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�e purpose of this research is to investigate how a ρ-Einstein soliton structure on a warped product manifold a�ects its base and
�ber factor manifolds. Firstly, the pertinent properties of ρ-Einstein solitons are provided. Secondly, numerous necessary and
su�cient conditions of a ρ-Einstein soliton warped product manifold to make its factor ρ-Einstein soliton are examined. On a
ρ-Einstein gradient soliton warped product manifold, necessary and su�cient conditions for making its factor ρ-Einstein gradient
soliton are presented. ρ-Einstein solitons on warped product manifolds admitting a conformal vector �eld are also considered.
Finally, the structure of ρ-Einstein solitons on some warped product space-times is investigated.

1. An Introduction

Ricci soliton is crucial in the Ricci �ow treatment. In Ref-
erences[1, 2], the Ricci �ow is de�ned on a Riemannian
manifold (E, g) by an evolution equation for metrics g(t){ }
of the following form:

ztg(t) � − 2Ric, (1)

where Ric is the Ricci curvature tensor. �e initial metric g
on E satis�es the following equation:

Ric +
1
2
Lζg � λg, (2)

where ζ is a vector �eld on E, λ is a constant, and Lζ
represents the Lie derivative in the direction of a vector
�eld ζ on E. Manifolds admitting such structure are
called Ricci soliton [3]. Hamilton �rst investigated the
study of Ricci solitons as �xed points of the Ricci �ow in
the space of the metrics on E modulo di�eomorphisms

and scaling [4]. A Ricci soliton is called shrinking (steady
or expanding) if λ> 0 (λ � 0 or λ< 0 respectively). If ζ � 0
or is Killing, then the Ricci soliton is called a trivial
Ricci soliton. If f is a smooth function and ζ � ∇f, then
the Ricci soliton is described as gradient, ζ is referred
to as the potential vector �eld, and f is called the po-
tential function. In this case, equation (2) becomes as
follows:

Ric +Hf � λg, (3)

where Hf is the Hessian tensor. Previously, Ricci solitons
have been studied in depth for di�erent reasons and in
distinct spaces [5–11]. In Reference [12], it is shown that a
complete Ricci soliton is gradient. Gradient Ricci solitons are
basic generalizations of Einstein manifolds [13]. If λ is a
smooth function, then we say that (E, g) is a nearly Ricci
soliton manifold [14–16]. A generalization of Einstein sol-
iton has been deduced by considering the Ric-
ci–Bourguignon �ows [17–19]:
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ztg(t) � − 2(Ric − ρRg). (4)

)ese manifolds are called ρ-Einstein solitons and are
defined as follows: Let (E, g) be a pseudo-Riemannian
manifold, and let λ, ρ ∈ R, ρ≠ 0, and ζ ∈ X(E). )en,
(E, g, ζ, λ) is called a ρ-Einstein soliton if

Ric +
1
2
Lζg � λg + ρRg. (5)

Likewise, if a smooth function f: E⟶ R exists such
that ζ � ∇f, then a ρ-Einstein soliton (E, g, ζ, ρ) is gradient
and denoted by (E, g, f, ρ). In this case, equation (5) be-
comes as follows:

Ric + Hess(f) � λg + ρRg. (6)

A ρ-Einstein soliton is denoted as steady, shrinking, or
expanding, depending on whether λ has zero, positive, or
negative values. )e function f is called a ρ-Einstein po-
tential of the gradient ρ-Einstein soliton. Later, this per-
ception was circulated in many instructions, such as m

-quasi Einstein manifolds [20], Ricci–Bourguignon almost
solitons [21], and (E, ρ)-quasi-Einstein manifolds [22].
Huang got a sufficient condition for a compact gradient
shrinking ρ-Einstein soliton to be isometric to a quotient of
the round sphere Sn in Reference [23]. Moreover, Mondal
and Shaikh proved that a compact gradient ρ-Einstein
soliton with a nontrivial conformal vector field ∇f is
isometric to the Euclidean sphere Sn in Reference [24].
Recently, in Reference [21], Dwivedi demonstrated other
isometric theories of the gradient Ricci–Bourguignon
soliton. In Reference [25], the authors investigated a gra-
dient ρ-Einstein soliton on a Kenmotsu manifold. Some
curvature conditions on compact gradient ρ-Einstein sol-
iton M are given in Reference [26] to guarantee that M is
isometric to the Euclidean sphere. In contrast, an integral
condition on a noncompact ρ-Einstein soliton M is given to
ensure the vanishing of the scalar curvature. A splitting
theorem of a gradient ρ-Einstein soliton is given in Ref-
erence [27]. Accordingly, many characterizations of gra-
dient ρ-Einstein solitons are considered in Reference [28].
)e same study was recently extended to Sasakian mani-
folds in Reference [29]. A study of the lower bound of the
diameter of a compact gradient ρ-Einstein soliton is given
in Reference [30].

To the best of our knowledge, no research has been
completed on such a structure on warped product mani-
folds. In this regard, the research problems from the point of
view of warped product manifolds (WPMs) can be sum-
marized into two directions:

(1) Under what conditions does a WPM become a ρ
-Einstein soliton or a gradient ρ-Einstein soliton?

(2) What does a factor of a ρ-Einstein soliton WPM or a
gradient ρ-Einstein soliton WPM inherit?

To address these problems, first we proved many results
on the ρ-Einstein soliton. )en, we investigated necessary
and sufficient conditions on a (gradient) ρ-Einstein soliton
WPM in order to make its factor (gradient) ρ-Einstein

soliton. Additionally, we studied a ρ-Einstein soliton on a
WPM admitting a conformal vector field. Finally, we ap-
plied our results to generalized Robertson–Walker (GRW)
space-times and standard static space-times.

2. Preliminaries

2.1. ρ-Einstein Solitons on Pseudo-Riemannian Manifolds.
If ζ is a conformal vector field with conformal factor 2ω in a
ρ-Einstein soliton (E, g, ζ, λ), then

Ric(U, V) +
1
2
Lζg(U, V) � λg(U, V) + ρRg(U, V),

Ric(U, V) + ωg(U, V) � λg(U, V) + ρRg(U, V),

Ric(U, V) � (λ − ω + ρR)g(U, V).

(7)

By taking the trace over U, V, we get the following
equation:

R

n
� λ − ω + ρR,

R �
(λ − ω)n

1 − nρ
.

(8)

Since the scalar curvature of Einstein manifolds is
constant, the conformal factor is also constant, that is, ζ is
homothetic. Moreover, λ � ω if ρ � 1/n.

Proposition 1. Assume that ζ is a conformal vector field on a
ρ-Einstein soliton (E, g, ζ, λ) with factor 2ω. 7en, ζ is
homothetic, (E, g) is Einstein, and

R �
(λ − ω)n

1 − nρ
, (9)

where ρ≠ 1/n. Moreover, λ � ω if ρ � 1/n.

Corollary 1. Assume that ζ is a Killing vector field on a ρ
-Einstein soliton (E, g, ζ, λ), then

R �
nλ

1 − nρ
, (10)

where ρ≠ 1/n. Moreover, (E, g, ζ, λ) is steady if ρ � 1/n.
Conversely, assuming that (E, g) is an Einstein mani-

fold, then
R

n
g(U, V) +

1
2

Lζg􏼐 􏼑(U, V) � λg(U, V) + ρRg(U, V),

Lζg􏼐 􏼑(U, V) � λ −
R

n
+ ρR􏼒 􏼓g(U, V).

(11)

)erefore, ζ is a homothetic vector field on E.

Proposition 2. In a ρ-Einstein soliton (E, g, ζ, λ), ζ is a
homothetic vector field on E if (E, g) is Einstein. Furthermore,
ζ is Killing if λ � ((1/n) − ρ)R.
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In local coordinates, a contraction of the defining
equation implies that

Rij +
1
2
∇iζj + ∇jζ i􏼐 􏼑 � λgij + ρRgij,

∇iζ
i

� nλ +(nρ − 1)R.

(12)

)us, the vector field ζ is divergence-free. )e conser-
vative laws in physics usually arise from the vanishing of the
divergence of a tensor field. Here is a simple characterization
of the vanishing of the divergence of ζ.

Corollary 2. 7e vector field ζ in a ρ-Einstein soliton
(E, g, ζ, λ) is divergence-free if and only if nλ + (nρ − 1)R � 0.

It is also known that the flow lines of a divergence-free
vector field are volume-preserving diffeomorphisms ([31],
Chapter 3). )is discussion leads to the following result.

Theorem 1. 7e flow lines of the vector field ζ in a ρ-Einstein
soliton (E, g, ζ, λ) are volume-preserving diffeomorphisms if
and only if nλ + (nρ − 1)R � 0.

2.2. Warped Product Manifolds. Let (Ei, gi, Di), i � 1, 2 de-
note two ni-dimensional C∞ pseudo-Riemannian manifolds

equipped with metric tensors gi where Di is the Levi-Civita
connection of the metric gi for i � 1, 2. Let
f1: E1⟶ (0,∞) be a smooth positive real-valued func-
tion. A WPM, denoted by E � E1×fE2, is the product
manifold E1 × E2 equipped with the metric tensor
g � g1⊕f2g2 (for more details the reader is referred to
[32–36] and references therein). Let E � E1×fE2 be a
pseudo-Riemannian WPM and Ui, Vi ∈ X(Ei) for all i �

1, 2. )en, the Ricci tensor Ric of E is given by,

(1) Ric(U1, V1) � Ric1(U1, V1) − (n2/f)Hf(U1, V1),
(2) Ric(U1, U2) � 0,
(3) Ric(U2, V2) � Ric2(U2, V2) − f∘g2(U2, V2), where

f∘ � fΔf + (n2 − 1)‖∇f‖21, and Δ is the Laplacian
on E1.

)e scalar curvature a WPM satisfies

R � R1 +
1

f
2R2 − 2n

Δf
f

− n(n − 1)
1

f
2g1(∇f,∇f). (13)

Lemma 1 (see [35]). In a WPM E1×fE2, the Lie derivative
with respect to a vector field ζ � ζ1 + ζ2 satisfies

Lζg(U, V) � L
1
ζ1g1􏼐 􏼑 U1, V1( 􏼁 + f

2
L

2
ζ2g2􏼐 􏼑 U2, V2( 􏼁 + 2fζ1(f)g2 U2, V2( 􏼁, (14)

for any vector fields U � U1 + U2, V � V1 + V2, whereL
i
ζ i
is

the Lie derivative on Ei with respect to ζ i, for i � 1, 2.

3. ρ-Einstein Soliton Structure on WPMs

In this section, we investigate the ρ-Einstein soliton structure
on WPMs. For the rest of this work, let E � E1×fE2 be a
WPM with warping function f and let g � g1⊕f2g2. Also,

let ζ � ζ1 + ζ2 be a vector field on E. Let (E, g, ζ, λ) be a ρ
-Einstein soliton, that is,

Ric(U, V) +
1
2
Lζg(U, V) � λg(U, V) + ρRg(U, V). (15)

)us, for any vector fields U � U1 + U2, V � V1 + V2,
and ζ � ζ1 + ζ2 on E � E1×fE2, Lemma 1 implies that

Ric1 U1, V1( 􏼁 −
n2

f
H

f
U1, V1( 􏼁 + Ric2 U2, V2( 􏼁 − f

∘
g2 U2, V2( 􏼁

+
1
2

L
1
ζ1g1􏼐 􏼑 U1, V1( 􏼁 +

1
2
f
2
L

2
ζ2g2􏼐 􏼑 U2, V2( 􏼁 + fζ1(f)g2 U2, V2( 􏼁

� λg1 U1, V1( 􏼁 + λf
2
g2 U2, V2( 􏼁 + ρRg1 U1, V1( 􏼁 + ρRf

2
g2 U2, V2( 􏼁.

(16)

Let U � U1, V � V1, and Hf � σg, then

Ric1 U1, V1( 􏼁 +
1
2

L
1
ζ1

g1􏼐 􏼑 U1, V1( 􏼁 � λ1g1 U1, V1( 􏼁 + − λ1 + λ +
n2

f
σ + ρR􏼢 􏼣g1 U1, V1( 􏼁

� λ1g1 U1, V1( 􏼁 + ρ1R1g1 U1, V1( 􏼁.

(17)
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)en, (E1, g1, ζ1, λ1) is a ρ1-Einstein soliton, where

ρ1R1 + λ1 � ρR +
n2

f
σ + λ. (18)

Now, let U � U2 and V � V2, then

Ric2 U2, V2( 􏼁 − f
∘
g2 U2, V2( 􏼁

+
1
2
f
2
L

2
ζ2g2􏼐 􏼑 U2, V2( 􏼁 + fζ1(f)g2 U2, V2( 􏼁

� λf
2
g2 U2, V2( 􏼁 + ρRf

2
g2 U2, V2( 􏼁.

(19)

)us,

Ric2 U2, V2( 􏼁 +
1
2
f
2
L

2
ζ2g2􏼐 􏼑 U2, V2( 􏼁

� λf
2

+
f°

− fζ1(f) + ρRf
2

􏽨 􏽩g2 U2, V2( 􏼁

� λ2g2 U2, V2( 􏼁 + − λ2 + λf
2

+
f°

− fζ1(f) + ρRf
2

􏽨 􏽩g2 U2, V2( 􏼁

� λ2g2 U2, V2( 􏼁 + ρ2R2g2 U2, V2( 􏼁.

(20)

)en, (E2, g2, f2ζ2, λ2) is a ρ2-Einstein soliton, where

ρ2R2 + λ2 � ρRf
2

+ λf
2

+ f
∘

− fζ1(f). (21)

Theorem 2. Let (E, g, ζ, λ, ρ) be a ρ-Einstein soliton. 7en,

(1) (E1, g1, ζ1, λ1) is a ρ1-Einstein soliton if Hf � σg

where

ρ1R1 + λ1 � ρR +
n2

f
σ + λ. (22)

(2) (E2, g2, f2ζ2, λ2) is a ρ2-Einstein soliton, where

ρ2R2 + λ2 � ρRf
2

+ λf
2

+ f
∘

− fζ1(f). (23)

Let (E1, g1) and (E2, g2) be two Einstein manifolds with
factors μ1 and μ2, respectively, and let Hf � σg. )en
equation (16) becomes as follows:

μ1g1 U1, V1( 􏼁 + μ2g2 U2, V2( 􏼁 −
n2

f
σg1 U1, V1( 􏼁 − f

∘
g2 U2, V2( 􏼁

+
1
2

L
1
ζ1

g1􏼐 􏼑 U1, V1( 􏼁 +
1
2
f
2
L

2
ζ2

g2􏼐 􏼑 U2, V2( 􏼁 + fζ1(f)g2 U2, V2( 􏼁

� λg1 U1, V1( 􏼁 + λf
2
g2 U2, V2( 􏼁 + ρRg1 U1, V1( 􏼁 + ρRf

2
g2 U2, V2( 􏼁.

(24)

)us,

L
1
ζ1g1􏼐 􏼑 U1, V1( 􏼁 � 2 λ +

n2

f
σ − μ1 + ρR􏼢 􏼣g1 U1, V1( 􏼁,

L
2
ζ2

g2􏼐 􏼑 U2, V2( 􏼁 �
2

f
2 f
∘

− μ2 − fζ1(f) + λf
2

+ ρRf
2

􏽨 􏽩g2 U2, V2( 􏼁.

(25)

)at is, ζ1 and ζ2 are conformal vector fields on E1 and E2.

Theorem 3. In a ρ-Einstein soliton (E, g, ζ, λ), E � E1×fE2,

(1) ζ1 is conformal vector field on E1 if Hf � σg and
(E1, g1) is Einstein, and

(2) ζ2 is conformal vector field on E2 if (E2, g2) is
Einstein.

)e symmetry assumptions induced by Killing vector
fields (KVFs) are widely used in general relativity to gain a
better understanding of the relationship between matter and
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the geometry of a space-time. In this case, the metric tensor
does not change along the flow lines of a KVF. Such
symmetry is measured by the number of independent KVFs.
Manifolds of constant curvature admit the maximum
number of independent KVFs. Similarly, conformal vector
fields (CVFs) play a crucial role in the study of space-time
physics. )e flow lines of a CVF are conformal transfor-
mations of the ambient space. )us, the existence and
characterization of CVFs in pseudo-Riemannian manifolds

are essential and therefore are extensively discussed by both
mathematicians and physicists.

Now, assume that ζ is a conformal vector field on E, that
is, Lζg � 2ωg for some scalar function ω, then ω is constant
and

Ric(U, V) � (λ − ω + ρR)g(U, V). (26)

)is equation implies

Ric1 U1, V1( 􏼁 −
n2

f
H

f
U1, V1( 􏼁 + Ric2 U2, V2( 􏼁 − f

∘
g2 U2, V2( 􏼁

� [λ − ω + ρR]g1 U1, V1( 􏼁 +[λ − ω + ρR]f
2
g2 U2, V2( 􏼁.

(27)

If Hf � σg, then

Ric1 U1, V1( 􏼁 � λ − ω + ρR +
n2

f
σ􏼢 􏼣g1 U1, V1( 􏼁,

Ric2 U2, V2( 􏼁 � f
∘

+ λf
2

− ωf
2

+ ρRf
2

􏽨 􏽩g2 U2, V2( 􏼁.

(28)

)at is, both the base and fiber manifolds are Einstein.

Theorem 4. In a ρ-Einstein soliton (E, g, ζ, λ), E � E1×fE2
admitting a CVF ζ � ζ1 + ζ2,

(1) (E1, g1) is Einstein if Hf � σg, and
(2) (E2, g2) is Einstein.

)e condition Hf � σg is equivalent to ∇f is a con-
circular vector field. Equation (16) yields the following:

Ric1 U1, V1( 􏼁 −
n2

f
H

f
U1, V1( 􏼁 +

1
2

L
1
ζ1

g1􏼐 􏼑 U1, V1( 􏼁

� λg1 U1, V1( 􏼁 + ρRg1 U1, V1( 􏼁.

(29)

Suppose that ∇f is a concircular vector field with factor c,
that is, DU1

∇f � cU1, we get

Ric1 U1, V1( 􏼁 +
1
2

L
1
ζ1g1􏼐 􏼑 U1, V1( 􏼁

� λg1 U1, V1( 􏼁 +
cn2

f
+ ρR􏼢 􏼣g1 U1, V1( 􏼁

� λ1g1 U1, V1( 􏼁 + − λ1 + λ +
cn2

f
+ ρR􏼢 􏼣g1 U1, V1( 􏼁

� λ1g1 U1, V1( 􏼁 + ρ1R1g1 U1, V1( 􏼁.

(30)

)en, (E1, g1, ζ1, λ1) is a ρ1-Einstein soliton where

ρ1R1 + λ1 �
cn2

f
+ ρR. (31)

Corollary 3. In a ρ-Einstein soliton (E, g, ζ, λ, ρ), assume
that ∇f is a concircular vector field with factor c, then
(E1, g1, ζ1, λ1) is a ρ1-Einstein soliton where

ρ1R1 + λ1 �
cn2

f
+ ρR. (32)

Bang-Yen Chen proved that a Riemannian manifold
admitting a concircular vector field is locally a warped
product of the form I×φE1 [37]. )us, the aforementioned
warped product manifold becomes a sequential warped
product manifold [38].

From Lemma 1, it is clear that ζ1, ζ2 are CVFs on E1, E2
with conformal factors η1, η2, respectively. )en, by
employing equation (28) we get the following equation:

L
1
ζ1Ric

1
U1, V1( 􏼁 �

n2

f
σ + λ − ω + ρR􏼢 􏼣L

1
ζ1g1 U1, V1( 􏼁 + ζ1

n2

f
σ + λ − ω + ρR􏼠 􏼡g1 U1, V1( 􏼁.

L
1
ζ1Ric

1
U1, V1( 􏼁 �

n2

f
σ + λ − ω + ρR􏼠 􏼡η1 + ζ1

n2

f
σ + λ − ω + ρR􏼠 􏼡􏼢 􏼣g1 U1, V1( 􏼁

� φ1g1 U1, V1( 􏼁.

(33)
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where

φ1 �
n2

f
σ + λ − ω + ρR􏼢 􏼣η1 + ζ1

n2

f
σ + λ − ω + ρR􏼠 􏼡. (34)

Also,

L
2
ζ2Ric

2
U2, V2( 􏼁 �

f
∘

f
2 + λ − ω􏼠 􏼡f

2
+ ρRf

2
􏼢 􏼣L

2
ζ2g2 U2, V2( 􏼁,

L
2
ζ2Ric

2
U2, V2( 􏼁 � f

2 f
∘

f
2 + λ − ω + ρR􏼢 􏼣η2g2 U2, V2( 􏼁

� φ2g2 U2, V2( 􏼁,

(35)

where

φ2 � f
2 f
∘

f
2 + λ − ω + ρR􏼢 􏼣η2. (36)

Theorem 5. In a ρ-Einstein soliton (E, g, ζ, λ) admitting a
CVF ζ with factor ω,

(1) L1
ζ1
Ric1(U1, V1) � φ1g1(U1, V1) if Hf � σg, where

φ1 �
n2

f
σ + λ − ω + ρR􏼢 􏼣η1 + ζ1

n2

f
σ + λ − ω + ρR􏼠 􏼡,

(37)

(2) L2
ζ2
Ric2(U2, V2) � φ2g2(U2, V2), where

φ2 � f
2 f
∘

f
2 + λ − ω + ρR􏼢 􏼣η2. (38)

)e KVFs provide the isometries of space-time, whereas
the symmetry of the energy-momentum tensor is given by
the Ricci collineation. A vector field ζ represents a Ricci
collineation if the Ricci tensor is invariant under the Lie
dragging through flow lines of ζ. )e previous conclusion
establishes the shape of the Lie derivative of the Ricci tensor
concerning the fields ζ i, on Mi, i � 1, 2.

Let (E, g, ζ, λ, ρ) be a gradient ρ-Einstein soliton with ζ �

∇u, then

Ric + H
u

� λg + ρRg. (39)

)us,

Ric U1 + U2, V1 + V2( 􏼁 + H
u

U1 + U2, V1 + V2( 􏼁

� λg U1 + U2, V1 + V2( 􏼁 + ρRg U1 + U2, V1 + V2( 􏼁.
(40)

Let U � U1, V � V1

Ric1 U1, V1( 􏼁 −
n2

f
H

f
U1, V1( 􏼁 + H

u1
1 U1, V1( 􏼁

� λg1 U1, V1( 􏼁 + ρRg1 U1, V1( 􏼁,

Ric1 U1, V1( 􏼁 + H
ϕ1
1 U1, V1( 􏼁

� λ1g1 U1, V1( 􏼁 + − λ1 + λ + ρR( 􏼁g1 U1, V1( 􏼁

� λ1g1 U1, V1( 􏼁 + ρ1R1g1 U1, V1( 􏼁,

(41)

where ϕ1 � u1 − u2 ln f and u1 � u at a fixed point of E2.
)en, (E1, g1, ζ1, ρ1) is a gradient ρ1-Einstein soliton where

ρ1R1 + λ1 � λ + ρR. (42)

Now, let U � U2, V � V2, then

Ric2 U2, V2( 􏼁 − f
∘
g2 U2, V2( 􏼁 + H

ϕ2
2 U2, V2( 􏼁

� λf
2
g2 U2, V2( 􏼁 + ρRf

2
g2 U2, V2( 􏼁.

(43)

)is yields

Ric2 U2, V2( 􏼁 + H
ϕ2
2 U2, V2( 􏼁

� λ2g2 U2, V2( 􏼁 + − λ2 + λf
2

+ f
∘

+ ρRf
2

􏼐 􏼑g2 U2, V2( 􏼁

� λ2g2 U2, V2( 􏼁 + ρ2R2g2 U2, V2( 􏼁,

(44)

where u2 � u at a fixed point of E1. )en, (E2, g2, ζ2, ρ2) is a
gradient ρ2-Einstein soliton where

ρ2R2 + λ2 � λf
2

+ f
∘

+ ρRf
2
. (45)

Theorem 6. In a gradient ρ-Einstein soliton (E, g, ζ, λ),

(1) (E1, g1, ζ1, λ1) is a gradient ρ1-Einstein soliton where

ρ1R1 + λ1 � λ + ρR, (46)

(2) (E2, g2, ζ2, λ2) is a gradient ρ2-Einstein soliton where

ρ2R2 + λ2 � λf
2

+ f
∘

+ ρRf
2
. (47)

)is theorem provides an inheritance property of the
structure of the gradient ρ-Einstein soliton structure to
factor manifolds of the warped product manifold.

3.1. ρ-Einstein Solitons on GRW Space-Times. Let E � I×fE

be a generalized Robertson–Walker (GRW) space-time with
metric g � − dt2⊕f2g. )en, the Ricci curvature tensor Ric
on E is as follows:
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Ric zt, zt( 􏼁 � −
n €f

f
,

Ric U, zt( 􏼁 � 0,

Ric(U, V) � Ric(U, V) − f
◇

g(U, V),

(48)

where f◇ � − f €f − (n − 1) _f
2
, see References [38–40].

Lemma 2. Suppose that hzt, uzt, vzt ∈ X(I) and
ζ, U, V ∈ X(E), then

Lζg(U, V) � − 2 _huv + f
2
Lζg(U, V) + 2hf _fg(U, V),

(49)

where U � uzt + U, V � vzt + V, and ζ � hzt + ζ.
Let (E, g, ζ, λ), E � I×fE, be a ρ-Einstein soliton GRW

space-time. )en,

Ric(U, V) +
1
2
Lζg(U, V) � λg(U, V) + ρRg(U, V), (50)

where U � uzt + U, V � vzt + V and ζ � hzt + ζ are vector
fields on E. )us,

−
n €f

f
uv + Ric(U, V) − f

◇
g(U, V) − _huv +

1
2
f
2
Lζg(U, V) + hf _fg(U, V)

� − λuv + f
2λg(U, V) − ρRuv + ρRf

2
g(U, V).

(51)

)is yields

n €f � f(λ − _h) + ρRf,

Ric(U, V) +
1
2
f
2
Lζg(U, V)

� λf
2
g(U, V) + ρRf

2
g(U, V) + f

◇
g(U, V) − hf _fg(U, V).

(52)

)us, (E, g, f2ζ, ρ) is a ρ-Einstein soliton, where

ρR + λ � (λ + ρR)f
2

+ f
◇

− hf _f. (53)

Theorem 7. In a ρ-Einstein soliton (E, g, ζ, λ), where E �

I×fE is a GRW space-time, it is

(1) n €f � f(λ − _h) + ρRf,
(2) (E, g, f2ζ, λ) is a ρ-Einstein soliton, where

ρR + λ � (λ + ρR)f
2
. (54)

In a ρ-Einstein soliton (E, g, ζ, λ), where E � I×fE is a
GRW space-time and ζ � hzt + ζ is a CVF on E, that is,
Lζg � ωg, and ω is constant (see Section 2), then

Ric(U, V) � (λ − ω + ρR)g(U, V). (55)

)us,

−
n €f

f
uv + Ric(U, V) − f

◇
g(U, V)

� − (λ − ω + ρR)uv +(λ − ω + ρR)f
2
g(U, V).

(56)

)us,

n €f

f
� λ − ω + ρR, (57)

Ric(U, V) � f
◇

+(λ − ω + ρR)f
2

􏽨 􏽩g(U, V). (58)

By using equation (57) we get the following equation:

Ric(U, V) � (n − 1) f €f − _f
2

􏼒 􏼓􏼔 􏼕g(U, V). (59)

)erefore, (E, g) is an Einstein manifold with factor μ �

(n − 1)(f €f − _f
2
).

Theorem 8. In a ρ-Einstein soliton (E, g, ζ, λ) admitting a
CVF ζ � hzt + ζ, where E � I×fE is a GRW space-time, (E, g)

is an Einstein manifold with factor μ � (n − 1)(f €f − _f
2
).

From Lemma 2, we get ζ is a CVF on E with conformal
factor η. )en, by using )eorem 8, we get the following
equation:

LζRic(U, V) � (n − 1) f €f − _f
2

􏼒 􏼓􏼔 􏼕Lζg(U, V)

� (n − 1) f €f − _f
2

􏼒 􏼓ηg(U, V)

� φg(U, V),

(60)

where
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φ � (n − 1) f €f − _f
2

􏼒 􏼓η. (61)

Theorem 9. In a ρ-Einstein soliton (E, g, ζ, λ) admitting a
CVF ζ � hzt + ζ, where E � I×fE is a GRW space-time,

LζRic(U, V) � φg(U, V), (62)

where

φ � (n − 1) f €f − _f
2

􏼒 􏼓η. (63)

In a ρ-Einstein soliton (E, g, ζ, λ), where E � I×fE is a
GRW space-time, it is

Ric(U, V) +
1
2
Lζg(U, V) � λg(U, V) + ρRg(U, V). (64)

Assume that (E, g) is Einstein, then for any vector fields
U � U, V � V, and ζ � hzt + ζ we have get

Lζg(U, V) � 2
1

f
2 − μ + f

◇
− hf _f + f

2λ􏼐 􏼑 + ρR􏼢 􏼣g(U, V)

� ηg(U, V).

(65)

)en, ζ is a CVF on E with conformal factor η where

η � 2
1

f
2 − μ + f

◇
− hf _f + f

2λ􏼐 􏼑 + ρR􏼢 􏼣. (66)

Theorem 10. In a ρ-Einstein soliton (E, g, ζ, λ), where E �

I×fE is a GRW space-time, ζ is a CVF on E if (E, g) is
Einstein manifold with conformal factor η where

η � 2
1

f
2 − μ + f

◇
− hf _f + f

2λ􏼐 􏼑 + ρR􏼢 􏼣. (67)

3.2. ρ-Einstein Solitons on a Standard Static Space-Times.
A standard static space-time (or f-associated SSST) is a
Lorentzian warped product manifold E � If × E furnished
with the metric g � − f2dt2⊕g. )e Ricci curvature tensor
Ric on E is as follows:

Ric zt, zt( 􏼁 � fΔf,

Ric U, zt( 􏼁 � 0,

Ric(U, V) � Ric(U, V) −
1
f

H
f

(U, V),

(68)

whereΔf denotes the Laplacian of f on E.)is space-time is
a generalization of several notable classical space-times. )e
Einstein static universe and Minkowski space-time are good
examples of standard static space-times [13].

Lemma 3. Suppose that hzt, uzt, vzt∈ X(I) and
ζ, U, V ∈ X(E), then

Lζg(U, V) � Lζg(U, V) − 2uvf
2
( _h + ζ(ln f)), (69)

where U � uzt + U, V � vzt + V, and ζ � hzt + ζ.
Let E � If × E be a ρ-Einstein soliton (E, g, ζ, λ), then

Ric(U, V) +
1
2
Lζg(U, V) � λg(U, V) + ρRg(U, V), (70)

where U � uzt + U, V � vzt + V, and ζ � hzt + ζ are vector
fields on E. )en,

− Δf + f _h + ζ(f) � [λ + ρR]f,

Ric(U, V) +
1
2
Lζg(U, V)

� λg(U, V) + ρRg(U, V) +
1
f

H
f

(U, V).

(71)

Suppose that Hf(U, V) � σg, then

Ric(U, V) +
1
2
Lζg(U, V) � λg(U, V) + ρRg(U, V), (72)

where

ρR + λ � λ +
σ
f

+ ρR. (73)

Theorem 11. If Hf(U, V) � σg in a ρ-Einstein soliton
(E, g, ζ, λ) where E � If × E is a standard static space-time,
then (E, g, ζ, λ) is a ρ-Einstein soliton, where

ρR + λ � λ +
σ
f

+ ρR. (74)

)e condition Hf � σg is equivalent to ∇f is a con-
circular vector field with factor c, that is, DU∇f � cU. Now,
one gets

Ric(U, V) −
c

f
g(U, V) +

1
2
Lζg(U, V)

� λg(U, V) + − λ + λ +
c

f
+ ρR􏼠 􏼡g(U, V)

� λg(U, V) + ρRg(U, V).

(75)

)en, (E, g) is an ρ-Einstein soliton where

ρR + λ � λ +
c

f
+ ρR. (76)

Corollary 4. If ∇f is a concircular vector field with factor σ
on a ρ-Einstein soliton (E, g, ζ, λ) where E � If × E is a
standard static space-time, then (E, g, ζ, λ) is an ρ-Einstein
soliton, where

ρR + λ � λ +
c

f
+ ρR. (77)

Now, assume that ζ � hzt + ζ is a conformal vector field
on E, that is, Lζg � ωg, then
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Ric(U, V) � (λ − ω + ρR)g(U, V). (78)

)en

−
Δf
f

� λ − ω + ρR. (79)

Also,

Ric(U, V) −
1
f

H
f

(U, V) � (λ − ω + ρR)g(U, V). (80)

If Hf(U, V) � σg, then by using equation (79) we get the
following equation:

Ric(U, V) �
1
f

(σ − Δf)g(U, V). (81)

)us, (E, g) is an Einstein manifold with factor
μ � (1/f)(σ − Δf).

Theorem 12. If ζ � hzt + ζ is a CVF on a ρ-Einstein soliton
(E, g, ζ, λ) where E � If × E is a standard static space-time
and Hf(U, V) � σg, then (E, g) is an Einstein manifold with
factor μ � (1/f)(σ − Δf).

From Lemma 3, we get ζ is a CVF on E with conformal
factor η. )en, by using )eorem 12, we get

LζRic(U, V) �
1
f

(σ − Δf)Lζg(U, V). (82)

Since ζ � hzt + ζ is a CVF on E, ζ is a CVF on E with
conformal factor η, thus

LζRic(U, V) �
1
f

(σ − Δf)ηg(U, V) � φg(U, V), (83)

where

φ �
1
f

(σ − Δf)η. (84)

Theorem 13. If ζ � hzt + ζ is a CVF on a ρ-Einstein soliton
(E, g, ζ, λ) where E � If × E is a standard static space-time,
then

LζRic(U, V) � φg(U, V), (85)

where

φ �
1
f

(σ − Δf)η. (86)

In a ρ-Einstein soliton standard static space-time
(E, g, ζ, λ, ρ), it is

Ric(U, V) +
1
2
Lζg(U, V) � λg(U, V) + ρRg(U, V). (87)

Assume that (E, g) is Einstein manifold and Hf(U, V) �

σg, then

Lζg(U, V) � 2
σ
f

− μ + λ + ρR􏼢 􏼣g(U, V). (88)

)us, ζ is a conformal vector field on E.

Theorem 14. In a ρ-Einstein soliton (E, g, ζ, λ) where E �

If × E is a standard static space-time, assume that (E, g) is
Einstein manifold and Hf(U, V) � σg, then ζ is a conformal
vector field on E.
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