A CITRINI, C CAMERA, F ALBORGHETTI, GP BERETTA

Vulnerability assessment of karst aquifers using the COPA+K index-based method: the case of the Valseriana springs (Northern Italy)

NATURAL AND ANTHROPOGENE CONTAMINATION, VULNERABILITY AND HAZARDS OF GEOFLUIDS

7-9 JULY 2021

INTERNATIONAL SYMPOSIUM ON GEOFLUIDS 7-9 JULY 2021 | VIRTUAL EVENT

UNIVERSITÀ DEGLI STUDI DI MILANO

STUDY GOALS

- apply two classical index-based method (EPIK and COP) to assess the vulnerability of the study area;
- define an integrative methodology that represent the conditions of **intrinsic** vulnerability of the middle Valseriana (Northern Italy);
- delineate an approach that does not require a lot of data and expensive investigations in order to make it applicable in mountain contexts: **COPA+K method**:
- validate this new proposed approach through isotopic data.

Vulnerability assessment of karst aquifers using the COPA+K index-based method: the case of the Valseriana springs (Northern Italy)

Legend

1500 1000 500_ ma.s.l NW 1200_ 1100_ 1000_ 900_ 800_ 700_ 600_ 500_ 400_ 300 200_ 100_ ma.s.l.

N

- Nossana: 80 km² Ponte del Costone: 10 km²;
- cumulative discharge 0.15 0.45 m³s⁻¹;
- about 3000 mm/year.

STUDY AREA

• Nossana spring discharge 0.5 - 18 m³s⁻¹, the Ponte del Costone

• The average precipitation is close to 2000 mm/year with peaks of

AVAILABLE DATA

Geological data

The geological, geomorphological, and elevation data of the area were obtained from the Geoportale della Regione Lombardia (Regione Lombardia. 2020)

Karst network development

For the development of the karst network and the evaluation of the propensity to karstification of the area. the work of FSLo (2011) was relied on

Meteorological data

The meteorological data were obtained from the open-data section of the Environmental Regional Agency (ARPA Lombardia, 2020)

Vulnerability assessment of karst aquifers using the COPA+K index-based method: the case of the Valseriana springs (Northern Italy)

Isotopic data

Isotopic data obtained from the water analyses of the study area carried out (2018 - 2019) by the Università degli Studi di Milano and the company UniAcque S.p.a. The stable isotope data (δ^{18} O and δ^{2} H) related to the waters of Nossana, Ponte del Costone springs, and Serio river

Vulnerability assessment of karst aquifers using the COPA+K index-based method: the case of the Valseriana springs (Northern Italy)

~97/0

OF CORRESPONDENCE CONSIDERING THE DIFFERENCE OF AT MOST 1 CLASS

COP method ■EPIK method

COMPARISON OF CLASSICAL METHODS

THE H AND M VULNERABILITY AREAS OF THE COP GENERALLY CORRESPOND TO THE H VULNERABILITY AREAS OF EPIK, WHILE THE L AND VL VULNERABILITY AREAS OF COP ARE USUALLY EQUIVALENT TO THE M AND L VULNERABILITY AREAS OF EPIK

> By combining the H and M vulnerability classes of the COP method in a single H vulnerability class, the results of the two methods become more similar.

Vulnerability assessment of karst aquifers using the COPA+K index-based method: the case of the Valseriana springs (Northern Italy)

OVERLAYING LAYERS

ASSOCIATION BETWEEN MAIN DISCONTINUITIES AND THEIR DISTANCE TO SPRING

COPA+K method $C \times O \times P \times A + K$

A FACTOR

ASSOCIATION BETWEEN DISCONTINUITIES AND THEIR DISTANCE TO SPRING

Distances to spring

Vulnerability assessment of karst aquifers using the COPA+K index-based method: the case of the Valseriana springs (Northern Italy)

catchment area/n

π

Buffer 200 m around main discontinuities

FACTORS

- a) Digital Elevation Model
- b) Concentration of flow
- c) Overlaying layers
- d) Precipitation
- e) Association between discontinuities and their distance to spring
- f) Karst network development

35.6% to 23.6%

CONSIDERING THE MOST VULNERABLE CLASSES (VH AND H), THE VALUES MOVE FROM 35.6% (COP) TO 23.6% (COPA+K) OVER THE WHOLE STUDY AREA.

The COPA+K method allows the identification of more restricted areas than COP.

THE PERCENTAGE DIFFERENCE INCREASED BY 12.3%, EMPHASIZING THE GREATER SUSCEPTIBILITY OF THE NOSSANA SYSTEM

COPA+K made possible to better differentiate the areas of greatest vulnerability in the two considered catchments

VALIDATION MAP PROCESS

- springs;
- Mean annual precipitation data from 10 ARPA distribution --> TPS and IDW;

Vulnerability assessment of karst aquifers using the COPA+K index-based method: the case of the Valseriana springs (Northern Italy)

• from the relationship given by the local isotopic line, it was possible to estimate the mean elevation of recharge areas of the Nossana and Ponte del Costone

meteorological stations were interpolated to obtain a

gridded (50x50 m) altitude-dependent precipitation

• The **elevation values** of the high vulnerability areas and related **precipitation amounts** were extrapolated from the DTM and the precipitation distribution maps;

• After performing a **weighted average**, the mean

elevations of the high vulnerability areas were obtained for the Nossana and Ponte del Costone catchments to be compared with the results of isotopic correlation.

MEAN RECHARGE ELEVATIONS

estimated by correlating δ 180 values with elevation

Site Name	Elevation [m a.s.l.]	δ ¹⁸ O ± 0.15 ‰ vs SMOW	Estimate recharge area elevation [m a.s.l.]			
Observed data						
Nossana	474	-9.24	1776]		
Costone 1	427	-8.96	1498			
Merlo	435	-8.85	1389			
Sottoplatea	433	-9.26	1796			
Serio River (upward)	454	-9.68	2213			
Serio River (downward)	431	-9.51	2044		00 -10	0.00
Valseriana reference data			Isotopic gradient			
Passo della Presolana	1290	-8.75	0.1/100 meters			
Darfo - Boario	208	-7.66	0.1/100 meters			
Equation of the linear correlation line		Elevat	Elevation = -992.66 δ ¹⁸ O -7395.8		m Longin	elli a

Vulnerability assessment of karst aquifers using the COPA+K index-based method: the case of the Valseriana springs (Northern Italy)

 $\delta^{18}O \pm 0.15$ ‰ vs SMOW

and Selmo, 2003

•

THIN PLATE SPLINE TPS

R mm High: 2428 Low: 1510

mm High: 2640

_ow: 1530

INVERSE DISTANCE WEIGHTING

VALIDATION FOR THE NOSSANA CATCHMENT AREA

- Applying the weighted average for the TPS and IDW interpolation methods, the values are within the range of elevation estimated by isotopic correlation (±106 m).
- Better correlation for COPA+K method compared to COP approach.
- Problems for Ponte del Costone catchment **WHY**???

ma.s.l.

Catchment	СОР		COPA+K		Elevation by isotopic
	TPS	IDW	TPS	IDW	correlation
Nossana	1494	1513	1670	1856	1776
Ponte del Costone	736	736	923	923	1561

Vulnerability assessment of karst aquifers using the COPA+K index-based method: the case of the Valseriana springs (Northern Italy)

mm. High: 2640

Low: 1530

UNIVERSIT

Ponte del Costone springs Nossana spring River waters Hypothetical water (1000 m a.s.l.)

Vulnerability assessment of karst aquifers using the COPA+K index-based method: the case of the Valseriana springs (Northern Italy)

POSSIBLE MIXING WITH THE WATERS OF THE **SERIO RIVER**

 δ^{18} O value of a hypothetical recharge water A at the 1000 m elevation by exploiting local isotopic correlation

The Ponte del Costone spring waters stand perfectly between the river waters and a hypothetical recharge water A at 1000 m a.s.l. (maximum catchment elevation)

CONCLUSIONS

- applied and evaluated for a groundwater vulnerability assessment on the middle Valseriana area;
- COP (most vulnerable areas from 35.6% to 23.6%);
- COPA+K method underlined the different responses of the two considered approach);
- (for Nossana catchment);
- A mixing of the Ponte del Costone springs with the waters of the Serio river has been **demonstrated** \rightarrow has to be analized;
- The **COPA+K** has been shown to be an **excellent method for** the entire karst data and NO considerable computational effort.

• In this study, the COP, EPIK, and the newly designed COPA+K methods were

• The COPA+K approach allowed determining more precise areas compared to

water systems (percentage difference from 5.2% for COP to 17.5% for COPA+K

• The COPA+K vulnerability map was validated by correlating δ^{18} O values and precipitation altitude through a local isotopic correlation from reference data

environment of the **Pre-Alpine belt** due to its easy applicability \rightarrow **NO lot of**

Thank you for attention

A CITRINI, C CAMERA, F ALBORGHETTI, GP BERETTA

andrea.citrini@unimi.it

UNIVERSITÀ DEGLI STUDI DI MILANO

REFERENCES

ARPA Lombardia (2020) Richiesta dati misurati. https://www.arpalombardia.it/Pages/Meteorologia/Richiesta-155 dati-misurati.aspx. Accessed 29 August 2020

Doerfliger N, Jeannin P-Y, Zwahlen F (1999) Water vulnerability assessment in karst environments: a new method of defining protection areas using a multi-attribute approach and GIS tools (EPIK method). Environmental Geology 39(2):165–176. https://doi.org/10.1007/s002540050446

> FSLo Federazione Speleologica Lombarda (2020) Speleolombardia. https://speleolombardia.wordpress.com. Accessed 1 September 2020

Longinelli A, Selmo E (2003) Isotopic composition of precipitation in Italy: a first overall map. Journal of Hydrology 270(1-2):75-88. https://doi.org/10.1016/S0022-1694(02)00281-0

Regione Lombardia (2020) Geoportale.

http://www.geoportale.regione.lombardia.it/download-dati. Accessed 1 September 2020

Vías JM, Andreo B, Perles MJ, Carrasco F, Vadillo I, Jiménez P (2006) Proposed method for groundwater vulnerability mapping in carbonate (karstic) aquifers: the COP method: Application in two pilot sites in Southern Spain. Hydrogeol J 14(6):912-925. https://doi.org/10.1007/s10040-006-0023-6

