The cut point λ is said to be
isolated whenever there exists ρ ∈

(
0, 1

2

]
such that |pA (w)−λ | ≥ ρ , for any w ∈ Σ∗. The parameter ρ

is usually referred to as radius of isolation.
In general, a language L⊆ Σ∗ is recognized with isolated cut point by a LQFA whenever there exists

a LQFA A such that (inf{pA (w) | w ∈ L}− sup{pA (w) | w 6∈ L})> 0. In this case, we can compute
the cut point as being λ = 1

2 · (inf{pA (w) | w ∈ L}+ sup{pA (w) | w 6∈ L}), with radius of isolation
ρ = 1

2 ·(inf{pA (w) | w ∈ L}−sup{pA (w) | w 6∈ L}). Throughout the rest of the paper, for the sake of
conciseness, we will sometimes be writing “isolated cut point quantum finite automaton for a language”
instead of “quantum finite automaton recognizing a language with isolated cut point”. Isolated cut point
turns out to be one of the main language recognition policies within the literature of probabilistic devices.
Its relevance in the realm of finite state automata is due to the fact that we can arbitrarily reduce the
classification error probability of an input word w by repeating a constant number of times (not depending
on the length of w) its parsing and taking the majority of the answers. We refer the reader to ,e.g., [18,
Sec. 5], where the notion of isolated cut point recognition is introduced and carefully analyzed.

One of the two original and most studied models of a quantum finite state automaton is the measure-
once model (MO-QFA for short). An MO-QFA can be seen as a particular LQFA where, for any σ ∈ Σ,
we have that Oσ = I(n). Basically, this amounts to leave the computation of A undisturbed up to the
final observation for acceptance. Thus, an MO-QFA can be formally and more succinctly written as
A = (Q,Σ,π0,{U(σ)}

σ∈Γ
,Qacc). The probability of A accepting the word w ∈ Σ∗ now simplifies as

pA (w) =
∥∥π0 ·U(w1) · · · · ·U(w|w|) ·U(]) ·Pacc(])

∥∥2
.

Let us now switch to the other original model, namely a measure-many quantum finite state automa-
ton (MM-QFA for short). Roughly speaking, an MM-QFA A is defined as LQFA but with the possibility of
accepting/rejecting the input string before reaching the endmarker. More precisely, the set Q of the basis
states of A can be partitioned into halting states, which can be either accepting or rejecting, and non
halting states, also called go states, i.e., Q = Qacc∪Qre j ∪Qgo. Following such a state partition, the sole
observable O = a ·Pacc + r ·Pre j +g ·Pgo, whose projectors map onto the subspaces spanned by the cor-
responding basis states, is associated with each symbol in Γ. At each step, the observable O is measured
and the computation of A continues (unless we are processing ]) only if the outcome g is seen. Instead,
if the outcome a (r) is seen, then A halts and accepts (rejects). Formally, the MM-QFA A can be written
as A = (Q,Σ,π0,{U(σ)}σ∈Γ,O,Qacc), and the probability of accepting the word w]= w1 · · ·wnwn+1 is

pA (w) = ∑
n+1
k=1 ‖π0 · (∏k−1

i=1 U(wi) ·Pgo) ·U(wk) ·Pacc‖2.

It is well known (see, e.g., [6, 16]) that the class of languages recognized by isolated cut point MO-
QFAs coincides with the class of group languages. Notice that finite languages are not group languages,
and hence they cannot be accepted by isolated cut point MO-QFAs. Isolated cut point LQFAs are proved
in [1, 14] to be strictly more powerful than isolated cut point MO-QFAs, since their recognition power
coincides with the class of block group languages. An equivalent characterization states that a language
is recognized by an isolated cut point LQFA if and only if it belongs to the boolean closure of languages
of the form L1a1L2a2 · · ·akLk+1, for ai ∈ Σ, group language Li ⊆ Σ∗, and |Σ|> 1. Finally, the recognition
power of isolated cut point MM-QFAs still remains an open question. However, it is know that MM-QFAs
are strictly more powerful than LQFAs but strictly less powerful than DFAs. In fact, isolated cut point MM-
QFAs can recognize the language aΣ∗ which cannot be accepted by isolated cut point LQFAs [1]. On the
other hand, isolated cut point MM-QFAs cannot recognize the language Σ∗a, for |Σ|> 1 and a ∈ Σ [11].
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3 Isolated Cut Point LQFAs for Words Longer than T

Here, we design an isolated cut point LQFA recognizing the unary language σ≥T , for any given T > 0
(i.e., the set of unary strings whose length is greater than or equal to T ). As it will be clear in the next
section, this LQFA will be a relevant component in the modular construction of isolated cut point LQFAs
for unary regular languages.

Our design pattern is inspired by [1, 14], where the authors provide an isolated cut point LQFA for
the language Σ∗a1Σ∗a2 · · · akΣ∗, with ai ∈ Σ and |Σ|> 1. So, we focus on recognizing the unary version
of Σ∗a1Σ∗a2 · · · aT Σ∗ yielded by fixing a1 = · · · = aT = σ and Σ = {σ }, namely, the desired language
a1 · · ·aT Σ∗ =σ≥T . We adapt the construction in [1, 14], and inductively exhibit a family {M(`) }`≥1
of LQFAs such that: (i) M(`) recognizes the language σ≥` with isolated cut point, and (ii) M(`) is con-
structed by “expanding” M(`−1). So, the desired isolated cut point LQFA for σ≥T will result after T
“expansions”, starting from the LQFA M(1). We provide a detailed analysis of the stochastic behavior
of M(`) machines, emphasizing cut points, isolations and their size (i.e., number of their basis states). In
this section, to have a convenient notation, we will be using Aσ for the evolution operator of our LQFAs.

Base of the construction: For the induction base, we define the LQFA M(1) for the language σ≥1 as

M(1) = (Q(1),{σ } ,π0,{A(1)
σ ,A(1)

] },{O
(1)
σ ,O

(1)
] },Q

(1)
acc),

where Q(1) = {q0, . . . ,qn−1} is the set of n basis states, π0 = e1 meaning that M(1) starts in the state q0,
Q(1)

acc = Q(1)\{q0 } is the set of n− 1 accepting states. For the evolution matrices, we let A(1)
σ = Fn (the

quantum Fourier transform) and A(1)
] = I (the identity matrix). The observable O

(1)
σ is the canonical

observable defined by the projectors {e1
† · e1, e2

† · e2, . . . ,en
† · en}. By measuring O

(1)
σ on M(1) being in

the superposition ξ ∈ Cn, we will see M(1) in the basis state qi−1 with probability ‖ξ · (ei
† · ei)‖2 = |ξi|2.

Upon such an outcome, the state of M(1) clearly collapses to ei. The final observation O
(1)
] projects onto

the subspace spanned by the accepting basis states {q1, . . . ,qn−1 }.
The automaton M(1) behaves as follows: when the first input symbol is read, the state of M(1) be-

comes π0 ·A(1)
σ = e1 ·Fn, upon which the canonical observation is measured. As noticed at the end of Sec-

tion 2.2, such a measurement will cause M(1) to move from q0 to some basis state qi, with 0≤ i≤ n−1,
uniformly at random (i.e., with probability |(e1 ·Fn)i+1|2 = 1

n ). After processing (again, by quantum
Fourier transform followed by measuring the canonical observable) the next input symbol from being
in the state ei, we again find M(1) in a basis state uniformly at random. Such a dynamics continues
unaltered, until the endmarker is reached and processed by the identity matrix. At this point, the fi-
nal observation O] is measured, and an accepting state is easily seen to be reached with probability
|Q(1)

acc| · 1
n = (n−1

n ). Clearly, processing the empty string leaves M(1) in the non accepting state q0 with
certainty. Therefore, pM(1)(ε) = 0, while for k > 0 we have pM(1)(σ k) = (n−1

n ). So, M(1) recognizes the
language σ≥1 with isolated cut point.

Inductive step of the construction: For the inductive step, we show how to build the isolated cut point
LQFA M(`) for the language σ≥` from the LQFA M(`−1) for the language σ≥`−1, this latter LQFA being
given by inductive hypothesis. We define

M(`) = (Q(`),{σ } ,π0,{A(`)
σ ,A(`)

] },{O
(`)
σ ,O

(`)
] },Q

(`)
acc),

where the set Q(`) of basis states consists of the previous set Q(`−1) of basis states, plus (n−1) new basis
states per each state in Q(`−1)

acc . We let Q(`)
acc be the set containing these (n−1) · |Q(`−1)

acc | new states, with
|Q(`)

acc|= (n−1)`. Therefore, Q(`) = Q(`−1)∪Q(`)
acc = {q0}∪Q(1)

acc∪Q(2)
acc∪·· ·∪Q(`)

acc with |Q(i)
acc|= (n−1)i,
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so that |Q(`)| = ∑
`
i=0(n− 1)i = (n−1)(`+1)−1

n−2 . The initial superposition is π0 = e1. We let A(`)
] = I and

A(`)
σ = B(`) · Ã(`−1), where Ã(`−1) is the transformation acting as A(`−1)

σ on Q(`−1) ⊂ Q(`), and as the
identity elsewhere. Instead, B(`) is an additional operator working as follows. For any q̃ ∈ Q(`−1)

acc , let
Qq̃ = {q̃1, . . . , q̃n−1} ⊂ Q(`)

acc be the set of the n−1 new added accepting states associated with q̃. Thus,
the operator B(`) first acts as Fn on { q̃} ∪Qq̃ for every q̃ ∈ Q(`−1)

acc , then it measures O
(`)
σ being the

canonical observable on Q(`−1)
acc ∪Q(`)

acc plus the identity projector on the remaining basis states. The final
observable O

(`)
] as usual projects onto the subspace spanned by Q(`)

acc. Actually, the automaton so far

constructed does not perfectly comply with the definition of a LQFA given in Section 2.3 since A(`)
σ is

not a unitary matrix. However, [1, Claim 1] ensures that the action of the operator B(`) · Ã(`−1) followed
by measuring Õ

(`−1)
σ (the observable of M(`−1) extended to Q(`) by the identity projector onto Q(`)

acc) can
be expressed as a unitary matrix followed by measuring a suitable observable. This last detail possibly
enlarges the dimension of the Hilbert space for M(`) by a factor bounded by n`. The stochastic event
induced by M(`) will be discussed later.

To clarify the architecture and behavior of this family of automata, we now describe the LQFA M(3)

recognizing the language σ≥3 with isolated cut point. We have

M(3) = (Q(3),{σ } ,π0,{A(3)
σ ,A(3)

] },{O
(3)
σ ,O

(3)
] } ,Q

(3)
acc),

where we let the set of basis states be Q(3) = {q0}∪Q(1)
acc∪Q(2)

acc∪Q(3)
acc with Q(1)

acc = {qi | 1≤ i≤ n−1},
Q(2)

acc =
{

qi, j | 1≤ i, j ≤ n−1
}

, and Q(3)
acc =

{
qi, j,k | 1≤ i, j,k ≤ n−1

}
. We remark that Q(3)

acc is the set
of (n− 1)3 accepting basis states of M(3). We can regard basis states as partitioned into three groups
reflected by the number of subscripts attributed to each basis state; each group of states is added in a
subsequent step of the inductive construction. The general structure of the state (superposition) of M(3)

is a norm 1 vector in C|Q(3)| of the following form, with α(q) denoting the amplitude of the basis state q:

[α(q0),α(q1),α(q1,1), [. . . α(q1,1,k) . . .],α(q1,2), [. . . α(q1,2,k) . . .], . . . ,α(q1,n−1), [. . . α(q1,n−1,k) . . .],

α(q2),α(q2,1), [. . . α(q2,1,k) . . .],α(q2,2), [. . . α(q2,2,k) . . .], . . . ,α(q2,n−1), [. . . α(q2,n−1,k) . . .],

...

α(qn−1),α(qn−1,1), [. . . α(qn−1,1,k) . . .],α(qn−1,2), [. . . α(qn−1,2,k) . . .], . . . ,α(qn−1,n−1), [. . . α(qn−1,n−1,k) . . .]].

(*) Form of states (superpositions) of M(3).

As usual, we let π0 = e1. The evolution matrices of M(3) are A(3)
] = I, while we have A(3)

σ =B(3) ·B̃(2) ·Ã(1),
where each matrix in the product acts on levels of the basis states as follows: Ã(1) affects the states in
{q0 }∪Q(1)

acc, B̃(2) the states in Q(1)
acc ∪Q(2)

acc, and B(3) the states in Q(2)
acc ∪Q(3)

acc. From now on, it will be
useful to describe the dynamic of M(3) by displaying the sequence of the stochastic vectors obtained by
squaring the amplitudes in the superpositions of the form in (*). In such vectors, the value |α(q)|2 of
the component associated with q represents the probability for M(3) of being in the basis state q. This
stochastic dynamic description turns out to be appropriate as M(3) uses the canonical observable after
each quantum Fourier transform operation. Upon reading a symbol σ , the LQFA M(3) executes A(3)

σ

followed by measuring Õ
(1)
σ : formally, we write A(3)

σ ↓ Õ
(1)
σ . This operation distributes the probability

differently in the three group of basis states Q(1), Q(2)
acc and Q(3)

acc. In particular, the probability values turn
out to be identical within each group of basis states, for each step of computation (except for the initial
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superposition π0). Therefore, the form of the stochastic vector at each step of computation is

[x, x, y, [· · · z · · · ], y, [· · · z · · · ], . . . , y, [· · · z · · · ],
x, y, [· · · z · · · ], y, [· · · z · · · ], . . . ,y, [· · · z · · · ],

...

x, y, [· · · z · · · ], y, [· · · z · · · ], . . . , y, [· · · z · · · ]],

where x is the probability value for the states in Q(1), y for the states in Q(2)
acc, and z for the (accepting)

states in Q(3)
acc. Thus, the current accepting probability is (n−1)3 · z.

Now, let x(k), y(k), and z(k) be the above basis states probabilities after processing the kth input
symbol. We are going to establish the dependence of such values from x(k− 1), y(k− 1), and z(k− 1)
in order to single out a closed formula for the stochastic event pM(3) . To this aim, for reader’s ease of
mind, a graphical representation is given in Figure 1, of how one step of the evolution-plus-observation
A(3)

σ ↓ Õ
(1)
σ affects the probability values in each different group of basis states.

Figure 1: Stochastic representation of a computation step of M(3) on the symbol σ for basis states of dif-
ferent groups. The notation Ã1 ↓ Õ

(1)
σ means that Ã1 is applied and then the observable Õ

(1)
σ is measured.

Wave (straight) edges indicate basis state transitions occurring with probability 1
n (with certainty). For

instance, the tree in (b) says that, starting from qi 6=0 for a fixed i and after one step of computation, we
will observe M(3) in q0 with probability 1

n2 . Note that there exist n−1 trees of the form (b) leading to q0.



C. Mereghetti, B. Palano & P. Raucci 71

Let us focus, e.g., on x(k). The probability x(k) depends on x(k−1), y(k−1), and z(k−1) as follows:

• Figure 1(a) shows that the basis state q0 contributes with 1
n · x(k−1).

• Figure 1(b) shows the contribution of each basis states in Q(1)
acc, which is 1

n2 · x(k− 1); given that

|Q(1)
acc|= (n−1), the total contribution is (n−1)

n2 · x(k−1).

• Figure 1(c) shows that the total contribution given by y(k−1) elements (i.e., by the (n−1)2 basis
states in Q(2)

acc) is (n−1)2

n3 · y(k−1).

• Figure 1(d) shows that the total contribution given by z(k−1) elements (i.e., by the (n−1)3 basis
states in Q(3)

acc) is (n−1)3

n3 · z(k−1).

By analogous reasonings, we can obtain recurrences for y(k) and z(k), globally yielding the system
x(k) = 1

n · x(k−1)+ (n−1)
n2 · x(k−1)+ (n−1)2

n3 · y(k−1)+ (n−1)3

n3 · z(k−1)

y(k) = 1
n · x(k−1)+ (n−1)

n2 · y(k−1)+ (n−1)2

n2 · z(k−1)
z(k) = 1

n · y(k−1)+ (n−1)
n · z(k−1).

(1)

The base for this system of recurrences is the probability distribution after reading the first symbol σ , i.e.:{
x(1) = 1

n

y(1) = z(1) = 0.
(2)

From the system (1), the reader may verify that at each computation step the probability “shifts” towards
the next deeper level of the basis states until reaching the basis states in Q(3)

acc. In fact, after the first step
(yielding probabilities in (2)), only the x-components have non null values. After the second step, only
the x- and y-components have values different from 0, while the value of the z-components is still 0.
This shows that M(3) rejects with certainty the strings in σ≤2. After the third step, all the components
have non null values; in particular, z(3) = 1

n3 , so that the accepting probability of the string σ3 attains

|Q(3)
acc| · z(3) = (n−1

n )3. By solving the system (1), we get a closed formula for z(k), with k ≥ 2, as

z(k) =
1

n(n−1)2 ·

(
1−

(2n−2
n2 )k−2 · (n−1)2 +1

(n−1)2 +1

)
.

This allows us to evaluate the accepting probability of M(3) for any string in σ∗ as

pM(3)(σ k) = |Q(3)
acc| · z(k) =

0 if k ≤ 2
n−1

n ·
(

1−
( 2n−2

n2 )k−2·(n−1)2+1
(n−1)2+1

)
if k ≥ 3.

(3)

Equation (3) shows that M(3) recognizes σ≥3 with isolated cut point. Clearly, the stochastic event induced
by M(3) depends on the number n of the basis states of M(1), the initial automaton of the inductive
construction. Figure 2 displays pM(3) for some values of n. As expected, the higher n grows, the better
the isolation around the cut point becomes.
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Figure 2: The (“continuous version” of the) stochastic events induced by M(3) according to Equation 3,
for different values of the number n of basis states of M(1), the base module inductively leading to M(3).

Now, we consider the general LQFA M(`), and derive the system of recurrences for its stochastic dynamic.
The set of basis states of M(`) is now partitioned into ` groups. For 1 ≤ h ≤ `, we denote by xh(k) the
probability for M(`) of being in a basis state of the hth group, after processing k input symbols. The
system of recurrences for M(`) generalizes the system (1) as follows:

x1(k) = 1
n · x1(k−1)+∑

`−1
j=1

(n−1) j

n j+1 · x j(k−1)+ (n−1)`

n` · x`(k−1)

x2(k) =
(

∑
`−2
j=0

(n−1) j

n j+1 · x j+1(k−1)
)
+ (n−1)`−1

n`−1 · x`(k−1)
...

xh(k) =
(

∑
`−h
j=0

(n−1) j

n j+1 · x j+h−1(k−1)
)
+ (n−1)`−h+1

n`−h+1 · x`(k−1)
...

x`(k) = 1
n · x`−1(k−1)+ (n−1)

n · x`(k−1),

(4)

with initial values x1(1) = 1
n , and xh(1) = 0 for every 2≤ h≤ `. We show the validity of this system of

recurrences by induction, having, e.g., the system (1) for the automaton M(3) as base case. By inductive
hypothesis, we assume the system of recurrences for M(`−1), and we build the system (4) for M(`). We
consider the set of trees representing one step of the computation of our automata, starting from basis
states of different groups. E.g., Figure 1 displays the four different types of trees for M(3), one per each
group of basis states, plus one for the evolution from the state q0. So, for M(`) we are going to provide `

of such trees, plus the one for q0. Let us explain how to obtain them from the trees of M(`−1). Let T (`−1)
j

be a tree representing one step of the evolution of M(`−1) on a basis state of group 1≤ j≤ `−1, namely, a
basis state from Q( j)

acc. Moreover, let T (`−1)
0 be the tree for q0. The evolution for M(`) is A(`)

σ =B(`) · Ã(`−1).
Thus, the behavior of M(`) is described by `+1 trees with the following structure:

• The trees T (`)
j for 0 ≤ j < `− 1 are basically the trees T (`−1)

j with a preliminary step due to the
action of B(`). Since in these trees the root is labeled by a basis state of level j < `− 1, such a
preliminary step coincides with the identity evolution.

• Even the trees T (`)
`−1 and T (`)

` have the action of B(`) as a preliminary step. However, in these cases,

B(`) acts as Fn on the basis states of groups `− 1 in the tree T (`)
`−1, and ` in the tree T (`)

` . The
structure of these two trees, both containing the tree T `−1

`−1 as a sub-tree, is presented in Figure 3.
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qi1,...,i`−1

qi1,...,i`−1,n−1

. . .

qi1,...,i`−1,n−1

. . .

. . .

. . .

qi1,...,i`−1,1

. . .

qi1,...,i`−1,1

T `−1
`−1

B`

(a)

qi1,...,i`

qi1,...,i`−1,n−1

. . .

qi1,...,i`−1,n−1

. . .

. . .

. . .

qi1,...,i`−1,1

. . .

qi1,...,i`−1,1

T `−1
`−1

B`

(b)

Figure 3: The form of the tree T `
`−1 in (a), and of the tree T `

` in (b) for the automaton M(`). Within both
these two trees, the tree T `−1

`−1 turns out to be a sub-tree.

It is now possible to properly justify the system (4) by using the induction step. Starting from the sys-
tem of recurrences for M(`−1), we show how it modifies towards the system for M(`). Clearly, a new
recurrence for x`(k) (i.e., the probabilities for basis states of group `, the accepting states for M(`)) is
added at the end of the system. This component receives contributions only from the trees T (`)

`−1 and T (`)
`

weighted, respectively, by x`−1(k−1) and x`(k−1). Precisely, from the former tree we get the contribu-
tion 1

n ·x`−1(k−1), from the latter (n−1 different trees) the contribution is n−1
n ·x`(k−1). For xh(k), with

1 ≤ h ≤ `− 1, we note that the only modified contribution is the one carried by x`−1(k− 1); moreover
a new contribution from x`(k− 1) is added. Even in this case, the trees T (`)

`−1 and T (`)
` account for these

modifications: the new coefficient of x`−1(k− 1) is the old one for x`−1(k− 1) (i.e., the one associated
with x`−1(k−1) in the system for M(`−1)) multiplied by 1

n , while the coefficient of the new contribution
x`(k−1) is the old one for x`−1(k−1) multiplied by (n−1)

n .
By simply applying repeated substitutions in the system (4), one may verify that, for 1 ≤ k ≤ `, the

value xk(k) always equals 1
nk , while we have xk+1(k) = · · · = x`(k) = 0. Nevertheless, this implies that

the acceptance probability of M(`) for the string σ k is zero for k < `, while is |Q(`)
acc| · x`(`) = (n−1

n )` for
k = `. We are now going to prove that for the strings in the language σ≥` the acceptance probability
never goes below (n−1

n )`. To this aim, it suffices to show

Theorem 2. On the input string σ `+s, with s≥ 0, the probability for M(`) of being in one of the accepting
basis states in Q(`)

acc while processing the suffix σ s is greater than or equal to 1
n` .

Proof. We split the proof into two parts, both proved by induction. In the first part, we focus on the input
prefix σ `. We show by induction on 1 ≤ k ≤ ` that xh(k) ≥ 1

nk in the system (4) holds true for every
1 ≤ h ≤ k. This will enables us to obtain that x1(`), . . . ,x`(`) ≥ 1

n` . For the base case k = 1, we recall
that x1(1) = 1

n . So, let us assume by inductive hypothesis that xh(k) ≥ 1
nk for a given k < ` and every

1≤ h≤ k, and prove the property for k+1. From the system (4), we have

xh(k+1) =
1
n
· xh−1(k)+

n−1
n2 · xh(k)+

(n−1)2

n3 · xh+1(k)+ · · ·+
(n−1)k−h+1

nk−h+2 · xk(k)+ · · ·+
(n−1)`−h+1

n`−h+1 · x`(k).

Since xh(k)≥ 1
nk for 1≤ h≤ k, and 0 otherwise, we can bound xh(k+1) from below as

xh(k+1)≥ 1
nk ·

1
n
·
(

1+
n−1

n
+

(n−1)2

n2 + · · ·+ (n−1)k−h+1

nk−h+1

)
≥ 1

nk+1 .

Now, the second part of the proof comes, where we show, again by induction on k, that xh(k) ≥ 1
n` for

k ≥ ` and 1 ≤ h ≤ `. By the first part of the proof, we have x1(`),x2(`), . . .x`(`) ≥ 1
n` , and so the base



74 Latvian Quantum Finite State Automata for Unary Languages

case holds true. We prove xh(k+1)≥ 1
n` assuming such a property for k by inductive hypothesis. From

the system (4), we get

xh(k+1) =
1
n
· xh−1(k)+

n−1
n2 · xh(k)+

(n−1)2

n3 · xh+1(k)+ . . .+
(n−1)`−h

n`−h+1 · x`−1(k)+
(n−1)`−h+1

n`−h+1 · x`(k).

Since we are assuming all x j(k)’s to be greater than or equal to 1
n` , we can bound xh(k+1) from below as

xh(k+1)≥ 1
n`
·

(
1
n
+

n−1
n2 +

(n−1)2

n3 + · · ·+ (n−1)`−h

n`−h+1 +

(
n−1

n

)`−h+1
)

=
1
n`
,

whence, the claimed result follows.

We can conclude that M(`) induces the following stochastic event:

pM(`)(σ k) = |Q(`)
acc| · x`(k)

{
= 0 if k < `

≥
(n−1

n

)` if k ≥ `.
(5)

This shows that the automaton M(`) recognizes σ≥` with isolated cut point and nO(`) basis states. As
expected, for n→ ∞, the event in (5) approximates a deterministic behavior. In fact, for growing values
of n, we have pM(`)(σ k)→ 1 for k ≥ `, and pM(`)(σ k) = 0 for k < `.

To sum up, let us get back to our initial purpose, i.e., building an isolated cut point LQFA for the
language σ≥T . Such a LQFA is obtained by pushing T steps ahead from M(1) the inductive construction
to finally get the LQFA M(T ). As noted, M(T ) features nO(T ) basis states, n being the number of basis states
of M(1). From Equation (5), we can fix a cut point 1

2 ·
(n−1

n

)T isolated by 1
2 ·
(n−1

n

)T . By increasing n, we
widen such an isolation, tending to a deterministic recognition of the language σ≥T .

Focusing on the size of M(T ), we observe that its number of basis states exponentially depends on T .
As a matter of fact, we can avoid such an exponential blow up by noticing that even the LQFA M(3) can
actually accept with isolated cut point the language σ≥T , for T ≥ 4. This is due to the fact that the
stochastic event induced by M(3) is an increasing function, as one may readily infer from Equation (3)
and Figure 2. By this property, we can fix the isolated cut point between pM(3)(σT−1) and pM(3)(σT ), thus
recognizing σ≥T with nO(1) basis states, not depending on T any more. Nevertheless, such a dramatic
size reduction comes at a price. In fact, the isolation around the cut point shrinks from 1

2 ·
(n−1

n

)T to
p

M(3) (σ
T )−p

M(3) (σ
T−1)

2 = 1
2 · (

2
n)

T−3 · (n−1
n )T−1 · (n+1

n ). This isolation vanishes as n grows, thus suggesting
to consider small values of n. E.g., for n = 2 we obtain an isolation of 3

2 · (
1
2)

T ; for n = 3 we get 27
8 · (

4
9)

T .

4 Isolated Cut Point LQFAs for Unary Regular Languages

Here, we are going to use the LQFAs designed in the previous section as modules in a more general
construction yielding isolated cut point LQFAs for unary regular languages. This investigation is inspired
by [5] where the same problem is tackled for MM-QFAs. Our result constructively shows that isolated
cut point MM-QFAs and LQFAs are equivalent on unary inputs, in sharp contrast to the case for general
alphabets where MM-QFAs outperform LQFAs (see Section 2.3).

We start by observing that, according to Theorem 1, any unary regular language L⊆σ∗ can viewed as
the disjoint union of two unary languages, namely, the finite language LT = L∩σ≤T plus the ultimately
periodic language LP = L∩σ≥T+1. So, we are going to design two LQFA modules recognizing these two
languages with isolated cut point, and then suitably assemble such modules into a final isolated cut point
LQFA AL for the unary regular language L.
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The finite language LT : We define the “(T +1)-periodic continuation” LT	 of LT , namely, the language
obtained from LT by adding all the strings of the form σ i+h·(T+1), with h ≥ 0, for σ i ∈ LT . Formally,
LT	 =

{
σ i+h·(T+1) | h≥ 0 and σ i ∈ LT

}
. Clearly, LT	 is a periodic language of period (T +1), and we

have that LT = LT	∩σ≤T . Therefore, in order to recognize LT , we start by defining the isolated cut point
LQFA AT	 for LT	 . We let AT	 = (Q,{σ},π0,{U(σ),U(])},{Oσ ,O]},Qacc), where: Q = {q0, . . . ,qT}
is the set of basis states, Qacc =

{
qi | 0≤ i≤ T and σ i ∈ LT

}
is the set of accepting basis states, π0 = e1

is the initial superposition, U(σ) = S, where S ∈ {0,1}(T+1)×(T+1) is the matrix representing the cyclic
permutation: S has 1 at the (i, i+ 1)th entries for 1 ≤ i ≤ T and at the (T + 1,1)th entry, all the other
entries are 0, U(])= I(T+1), Oσ is the observable having the identity as sole projector, O] is the usual final
observable projecting onto the subspace spanned by Qacc. Given the observable Oσ , we have that AT	

is basically a MO-QFA whose induced event writes as pAT	
(σ k) = ‖π0 ·U(σ)k ·U(]) ·Pacc(])‖2. After

processing the input σ k], the state ξ (k) of AT	 is

ξ (k) = π0 ·U(σ)k ·U(]) = e1 ·U(σ)k ·U(]) = e(k mod (T+1))+1. (6)

Let us now discuss measuring by the final observable, i.e., the action of the projector Pacc(]) on the final
superposition ξ (k). By (6), ξ (k) is e(k mod (T+1))+1, representing the basis state qk mod (T+1). By definition
of Qacc we have that qk mod (T+1) is an accepting state if and only if σ k mod (T+1) ∈ LT if and only if σ k ∈
LT	 . Therefore, we can rewrite the stochastic event induced by AT	 as pAT	

(σ k) = ‖ξ (k) ·Pacc(])‖2 = 1
if σ k ∈ LT	 , and 0 otherwise. Whence, the LQFA AT	 recognizes LT	 by a deterministic event. Now,
we need AT	 to work simultaneously with a module which checks whether or not the input string has
length not exceeding T , so that the resulting accepted language is LT	 ∩σ≤T = LT . Such a module can
be obtained by complementing the LQFA M(T+1) for σ≥T+1 presented in Section 3 (basically, by taking
Q\Qacc as the set of accepting basis states). The resulting LQFA M(T+1) induces the complement of the
event in Equation (5) with `= T +1:

p
M(T+1)(σ k) = 1− pM(T+1)(σ k)

{
= 1 if k ≤ T

≤ 1−
(n−1

n

)(T+1) if k ≥ T +1,

thus recognizing the language σ≤T with isolated cut point and nO(T ) basis states. Finally, we build
the LQFA AT	 ⊗M(T+1) (basically by taking the direct product component wise of the two LQFAs AT	

and M(T+1)) inducing the product event

p
AT	⊗M(T+1)(σ k) = pAT	

· p
M(T+1)(σ k)

{
= 1 if σ k ∈ LT

≤ 1−
(n−1

n

)(T+1) otherwise,

defining LT with (T +1) ·nO(T ) basis states, and cut point 1− 1
2 ·
(n−1

n

)(T+1) isolated by 1
2 ·
(n−1

n

)(T+1).

Notice that, for large values of n, the LQFA AT	⊗M(T+1) approximates a deterministic recognition of LT .

The ultimately periodic language LP: It suites our goal to rewrite LP as LP = LP	∩σ≥T+1, where we let
LP	 =

{
σ (T+1+i) mod P +h·P | 0≤ i < P, h≥ 0, and σT+1+i ∈ LP

}
. Clearly, LP	 is a periodic language

of period P. So, for recognizing LP, we first focus on building the isolated cut point LQFA AP	 for
LP	 . We let AP	 = (Q,{σ},π0,{U(σ),U(])},{Oσ ,O]},Qacc), where: Q = {q0, . . . ,qP−1} is the set of
basis states, Qacc =

{
qi | 0≤ i < P and σ i ∈ LP	

}
is the set of accepting basis states, π0 = e1 is the

initial superposition, U(σ) = S, where S ∈ {0,1}P×P is the cyclic permutation matrix, U(]) = I(P), Oσ
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is the observable having the identity as sole projector, O] is the usual final observable projecting onto
the subspace spanned by Qacc. Given the observable Oσ , we have that AP	 is basically a MO-QFA whose
induced event writes as pAP	 (σ k) = ‖π0 ·U(σ)k ·U(]) ·Pacc(])‖2. After processing the input σ k], the
state ξ (k) of AP	 is

ξ (k) = π0 ·U(σ)k ·U(]) = e1 ·U(σ)k ·U(]) = e(k mod P)+1. (7)

Let us now measure the final observable on the final superposition ξ (k). By (7), ξ (k) is e(k mod P)+1,
representing the basis state qk mod P. By definition of Qacc, we have that qk mod P is an accepting state if
and only if σ k ∈ LP	 . Therefore, the stochastic event induced by AP	 is pP	(σ

k) = ‖ξ (k) ·Pacc(])‖2 = 1,
if σ k ∈ LP	 , and 0 otherwise. whence, the LQFA AP	 recognizes LP	 by a deterministic event. Now, we
need AP	 to work simultaneously with a module which checks whether or not the input string has length
exceeding T , so that the resulting accepted language is LP	 ∩σ≥T+1 = LP. Such a module is the LQFA

M(T+1) for σ≥T+1 presented in Section 3, and inducing the event

pM(T+1)(σ k)

{
≥ (n−1

n )T+1 if k ≥ T +1
= 0 k ≤ T ,

thus recognizing the language σ≥T+1 with isolated cut point and nO(T ) basis states. Finally, we build the
LQFA AP	⊗M(T+1), inducing the product event

pAP	⊗M(T+1)(σ k) = pAP	
· pM(T+1)(σ k)

{
≥ (n−1

n )T+1 if σ k ∈ LP

= 0 otherwise,

defining LP with P ·nO(T ) basis states, and cut point 1
2 ·
(n−1

n

)(T+1) isolated by 1
2 ·
(n−1

n

)(T+1). Notice that,
for large values of n, the LQFA AP	⊗M(T+1) approximates a deterministic recognition of LP.

Putting things together: We are now ready to suitably assemble the two LQFAs AT = AT	 ⊗M(T+1)

and AP = AP	 ⊗M(T+1) so far described to obtain an isolated cut point LQFA AL for the unary regular
language L. We notice that L= LT ∪LP =(Lc

T ∩Lc
P)

c. This suggests first to construct LQFAs for Lc
T and Lc

P
by building AT and AP inducing the complement events pAT

= 1− pAT and pAP
= 1− pAP , respectively.

Next, to account for the intersection, we construct the LQFA AL = AT ⊗AP inducing the product event
pAL

= (1− pAT ) · (1− pAP). Finally, the desired LQFA AL will be obtained by complementing AL, so that
pAL = (1− pAL

) = 1− (1− pAT ) · (1− pAP) = pAT + pAP− pAT · pAP .

Let us now explain how pAL behaves on input string σ k:
• σ k ∈ L = LT ∪LP: Clearly, we have either σ k ∈ LT or σ k ∈ LP. Suppose σ k ∈ LT . Then, we have

that pAT (σ
k) = 1 since AT = AT	 ⊗M(T+1) and both its sub-modules will accept with certainty;

correspondingly, pAP(σ
k) = 0 since AP = AP	⊗M(T+1) and the sub-module M(T+1) accepts with 0

probability the input strings of length less than or equal to T . Globally, we have pAL(σ
k) = 1.

Suppose σ k ∈ LP. Then, we have that pAP(σ
k)≥

(n−1
n

)T+1 since AP	 accepts with certainty, while

the sub-module M(T+1) accepts with probability not less than
(n−1

n

)T+1. Let us now focus on AT .
The sub-module AT	 could accept with probability either 0 or 1. In the former case, globally
we have pAL(σ

k) ≥
(n−1

n

)T+1, in the latter, the sub-module M(T+1) accepts with a probability

bounded above by 1−
(n−1

n

)T+1. By letting (1− y) the acceptance probability of M(T+1), with

0≤ y≤
(n−1

n

)T+1, we get pAL(σ
k)≥

(n−1
n

)T+1
+(1− y)−

(n−1
n

)T+1 · (1− y)≥
(n−1

n

)T+1
.

In conclusion, for any σ k ∈ L, we have pAL(σ
k)≥

(n−1
n

)T+1
.



C. Mereghetti, B. Palano & P. Raucci 77

• σ k 6∈ L = LT ∪ LP: Clearly, both σ k 6∈ LT and σ k 6∈ LP. By assuming k ≤ T , we must have
σ k 6∈ LT	 . Therfore, the sole acceptance probability contribution could come from the module
AP = AP	 ⊗M(T+1). However, since k ≤ T , the sub-module M(T+1) accepts with 0 probability.
So, pAL(σ

k) = 0. Instead, by assuming k ≥ T + 1, we must have that σ k 6∈ LP	 . Thus, the sole
acceptance probability could come from the module AT . However, the acceptance probability
yielded by the sub-module M(T+1) turns out to be at most 1−

(n−1
n

)T+1.

In conclusion, for any σ k 6∈ L, we have pAL(σ
k)≤ 1−

(n−1
n

)T+1.

Summing up, the stochastic event induced by the LQFA AL is

pAL(σ
k)

{
≥
(n−1

n

)T+1 if σ k ∈ L

≤ 1−
(n−1

n

)T+1 otherwise.
(8)

By the event in Equation (8), we get that AL recognizes L with the following cut point and isolation radius:

λ =
1
2
·

((
n−1

n

)T+1

+1−
(

n−1
n

)T+1
)
=

1
2
, ρ =

1
2
·

((
n−1

n

)T+1

−1+
(

n−1
n

)T+1
)
=

(
n−1

n

)T+1

− 1
2
.

Clearly, to have an isolation around λ , we must require that ρ > 0. This can always be achieved on
any T > 0 by imposing

(n−1
n

)T+1
> 1

2 , which is attained whenever n > 1
1− T+1
√

1
2

. This latter condition is

satisfied, e.g., by letting n = 4T for any T > 0. Nevertheless, the isolation radius ρ tends to 1
2 as n grows.

Let us inspect the size of the LQFA AL =AT ⊗AP. As above pointed out, AT and AP have, respectively,
(T +1) ·nO(T ) and P ·nO(T ) basis states. The complements AT and AP maintain the same number of basis
states, while the product AT ⊗AP requires ((T + 1) · nO(T )) · (P · nO(T )) ≤ T ·P · nO(T ) basis states. The
final complement AT ⊗AP maintains the same number of basis states. By replacing n with 4T , as above
suggested, the number of basis states of the isolated cut point LQFA AL for L becomes P ·T O(T ).

5 Conclusions

In this work, we have exhibited a modular framework for building isolated cut point LQFAs for unary
regular languages. By suitably adapting to the unary case an inductive construction in [1, 14], we have
first designed LQFAs discriminating unary inputs on the basis of their length. These devices have then
been plugged into two sub-modules recognizing the finite part and the ultimately periodic part any unary
regular language consists of. The resulting LQFA recognizes a unary regular language L with isolated cut
point 1

2 , and a number of basis states which is exponential in the number of states of the minimal DFA

for L. In spite of this exponential size blow up, it should be stressed that more restricted models of quan-
tum finite automata in the literature, such as MO-QFAs, cannot recognize all unary regular languages.
On the other hand, a linear amount of basis states is sufficient for the more powerful model of isolated
cut point MM-QFAs [5]. Thus, it would be worth investigating whether a more size efficient construction
for unary LQFAs could be provided. Another interesting line of research might explore the descriptional
power (see, e.g., [2, 8, 12, 13] for topics in descriptional complexity) of isolated cut point LQFAs with re-
spect to other relevant classes of subregular languages such as, e.g., commutative regular languages [20].
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