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ABSTRACT
We address the characterization of lossy and dephasing channels in the presence of self-Kerr interaction using coherent probes. In particular,
we investigate the ultimate bounds to precision in the joint estimation of loss and nonlinearity and of dephasing and nonlinearity. To this
aim, we evaluate the quantum Fisher information matrix and compare the symmetric quantum Cramér–Rao bound to the bound obtained
with Fisher information matrix of feasible quantum measurements, i.e., homodyne and double-homodyne detection. For lossy Kerr channels,
our results show that the loss characterization is enhanced in the presence of Kerr nonlinearity, especially in the relevant limit of small losses
and low input energy, whereas the estimation of nonlinearity itself is unavoidably degraded by the presence of loss. In the low energy regime,
homodyne detection of a suitably optimized quadrature represents a nearly optimal measurement. The Uhlmann curvature does not vanish;
therefore, loss and nonlinearity can be jointly estimated only with the addition of intrinsic quantum noise. For dephasing Kerr channels, the
quantum Fisher information of the two parameters is independent of the nonlinearity, and therefore, no enhancement is observed. Homodyne
detection and double-homodyne detection are suboptimal for the estimation of dephasing and nearly optimal for nonlinearity. Also in this
case, the Uhlmann curvature is nonzero, proving that the parameters cannot be jointly estimated with maximum precision.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial 4.0
International (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). https://doi.org/10.1063/5.0225120

I. INTRODUCTION

Nonlinear interactions usually provide an attractive scenario
to observe and exploit genuine quantum properties of radiation,
such as coherence, entanglement, and non-Gaussianity.1–5 In this
framework, the Kerr effect is a paradigmatic example, being widely
studied in quantum optics at either zero6,7 or a finite temperature,8
as it allows for generation of mesoscopic Schrödinger’s cat states.9–13

Furthermore, the presence of Kerr effect has been demonstrated in
several physical platforms, ranging from optical media to solid-state
systems and circuit quantum electrodynamics.14–21

The Kerr effect is typically observed in optical nonlinear media,
such as optical fibers, that exhibit a small but non-negligible third-
order susceptibility χ(3). This makes the refractive index depend on
the intensity of the incident light, leading to self-phase modulation,
that is, the acquirement of a nonlinear intensity-dependent phase
shift throughout propagation.22 However, realistic values of Kerr

nonlinearity are very small, and decoherence effects, mainly due
to photon loss, cannot be neglected; therefore, a unitary descrip-
tion of the dynamics is untenable. As an example, the nonlin-
earity rate of common fibers ranges from 2 to 5 × 10−7 km−1,
being several orders of magnitude smaller than the attenuation
rate, equal to 0.04–0.4 km−1.23 Under these conditions, the pres-
ence of even a small amount of nonlinearity is detrimental for
the information capacity of a fiber communication link, oper-
ating in both the classical24–28 and quantum regimes.23 On the
contrary, the optical Kerr effect proves itself as a resource for
quantum estimation, improving the estimator precision when clas-
sical probe states are employed. In particular, it provides enhanced
estimation of squeezing and displacement of a Gaussian state,29

increased sensitivity of Michelson interferometry,30 improved
loss estimation in dissipative bosonic channels,31 and high-
precision measurements in atomic systems coupled to an optical
cavity.32
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More recently, the presence of Kerr-type effect has also been
demonstrated in cavity optomechanical systems, where a single opti-
cal cavity mode is coupled to a phononic bath composed of many
mechanical oscillator modes.33–37 In this case, the cavity–bath inter-
action has a twofold consequence on the reduced dynamics of the
optical field: the former is phase diffusion, producing decoherence,
while the latter is a unitary evolution in the form a Kerr nonlin-
ear self-interaction.36 It is worth noting that, in both optical and
optomechanical platforms, self-Kerr interaction arises together with
decoherence as the time-evolution of the system proceeds, during
either signal propagation throughout the fiber or the round trips of
the field trapped in cavity.

This raises the intriguing problem of performing characteri-
zation of noisy Kerr channels to assess the impact of nonlinearity
on the estimation of the noise parameter, and vice versa. Given
the previous considerations and differently from the approach of
Refs. 29 and 31, the problem should be recast into the framework
of multiparameter quantum metrology,38–43 addressing joint estima-
tion of both noise and nonlinearity to investigate their compatibility,
namely whether or not they can be jointly estimated without the
introduction of any excess noise of quantum origin. This task has
been only recently carried out in the presence of driven-dissipative
Kerr resonators,44 where the coherent driving of the system makes
the two parameters asymptotically compatible, while the investi-
gation of the relation between noise and nonlinearity in other
platforms is still open.

In this paper, we are going to address the characterization of
lossy and dephasing channels in the presence of self-Kerr interac-
tion and using coherent probes. In particular, we will investigate
the ultimate bounds to precision in the joint estimation of loss
and nonlinearity and of dephasing and nonlinearity. We evaluate
the quantum Fisher information matrix (QFIM) and compare the
corresponding symmetric quantum Cramér–Rao (QCR) bound to
the bound obtained with Fisher information matrix (FIM) of feasi-
ble quantum measurements, i.e., homodyne detection and double-
homodyne detection. Our results for lossy Kerr channels show that
the estimation of loss is enhanced in the presence of Kerr nonlin-
earity, especially in the relevant limit of small losses and low input
energy, whereas the estimation of nonlinearity itself is unavoidably
degraded by the presence of loss. In the low energy regime, homo-
dyne detection of a suitably optimized quadrature provides a nearly
optimal measurement. The Uhlmann curvature does not vanish,
showing that loss and nonlinearity cannot be jointly estimated with-
out the addition of intrinsic quantum noise. For dephasing Kerr
channels, the QFI of the two parameters is independent of the non-
linearity, and therefore, no enhancement is observed. Homodyne
detection and double-homodyne detection are suboptimal for the
estimation of dephasing and nearly optimal for nonlinearity. Also
in this case, the Uhlmann curvature is nonzero, proving that the
parameters cannot be jointly estimated without intrinsic quantum
noise.

The structure of this paper is as follows: In Sec. II, we briefly
review multiparameter quantum estimation, introducing the clas-
sical and quantum Cramér–Rao theorem. Thereafter, in Secs. III
and IV, we address multiparameter estimation in lossy-Kerr and
dephasing-Kerr channels, respectively. In Sec. V, we discuss the
physical meaning of our results, whereas Sec. VI closes the paper
with some concluding remarks.

II. BASICS OF MULTIPARAMETER
QUANTUM METROLOGY

In a multiparameter metrological problem, the goal is the
joint estimation of a set of N > 1 parameters λ = {λ1, . . . , λN},
being encoded in a quantum state ρλ. The family ρλ is typically
referred to as a quantum statistical model. To infer the values
{λμ}μ, we perform a quantum measurement described by a pos-
itive operator-valued measure (POVM) {Πx}x, satisfying Πx ≥ 0
and ∫dx Πx = �̂�, with �̂� being the identity operator over the whole
Hilbert space. If the measurement is repeated M times, we retrieve
a statistical sample of independent and identically distributed out-
comes x = {x1, . . . , xM}, from which we obtain the parameter
estimates via an estimator function λ̂ = λ̂(x).38–41 Given this sce-
nario, the task is to find the optimal POVM to perform estima-
tion of λ with highest accuracy, namely with the lowest possible
uncertainty.

For unbiased estimators, those such that E[λ̂] = λ, the accuracy
is quantified by the covariance matrix associated with λ̂, namely,

V(λ̂) = ∫ dx p(x∣λ)[λ̂(x) − λ][λ̂(x) − λ]T , (1)

where p(x∣λ) =∏M
j=1 p(x j ∣λ) and p(x∣λ) = Tr[ρλΠx] is the condi-

tional probability of obtaining outcome x given λ. The covariance
matrix satisfies the classical Cramér–Rao (CR) bound, defined by the
following matrix inequality:

V(λ̂) ≥ [MF(λ)]−1, (2)

where F(λ), with elements

Fμν(λ) = ∫ dx p(x∣λ)[∂μ log p(x∣λ)][∂ν log p(x∣λ)], (3)

is the classical Fisher information matrix (FIM), μ, ν = 1, . . . , N,
depending on the univariate probability distribution p(x∣λ), and
∂μ(ν) denotes partial derivatives with respect to λμ(ν). Moreover,
bound (2) may be asymptotically achieved by the maximum
likelihood or Bayesian estimators in the limit M ≫ 1.41

Nevertheless, we recall that the FIM depends on the specific
POVM {Πx}x being implemented; therefore, it is usually considered
as a “classical” quantity. As a consequence, a more general bound can
be obtained by optimizing the FIM over all possible quantum mea-
surements, leading to a “quantum” version of the CR bound, which
only depends on the considered statistical model ρλ. In the single-
parameter scenario, this problem was exactly solved by Helstrom,
who introduced the quantum Fisher information as the relevant
figure of merit, obtained as the maximum Fisher information over
all POVMs.38–41,45 On the contrary, in the multiparameter setting,
there exist different possible approaches, corresponding to different
figures of merit.45–49

Here, we consider Helstrom’s approach45 and introduce the
symmetric logarithmic derivative (SLD) operators Lμ, μ = 1, . . . , N,
defined via the Lyapunov equation

∂μρλ =
Lμρλ + ρλLμ

2
, (4)
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leading to the quantum Fisher information matrix (QFIM) H(λ),
with elements39–41,50

Hμν = Tr[ρλ
{Lμ, Lν}

2
] = Tr[Lμ ∂νρλ] = Tr[Lν ∂μρλ], (5)

where {A, B} = AB + BA is the anti-commutator of A and B. We re-
express Eq. (5) in a more manageable way by considering the spectral
decomposition of ρλ, ρλ = ∑kρk∣ϕk⟩⟨ϕk∣, which, combined with (4),
leads to50

Hμν = 2∑
kj

⟨ϕk∣∂μρλ∣ϕj⟩⟨ϕj ∣∂νρλ∣ϕk⟩
ρj + ρk

. (6)

In particular, in the presence of pure statistical models ρλ = ∣ψλ⟩⟨ψλ∣,
Eq. (5) reduces to5

Hμν = 4 Re[⟨∂μψλ∣∂νψλ⟩ + ⟨∂μψλ∣ψλ⟩⟨∂νψλ∣ψλ⟩]. (7)

The QFIM provides a tighter matrix lower bound on Eq. (2),
referred to as the SLD-quantum Cramér–Rao (SLD-QCR) bound,

V(λ̂) ≥ [MH(λ)]−1. (8)

Straightforwardly, the former matrix inequalities can be turned
into scalar CR bounds by introducing a semi-positive defi-
nite N ×N weight matrix W; then, we have Tr[W V] ≥ CF(W)
and Tr[W V] ≥ CH(W), with CF(W) =M−1 Tr[W F−1] and
CH(W) =M−1 Tr[W H−1].41

However, differently from the single-parameter scenario, where
the QCR bound may be achieved by a projective measurement over
the SLD eigenstates, in the multiparameter setting, the SLD-QCR
bound (8) is not attainable in general, as the SLDs associated with
the different parameters may not commute with one another. In this
case, the parameters are incompatible, and there is no joint measure-
ment that allows one to estimate all the parameters with ultimate
precision.

Accordingly, one may introduce two other relevant bounds.
The former, referred to as the most informative bound, reads
CMI(W) =M−1minPOWM{Tr[W F−1]}, which, in general, does not
coincide with the SLD-QCR bound in the presence of multiple
parameters. The latter is the so-called Holevo Cramér–Rao (HCR)
bound CHol(W), introduced in Ref. 48, which corresponds to the
most informative bound of the asymptotic statistical model, i.e.,
the minimum FI bound achieved by a collective POVM performed
on infinitely many copies of the statistical model, namely ρ⊗n

λ with
n≫ 1.40,41 In turn, we have Tr[W V] ≥ CF(W) ≥ CMI(W) ≥
CHol(W) ≥ CH(W); therefore, the HCR bound is usually regarded
as the most fundamental scalar bound for multiparameter quantum
estimation.

Given this hierarchy, compatibility of parameters is achieved, at
least asymptotically, when the HCR bound saturates the SLD-QCR
limit. To this aim, it has recently been proved that51

CH(W) ≤ CHol(W) ≤ (1 + R)CH(W), (9)

where the quantumness parameter R is given by51,52

R = ∥i H−1U∥∞, (10)

in which ∥A∥∞ denotes the largest eigenvalue of the matrix A and
U(λ) is the asymptotic incompatibility matrix, also referred to as the
Uhlmann curvature, with matrix elements51,52

Uμν = −
i
2

Tr{ρλ[Lμ, Lν]}, (11)

where [A, B] = AB − BA is the commutator of A and B, expressed in
terms of the eigenstates {∣ϕk⟩}k of ρλ as

Uμν = 4∑
kj

ρk

(ρk + ρj)2 Im[⟨ϕk∣∂μρλ∣ϕj⟩⟨ϕj ∣∂νρλ∣ϕk⟩]. (12)

Equation (9) implies that the SLD-QCR bound is saturated iff
U(λ) = 0, referred to as the weak compatibility condition, and the
parameters are said to be asymptotically compatible. In addition,
the R quantity satisfies 0 ≤ R ≤ 1 and R = 0 iff U(λ) = 0; there-
fore, it provides a measure of asymptotic incompatibility between
the parameters. In particular, for N = 2 parameters, it reduces to

R =
√

detU
detH

for N = 2 parameters. (13)

III. SCENARIO I: JOINT ESTIMATION OF LOSS
AND KERR NONLINEARITY

We now address the characterization of noisy Kerr channels
that provide the evolution of a single-mode optical field, associated
with the bosonic operator a, [a, a†] = 1. In particular, we consider as
input a coherent state ∣α⟩ = exp (−∣α∣2/2)∑∞n=0 α

n/
√

n! ∣n⟩, describ-
ing radiation emitted by a laser, where ∣n⟩ is the Fock state contain-
ing n photons and α ∈ C is the field amplitude such that the mean
energy, i.e., mean photon-number, is equal to n̄ = ∣α∣2.53 We choose
coherent states for two reasons: on the one hand, it is an experi-
mentally oriented solution, since many practical realizations of both
fiber-optic channels and cavity optomechanical setups exploit coher-
ent radiation, e.g., laser pulses or coherent driving.23,44 On the other
hand, coherent states represent a benchmark example to perform a
comprehensive characterization of noisy nonlinear platforms, which
provides a first step toward more advanced analysis, e.g., involving
non-classical probes.

Given the framework reported in Sec. II, we address the joint
estimation of decoherence parameter and nonlinearity, which affect
the probe state after propagation throughout the channel. In more
detail, we consider two different scenarios. To begin with, here we
consider a lossy-Kerr system, describing propagation of light in opti-
cal nonlinear media, e.g., optical fibers,22 referred to as scenario I,
whereas in Sec. IV, we will address a dephasing-Kerr system, referred
to as scenario II.

For scenario I, the time evolution of the system is governed by
the following master equation:

dρ
dt
= −i[Ĥκ, ρ ] + Γ L[a] ρ, (14)

where

Ĥκ = κ(a†a)
2

(15)
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is the Hamiltonian describing self-Kerr interaction, κ and Γ are
the Kerr coupling and photon-loss rates, respectively, and L is
the Lindblad operator such that L[O] ρ = Oρ O† − {O†O, ρ}/2.
Equation (14) may be solved analytically12,54,55 at both zero and a
finite temperature. Given a coherent state ρ(t = 0) = ∣α⟩⟨α∣ as input,
the quantum state of the system ρ = ρ(t) after time t in its Fock basis
expansion is equal to ρ = ∑nmρnm∣n⟩⟨m∣, with

ρnm =
αn(α∗)m

√
n!m!

exp{−n +m
2

τΔ − ∣α∣2[1 − 1 − e−τΔ

Δ
]} (16)

and

Δ = 1 + 2iδ
τ
(n −m), (17)

where we introduced the quantities

τ = Γt and δ = κt, (18)

corresponding to the loss and nonlinearity parameter of the chan-
nel, respectively. In particular, given the structure of state (16), we
note that the parameters combine themselves in a nontrivial way,
and the evolution of the system cannot be reported to the dynam-
ics generated separately by Ĥκ and L. Furthermore, τ and δ linearly
increase with the interaction time t, thus making both the loss and
nonlinearity grow for larger lengths of the fiber link. In particu-
lar, for long-time interaction, corresponding to the limit τ ≫ 1 and
δ≫ 1 (with a finite ratio δ/τ), the decoherence contribution domi-
nates and the system evolves toward the vacuum state, which is the
stationary state of the dynamics.

Given these considerations, ρ provides a statistical model with
encoded parameters λ = (τ, δ), whose joint estimation should be
investigated. To this aim, in the following, we compute the QFIM,
which bounds the variance of any estimator, and the Uhlmann

curvature, to assess asymptotic compatibility. Thereafter, we con-
sider few examples of feasible measurements, that is, homodyne and
double-homodyne detection, and determine their performance by
comparing the QFIM and the corresponding FIM.

A. Computation of the QFIM
We start by computing the QFIM H. To this aim, we consider

the operator ∂μρ = ∑nm(∂μρnm)∣n⟩⟨m∣, computed by deriving (16)
with respect to parameter μ = τ, δ, and retrieve the QFIM elements
from Eq. (6), where the eigenvalues {ρk}k and eigenstates {∣ϕk⟩}k
of the statistical model ρ are obtained via numerical diagonaliza-
tion. To perform the calculation, we truncated the Hilbert space to a
suitable dimension d such that 1 − Tr[ρ] < 10−5. Subsequent numer-
ical checks show that, with the chosen parameters, our results are
accurate up to the fifth significant digit, corresponding to a relative
error about 10−5, which provides a sufficient precision level for the
purposes of this study.

Plots of the diagonal elements Hτ = Hττ and Hδ = Hδδ ,
corresponding to the maximum precision associated with single-
parameter estimation of τ and δ, are reported in Figs. 1(a) and 1(b),
respectively, as a function of τ and δ for a fixed input coherent state
amplitude α = 1. The behavior is qualitatively similar for all α. As
we can see, the presence of losses is detrimental for the nonlinear-
ity estimation, as Hδ monotonically decreases with τ for all values
of δ. In fact, increasing τ suppresses the matrix elements ρnm with
n, m > 0, thus progressively reducing the sensitivity of state (16) to
δ. On the contrary, a nontrivial effect emerges in the estimation of
the loss parameter. In fact, as already shown in Ref. 31, the pres-
ence of a nonzero Kerr susceptibility makes Hτ increase, enhancing
the sensitivity of ρ to parameter τ and proving the Kerr effect as a
beneficial tool. The enhancement is more accentuated in the limit of
small τ, corresponding to low-loss optical fibers or short link lengths.
The physical interpretation of this result will be discussed thereafter

FIG. 1. Contour plots of the QFIM elements Hτ (a) and Hδ (b) for scenario I, namely lossy-Kerr systems, as a function of loss parameter τ = Γt and nonlinearity parameter
δ = κt, for an input coherent state with amplitude α = 1. The presence of a nonzero nonlinearity enhances the loss estimation, the effect being accentuated for small values
of τ, whereas the presence of loss reduces Hδ monotonically for all values of δ.
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in Sec. V. Interestingly, analytic results can be retrieved in the lim-
its τ ≪ 1 and δ≪ 1, in which the term 1 − e−τΔ in Eq. (16) can be
expanded up to the second order, i.e., 1 − e−τΔ ≈ τΔ − (τΔ)2/2, and
the matrix elements of ρ factorize as ρnm = cnc∗m, with

cn =
αn
√

n!
exp{− τn

2
− iδn2 − ∣α∣2[ e−τ

2
+ iτδ n]}. (19)

That is, when τ ≪ 1 and δ≪ 1, the state of the system remains
approximately pure, ρ = ∣ψ⟩⟨ψ∣, with ∣ψ⟩ = ∑ncn∣n⟩. In turn, Eq. (7)
holds and we have

Hτ ≈ H(0)τ (1 + 4∣α∣4δ2), (20a)

Hδ ≈ H(0)δ − 4∣α∣2(1 + 10∣α∣2 + 8∣α∣6)τ, (20b)

where H(0)τ = e−τ ∣α∣2 is the QFI for the single-parameter estima-
tion of τ in the absence of nonlinearity, when ρ becomes equal to
the rescaled coherent state ∣e−τ/2α⟩, whereas H(0)δ = 4∣α∣2(1 + 6∣α∣2
+ 4∣α∣4) is the QFI for δ in the absence of loss, in which case the
encoded state is equal to exp (−iδ(a†a)2)∣α⟩.56–58 In summary, in the
pure-state approximation limit, the nonlinearity induces a quadratic
enhancement in the loss estimation, whereas the loss produces a lin-
ear reduction of the nonlinearity QFI, proving ρ to be fragile with
respect to nonlinearity in the presence of decoherence. Finally, in
accordance with the previous considerations, we also compute the
correlation QFIM term Hτδ , which decreases with τ if δ is fixed,
while increases with δ for fixed τ.

Furthermore, the enhancement in the loss estimation, being
about a factor 20 for α = 1, is progressively reduced as the energy
of the input probe state n̄ = ∣α∣2 increases, whereas the reduction
of the nonlinearity QFI Hδ is more accentuated for higher n̄. This

FIG. 2. (a) Plot of the loss-QFI Hτ for scenario I, namely lossy-Kerr systems, as a function of input coherent state energy n̄ = ∣α∣2 for loss parameter τ = 0.5 and different
values of nonlinearity δ. (b) Log plot of the nonlinearity-QFI Hδ for scenario I as a function of n̄ for δ = 0.1 and different values of τ.

FIG. 3. (a) Contour plot of the loss-QFI Hτ for scenario I, namely lossy-Kerr systems, as a function of nonlinearity δ and input energy n̄ for τ = 0.5. For each n̄, there exists
a finite value δmax <∞ that maximizes the loss-QFI. (b) Plot of the quantumness R for scenario I as a function of channel parameters τ and δ for an input energy n̄ = 1.
R is always nonzero and saturates in the limit of large τ, proving the two parameters to be incompatible.
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makes it worth investigating the QFIM dependence on the input
coherent state energy. In particular, given (16), we may safely assume
that α > 0, as the presence of a complex coherent amplitude only
adds a phase shift to the matrix elements ρnm, being insensitive to
both the loss and Kerr parameters. Figures 2(a) and 2(b) report Hτ
and Hδ as a function of n̄, respectively. We observe that the sen-
sitivity to δ increases monotonically with n̄ for all τ. If τ = 0, we
have Hδ = H(0)δ = 4n̄(1 + 6n̄ + 4n̄ 2); when τ > 0, Hδ decreases, the
reduction being more accentuated in the high-energy regime, due
to the suppression term proportional to ∣α∣2 in (16). Instead, Hτ
shows a non-monotonic behavior when δ > 0. For δ = 0, we retrieve
the single-parameter scenario Hτ = H(0)τ = e−τ n̄, that is, shot-noise
scaling linearly increasing with the energy, while, in the presence
of Kerr nonlinearity, the QFI Hτ is increased in the low-energy
regime until reaching a maximum, after which it decreases and re-
approaches H(0)τ in the asymptotic limit n̄≫ 1. Conversely, for each
n̄, there exists a finite value of nonlinearity δmax <∞ that maximizes
Hτ , while increasing δ turns further out to be useless, as enlight-
ened in Fig. 3(a), which reports the loss-QFI as a function of δ and n̄
for τ = 0.5, corresponding to almost 10 km transmission in common
fibers.59

Finally, we assess the compatibility of the two parameters by
computing the Uhlmann curvature U, equal to

U = ( 0 U τδ

−U τδ 0
), (21)

where the off-diagonal term U τδ is computed from Eq. (12) with
the analogous method adopted for the QFIM. The numerical results
show that U τδ is a decreasing function of τ, being always nonzero for
all τ and δ. In turn, the two parameters cannot be jointly estimated
with maximum precision. To quantify their incompatibility, we con-
sider the quantumness R =

√
detU/detH, depicted in Fig. 3(b).

We have R > 0, and in the limit of large τ, R exhibits a weak
dependence on δ and saturates. The saturation value is R∞ ≈ 0.8 for
n̄ = 1 and increases for higher n̄, suggesting the Holevo scalar
bound introduced in Sec. II to be not close to the SLD-QFI
bound.

B. Performance of feasible measurements
As we demonstrated above, the channel parameters τ and δ

cannot be jointly estimated with maximum precision; thus, the
SLD-QCR bound is not attainable. Then, it becomes interesting
to consider some feasible measurement schemes, which could be
easily implemented in practice, and compare their performance
with the ultimate bounds provided by the QFIM. Within this
class, Gaussian measurements, such as homodyne and double-
homodyne detection, provide the typical example of feasible detec-
tion strategies for optical signals.60 In principle, direct detection,
i.e., photon-number measurement, could be also considered. Nev-
ertheless, the photon-number distribution associated with state ρ is
retrieved from its diagonal matrix elements, namely p(n∣λ) = ⟨n∣ρ∣n⟩
= ρnn, being independent of the nonlinearity δ; therefore, the joint
estimation problem is trivially reported to the single-parameter
estimation of τ.

To begin with, we compute the FIM Fh = (Fh,μν)μ,ν associated
with homodyne detection, corresponding to the measurement of the
field quadrature,

x̂θ = σ0(ae−iθ + a†eiθ), (22)

where 0 ≤ θ < π determines the phase of the probed quadrature and
σ2

0 is the shot-noise variance, corresponding to vacuum fluctuations,
such that ⟨0∣x̂2

θ∣0⟩ = σ2
0 .53 We also remind that homodyne detec-

tion of q̂ = x̂0 = σ0(a + a†) provides the optimal measurement for
the loss estimation in the absence of nonlinearity, saturating the
single-parameter SLD-QCR bound,31 while it is only suboptimal for
the nonlinearity estimation, due to the non-Gaussian nature of the
Kerr effect. Performing detection of x̂θ is equivalent to the 1-rank
projective measurement Πx(θ) = ∣x⟩θ⟨x∣, where

∣x⟩θ =
e−x2/2

π1/4
∞
∑
n=0

Hn(x)√
2nn!

e−inθ ∣n⟩, (23)

with Hn(x) being the nth Hermite polynomial.53 In turn, the
homodyne probability distribution reads

pθ(x∣λ) = θ⟨x∣ρ∣x⟩θ

= e−x2

√
π∑nm

ρnm
Hn(x)Hm(x)√

2n+mn!m!
ei(n−m)θ, (24)

and the corresponding FIM is numerically retrieved via Eq. (3). In
particular, we optimize the quadrature phase θ to achieve the maxi-
mum performance. Due to the incompatibility of τ and δ, we identify
three different cases:

● case (a): we optimize θ to maximize precision on the loss
estimation, i.e., maximizing the loss-FI Fh,τ = Fh,ττ ;

● case (b): we optimize θ to maximize precision on the non-
linearity estimation, i.e., maximizing the nonlinearity-FI
Fh,δ = Fh,δδ ; and

● case (c): we optimize θ to maximize precision on the sum of
the mean square errors for each parameter, i.e., maximizing
Ch = 1/Tr[F−1

h ], corresponding to minimize the inverse of
trace of the inverse FIM.

Plots of F (p)h,τ and F (p)h,δ , p = a, b, c, as a function of input energy
n̄ are depicted in Figs. 4(a) and 4(b), respectively, compared to
the corresponding QFI. In both the cases, we see that, if properly
optimized, the homodyne FI is close to the corresponding QFI for
a sufficiently small energy n̄, while the separation increases for a
higher n̄. With the chosen values of τ and δ, we have F (a)h,τ ≳ 0.9 Hτ

for n̄ ≲ 2, whereas F (b)h,δ ≳ 0.8 Hτ for n̄ ≲ 4. Moreover, we note that

F (c)h,τ ≈ F (a)h,τ , while the three subcases lead to distinct FI for the

nonlinearity estimation. The plots of the optimized phase θ(p)max,
p = a, b, c, are depicted in Fig. 5, where the jump that appears is only
the consequence of the π-periodicity of the phase, which, by con-
struction, has been constrained in the interval 0 ≤ θ < π. Given this
consideration, both θ(a)max and θ(c)max are decreasing functions of n̄. On
the contrary, in case (b), the optimized phase is non-monotonic:
it is θ(b)max ≈ π/2 for n̄≪ 1, while it drops to 0 for n̄ ≥ n̄0, show-
ing quadrature q̂ to be the best one for the nonlinearity estimation.
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FIG. 4. (a) Log plot of the loss-FI F (p)
h,τ for homodyne detection under scenario I, namely lossy-Kerr systems, and (b) log plot of the nonlinearity-FI F (p)

h,δ , p = a, b, c, as a
function of n̄. Homodyne detection proves itself to be nearly optimal for both loss and nonlinearity estimation in the low-energy regime. The red line in panel (a) is the loss-FI
for direct detection, equal to H(0)

τ = e−τ n̄. We set the values τ = 0.5 and δ = 0.1 for the loss and nonlinearity parameters, respectively.

The discontinuity in the derivative of θ(b)max at n̄0 is then reflected in
the cusp of F (b)h,τ ; see Fig. 4(a). Interestingly, our numerical results
also show that homodyning q̂, which provides the optimal mea-
surement for the loss estimation in the absence of nonlinearity,
becomes strongly suboptimal when δ > 0. This is a consequence of
the phase-sensitive behavior of the Kerr interaction, which induces
distortions of coherent states in the phase space by introducing both
nonlinear phase noise and non-Gaussian squeezing along a proper
direction,8,23 thus making quadrature q̂ less sensitive to parameter
τ. Given these considerations, one may wonder which is the perfor-
mance of direct detection, being optimal too when δ = 0, compared
to the optimized homodyne cases (a)–(c). As briefly mentioned
before, direct detection is insensitive to nonlinearity; therefore, its
loss-FI is identical to that of the pure-loss scenario, namely equal to
H(0)τ = e−τ n̄. Even though its optimality does not hold when δ > 0,
photon-number measurement outperforms homodyne detection in
all cases and all energy regimes, as we can see from Fig. 4(a), reduc-
ing the separation with respect to Hτ . However, because of the
insensitivity to δ, this kind of measurement yields useful application
only for the single-parameter loss estimation, whereas its adoption
in the multiparameter setting turns out to be useless.

FIG. 5. Plot of the optimized quadrature phases θ(p)
max/π, p = a, b, c, for homo-

dyne detection under scenario I, namely lossy-Kerr systems, as a function of n̄.
We set the values τ = 0.5 and δ = 0.1 for the loss and nonlinearity parameters,
respectively.

Now, we address the second example of feasible POVM, that is,
double-homodyne (DH) detection. It corresponds to joint measure-
ment of the two orthogonal quadratures, obtained by splitting the
incoming signal in two copies at a balanced beam splitter and then
homodyning q̂ = x̂0 and p̂ = x̂π/2 on the transmitted and reflected
branches, retrieving a pair of real outcomes (x, y) ∈ R2, respectively.
The main consequence of the signal splitting is the introduction of
an ineludible excess noise on both the output quadrature statistics,
equal to σ2

0 , that guarantees joint measurement without violation of
Heisenberg’s uncertainty principle.59 This excess noise makes DH
only suboptimal for the loss estimation in the absence of nonlinear-
ity, its associated FI being exactly one-half of the QFI achieved by
single-homodyne of q̂.31 Equivalently, DH detection is described as a
1-rank (non-orthogonal) projection on coherent states, with associ-
ated POVMΠx,y = ∣ζx,y⟩⟨ζx,y∣/2π, where ∣ζx,y⟩ is a coherent state with
amplitude ζx,y = (x + iy)/

√
2, such that ∫dxdy Πx,y = �̂�. In turn, the

corresponding probability distribution given state ρ reads

pdh(x, y∣λ) = 1
2π
⟨ζx,y∣ρ∣ζx,y⟩

= e−(x
2+y2)/2

2π ∑
nm

ρnm√
n!m!

(x − iy√
2
)

n

(x + iy√
2
)

m

, (25)

from which we compute the FIM Fdh = (Fdh,μν)μ,ν, thanks to (3).
Figures 6(a) and 6(b) show the resulting FIM elements Fdh,τ and
Fdh,δ , respectively, as a function of input energy n̄. As we can see,
DH detection is weakly dependent on the nonlinearity δ, as the value
of Fdh,τ is almost the same for different values of δ, whereas it proves
itself quite robust against the loss, since Fdh,δ decreases more slowly
than Hδ when τ is increased. To better enlighten these effects, we
consider the relative ratios,

Rdh(μ) =
Fdh,μ

Hμ
, μ = τ, δ, (26)

depicted in the insets of Fig. 6. With regard to the loss estimation, if
δ = 0, we have Rdh(τ) = 0.5, retrieving the known result for single-
parameter estimation, whereas for δ > 0, the ratio decreases, since
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FIG. 6. (a) Log plot of the loss-FI F dh,τ for DH detection under scenario I, namely lossy-Kerr systems, and plot of the relative ratio Rdh(τ) = F dh,τ/Hτ (in the inset) as a
function of n̄ for τ = 0.5 and different values of nonlinearity δ. (b) Log plot of the nonlinearity-FI F dh,δ and plot of the relative ratio Rdh(δ) = F dh,δ/Hδ (in the inset) as a
function of n̄ for δ = 0.1 and different values of the loss parameter τ.

the loss-QFI is enhanced while the FI value Fdh,τ remains almost sta-
ble. On the contrary, in estimating the Kerr nonlinearity, we identify
two different regimes. If n̄≪ 1, Rdh(δ) decreases with τ, while, on
the other hand, for high enough energy, the situation is reversed and
Rdh(δ) gets higher values for larger losses, showing higher robust-
ness against decoherence. Besides this, DH is always suboptimal, and
the ratio Rdh(μ), μ = τ, δ, is lower than 0.5 in all conditions.

To conclude, we also compare the performance of the previous
measurement schemes in terms of scalar CR bounds. In particular,
we choose the weight matrix W = 𝟙2, with 𝟙2 being the 2 × 2 iden-
tity matrix, in which case the figure of merit is the trace of the inverse
FIMs. Then, the covariance matrix V of an unbiased estimator sat-
isfies Tr[V] ≥ 1/C ≥ 1/CH, with C(p)h = 1/Tr[(F (p)h )

−1], p = a, b, c,
for homodyne detection, Cdh = 1/Tr[F−1

dh ] for DH detection, and
CH = 1/Tr[H−1], in which, for the sake of simplicity, we set the
number of measurements equal to M = 1. Plots of the trace scalar
bounds are reported in Fig. 7. Consistently with the former results,
none of the considered measurements is able to reach CH. Neverthe-
less, as we can see, homodyne detection for case (c) is nearly optimal
for a sufficiently high input energy, being beaten by DH detection
only in the low-energy limit n̄≪ 1, when Cdh ≥ C(c)h . Remarkably,

FIG. 7. Log–log plot of the trace scalar bounds for scenario I, namely lossy-Kerr
systems, that is the SLD-QFIM bound CH = 1/Tr[H−1

], and the FIM bounds
for homodyne detection, C(p)

h = 1/Tr[(F(p)
h )

−1
], p = a, b, c, and DH detection,

Cdh = 1/Tr[F−1
dh ], as a function of n̄. We set the values τ = 0.5 and δ = 0.1 for

the loss and nonlinearity parameters, respectively.

the performance of case (a) is close to (c), while case (b) is strongly
suboptimal. This is mainly due to the different sensitivity to τ and
δ of the off-diagonal element of matrix Fh. Finally, in the limit
of high n̄, DH detection approaches case (a) of homodyne detec-
tion, as Cdh ≈ C(a)h , proving itself as a versatile solution, which does
not involve optimization of the experimental setup, in all energy
regimes, regardless of its suboptimality.

IV. SCENARIO II: JOINT ESTIMATION OF DEPHASING
AND KERR NONLINEARITY

We now move on to the second scenario under investigation
and perform characterization of noisy systems in the presence of
Kerr nonlinearity and dephasing produced by phase diffusion.61,62

This is a typical situation emerging in quantum optomechanical
systems, consisting in an optical cavity whose mirrors experience
quantized vibrations at acoustic frequencies. The mechanical oscil-
lations of the mirrors, then, induce a change in the effective length of
the cavity and, accordingly, in its proper frequency, resulting in an
overall interaction between the corresponding optical and mechani-
cal bosonic modes.34 In particular, if the acoustic modes are excited
in a thermal state, the reduced dynamics of the optical cavity field
is equivalent to a phase diffusion master equation with an effective
self-Kerr unitary interaction, where both the noise and nonlinearity
parameters depend on the strength of the optomechanical interac-
tion.36 That is, the evolution of the optical state ρ of the cavity field
follows the following relation:

dρ
dt
= −i[Ĥκ, ρ ] + γ L[a†a] ρ, (27)

with Ĥκ in Eq. (15) and κ and γ being the effective Kerr coupling and
phase diffusion rates, respectively. The solution to the master equa-
tion at time t, ρ = ρ(t), is straightforwardly obtained by expanding ρ
on the Fock basis, namely ρ = ∑nm ρnm∣n⟩⟨m∣, leading to

ρnm =
αn(α∗)m

√
n!m!

exp{−∣α∣2 − iδ(n2 −m2) − σ
2

2
(n −m)2}, (28)
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with the coherent state ∣α⟩ as input and where

σ =
√
γt and δ = κt (29)

represent the dephasing parameter, also referred to as phase noise
amplitude, and the nonlinearity parameter, respectively. Differently
from scenario I, both the Hamiltonian and Lindblad dynamics are
generated by the photon-number operator; thus, solution (28) can
be re-expressed as

ρ = e−iδ(a†a)2

𝜚σ e−iδ(a†a)2

, (30)

𝜚σ = e−∣α∣
2

∑nm e−σ
2(n−m)2/2 αn(α∗)m/

√
n!m! being a dephased

coherent state, namely as the subsequent application of a dephasing
completely positive map followed a unitary Kerr evolution. In
turn, now, no pure-state approximation can be carried out, since
the presence of phase diffusion makes ρ mixed for all σ > 0. The
stationary state of the dynamics, achieved in the limits σ ≫ 1 and
δ≫ 1, is the phase-averaged (PHAV) state,63

ρPHAV = e−∣α∣
2

∑
n

∣α∣2n

n!
∣n⟩⟨n∣, (31)

corresponding to a Poisson-distributed ensemble of Fock states,
being insensitive to the nonlinearity. In this scenario, we have a
statistical model ρ encoding parameters λ = (σ, δ). As before, we
compute the QFIM and the Uhlmann curvature, to assess the ulti-
mate precision limits. Then, we further compute the FIM associated
with homodyne and DH detection, comparing their performances
to the SLD-QCR bound.

A. Computation of the QFIM
We numerically compute the QFIM H = (Hμν)μ,ν, μ, ν = σ, δ,

by Eq. (6), where ∂μρ = ∑nm(∂μρnm)∣n⟩⟨m∣, μ = τ, δ. We note that,
thanks to the structure of the encoded state, see Eq. (30), the sta-
tistical model is covariant with respect to the nonlinearity, and
the corresponding QFIM turns out to be independent of δ.50 Fur-
thermore, differently from scenario I, now the QFIM is a diagonal
matrix, that is, Hσδ = 0, and its diagonal elements Hσ = Hσσ and
Hδ = Hδδ , reported in Figs. 8(a) and 8(b), respectively, are decreas-
ing with the dephasing parameter σ. In particular, the presence of
Kerr susceptibility is irrelevant for the dephasing estimation, as Hσ
is a function of the sole noise σ and input energy n̄ = ∣α∣2, in contrast
to the case of loss estimation. To assess compatibility, we consider

FIG. 8. Log plots of the dephasing-QFI Hσ (a) and nonlinearity-QFI Hδ (b) for scenario II, namely dephasing-Kerr systems, as a function of phase noise parameter σ =
√

γt
for different values of input coherent state energy n̄ = ∣α∣2. Both the QFI are decreasing functions of the noise σ, being independent of the nonlinearity parameter δ = κt.

FIG. 9. (a) Log plot of the Uhlmann quadrature U σδ for scenario II, namely dephasing-Kerr systems, as a function of phase noise parameter σ =
√

γt for different values
of input coherent state energy n̄ = ∣α∣2. (b) Plot of the quantumness R for scenario II as a function of σ for different values of n̄. Both the quantities are independent of
the nonlinearity parameter δ = κt. In particular, R is a non-monotonic function of σ, saturating in the large-noise regime to R∞ > 0, proving the two parameters to be
incompatible.
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the Uhlmann curvature U, being an off-diagonal matrix as in (21),
to be computed, thanks to (12). The behavior is different with respect
to scenario I. In fact, the off-diagonal term Uσδ , depicted in Fig. 9(a),
is a non-monotonic function of σ, reaching a maximum at a finite
noise σmax and, thereafter, decreasing toward 0. Moreover, like the
QFIM, it increases with the signal energy n̄, being independent of
δ. The non-monotonicity of the Uhlmann quadrature is reflected on
the quantumness R =

√
detU/detH, plotted in Fig. 9(b). For low

noise, R increases with σ until reaching a maximum, after which
it decreases, saturating for σ ≫ 1 to an asymptotic value R∞ > 0.
The saturation value is lower for increasing energy, while the situ-
ation is reversed in the low-noise regime, where a higher n̄ makes
R increase. As a consequence, even in this scenario, the two para-
meters are not compatible and cannot be jointly estimated without
the addition of an excess noise.

B. Performance of feasible measurements
As before, we now quantify the performance of homodyne

and DH detection in the joint estimation of σ and δ. Differently
from scenario I, the physical process associated with phase noise
results from non-Gaussian interaction; therefore, we expect Gaus-
sian measurement to be suboptimal even in the limit case δ = 0.64,65

The homodyne probability pθ(x∣λ) is retrieved from Eq. (24), from
which we compute the FIM Fh = (Fh,μν)μ,ν. As before, we identify
the three cases in which we optimize the phase of the measured
quadrature to maximize the noise-FI Fh,σ = Fh,σσ (a), to maxi-
mize the nonlinearity-FI Fh,δ = Fh,δδ (b), and to maximize the trace
scalar bound Ch = 1/Tr[(Fh)−1] (c), respectively. Plots of F (p)h,σ

and F (p)h,δ , p = a, b, as a function of input energy n̄ are depicted in
Figs. 10(a) and 10(b), respectively, compared to the corresponding
QFI. Numerical calculations show that case (c) is almost indistin-
guishable from case (a); therefore, we do not explicitly report it in
the following figures. F (a)h,σ is monotonically increasing with n̄, but

the separation with respect to Hσ is large, as F (a)h,σ < 0.25Hσ for all
n̄, proving homodyne detection to be strongly suboptimal for the
noise estimation. On the contrary, the estimation of Kerr nonlinear-
ity is qualitatively similar to that in Sec. III B: we have F (b)h,δ ≳ 0.8Hδ

FIG. 11. Plot of the optimized quadrature phases θ(p)
max/π, p = a, b, for homodyne

detection under scenario II, namely dephasing-Kerr systems, as a function of n̄.
Numerical calculations show that case (c) is almost indistinguishable from case
(a). We set the values σ = 0.1 and δ = 0.1 for the dephasing and nonlinearity
parameters, respectively.

for n̄ ≲ 2.25, and the homodyne is nearly optimal in the low-energy
limit. However, in both the cases, the performances of cases (a) and
(b) are close to each other and almost coincide in the high-energy
regime. The optimized phase θ(p)max, p = a, b, is depicted in Fig. 11,
showing a similar behavior for cases (a) and (b), while the phase
jumps are again a consequence of the π-periodicity.

Moving to the case of DH detection, we compute the prob-
ability pdh(x, y∣λ) from Eq. (25), and its corresponding FIM Fdh
= (Fdh,μν)μ,ν. The resulting elements Fdh,σ and Fdh,δ are plotted
in Figs. 12(a) and 12(b), respectively. With regard to the noise
estimation, we see that DH detection is strongly suboptimal and,
in particular, worse than single homodyne detection, since Fdh,σ
< 0.2Hσ . However, the dependence of Fdh,σ on the nonlinearity is
nontrivial, as in the low-energy regime, the noise-FI is enhanced by
increasing δ. Instead, the behavior of the nonlinearity-FI is similar to
that in Sec. III B, that is, DH is suboptimal but Fdh,δ is quite robust
against the noise, differently than the corresponding QFI, such that
the relative ratio Rdh(δ) = Fdh,δ/Hδ is increased for larger noise in
the high-energy limit.

Finally, we consider the trace of the inverse FIM matrices
as an example of the scalar CR bound, depicted in Fig. 13. That

FIG. 10. Log plot of the dephasing-FI F (p)
h,σ (a) and the nonlinearity-FI F (p)

h,δ (b), p = a, b, for scenario II, namely dephasing-Kerr systems, as a function of n̄. Numerical
calculations show that case (c) is almost indistinguishable from case (a). Differently from the lossy-Kerr scenario, now, homodyne detection is strongly suboptimal for the noise
estimation, while being nearly optimal for the nonlinearity estimation. We set the values σ = 0.1 and δ = 0.1 for the dephasing and nonlinearity parameters, respectively.
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FIG. 12. (a) Log plot of the dephasing-FI F dh,σ for scenario II, namely dephasing-Kerr systems, as a function of n̄ for the dephasing parameter σ = 0.1 and different values
of nonlinearity δ. (b) Log plot of the nonlinearity-FI F dh,δ and plot of the relative ratio Rdh(δ) = F dh,δ/Hδ (in the inset) for scenario II as a function of n̄ for nonlinearity
δ = 0.1 and different values of dephasing σ.

FIG. 13. Log–log plot of the trace scalar bounds for scenario II, namely dephasing-
Kerr systems, that is the SLD-QFIM bound CH = 1/Tr[H−1

], and the FIM
bounds for homodyne detection, C(p)

h = 1/Tr[(F(p)
h )

−1
], p = a, b, and DH

detection, Cdh = 1/Tr[F−1
dh ], as a function of n̄. Numerical calculations show that

case (c) is almost indistinguishable from case (a). We set the values σ = 0.1 and
δ = 0.1 for the dephasing and nonlinearity parameters, respectively.

is, we compute the quantities C(p)h = 1/Tr[(F (p)h )
−1], p = a, b, Cdh

= 1/Tr[F−1
dh ], and CH = 1/Tr[H−1], with the choice of M = 1 mea-

surements. As we can see, homodyne detection, in both cases p
= a, b, is nearly optimal and, differently from scenario I, significantly
outperforms DH detection for sufficiently high energies. This sug-
gests that probing a single quadrature with an optimized phase is
worthy of implementation in order to achieve a closer performance
to the SLD-QFI limit.

V. DISCUSSION
The results obtained in this paper show some relevant quali-

tative differences between the two scenarios under investigation. In
fact, if the behavior of the nonlinearity estimation is similar in both
the scenarios, i.e., decoherence detriments the QFI Hδ , two opposite
situations arise for the decoherence estimation, since the presence of
Kerr nonlinearity enhances the loss-QFI Hτ , while it does not affect
the dephasing-QFI Hσ . These considerations raise the question of
identifying a proper resource, connected to a quantum property of
the encoded states, being somehow responsible for the presence of

absence of a QFI enhancement in one scenario or another. This
would provide a fundamental interpretation of our results, foster-
ing new methods for engineering more sensitive probe states and
measurement schemes.

In light of this, non-Gaussianity has been first proposed as a
suitable candidate,29,31 which can be quantified by the difference
between the von-Neumann entropy S[ρ] = −Tr[ρ log ρ] of a quan-
tum state ρ and that of its associated Gaussian state ρG, sharing
the same first moment vector and covariance matrix, i.e., nG[ρ]
= S[ρG] − S[ρ].66,67 In fact, in scenario I, namely lossy-Kerr systems,
the presence of a nonzero Kerr susceptibility turns a Gaussian sta-
tistical model into a non-Gaussian and non-classical one during the
evolution. However, as discussed in Sec. III, the Kerr effect intro-
duces phase-sensitive distortions of the input coherent state in the
phase space; therefore, the resulting nG[ρ], depicted in Fig. 14(a),
turns out to be a non-monotonic function of δ for all values of the
input energy n̄. It increases in the limit δ≪ 1, until reaching a max-
imum value, while, for δ≫ 1, we observe an oscillatory behavior,
reflecting the rotation and stretching effects of the Wigner func-
tion of state ρ; see Ref. 8. In turn, we have that the maximum
amount of non-Gaussianity is achieved at a finite δ, thus quali-
tatively reproducing the results in Fig. 3(a). Nevertheless, we did
not find a quantitative correspondence between the QFI and the
non-Gaussianity, as emerges from the parametric plot in Fig. 14(b),
reporting Hτ as a function of nG[ρ] for a fixed input energy n̄ (only
varying the nonlinearity δ). As we can see, the two functions are
monotone to each other only for small values of nG, corresponding
to small values of δ, whereas the highest value of Hτ is not achieved
for the quantum state associated with the highest nG[ρ].

We reach a similar conclusion by also claiming non-classicality
as a resource, described in terms of Wigner negativity and mea-
sured, for instance, by the quadrature coherence scale (QCS).68–71

Indeed, thanks to the nonlinear phase noise effect induced by the
Kerr dynamics, the QCS is a non-monotonic function of δ, too. Fur-
thermore, these arguments fail when applied to scenario II, namely
dephasing-Kerr systems, where both phase diffusion and Kerr inter-
action are non-Gaussian, and the non-Gaussianity measure nG[ρ]
and the QCS are increasing functions of both σ and δ, while Hσ is
insensitive to nonlinearity.
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FIG. 14. (a) Contour plot of the non-Gaussianity nG[ρ] for scenario I, namely lossy-Kerr systems, as a function of nonlinearity δ and input energy n̄ for τ = 0.5. nG[ρ]
is a non-monotonic function of δ for all n̄, increasing in the limit δ ≪ 1 and oscillating for δ ≫ 1. (b) Parametric plot of the loss-QFI Hτ for scenario I as a function of
non-Gaussianity nG[ρ], obtained for different values of n̄ (only varying δ) and for τ = 0.5. The two functions are not monotone to each other.

On the other hand, starting from the results of scenario II, we
may propose as a resource the coherence of the quantum statistical
model.72–75 In particular, a measure of coherence for a quantum state
ρ in a given basis {∣φ j⟩} j has been introduced by Baumgratz et al. in
Ref. 72 and reads C[ρ] = ∑j≠k∣ρjk∣, with ρjk = ⟨φj∣ρ∣φk⟩. This captures
the behavior of Hσ in scenario II, since the presence of Kerr nonlin-
earity only appears as a phase in the Fock state expansion of ρ, thus
not changing its coherence in the Fock basis. However, in scenario I,
numerical calculations show that nonlinearity reduces the coherence
C[ρ] with respect to the case δ = 0, while increasing Hτ .

In summary, for scenario I, namely lossy-Kerr systems, we
should conclude that non-Gaussianity in itself (as well as non-
classicality) is a necessary but not sufficient condition to enhance the
QFI with respect to the performance of coherent probes, since there
is no monotonic relation between nG[ρ] and Hτ . We note that this
conclusion can be further extended to all Gaussian probes, according
to the recent results derived in Refs. 31, 76, and 77. Instead, in sce-
nario II, namely dephasing-Kerr systems, quantum coherence seems
to be a reasonably necessary condition to improve the precision
of dephasing estimation, but we have no evidence that states with
higher coherence enhance Hδ . In both the scenarios, none of the
previous figures of merit provide a complete understanding of the
sensitivity of the statistical model to the encoded parameters. More-
over, the nontrivial interplay between both noise and nonlinearity
and the input energy does not allow us to identify a single figure
of merit capturing the physics underlying it, thus fostering future
studies to face the interesting problem of the resource identification.

VI. CONCLUSIONS
In this paper, we have addressed the characterization of noisy

Kerr channels, in the presence of either loss or dephasing and a
nonzero self-Kerr interaction, by considering a coherent state as a

probe. In both the scenarios, we have addressed the joint estima-
tion of the decoherence and nonlinearity parameters in terms of the
QFIM, which provides the ultimate bound to the covariance matrix
of any unbiased estimator. In lossy-Kerr systems, we showed that the
presence of nonlinearity enhances the loss-QFI Hτ in the regime of
small loss parameter τ, corresponding to low loss rate of the optical
medium or short-distance transmission, and low input energy n̄. In
particular, we proved that, for any n̄, there exists a finite value δmax
of the nonlinearity that maximizes Hτ , whereas the presence of loss
always reduces the QFI for the nonlinearity. Moreover, the Uhlmann
curvature is nonzero; thus, the two parameters are not compatible
and cannot be jointly estimated with maximum precision. On the
other hand, in dephasing-Kerr systems, both the dephasing QFI and
the nonlinearity QFI are independent of the nonlinearity parameter
δ and decrease with the noise amplitude σ; therefore, no enhance-
ment is observed. The Uhlmann quadrature is still nonzero, so the
two parameters are incompatible, too. A summary of these results is
reported in Table I.

Thereafter, we considered some relevant examples of feasible
POVMs, i.e., homodyne detection and DH detection, and compute
the corresponding FIM, to assess their performance with respect
to the ultimate bound provided by the QFIM. Table II reports a
comprehensive sum-up of all the obtained results. In the presence
of lossy-Kerr systems, homodyne detection of a suitably optimized
quadrature provides a nearly optimal performance in the low-energy
regime, close to the SLD-QCR bound, while DH detection provides
a suboptimal solution, although being robust against losses. Instead,
in the dephasing-Kerr scenario, homodyne detection remains nearly
optimal only for the nonlinearity estimation, whereas the noise-FI
is significantly lower than the corresponding QFI Hσ . Similarly,
DH detection is strongly suboptimal for the dephasing estimation,
whereas it shows robustness also against phase noise in the esti-
mation of nonlinearity. Finally, we evaluated a trace scalar bound,
proving DH and optimized homodyne detection to be suboptimal

APL Quantum 1, 036118 (2024); doi: 10.1063/5.0225120 1, 036118-12

© Author(s) 2024

 11 Septem
ber 2024 15:32:38

https://pubs.aip.org/aip/apq


APL Quantum ARTICLE pubs.aip.org/aip/apq

TABLE I. Summary of the results obtained from the QFIM analysis in the two scenarios under investigation, corresponding to
lossy-Kerr and dephasing-Kerr systems.

Noise estimation Nonlinearity estimation Compatibility

Scenario I (lossy-Kerr) Enhancement Reduction No
Scenario II (dephasing-Kerr) No enhancement Reduction No

TABLE II. Summary of the results obtained from the FIM analysis in the two scenarios under investigation, corresponding to lossy-Kerr and dephasing-Kerr systems.

Homodyne detection

(a) (b) (c) DH detection

Scenario I (lossy-Kerr)
Loss estimation Nearly optimal Strongly suboptimal Suboptimal Suboptimal

Nonlinearity estimation Suboptimal Nearly optimal Suboptimal Suboptimal
Scalar bound Suboptimal Strongly suboptimal Suboptimal Suboptimal

Scenario II
(dephasing-Kerr)

Dephasing estimation Strongly suboptimal Strongly suboptimal Strongly suboptimal Strongly suboptimal
Nonlinearity estimation Suboptimal Nearly optimal Suboptimal Suboptimal

Scalar bound Suboptimal Suboptimal Suboptimal Strongly suboptimal

in the low- and high-energy regimes, respectively. In particular, in
scenario I, namely lossy-Kerr systems, DH measurement is closer to
homodyne, proving itself as a versatile solution under all conditions.

The obtained results offer a qualitative comparison between
the two scenarios and quantify the impact of nonlinearity, being
non-negligible in many platforms, for characterization of quantum
channels. In particular, they provide a starting point for practical
implementations in quantum information protocols, such as sens-
ing,78 quantum communication,79 and quantum key distribution.80

Moreover, our analysis provides a first comprehensive study of
multiparameter estimation in Kerr media, which may foster future
developments by optimization of the input probe states, e.g., by
considering squeezed or cat states, which are proved to enhance
sensitivity in some particular regimes.31

ACKNOWLEDGMENTS
We thank M. Frigerio for insightful discussions. This

work was done under the auspices of GNFM-INdAM and was
partially supported by EU and MIUR through Project No.
PRIN22-2022T25TR3-RISQUE.

AUTHOR DECLARATIONS
Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

Michele N. Notarnicola: Formal analysis (equal); Investigation
(equal); Methodology (equal); Software (equal); Validation (equal);
Visualization (equal); Writing – original draft (equal). Stefano Oli-
vares: Formal analysis (equal); Methodology (equal); Project admin-

istration (equal); Validation (equal); Visualization (equal); Writing –
review & editing (equal). Matteo G. A. Paris: Conceptualization
(lead); Methodology (equal); Project administration (equal); Super-
vision (equal); Validation (equal); Writing – review & editing
(equal).

DATA AVAILABILITY
The data that support the findings of this study are available

from the corresponding author upon reasonable request.

REFERENCES
1F. Dell’Anno, S. De Siena, and F. Illuminati, Phys. Rep. 428, 53–168 (2006).
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