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Abstract
In this work we introduce a new class of gradient-free global optimization methods
based on a binary interaction dynamics governed by a Boltzmann type equation. In
each interaction the particles act taking into account both the best microscopic binary
position and the best macroscopic collective position. For the resulting kinetic opti-
mization methods, convergence to the global minimizer is guaranteed for a large class
of functions under appropriate parameter constraints that do not depend on the dimen-
sion of the problem. In the mean-field limit we show that the resulting Fokker-Planck
partial differential equations generalize the current class of consensus based optimiza-
tion (CBO) methods. Algorithmic implementations inspired by the well-known direct
simulation Monte Carlo methods in kinetic theory are derived and discussed. Several
examples on prototype test functions for global optimization are reported including
an application to machine learning.

Keywords Gradient-free methods · Global optimization · Boltzmann equation ·
Mean-field limit · Consensus-based optimization · Machine learning

1 Introduction

A new class of numerical methods for global optimization based on particle dynamics
has been introduced in some recent articles [12–14, 21–23, 44, 47]. These meth-
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ods, referred to as consensus based optimization (CBO) methods for the similarities
between the particle dynamics in the minimizer and consensus dynamics in opinion
formation, fall within the large class of metaheuristic methods [1, 6, 11, 26]. Among
popular metaheuristic methods we recall the simplex heuristics [41], evolutionary pro-
gramming [20], the Metropolis-Hastings sampling algorithm [29], genetic algorithms
[31], particle swarm optimization (PSO) [36, 45], ant colony optimization (ACO) [19],
simulated annealing (SA) [32, 37].

In contrast to classic metaheuristic methods, for which it is quite difficult to provide
rigorous convergence to global minimizers (especially for those methods that com-
bine instantaneous decisions with memory mechanisms), CBOmethods, thanks to the
instantaneous nature of the dynamics permit to exploit mean-field techniques to prove
global convergence for a large class of optimization problems [12, 14, 23, 24]. Despite
their simplicity CBO methods seem to be powerful and robust enough to tackle many
interesting high dimensional non-convex optimization problems of interest in machine
learning [14, 17, 23].

As shown in [14, 23] in practical applications the methods benefit from the use
of small batches of interacting particles since the global collective decision mecha-
nism may otherwise lead the model to be more easily trapped in local minima. For
these CBOmethods based on small batches, however, a robust mathematical theory is
still missing. We mention also that, recently, a continuous description of PSO meth-
ods based on a system of stochastic differential equations was proposed in [28] and
its connections with CBO methods analyzed through the corresponding mean-field
descriptions. Rigorous results concerning the mean-field limit of PSO methods and
the corresponding CBO dynamics have been subsequently presented in [33]. We refer
the reader to the recent surveys [27, 46] for a more complete overview.

Motivated by this, in the present paper we introduce a new class of kinetic theory
based optimization (KBO) methods algorithmically solved by particle dynamics to
address the following optimization problem

v� ∈ argmin
v∈Rd

E(v) , (1.1)

where E(v) : Rd → R is a given continuous cost function,whichwewish tominimize.
In the following, we will assume that the minimizing argument v� of (1.1) exists and
is unique.

Both statistical estimation and machine learning consider the problem of minimiz-
ing an objective function in the form of a sum

E(v) = 1

n

n∑

i=1

Ei (v), (1.2)

where each summand function Ei is typically associated with the i-observation in the
data set, for example used for training [10]. In statistics, the problems of minimizing
the sum occur in least squares, in the estimation of the highest probability (for inde-
pendent observations), and more general in M-estimators [25]. The problem of sum
minimization also arises for the minimization of empirical risk in statistical learning
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[48]. In this case, Ei is the value of the loss function at i-th example, and E is the
empirical risk.

In many cases, the summand functions have a simple form that enables inexpensive
evaluations of the sum-function and the sum gradient. First order methods, such as
(stochastic) gradient descentmethods, are preferredboth because of speed and scalabil-
ity and because they are considered generically able to escape the trap of critical points.
However, in other cases, evaluating the sum-gradient may require expensive evalua-
tions of the gradients and/or some of the functions may be noisy or discontinuous.
Additionally, most gradient-based optimizers are not designed to handle multi-modal
problems or discrete and mixed discrete-continuous design variables. Gradient-free
methods, such as the metaheuristics approaches mentioned before, may therefore rep-
resent a valid alternative.

In contrast to previous CBO approaches, where the dynamic was of mean-field
type, the newKBOmethods are based on binary interactions between agentswhich can
estimate the best position according to a combination of a local interaction and a global
alignment process. Binary interactions are inspired by similar processes of social
alignment in kineticmodels for opinion formation, where agentsmodify their opinions
according to a process of local compromise with other agents and the global influence
of external media [2, 4, 5, 7, 8, 30, 43]. The corresponding dynamic is therefore
described by a multidimensional Boltzmann equation that is solved by adapting the
well-known direct simulation Monte Carlo methods [9, 40, 42] to the present case.
We emphasize that, the resulting schemes present some analogies with the recently
introduced random batch methods in the case of small batches of size two [3, 35, 38].

In particular, we show that, in a suitable scaling derived from the quasi-invariant
limit in opinion dynamic, the corresponding mean-field dynamic is governed by
CBO methods. Noticeably, the resulting CBO methods generalize the classical CBO
approach in [14, 44] by preserving memory of the microscopic interaction dynamic.
As shown by the numerical experiments, an interesting aspect in this direction is that
the kinetic optimization model is able to capture the global minimum even in the case
where there is no global alignment process, as in the original CBO models, but only a
local alignment process where information is shared only between pairs of particles.

The rest of the paper is organized as follows. In the next section, we introduce the
kinetic model and the corresponding Boltzmann equation. Section 3 is then devoted
to analyze the main properties of the kinetic model and to consider a suitable scaling
limit which permits to derive the analogous mean-field optimizers of CBO type. Con-
vergence to the global optimum for KBO methods is then studied in Sect. 4, where
we demonstrate exponentially fast convergence to the minimum, with a constraint on
the parameters independent of the dimension for binary interactions with anisotropic
noise. Finally, in Sect. 5 we present several numerical experiments including an appli-
cation to a machine learning problem. Some concluding remarks are then given at the
end of the manuscript.
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2 A Kinetic Model for Global Optimization

In analogy to some key concepts of metaheuristic optimization methods based on
particle dynamics, in the following we introduce an optimization process based on
binary interaction dynamics inspired by kinetic models in social sciences described
by spatially homogeneous Boltzmann-type equations (see [43]). To this aim, let us
denote by f (v, t) ≥ 0, v ∈ R

d the distribution of particles in position v at time t ≥ 0.
Note that, by analogy with the classical space homogeneous Boltzmann description,
we kept the notation v. However, we chose to refer to this as ’position’ in the search
space instead of ’velocity’ to employ a standard terminology in optimization algo-
rithms. Without loss of generality we assume

∫
Rd f (v, t) dv = 1, so that f (v, t) is a

probability density function.

2.1 The Binary Interaction Process

For a given pair of particles with positions (v, v∗) we consider a binary interaction
process generating the new positions (v′, v′∗) according to relations

v′ = v + λ1(vβ,E (v, v∗) − v) + λ2(vα,E (t) − v) + σ1D1(v, v∗)ξ1 + σ2D2(v)ξ2

v′∗ = v∗ + λ1(vβ,E (v∗, v) − v∗) + λ2(vα,E (t) − v∗) + σ1D1(v∗, v)ξ∗
1 + σ2D2(v∗)ξ∗

2

(2.1)

where vβ,E (v, v∗), β > 0, is the microscopic local estimate of the best position

vβ,E (v, v∗) = ωE
β (v)v + ωE

β (v∗)v∗
ωE

β (v) + ωE
β (v∗)

, ωE
β (v) := e−βE(v), (2.2)

and vα,E (t), α > 0, is the macroscopic global estimate of the best position

vα,E (t) =
∫
Rd vωE

α (v) f (v, t) dv∫
Rd ωE

α (v) f (v, t) dv
, ωE

α (v) := e−αE(v) . (2.3)

The choice of the weight function ωE
α in (2.3) comes from the well-known Laplace

principle [18, 39, 44], a classical asymptotic method for integrals, which states that
for any probability f (v, t), it holds

lim
α→∞

(
− 1

α
log

(∫

Rd
e−αE(v) f (v, t) dv

))
= inf

v ∈ supp f (v,t)
E(v) . (2.4)

Similarly, in (2.2) as β → ∞ the value vβ,E (v, v∗) concentrates on the particle in the
best position, namely

lim
β→∞ vβ,E (v, v∗) = argmin

w∈{v,v∗}
E(w) , (2.5)
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ifE(v) �= E(v∗). Note that, vβ,E (v, v∗) depends on the interacting pair (v, v∗), whereas
vα,E (t) is the same for all particles. These quantities characterize two different dynam-
ics where on one hand the particle pair aligns locally to vβ,E (v, v∗) in agreement with
their weighted best position and on the other hand it aligns globally to vα,E (t) accord-
ing to the weighted best position among all particles.

In (2.1) the scalar values λk ≥ 0 and σk ≥ 0, k = 1, 2 define, respectively,
the strength of the relative alignment and diffusion processes, whereas the terms
ξk, ξ

∗
k ∈ R

d , k = 1, 2 are vectors of i.i.d. randomvariables (with arbitrary distribution)
with zero mean and unitary variance. Finally, Dk(·, ·), k = 1, 2 denote d × d dimen-
sional diagonal matrices characterizing the stochastic exploration process. Isotropic
exploration has been introduced in [44] and is defined by

D1(v, v∗) = |vβ,E (v, v∗) − v|Id , D2(v) = |vα,E (t) − v|Id , (2.6)

with Id denoting the d-dimensional identitymatrix and |·| the euclidian norm, whereas
in the anisotropic case, introduced in [14], we have

D1(v, v∗) = diag
{
(vβ,E (v, v∗) − v)1, . . . , (vβ,E (v, v∗) − v)d

}
,

D2(v) = diag
{
(vα,E (t) − v)1, . . . , (vα,E (t) − v)d

}
.

(2.7)

2.2 A Boltzmann Description

A fundamental aspect in the derivation of the corresponding evolution equation of
the probability density of particles f (v, t) is to determine the so-called Boltzmann
collision term describing the instantaneous variations in the particles distribution. This
derivation results exclusively from the binary interactions between particles given by
(2.1) that are assumed tobeuncorrelatedprior to the interaction.Under this assumption,
known as molecular chaos, the collision term can be written as a multidimensional
integral over the product of the distribution functions of a particle (see [15, 16] for
further details).

Thus, formally, the particle distribution satisfies a Boltzmann-type equation, which
can be conveniently written in weak form as

∂

∂t

∫

Rd
f (v, t)φ(v) dv = 1

2

〈∫

R2d

(
φ(v′) + φ(v′∗) − φ(v) − φ(v∗)

)
f (v, t) f (v∗, t) dv dv∗

〉

=
〈∫

R2d

(
φ(v′) − φ(v)

)
f (v, t) f (v∗, t) dv dv∗

〉
(2.8)

where φ(v) ∈ C∞(Rd) is a smooth function, such that

lim
t→0

∫

Rd
φ(v) f (v, t) dv =

∫

Rd
φ(v) f0(v) dv
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with f0(v) the initial density satisfying

∫

Rd
f0(v) dv = 1.

In (2.8) we use the standard notation

〈g(ξ)〉 =
∫

R4d
g(ξ)p(ξ) dξ, (2.9)

where we used the shortcut ξ = (ξ1, ξ2, ξ
∗
1 , ξ∗

2 ), to denote the mathematical expecta-
tion with respect to the i.i.d. random vectors ξk, ξ

∗
k , k = 1, 2, entering the definitions

of v′ and v′∗ in (2.1). As a consequence p(ξ) = pξ (ξ1)pξ (ξ2)pξ (ξ
∗
1 )pξ (ξ

∗
2 ), where

pξ (·) is the common probability density function of the random vectors.
The Boltzmann interaction term in (2.8) quantifies the variation in the probability

density, at a given time, of particles that modify their position from v to v′ (r.h.s
with negative sign) and particles that change their value from v′ to v (r.h.s. with
positive sign). Here, the expectation 〈·〉 takes into account the presence of the random
parameters in the microscopic interaction (2.1).

First of all, let us remark that from the binary dynamic (2.1) we get

〈v′ + v′∗〉 = (1 − λ1 − λ2)(v + v∗) + 2λ1vβ,E + 2λ2vα,E (t),

〈v′ − v′∗〉 = (1 − λ1 − λ2)(v − v∗).
(2.10)

The first equality describes the variation in the expected value of the particles posi-
tions. The second, under the assumption λ1 + λ2 ≤ 1, refers to the tendency of the
interaction to decrease (in mean) the distance between positions after the interaction.
This tendency is a universal consequence of the rule (2.1), in that it holds whatever
distribution one assigns to ξ , namely to the random variable which accounts for the
exploration effects.

Before entering into a detailed analysis of the model, let us fix some notations.
Throughout the paper, we will denote with m and E the first two moments of f (v, t)

m(t) :=
∫

Rd
v f (v, t) dv , E(t) :=

∫

Rd
|v|2 f (v, t) dv , (2.11)

and the variance as

V (t) := 1

2

∫

Rd
|v − m(t)|2 f (v, t) dv = 1

2

(
E(t) − |m(t)|2

)
. (2.12)

Furthermore, wewill assume κ to be a constant equal to the dimension d if the isotropic
exploration (2.6) is considered, and equal to onewhen the anisotropic exploration (2.7)
is employed.
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3 Main Properties andMean-Field Limit

3.1 The Case with Only theMicroscopic Best Estimate

Let us first consider the case where in the binary interaction rules (2.1) we assume
λ2 = 0 and σ2 = 0. This case is particularly interesting since the dynamics is fully
microscopic and therefore convergence to the global minimum will emerge from a
sequel of binary interactions which are not influenced by anymacroscopic information
concerning the global minimum.

The binary interactions can be rewritten as

v′ = v + λγ E
β (v, v∗)(v∗ − v) + σD(v, v∗)ξ1

v′∗ = v∗ + λγ E
β (v∗, v)(v − v∗) + σD(v∗, v)ξ∗

1

(3.1)

where, for notational simplicity, we have set λ = λ1, σ = σ1, D(v, v∗) = D1(v, v∗)
and

γ E
β (v, v∗) = ωE

β (v∗)
ωE

β (v) + ωE
β (v∗)

.

Note that, γ E
β (v, v∗) + γ E

β (v∗, v) = 1, and, since γ E
β (v, v∗) ∈ (0, 1), the expected

support of the positions for λ ≤ 1 is decreasing

|〈v′〉| ≤ (1 − λγ E
β (v, v∗))|v| + λγ E

β (v, v∗)|v∗| < max {|v|, |v∗|} .

Consider now, the time evolution of the expected position m(t). We have from the
weak formulation (2.8) for φ(v) = v

dm(t)

dt
=
〈∫

R2d
(v′ − v) f (v, t) f (v∗, t) dv∗ dv

〉

= λ

∫

R2d
γ E
β (v, v∗)(v∗ − v) f (v, t) f (v∗, t) dv∗dv

= 2λ
∫

R2d
γ E
β (v, v∗) f (v, t) f (v∗, t)v∗ dv∗ dv − λm(t),

(3.2)

where we made use of the fact that γ E
β (v, v∗) + γ E

β (v∗, v) = 1, from which follows

m(t) =
∫

R2d
γ E
β (v, v∗)(v∗ − v) f (v, t) f (v∗, t) dv∗dv

+
∫

R2d
γ E
β (v∗, v)(v∗ − v) f (v, t) f (v∗, t) dv∗dv .

It is easy to verify that the above equation admits as steady state any Dirac delta
distribution of the form f ∞(v) = δ(v − v̄), since γ E

β (v̄, v̄) = 1/2, ∀ v̄ ∈ R
d . In
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general, any symmetric function γ E
β (v, v∗)= γ E

β (v∗, v) would preserve the average
position, and it is therefore the asymmetric behavior of this function based on the
choice of the best value in the binary interaction that will asymptotically lead to the
global minimum in the system. Note that, Eq. (3.2) is not closed.

In order to analyze the large time behavior of f (v, t), we introduce the following
boundedness assumption on E(v).

Assumption 3.1 Let us assume E(w) positive and for all w ∈ R
d

E := inf
v∈Rd

E(v) ≤ E(w)≤ sup
v∈Rd

E(v) =: E .

Under this assumption, it is possible to show that, when the alignment and exploration
strengths satisfy suitable conditions, the particle system concentrates as it evolves.

Proposition 3.1 Let f (v, t) be a weak solution of Eq. (2.8) with initial data f0 and
binary interaction described by the system (3.1). If E satisfies Assumption 3.1 and β

is sufficiently large, it holds

dV (t)

dt
≤ −

(
λ

Cβ,E
− λ2 − σ 2κ

)
V (t) , (3.3)

for all t > 0, where Cβ,E := eβ(E−E).

We start the proof by presenting an auxiliary result.

Lemma 3.1 If β is sufficiently large, it holds

(
γ E
β (v, v∗)

)2 ≤
(
1 − 1

Cβ,E

)
γ E
2β (v, v∗) , (3.4)

where Cβ,E := eβ(E−E).

Proof We start by rewriting (γ E
β (v, v∗))2 as

(
γ E
β (v, v∗)

)2 = e−2βE(v∗)

(
e−βE(v) + e−βE(v∗)

)2 = e−2βE(v∗)

e−2βE(v) + e−2βE(v∗)

e−2βE(v) + e−2βE(v∗)

(
e−βE(v) + e−βE(v∗)

)2

= γ E
2β(v, v∗)

e−2βE(v) + e−2βE(v∗)

(
e−βE(v) + e−βE(v∗)

)2 =: γ E
2β(v, v∗)ζEβ (v, v∗)

and further rewrite ζEβ (v, v∗) as

ζEβ (v, v∗) = e−2βE(v) + e−2βE(v∗)
(
e−βE(v) + e−βE(v∗)

)2 = e−2βE(v∗) (1 + e−2β(E(v)−E(v∗)))

e−2βE(v∗)
(
1 + e−β(E(v)−E(v∗))

)2

= 1 + e−2β(E(v)−E(v∗))
(
1 + e−β(E(v)−E(v∗))

)2 .
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One can verify that ζEβ (v, v∗) attains itsmaximumvaluewhen the difference |E(v)−
E(v∗)| is maximized, from which follows

ζEβ (v, v∗)≤ 1 + e−2β(E−E)

(
1 + e−β(E−E)

)2 = 1 + C2

(1 + C)2
,

where we denoted for simplicity (Cβ,E )−1 =: C . We note that C → 0 as β → ∞.
Finally, as β → ∞

1 − ζEβ (v, v∗) − (CE
β )−1 = 1 − 1 + C2

(1 + C)2
− C = C + o(C)

(1 + C)2
≥ 0,

if β is sufficiently large. This proves the assertion. �
Proof of Proposition 3.1 From the definition of E(t), and the weak formulation (2.8),
we can compute

dE(t)

dt
=
〈∫

R2d

(
|v′|2 − |v|2

)
f (v, t) f (v∗, t) dv dv∗

〉

=λ2
∫

R2d
γ E
β (v, v∗)2|v∗ − v|2 f (v, t) f (v∗, t) dv dv∗

+ 2λ
∫

R2d
γ E
β (v, v∗)v·(v∗ − v) f (v, t) f (v∗, t) dv dv∗

+ σ 2
d∑

i=1

∫

R2d
Dii (v, v∗)2 f (v, t) f (v∗, t) dv dv∗ ,

(3.5)

where with Dii we denote the i th- diagonal element of the matrix D. From

d

dt
V (t) = 1

2

d

dt
E(t) − m(t)

d

dt
m(t)

and the moment derivative (3.2), we recover

dV (t)

dt
=
〈∫

R2d

(
|v′|2 − |v|2

)
f (v, t) f (v∗, t) dv dv∗

〉
−m(t)

d

dt
m(t)

=λ2

2

∫

R2d
γ E
β (v, v∗)2|v∗ − v|2 f (v, t) f (v∗, t) dv dv∗

+ λ

∫

R2d
γ E
β (v, v∗)(v − m(t))·(v∗ − v) f (v, t) f (v∗, t) dv dv∗

+ σ 2

2

d∑

i=1

∫

R2d
Dii (v, v∗)2 f (v, t) f (v∗, t) dv dv∗ =: I1 + I2 + I3.

(3.6)
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Thanks to the relation, γ E
β (v, v∗)+ γ E

β (v∗, v) = 1, we note that for any symmetric
function ψ(v, v∗) = ψ(v∗, v) it holds

∫

R2d
γ E
β (v, v∗)ψ(v, v∗) f (v, t) f (v∗, t) dv dv∗

= 1

2

∫

R2d
ψ(v, v∗) f (v, t) f (v∗, t) dv dv∗ . (3.7)

It follows that I1 and I3 can be bounded as

I1 ≤ λ2

2

∫

R2d
γ E
β (v, v∗)|v∗ − v|2 f (v, t) f (v∗, t) dv dv∗ = λ2V (t) (3.8)

I3 ≤ σ 2

2
κ

∫

R2d
γ E
β (v, v∗)|v∗ − v|2 f (v, t) f (v∗, t) dv dv∗=σ 2κV (t) , (3.9)

where we recall that κ = d in the isotropic case (2.6), and κ = 1 in the anisotropic
case (2.7). We compute by means on Young’s inequality

I2 =λ

∫

R2d
γ E
β (v, v∗)(v − m(t))·(v∗ − v) f (v, t) f (v∗, t) dv dv∗

≤ − λ

∫

R2d
γ E
β (v, v∗)|v − v∗|2 f (v, t) f (v∗, t)dvdv∗

+ λ

2

∫

R2d
|v∗ − m(t)|2 f (v, t) f (v∗, t) dv dv∗

+ λ

2

∫

R2d

(
γ E
β (v, v∗)

)2 |v − v∗|2 f (v, t) f (v∗, t) dv dv∗ .

(3.10)

By applying Lemma 3.1 one can bound the last term as

∫

R2d

(
γ E
β (v, v∗)

)2 |v − v∗|2 f (v, t) f (v∗, t)dvdv∗

≤
(
1 − 1

Cβ,E

)∫

R2d
γ E
2β(v, v∗)|v − v∗|2 f (v, t) f (v∗, t)dvdv∗ .

Finally, we use again relation (3.7) to obtain

I2 ≤ −2λV (t) + λV (t) + λ

(
1 − 1

Cβ,E

)
V (t) = − λ

Cβ,E
V (t)

and hence, together with (3.8) and (3.9), we get (3.3). �
Corollary 3.1 Under the assumptions of Proposition 3.1, if λ and σ satisfy the condi-
tion

λ

Cβ,E
− λ2 − σ 2κ > 0 (3.11)
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then there exits ṽ ∈ R
d such that m(t) → ṽ, V (t) → 0 as t → ∞.

Proof By applying Grönwall’s inequality to Eq. (3.3), we obtain the decay estimate

V (t) ≤ V (0)e−μt with μ := λ

Cβ,E
− λ2 − σ 2κ > 0 , (3.12)

which implies V (t) → 0 as t → ∞. From the weak formulation (2.8),

∣∣∣∣
dm(t)

dt

∣∣∣∣ =
∣∣∣∣λ
∫

R2
γ E
β (v, v∗)(v∗ − v) f (v, t) f (v∗, t) dv dv∗

∣∣∣∣

≤ λ

∫

R2
|v∗ − v| f (v, t) f (v∗, t) dv dv∗

≤ λ

(∫

R2
|v∗ − v|2 f (v, t) f (v∗, t) dv dv∗

) 1
2 ≤ 2λ

√
V (t) ≤ 2λ

√
V (0)e− 1

2μt ,

where we used Jensen’s inequality to have an estimate in terms of the variance. The
above proves that dm(t)/dt ∈ L1(0,∞) and, hence, that there exists a point ṽ ∈ R

d

such that

ṽ = m(0) +
∫ ∞

0

dm(t)

dt
dt = lim

t→∞m(t) . (3.13)

�
Remark 3.1 Clearly, the asymptotic value ṽ in general is not known.Wewill discuss in
Sect. 4 appropriate conditions under which E(ṽ) can be considered a good approxima-
tion of infv∈Rd E(v). It should be noted that, condition (3.11) becomes rather restrictive
for large values of β. However, in themean-field scaling such a condition becomes less
stringent as observed in Remark 3.3. Additionally, when both processes for localizing
the minimum, microscopic best and macroscopic best, are activated simultaneously
the convergence conditions are much less stringent and correspond to those of the
macroscopic best dynamics as shown at the end of Sect. 4 (see Theorem 4.3). From
a physical point of view, this reflects the tendency of the binary dynamics based on
the microscopic best to favor exploration over concentration when compared to the
corresponding binary dynamics based on macroscopic best.

3.2 The Case with Only theMacroscopic Best Estimate

The case where the macroscopic best estimate contributes alone to the particle search
dynamics can be analyzed following the same methodology of the previous section.

The binary interactions now read

v′ = v + λ(vα,E (t) − v) + σD(v)ξ2

v′∗ = v∗ + λ(vα,E (t) − v∗) + σD(v∗)ξ∗
2

(3.14)

where we have set λ = λ2, σ = σ2, D(v) = D2(v) and λ1 = σ1 = 0.
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Again, the expected position is not conserved by the dynamics

dm(t)

dt
= λ(vα,E (t) − m(t)), (3.15)

and describes a relaxation towards the estimated global minimum vα,E (t).
As in the case with only microscopic interaction, we can derive an upper bound for

the variance derivative.

Proposition 3.2 Let E satisfy Assumption 3.1 and f (v, t) be a weak solution of the
Boltzmann equation (2.8) were the binary interaction is described by (3.14) . For all
α > 0 and t > 0,

dV (t)

dt
≤ −

(
2λ − 2

e−αE

‖ωE
α ‖L1( f (·,t))

(λ2 + κσ 2)

)
V (t) . (3.16)

Proof We start by noting that, according to (3.14),

〈
|v′|2

〉
=
〈
|v + λ(vα,E (t) − v) + σD(v)ξ2|2

〉

= |v|2 + λ2|vα,E (t) − v|2 + 2λ v · (vα,E (t) − v) + σ 2
d∑

i=1

Dii (v)2, (3.17)

where we used that the 〈ξ2〉 = 0 and 〈|ξ2|2〉 = 1. As before, we compute

dE(t)

dt
=
〈∫

R2d
(|v′|2 − |v|2) f (v, t) f (v∗, t) dv dv∗

〉

=
∫

R2d

(
λ2|vα,E (t) − v|2 + 2λv · (vα,E (t) − v)

+σ 2
d∑

i=1

Dii (v)2

)
f (v, t) f (v∗, t) dv dv∗ , (3.18)

and the variance time evolution

dV (t)

dt
= λ2

2

∫

R2d
|vα,E (t) − v|2 f (v, t) f (v∗, t) dv dv∗

+λ

∫

R2d
(v − m(t))·(vα,E (t) − v) f (v, t) f (v∗, t) dv dv∗

+σ 2

2

d∑

i=1

∫

R2d
Dii (v)2 f (v, t) f (v∗, t) dv dv∗ . (3.19)
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Thanks to the identity

∫

Rd
(v − m(t))·(vα,E (t) − v) f (v, t) dv

=
∫

Rd
(v · vα,E (t) − m(t) · vα,E (t) − |v|2 + v · m(t)) f (v, t) dv

=
∫

Rd
(−|v|2 + |m(t)|2) f (v, t) dv,

we note that the second term of (3.19) is equal to −2λV (t).
We recall that, from (2.3), vα,E (t) is defined as

vα,E (t) =
∫
Rd vωE

α (v) f (v, t) dv∫
Rd ωE

α (v) f (v, t) dv
=
∫

Rd
v

e−αE(v)

‖ωE
α ‖L1( f (·,t))

f (v, t) dv.

The remaining terms in (3.19) can then be estimated by pointing out that

∫

Rd
|vα,E (t) − v|2 f (v, t)dv≤

∫

R2d
|v − w|2 e−αE(w)

‖ωE
α ‖L1( f (·,t))

f (v, t) f (w, t)dvdw

≤ 2
e−αE

‖ωE
α ‖L1( f (·,t))

∫

Rd
|v − m(t)|2 f (v, t)dv

(3.20)

thanks to Jensen’s inequality. Lastly, we obtain the desired upper bound

dV (t)

dt
≤λ2

e−αE

‖ωE
α ‖L1( f (·,t))

∫

Rd
|v − m(t)|2 f (v, t)dv − λ

∫

Rd
|v − m(t)|2 f (v, t)dv

+ σ 2κ
e−αE

‖ωE
α ‖L1( f (·,t))

∫

Rd
|v − m(t)|2 f (v, t)dv

≤ −
(
2λ − 2

e−αE

‖ωE
α ‖L1( f (·,t))

(λ2 + κσ 2)

)
V (t) .

(3.21)

�

Remark 3.2 We note that, by applying ‖ωE
α ‖L1( f (·,t)) ≥ e−αE to (3.16) one gets an

analogous condition, as in Corollary 3.1 with Cβ,E replaced by Cα,E := eα(E−E),
under which the solution f concentrates around a point ṽ ∈ R

d . However, as we
will see in Sect. 4, taking into account the time evolution of ‖ωE

α ‖L1( f (·,t)) a weaker
condition can be obtained, which avoids the limitations induced by large values of α.
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3.3 TheMean-Field Scaling Limit

Let us consider, for the sake of notational simplicity, the casewith only themicroscopic
binary estimate. We introduce the following scaling

t → t

ε
, λ → λε, σ → σ

√
ε. (3.22)

The scaling (3.22), allows to recover in the limit the contributions due both to alignment
and random exploration by diffusion. Other scaling limits can be considered, which are
diffusion dominated or alignment dominated. Aswe shall see, derivation ofmean-field
CBO models is possible only under this choice of scaling.

To illustrate this, let us consider the decay of the variance which is given by (3.3).
If we now rescale time as t → t/ε we get

dV (t)

dt
≤ −1

ε

(
λ

Cβ,E
− λ2 − σ 2κ

)
V (t). (3.23)

Letting now ε → 0 in order to preserve the behavior of the variance and both alignment
and diffusion dynamics we need to assume both λ and σ 2 as O(ε). This argument
shows that the choice of the scaling (3.22) is of paramount importance to getmean-field
asymptoticswhichmaintainmemoryof themicroscopic interactions and concentration
effects.

In the remainder of this section, we shall present the formal derivation of the mean-
field limit, starting from weak form of the Boltzmann equation (2.8) under the scaling
(3.22) which leads to the microscopic binary interactions

v′ = v + ελγ E
β (v, v∗)(v∗ − v) + √

εσD(v, v∗)ξ1
v′∗ = v∗ + ελγ E

β (v∗, v)(v − v∗) + √
εσD(v∗, v)ξ∗

1 .
(3.24)

For small values of ε > 0 we have v′ ≈ v and we can consider the multidimensional
Taylor expansion

φ(v′) = φ(v) + (v′ − v) · ∇vφ(v) +
∑

|η|=2

(v′ − v)η
∂ηφ(v)

η! +
∑

|η|=3

(v′ − v)η
∂ηφ(v̂)

η! ,

where we used the multi-index notation |η| = η1 + . . . + ηd , η! = η1! . . . ηd !,

∂ηφ(v) = ∂ |η|

∂η1v1 . . . ∂ηdvd
φ(v), (v′ − v)η = (v′

1 − v1)
η1 · · · (v′

d − vd)
ηd ,

and v̂ = θv + (1 − θ)v′, for some θ ∈ (0, 1). We refer to [43] for an extensive
discussion on this kind of asymptotic limits leading from a Boltzmann dynamic to the
corresponding mean-field behavior. Here, we limit ourselves, to observe that form an
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algorithmic viewpoint this corresponds to increase the frequency of binary interactions
by reducing the strength of each single interaction.

Now (2.8), under the scaling (3.22), can be written as

∂

∂t

∫

Rd
f (v, t)φ(v) dv

= 1

ε

〈∫

R2d

(
φ(v′) − φ(v)

)
f (v, t) f (v∗, t) dv dv∗

〉

= λ

∫

R2d
γ E
β (v, v∗)∇vφ(v) · (v∗ − v) f (v, t) f (v∗, t) dv dv∗

+ε
λ2

2

∫

R2d
(γ E

β (v, v∗))2
∑

|η|=2

(v∗ − v)η
∂ηφ(v)

η! f (v, t) f (v∗, t) dv dv∗

+σ 2

2

∫

R2d

d∑

i=1

D2
i i (v, v∗)

∂2φ(v)

∂v2i
f (v, t) f (v∗, t) dv dv∗

+O(
√

ε). (3.25)

Under suitable boundedness assumptions on moments up to order three, we can for-
mally pass to the limit ε → 0 to get the weak form

∂

∂t

∫

Rd
f (v, t)φ(v) dv = λ

∫

R2d
γ E
β (v, v∗)∇vφ(v) · (v∗ − v) f (v, t) f (v∗, t) dv dv∗

+ σ 2

2

∫

R2d

d∑

i=1

D2
i i (v, v∗)

∂2φ(v)

∂v2i
f (v, t) f (v∗, t) dv dv∗.

(3.26)

This implies that f satisfies the mean-field limit equation

∂ f (v, t)

∂t
+ λ∇v ·

(
f (v, t)

∫

Rd
γ E
β (v, v∗)(v∗ − v) f (v∗, t) dv∗

)

= σ 2

2

d∑

i=1

∂2

∂v2i

(
f (v, t)

∫

Rd
D2
i i (v, v∗) f (v∗, t) dv∗

)
.

(3.27)

The explicit expressions of the diffusion terms are given below for the isotropic case

∫

Rd
D2
i i (v, v∗) f (v∗, t) dv∗ =

d∑

j=1

∫

Rd
γ E
β (v, v∗)2(v∗, j − v j )

2 f (v∗, t) dv∗

(3.28)
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and the anisotropic one

∫

Rd
D2
i i (v, v∗) f (v∗, t) dv∗ =

∫

Rd
γ E
β (v, v∗)2(v∗,i − vi )

2 f (v∗, t) dv∗. (3.29)

In the general case, by analogous computations, under boundedness assumptions
on moments, in the limit ε → 0 we get the weak form

∂

∂t

∫

Rd
f (v, t)φ(v) dv = λ1

∫

R2d
γ E
β (v, v∗)∇vφ(v) · (v∗ − v) f (v, t) f (v∗, t) dv dv∗

+λ2

∫

Rd
∇vφ(v) · (vα,E (t) − v) f (v, t) dv

+σ 2
1

2

∫

R2d

d∑

i=1

D2
1,i i (v, v∗)

∂2φ(v)

∂v2i
f (v, t) f (v∗, t) dv dv∗

+σ 2
2

2

∫

R2d

d∑

i=1

D2
2,i i (v)

∂2φ(v)

∂v2i
f (v, t) dv, (3.30)

which corresponds to the mean-field limit equation

∂ f (v, t)

∂t
+ λ1∇v ·

(
f (v, t)

∫

Rd
γ E
β (v, v∗)(v∗ − v) f (v∗, t) dv∗

)

+λ2∇v · ( f (v, t)(vα,E (t) − v)
)

= σ 2
1

2

d∑

i=1

∂2

∂v2i

(
f (v, t)

∫

Rd
D2
1,i i (v, v∗) f (v∗, t) dv∗

)

+σ 2
2

2

d∑

i=1

∂2

∂v2i

(
f (v, t)D2

2,i i (v)
)

. (3.31)

Remark 3.3 System (3.31) generalizes the notion of CBO model to the case where a
local interaction is taken into account. Additionally, let us remark that from the scaling
(3.22) in the mean field limit we have the analogous of Proposition 3.1 and 3.2 where
now the λ2 terms disappear, making the corresponding concentration conditions less
restrictive.

4 Convergence to the Global Minimum

In this section, we will attempt to understand under which conditions we can assume
lim
t→∞ E (m(t)) to be a good approximation of E := minv∈Rd E(v).

In order to do so, we will investigate the large-time behavior of the solution f (v, t)
to the Boltzmann equation (2.8). Here, we will first limit ourselves to the case where
only the microscopic best estimate occurs during the interactions and then study the
case where only the macroscopic best estimate occurs.
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4.1 The Case with Only theMicroscopic Best Estimate

In order to study the fully microscopic dynamics, let us set λ2 = σ2 = 0 and λ = λ1,
σ = σ1. Throughout this section we assume E to satisfy Assumption 3.1 and the
following additional regularity assumptions.

Assumption 4.1 E ∈ C2(Rd) and there exist c1, c2 > 0 such that

1. sup
v∈Rd

|∇E(v)| ≤ c1 ;
2. sup

v∈Rd
‖∇2E(v)‖2 ≤ c2 ∀ i = 1, . . . , d .

Under these assumptions on the objective function E , the following result holds.

Theorem 4.1 Let f (v, t) satisfy the Boltzmann equation (2.8)with initial datum f0(v)

and binary interaction described by (3.1). Let also Assumptions 3.1 and 4.1 hold for
E . If the model parameters {λ, σ, β} and f0(v) satisfy

μ := λ

Cβ,E
−λ2 − σ 2κ > 0 (4.1)

ν := 2(
√
2λc1 + (λ2 + σ 2κ)c2)βe−βE

μ‖ωE
β ‖L1( f0)

mV (0) <
1

2
(4.2)

where mV (0) = max
√
V (0), V (0), then there exists ṽ ∈ R

d such that m(t) −→ ṽ as
t → ∞. Moreover, it holds the estimate

E(ṽ) ≤ E + r(β) + log 2

β
(4.3)

where, if a minimizer v� of E belongs to supp( f0), then r(β) := − 1
β
log ‖ωE

β ‖L1( f0) −
E −→ 0 as β → ∞ thanks to the Laplace principle (2.4).

Proof Similar to what we did to derive the mean-field scaling limit, we consider the
multidimensional Taylor expansion for ωE

β

〈
ωE

β (v′) − ωE
β (v)

〉
=
〈
∇ωE

β (v) · (v′ − v) + 1

2
(v′ − v) · ∇2ωE

β (v̂)(v′ − v)

〉
(4.4)

where v̂ = θv + (1 − θ)v′ for some θ ∈ (0, 1). Thanks to Assumption 4.1, one can
bound the above terms as

〈
∇ωE

β (v) · (v′ − v)
〉
= −βe−βE(v)λ∇E(v) · (vβ,E (v, v∗) − v)

≥ −βe−βEλc1|vβ,E (v, v∗) − v| .

By computing the Hessian of ωE
β (v)

∇2ωE
β = β2e−βE∇E ⊗ ∇E − βe−βE∇2E ,
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we obtain

1

2

〈
(v′ − v) · ∇2ωE

β (v̂)(v′ − v)
〉

=
〈
1

2
β2e−βE(v̂)|∇E(v̂) · (v′ − v)|2 − β

2
e−βE(v̂)(v′ − v) · ∇2E(v̂)(v′ − v)

〉

≥ −β

2
e−βE‖∇2E(v̂)‖2

〈
|v′ − v|2

〉

≥ −β

2
e−βE (λ2 + σ 2κ)c2|vβ,E (v, v∗) − v|2

where in the last inequality we used Assumption 4.1 and the fact that

〈
|v′ − v|2

〉
≤ λ2|vβ,E (v, v∗) − v|2 + σ 2

〈
|D(v, v∗)ξ1|2

〉

≤ (λ2 + σ 2κ)|vβ,E (v, v∗) − v|2 ,

by definition of D(v, v∗) and ξ1.
We introduce

Mβ(t) :=
∫

Rd
ωE

β (v) f (v, t) dv = ‖ωE
β ‖L1( f (·,t)) (4.5)

and apply the weak formulation (2.8) to φ(v) = ωE
β (v) to obtain

dMβ(t)

dt
=
〈∫

Rd

(
ωE

β (v′) − ωE
β (v)

)
f (v, t) f (v∗, t) dv dv∗

〉

≥ − βe−βEλc1

∫

R2d
|vβ,E (v, v∗) − v| f (v, t) f (v∗, t) dv dv∗

− β

2
e−βE (λ2 + σ 2κ)c2

∫

R2d
|vβ,E (v, v∗) − v|2 f (v, t) f (v∗, t) dv dv∗ .

(4.6)

We recall that

∫

R2d
|vβ,E (v, v∗) − v|2 f (v, t) f (v∗, t) dv dv∗

≤
∫

R2d
γ E
β (v, v∗)|v∗ − v|2 f (v, t) f (v∗, t) dv dv∗ = 2V (t)

form which also follows, by Jensen’s inequality,

∫

R2d
|vβ,E (v, v∗) − v| f (v, t) f (v∗, t) dv dv∗ ≤ √2V (t) .
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Finally, we obtain

dMβ(t)

dt
≥ −βe−βEλc1

√
2V (t) − βe−βE (λ2 + σ 2κ)c2V (t)

≥ −βe−βE (√2λc1 + (λ2 + σ 2κ)c2
)
max{√V (t), V (t)} .

(4.7)

Now, by definition of μ it holds dV (t)/dt ≤ −μV (t) thanks to Proposition 3.1.
As we did in the proof of Corollary 3.1, we apply Grönwall’s inequality to obtain an
exponential decay of the variance from which follows

max{√V (t), V (t)} ≤ max{√V (0), V (0)}e− 1
2μt for all t > 0 .

This leads to a lower bound for Mβ(t) in terms of Mβ(0):

Mβ(t) ≥Mβ(0) − βe−βE (
√
2λc1 + (λ2 + σ 2κ)c2)max{√V (0), V (0)}

∫ t

0
e− 1

2μsds

≥Mβ(0) − 2(
√
2λc1 + (λ2 + σ 2κ)c2)βe−βE

μ
max{√V (0), V (0)}

=Mβ(0)(1 − ν) .

(4.8)

By definition of ν and condition (4.2), it holds

Mβ(t) >
1

2
Mβ(0) . (4.9)

Let us now consider the limit of the above inequality as t → ∞. Since m(t) → ṽ and
V (t) → 0, it holds

Mβ(t) =
∫

ωE
β (v) f (v, t) dv −→ ωE

β (ṽ) = e−βE(ṽ) as t → ∞ . (4.10)

The above limit is a consequence of Chebyshev’s inequality, we refer to the proof of
[12,Lemma 4.2] for more details. Considering the limit of inequality (4.9) as t → ∞,
we have

e−βE(ṽ) >
1

2
Mβ(0) . (4.11)

Finally, we take the logarithm of both sides of the above inequality to obtain

E(ṽ)< − 1

β
logMβ(0) + log 2

β
= E + r(β) + log 2

β
, (4.12)

where r(β) := − 1
β
logMβ(0) − E = − 1

β
log ‖ωE

β ‖L1( f0) − E . �
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4.2 The Case with Only theMacroscopic Best Estimate

We now consider the case where only the macroscopic dynamics occurs and the
interaction is determined by (3.14).

Theorem 4.2 Let f (v, t) satisfy the Boltzmann equation (2.8)with initial datum f0(v)

and binary interaction described by (3.14). Let also Assumptions 3.1 and 4.1 hold for
E . If the model parameters {λ, σ, α} and f0(v) satisfy

μ :=2λ − 4
e−αE

‖ωE
α ‖L1( f0)

(λ2 + κσ 2) > 0 (4.13)

ν :=4(2λ + λ2+σ 2κ)c2αe−2αE

μ‖ωE
α ‖2

L1( f0)

V (0) <
3

4
(4.14)

then there exists ṽ ∈ R
d such that m(t) −→ ṽ as t → ∞. Moreover, it holds the

estimate

E(ṽ) ≤ E + r(α) + log 2

α
(4.15)

where, if a minimizer v� of E belongs to supp( f0), then r(α) := − 1
α
log ‖ωE

α ‖L1( f0) −
E −→ 0 as α → ∞ thanks to the Laplace principle (2.4).

Proof Similar to the proof of Theorem 4.1, we consider the Taylor expansion of ωE
α

which reads as
〈
ωE

α (v′) − ωE
α (v)

〉
= λ∇ωE

α (v) · (vα,E (t) − v) + 1

2

〈
(v′ − v) · ∇2ωE

α (v̂)(v′ − v)
〉

(4.16)

for some v̂ ∈ R
d . As before, by using Assumption 4.1 and the definition of ∇2ωE

α , the
second term can be bounded as

1

2

〈
(v′ − v) · ∇2ωE

α (v̂)(v′ − v)
〉
≥ −α

2
e−αE(v̂)(v′ − v) · ∇2E(v̂)(v′ − v)

≥ −α

2
e−αE (λ2 + σ 2κ)c2|vα,E (t) − v|2 .

For the first term of the expansion, it holds
∫

R2d
λ∇ωE

α (v) · (vα,E (t) − v) f (v, t) f (v∗, t) dv dv∗

= −αλ

∫

R2d
e−αE(v)∇E(v) · (vα,E (t) − v) f (v, t) f (v∗, t) dv dv∗

=−αλ

∫

R2d
e−αE(v)

(∇E(v)−∇E(vα,E (t))
) · (vα,E (t)−v) f (v, t) f (v∗, t) dv dv∗

≥ −αe−αEλc2

∫

R2d
|vα,E (t) − v|2 f (v, t) f (v∗, t) dv dv∗ ,
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where we used that
∫

Rd
e−αE(v)∇E(vα,E (t)) · (vα,E (t) − v) f (v, t) f (v∗, t) dv dv∗ = 0 .

As before, we denote Mα(t) := ‖ωE
α (t)‖L1( f (·,t)). By the weak formulation (2.8) it

then follows

d

dt
M2

α(t)=2Mα(t)
d

dt
Mα(t)=2Mα(t)

〈∫

R2d
ωE

α (v′)−ωE
α (v) f (v, t) f (v∗, t) dvdv∗

〉

≥ −4αc2
(
2λ + λ2 + σ 2κ

)
e−2αEV (t) (4.17)

where we used (3.20) to bound the expectation of |vα,E (t) − v|2.
We now define the time

T := sup

{
t : Mα(s) >

1

2
Mα(0), ∀ s ∈ [0, t]

}
(4.18)

and assume that T < ∞. By assumption (4.13) on μ, for all t ∈ [0, T ]

2λ − 2
e−αE

Mα(t)
(λ2 + κσ 2) ≥ 2λ − 4

e−αE

Mα(0)
(λ2 + κσ 2) = μ > 0 ,

which leads to

dV (t)

dt
≤ −μV (t)

thanks toProposition3.2.Due toGrönwall’s inequality onehasV (t) ≤ V (0) exp(−μt)
for all t ∈ [0, T ]. By assumption (4.14),

M2
α(t) ≥ M2

α(0) − 4(2λ + λ2 + σ 2κ)c2αe
−2αEV (0)

∫ t

0
e−μsds

> M2
α(0) − 4(2λ + λ2 + σ 2κ)c2αe−2αE

μ
V (0) ≥ 1

4
M2

α(0)

(4.19)

which implies that for all t ∈ [0, T ],

Mα(t) >
1

2
Mα(0) . (4.20)

This means that for some δ > 0, Mα(t) ≥ 1
2Mα(0) for all t ∈ [T , T + δ) which

contradicts the definition of T . Consequently, T = ∞ and hence (4.20) holds for all
t > 0. As a consequence, we obtain the exponential decay of the variance

V (t) ≤ V (0)e−μt for all t > 0 . (4.21)
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As we showed in the proof of Corollary 3.1, there exists a ṽ ∈ R
d such that

m(t) → ṽ as t → ∞ with exponential rate, from which follows Mα(t) → e−αE(ṽ).
By taking the limit as t → ∞ of (4.20), we obtain

e−αE(ṽ) >
1

2
Mα(0) (4.22)

and we conclude that

E(ṽ) < − 1

α
logMα(0) + log 2

α
= E + r(α) + log 2

α
, (4.23)

where r(α) := − 1
α
logMα(0) − E = − 1

α
log ‖ωE

α ‖L1( f0) − E . �
Finally, it is possible to prove a general convergence result to the global minimum

for the case where both the local and global best alignments occur in the particles
interaction. In the following, for simplicity we will set β = α.

Theorem 4.3 Let f (v, t) satisfy the Boltzmann equation (2.8)with initial datum f0(v)

and binary interaction described by (2.1). Let also Assumptions 3.1 and 4.1 hold for
E . If the model parameters {λ1, λ2, σ1, σ2, α} and f0(v) satisfy

μ :=2λ2 − 4
e−αE

‖ωE
α ‖L1( f0)

(λ22 + κσ 2
2 ) − (λ21 + σ 2

1 κ) > 0 (4.24)

ν :=
8
(√

2λ1c1+(λ21+σ 2
1 κ)c2 + (2λ2+λ22+σ 2

2 κ)c2
)

αe−2αE

μ‖ωE
α ‖2

L1( f0)

max{√V (0), V (0)} <
3

4

(4.25)

then there exists ṽ ∈ R
d such that m(t) −→ ṽ as t → ∞. Moreover, it holds the

estimate

E(ṽ) ≤ E + r(α) + log 2

α
(4.26)

where, if a minimizer v� of E belongs to supp( f0), then r(α) := − 1
α
log ‖ωE

α ‖L1( f0) −
E −→ 0 as α → ∞ thanks to the Laplace principle (2.4).

The proof closely follows the proofs of Theorems 4.1 and 4.2 andwill be omitted for
brevity. It is interesting to remark, however, that condition (4.24) is far less restrictive
than the corresponding condition where only the local best is used (4.1). This suggest
to use the local best in practical applications only in combination with the global best.

Before concluding our theoretical analysis, a few remarks are in order.

Remark 4.1 • The assumptions in Theorems 4.1, 4.2 and 4.3 depend strongly on
β and α, which have to be considered as fixed parameters. Therefore, the limits
t → ∞ and β, or α → ∞ are not interchangeable. Furthermore, for a given β, or
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α, a choice of λ1, λ2 and σ1, σ2 satisfying the assumptions is always possible, at
the cost of taking V (0) sufficiently small.

• Under the mean field scaling (3.22), one can directly derive the equivalent of
Theorem 4.3 for the mean-field limit dynamics (3.31). For small values of the
scaling parameter ε, the quadratic terms in λ1, λ2 will vanish and, in the case of
global best only, we recover the same convergence result of CBO methods (see
for instance [14,Theorem 3.1]).

• Finally, in the casewhere the diffusion process in binary interactions is anisotropic,
namely (2.7) holds and therefore κ = 1, convergence to the global minimum is
guaranteed with parameter constraints independent of the problem dimensionality.
For this reason, in all numerical examples of the next section only anisotropic noise
has been considered.

5 Numerical Examples and Applications

This section is devoted to discuss the implementation of the proposed methods and
to test their performance with the aid of several numerical experiments. The first
experiment, in Sect. 5.2, consists of checking the fitness of the macroscopic best esti-
mate in (2.3) employing in the evolution of the dynamic both terms (2.2) and (2.3),
in comparison to the sole presence of one of the two. The second experiment, pre-
sented in Sect. 5.3, is devoted to show how even simple 1–dimensional problems
may pose serious issues to classical descent methods, whilst the proposed procedure
has an high success rate. Finally, the last section presents an application to a clas-
sical machine learning problem, showing that KBO methods have the potential to
outperform classical approaches. It should be noted that, in numerical experiments,
to facilitate comparison with the literature, we will denote by f (x) the function to be
minimized and by x the variable in the search space, instead of E(v) and v as in the
description of the KBO method.

5.1 Implementation

The numerical implementation of KBO relies on two different algorithms inspired by
Nanbu’s and Bird’s direct simulation Monte Carlo methods in rarefied gas dynamics
[9, 40, 42]. The former considers at each time step the evolution of distinct pairs of
particles, while the latter allows for multiple interactions between pairs of particles
in a time step. The methods are summarized in Algorithms 1 and 2, the interested
reader can find additional details on similar algorithms used in particle swarming in
[3, 43]. Mathematically, let us remark that in the limit of a large number of parti-
cles Nambu’s method converges to a discrete-time formulation of (2.8), while Bird’s
method converges to the continuous-time formulation (2.8).

In the algorithms reported, the parameters δ stall and n stall check if consensus has been
reached in the last n stall iterations within a tolerance δ stall: in such case, the evolution
is stopped without reaching the total number of iterations. The initial particles are
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drawn from a given distribution, typically uniform in the search space unless one
has additional informations on the locations of the global minimum. Note that in
Bird’s algorithm interactions take placewithout any time counter compared toNanbu’s
method. As a consequence the total number of interactions as well as the parameter
n stall have to be adjusted accordingly to the overall number of particles.

Algorithm 1 Nanbu KBO
Input parameters: Np , Nt , ε > 0, σ1, σ2, λ1, λ2, n stall and δ stall

Initialise Np particles: {v(0)
i }i=1,...,Np

t ← 0, n ← 0
Compute v

(0)
α,E

while t < Nt and n < n stall do
for i = 1, . . . , NP do

Select uniformly another individual v(t)
j , among the others except v(t)

i

Compute vβ,E
(
v
(t)
i , v

(t)
j

)

dβ,i ← vβ,E
(
v
(t)
i , v

(t)
j

)
− v

(t)
i

dα,i ← v
(t)
α,E − v

(t)
i

Generate ξ1, ξ2 ∼ N (0, 1)

v
(t+1)
i ← v

(t)
i + ελ1dβ,i + ελ2dα,i + √

εσ1 Diag(dβ,i )ξ1 + √
εσ2 Diag(dα,i )ξ2

end for
Compute v

(t+1)
α,E

if ‖v(t+1)
α,E − v

(t)
α,E‖2 < δ stall then

n ← n + 1
else

n ← 0
end if
t ← t + 1

end while

5.2 Validation of the Algorithms

The validation of the KBO algorithms is pursued initially on a classical benchmark
function for global optimization, theRastrigin function [34] in dimension d = 20,with
the global minimum f (x�) = 0, at x� = 0 (see Appendix A). As shown in [14, 23, 28,
44], compared to other benchmark functions the Rastrigin function in high dimension
has proven to be quite challenging for CBO-type methods if one is interested in the
computation of the precise value x� in which the function reaches its global minimum.
In fact, the Rastrigin function contains multiple similar minima located in different
positions and theminimizer can get easily trapped in one localminimumwithout being
able to compute the global optimum. This test is used to analyze the performances
of the two different algorithmic implementations of the method and the effects of the
parameters related to the alignment and the exploration processes based on the local
best and the global best respectively.
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Algorithm 2 Bird KBO
Input parameters: Np , Nt , ε > 0, σ1, σ2, λ1, λ2, n stall and δ stall

Initialise Np particles: {v(0)
i }i=1,...,Np

s ← 0, n ← 0, Ns ← Nt Np/2, n stall ← n stallNp/2

Compute v
(0)
α,E

while s < Ns and n < n stall do

Select a random pair (i, j) uniformly among the

(
Np
2

)
possible ones .

Compute vβ,E
(
vi , v j

)

dβ,i ← vβ,E
(
vi , v j

)− vi , dβ, j ← vβ,E
(
vi , v j

)− v j

dα,i ← v
(s)
α,E − vi , dα, j ← v

(s)
α,E − v j

Generate ξ1, ξ2, ξ
∗
1 , ξ∗

2 ∼ N (0, 1)
vi ← vi + ελ1dβ,i + ελ2dα,i + √

εσ1 Diag(dβ,i )ξ1 + √
εσ2 Diag(dα,i )ξ2

v j ← v j + ελ1dβ, j + ελ2dα, j + √
εσ1 Diag(dβ, j )ξ

∗
1 + √

εσ2 Diag(dα, j )ξ
∗
2

Update v
(s+1)
α,E

if ‖v(s+1)
α,E − v

(s)
α,E‖2 < δ stall then

n ← n + 1
else

n ← 0
end if

end while

The computational parameters are fixed as N = 200, Nt = 10,000, n stall = 1000,
δ stall = 10−4 and the particles are initially distributed following an uniform distribution
in the hypercube [−3.12, 3.12]d , d = 20. Figures 1 and 2 show the performance of
KBO algorithms, considering only the local best (2.3) or the global best (2.2). In both
figures the first row refers to the case in which only the microscopic estimate has been
used, i.e. λ2 = σ2 = 0, while λ1 = 1 and σ1 ranges in (0, 2], while the second row
refers to the usage of the sole macroscopic estimation, i.e. λ1 = σ1= 0, λ2 = 1 and
σ2 ∈ (0, 11]. Twomeasures are used for the validation: the first one is the success rate,
while the second is the number of iterations. In agreement with [14, 44], a simulation
is considered successful if and only if

‖x∗
α − x�‖∞ < 0.25 (5.1)

where x∗
α is the macroscopic best estimate (provided by (2.3)), while x� is the actual

minimizer of the Rastrigin function. Note that, in the case where only the local best has
been used we still use the global best as an estimate of the global minimizer computed
by the algorithm. The algorithms have been tested for three different choices for
ε = 1, 0.1 and 0.01. Each setting has been tested for 100 simulations. The local and
global minimizers have been evaluated using α = β = 5 × 106. For the numerical
implementation, we refer to the algorithm introduced in [21] which permits to use
arbitrary large values of α and β.

The results for the local best only, in the first row of Figures 1 and 2 , suggest that
there are no great differences in terms of success rate between the two algorithms,
even if the choice for ε = 0.1 seems to be the best compromise. On the other hand,
for ε = 1 and ε = 0.1 Bird’s algorithm needs a slightly less number of iteration for
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(c) Nanbu KBO, vα,E ; succ. rate
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(d) Nanbu KBO, vα,E ; iters

Fig. 1 Minimization of Rastrigin function for KBO based on Nanbu’s algorithm. From left to right: success
rate and average iterations number. Top row refers to the local best only, while the bottom one refers to the
global best only

reaching convergence. The second row is devoted to present the results regarding the
use of the global best only. In general, decreasing the value for ε enlarges the interval
in which the parameter σ2 can be chosen, but at the same time this interval is shifted to
the right, meaning that the algorithm needs more noise in order to explore the search
domain and identify the global minimum. It is also clear from Figures 1 and 2 that the
convergence basin with only the local best is significantly smaller than that with only
the global best. This is in agreement with the theoretical results of Sect. 4.

Note that the convergence region for Nanbu’s algorithm is slightly wider and that,
as in the previous case, the Bird algorithm needs a lower number of iteration to reach
convergence.

Figures 3 and 4 refer to the case in which both microscopic and macroscopic
estimates are used in the procedure. In the first row, σ2 has been chosen as the optimal
value that provided the best success rate in the previous experiment, in the second
row the same strategy is applied to σ1. The depicted plot show that the performance
drastically improves for certain options (check in particular Fig. 3a) and the required
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(c) Bird KBO,vα,E ; succ. rate
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(d) Bird KBO,vα,E ; iters

Fig. 2 Minimization of Rastrigin function for KBO based on Bird’s algorithm. From left to right: success
rate and average iterations number. Top row refers to the local best only, while the bottom one refers to the
global best only

iteration number is decreasing too. This result is also in agreement with the theoretical
analysis at the end of Sect. 4 that indicates an increase of the basin of convergence of the
method based on themicroscopic best when used in combinationwith themacroscopic
best. As a final comment we can mention that Bird’s algorithm, thanks to the multiple
interactions, produced less fluctuations in the numerical solution compared to Nanbu’s
algorithm. This is well known in rarefied gas dynamics where the algorithms have
their origins [42]. In our specific case, this translates is slightly narrower convergence
regions and slightly faster convergence rates.

5.3 Comparison with Stochastic Gradient Descent

Next, we considered a test case to compare the proposed KBO algorithms with the
classical Stochastic Gradient Descent (SGD). While the main interest in a gradient-
free method is in situations where gradient computation is either not possible or is
particularly expensive, the purpose of this simple numerical test, originally introduced
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(a) Nanbu KBO, opt σ2; succ rate
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(c) Nanbu KBO, opt σ1; succ rate
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(d) Nanbu KBO, opt σ2; iters

Fig. 3 Minimization of Rastrigin function for KBO based on Nanbu’s algorithm. From left to right: success
rate and average iterations number using both local and global best. Top row refers to the optimal value for
the global best, while the bottom one refers to the optimal value for the local best

in [14] is to illustrate the potential advantages of a consensus-based method even in
circumstances where the gradient is available but get easily trapped into local minima
without allowing the identification of the global minimum.

Following [14], we want to minimize the function

L(x) = 1

n

n∑

i=1

f (x, ξi ) (5.2)

where

f (x, ξi ) = exp
(
sin(2x2)

)
+ 1

10

(
x − ξi − π

2

)2
, ξi ∼ N (0, 0.01)

The plot of (5.2) together with its minimum f (x�) at x� = 1.5353 (with n =
10,000) is shown in Fig. 5.
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(a) Bird KBO, opt σ2; succ rate
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(c) Bird KBO, opt σ1; succ rate

0 2 4 6 8 10

2

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

ite
rs

(d) Bird KBO, opt σ1; iters

Fig. 4 Minimization of Rastrigin function for KBO based on Bird’s algorithm. From left to right: success
rate and average iterations number using both local and global best. Top row refers to the optimal value for
the global best, while the bottom one refers to the optimal value for the local best

Fig. 5 Plot of (5.2). The orange dot refers to the minimum of the function, the shaded area to the basin of
attraction for SGD, and x1 and x2 to the position of the peaks of the basin
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Algorithm 3 SGD for minimizing (5.2)
Choose the learning rate γ , the Batch Size m, the number of Epochs E and the tolerance ε.
Set e = 0, k = 0; generate x0 ∼ U(−3, 3). Set the number of iterations per epoch I = n

m .
while e < E and |∇L(xk )| > ε do

i ← 1
while i ≤ I and |∇L(xk )| > ε do

xk+1 = xk − γ

m

∑

�∈bk
∇ f (xk , ξ�)

where bk is a random index set drawn from {1, . . . , n} of size m.
k ← k + 1

end while
end while

The SGD procedure is shown in Algorithm 3: this algorithm implements the idea of
minibatches, which consists of dividing the set {ξi }i=1,...,n (the equivalent of a training
set in Machine Learning problems) in smaller n/m subsets wherem is the size of each
subset, and then use the descent direction given by the average of these m gradients
computed at the current iterate. Exploring the whole set {ξi }i=1,...,n is called an epoch
and one can decide to iterate the procedure for several epochs. The parameter γ chosen
in Algorithm 3 is the stepsize, called learning rate in Machine Learning framework.

Weminimize the function given in (5.2) with n = 10000 by using both SGD and the
proposed KBO algorithm: the former is set with γ = 0.1,m = 100, number of epochs
equal to one and the procedure is stopped when |∇ f (xk)| < ε, with ε = 0.01, while
the setting forKBOcan be found in Table 1, additional parameters are δ stall = 10−4. For
SGD the starting point is uniformly chosen in [−3, 3], the initial 20 particles are chosen
in the same interval for KBO. We run 1000 simulations for SGD and 50 simulations
for KBO: this is due to the equivalence of 20 runs of SGD to one of KBO. Indeed, the
former case is equivalent to consider 20 different particles and then the minimization
of the function is pursued independently on each particle. A simulation is considered
successful for SGD if and only if the final iterate x∗

α satisfies |x∗
α − x�| < 0.25; for

each simulation of KBO we count how many particles (in percentage) lie in the open
ballB0.25(x�), i.e. howmany particles reached a consensus around the actual solution:
Table 1 collects the average of this consensus among the simulations.

As shown, for this test case KBO algorithms outperforms the SGD method: even
for a small number of particles (Np = 20), the minimum of the function is well
recovered. The success rate of SGD is not surprisingly low: indeed, being a descent
method without momentum, it hugely suffers from the presence of many local minima
and from the initial position. The success rate of 18% is very close to the probability
of randomly choosing the initial iterate in the interval containing the actual minimum,
shaded in gray in Fig. 5: |x2 − x1|/6 = 0.1833. Enlarging or reducing the interval in
which the initial point is chosen increases or decreases accordingly the success rate
of SGD, while KBO does not seem to suffer from this problem. In conclusion, we
observe how the implementation via Nanbu’s method leads to a higher success rate
and how in general Bird’s method requires larger σ1 and σ2 exploration parameters.
The latter aspect is in agreement with the lower statistical fluctuation of Bird’s method
and has been already observed in the previous test case, an aspect that is advantageous
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Table 1 Performances of SGD
and KBO

Method ε σ1 σ2 nstall Success Rate
SGD * * * * 18.00%

Nanbu algorithm

KBO 1 0.1 0.5 50 98.50%

KBO 0.1 1 1 50 100.00%

KBO 0.01 1 5 50 98.15%

Bird algorithm

KBO 1 0.5 0.5 50 98.50%

KBO 0.1 1.0 1.3 50 100.00%

KBO 0.01 1.0 6.5 50 98.70%

In KBO algorithms we fixed the number of particles Np = 20 and the
maximum iterations number Nt = 100

in the simulation of physical particles in the context of rarefied gas dynamics, but can
prove counterproductive in the case of minimum search problems. For this reason, in
the following, we will limit the presentation of subsequent numerical tests to the use
of Nanbu’s algorithm.

5.4 Results on High Dimensional Benchmark Functions

This section is devoted to test the performance of the KBO approach on classical
benchmark functions in a high dimensional framework (d = 50). The related opti-
mization problems have been solved by using a common set of parameters for KBO
algorithm

λ1 = λ2 = 1, σ1 = .1, σ2 = 6, ε = 0.01, nstall = 500, δstall = 10−4

(5.3)

and themaximumnumber of iteration is fixed to 10000. The numerical implementation
of KBO approach relies on Algorithm 1. Table 2 presents the results obtained on the
functions listed in Appendix A.

Table 2 presents the success rate defined as in (5.1)

‖x∗
α − x�‖∞ ≤ δ,

where δ controls the severity of the criterion. We chose two different values, namely
0.25 and 0.1. We computed also the average number of iteration for achieving con-
vergence. These results are obtained via 100 runs of each instance of the optimization
problems. Two further performance measures are reported, the former being the
expected error in Euclidean norm, defined as E

[|x∗
α − x�|] where x� is the solu-

tion and x∗
α is the global estimate given by KBO procedure achieved for a successful

run. The other measurement is the function value obtained at x∗
α .

We employed here a strategy to dynamically reduce the number of particles used
in the procedure. Indeed, as observed in [23], a constant number of particles is not

123



_####_ Page 32 of 41 Applied Mathematics & Optimization  _#####################_

Ta
bl
e
2

Pe
rf
or
m
an
ce

of
K
B
O
on

be
nc
hm

ar
k
fu
nc
tio

ns
in

di
m
en
si
on

d
=

50

Fu
nc
tio

n
δ

=
0.
25

δ
=

0.
01

Fu
nc
tio

n
δ

=
0.
25

δ
=

0.
01

Sa
lo
m
on

SR
10

0%
10

0%
R
as
tr
ig
in

SR
75

%
84

%

It
er
s

63
06

10
00

0
It
er
s

38
93

23
20

E
rr
or

9.
64

e-
02

4.
92

e-
02

E
rr
or

6.
91

e-
01

2.
23

e-
05

Fv
al

0.
96

0.
49

Fv
al

0.
25

8.
95
e-
7

N
a

13
3

21
5

N
a

18
2

80
4

G
ri
ew

an
k

SR
10

0%
10

0%
Sc

hw
ef
el
2.
22

SR
10

0%
10

0%

It
er
s

27
22

16
96

It
er
s

21
65

16
31

E
rr
or

9.
22

e-
03

7.
29

e-
03

E
rr
or

1.
27

e-
03

1.
49

e-
06

Fv
al

2.
49
e-
2

1.
04
e-
2

Fv
al

0.
27

6.
9e
-4

N
a

25
8

98
5

N
a

33
5

10
17

St
yL

an
k

SR
77

%
10

0%
Sc

hw
ef
el
2.
23

SR
10

0%
10

0%

It
er
s

59
23

20
62

It
er
s

10
00

0
10

00
0

E
rr
or

4.
56

e-
03

4.
70

e-
05

E
rr
or

4.
53

e-
02

4.
69

e-
02

Fv
al

-1
95

8.
29

-1
95

8.
29

Fv
al

1e
-5

3.
74

e-
8

N
a

13
2

87
4

N
a

75
21

5

123



Applied Mathematics & Optimization  _#####################_ Page 33 of 41 _####_

Ta
bl
e
2

co
nt
in
ue
d

Fu
nc
tio

n
δ

=
0.
25

δ
=

0.
01

Fu
nc
tio

n
δ

=
0.
25

δ
=

0.
01

N
eg
.E

xp
.

SR
10

0%
10

0%
Sp

he
re

SR
10

0%
10

0%

It
er
s

25
17

13
25

It
er
s

23
68

15
29

E
rr
or

1.
11

e-
03

1.
40

e-
03

E
rr
or

1.
02

e-
03

1.
88

e-
04

Fv
al

-1
-1

Fv
al

1.
00
e-
5

9.
35
e-
7

N
a

27
1

11
29

N
a

29
1

10
51

Su
m

of
Sq

ua
re

SR
10

0%
10

0%
A
ck
le
y

SR
10

0%
10

0%

It
er
s

27
88

17
19

It
er
s

27
01

16
74

E
rr
or

1.
15

e-
03

2.
96

e-
05

E
rr
or

1.
69

e-
03

3.
87

e-
06

Fv
al

2.
93
e-
3

1.
02
e-
6

Fv
al

3.
32
e-
2

7.
00
e-
5

N
a

25
2

96
6

N
a

25
9

99
4

A
ll
te
st
s
w
er
e
ru
n
w
ith

th
e
sa
m
e
pa
ra
m
et
er
s
se
tti
ng

(5
.3
),
an
d
th
e
in
iti
al

po
si
tio

n
of

th
e
pa
rt
ic
le
s
ar
e
ch
os
en

un
if
or
m
ly
.E

ac
h
in
st
an
ce

w
as

ru
n
fo
r
10
0
tim

es
st
ar
tin

g
w
ith

N
p

=
20

00
pa
rt
ic
le
s.
T
he

ta
bl
e
re
po

rt
s
th
e
su
cc
es
s
ra
te
(S
R
),
th
e
av
er
ag
e
nu

m
be
ro

fi
te
ra
tio

n
(I
te
rs
),
th
e
m
ea
n
sq
ua
re
er
ro
r(
E
rr
or
)a
nd

th
e
th
e
av
er
ag
e
fu
nc
tio

ns
va
lu
es

(F
va
l)

ac
hi
ev
ed

on
su
cc
es
sf
ul

ru
ns
,a
nd

th
e
ar
ith

m
et
ic
av
er
ag
e
nu
m
be
r
of

pa
rt
ic
le
s
(N

a
)
us
ed

al
on
g
th
e
si
m
ul
at
io
n

123



_####_ Page 34 of 41 Applied Mathematics & Optimization  _#####################_

optimal: while the dynamic evolves, the variance of the system diminishes due to
consensus. We may then reduce the number of particles, according to this variance
decreasing, using the following strategy: compute the variance St of the system at time
t

St = 1

Nt

Nt∑

i=1

|v(t)
i − v̄|2, v̄ = 1

Nt

Nt∑

i=1

v
(t)
i

where Nt is the number of particles at time t . As the consensus increases, the variance
decreases: St+1 ≤ St , then the number of particles can be decreased following the
ratio St/St+1 ≤ 1, using the formula

Nt+1 =
�
Nt

(
1 + μ

(
Ŝt+1 − St

St

))�
(5.4)

with μ ∈ [0, 1], �x� denoting the integer part of x and

Ŝt+1 = 1

Nt

Nt∑

i=1

|v(t+1)
i − v̂|2, v̂ = 1

Nt

Nt∑

i=1

v
(t+1)
i .

For μ = 0 the discarding procedure is not employed, while for μ = 1 the maximum
speed up is achieved. For μ > 0, a minimum number of particles Nmin is set and
the reducing procedure is adopted every tr iterations. For more practical detail, the
interested reader may refer to [23]. In the experiments presented in Table 2, we set
μ = 0.1 for δ = 0.25 and μ = 0.03 for δ = 0.1, tr = 10 and Nmin = 10.

The initial distribution of the particles is uniform in the cube [−1, 1]d , while the
initial number of particles is set to 2000. A rescaling strategy is adopted for the
dynamics evolution: before computing the function values, the particles are rescaled
into the benchmark research domain. For example, in the case of theGriewank function
initially the candidates are uniformly drawn from [−1, 1]d : to compute the function
values in these candidates the latter are rescaled into [−600, 600]d and then these
values are used in successive computation of vα and vβ .

Table 2 shows that the success rate is very high and the error is very low for almost
of the benchmark functions. The average number of particles decreases, reaching one
tenth of the initial number in some cases, reducing overall both computational cost and
time. Nonetheless, lowering the parameter μ induces a higher success rate even with
a more strict criterion (δ = 0.1): this amounts to use a larger number of particles, but
at the same time it lowers the number of iterations in most cases. The trade–off to be
considered is between computational time and computational cost: this consideration
should be done case by case, since it depends on the function to minimize.
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5.5 Application to aMachine Learning Problem

In the last test case, we apply the KBO technique to a classical problem of Machine
Learning: the scope is to recognize digital numbers contained in images of theMNIST
data set, by using a shallow network

f (x;W , b) = softmax (ReLU (Wx + b))

where x ∈ R
784,W ∈ R

10×784, b ∈ R
10. Moreover

softmax(x) = exi∑
i e

x
i

, ReLU(x) = max(0, x)

being ReLU the well–known Rectified Linear Unit function. The training of the shal-
low network consists in minimizing the following function

L(X , y; f ) = 1

n

n∑

i=1

�
(
f (X (i);W , b), yi

)
, �(x, y) = −

10∑

i=1

yi log(xi )

where X is the training dataset, whose images are vectorized (R28×28 → R
784) and

stacked column–wise. The function � is the cross entropy.
We adopt a minibatch strategy both for the training set and for the particles used in

KBO. The former consists in the classical strategy, depicted also in Algorithm 3, while
the latter divides the particles set in Np/mp minibatches, where Np is the number of
total particles and mp is the number of particles in each batch. The KBO procedure is
then iterated on the training batches. The final strategy is depicted in Algorithm 4.

Algorithm 4 Nanbu KBO for ReLU network
Training Set and Labels: X ∈ R

784×n , y ∈ R
10×n . Sets the number of epochs E and the batchsize mt .

Setting for KBO: set s = (σ1, σ2, λ1, λ2, ε, α, β, T , dt = ε).
Initial candidates: W ∈ R

7840×Np , b ∈ R
10. Select the particles’ batch size mp

Set M = n/mt , P = Np/mp .
for e = 1, . . . , E do

Reorganize the training set in M batches: B1, B2, . . . , BM
for m = 1, . . . , M do

Reorganize the particles set in P batches: B1,B2, . . . ,BP
for k = 1, . . . , P do

WBk
, bBk

← KBO(L(XBm , yBm ; f ),WBk
, bB; s)

end for
end for

end for

At each epoch, the training dataset is shuffled in order to have different elements
inside the batches.When exploring the current training batch, the particles are shuffled
too. For our experiment, we used a dataset 1 with 10,000 images, 1000 per class, for

1 http://yann.lecun.com/exdb/mnist/.
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(a) KBO without particle reduction.
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(b) KBO with particle reduction.

Fig. 6 Performance comparison among SGD and KBO. The line referring to SGD shows the average over
500 simulations. The orange line refer to the KBO where both microscopic and macroscopic estimate are
employed. The plot on the left depicts the performance of the KBO approach using Np = 500 without any
particle reduction strategy (the solid line is a smooth representation of the shaded one), while the plot on
the right refers to the adoption of Eq. 5.4 with μ = 0.1 with different choices for particle numbers Np and
particles’ batch mp . The average number of particles is denoted by Na (Color figure online)

the training and 10,000 images, 1000 per class, for validation. We compared the SGD
method and KBO, both set with 20 epochs and minibatch size of 128; all the images in
the training set have been normalized via zero centering and dividing by the standard
deviation computed among the entire dataset. The learning rate for SGD is set to
γ = 0.1, without momentum, with starting point randomly selected via a Gaussian
distribution of zero mean and unitary variance. The settings for KBO is given by
σ1 = σ2 = 1, λ1 = λ2 = 1, ε = dt = 0.1, α = β = 5 · 106 and we selected mp = 5
batches and Np = 500 particles. The initial candidates are randomly picked from a
Gaussian Distribution with zero mean and unitary variance.

We run 500 simulations for SGD, since these runs are equivalent to one simulation
of KBO with 500 particles. Figure 6a shows the accuracy obtained on the validation
test all over the epochs. For computing the accuracy achieved by KBO, the parameters
of the neural network are set as themacroscopic estimate reached at each iteration. The
line referring to SGD corresponds to the average accuracy over the 500 simulations.
In the numerical tests, the results obtained through the KBOmethod were shown to be
superior in terms of accuracy to those obtainedwith classical SGD.A further test shows
how the diminishing particle strategy depicted in Eq. 5.4 is very effective even in this
context: starting with 500 particles and setting μ = 0.1 ends the entire computation
with just 270 particles, having a remarkable speed up in terms of computational time
(see Fig. 6b). Beside the diminishing strategy, several coupling of number of particles
and batch size have been tested in Fig. 6b: all of these setting lead to reliable results.
Moreover, as already observed in Sect. 5.3, SGD is quite sensitive to the starting point,
whereas KBO is able to reach similar performances with different initializations as
shown in Fig. 7.
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Fig. 7 Comparison of SGD and KBO performances when the starting point and the particles are randomly
chosen as realizations of a Gaussian distribution of zero mean and standard deviation equal to 10. KBO is
set to employ the strategy depicted in Eq. 5.4 with μ = 0.1. The initial number of particles is Np = 500

6 Conclusions

In this workwe have presented a new gradient freemethod based on a kinetic dynamics
characterized by binary interactions between particles. Unlike previously introduced
consensus-based optimization (CBO) methods, the binary interaction process in the
limit of a large number of particles does not correspond to a mean-field dynamics but
to a Boltzmann-type dynamics inspired by classical kinetic theory. To our knowledge
these are the firstmetaheuristic algorithms based on aBoltzmann-like dynamics for the
identification of the global minimum. Compared to CBO methods, the kinetic theory
based optimization method (KBO) introduced here can be seen as a mathematical
formalism related to the use of mini-batches of interacting particles of size 2. The
KBO method, uses both local binary information and global information to explore
the search space. In both cases, we have been able to prove convergence to the global
minimum under reasonable assumptions on the objective function using techniques
inspired by those introduced in [14].

The numerical experiments reported have demonstrated the excellent performance
of the KBO technique both in the case of high dimensional problems with benchmark
test functions, and in the case of applications to machine learning. It is remarkable that
themethodcan achievegood success rates also in the caseswhere noglobal information
is used in the dynamics, namely there is only limited communication restricted to
particles interacting by pairs. In this case, convergence to the global minimum can
be seen as an emerging phenomena of a very simple dynamic where particles are not
forced to converge towards a collective estimate of the global minimum.

On the other hand, from a mathematical viewpoint, the case with only local infor-
mation is more difficult and convergence to global minimum requires more restrictive
conditions on the parameters. These restrictions, however, become less stringent as
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soon as the method is used in combination with global information. In the sequel
we plan to address our attention more specifically to the analysis of the Monte Carlo
algorithms used in the KBO implementation and to the possible extension of the
present methodology to non homogeneous dynamics in the spirit of particle swarm
optimization as in [28].
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A Test Functions for Global Optimization

In the sequel we report the test function for global optimization used in the numerical
examples. For more detailed information, see [34].

• Sphere

f (x) =
d∑

i=1

(xi − bi )
2

where b ∈ R
d is a random vector belonging to the hypercube [−5, 5]d . The

minimum is achieved in x� = 0 and f (x�) = 0.
• Styblinski-Tank function

f (x) = 1

2

d∑

i=1

(x4i − 16x2i + 5xi )

whoseminimizer is x� = (−2.903534, . . . ,−2.903534) and f (x�) = −39.16599d.
The function is evaluated in [−5, 5]d .

• Ackley Function.

f (x) = −20 exp

⎛

⎝−0.2

√√√√ 1

d

d∑

i=1

x2i

⎞

⎠− exp

(
1

d

d∑

i=1

cos(2πxi )

)
+ 20 + e
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whose sole minimizer is x� = 0 and f (x�) = 0. The function is evaluated in
[−32, 32]d .

• Grienwank Function.

f (x) = 1 +
d∑

i=1

x2i
4000

−
d∏

i=1

cos

(
xi√
i

)

and x� = 0, f (x�) = 0. The function is evaluated in [−600, 600]d .
• Negative Exponential function.

f (x) = − exp

(
−1

2

d∑

i=1

(xi − bi )
2

)

with b ∈ R
d . x� = b, f (x�) = −1, the function is evaluated in [−5, 5]d .

• Rastrigin function

f (x) = 1

d

d∑

i=1

(
x2i − 10 cos(2πxi )

)
+ 10

and x� = 0, f (x�) = 0. The function is evaluated in [−5.12, 5.12]d .
• Schwefel 2.22 Function.

f (x) =
d∑

i=1

|xi | +
d∏

i=1

|xi |

its sole minimizer is x� = 0 and f (x�) = 0. The function is evaluated in
[−100, 100]d .

• Schwefel 2.23 Function.

f (x) =
d∑

i=1

x10i

whose minimizer is x� = 0 and f (x�) = 0. The function is evaluated in
[−100, 100]d .

• Salomon function

f (x) = 1 − cos

⎛

⎝2π

√√√√
d∑

i=1

x2i

⎞

⎠+ 0.1

√√√√
d∑

i=1

x2i

with x� = 0 and f (x�) = 0. The evaluation of this function is done in
[−100, 100]d .
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• Sum of squares

f (x) =
d∑

i=1

i x2i

whose sole minimizer is again the origin and the value in the minimizer is 0. It is
evaluated in [−10, 10]d .
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