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The single-index model is a statistical model for intrinsic regression where responses are assumed to depend
on a single yet unknown linear combination of the predictors, allowing to express the regression function as
E[Y |X] = f (〈v,X〉) for some unknown index vector v and link function f . Conditional methods provide a simple
and effective approach to estimate v by averaging moments of X conditioned on Y , but depend on parameters
whose optimal choice is unknown and do not provide generalization bounds on f . In this paper we propose a
new conditional method converging at

√
n rate under an explicit parameter characterization. Moreover, we prove

that polynomial partitioning estimates achieve the 1-dimensional min-max rate for regression of Hölder functions
when combined to any

√
n-convergent index estimator. Overall this yields an estimator for dimension reduction

and regression of single-index models that attains statistical optimality in quasilinear time.

Keywords: Single-index model; dimension reduction; nonparametric regression; finite-sample bounds

1. Introduction

Consider the standard regression problem of estimating a function F : Rd → R from n samples
{(Xi,Yi)}ni=1, where the Xi’s are independent realizations of a predictor variable X ∈ Rd ,

Yi = F(Xi) + ζi , i = 1, . . . ,n , (1)

and the ζi’s are realizations, independent among themselves and of the Xi’s, of a random variable
ζ modeling noise. Under rather general assumptions on ζ and the distribution ρ of X , if we only
know that F is s-Hölder regular (and, say, compactly supported), it is well-known that the min-max
nonparametric rate for estimating F in L2(ρ) is n−s/(2s+d) [22]. This is an instance of the curse of
dimensionality: the rate slows down dramatically as the dimension d increases. Many regression models
have been introduced throughout the decades to circumvent this phenomenon; see, for example, the
classical reference [45]. When the covariates are intrinsically low-dimensional, concentrating on an
unknown low-dimensional set, several estimators have been proved to converge at rates that are optimal
with respect to the intrinsic dimension [3,34,35,41,42]. In other models, the domain may be high-
dimensional, but the function itself is assumed to depend only on a small number of features. A classical
case is the so-called single-index model, where F has the structure

F(x) = f (〈v, x〉) (2)

for some index vector v ∈ Rd (that we may assume unitary without loss of generality) and link function
f : R→ R. In this context one may consider different estimation problems, depending on whether f is
known (e.g. in logistic regression) or both f and v are unknown. We are interested in the latter case.
Clearly, if v was known we could learn f by solving a 1-dimensional regression problem, which may
be done efficiently for large classes of functions f . So the question is: what is the price to pay for not
knowing v?
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It was conjectured in [45] that the min-max rate for regression of single-index models is n−s/(2s+1),
that is, the min-max rate for univariate functions: no statistical cost would have to be paid. This rate
was achieved for pointwise convergence with kernel estimators in [25, Theorem 3.3] and [26, Section
2.5], observing that the index can be learned at the parametric rate n−1/2. Based on these results or
on similar heuristics, a wide part of literature focused on index estimation, setting aside the regression
problem. From this perspective, the main point is that the estimation of the index v can be carried out
at parametric rate in spite of the unknown nonparametric nonlinearity f . The existence of an estimator
converging in L2(ρ) at rate n−s/(2s+1) was established in [22, Corollary 22.1]. A proof that n−s/(2s+1) is
also a lower min-max rate of convergence (in L2(ρ)), thus completing the proof of Stone’s conjecture,
can be found in [20, Theorem 2].

Granted that the estimation of the index does not entail additional statistical costs (in terms of regres-
sion rates), a different but no less important problem is determining the computational cost (expressed
as the number of required elementary operations) to implement a statistically optimal estimator for the
single-index model. The rate in [22, Corollary 22.1] is obtained by a least squares joint minimization
over v and f , but no executable algorithm is provided. In [20] it was proposed to aggregate local poly-
nomial estimators on a lattice of the unit sphere, yielding an adaptive, universal min-max estimator,
although at the expense of a possibly exponential number of operations Ω(n(d−1)/2). While a heuristic
faster algorithm is therein also proposed, its statistical effectiveness was not proved.

Several other methods for the estimation of v or f were developed over the years. A first cate-
gory includes semiparametric methods based on maximum likelihood estimation [7,8,14–16,24,29].
M-estimators produce

√
n-consistent index estimates under general assumptions, but their implementa-

tion is cumbersome and computationally demanding, in that depends on sensitive bandwidth selections
for kernel smoothing and relies on high-dimensional joint optimization. An attempt at avoiding the
data sparsity problem was made by [12], which proposed a fixed-point iterative scheme only involv-
ing 1-dimensional nonparametric smoothers. Direct methods such as the average derivative estimation
(ADE [25,44]) estimate the index vector exploiting its proportionality with the derivative of the re-
gression function. Early implementations of this idea suffer from the curse of dimensionality due to
kernel estimation of the gradient, while later iterative modifications [28] provide

√
n-consistency under

mild assumptions, yet not eliminating the computational overhead. More recently, Isotron [30,31] and
SILO [21] achieved linear complexity, but the proven regression rate, even if independent of d, is not
min-max (albeit SILO focuses on the n � d regime, rather than the limit n →∞ as here and most past
work). In a different yet related direction, the even more recent [1] showed that convex neural networks
can adapt to a large variety of statistical models, including single-index; however, they do not match
the optimal learning rate (even for the single-index case), and at the same time do not have associated
fast algorithms.

Meanwhile, a line of research addressed sufficient dimension reduction [37] in the more general
multi-index model (or a slight extension thereof), where F depends on multiple k < d index directions
spanning an unknown index subspace. Along this thread we can find nonparametric methods extending
ADE to multiple indices, such as structural adaptation ([13,27]), the outer product of gradients (OPG
[49]) and the minimum average variance estimation (MAVE [48,49]). Alternatively, conditional meth-
ods derive their estimates from statistics of the conditional distribution of the explanatory variable X
given the response variable Y . Prominent examples are sliced inverse regression (SIR [18,40]), sliced
average variance estimation (SAVE [9]), simple contour regression (SCR [39]) and its generalizations
(e.g. GCR [39], DR [38]). Conditional methods are appealing for several reasons. Compared to non-
parametric methods, their implementation is straightforward, consisting of noniterative computation of
“sliced” empirical moments and having only one “slicing” parameter to tune. Moreover, they are com-
putationally efficient and simple to analyze, enjoying

√
n-consistency and, in most cases, complexity

linear in the sample size and quadratic in the ambient dimension. On the downside, this comes in gen-
eral at the cost of stronger distributional assumptions, and no theoretically optimal choice of the slicing
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parameter is known [11, p. 75]. Moreover, while conditional methods offer a provable, efficient solu-
tion for sufficient dimension reduction, they do not address the problem of estimating the link function
on the estimated index space. We summarize the key properties for these and other aforementioned
techniques in Table 1.

Table 1. Proven rate in L2(ρ) (up to log factors) and computational cost of several methods for index estimation
and/or regression in single-index models, together with salient assumptions on the model.

Performance Assumptions
Proven rate Computational cost XXX fff ζζζ

v̂̂v̂v f̂̂f̂f v̂̂v̂v f̂̂f̂f

SIR [40] n−1/2 − d2n log n − linear E[X |vT X] N/A N/A

SAVE [9] n−1/2 − d2n log n − linear E[X |vT X], N/A N/A
const Cov[X |vT X]

SCR [39] n−1/2 − d2n2 log n − linear E[X |vT X], stochastically decreasing
const Cov[X |vT X] monotone density of ζ − ζ̃

DR [38] n−1/2 − d2n log n − linear E[X |vT X], N/A N/A
const Cov[X |vT X]

ADE [28] n−1/2 − d2n2 log n − C0 positive density C2 Gaussian

rMAVE [48] n−1/2 N/A d2n2 per iteration vT X has C3 density, C3
E|Y |3 <∞

E|X |6 <∞

Aggregation [20] − n−
s

2s+1 (n log n)d compact supported Cs σ(X)N(0,1)
lower bounded density

SlIsotron [30] N/A n−1/6 ( n
d logn )

1/3dn log n bounded monotone, bounded
Lipschitz

SILO [21] n−1/4 n−1/8 dn n log n Gaussian monotone, bounded
Lipschitz

SVR n−1/2 n−
s

2s+1 d2n log n n log n linear E[X |vT X], coarsely sub-Gaussian
Var[wT X |vT X]� 1 monotone,

Cs

In this work we introduce a new estimator and a corresponding algorithm, called Smallest Vector Re-
gression (SVR), that are statistically optimal and computationally efficient. Our dimension reduction
technique falls in the category of conditional methods. Unlike existing studies for similar approaches,
we are able to provide a characterization for the parameter selection, and bound both the index esti-
mation and the regression errors. Since regression is performed using standard piecewise polynomial
estimates on the projected samples after and independently of the index estimation step, our regression
bounds hold conditioned to any index estimation method of sufficient accuracy. Our analysis yields
convergence by proving finite-sample bounds in high probability. The resulting statements are stronger
compared to the ones in the available literature on conditional methods, where typically only asymp-
totic convergence, at most, is established. As a side note, SVR has been empirically tested with success
also in the multi-index model, but our analysis, and therefore our exposition, will be restricted to the
single-index case (for a related analysis of the multi-index model, see [33]). In summary, the contribu-
tions of this work are:
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1. We introduce a new conditional regression method that combines accuracy, robustness and low
computational cost. This method is multiscale and sheds light on parameter choices that are im-
portant in theory and practice, and are mostly left unaddressed in other techniques.

2. We prove strong, finite-sample convergence bounds, both in probability and in expectation, for
the index estimate of our conditional method.

3. We prove that the population statistics used to construct conditional polynomial partitioning esti-
mation (up to degree 1) are Hölder continuous with respect to the index estimation. This allows to
bridge the gap between a good estimator of the index subspace and the performance of regression
on the estimated subspace.

4. We prove that all
√

n-convergent index estimation methods lead to the min-max 1-dimensional
rate of convergence when combined with polynomial partitioning estimates (up to degree 1).

5. Using the above, we provide an algorithm for the estimation of the single-index model with
theoretical guarantees of optimal convergence in quasilinear time.

The paper is organized as follows. In Section 2 we review several conditional regression methods,
and introduce our new estimator; in Section 3 we analyze the converge of our method and establish
min-max rates for regression conditioned on any sufficiently accurate index estimate; in Section 4 we
conduct several numerical experiments, both validating the theory and exploring numerically aspects
of various techniques that are not covered by theoretical results; in the supplementary material [36] we
collect additional proofs and technical results.

Notation
symbol definition symbol definition
C, c positive absolute constants ‖A‖ spectral norm of a matrix A
a � b a ≤ Cb for some positive absolute constant C λi(A) i-th largest eigenvalue of a matrix A
a � b a � b and b � a |I | Lebesgue measure of an interval I
‖u‖ Euclidean norm of a vector u #S cardinality of a set S
B(x,r) Euclidean ball of center x and radius r 1(E) indicator function of an event E
span{S} linear span of a set S P(E) probability of an event E
{S}⊥ orthogonal complement of a set S E[X] expectation of a random variable X
Pu orthogonal projection onto span{u} Var[X] variance of a r.v. X
∠(u,v) angle between span u and span v Cov[X] covariance matrix of a r.v. X
〈u,v〉 inner product of vectors u and v X | Y r.v. X conditioned on r.v. Y

2. Conditional regression methods
We consider the regression problem as in (1), within the single-index model, with the definition and
notation as in (2). When f is at least Lipschitz, (2) implies ∇F(x) ∈ span{v} for a.e. x; this is the
reason why we may refer to v as the gradient direction. Given n independent copies (Xi,Yi), i = 1, . . . ,n,
of the random pair (X,Y ), we will construct estimators v̂ and f̂ , and derive separate and compound
non-asymptotic error bounds in probability and expectation. Our method is conditional in two ways:

1) the estimator v̂ is a statistic of the conditional distributions of the Xi’s given the Yi’s (restricted in
suitable intervals);

2) the estimator f̂ is conditioned on the estimate v̂.

Several conditional methods for step 1) have been previously introduced, see e.g. [9,38–40]. Our error
bounds for step 2) are independent of the particular method used in 1), only requiring a minimal non-
asymptotic convergence rate. For these reasons, one may as well consider other existing or new methods
for 1), even non conditional, and check for each one the convergence rate needed to pair it with 2).
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The common idea of all conditional methods is to compute statistics of the predictor X conditioned
on the response Y . Conditioning on Y , one introduces anisotropy in the distribution of X , forcing it to
reveal the index structure through its moments, be they means (SIR) or variances (SAVE, SCR, DR).

Before introducing SVR, we will review the two methods that have strongest connections with ours,
namely SIR and SAVE. For consistency with SVR, we will present SIR and SAVE through a particu-
lar multiscale implementation. This will allow to progressively define the objects SVR is built upon,
facilitating the comparison.

2.1. Sliced inverse regression

Sliced Inverse Regression [40] (SIR) estimates the index vector by a principal component analysis of
a sliced empirical approximation of the inverse regression curve E[X |Y ]. Samples on this curve are
obtained by slicing the range of the function and computing sample means of the corresponding ap-
proximate level sets. In our version of SIR, we take dyadic partitions {Sl,h}2l

h=1, l ∈ Z, of a subinterval of
the range of Y , where each Sl,h is an interval of length � 2−l . Let nl,h = #{Yi ∈ Sl,h}. After calculating
the sample mean for each slice,

μ̂l,h =
1

nl,h

∑
i

Xi1{Yi ∈ Sl,h} , h = 1, . . . ,2l ,

SIR outputs v̂l as the eigenvector of largest eigenvalue of the weighted covariance matrix

M̂l =
∑
h

μ̂l,h μ̂
T
l,h

nl,h
n
.

Note that the population limits of μ̂l,h and M̂l are, respectively,

μl,h = E[X | Y ∈ Sl,h] , Ml =
∑
h

μl,hμ
T
l,hP{Y ∈ Sl,h} .

2.2. Sliced average variance estimation

Sliced Average Variance Estimation [9] (SAVE) generalizes SIR to second order moments. After slicing
the range of Y and computing the centers μ̂l,h’s, it goes further and construct the sample covariance on
each slice:

Σ̂l,h =
1

nl,h

∑
i

(Xi − μ̂l,h)(Xi − μ̂l,h)T1{Yi ∈ Sl,h} .

Then, it averages the Σ̂l,h’s and defines v̂l as the eigenvector of largest eigenvalue of

Σ̂l =
∑
h

(I − Σ̂l,h)2
nl,h

n
.

The matrices Σ̂l,h and Σ̂l are empirical estimates of

Σl,h = Cov[X | Y ∈ Sl,h] , Σl =
∑
h

(I − Σl,h)2P{Y ∈ Sl,h} .
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2.3. Smallest Vector Regression (SVR)

This is the new method we propose here. We perform a local principal component analysis on each
approximate level set obtained by multiscale slices of Y . Because of the special structure (2), we expect
each (approximate) level set to be narrow along v and spread out along the orthogonal directions. Thus,
the smallest principal component should approximate v. Once we have an estimate for v, we can project
down the d-dimensional samples and perform nonparametric regression of the 1-dimensional function
f . The method consists of the following steps:

1.a) Construct a multiscale family of dyadic partitions of a subinterval S of the range of Y :

{Sl,h}2l
h=1 , l ∈ Z .

For each l, {Sl,h}h is a partition of S with |Sl,h | = |S |2−l .
1.b) Let Hl be the set of h’s such that nl,h ≥ 2−ln. For h ∈ Hl , let v̂l,h be the eigenvector corre-

sponding to the smallest eigenvalue of Σ̂l,h .
1.c) Compute the eigenvector v̂l corresponding to the largest eigenvalue of

V̂l =
1∑

h∈Hl
nl,h

∑
h∈Hl

v̂l,h v̂
T
l,hnl,h .

2) Regress f using a dyadic polynomial estimator f̂j |v̂l at scale j ≥ 0 on the samples (〈̂vl,Xi〉,Yi),
i = 1, . . . ,n (more details in Section 2.4). Return F̂j |v̂l (x) = f̂j |v̂l (〈̂vl, x〉).

While SVR shares step 1.a) with SIR, it differs from SIR in step 1.b), where it takes conditional
(co)variance statistics in place of conditional means, and in step 1.c), where it averages smallest-
variance directions rather than means. We may regard SAVE and SVR as two different modifications of
SIR to higher order statistics, which allows in general for better and more robust estimates (see Section
4.1). The fundamental difference between SVR and SAVE is that SVR computes local estimates of the
index vector which then aggregates in a global estimate, while SAVE first aggregates local information
and then computes a single global estimate.

In our theoretical analysis we will assume Y sub-Gaussian, and choose S deterministically with radius
multiple of a standard deviation proxy of |Y |, in order to ensure that S contains most (but possibly not
all) samples (see Section 3.1). However, a practically good choice for S is the smallest closed interval
containing all the observed data, namely [mini Yi,maxi Yi], in which case S would be a random interval.
If Y is bounded in a known interval, one may also take S as that interval, so that S would be again
deterministic.

2.4. Conditional partitioning estimators

In step 2) we use piecewise polynomial estimators in the spirit of [4,5]: these techniques are based on
partitioning the domain (here, in a multiscale fashion), and constructing a local polynomial on each
element of the partition by solving a least squares fitting problem. A global estimator is then obtained
by summing the local polynomials over a certain partition (possibly using a partition of unity to ob-
tain smoothness across the boundaries of the partition elements). The degree of the local polynomials
needed to obtain optimal rates depends on the regularity of the function, and may be chosen adaptively
if such regularity is unknown. A proper partition (or scale) is then chosen to minimize the expected
mean squared error (MSE), by classical bias-variance trade-off.

In detail, given an estimated direction v̂, our step 2) consists of:
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2.a) Construct a multiscale family of dyadic partitions of an interval I:

{Ij ,k}k∈K j
, j ∈ Z .

For each j, {Ij ,k}k∈K j
is a partition of I with |Ij ,k | = |I |2−j .

2.b) For each Ij ,k , compute the best fitting m-order polynomial

f̂j ,k |v̂ = arg min
deg(p)≤m

∑
i

|Yi − p(〈̂v,Xi〉)|21{〈̂v,Xi〉 ∈ Ij ,k} .

2.c) Sum all (truncated) local estimates f̂j ,k |v̂ over the partition {Ij ,k}k∈K j
:

f̂j |v̂(t) =
∑
k∈K j

TM [ f̂j ,k |v̂(t)]1{t ∈ Ij ,k} ,

where TM [t] = sign(t)min{|t |,M} for some M ∈ (0,+∞].

The final estimator of F at scale j and conditioned on v̂ is given by

F̂j |v̂(x) = f̂j |v̂(〈̂v, x〉) .

In SVR, step 2) is carried out on v̂ = v̂l , yielding for each l a multiscale family of local polynomials
f̂j ,k |l and global estimators f̂j |l , F̂j |l . However, we will prove results on the performance of 2) also
when v̂ is the output of any estimator with n−1/2 probabilistic convergence rate (Theorem 2).

Note that for SVR, but also for SIR and SAVE, the final estimator F̂j |l depends on two scale param-
eters, l and j, which may be chosen independently. Our analysis yields optimal choices for these two
scale parameters; the scale 2−l at which the direction v is estimated will not be finer than the noise
level, while a possibly finer partition with j > l may be selected to improve the polynomial fit, allowing
the estimator F̂j |l to de-noise its predictions, provided that enough training samples are available (see
Figure 1).

For theoretical purposes, we will assume X sub-Gaussian, and take I as a deterministic interval with
radius proportional to a standard deviation proxy of ‖X ‖ (see Section 3.2). Again, the practitioner may
choose I as the random interval [mini 〈̂v,Xi〉,maxi 〈̂v,Xi〉], or as the projection of the support of X , if
this is known. The truncation level M is ideally ‖F‖∞(= ‖ f ‖∞), or a proxy thereof.

We report the complete sequence of steps run by SVR in Algorithm 1. The time complexity is shown
in Table 2. Note that 2.c) has only an evaluation cost, i.e. f̂j |v̂ does not need to be constructed, but only
evaluated.

3. Analysis of convergence

We next state and discuss several assumptions that are going to be useful for our theoretical analysis.
We point out that, when stating an assumption, such an assumption it is not intended to be implicitly
assumed once for all throughout the paper. Rather, in each result we will explicitly write which as-
sumptions are being used, referring to the corresponding labels. We start by collecting a few basic
requirements on the distributions of X , Y and ζ :

(X) X has sub-Gaussian distribution with variance proxy R2.

(Y) Y has sub-Gaussian distribution with variance proxy R2.
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Figure 1. Local linear estimator (red) at different scales l, to regress the function f (green) from noisy samples
(black). The horizontal axis is 〈v, x〉, while of course the estimator f̂j |l is a function of 〈̂v, x〉 and may appear
multi-valued in 〈v, x〉. For small l (top row) the error in the estimation of the index v is large, leading to poor
regression estimates regardless of the regression scale j. For larger l (bottom row) a good accuracy for the index
vector v is achieved, and the estimator is able to approximate the function even below the noise level and the
non-monotonicity scale (e.g. for j = 6); overfitting occurs for j too large (e.g. j = 12 in this case).

(Z) ζ is sub-Gaussian with variance proxy σ2.

(X), (Y) and (Z) are standard assumptions in regression analysis tout court. The following is instead
typical of single-index models:

(LCM) E[X | 〈v,X〉] is linear in 〈v,X〉.

(LCM) is commonly referred to as the linear conditional mean assumption [40, Condition 3.1]. For
standardized X , it is equivalent to requiring E[X | 〈v,X〉] = PvX [37, Lemma 1.1]. Every elliptical
distribution satisfies (LCM) for every v [6, Corollary 5], and conversely [19]. While it does introduce
some symmetry, it is less restrictive than it may seem. It has been shown to hold approximately in high
dimension, where most low-dimensional projections are nearly normal [17,23]. (LCM) is introduced to
ensure that v̂ is an unbiased estimate of v [10, Theorem 1]. As an alternative to (LCM), one can rely on
the stronger assumption

(SMD) for every w ∈ span{v}⊥, 〈w,X〉 | 〈v,X〉 has symmetric distribution (i.e. has same distribution
as −〈w,X〉 | 〈v,X〉).

The restriction (SMD) to symmetrical marginal distributions will be in fact our working assumption.
Assuming (SMD) rather than (LCM) is for us a purely technical choice, dictated by our goal of disen-
tangling the dependence of the SVR estimator v̂l on the slicing parameter l. To be more specific, our
motivation stems from the application of the Bernstein inequality to concentrate the sample statistics
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Algorithm 1: SVR
Input : samples {(Xi ,Yi)}ni=1 ⊂ Rd ×R, intervals S, I , polynomial degree m ∈ N, truncation level M ∈ (0,∞].
Output: v̂l estimate of v, f̂j |l estimate of f .

1.a) construct {Sl,h }l,h , dyadic decomposition of S;
1.b) for all h ∈ Hl = {h : nl,h ≥ 2−ln}, where nl,h = #{Yi ∈ Sl,h }, compute

μ̂l,h =
1

nl ,h

∑
i Xi1{Yi ∈ Sl,h },

Σ̂l,h =
1

nl ,h

∑
i(Xi − μ̂l,h)(Xi − μ̂l,h)T1{Yi ∈ Sl,h },

v̂l,h , the eigenvector of Σ̂l,h corresponding to the smallest eigenvalue;
1.c) compute v̂l , the eigenvector of V̂l =

1∑
h∈Hl

nl ,h

∑
h∈Hl

v̂l,hv̂
T
l,h

nl,h corresponding to the largest eigenvalue;

2.a) construct {Ij ,k }j ,k , dyadic decomposition of I ;
2.b) compute f̂j ,k |l = arg mindeg(p)≤m

∑
i |Yi − p(〈v̂l , Xi 〉) |21{ 〈v̂l , Xi 〉 ∈ Ij ,k };

2.c) define f̂j |l(t) =
∑
k TM [ f̂j ,k |l (t)]1{t ∈ Ij ,k }.

Table 2. Computational cost breakdown for SVR.

task computational cost
1.a) dyadic decomposition of the range O(n log n)
1.b) PCA on level sets O(d2n log n)
1.c) PCA of local directions O(d2n log n)
2.a) dyadic decomposition of the domain O(n log n)
2.b) m-order polynomial regression O(m2n log n)

total O((d2 +m2)n log n)

to their population limits. Since X and Y will be assumed to be sub-Gaussian, and therefore possi-
bly unbounded, we may not use the standard Bernstein inequality for bounded variables [46, Lemma
2.2.9], and we should rather use the sub-exponential version [46, Lemma 2.2.11]. As it turns out, the
slicing parameter would be encoded in the sub-Gaussian norm of X conditioned on a slice, which
is however an implicit quantity, difficult to characterize in general. On the other hand, Bernstein for
bounded variables, although less general, provides a sharper bound, with probability scaling with the
variance rather than the sub-Gaussian norm. Consequently, it allows to encode the slicing parameter in
an explicit variance term. But in order to apply Bernstein for bounded variables, and thus obtain a more
interpretable bound, we need to condition the statistics of interest in suitable balls of constant radius
(see Section 3.1). Such conditioning would in general break (LCM), but not (SMD), hence the need to
assume (SMD).

Although stronger than (LCM), the condition (SMD) is still satisfied by all elliptical distributions,
as well as other types of symmetric distributions along the index direction. While ellipticity serves
often as a simplified model for the analysis of conditional methods, it is not necessarily crucial when it
comes to applications. In particular, the performance of SVR seems to be robust to even considerable
deviations from such assumptions, as we illustrate experimentally in Section 4.1.

In addition to (LCM) or (SMD), second order methods usually require the so-called constant condi-
tional variance assumption [9, p. 2117]:

(CCV) Cov[X | 〈v,X〉] is nonrandom.
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For standardized X , and assuming (LCM), (CCV) is equivalent to Cov[X | 〈v,X〉] = Pv⊥ [37, Corol-
lary 5.1]. (CCV) is true for the normal distribution [37, Proposition 5.1], and again approximately true
in high dimension [17,23]. Some care is required when assuming both (LCM) and (CCV): imposing
(LCM) for every v is equivalent to assuming spherical symmetry [19], and the only spherical distribu-
tion satisfying (CCV) is the normal distribution [32, Theorem 7]. For this reason we will introduce a
relaxation of (CCV) in the next subsection.

We present separately bounds on the estimation of v in the next Section 3.1, and on the regression
of f in Section 3.2. Our main result, Theorem 2, will give in particular a near-optimal high probability
bound on the SVR estimator for F, in the form

(
EX [|F̂(X) − F(X)|2]

) 1/2
≤ K(d

√
log d + ds)(log n)s/2

(
log n

n

) s
2s+1

where F is s-Hölder continuous with s ∈ [1/2,2], and K is a constant independent of n and d.

3.1. Index estimation bounds

The goal of this section is to obtain finite-sample bounds on the SVR index estimate v̂l . In order to
obtain an explicit characterization with respect to the parameter l, we introduce a variant of v̂l based
on bounded statistics. As discussed earlier in Section 3, similar but less interpretable bounds for SVR
can be proved for unbounded statistics.

Consider the event

B = {‖X ‖ ≤ CX

√
dR, |Y | ≤ CY R}

for some CX,CY ≥ 1 independent of n and that will be considered as fixed constant from now on. We
define the following bounded versions of μl,h , Σl,h:

μbl,h = E[X | Y ∈ Sl,h,B], Σbl,h = Cov[X | Y ∈ Sl,h,B].

Given the event

Bi = {‖Xi ‖ ≤ CX

√
dR, |Yi | ≤ CY R},

we define

nb =
∑
i

1(Bi), nbl,h =
∑
i

1({Yi ∈ Sl,h} ∩ Bi).

Note that nb is a random number, but assuming (X) and (Y) it is larger than a constant fraction of n,
with high probability (see [36, Lemma 4]). The sample counterparts of μb

l,h
, Σb

l,h
are

μ̂bl,h =
1

nb
l,h

∑
i

Xi1({Yi ∈ Sl,h} ∩ Bi), Σ̂bl,h =
1

nb
l,h

∑
i

(Xi − μ̂bl,h)(Xi − μ̂bl,h)
T1({Yi ∈ Sl,h} ∩ Bi).

We denote by vb
l,h

and v̂b
l,h

the eigenvectors of smallest eigenvalue of Σb
l,h

and Σ̂b
l,h

, respectively. Finally,
let Hb

l
= {h : nb

l,h
≥ 2−lnb}. We define v̂b

l
as the eigenvector of largest eigenvalue of

V̂b
l =

1∑
h∈Hb

l
nb
l,h

∑
h∈Hb

l

v̂bl,h (̂v
b
l,h)

T nbl,h .
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In accordance with B, we pick the interval S in SVR as

S = [−CY R,CY R].

Furthermore, we will be assuming lower bounded conditional variance on the distribution conditioned
on B:

(LCV) There is α ≥ 1 such that Var[〈w,X〉 | 〈v,X〉,B] ≥ R2/α almost surely for all w ∈ span{v}⊥ ∩
S
d−1.

This assumption can be seen as a relaxation of the standard (CCV) we mentioned in Section 3. It should
be contrasted with (X): while (X) imposes a uniform upper bound on the variance of all marginals
of X , (LCV) requires that the variance of all (conditional) marginals orthogonal to v is uniformly
lower bounded by a quantity of the same order. This clearly helps SVR in not mistaking a generic
direction of small variance with the actual direction of the index. A practical way towards meeting
(X) and (LCV) (but also (SMD)) is standardizing the data, which is the main reason why conditional
methods commonly include this preprocessing step. Since we directly assume (X) and (LCV) (as well
as (SMD)), we did not include standardization as part of SVR, and therefore of our theoretical analysis.

Besides the distributional assumptions discussed so far, we introduce the following functional prop-
erty:

(Ω) There are ω ≥ 0 and L > 0 such that, for every interval T with |T | ≥ ω, |[min f −1(T),
max f −1(T)]| ≤ L |T |.

Assumption (Ω) may be regarded as a large scale sub-Lipschitz property. Note that, if f is bi-Lipschitz,
then (Ω) is satisfied with ω = 0. However, (Ω) for ω > 0 does not imply that f is monotone; it relaxes
monotonicity to monotonicity “at scales larger than ω”.

We may now state the main result for the SVR estimator of v:

Theorem 1 (SVR). Suppose (X), (Y), (Z), (Ω), (SMD) and (LCV) hold true. Let l be such that 2−l �
(L
√
α)−1 and |Sl,h | � max{σ,ω} for all h ∈ Hb

l
. Then, for n large enough so that n√

τ logn
� α2L2(t +

l + log d)d2l , we have

(a) ‖Pv̂b
l
− Pv ‖ � αL

√
t + l + log d

√
d 2−l

n/
√
τ logn

with probability higher than 1 − e−t − n−τ .

Moreover, if n

logn
√

logn
� α2L2d2l , then

(b) E[‖Pv̂b
l
− Pv ‖2]� α2L2(l + log d) d 2−l

n/
√

logn
.

If, furthermore, |ζ | ≤ σ a.s., then (a) and (b) hold with n/
√

log n replaced by n and without n−τ in (a).

Theorem 1 not only proves convergence for SVR, but also shows that finer scales give more accurate
estimates, provided the number of local samples nb

l,h
is not too small and we stay above the critical

scales σ and ω, representing the noise and the non-monotonicity levels, respectively. Without assump-
tion (LCM), both SIR and SVR provide biased estimates of the index vector; it is not known if such bias
is removable. Nevertheless, Theorem 1 suggests that the estimation error of SVR could be driven to 0
by increasing l, only limited by the constraint of keeping the scale larger than max{σ,ω}. On the other
hand, for distributions not satisfying the assumptions above, the inverse regression curve can deviate
considerably from the direction v, regardless of the size of the noise (see Figure 3). In SVR, assuming
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for a moment monotonicity (ω = 0) and zero noise (σ = 0), choosing the scale parameter l according to
the lower bound on n yields a O(n−2) convergence rate for the MSE, disregarding logarithmic factors.

To prove Theorem 1, we first establish bounds on the local statistics involved in the computation of
the estimator of v:

Proposition 1. Suppose (Z) and (Ω) hold true. Let T ⊂ S be a bounded interval with |T | ≥ ω. Then:

(a) For every i = 1, . . . ,n and every τ ≥ 1,

P{|〈v,Xi〉 − E[〈v,X〉 | Y ∈ T,B]| � L(|T | +
√
τ log n σ) | Yi ∈ T,Bi} ≤ 2n−τ .

If |ζ | ≤ σ a.s., then

P{|〈v,Xi〉 − E[〈v,X〉 | Y ∈ T,B]| � L(|T | + σ) | Yi ∈ T,Bi} = 1 .

(b) Var[〈v,X〉 | Y ∈ T,B]� L2(|T |2 + σ2) .

Proof. Let Zt = (−
√

2(t + 1)σ,−
√

2tσ] ∪ [
√

2tσ,
√

2(t + 1)σ) for t ∈ N. To prove (a) we first note that,
thanks to (Z), we have ζi ∈

⋃
t≤τ logn Zt with probability higher than 1− 2n−τ , for every i. Conditioned

on this event and on Yi ∈ T , 〈v,Xi〉 ∈ f −1(T +
⋃

t≤τ logn Zt ). On the other hand, E[〈v,X〉 | Y ∈ T,B, ζ ∈
Zt ] ∈ [min f −1(T + Zt ),max f −1(T + Zt )]. It follows from assumption (Ω) that

|〈v,Xi〉 − E[〈v,X〉 | Y ∈ T,B, ζ ∈ Zt ]| � L(|T | +
√

max{t, τ log n}σ).

Thus, by the law of total expectation,

|〈v,Xi〉 − E[〈v,X〉 |Y ∈ T,B]| �
∞∑
t=0

|〈v,Xi〉 − E[〈v,X〉 |Y ∈ T,B, ζ ∈ Zt ]|P{ζ ∈ Zt }

� L
(
|T | +

√
τ log nσ + σ

∑
t>τ logn

√
te−t

)
� L(|T | +

√
τ log n σ).

The case where |ζ | ≤ σ almost surely is similar and simpler. For (b), we write

Var[〈v,X〉 | Y ∈ T,B] = E[(〈v,X〉 − E[〈v,X〉 |Y ∈ T,B])2 |Y ∈ T,B]

=

∞∑
t=0

E[(〈v,X〉 − E[〈v,X〉 |Y ∈ T,B])2 |Y ∈ T,B, ζ ∈ Zt ]P{ζ ∈ Zt }.

Conditioned on ζ ∈ Zt , assumption (Ω) gives

|〈v,X〉 − E[〈v,X〉 | Y ∈ T,B]| �
∞∑
s=0

|〈v,X〉 − E[〈v,X〉 | Y ∈ T,B, ζ ∈ Zs]|P{ζ ∈ Zs}

� L
(
|T | +

√
tσ + σ

∞∑
s=0

√
se−s

)
� L(|T | +

√
tσ),
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whence

Var[〈v,X〉 | Y ∈ T,B]� L2
(
|T |2 + σ2

∞∑
t=0

te−t
)
� L2(|T |2 + σ2).

Proposition 2. Suppose (X), (Y), (Z), (Ω), (SMD) and (LCV) hold true. Then, for every l such that
2−l � (L

√
α)−1 and |Sl,h | ≥ max{σ,ω}, h ∈ Hb

l
, v is the eigenvector of smallest eigenvalue of Σb

l,h
,

and

λd−1(Σbl,h) − λd(Σ
b
l,h)� R2/α.

Proof. We have

Σbl,h = Cov[X | Y ∈ Sl,h,B] = E[X XT | Y ∈ Sl,h,B] − E[X | Y ∈ Sl,h,B]E[XT | Y ∈ Sl,h,B].

Since X is independent of ζ , (2) implies that X is independent of Y given 〈v,X〉, hence

E[X XT | Y ∈ Sl,h,B] = E[E[X XT | 〈v,X〉,Y ∈ Sl,h,B] | Y ∈ Sl,h,B]

= E[E[X XT | 〈v,X〉,B] | Y ∈ Sl,h,B].

For the same reason, we have

E[X | Y ∈ Sl,h,B] = E[E[X | 〈v,X〉,Y ∈ Sl,h,B] | Y ∈ Sl,h,B] = E[E[X | 〈v,X〉,B] | Y ∈ Sl,h,B].

Since X satisfies (SMD), so does X | B. Thus, in particular,

E[X | 〈v,X〉,B] = v E[〈v,X〉 | 〈v,X〉,B].

Now, applying [10, Theorem 1.a] to X | B, we get that v is an eigenvector of Σb
l,h

. Let w be a unitary
vector orthogonal to v. Then

wT
E[X | Y ∈ Sl,h,B] = E[〈w,v〉E[〈v,X〉 | 〈v,X〉,B] | Y ∈ Sl,h,B] = 0.

Moreover, assumption (LCV) gives

wT
E[X XT | Y ∈ Sl,h,B]w = E[Var[〈w,X〉 | 〈v,X〉,B] | Y ∈ Sl,h,B] ≥ R2/α.

Therefore,

min
w∈span{v }⊥

‖w ‖=1

wTCov[X | Y ∈ Sl,h,B]w ≥ R2/α.

To upper bound vTΣb
l,h

v, note that |Sl,h | = |S |2−l � R2−l . Thus, assumption (Ω) implies by Proposition
1(b) that

vTΣbl,hv � L2R22−2l .

We finally put together lower and upper bound. Taking 2l � L
√
α implies that λd(Σbl,h) is the eigenvalue

associated to v and yields the desired inequality.

We now establish convergence in probability for the local estimators v̂b
l,h

.
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Proposition 3 (local SVR). Suppose (X), (Y), (Z), (Ω), (SMD) and (LCV) hold true. Then, for every
l such that 2−l � (L

√
α)−1 and |Sl,h | � max{σ,ω} for all h ∈ Hb

l
, for every ε > 0 and τ ≥ 1,

P{‖Pv̂b
l ,h

− Pv ‖ > ε | nbl,h} � d
[
exp

(
−

cnb
l ,h

ε2

α2L2d
√
τ logn(2−2l+2−lε)

)
+ exp

(
−

cnb
l ,h

α2d

) ]
+ n−τ .

If |ζ | ≤ σ a.s., then

P{‖v̂l,h − v‖ > ε | nbl,h} � d
[
exp

(
−

cnb
l ,h

ε2

α2L2d(2−2l+2−lε)

)
+ exp

(
−

cnb
l ,h

α2d

) ]
.

Proof. Since ‖Pv̂b
l ,h

−Pv ‖ = sin∠(̂vb
l,h
,v) ≤ 1 (see [43, Ch. 1, Sec. 5.3, Theorem 5.5]) , we can assume

ε2 ≤ ε ≤ 1 whenever needed. The Davis–Kahan Theorem [2, Theorem VII.3.1], together with [43, Ch.
1, Sec. 5.3, Theorem 5.5] and Proposition 2, gives

‖Pv̂b
l ,h

− Pv ‖ ≤
‖vT (Σ̂b

l,h
− Σb

l,h
)‖

|λd−1(Σ̂bl,h) − λd(Σ
b
l,h

)|
.

By Proposition 2 and Weyl’s inequality [47, Theorem 4.5.3] we get

|λd−1(Σ̂bl,h) − λd(Σ
b
l,h)| ≥ λd(Σ

b
l,h) − λd−1(Σbl,h) − |λd−1(Σ̂bl,h) − λd−1(Σbl,h)|

� R2/α − ‖Σ̂bl,h − Σ
b
l,h ‖.

We bound ‖Σ̂b
l,h

− Σb
l,h

‖ using the Bernstein inequality [47, Theorem 5.4.1]. First, we introduce the
intermediate term

Σ̃bl,h =
1

nb
l,h

∑
i

(Xi − μbl,h)(Xi − μbl,h)
T1({Yi ∈ Sl,h} ∩ Bi),

and split Σ̂b
l,h

− Σb
l,h

into

Σ̂bl,h − Σ
b
l,h = Σ̃

b
l,h − Σ

b
l,h − (μ̂bl,h − μ

b
l,h)(μ̂

b
l,h − μ

b
l,h)

T .

Conditioned on Bi we have ‖Xi − μbl,h ‖
2 � R2d, hence

P{‖Σ̃bl,h − Σ
b
l,h ‖ � R2/α | nbl,h}� d exp

(
−c

nb
l,h

α2d

)
.

Also, by similar calculations, ‖ μ̂b
l,h

−μb
l,h

‖2 � R2/α with same probability. We now apply the Bernstein

inequality to concentrate vT (Σ̂b
l,h

− Σb
l,h

). We have

‖vT (Σ̂bl,h − Σ
b
l,h)‖ ≤ ‖vT (Σ̃bl,h − Σ

b
l,h)‖ + |v

T (μ̂bl,h − μ
b
l,h)|‖ μ̂

b
l,h − μ

b
l,h ‖

� ‖vT (Σ̃bl,h − Σ
b
l,h)‖ +

√
dR |vT (μ̂bl,h − μ

b
l,h)|.
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We start with ‖vT (Σ̃b
l,h

− Σb
l,h

)‖. By Proposition 1(a), conditioned on Yi ∈ Sl,h and Bi we have, with
probability no lower than 1 − 2n−τ ,

|vT (Xi − μbl,h)|‖Xi − μbl,h ‖ � LR2
√

dτ log n2−l,

or |vT (Xi − μbl,h)|‖Xi − μbl,h]‖ � LR2
√

d2−l when |ζ | ≤ σ. Next, we estimate the variance. We have

‖vT (Σ̃bl,h − Σ
b
l,h)‖

2 = vT (Σ̃bl,h − Σ
b
l,h)

2v

= vT (Σ̃bl,h)
2v − vT Σ̃bl,hΣ

b
l,hv − vTΣbl,hΣ̃

b
l,hv + v

T (Σbl,h)
2v,

hence, taking the expectation,

E[‖vT (Σ̃bl,h − Σ
b
l,h)‖

2 | nbl,h] = E[v
T (Σ̃bl,h)

2v | nbl,h] − vT (Σbl,h)
2v,

where

E[vT (Σ̃bl,h)
2v | nbl,h] =

1
(nb

l,h
)2
vTE

[ (∑
i

(Xi − μbl,h)(Xi − μbl,h)
T

) 2

| nbl,h

]
v

≤ 1
nb
l,h

vTE[(X−μbl,h)‖X−μbl,h ‖
2(X−μbl,h)

T | Y ∈ Sl,h,B]v + vT (Σbl,h)
2v

≤ 1
nb
l,h

dR2
E[(vT (X − μbl,h))

2 | Y ∈ Sl,h,B] + vT (Σbl,h)
2v

=
1

nb
l,h

dR2Var[vT X | Y ∈ Sl,h,B] + vT (Σbl,h)
2v.

Thus, Proposition 1(b) gives

E[‖vT (Σ̃bl,h − Σ
b
l,h)‖

2 | nbl,h] ≤
1

nb
l,h

L2dR42−2l .

Therefore, by the Bernstein inequality we obtain

P{‖vT (Σ̃bl,h − Σ
b
l,h)‖ > α

−1R2ε | nbl,h}� d exp

(
−c

nb
l,h
ε2

α2L2d
√
τ log n (2−2l + 2−lε)

)
,

without
√
τ log n if |ζ | ≤ σ. We are now left to bound vT (μ̂b

l,h
− μb

l,h
). By Proposition 1(a) we have that,

conditioned on Yi ∈ Sl,h and Bi , with probability higher than 1 − 2n−τ ,

|vT Xi | � LR
√
τ log n2−l,

or |vT Xi | � LR2−l if |ζ | ≤ σ. Moreover, by Proposition 1(b),

Var[vT X | Y ∈ Sl,h,B]� L2R22−2l .

Thus, the Bernstein inequality gives

P{‖vT (μ̂bl,h − μ
b
l,h)‖ > α

−1d−1/2Rε | nbl,h}� d exp

(
−c

nb
l,h
ε2

α2L2d
√
τ log n (2−2l + 2−lε)

)
,
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where again the factor
√
τ log n can be dropped in the case of bounded noise.

We are finally in a position to prove Theorem 1.

Proof of Theorem 1. Since λ1(vvT ) = 1 and λ2(vvT ) = 0, the Davis–Kahan Theorem [50, Corollary
1], along with [43, Ch. 1, Sec. 5.3, Theorem 5.5]), yields

‖Pv̂b
l
− Pv ‖ � (λ1(vvT ) − λ2(vvT ))−1

���� 1∑
h∈Hb

l ,h
nb
l,h

∑
h∈Hb

l ,h

v̂bl,h (̂v
b
l,h)

Tnbl,h − vvT
����

=

���� 1∑
h∈Hb

l ,h
nb
l,h

∑
h∈Hb

l ,h

(Pv̂b
l ,h

− Pv)nbl,h

����
≤ 1∑

h∈Hb
l ,h

nb
l,h

∑
h∈Hb

l ,h

‖Pv̂b
l ,h

− Pv ‖nbl,h .

For each h ∈ Hl we have nb
l,h

≥ 2−lnb , where nb � n with probability higher than 1 − 2e−cn (by [36,
Lemma 4]), hence nb

l,h
� 2−ln. We thus apply Proposition 3. Taking the union bound over h ∈ Hl gives

‖Pv̂b
l ,h

− Pv ‖ ≤ ε for all h ∈ Hl with probability higher than

1 −C2ld
[
exp

(
− c2−lnε2

α2L2d
√
τ logn(2−2l+2−lε)

)
+ exp

(
− c2−ln

α2d

) ]
− n−τ .

We now constrain ε ≤ 2−l . so that the two exponentials are bounded by

exp
(
− c2−lnε2

α2L2d
√
τ logn(2−2l+2−lε)

)
+ exp

(
− c2−ln

α2d

)
≤ exp

(
− c2−lnε2

α2L2d
√
τ logn2−2l

)
+ exp

(
− c2−lnε2

α2d2−2l

)
� exp

(
− cnε2

α2L2d
√
τ logn2−l

)
. (∗)

Then, for t > 0, we take ε = c−1/2αL
√

t + l + log d 2−l/2
√

d

n/
√
τ logn

, with the constraint ε ≤ 2−l

translating to n√
τ logn

� α2L2(t + l + log d)d2l , which leads to (a). For (b), we first condition on

Z = {|ζi | ≤
√

2τ log nσ for all i’s} and calculate

E[‖Pv̂b
l
− Pv ‖2] − n−τ �

∫ 1

0
ε P{‖Pv̂b

l
− Pv ‖ > ε | Z}dε

=

∫ 2−l

0
ε P{‖Pv̂b

l
− Pv ‖ > ε | Z}dε +

∫ 1

2−l
ε P{‖Pv̂b

l
− Pv ‖ > ε | Z}dε

≤
∫ 2−l

0
min

{
1,2ld exp

(
− c(n/

√
τ logn)ε2

α2L2d2−l

) }
εdε

+

∫ 1

2−l
2ld exp

(
− c(n/

√
τ logn)

α2L2d2l

)
εdε
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� α2L2d log(2ld) 2−l

n/
√
τ log n

+ 2ld exp
(
− c(n/

√
τ logn)

α2L2d2l

)
, (∗∗)

where for the integral
∫ 2−l

0 we have used (∗), for the integral
∫ 1

2−l we have bounded

exp
(
− c2−lnε2

α2L2d
√
τ logn(2−2l+2−lε)

)
≤ exp

(
− c2−lnε2

2α2L2d
√
τ logn2−lε

)
= exp

(
− cnε

2α2L2d
√
τ logn

)
≤ exp

(
− cn2−l

2α2L2d
√
τ logn

)
,

and the last inequality follows from [36, Lemma 5]. For τ = 2 and n large enough so that n√
logn

�
α2L2d2−l log n, the second term in (∗∗) is bounded by the first one, and we obtain (b). Analogous
computations for the case where |ζ | ≤ σ lead to the final claim.

3.2. Conditional regression bounds

In this section we study how partitioning polynomial regression of the link function in a single-index
model is affected by an estimate v̂ of the index vector, where regression estimators are viewed as
conditioned on v̂. For simplicity, we assume that v̂ was trained on a separate sample of (X,Y ) of
cardinality n. As a consequence, v̂ is independent of the samples {(Xi,Yi)}ni=1 used to regress the link
function. If we are given a single training set, independence can be easily enforced by randomly splitting
the data in half. In this case, all rates are understood to scale with n/2, where the factor 1/2 is absorbed
by the other absolute constants.

We will focus on one standard class of priors for regression functions, namely the class Cs of Hölder
continuous functions. We recall that a function g : Rd → R is Cs Hölder continuous (g ∈ Cs) if, for
s =m + α, m ≥ 0 an integer and α ∈ (0,1], g has bounded continuous derivatives up to order m and

|g |Cs = max
|λ |=m

sup
x�z

∂λg(x) − ∂λg(z)
‖x − z‖α <∞.

The Hölder norm is defined by

‖g‖Cs =
∑
|λ | ≤m

‖∂λg‖∞ + |g |Cs .

In expectation, piecewise polynomial estimators of degree m are min-max optimal on the class Cs for
all s = m + α with m ≥ 0 and α ∈ (0,1] [22, Corollary 11.2]. Our analysis will be limited to polyno-
mials of degree m ∈ {0,1}, and thus to functions of smoothness s ≤ 2. On the other hand, piecewise
polynomials of order greater than zero are in general not optimal in high probability [4, Section 3]. For
this reason, in the case of a Cs Hölder regression function with s ∈ (1,2] we will assume the following
regularity condition:

(R) Let ρ be the distribution of X , and let ρv denote the push-forward measure of ρ along the map
x ∈ Rd �→ 〈x,v〉 ∈ R. For every interval I ⊂ supp ρv , Var[〈v,X〉 | 〈v,X〉 ∈ I]� |I |2.



3068 A. Lanteri, M. Maggioni and S. Vigogna

To control the distributional mismatch of the projection 〈̂v,X〉, we will also make one of the following
two assumptions:

(P1) X has spherical distribution.

(P2) Let ρ be the distribution of X , and let ρv denote the push-forward measure of ρ along the map
x ∈ Rd �→ 〈x,v〉 ∈ R. The distribution ρ has upper bounded density with bounded support, and
for every interval I ⊂ supp ρv , ρv(I)� |I |.

As discussed early in Section 3, spherical distributions (P1) provide a customary model for conditional
regression estimators and cover, but are not limited to, the Gaussian distribution. On the other hand,
the class (P2) includes a variety of regular densities on compact normal domains, where no special
symmetry is required.

We now state our main theorem:

Theorem 2. Assume (X) and (Z). Furthermore, assume either (P1) or (P2). Let v̂ be an estimator for
v such that, for every ε > 0,

(V̂) P{‖Pv̂ − Pv ‖ > ε} ≤ Aexp(−nε2/B)

for some A,B ≥ 1 possibly dependent on d and specific parameters. Suppose f ∈ Cs with s ∈ [1/2,2],
and assume (R) in the case s > 1. Let F̂j |v̂ be a piecewise constant (s ≤ 1) or linear (s > 1) estimator
of F at scale j conditioned on v̂ and truncated at M = ‖F‖∞, as defined in Section 2.4 for 〈̂v, x〉 ∈ I =
[−r,r], and 0 outside. Then, setting 2−j �

√
B(log n/n)1/(2s+1) and r �

√
2d log nR we have:

(a) For every ν > 0 there is cν(d,B,R, ‖ f ‖Cs , s) ≥ 1 such that

P

{
(EX [|F̂j |v̂(X) − F(X)|2])

1
2 > cν(log n)s/2

(
log n

n

) s
2s+1

}
� An−ν .

(b) E[|F̂j |v̂(X) − F(X)|2] ≤ K(log n)s
(

logn
n

) 2s
2s+1

for some K = K(d,A,B,R, ‖ f ‖Cs , s).

The dependence of all constants upon d, A and B is polynomial.

Theorem 2 shows that partitioning poliynomial estimators (of degree 0 and 1) achieve the 1-
dimensional min-max convergence rate (up to logarithmic factors) (for s-Hölder functions with s ∈
[1/2,2]) when conditioned on any

√
n-convergent estimate of v, and thus, in particular, on the estimate

v̂ obtained with SVR (under its assumptions). The same conclusion follows for other prominent index
estimators, including conditional methods such as SIR, SAVE, SCR and DR. Although formally our
theorem requires non-asymptotic

√
n-convergence to the index, and only asymptotic

√
n-consistency

has been established for the aforementioned methods, finite-sample bounds can be derived as well with
similar arguments to the ones employed in Section 3.1.

The reader will note that the parameter choices made in Theorem 2 depend on quantities which might
be unknown, notably the bound ‖F‖∞ in the truncation level M and the smoothness s in the polynomial
degree m and scale 2−j . While such results are customary in statistical learning theory, as they still
provides the existence of an optimal choice for the parameters, and thus of a suitable range for cross-
validation, we briefly discuss here this limitation. The choice M = ‖F‖∞ is made mostly for simplicity.
In many applications, at least a proxy M ≥ ‖F‖∞ is known. For tight proxies ‖F‖∞ ≤ M � ‖F‖∞, the
bounds in Theorem 2 hold true up to an additional constant factor. Otherwise, the constants cν and K
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would also depend on M . For what concerns the knowledge of s, one could use again an upper bound.
An algorithmic solution would instead be trying polynomials of increasing degree and cross-validate
the scale. Smoothness-independent theoretical bounds are possible choosing the partition adaptively
by wavelet-thresholding techniques [4,5,42].

To prove Theorem 2 we first show that, with high probability, a conditional polynomial estimator (of
degree 0 or 1) differs from an oracle estimator (possessing knowledge of v) by the angle between v̂ and
v:

Proposition 4. Assume (X) and (Z). Furthermore, assume either (P1) or (P2). Suppose f ∈ Cα with
α ∈ [1/2,1]. Let v̂ be an estimate of v with 〈̂v,v〉 ≥ 0. For u ∈ {v, v̂}, let F̂j |u be a piecewise constant
(α ≤ 1) or linear (α = 1) estimator of F at scale j conditioned on u and truncated at M = ‖F‖∞, as
defined in Section 2.4 for 〈u, x〉 ∈ I = [−r,r], and 0 outside. Assume (R) in case of a linear estimator.
Then, for every ε > 0, r ≥ 1 and conditioned on 2−j ≥ ‖v̂ − v‖/t for some t ≥ 1, we have(

EX [| f̂j |v̂(〈̂v,X〉) − f̂j |v(〈̂v,X〉)|21{X ∈ B(0,r)}]
) 1

2 � t | f |Cαr
1

2−α ‖v̂ − v‖
1

2−α + ε

with probability higher than 1 −C#Kj exp
(
− c nε2

#K j t2 ‖ f ‖2
Cα r

2α

)
− 2n exp(−r2/2dR2) .

The proof of Proposition 4 can be found in the supplementary material [36]. The key tool to obtain
the dependence on ‖v̂ − v‖ in the upper bound is the Wasserstein distance, which enables to control the
difference between statistics computed on the conditional distribution given v̂ rather than v. We now
proceed to prove Theorem 2.

Proof of Theorem 2. First, we observe that, since F(x) = f (〈v, x〉), defining f̌ (t) = f (−t) we have
F(x) = f̌ (〈−v, x〉) as well. Moreover, f ∈ Cs if and only if f̌ ∈ Cs , with | f |Ct = | f̌ |Ct for all t ≤ s.
Thus, since we can always replace v with −v and f with f̌ , in the following we may assume without
loss of generality that 〈̂v,v〉 ≥ 0, hence ‖v̂ − v‖ ≤

√
2‖Pv̂ − Pv ‖.

Let m = �s� − 1 ∈ {0,1} and α = s ∧ 1 ∈ [ 1
2 ,1]. We start by isolating the error outside a ball B(0,r):

EX [|F(X) − F̂j |v̂(X)|2]� EX [|F(X) − F̂j |v̂(X)|21{‖X ‖ ≤ r}] + | f |2C0P{‖X ‖ > r},

whence, using [36, Lemma 3], we get the tail bound

P{‖X ‖ > r}� exp(−r2/2dR2). (T)

For x ∈ B(0,r) we decompose

|F(x) − F̂j |v̂(x)| = | f (〈v, x〉) − f̂j |v̂(〈̂v, x〉)| ≤ | f (〈v, x〉) − f (〈̂v, x〉)|︸���������������������︷︷���������������������︸
(θ1)

+| f (〈̂v, x〉) − f̂j |v̂(〈̂v, x〉)|,

and bound (θ1) by the angle ‖v̂ − v‖:

EX [| f (〈v,X〉) − f (〈̂v,X〉)|21{‖X ‖ ≤ r}] ≤ | f |2Cαr2α‖v̂ − v‖2α .

Hence, from assumption (V̂) and [36, Lemma 5] we get

P{EX [| f (〈v,X〉) − f (〈̂v,X〉)|21{‖X ‖ ≤ r}] > ε2} ≤ Aexp
(
−c nε2/α

Br2 | f |2/αCα

)
(Θ1a)

E[| f (〈v,X〉) − f (〈̂v,X〉)|21{‖X ‖ ≤ r}] ≤ (log(A)B)α | f |2Cαr2αn−α . (Θ1b)
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We further decompose

| f (〈̂v, x〉) − f̂j |v̂(〈̂v, x〉)|

≤ | f (〈̂v, x〉) − fj |v(〈̂v, x〉)|︸������������������������︷︷������������������������︸
(b)

+ | fj |v(〈̂v, x〉) − f̂j |v(〈̂v, x〉)|︸���������������������������︷︷���������������������������︸
(v)

+ | f̂j |v(〈̂v, x〉) − f̂j |v̂(〈̂v, x〉)|︸���������������������������︷︷���������������������������︸
(θ)

,

where fj |v is the m-order population estimator of f at scale j conditioned on v, namely

fj ,k |v = arg min
deg(p)≤m

E[|Y − p(〈v,X〉)|21{〈v,X〉 ∈ Ij ,k}], fj |v(t) =
∑
k∈K j

TM [ fj ,k |v(t)]1{t ∈ Ij ,k}.

Integrating (b) we get a bias term, that we control exploiting the Hölder continuity of f (see [42,
Appendix A, Example 1]1):

EX [| f (〈̂v,X〉) − fj |v(〈̂v,X〉)|21{‖X ‖ ≤ r}]� | f |2Cs r2s2−2js . (B)

The variable (v) leads to a variance term, which can be concentrated with known calculations (see [42,
Proposition 2 and Lemma 5]1):

P{EX [| fj |v(〈̂v,X〉)− f̂j |v(〈̂v,X〉)|21{‖X ‖ ≤ r}] > ε2} � #Kj exp
(
−c nε2

#K j | f |2C0

)
(Va)

E[| fj |v(〈̂v,X〉) − f̂j |v(〈̂v,X〉)|21{‖X ‖ ≤ r}]� | f |2C0

log(#Kj)#Kj

n
. (Vb)

For (θ) we condition on the event ‖v̂ − v‖ ≤ t2−j , taking into account that, thanks to assumption (V̂),
the complement has probability

P{‖v̂ − v‖ > t2−j} ≤ Aexp(−nt22−2j/B). (Θ2)

Thus, Proposition 4 along with assumption (V̂) and [36, Lemma 5] gives

P{EX [| | f̂j |v(〈̂v,X〉) − f̂j |v̂(〈̂v,X〉)|21{‖X ‖ ≤ r}] > ε2 | ‖v̂ − v‖ ≤ t2−j}

� #Kj exp
(
−c nε2

#K j t2 | f |2Cα r
2α

)
+ Aexp

(
− nε2(2−α)

Bt2(2−α) | f |2(2−α)
Cα r2

)
, (Θ3a)

E[| f̂j |v(〈̂v,X〉) − f̂j |v̂(〈̂v,X〉)|21{‖X ‖ ≤ r} | ‖v̂ − v‖ ≤ 2−j]

� | f |2Cαr2α log(#Kj)#Kj

n
+ (log(A)B)

1
2−α | f |2Cαr

2
2−α n−

1
2−α . (Θ3b)

In order to balance the tail (T), the bias (B), the variance (Vb) and the angle terms (Θ1b), (Θ2) and
(Θ3b), we choose

r =
√

2d log nR , 2−j �
√

B(log n/n)1/(2s+1), t = 1,

1 [42] deals more generally with piecewise polynomial regression on an unknown manifold M of dimension d. In our setting,
M is a known Euclidean domain of dimension d = 1, in fact an interval. In particular, the dyadic decomposition 2.a) satisfies
assumptions (A1)÷(A4) in [42] with θ1 = 1 and θ2 = 2r . Assumption (A5)(i) is satisfied thanks to (R), while (A5)(ii) is trivial.
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and plug in #Kj = 2j , which leads to

E[|F̂j |v̂(X) − F(X)|2]� | f |2C0

(
1
n

)
(T)

+ | f |2Cα R2α(log(A)Bd)α
(

log n
n

) α
(Θ1b)

+ | f |2Cs R2s(Bd)s(log n)s
(

log n
n

) 2s
2s+1

(B)

+ | f |2C0
1

2s+1

(
log n

n

) 2s
2s+1

(Vb)

+ Aexp
(
−n

(
logn
n

) 2
2s+1

)
(Θ2)

+ | f |2Cα
1

2s+1 R2αdα(log n)α
(

log n
n

) 2s
2s+1

(Θ3b)

+ | f |2Cα R
2

2−α (log(A)B)
1

2−α d
1

2−α

(
log n

n

) 1
2−α
.

In (Θ1b), (log n/n)α ≤ (log n/n)2s/2s+1 for α = s ∈ [1/2,1], and for α = 1 and s > 1. In (Θ2),
exp(−n(log/n)2/(2s+1)) ≤ 1/n for s ≥ 1/2. In (Θ3b), (log n/n)1/(2−α) ≤ (log n/n)2s/(2s+1) for α = s ∈
(0,1], and for α = 1 and s > 1. Collecting the constants we obtain (b). The bound (a) follows similarly
from (T), (B), (Va), (Θ1a), (Θ2) and (Θ3a) setting

r =
√

2d log nR , 2−j �
√

B(log n/n)1/(2s+1), ε = cν log
s
2 n (log n/n)s/(2s+1), t =

√
cν,

and taking cν large enough.

The additional logarithmic factors in (a) and (b) are exclusively due to the unboundedness of the dis-
tribution and can be avoided in the bounded case. While here we are restricting to constant and linear
estimators, hence to the smoothness range s ≤ 2, the results may be extended to higher order polynomi-
als, and thus to smoother regression functions, with similar proofs. However, from our decomposition,
and specifically from (Θ1b), it seems not possible to maintain min-max optimality in the range s < 1/2.
We remark that this smoothness constraint does not depend on the regression technique, that is, the term
(Θ1b) would still arise when using different regression methods than partitioning polynomials.

4. Numerical experiments

In this section we conduct numerical experiments to demonstrate that the theoretical results above have
practical relevance and to investigate how relaxations of the assumptions affect the estimators. In order
to highlight specific aspects of different algorithms we use three different functions to conduct our
experiments. The first two are

F1(x) = exp(〈v, x〉/3)) , F2(x) = F1(x) + sin(20〈v, x〉)/15 .
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Both functions are smooth. F1 is monotone and thus we may choose ω = 0, while F2 is non-monotone,
thus condition (Ω) is satisfied only for ω > 0. This allows us to explore the behavior of v̂ under mono-
tonicity or lack thereof, and how the estimators are effected by the choice of the scales l and j. To
investigate the convergence rate of the regression estimator F̂, we use a monotone function F3 which is
piecewise quadratic on a random partition and continuous. The domain of x, and its dimension d, will
be specified in each experiment. F1, F2, F3 are shown in Figure 2.

Figure 2. Different functions used in the experiments, with horizontal axis representing 〈v, x〉.

Table 3. Performance of the different algorithms in different settings, with err = log10(‖v̂ − v‖2), corresponding
standard error, and average computational time in seconds/100.

S1 S2

σσσ err se time err se time
FFF1 0% SIR -3.04 -2.83 0.60 -0.68 -1.83 0.60

SAVE -5.97 -1.06 1.30 -7.41 -7.14 1.40
SVR -6.42 -6.06 1.00 -7.60 -6.65 0.70

FFF2 SIR -3.11 -2.99 0.50 -0.67 -1.83 0.50
SAVE -4.39 -4.10 1.30 -4.13 -4.01 1.30
SVR -4.41 -4.08 0.90 -4.16 -3.92 0.70

FFF1 1% SIR -2.97 -2.69 0.50 -0.68 -1.81 0.50
SAVE -4.57 -4.24 1.40 -4.16 -4.03 1.30
SVR -4.58 -4.28 1.00 -4.12 -3.75 0.80

FFF2 SIR -2.94 -2.72 0.50 -0.68 -1.77 0.50
SAVE -4.06 -3.57 1.40 -3.42 -3.45 1.40
SVR -4.08 -3.87 0.90 -3.45 -3.46 0.80

FFF1 2% SIR -2.92 -2.67 0.50 -0.68 -1.38 0.60
SAVE -3.92 -3.58 1.30 -3.08 -3.01 1.40
SVR -3.91 -3.61 0.90 -3.21 -3.06 0.80

FFF2 SIR -2.87 -2.64 0.60 -0.68 -1.55 0.60
SAVE -3.64 -1.98 1.40 -2.90 -2.85 1.40
SVR -3.66 -3.45 0.90 -3.02 -2.80 0.80
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Figure 3. Left column displays the ingredients for the estimates: the empirical inverse regression curve (green) used by SIR
and the local gradients (blue), with length proportional to the number of samples in the corresponding level set, used by SVR.
Estimates of v using SVR (blue) and SIR (green) are displayed on the right column. The methods are applied on setting S1 (top
row) and S2 (bottom row). The black line indicates v, while data points are colored according to the value of the corresponding
response variable, generated with F2 and σ = 0, using a red-to-yellow color scale.

4.1. Estimating the index vector

Here we compare the performances of SIR, SAVE and SVR in estimating the index vector v. We
consider two settings S1, S2, corresponding to two different non-elliptical, and thus non-spherical,
distributions for X: ρX ,1, ρX ,2; ρX ,1 is a standard normal N(0,1) in one coordinate, and a skewed
normal with shape parameter α = 5 in the other coordinate; ρX ,2 is uniform on the triangle with vertices
(0,0),(1,1),(0,1); all distributions are normalized to have zero mean and standard deviation equal to
one. Note that in both settings conditions (LCM) and (SMD) are not satisfied. For each setting we
draw n = 1000 i.i.d. samples and generate the response variable Yi = F(Xi) + ζi using functions F1
and F2, where ζi ∼ N(0,σ2). We use different levels of noise setting σ equal to the 0%, 1% and
2% of | f (−4) − f (4)|. We chose v = (1/

√
5,2/

√
5) for setting S1, and v = (1,0) for setting S2. The

results in Table 3 show the detailed performance of SIR, SAVE and SVR for all settings, functions,
and noise levels. First, we note that the cases of F1 with 1% noise and F2 with zero noise produce
similar results. This is consistent with the intuition manifested from Theorem 1 that noise and non-
monotonicity levels play a similar role in the accuracy of the estimators. In all settings SIR performs
worse than the two other methods, SVR and SAVE, which on the other hand have similar performance,
although SVR produces most of the times slightly better estimates. The poor performance of SIR in
these settings requires a better explanation. In Figure 3 we show graphically how the empirical inverse
regression curve may drift away from v, resulting in a poor SIR estimate. On the other hand, the local
gradients used by SVR provide good local estimates. This example shows how methods with higher
order statistics are in general more robust to assumptions relaxations.
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Figure 4. Behavior of the SVR estimate v̂l with respect to scale and sample size, for regression of F2 (see text).
Left: error versus scale l. Right: error versus sample size n.

To investigate more extensively the performance of SVR in estimating v, we perform another ex-
periment: we draw X from a 10-dimensional standard normal distribution, and to generate the re-
sponse variable we use function F2 plus an additive Gaussian noise with standard deviation σ =
0.01| f2(−4) − f2(4)|. We repeat the experiment for different values of the sample size n. Results are
shown in Figure 4. The left inset shows that the error in v̂ stabilizes at scales comparable to the noise
level σ, which suggests that the assumption |Sl,h | � σ is needed. The right plot shows that the rate of
the error of v̂, for scales l coarser than the noise level, is approximately − 1

2 , which is again consistent
with Theorem 1.

4.2. Estimating the regression function

In this section we perform some experiments to support our theoretical results regarding the regression
estimator obtained with SVR. The first experiment we perform consists on drawing Xi , i = 1, ...,n, from
a d-dimensional standard normal distribution and obtain Yi = F3(Xi) + ζi where ζi ∼ N(0,σ2). Here
we use function F3 because we want to limit the function smoothness in order to obtain concentration
rates comparable with the min-max rate with s = 1. We vary the dimension d = 5,10,50,100, the size
of the noise σ, equal to the 5% and 10% of | f3(−4) − f3(4)|. To investigate the convergence rates of the
estimator we repeat each experiment for different sample sizes n. In Figure 5 we show the empirical
MSE, averaged over 10 repetitions, as a function of the sample size, in logarithmic scale, for both our
estimator and the k-Nearest-Neighbor (kNN) regression. We see that the MSE of the SVR estimator
decays with a rate slightly better than the optimal value −2/3, independently from the dimension d and
the noise level σ: this is all consistent with Theorem 2. As expected, kNN-regression has a convergence
rate which severely deteriorates with the dimension (curse of dimensionality). We can also notice that
the MSE drops far below the noise level, which confirms the de-noising feature of the SVR estimator.

To explore the behavior of the empirical MSE as a function of the scales l and j we conduct another
experiment: we draw X from a 10-dimensional standard normal distribution, and obtain the response
variable Y = F2(X)+ ζ , with ζ Gaussian noise with standard deviation σ = 0.01| f2(−4) − f2(4)|. Figure
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6 shows the behavior of the log10(MSE), obtained with SVR, for different values of l, j and n. To
obtain robust estimates in regions with high Monte Carlo variability, in regimes where our results do
not hold, the errors are averaged over 50 repetition of each setting with a 10% trimming. By observing
each row, we notice that the MSE reaches its minimum for low values of l and stays constant for larger
l. By looking at the plot column-wise, we observe the bias variance trade-off, with coarse scales giving
rough estimates, and fine scales resulting in overfitting. As expected, as the sample size grows, the
optimal scale j increases.

Figure 5. Comparison of convergence rates for the regression estimator with SVR and KNN-regression in different
settings.

Figure 6. Empirical MSE versus sample size n and scales l and j.
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