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Abstract 

 

Alzheimer’s disease (AD) and Frontotemporal dementia (FTD) are complex heterogeneous disorders with a 
strong genetic background, but the identification of a genetic cause is difficult given the multifactorial 
aetiology of the disorders. Epigenetic and environmental factors interplay to influence this complexity. The 
aim of the present project was to explore the two most common forms of dementia using genetic and 
epigenetic approaches.   

The first part focused on the genetic screening of 188 patients using a Next Generation Sequencing 
methodology. Different custom panels were designed to screen the most common genes involved in AD and 
FTD, common genetic risk factors and genes related to other neurodegenerative diseases causing dementia. 
Patients negative for the genetic screening of common causative genes but with strong family history for 
dementia and/or young onset of the symptoms were further investigated applying the SureSelect Custom 
Constitutional Panel 17Mb (CCP17), comprising more than 5000 genes associated to inherited diseases.  

The second part of the projects was based on the study of expression profile of miRNAs in genetic FTD 
patients, aiming to find a signature able to distinguish the genetic subgroups. The study was performed to 
test the expression levels of 754 miRNAs in 30 patients carrying mutations in C9ORF72, GRN and MAPT genes, 
and 10 control subjects, using OpenArray technology.  

Following the genetic study, a total of 35 variants were found in 36 over 188 patients screened. Some of 
these variants occurred in causative genes or in genetic risk factors associated to AD and FTD; other genes 
were classically associated to other phenotypes. Moreover, variants in genes unexpected in the clinical 
setting provide links to biological processes that need to be further explored.  

As resulted from the epigenetic study, a specific signature of miRNAs has been found for each group, which 
can distinguish patients from healthy subjects with high sensitivity and specificity and predict the underlying 
pathology.  

Targeted NGS confirms to be a highly efficient, cost-effective method able to unravel rare genetic variants 
whose significance need to be further explored. Studying epigenetic factors such as miRNA  and their target 
genes would be helpful in gaining new insights into the pathogenic processes characteristic of dementias. 
This makes miRNAs interesting potential therapeutic targets. 
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Riassunto 

 

La malattia di Alzheimer (AD) e la Demenza frontotemporale (FTD) sono malattie eterogenee complesse con 
una forte componente genetica, ma l'identificazione di una causa genetica è difficile data l'eziologia 
multifattoriale delle due patologie. Fattori epigenetici e ambientali interagiscono per influenzare 
ulteriormente questa complessità. Lo scopo di questo progetto è stato quello di esplorare le due forme più 
comuni di demenza utilizzando approcci genetici ed epigenetici. 

La prima parte si è concentrata sullo screening genetico di 188 pazienti utilizzando la metodologia Next 
Generation Sequencing (NGS). Diversi pannelli sono stati disegnati per esaminare i geni più comuni coinvolti 
in AD e FTD, fattori di rischio genetici comuni e geni correlati ad altre malattie neurodegenerative che 
causano demenza. I pazienti risultati negativi allo screening genetico ma con una forte storia familiare per 
demenza e/o insorgenza precoce dei sintomi sono stati ulteriormente studiati applicando SureSelect Custom 
Constitutional Panel 17Mb (CCP17), che comprende più di 5000 geni associati a malattie ereditarie. 

La seconda parte del progetto si è basata sullo studio del profilo di espressione dei miRNA in pazienti FTD 
genetici, con l'obiettivo di trovare una firma epigenetica in grado di distinguere il sottogruppo genetico. Lo 
studio è stato condotto per testare i livelli di espressione di 754 miRNA in 30 pazienti portatori di mutazioni 
nei geni C9ORF72, GRN e MAPT e 10 soggetti di controllo, utilizzando la tecnologia OpenArray. 

A seguito dello screening genetico, sono state trovate in totale 35 varianti in 36 su 188 pazienti sottoposti a 
screening. Alcune di queste varianti sono state individuate in geni causativi o in fattori di rischio genetici 
associati ad AD e FTD; altre in geni classicamente associati ad altri fenotipi. Inoltre, altre varianti identificate 
in geni inaspettati in ambito clinico forniscono collegamenti a processi biologici che devono essere 
ulteriormente esplorati.  

Come risultato dello studio epigenetico, è stata trovata una firma specifica di miRNA per ciascun gruppo, che 
può distinguere i pazienti da soggetti sani con elevata sensibilità e specificità e prevedere la patologia 
sottostante.  

L'NGS si conferma un metodo altamente efficiente ed economico in grado di svelare rare varianti genomiche 
il cui significato deve essere ulteriormente esplorato. Studiare fattori epigenetici come i miRNA e i loro geni 
target sarebbe utile per ottenere nuove informazioni sui processi patogeni caratteristici delle demenze. 
Questo fa dei miRNA interessanti potenziali target terapeutici.   
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1.1 INTRODUCTION 

1.1 Dementia 
Dementia is a heterogeneous group of disorders leading to a progressive decline in cognitive functions, which 

range from memory, thinking, orientation to language and changes in behavior [1].   

As stated by the World Health Organization (WHO), worldwide about 55 million people suffer from dementia 

in 2019, with nearly ten million new cases every year, and this number is expected to reach 139 million by 

2050 [2]. As the population ages, dementia is becoming a major global health problem; a disease-modifying 

treatment is still lacking, therefore there is increasing focus on risk reduction, timely diagnosis, and early 

intervention. The umbrella term dementia group several entities with different incidence on the population. 

Alzheimer’s disease is the first cause of dementia, accounting for 60-70% of cases [3]. 10-20% of cases are 

Vascular dementia, caused by damage to brain blood vessels. Often coexist with AD. 10% of cases are caused 

by Frontotemporal dementia, mostly affecting people under the age of 65 years. 5% are Lewy body dementia, 

a disease characterized by abnormal inclusions of α-synuclein into neural cells [4]. 

Alzheimer’s disease and frontotemporal dementia, the two main cause of dementia in senile and pre-senile 

population, are complex, multifactorial entities, since only a small percentage of the cases is familial with an 

autosomal dominant pattern of transmission. Sporadic cases are likely caused by a combination of risk factors 

including age, lifestyle and environment, interplaying with genetic and epigenetic factors [5].  

 

1.2 Alzheimer’s disease 

Alzheimer’s disease (AD) is the most common form of dementia (60% of cases) [3].  

It is a progressive and irreversible neurodegenerative disease affecting hippocampal and cortical regions of 

the CNS. Selective and localized neuronal loss causes memory impairments and disturbance of additional 

cognitive functions, namely word-finding, spatial cognition, reasoning, judgment and problem solving. It was 

firstly described by Alois Alzheimer in 1906 which identified the pathological hallmarks. AD is mostly sporadic, 

affecting people over 65 years (late-onset AD, LOAD), but there can be also an early onset presentation (early-

onset AD, EOAD, <65 years, about 10% of cases). EOAD and LOAD patients are clinically and pathologically 

similar and both occur in familial and sporadic patients [6]. 

The incidence of AD is three new cases over 100.000 people under 60 years of age and 125/100.000 people 

over 60 years. The prevalence is estimated as 300/100.000 people between 60 and 69 years old, 

3.200/100.000 in people between 70 and 79 years and 10.800/100.000 in subjects over 80 years of age [7]. 
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1.2.1 Clinical characteristics 

AD has an insidious onset, often hard to identify. Usually, the earliest symptoms are impairment of episodic 

memory and inability to store new information. Then, other cognitive deficits become evident. Language is 

impaired since the patient cannot remember words. Progressively, the patient became unable to recognize 

faces (prosopagnosia); ability of calculation is lost; visuospatial disorientation appears [8].  As the disease 

progresses, motor functions are impaired too. The patient is unable to dress himself, to use any tools. This 

situation is made difficult by the onset of psychiatric symptoms, mostly depression, psychosis, behavioral 

issues. In the final stages, the patients lose their self-sufficiency. The course of the disease ranges from 7 to 

12 years and varies from patient to patient [8]. 

Currently, AD diagnosis is made in accordance with Dubois et al. 2014 [9] which revised and proposed 

advances to international Working Group (IWG) and the US National Institute on Aging–Alzheimer’s 

Association criteria. AD diagnosis can be made in the presence of an amnestic syndrome, that can be 

associated to various cognitive or behavioral changes,  and at least  one  of the changes indicative of in-vivo 

Alzheimer’s pathology, namely a CSF profile consisting of decreased Aβ1–42  levels  together  with  increased  

T-tau  or  P-tau  concentrations,  or  an  increased  retention on amyloid tracer PET.  

 

1.2.2 AD neuropathological hallmarks  

At macroscopic level, AD is characterized by reduced brain convolution and expanded ventricles, as a result 

of atrophy of frontal, temporal and parietal lobes, with main involvement of hippocampus [10]. 

At microscopic level, neuronal cell loss is observed in the cortices, particular hippocampus, entorhinal cortex, 

parahippocampal gyrus. Anterior nucleus of thalamus, amygdala and basal nucleus of Meynert are involved 

as well. Remaining neurons show reduced volume, with less dendrites and axons, and therefore synaptic loss. 

Neuronal alteration is coupled with astrocytic proliferation, as a compensatory and reparative mechanism 

[10]. Two are the neuropathological hallmarks of AD: extracellular accumulation of diffuse and neuritic 

amyloid plaques and the intraneuronal accumulation of neurofibrillary tangles (NFTs) [11]  (Figure 1). 

Amyloid plaques are made of fibrillary peptides arranged as β sheets [12]. They are surrounded by altered 

axons and dendrites, which are in turn associated to activated astrocytes and microglia. Amyloid-β (Aβ) 

protein is the principal component of amyloid plaques. Aβ presents with two main forms: a peptide made of 

40 amino acids (Aβ1-40), more common and less prone to aggregation, and Aβ1-42 form which is more 

hydrophobic and highly prone to aggregate. Amyloid plaques are spread throughout the cortex, also in areas 

not involved in the AD symptomatology (as putamen, cerebellum) [13]. Remaining neurons present 

cytoskeleton abnormality, mainly neurofibrillary tangles. They consist in double helical filaments made of 

aggregates of tau protein and can be located in the soma, axons and dendrites. In NFT tau is 

hyperphosphorylated in several sites [14–16] .  
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Figure 1. AD neuropathological hallmarks. A: senile plaques formed mainly by aggregated of Amyloid-β. B: tangles 
composed by aggregates of hyperphosphorylated tau protein. 

 

 

1.2.3 AD pathogenesis 

 

1.2.3 .1  Role of Aβ  

Aβ comes from the amyloid precursor protein (APP) as consequence of sequential proteolytic cuts by several 

enzymes.  APP is a transmembrane glycoprotein present in dendrites, axons and cell body of neurons but it 

is also present in non-neuronal cells (astrocytes, microglia, smooth endothelial cells) [17].  

So far, several physiological roles of APP have been proposed. The extracellular domain of APP mediates cell-

to-cell adhesion to support synaptic connection, mediate neuronal signalling and neurotransmitter release 

through the activation of calcium channels [18,19]. APP is cleaved by three proteolytic factors: α-, β-and γ-

secretase. The sequence of this cleavage determines the amyloidogenic or the non-amyloidogenic processing 

of APP [20] (figure 2). α-secretase (ADAM9, 10 and 17) cleavage creates a soluble fragment (sAPPα) released 

in the extracellular space [21,22] and a transmembrane fragment of 83 amino acids (Carboxyterminal 

fragment-α, CTFα). γ-secretase [with presenilins (PSEN1-2) as major components] cleaves the CTFα creating 

the p3 peptide (non-amyloidogenic pathway) [17]. In the amyloidogenic pathway, β-secretase (whose major 

component is β-site APP cleaving enzyme 1, BACE1) cuts a soluble fragment of reduced size (sAPPβ), leaving 

a transmembrane fragment of 99 residues (CTFβ) [23,24]. The BACE product can then be transferred to the 

cell surface where it becomes a substrate for γ-secretase [26]. The subsequent action of γ-secretase creates 

the Aβ peptide. 

 

 

A B 
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Figure 2. Amyloidogenic and non-amyloidogenic pathway. APP: amyloid precursor protein; CTFα: Carboxyterminal 
fragment-α; CTFβ: Carboxyterminal APP fragment-β. soluble APP fragment-α (sAPPα); soluble APP fragment- β (sAPPβ); 
AICD: amyloid precursor protein intracellular domain; p3: p3 fragment. 
 

 

Peptide Aβ is constitutively produced and released by cells under normal conditions [27], and is measurable 

in cerebrospinal fluid (CSF) and plasma of normal subjects throughout life. Both the Aβ1-40 and Aβ1-42 forms 

can be identified in CSF and plasma. Other cell types in brain tissue also express variable amounts of APP 

(astrocytes, microglia, smooth endothelial cells) and could contribute to the process of secretion and 

deposition of Aβ [18]. 

Dysregulated APP processing may contribute to AD pathogenesis by elevating Aβ production, and reducing 

the Aβ40/Aβ42 ratio. Mutations in PS1 and PS2 primarily alter APP γ-cleavage, thereby resulting in a decreased 

Aβ40/Aβ42 ratio. Most FAD mutations in APP are located nearby the γ-secretase cleavage site, also altering 

the ratio [28,29]. During AD pathogenesis, Aβ aggregates are assembled from Aβ monomers into a variety of 

unstable oligomeric species. Oligomeric Aβ then further aggregates to protofibrils, which ultimately elongate 

into insoluble fibrillar assemblies comprising β-strand repeats. Extracellular Aβ aggregates in their fibrillar 

form are resistant to hydrolytic degradation. [30,31]. Evidence suggest that mitochondrial dysfunction is 

involved in AD pathogenesis [32]. Aβ has been observed in mitochondria in the brain of AD patients and AD 

mouse models. Abnormal accumulation in mitochondria, causes altered mitochondrial structure, decreased 

respiratory function and ATP production, impaired mitochondrial dynamics. This leads to elevated 

mitochondria associated oxidative stress, another important contributor to AD [33]. 
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1.2.3.2  Role of tau protein 

The tau protein is fundamental in stabilizing the microtubules. It is encoded by MAPT gene, located on 

chromosome 17 and including 16 exons.  The tau protein exists in 6 different isoforms composed of 352-441 

amino acids, due to alternative splicing at the level of exons 2,3 and 10 [29,34]. Tau is highly expressed in 

neurons in the mammalian brain, and normally localizes predominantly to axons as an important regulator 

of axonal transport [35]. Recent studies demonstrate that tau is also present in dendrites and postsynaptic 

compartments, possibly playing a role in regulating synaptic plasticity [36]. Tau is also moderately expressed 

in oligodendrocytes, where it plays a role in process outgrowth and myelination [37], and astrocytes, where 

its role is still unclear [38]. 

The pathological tau form is abnormally phosphorylated, and this hyperphosphorylation may be an early 

event of AD pathogenesis.  Tau phosphorylation is regulated by multiple protein kinases, such as GSK-3β and 

CDK5, and phosphatases, including PPA1, PP2A, PP2b and PP5.  The balance between phosphorylation by 

kinases and dephosphorylation by phosphatases appears to be crucial. For instance, in brains affected by AD 

there is a reduction in phosphatase activity; in particular, pyrophosphatase 2A (PP-2A) is reduced by 20%-

30% in AD [38]. Phosphorylation affects tau microtubule binding, whereas concurrent tau 

hyperphosphorylation at numerus sites results in tau dissociation from microtubules and enhances tau 

aggregation [20]. Aggregation is  increased also by mutations in MAPT gene and the presence of pathological 

tau seeds [20]. Pathogenic tau may impair microtubule assembly, disrupt axonal transport, impair pre- and 

postsynaptic functions, and induce neuronal cell death. Evidences suggest that tau overexpression and 

hyperphosphorylation can damage mitochondrial axonal transport, dynamics and function to impair 

neuronal viability [39]. However, it should be noted that no MAPT mutations have been associated with AD 

so far. Therefore, mechanisms underlying tau aggregation in AD may be different from those involved in 

tauopathies caused by the MAPT mutations [20]. 

 

 

1.2.3.3  Neuroinflammation and glial involvement  

In the last decade, the discovery of increased levels of inflammatory markers in patients with AD and the 

identification of AD risk genes associated with innate immune functions [40–42] led to the acknowledgement 

of neuroinflammation as an important player in the pathogenesis of AD. Inflammation within the CNS can be 

caused by various pathological insults (infection, trauma, ischaemia and toxins). During the inflammatory 

response, pro-inflammatory cytokines, including interleukin (IL) 1β, IL-6, IL-18 and tumour necrosis factor 

(TNF), chemokines such as C-C motif chemokine ligand 1 (CCL1), CCL5 and C-X-C motif chemokine ligand 1 

(CXCL1) are produced; moreover, small-molecule messengers, including prostaglandins and nitric oxide (NO), 

and reactive oxygen species are released by innate immune cells in the CNS [43,44]. The innate immune cells 

involved in this process are primarily microglia and astrocytes, but capillary endothelial cells and infiltrating 
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blood cells also contribute to neuroinflammation, especially when the blood–brain barrier (BBB) is disrupted 

[43,44]. The release of pro-inflammatory molecules can lead to synaptic dysfunction, neuronal death and 

inhibition of neurogenesis  [45]. IL-1β induces synaptic loss by increasing prostaglandin E2 production, which 

leads to presynaptic glutamate release and postsynaptic N-methyl-D-aspartate (NMDA) receptor activation 

[46], and TNF causes neuronal death by activating TNF receptor 1 (TNFR1) and recruiting caspase 8 when the 

nuclear factor-κB (NF-κB) pathway is inhibited [47]. In addition, the complement system can be activated, 

promoting the phagocytic function of microglia. This could result in inappropriate pruning of synapses [48].  

Anti-inflammatory cytokines, such as IL-1 receptor antagonist, IL-4, IL-10 and IL-11, are also produced during 

the neuroinflammatory process and could be part of a sophisticated mechanism to prevent excessive 

neuroinflammation.  In the context of neurodegenerative disease, this compensative mechanism fail and 

neuroinflammation became a chronic process able to drive the disease [44].  

 

 

1.2.3.3.1  Astrocytes 

Astrocytes are specialized glial cells that play a role in regulation of cerebral blood flow [49], maintenance of 

fluid and neurotransmitter homeostasis [50]. Moreover they induce synapse formation and provide 

metabolic and neurotrophic support for synapses [51,52]. They also form unique perivascular channels in the 

CNS, being part of the glymphatic system, which eliminate potentially neurotoxic waste products, including 

amyloid and tau species [53]. 

Astrocytes respond to pathological insults through reactive gliosis, which is part of the neuroinflammatory 

process [54]. Reactive astrocytes exhibit hypertrophic processes and upregulation of glial fibrillary acidic 

protein (GFAP). However, various phenotypes have been observed in this population. Inflammatory insult 

has been proposed to induce the A1 astrocyte phenotype through the NF-κB pathway, which is characterized 

by the expression of inflammatory mediators, whereas ischaemia induces the A2 phenotype, marked by the 

expression of neurotrophic factors [55].  

Amyloid-containing granules have been observed in astrocytes near amyloid plaques in human brains, 

suggesting an attempt by astrocytes to clear amyloid deposition during the disease process [56]. Further 

experiments demonstrated that astrocytes migrate towards amyloid plaques and degrade Aβ in vitro and in 

vivo [57]. However, A1 astrocytes, which are toxic to the CNS, are found in abundance in post-mortem brain 

tissue from people with AD, implying a detrimental role of these cells [58]. In an animal model of AD, reactive 

astrocytes were found to release excessive GABA and glutamate, leading to impaired memory and synaptic 

loss [59]. Moreover, these cells contribute to dysregulated microcirculation and disruption of the BBB, which 

facilitates the accumulation of Aβ and progression of the disease [60].  
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1.2.3.3.2  Microglia 

Microglia are innate immune cells of the myeloid lineage that reside in the CNS. Microglial progenitors have 

been shown to arise from primitive haematopoiesis early in embryonic development and later migrate to the 

developing brain [61]. Microglia has important roles in developmental synaptic pruning, neuronal apoptosis, 

maintenance of synaptic plasticity and immune surveillance [62,63]. In the presence of an endogenous or 

exogenous pathological insult, microglial surface receptors can recognize pathogens, cell debris or abnormal 

proteins, including Aβ species, and induce a microglial response [44]. In such situation, microglia change its 

morphology from highly ramified to an amoeboid form [64,65]. Based on this morphology change and 

immunochemical markers, classically ( and simplifying) microglia have been categorized as M1, representing 

a pro-inflammatory phenotype, and M2, representing an anti-inflammatory phenotype [66]. The transition 

to disease-associated microglia (DAM) is associated with the downregulation of homeostatic genes and the 

upregulation of genes known to be associated with AD, including apolipoprotein E (APOE), triggering receptor 

expressed on myeloid cells 2 (TREM2) and TYRO protein tyrosine kinase-binding protein (TYROBP)[67].  

Reactive microglia have been established to associate with amyloid plaques [68] and pathological tau [69]. It 

can indirectly facilitate the production of Aβ producing cytokines, which can upregulate β-secretase 

production [70]. Moreover, it can also promote the seeding of amyloid plaques [71]. In vitro studies have 

found that tau oligomers and fibrils provide sufficient stimulus to induce microglial morphological change 

and expression of interleukins [72]. Moreover, analogous to their interaction with Aβ, microglia seem to 

actively spread tau through phagocytosis and exosome secretion [73]. 

A microglial receptor of particular interest is coded by TREM2 gene, of which Arg47 and His62 variants are 

genetic risk factors for AD [74]. The enhanced expression of TREM2 has been found on plaque-associated 

microglia in patients with AD as well as in a mouse model of AD [75]. TREM2 signalling has been suggested 

to promote microglial proliferation, phagocytosis and cytokine secretion and to regulate microglial 

metabolism and survival [76].  

Current evidences generally support a model of neuroinflammation in which the chronic background 

inflammation that occurs with ageing provides an initial mild stimulus that results in microglial priming. It is  

followed by a possible protective wave of microglial activation in the preclinical stage of AD, along with the 

emergence of Aβ deposition. Ineffective clearance of Aβ combined with tau aggregation impair microglial 

defence functions and elicit an ongoing detrimental microglial activation process in late-stage AD [77]. 
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1.2.4 Genetics of AD 

Advances in genomic technologies unrevealed AD strong genetic background. AD can be divided into a rare 

familial form, accounting for 2-3% of patients, presenting with autosomal dominant inheritance, and a 

multifactorial sporadic form due to interplay between genes and environment. 

Genetically inherited AD usually develops before 65 years of age (early onset AD, EOAD), whereas the 

sporadic forms often occur later in life in individuals older than 65 years and is referred to as late onset AD 

(LOAD). EO cases has a nearly entire genetic etiology, with 92-100% heritability. 35-60% of EOAD patients 

have at least an affected first-degree relative, and the mode of transmission is autosomal dominant in 10-

15% of cases. Conversely, LOAD is a complex, heterogeneous disorder, presenting mostly spodadic [78,79].  

From the advent of genetic studies, several approaches contributed to clarify the etiology of AD [80,81].  

The first strategy developed was linkage analysis [82,83], which is a method to map loci responsible for a 

disease, observing related individuals. It led to the identification of the three main genes responsible for 

dominantly inherited AD: APP, PSEN1 and PSEN2 [84]. Thanks to candidate gene approach [85], consisting in 

the evaluation of the frequency of variants in patients compared to a control population, the major genetic 

risk factor for LOAD was identified, APOE ε4 allele [86]. By late 2000’s, with the advent of high-throughput 

approaches, several risk factors were characterized. Genome wide association studies (GWASs) enabled 

researchers to test millions of genetic variants on huge cohort of individuals, using a hypothesis-free 

approach [87]. Finally, with the advent of Next generation sequencing (NGS) technologies, panels of genes 

(targeted sequencing), the protein coding regions (whole exome sequencing, WES) up to the entire genome 

(whole genome sequencing) can be massively sequenced [88,89]. These became cost-effective methods 

which recently reached the clinical setting.  

 

 

1.2.4.1 familial AD  

 

EOAD forms accounts for about 5-10% of cases. 35-60% of these patients have at least an affected first-

degree relative, and the mode of transmission is autosomal dominant in 10-15% of cases. The pattern of 

transmission of the pathology is autosomal dominant, due to highly penetrant mutations. The identification 

of familial AD causative genes was due to Down syndrome: in this condition, which is caused by trisomy of 

chromosome 21, patients present AD brain pathology [90]. Linkage studies in AD families provide evidence 

for a defect on chromosome 21 [91]; the cloning of the gene coding for the amyloid β precursor protein (APP) 

and its mapping on chromosome 21 [92,93] paved the way to further studies in genetics of EOAD.   
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APP gene is located on the long arm of chromosome 21 (21q21.22) and encodes the transmembrane protein 

that is processed, giving rise to the Aβ fragments. To date, 32 pathogenic mutations have been reported 

[94,95]. Most of these mutations (Figure 3) are non-synonymous determining an amino acid substitution at 

the level of cleavage sites for secretases, thus altering the processing and favoring the clear prevalence of 

toxic amyloidogenic products [96]. Some of these mutations are present in Amyloid β region (p.A692G,  

p.E693Q, p.E693K, p.E693G, p.D694N, p.A713T, p.T714I). They can exacerbate Aβ peptide, increase the 

Aβ42/Aβ40 ratio and affect stability of APP CTFs [97–99]. Other two (p.K670N and p.M671L) are in the N-

terminal region and increase absolute level of Aβ42. [98,100]. Moreover, other mutations located in the 

transmembrane or in the C-terminal region (p.V715M, p.I716V p.V717L, p.I716T, p.L723P) increase Aβ42/Aβ40 

ratio, affect stability of APP CTFs and reduce the efficiency of the γ-secretase cleavage [99,101,102]. 

As reviewed by Hooli and colleagues [103] several genomic duplications containing APP have been identified 

co-segregating with AD in as many autosomal dominant families, mimicking trisomy 21. Two mutations have  

been discovered in the APP gene, able to cause the pathology only in the state of homozygosis (p.A673V and 

p.E693del), while heterozygous carriers are not affected by FAD, suggesting a Mendelian inheritance also of 

recessive type [104,105]. Pathogenic mutations in APP genes account for 1% of EOAD patients [79]. Disease 

onset of APP mutation carriers ranged between 45 and 60 years [106,107] 

 

 
Figure 3. APP mutations and structure. A) APP protein sequence. Sequence of extracellular domain is presented in green 
the transmembrane domain in orange, in dark blue is the intracellular domain. Known pathogenic mutations are 
reported in purple, in red are the two recessive pathogenic mutations, in grey the non-pathogenic mutations. B) 
Schematic presentation of the APP proteolytic processes. APP: amyloid precursor protein; α: α-secretase; β: β-secretase; 
γ: γ-secretase; soluble APP fragment-α (sAPPα); soluble APP fragment- β (sAPPβ); AICD: amyloid precursor protein 
intracellular domain; p3: p3 fragment. 
Segregation studies in EOAD families which were negative for APP mutations led to the identification of a 

new locus of chromosome 14 [108,109]: Presenilin 1 (PSEN1) gene. Based on protein homology, another 
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presenilin protein was mapped on chromosome 1 [110,111]: PSEN2. As mentioned, presenilins are 

fundamental components of γ-secretase and their mutations seem to be able to unbalance the enzymatic 

pathway of APP in the amyloidogenic sense.  

To date, 221 mutations have been described for PSEN1 [95,112], accounting for 70% of EOAD patients. These 

mutations (figure 4) can be both single nucleotide variants and small insertions/deletions; in addition, a 

deletion able to cause PSEN1 exon 9 skipping has been described [113]. As in the case of APP, the PSEN1 

mutation p.E280A in homozygous status has been reported; also, in this case, the severity of the disease was 

not influenced by the homozygosity of the mutation [114]. PSEN1 mutations result in the most aggressive 

forms of AD and an early onset of the symptoms (30-50 years) [107]. PSEN1 mutations are commonly 

inherited in an autosomal dominant manner, but de novo mutations in PSEN1 have been described in EOAD 

patients with  disease onset as early as 28 years [115,116]. 

19 mutations have been described in PSEN2 [95,117] which account for less than 1% of cases [79]. PSEN2 

mutation (Figure 3) carriers have generally a wider onset age range, from 40 to 70 years. Disease penetrance 

is more difficult to establish because far less families have been reported and the onset age range is much 

wider.  
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Figure 4. Presenilins (PSENs) mutations and protein structure. A: APP: amyloid precursor protein; PSEN1; B: PSEN2. α: 
α-secretase;  β: β-secretase; γ: γ-secretase. PSENs protein mutations and structure. (A) PSEN1 and (B) PSEN2 protein 
sequences. In blue are marked the cytoplasmic domains, in yellow the transmembrane domains, in red the luminal 
domains, and in green the one intermembrane/IX transmembrane domain. Pathogenic or predicted pathogenic 
mutations are in purple. In orange are mutations with unclear pathogenicity and in grey are reported non-pathogenic 
mutations. (C) Schematic presentation of APP and PSEN complexes. For PSENs, alternative predicted protein 
conformations are shown. 
 

 
Mutations in APP, PSEN1 and PSEN2 account only for a small percentage of fAD cases (5-10% of cases) [6]. 

Novel candidate genes have been associated to familial AD. Thanks to advances in NGS, variants in NOTCH, 

SORL1, TREM, and ACAB7 genes were found[95]. In 2012, Guerreiro et al. [118] identified in a Turkish family 

a pathogenic mutation in NOTCH3 gene. It is located on chromosome 19 and encodes for a transmembrane 

receptor involved in cell signalling and embryogenic development [119]. NOTCH3 is implicated in cerebral 

autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) [120]. 

Mutations in SORL1 gene, encoding for the receptor of APOE, were found by two groups in familial AD [121–

123] and in EOAD cases [124,125]. Variants in this gene have been shown to alter Aβ levels by interfering 

with APP trafficking [126]. Pottier and colleagues [127] identified some cases of familial AD carrying 

mutations in TREM2 gene. It encodes the triggering receptor expressed on myeloid cells 2 protein, involved 

in immune response activation. Homozygous mutations cause Nasu-Hakola disease [128]. TREM2 is able to 

bind APOE, and some mutation are shown to reduce this affinity, thus reducing Aβ clearance [129]. 

Moreover, Coyvers group [130] detected a frameshift mutation in ABCA7 gene in several AD families. This 
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gene encodes for a lipid transporter, and its inhibition seems to increase β-secretase cleavage of APP, 

therefore increasing the production of Aβ peptide [131]. 

 

1.2.4.2  Sporadic AD  

Most AD cases (90-95%) are late onset (higher than 65 years) sporadic forms, with no obvious family 

segregation. Sporadic AD is a complex disorder, resulting from the interactions between genes and 

environment, i.e., predisposing susceptibility factors, including low schooling, brain trauma, cardiovascular 

diseases, high cholesterol levels and smoking [5].  

Among the predisposing genetic factors, several candidate genes have been proposed. To date, the most 

well-established risk factor is the Ɛ4 allele of the APOE gene. This gene encodes a 299-aminoacid protein 

involved in the transport of cholesterol and phospholipids. APOE is abundantly expressed in the periphery, 

mainly produced by hepatocytes and macrophages in the liver [132]. It does not cross the blood-brain barrier 

(BBB) but is abundantly expressed in the central nervous system (CNS), mainly by astrocytes, activated 

microglia and choroid plexus cells, and to a lesser extent in stressed neurons [132,133]. APOE-mediated 

cholesterol and lipid transport plays a critical role in synapse formation and tissue repair and neurite 

outgrowth after injury [134,135].  

The APOE gene is located on chromosome 19 and is a polymorphic gene. In humans there are three different 

forms or alleles, due to two single nucleotide polymorphisms (SNPs): Cys112Arg (rs429358) and Arg158Cys 

(rs7412). The combination of the two gives rise to three alleles: ε2 (Cys-130, Cys-176), ε3 (Cys-130, Arg-176), 

and ε4 (Arg-130, Arg-176); and six genotypes: ε2/ε2, ε2/ε3, ε3/ε3, ε2/ε4, ε3/ε4, ε4/ε4; each affect the 

individual's predisposition to AD differently [136].  

The relationship between AD and APOE has been confirmed by several studies conducted in different 

population groups [137–139]. The APOE ε3 allele is the most common in all populations (69-85%); APOE ε4  

has a variable frequency following an apparent north-to south reducing gradient. APOE ε2 allele is the least 

common, it has a frequency up to 7% [136]. Having one or two copies of the APOE ε4 allele increases late-

onset AD risk approximately 3- or 12-fold, respectively. APOE ε4 influence AD onset: in late-onset AD, one or 

two copies shifts the age of onset earlier by approximately one to two decades compared to non-carriers. 

Other evidence recognizes the ε2 allele as a protective factor for AD [140].  

The mechanisms by which APOE influences AD risk is not completely clear. It is well established that ApoE 

co-deposits with Aβ in amyloid plaques [141]. In amyloid model mice, knocking out endogenous APOE makes 

Aβ plaques from compact to diffused [142], suggesting that ApoE may play a major role in Aβ fibrilization and 

amyloid deposition. Importantly, the effect of ApoE on amyloid pathology is shown to be isoform-dependent 

(ApoE4 > ApoE3 > ApoE2) [143]. Postmortem and PET studies revealed that individuals carrying APOE4  have 

increased Aβ plaque deposition and earlier onset of amyloid pathology [144–146]. Conversely, APOE2 

carriers showed delayed onset of Aβ deposition, less severe pathology, and protected cognitive function 
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[147]. Studies of Aβ kinetics in the presence of APOE suggests that ApoE ε4 stabilizes soluble, cytotoxic, 

oligomeric Aβ fragments and enhances fibrillogenesis [148]. Besides the promoting of Aβ plaque formation, 

APOE is also involved in the clearance of Aβ via various mechanisms, such as receptor-mediated clearance 

and proteolytic degradation. LRP1 receptor in neurons is shown to mediate Aβ clearance via the uptake of 

Aβ/ApoE complexes [149,150]. Due to the reduced stability of the complex between APOE ε4 and Aβ [151], 

this uptake process is impaired in APOE ε4 carriers. APOE ε4 has been shown to increase tau phosphorylation 

compared to APOE ε2 and APOE ε3 in the presence of Aβ oligomers [152]. Human studies using PET imaging 

revealed that APOE ε4 carriers show an increased tau deposition both in the presence and absence of Aβ 

plaques [153].  Interestingly, studies have demonstrated that APOE-deficient mice show reduced microglial 

reactivity to plaques [154], suggesting that APOE may be necessary for the microglial response to amyloid 

aggregation. The APOE is not only implicated in LOAD. APOE ε4 allele also increased risk for EOAD in carriers 

of at least one e4 allele and was highest in those with a positive family history [79]. 

 

The advent of microarray technology has revolutionized genetics research, and it is now possible to assess 

several hundreds of thousands of SNPs in one experiment, to perform genome-wide association studies 

(GWAS). Thanks to this high-throughput approach, several gene/loci have been identified up to now. 

In 2009, two seminal works pave the way to this approach, setting a milestone in GWAS field. Harold and 

colleagues [155] and Lambert and colleagues [156],  with their large-scale GWASs, identified three genetic 

risk factors for AD: CLU, CR1 and PICALM genes. CLU gene (or APOJ) present on  chromosome 8, encodes for 

clusterin (or apolipoprotein j), the most abundantly expressed apolipoprotein in  the brain together with 

APOE. It is present in amyloid plaques and can bind to Aβ [157], and its levels appear to be increased in CFS 

of AD patient [158]. The clearance of A-beta can be mediated by CLU enhancing endocytosis [159] and/or 

through transport across the blood–brain barrier [160]. CR1 gene, located on chromosome 1, encodes for 

the main receptor of complement 3b protein. It plays an important role in the regulation of the complement 

cascade and the clearance of immune complexes [161]. It is also involved in A-beta clearance [162]. The 

PICALM gene encodes the ubiquitous protein involved in clathrin-mediated endocytosis (CME) [163]. It is 

essential in intracellular trafficking of molecules. It is indispensable for neurotransmitter release at the 

presynaptic membrane, which is important for memory formation and neuronal function, and it may play a 

role in A-beta clearance from the brain [164] 

After the two seminal studies in 2009, GWASs in individuals of European ancestry [155,165–167] unrevealed 

additional loci associated to LOAD. Among them, BIN1 (bridging integrator 1, chr 2) already identified by 

Harold and colleagues[155], get significance in the study of Seshadri in 2010 [165]. As PICALM, is implicated 

in CME, which allows the internalization and transport of lipids, and is a critical component of synaptic vesicle 

recycling [168]. BIN1 may influence the formation of the other main pathological features of AD brains, the 

NFTs, linking the microtubule cytoskeleton with the cellular membrane [169]. ABCA7 [166] encodes an ATP-
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binding cassette (ABC) transporter, which plays a role in transporting a wide range of substrates across cell 

membranes [170]. It is highly expressed in brain, particularly in the hippocampal CA1 neurons and microglia 

[171,172]. ABCA7 is involved in the regulation of APP processing and inhibition of beta-amyloid secretion 

[173]. EPHA1 [167] is a member of the ephrin receptor subfamily, which plays roles in cell and axon guidance 

and in synaptic development and plasticity [174,175]. 

The development of international GWAS consortia enabled large-scale studies with higher statistical power.  

For instance, a meta-analysis on 74.046 individuals led to the identification of eleven new susceptibility loci 

for AD with strong association [176]. Besides already known ABCA7, APOE, BIN1, CLU, CR1, CD2AP, EPHA1, 

MS4A6A–MS4A4E and PICALM genes, new loci confirm previous identified pathways: APP and in pathology 

tau (SORL1, FERMT and CASS4); immune response and inflammation (HLA-DRB5–DRB1, INPP5D and MEF2C).  

Moreover, new pathways have been proposed, including hippocampal synaptic function (MEF2C and PTK2B), 

cytoskeletal function and axonal transport (CELF1, NME8 and CASS4), regulation of gene expression and 

posttranslational modification of proteins, and microglial and myeloid cell function (INPP5D). 

One of the latest GWAS, 75 risk loci were found (42 new at the time of the analysis); 31 genes were identified 

suggestive of new genetically associated processes [177]. 

The advent of NGS and the recent fall in their costs allowed to gain further insight into genetics of 

multifactorial diseases, enabling the detection of rare variants in a large sample [81,178,179]. Of great 

interest are variants in TREM2 gene [128], whose heterozygous missense mutations have been shown to 

increase AD risk by 3-fold [180]. SORL1 [123] and ABCA7 [181] were confirmed major risk of AD too. Recently, 

genes involved in Niemann-Pick type C disease (NPC) have been proposed as risk factor for AD [182]. In the 

adult form, NPC mimics dementia clinic; moreover, the two pathology share neuropathological features, such 

as the presence of neurofibrillary tangles [183] and increased amyloidogenic processing [184]. NPC1 and 

NPC2 genes are involved in lipid metabolism, a further intriguing link with the major AD risk factor, APOE.  

Recently, large sequencing effort as the AD sequencing project (ADSP) [185] confirmed previously identified 

AD genes and led to the identification of novel genes. Despite the great genetic effort in assessing AD risk, it 

has been estimated that not all the genetic component of AD has been clarified [186]. The genetic landscape 

of AD genetics appears complicated, as shown in the chart in figure 5, by Dourlen and colleagues [187]. 
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Figure 5. Diagram of AD genetic risk factors. From outside to inside, the diagram shows genomic loci in alphabetical 
order and genes therein; expression profiles of these genes in different cell types of the brain and the 
pathways/processes/proteins to which these genes have been functionally linked, identified by different colours. 
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1.3 Frontotemporal dementia 

 

Frontotemporal dementia is an umbrella term encompassing a group of clinical syndromes, characterised by 

progressive changes in behaviour, executive function, or language [188]. These include behavioural variant 

frontotemporal dementia (bvFTD), and the two variants of primary progressive aphasia (PPA), namely non-

fluent (nfPPA) and semantic variants (svPPA). Besides the typical forms characterized by behavioural or 

language impairment, atypical FTD forms can present overlap with motor neuron disease (FTD-MND) or 

parkinsonian features [189].  

Frontotemporal lobar degeneration [190] is the pathological term for a group of neurodegenerative disorders 

which involve one or more proteinopathies and are typically associated with progressive degeneration, 

particularly in the frontotemporal neural networks. The major groups of proteinopathies include the 

tauopathies (e.g., Pick’s disease, progressive supranuclear palsy, and corticobasal degeneration), the TDP43 

proteinopathies, and the FET-related proteins [191]. 

FTD is the second most frequent cause of early-onset dementia after Alzheimer's disease, affecting people 

from 40 to 70 years old. FTD has a prevalence of 15-22/100,000 and an incidence of 3-15/100,000 individuals 

[192]. Among the FTD subtypes, bvFTD is the most common.  

The clinical criteria for the diagnosis of FTD were originally developed in 1994 [174]. Even though the clinical 

aspects examined showed a good ability to exclude the presence of AD, these criteria gave no indication of 

the number of clinical features necessary to make a diagnosis. Subsequently, in 1998, Neary and collaborators 

proposed criteria [193], through which it became possible to distinguish between the three main types of 

FTD. Further updates of the criteria for the diagnosis of bvFTD were developed (first in 2007 [194], and then 

in 2011 [195]) and for PPA and its variants [196].  

 

 

 

1.3.1  Clinical characteristics of FTD main subtypes 

 

1.3.1.1 bvFTD 

The behavioral variant is the most common subtype of FTD, occurring in 50% of cases. It is characterized by 

an early and insidious change in behavior and personality. The bvFTD is associated with focal atrophy of the 

orbital and mesial frontal lobes and anterior temporal lobes[197,198] . Change in personality manifests by 

apathy with social withdrawal, loss of empathy, loss of spontaneity, abulia, disinhibited outbursts, emotional 

bluntness, and change in eating patterns[199], inability to adhere to routines, inflexibility, and loss of 

attention span [200] . As the disease progresses, the dorsolateral prefrontal systems are also affected, and 

neurocognitive deficits, such as impairment of executive functions, problem solving, judgment, organization, 
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and planning emerge [201,202]. Altered speech pattern, with stereotypy, echolalia, lack of spontaneity, and 

in later stages mutism, although not very common in patients with FTD, is also seldom observed [203]. 

Histologically, at post-mortem of patients with bvFTD, bilateral frontotemporal atrophy with neuronal loss, 

micro vacuolation, and a variable degree of gliosis is observed [204]. Initially, mesial and orbital frontal 

regions are affected, followed by the temporal lobe, hippocampal formation, dorsolateral frontal cortex, and 

the basal ganglia with prominent sparing of the posterior cortical regions and visuospatial function [205] 

Symmetrical frontal lobe atrophy in patients with bvFTD is associated with C9ORF72 and MAPT gene 

mutations, whereas the asymmetrical pattern is associated with GRN gene mutations [206]. Patients with 

ALS who exhibit an FTD syndrome (ALS-FTD) show atrophy in the frontal and temporal regions [207]  

 

 

1.3.1.2 PPA 

The first description of a progressive pathology characterized by early involvement of linguistic abilities and 

atrophy of the frontal and temporal regions of the hemisphere was attributed to Pick and Serieux in the 90s 

of the nineteenth century. In the last century, Mesulam described a series of cases of "slowly progressive 

aphasia", a term later replaced by "primary progressive aphasia" (PPA) [208,209]. The semantic dementia 

variant was first described by Warrington in 1975 and fully defined in the 90s by Hodges and colleagues [210]. 

Subsequently, Grossmann and colleagues described an alternative form of language disorder, later renamed 

non-fluent aphasia[211].  

We currently distinguish three different clinical forms of primary progressive aphasia: non-fluent or 

agrammatic aphasia, semantic dementia and the logopenic variant [196]. The three forms are characterized 

by an early and prominent involvement of language skills that determines an important ecological impact 

when verbal communication is required; the other cognitive functions prove to be relatively well preserved 

at least in the first part of the disease [212].  

The non-fluent or agrammatic variant is characterized by important agrammatism resulting in disrupted 

language and errors in constructing a sentence; alterations in prosody and rhythm of speech are evident; 

comprehension is involved early and is evidently influenced by the grammatical complexity of the sentence 

(apraxia of language) [213]. Patients with PNFA show left frontal and perisylvian atrophy on structural MRI, 

with hypoperfusion and hypometabolism demonstrated in the same regions on functional imaging [214] 

Patients suffering from semantic dementia, on the other hand, demonstrate an early important impairment 

of the understanding of individual words, an expression of a widespread deficit of semantic memory that 

involves the recognition of shapes, objects, faces and therefore people even when they are presented 

through different sensory inputs [215]. In structural MRI, SD is characterized by temporal lobe atrophy, which 

is more pronounced anteriorly, involving polar, anterior parahippocampal, and fusiform regions including the 

perirhinal cortex. The atrophy is bilateral, but typically asymmetric and often more severe on the left side 

[216].  
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Difficulties in recalling names and in the repetition of sentences are the main features of the logopenic 

variant; in these patients, spontaneous speech is poor, difficult and continuously interrupted. Unlike patients 

suffering from the non-fluent variant, there is no clear agrammatism and, unlike patients suffering from the 

semantic variant, phonological errors and a saving of the understanding of single words are observed above 

all [217].  

 

1.3.1.3  FTD-ALS 

Since the beginning of the twentieth century, a comorbidity of ALS with behavior alterations, cognitive 

decline and dementia has been documented. FTD may coincide with or emerge after the onset of motor 

symptoms [218]. In a large number of studies, it has been reported that about 47% of ALS patients have a 

degeneration of the frontal lobes; in contrast, 40% of patients with a clinical diagnosis of FTD show motor 

neuron dysfunction. Patients suffering from FLD-ALS have a very negative prognosis with a survival 

expectancy about 2-3 years from the onset of the first symptoms and the presence of a positive family history 

in about 50% of cases [219].  

 

 

1.3.2 Neuropathological Features 

FTD is highly heterogeneous from a pathological point of view: based on its intraneuronal inclusions, it is 

possible to distinguish pathological subgroups. 

About 40% of patients show tau-positive inclusions; these include those cases of disease associated with 

mutations in MAPT gene [220]; patients with predominance of 3R tau and patients with predominance 4R 

tau can be distinguished [221]. Patients with these histological characteristics fall into the defined category 

of FTLD-T (FTLD associated with tau deposits). The deposits of cytoplasmic filaments composed of the 

abnormal hyperphosphorylated tau protein characterize a percentage of FTLD cases that also include Pick's 

disease (Pick's bodies) and other tauopathies [190].  

About 50% of FTLD cases are tau-negative and are characterized by the presence of ubiquitin deposits, so 

they are called FTLD-U. Ubiquitin is a peptide of 76 amino acids that acts as a marker of proteins to be 

degraded in the proteasomal pathway [200].   

 

Figure 6. Ubiquitin inclusions in immunoreactive neurites (a) and neuronal cytoplasmic inclusions (b) 
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Histological examination shows protein aggregates consisting of the TDP-43 protein (TAR DNA-binding 

protein 43) and therefore TDP-43 positive [222]. The immunohistochemical signal is localized in the 

cytoplasm of neurons belonging to the areas normally affected by the disease (figure 6). The neurons of the 

dentate gyrus of the hippocampus are also affected [222]. FTLD-TDP group comprises a subset of patients 

carries mutations in C9ORF72 and GRN genes, rarely in VCP and TARDBP can be found  [223]. Cases of disease 

with positivity towards FUS (Fused in sarcoma, FTD-FET) protein deposits have also been described in FTD 

patients, associated to mutations in FUS gene [224]. Both TDP-43 and FUS are proteins involved in the 

regulation of RNA processing, by binding nucleic acids. 

Other inclusion bodies such as intermediate filament immunoreactive inclusions, basophilic inclusions, and 

P62-positive inclusions are also found in some patients. [190,222,224]  

There is not preferential association between a given neuropathological picture and a specific spectrum of 

clinical manifestations of the behavioral variant. Patients with bvFTD mostly show tau-positive or TDP-43-

positive inclusions, while a small percentage of patients show FUS-positive inclusions [225]. The non-fluent 

variant shows a significant association with tau-positive inclusions [226]. Semantic dementia is associated 

with TDP-43 positive inclusions [227]. Finally, patients with the logopenic form would appear to have a 

neuropathological profile compatible with AD [212].  

Patients with ALS exhibiting FTD symptoms or the ALS-FTD has ubiquitin-positive, α-synuclein, and tau-

negative inclusion bodies in the frontal cortex and hippocampus, and spongiform change in the first 2 layers 

of frontal cortex, along with degeneration of motor neurons in the brainstem and anterior horn of the spinal 

cord [207].  
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1.3.3  Genetics of FTD 

FTD is a highly heritable disease. A positive family history for dementia was found in 30%-40% of subjects 

with FTD [228–230] which is transmitted as an autosomal dominant disease. In bvFTD, a positive family 

history has been documented in 48% of cases, while in PPA patients it accounts only for 12% of cases. Even 

more variable heritability is present in FTD-ALS cases, ranging from 10 to >40% [231].  

Most of the heritability of FTD is due to autosomal dominant mutations in three genes: MAPT (Microtubule 

Associated Protein Tau) gene, GRN (progranulin) gene, C9ORF72 (chromosome 9 open reading frame 72). 

Each gene causes 5-10% of FTD cases. In recent years, rare mutations in other genes have been discovered 

[VCP-1 (Valosin-Containing Protein), CHMP2B (Chromatin-Modifying 2B), TARBDP (TAR-DNA binding protein 

43 encoding gene) and TBK1 (TANK binding kinase 1) are examples] accounting collectively for less than 5% 

of autosomal dominant cases [231]. Sporadic forms account for 60-70% of all FTD cases [232]. Besides few 

MAPT, GRN and C9ORF72 mutation reported, they are caused by genetic risk markers, likely modulated by 

both genetic and environmental factors [233]   

 

 

1.3.3.1  MAPT 

The first evidence of the presence of a genetic cause for familial FTD forms came from the demonstration of 

a link between chromosome 17q21.2 and autosomal dominant forms of FTD associated with Parkinsonism 

[234–236], from which the name "Frontotemporal Dementia and Parkinsonism linked to chromosome 17” 

(FTDP-17) was derived. The gene responsible for this association, MAPT encodes the tau protein associated 

with microtubules, whose function is to stabilize them and promote their assembly. In the human brain, six 

distinct isoforms of tau exist based on the alternative splicing of exons 2, 3, and 10 [237]. Alternative splicing 

of exons 2 and 3 yields isoforms with 0, 1, or 2 N-terminal repeats (0N, 1N,2N), while alternative splicing of 

exon 10 results in tau with three or four repeats in the microtubule-binding domain (3R or 4R). 

To date, about 55 mutations have been described [238]. Mutations in MAPT (figure 7) can be missense, 

deletions or intronic mutations. These mutations affect the splicing process, leading to the production of 

different protein isoforms and an alteration of their ratios (3R/4R). Several reside in exon and intron 10 and 

increase R4 isoform [237,239,240]. Other mutations alter binding to and stability of microtubules [241,242]. 

Moreover, some mutations are proven to enhance aggregation in cell cultures [243]. 

MAPT mutations cause 10-20% of familial FTD and up to 3% of sporadic FTD [244]. They are associated to 

variable cognitive, behavioural, and motor deficits. The age of onset is 49 years on average and the duration 

of disease of 8.5 years [245]. As already stated, ppatients with MAPT mutations may show tau-positive 

inclusions [246].  
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Figure 7. The longest tau isoform found in human brain, with its corresponding mRNA and known pathogenic mutations. 
The distinct colours highlight the regions of the protein that are alternatively spliced as well as the MT-binding domain. 
The N- terminal, proline-rich, MT-binding, and C-terminal regions are indicated above. Below the protein, known 
pathogenic missense mutations are indicated. MT: microtubule 
 

 

 

1.3.3.2   GRN 

After the discovery of MAPT as the causal gene for FTLD-17, there were still numerous families affected by 

autosomal dominant FTD genetically related to the chromosomal region 17q21, but which did not have any 

pathogenic mutations on the MAPT gene. In 2006, two groups independently identified GRN gene [247,248]. 

Progranulin is a growth factor that belongs to a family of proteins involved in numerous biological functions 

including development, wound repair and inflammation (by activating specific signal cascades), cell cycle 

progression and cell motility [249]. It is expressed not only in neurons, but also in activated microglia [247], 

during many neurodegenerative diseases.  

Since the first mutation detected to date, about 80 different mutations (figure 8) have been described  [250]. 

They accounts for 5-20% of familial and 1-5% of sporadic cases [251]. Mutations can create non-functional 

alleles that, in most cases, lead to premature termination of gene transcription, following the formation of a 

stop codon. The mRNA produced is therefore aberrant, undergoes to degradation, thus determining a 

phenomenon of haploinsufficiency [252]. An important contribution to obtain a correct independent 

diagnosis of the often variable phenotypic presentation is the demonstration that plasma levels of 

progranulin are extremely low in carriers of the GRN mutation and also in asymptomatic subjects [253]. 

 



22 
 

 

Figure 8. Overview of GRN mutations in exonic and intronic regions. del= deletion; fs= frameshift; ins= insertion; 
utr=untranslated region; X=stop codon. 
 
 

 
From a clinical point of view, mutations in GRN are associated with extremely heterogeneous phenotypes 

[253]. The age of onset of the disease is extremely wide, even within the same family, and ranges from 47 to 

79 years [244]. 

In GRN mutation carriers, the neuropathological examination shows intranuclear and cytoplasmic inclusions 

immunoreactive for ubiquitin, with TDP-43 protein as the most present [254]. 

 

 1.3.3.3  C9ORF72 

One of the most interesting discoveries concerning the genetics of FTD came from a linkage study of families 

affected by FTD-MND and led to the identification of a potential susceptibility locus on chromosome 9p21-

22. The first scientific evidence of linkage with this genetic locus emerged in 2000 from a study published by 

Hosler and collaborators conducted on families affected by FTD-MND [255]. After this, numerous works have 

confirmed this linkage on chromosome 9p21-22. In 2011, two research groups independently identified the 

presence of an expansion of a hexanucleotide repeat (GGGGCC) present in a non-coding portion of the 

C9ORF72 gene that is precisely positioned on chromosome 9p 

21 [206,207]. It is the most common cause of both familial (20.30%) and sporadic (6%) FTD [256].  

In the normal population, the size of the repetition varies between 3 and 25 units, while expansion of 

hundreds to thousands of repeats occurs in affected subjects. To date, it is not yet clear whether there is a 

minimum critical number of repetitions that can determine the onset of the disease. In vitro studies show 

inverse correlation between the repeat size (starting with 9 repeats) and gene expression, with 24 repeats 

providing 50% reduction in gene expression [257]. 

Three mechanisms have been proposed  underlying the GGGGCC hexanucleotide repeat expansion 

pathogenicity (figure 9). 
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Figure 9. Mechanisms for C9ORF72 hexanucleotide expansions pathogenicity. RBP: RNA binding protein. 

 

One is loss-of-function [258] based on decreased expression of C9ORF72 mRNA found in the frontal cortex 

of individuals with C9ORF72 mutation: haploinsufficiency of C9ORF72 may participate in neuronal 

degeneration. The second is gain-of-function caused by RNA foci [259]: the GGGGCC repeat expansion is 

transcribed into repeat RNA that can interact with DNA to fold into a G-quadruplex structure. The repeat RNA 

forms RNA foci that sequester RNA-binding proteins in the nucleus of vulnerable neurons. Neurotoxic foci 

have been identified in 25% of the nerve cell nuclei of both the frontal cortical region and in the spinal cord, 

belonging to patients carrying the expansion. Thirdly, gain-of-function caused by dipeptide repeat proteins 

(DPRs) [260]: In a repeat-associated non-ATG-initiated manner, the repeat RNA is translated into DPRs that 

form toxic aggregates in residual neurons. In recent years, several studies have implicated C9ORF72 in cellular 

protein transport and that loss of C9ORF72 impairs autophagy and lysosome biogenesis [261]. 

The average age of onset is around 55-58 years. There is a great variability in the age of onset even between 

individuals of the same family. Most of the patients develop bvFTD with or without ALS [257].  

  

 

1.3.3.4 VCP 

 

Autosomal dominant mutations in the VCP gene, located on the long arm of chromosome 9p21-12, have 

been identified through linkage analysis in families with a rare familial body myopathy syndrome (IBM), 

Paget's disease as well as FTD [262]. The VCP gene encodes a ubiquitously expressed protein that functions 

as a molecular chaperone in a variety of cellular activities, including protein degradation, apoptosis, cell cycle, 

DNA repair, and cell membrane remodeling [262] 

To date, 19 causal disease mutations have been described, with a frequency of 1.6% [257]. A phenomenon 

of incomplete penetrance was observed for all three clinical manifestations. The most accredited hypothesis 

of the pathogenetic mechanism of mutations in VCP lies in the ability to interfere with the ubiquitin-linked 

proteasome system that leads to a decrease in protein degradation and damage to the autophagic system. 
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Mean age at onset is 40 [244]. Patients with mutations in this gene also have inclusions of the TDP-43 protein 

especially in neocortical regions [263] mutations in VCP were found in less than 1% of familial cases of FTD, 

and more frequently in bvFTD and SD [218].  

 

 

 

 1.3.3.5 CHMP2B 

 

A linkage analysis on a very large Danish family affected by FTD identified a mutation in the CHMP2B gene 

that is located on chromosome 3p11.2 [264]. 

In literature only 4 different mutations have been reported, all identified between or within exons 5 and 6 

and described in 5 total families [218]. CHMP2B encodes a protein belonging to the ESCRT III complex, which 

is involved in the formation of the late endosome [265]. This gene is expressed in neurons present in most of 

the brain, and the mutations responsible for the pathology have all been identified in the part of the gene 

that codes for the C-terminal portion of the protein, leading to an aberrant splicing process. This leads to 

neurons with huge vacuoles that prevent the fusion of the endosome with the lysosome. 

Neuropathologically, patients with these mutations present themselves as FTD-U i.e. positive for ubiquitin, 

but negative for TDP-43 inclusions [266]. Clinically, however, patients present a diagnosis of bvFTD in which 

there are very early personality changes. The presence of aphasia has also often been observed: it is 

characterized mainly by a drastic reduction in spontaneous speech that even leads to mutism. The average 

age of onset in affected patients is about 58 years with an age range ranging from 45 to 65 years [218].  

 

1.3.3.6 TARDBP 

Mutations in TARDBP account for 2–3% of ALS and are rare in FTD patients [267]. Among them, the most 

common phenotypes were bvFTD and SD [268]. Onset is usually between age 29 and 77 years. It encodes for 

TDP-43, RNA-binding protein that forms heterogeneous nuclear ribonucleoprotein complexes (hnRNP). As 

already stated, TDP-43 has a role in transcription, RNA splicing and microRNA processing [218]. 

 

 

1.3.3.7  FUS 

FUS gene is located on chromosome 16q11.22 and is also a member of hnRNP family [218]. Mutations in FUS 

are predominantly found in ALS patients. 4 mutations have been described in FTD-MND patients, with an 

additional 2 cases with pure FTD with no overlap with MND [269,270]. FUS protein participates in DNA repair 

and RNA splicing regulation and contains 526 amino acids [244].  
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1.3.3.8  TBK1  

TBK1 gene encodes TANK-binding kinase and was recently linked to FTD and ALS as well as pathologically 

confirmed FTLD-TDP cases [271–273]. Findings from European FTD cohorts indicate that pathogenic TBK1 

mutations may be a relatively common genetic cause of disease (accounting for 1–5% of FTD and FTD-ALS) 

[274]. Interestingly, some pathogenic TBK1 mutations appear to impair the ability of TBK1 to bind optineurin, 

thus implicating these mutations in dysfunctional autophagy, similar to pathogenic SQSTM1 and OPTN 

mutations [272]. TBK1 was very recently suggested to be a key regulator of inflammation in the brain by 

acting as a negative regulator of RIPK1 kinase activity [275]. 

 

 

1.3.4  Genetic risk factors identified though GWAS 

GWAS led to the identification of several risk loci for FTD and thus helped to unravel new genes involved and 

related biological processes [276,277]. A GWA study published in 2010 which involved a series of 515 patients 

suffering from FTLD-TDP, led to the identification of the TMEM106B gene located on chromosome 7p21 

[278]. The SNPs encompassing this gene were correlated with an increased risk of FTLD-TDP. Moreover, they 

appeared enriched in patients carrying mutations in GRN probably by modulating the levels of secretion of 

this protein [279]. TMEM106B is an integral membrane protein localized in late lysosomes and endosomes 

and modulate pgrn protein levels [280].  

In 2014, Ferrari et al., published a large GWAS analysing bvFTD, PPA, and FTLD-MND [281]. The study 

unrevealed two novel susceptibility loci: one mapping Ras-related protein Rab-38 and Cathepsin C (RAB38-

CTSC) suggesting the involvement of lysosomal and autophagic pathways, and one encompassing 

butyrophilin-like 2 (BTNL2) and major histocompatibility complex, class II, DRs (HLA-DRAeHLA-DRB5),  

implying alterations in immune system. A GWAS performed on a multicentre Italian cohort led to the 

identification of two new potential loci: SNPs encompassing Centrosomal protein 131 (CEP131) and ENTH 

domain containing 2 (ENTHD2) resulted significantly associated. These genes are involved in neuronal 

development, differentiation, and maturation processes, whose impairment might drive FTLD pathogenesis 

in the Italian population [282].  

In 2018, Pottier and colleagues performed a GWAS on a selected cohort of patients carrying loss-of-function 

mutations in GRN gene [283], and identified significant signals in TMEM106B and in GDNF family receptor 

alpha 2 (GFRA2) loci.   

In a very exhaustive study in which a systematic investigation of genetic overlap between immune-mediated 

diseases and the spectrum of FTD-related disorders was performed, an immune-related genetic enrichment 

in FTD was also described. Moreover, the authors identified novel susceptibility loci within the Leucine rich 

repeat kinase 2 (LRRK2), the TBK1 binding protein 1 (TBKBP1), and the PiggyBac transposable element derived 

(5PGBD5) genes, involved in cell survival, immunity processes and genomic rearrangements, respectively 

[284]. Additionally, Mishra et al. (2017) reported an association of APOE and the Translocase of outer 
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mitochondrial membrane 40 (TOMM40) genes with bvFTD, and the Rho GTPase activating protein 35 

(ARHGAP35) and the Serpin family A member 1 (SERPINA1) genes with progressive nonfluent aphasia [285]. 

 

 

1.3.5  Rare variants identified with NGS approaches  

Advent in sequencing technologies allowed the identification of rare variants associated to FTD [277]  

By gene targeted sequencing (TS), rare variants within the Sortilin 1 (SORT1) gene were identified in a Belgian 

FTD cohort. A subsequent study of cohorts sampled in Spain, Italy and Portugal revealed additional non-

synonymous variants in European patients. SORT1 encodes a neuronal receptor involved in intracellular 

protein transport and cellular signal transduction [286].  

In sporadic FTD patients negative for MAPT, GRN, and C9ORF72 mutations, novel variants were identified in 

two dementia-related genes, the Colony stimulating factor 1 receptor (CSF1R) and the Mitochondrial 

alanyltRNA synthetase 2 (AARS2), suggesting new genes to be considered for a genetic FTD diagnosis. CSF1R 

shows important role in innate immunity and inflammatory processes, while AARS2 is involved in 

mitochondrial functions [287]. Recently, a TS of 12 FTD-associated genes was performed: this study revealed 

a rare variant in the Triggering receptor expressed on myeloid cells 2 (TREM2) and two nonsense GRN 

mutations [288]. In Giannoccaro et al. (2017), a panel of dementia-associated genes was explored in an Italian 

group of ALS/FTD pedigrees by using a TS approach: genetic variants in additional ALS and dementia-related 

genes were found in four pedigrees, including a rare variant in the Tyrosine kinase binding protein (TYROBP) 

gene. The TYROBP protein, which interacts with several other proteins like TREM2, is specifically involved in 

immune pathway and inflammatory response [289]. In addition, the TBK1 binding protein 1 (TBKBP1) was 

screened in a wide cohort of FTD, ALS, FTD-ALS subjects, identifying deletions and missense mutations in this 

gene involved in immune response [290]. In van der Zee et al. 2014, rare variants in the Sequestosome 1 

(SQSTM1) gene were identified in a cohort of FTD patients, suggesting a role of this gene in the etiology of 

disease [291]. Interestingly, a rare variant in α-synuclein (SNCA) gene, causing autosomal dominant 

Parkinson’s disease (PD), was found in a patient diagnosed with bvFTD, suggesting a possible alteration of 

mitochondrial processes in FTD too. 
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1.4 Epigenetics in Alzheimer’s disease and Frontotemporal dementia  

 

Epigenetics represents the study of changes in gene expression and/or chromatin structure and cell function, 

caused by mechanisms other than changes in the underlying DNA sequence. This field is becoming an 

important area of investigation, since epigenetic modifications may account for complexity of AD and FTD, 

explaining  differential regulation of risk genes and genomic regions, without changes to their DNA sequence 

and therefore undetected in genetic studies [292]. Epigenetic mechanisms comprise DNA methylation and 

histone modifications: together they regulate chromatin structure, which, in turn, regulates gene expression 

by facilitating access to DNA regulatory elements. Recently, noncoding RNAs (ncRNAs), such as long 

noncoding RNAs (lncRNAs) and microRNAs (miRNAs), among other regulatory RNA molecules, have been 

shown to play an important role in the regulation of genes by various mechanisms. Several studies have 

shown that epigenetic modifications are dynamic in post-natal brain and throughout the aging process 

[293,294]. Several post-translational modifications of histones, mainly histone methylation and acetylation, 

drift with age and are associated with age-related decline in cognitive and memory related process [295,296].  

 

1.4.1  DNA Methylation 

DNA methylation is the most studied and understood epigenetic mechanism. It consists in the addition of a 

methyl group on a cysteine residue [297] from S-adenosyl methionine [298], and is catalysed by DNA 

methyltransferase (DNMT) enzyme. In mammals, DNA methylation occurs in CpG sites (where cytosine is 

followed by a guanine). CpG-rich sites, called CpG Island, are frequent in regulatory regions. For this reason, 

DNA methylation affects gene expression [299,300]. The presence of a methyl group hampers the binding 

for transcriptional activators [301] or serves as anchor for methyl-CpG binding domain proteins (MBDs) which 

bind proteins that decrease gene expression [302]. DNA methylation is known to have a pivotal role in normal 

development, cell proliferation, and genome stability [303]. 

 

1.4.1.1 Methylation in AD 

DNA methylation of several AD related genes has been investigated using candidate gene approach. So far, 

inconsistent data have been reported, with DNA methylation being decreased in AD [304–307], while some 

studies found no differences in DNA methylation levels [308,309]. On a genome-wide basis, contradictory 

results have been obtained, maybe due to the use of various tissue samples. Significant increase in DNA 

methylation has been reported in hippocampus, entorhinal cortex, dorsolateral prefrontal cortex [310], 

temporal cortex [311], and the temporal gyrus [312]. In contrast, decreased DNA methylation was observed 

in the prefrontal cortex and locus coeruleus [313,314]. Similarly, a decrease in DNA methylation was 

observed in blood samples [315]. The methylation of ANK1 was increased in AD patients in four studies 

[310,316–318]. It is an integral membrane protein, important in cell proliferation, activation, and mobility 
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[319]. Interestingly, methylation of miRNA targeting genes involved in the AD pathology, such as APP, BACE1, 

and sirtuin 1 (SIRT1) appeared differentially regulated [311].  

 

1.4.1.2 Methylation in FTD  

Increased GRN promoter methylation was reported in FTD subjects, negatively impacting on GRN mRNA 

levels [320,321]. A further study, aiming to analyse genome-wide DNA methylation patterns in the peripheral 

blood of FTD patients, revealed a specific methylation signature associated with FTLD-tau. This signature 

could, therefore, be considered a risk factor for neurodegeneration [322]. Recently, the role of methylation 

at Pin1 gene promoter have been investigated in peripheral blood mononuclear cells (PBMC) of FTD [323]. A 

decreased expression of Pin1 with a higher DNA methylation was shown in FTD. Several studies extensively 

investigated the methylation of C9ORF72, trying to understand if this modification may play a role in C9ORF72 

loss of function. Hypomethylation of CpG island located in the C9ORF72 promoter region has been shown by 

different groups to be present in about 10–30% of C9ORF72 FTD/ALS patients, likely leading to reduced 

C9ORF72 expression levels [324]. 

 

1.4.2  Histone modifications  

Histone proteins (H1, H2A, H2B, H3, and H4) interact with DNA to form nucleosomes, which are fundamental 

units of chromatin, and they represent an essential part of eukaryotic transcription regulation [325,326]. 

Specifically, histone modifications influence nucleosome stability, chromatin-mediated processes and 

histone-histone interactions, regulating repression or activation of gene expression [325,327]. Several post-

translational modifications occur on specific residues of the histone N-terminal “tail” domain [325,328,329]. 

Among them, acetylation has been the most studied. Histone acetylation at lysine residues, catalysed by 

histone acetyltransferases (HATs), has been associated with “open” chromatin conformation and therefore 

transcriptional activation, whereas histone deacetylation, regulated by histone deacetylases (HDACs), has 

been involved in “closed” chromatin structure and transcriptional repression [326]. Histone acetylation plays 

an important role in the regulation of DNA replication, transcription, and various other cellular functions 

[325].  

Histone methylation is one of the most complex post-translational modifications [325,330]. It consists in the 

addition or removal of methyl groups from lysine, arginine or histidine residues by methyl-transferases and 

demethylases, respectively. Histone methylation takes part in numerous cell processes, such as mitosis, 

meiosis, DNA repair, transcription, differentiation, response to stress, and aging [325].  

Another type of histone modification is histone phosphorylation at serine, threonine, or tyrosine residues, 

regulated by protein kinases and protein phosphatases [326]. It is also involved in various cellular processes, 

including mitosis, gene transcription, and chromatin condensation [325].  

Moreover, ubiquitination is an enzymatic process that starts with the activation by conjugation of ubiquitin 

to a cysteine residue. The role of ubiquitination, especially H2A and H2B histones, has been identified in DNA 
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repair, silencing, initiation, and elongation of transcription [331]. In addition to covalent histone 

modifications, histones can be reversibly modified by ADP-ribosylation, which is regulated by specific 

enzymes. Mono- and poly-ADP ribosilated histones play an important role in chromatin structure regulation, 

DNA repair, cell cycle, replication, and transcription [332,333]. 

 

1.4.2.1 Histon modifications in AD  

Physiologically, histone modifications play an important role in neuronal development. They are  also 

involved in aging brain, as well as in AD pathogenesis [334,335]. Widespread loss of heterochromatin has 

been observed and is suggested to promote tau-mediated neurodegeneration and aberrant gene expression 

in AD [336]. Acetylation dysregulation has been associated with impairments in signalling, proliferation, 

inflammation, immunity, apoptosis, and neuronal plasticity [337]. Marzi et al. identified thousands of 

differentially acetylated peaks, many located in AD causative genes or genetic risk variants (APP, PSEN1, 

PSEN2, and MAPT) [338]. Klein et al. profiled H3K9 histone acetylation in the dorsolateral prefrontal cortex 

[339]. Decreased histone acetylation has been observed in temporal lobe of subjects with AD [340], 

specifically on histone H4 (H4K16ac), which is involved in DNA damage and aging [335,341]. In addition to 

acetylation, alternations in histone methylation have been observed in AD. It is known that balance between 

histone methyltransferases and demethylases is important for brain integrity and memory in AD [332]. 

Increased trimethylation of lysine on histone H3 (H3K9), a marker of gene silencing and condensation of 

heterochromatin structure [342], as well as higher levels of histone methyltransferase EHMT1 mRNA were 

found in the post-mortem brain of subjects with AD [343]. HMT G9a, the enzyme specific for H3K9 di-

methylation, is linked to cognitive performance in mice, whereas H3K4 demethylase is associated with 

memory deficits in humans [332]. Moreover, increased phosphorylation of serine on histone H3 [344], as 

well as increased phosphorylation of H2AX at Ser139, as evidence of DNA damage [345], have been observed 

respectively in AD hippocampal neurons and astrocytes. In addition, ADP-ribosylation of histone H1 has been 

found in different AD brain regions [345].  

 

 

1.4.2.2 Histon modification in FTD 

Histone modification at the C9ORF72 locus were found to reduce the expression of the gene in FTD and ALS 

but not in ALS patients without C9ORF72 expansion [346]. Recently, HDAC inhibitors have been identified as 

enhancers of progranulin expression. Multi-HDAC targeting compounds have been shown to increase GRN 

gene expression in animal and cell model and in a FTD patient [347,348]. These findings underline the role of 

epigenetic regulation of GRN and highlight the potential of HDAC inhibitors as a potential therapeutic 

approach to treat progranulin deficient FTD.  
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1.4.3  Non coding RNA  

Advances in the study of human genome revealed that only 2% of the genome is translated into proteins. In 

the past it was believed that the remaining part was non-functional DNA. Now it is known that it is mostly 

transcribed into functional non-coding RNA (ncRNA) which exert pivotal regulatory functions. NcRNA 

comprise several types of RNA of different length: small non-coding RNA (sRNA), of less than 200 nucleotides 

and long non coding RNA (lncRNA) of more than 200 nucleotides. 

 

1.4.3.1 MicroRNA 

sRNAs are further subdivided as micro (mi)RNAs, short interfering (si)RNAs, and PIWI-associated (pi)RNAs 

Among them, microRNA (miRNA) recently raised great interest. miRNA are small noncoding molecules of ~22 

nucleotides (nt) that regulate gene expression. MiRNAs originate from hairpin structured precursors, called 

primary miRNAs (pri-miRNAs). The pri-miRNAs are processed by two RNase III-type enzymes, Drosha and 

Dicer [349,350], and converted into precursor miRNAs (pre-miRNAs) and, finally, into small miRNAs 

[351,352]. One strand from the miRNA duplex is removed and the other one  becomes a part of RNA-induced 

silencing complex (RISC) [353] and serves for targeted recognition of specific mRNAs [354]. In animals, they 

exert their effect by suppressing translation of mRNA (through the binding to the 3’-untranslated region 

(UTR) of target mRNA) or by degrading it (Figure n) [355,356].  

 

 
 
Figure 10. MiRNA biogenesis and modes of action. MiRNA are mostly transcribed by the RNA polymerase II into pri-
miRNA that are processed into pre-miRNA. In the cytoplasm, pre-miRNA is further processed into a miRNA duplex). 
Following processing, miRNA are assembled into miRNA-induced silencing complexes (miRISC complex). Mostly in 
plants, miRNA exert their function through endonucleolytic cleavage and mRNA degradation. In animals, the miRNA act 
though translational repression and/or mRNA decay. DGCR8: DiGeorge Syndrome Critical Region 8; miRISC: miRNA-
induced silencing complexes; TRBP: transactivation-response RNA-binding protein; AGO 1–4: Argonaut protein family. 
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Regulating gene expression, miRNA are pivotal actors in cellular processes such as proliferation, 

differentiation and apoptosis [357]. Circulating miRNAs can be detected in the peripheral circulation (serum, 

plasma, exosomes, whole blood, peripheral blood mononuclear cells) as well as in the CSF. The miRNAs are 

quite stable in different biological fluids, compared to mRNA [358]. Therefore, have potential as biomarkers 

and therapeutic targets. MiRNA have been found to be deregulated in neurodegenerative diseases. 

 

1.4.3.1.1  miRNAs in AD 

Many of the investigated miRNAs target genes directly involved in the pathophysiology of AD. Different 

miRNAs have been found to modulate the expression of BACE1, including miR-15b, miR-29c, miR-124, miR-

135b, miR-195, and miR-339-5p [358–361] Some miRNAs, like miR-219, target microtubule associated 

protein tau (MAPT) gene [362] or they regulate the activity of different protein kinases responsible for the 

phosphorylation of tau protein, such as miR-124-3p and miR-125b [363–365]. BDNF, a key regulator of 

synaptic plasticity and transmission, has been suggested to induce the expression of miR-132 [366]. The let-

7 miRNA family regulates neural stem cell proliferation and differentiation and exhibits pro-apoptotic activity 

in the central nervous system [367–370]. Independent replicate studies discovered that expression of both 

let7g-5p and let7d-5p are significantly increased in blood samples from multiple AD cohorts [371]. In addition 

to the let-7 family, other miRNAs which influence neuroprotection and regeneration are associated with 

dementia. A study by Fu et al. reported that miR-142-5p promotes neuronal synaptotoxicity both in vivo and 

in vitro [372]. Significant dysregulation of miR-142-5p expression, as well as that of miR-590-5p and miR-194-

5p, was discovered in blood samples from a cohort of AD patients compared to healthy controls. Previous 

reports indicate that miR-342 plays a key role in proliferation and differentiation of neural stem cells as well 

as in neurotoxicity [373,374]. A recent study suggests that levels of miR-342-5p in the plasma may predict 

the rate of cognitive decline in AD [375]. Several studies investigated the association of miR-146 with the 

development of AD [376,377]; however, the results of the studies are contradictory demonstrating both 

downregulation and upregulation of this miRNA in serum, plasma, CSF, and CNS of AD subjects. The evidence 

suggests that transcription of miR-146a is regulated by nuclear factor kappa-B (NF-kB) [378]. By promoting 

miR-146 transcription, NF-kB suppresses translation of complement factor H (CFH) and affects inflammatory 

response in the CNS [378]. Dysregulation of this system in AD leads to increased inflammation and 

neurodegeneration. 
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1.4.3.1.2  miRNAs in FTD 

A recent study [45] examined the plasma miRNA signature in a cohort of FTD patients: two miRNAs, miR-34a-

5p and miR-345-5p, showed increased expression, and two were downregulated, miR-200c-3p and miR-10a-

3p. Notably, miR-34a-5p was upregulated in presymptomatic carriers with the C9ORF72 mutation, suggesting 

the mutation influences miRNA levels. Additionally, levels of miR-345-5p progressively increased from 

healthy controls to presymptomatic C9ORF72 to symptomatic patients. Other studies evaluated the 

regulation of GRN expression by miRNAs. Rademakers and colleagues in 2008 [379] described an allelic 

variant in GRN 3ʹUTR region associated with the disease and corresponding to a predicted binding site for 

miR-659. Other miRNAs associated with regulation of progranulin levels involved miR-107 and miR-29b 

[380,381]. Interestingly, it was reported that the TMEM106B gene is repressed by miR-132/212 cluster that 

is a post-transcriptional mechanism that increases intracellular levels of progranulin [382]. Several miRNAs 

identified to be differentially expressed in post-mortem tissue, blood and CSF could represent a specific 

signature for the disease as was recently found for miR-335-5p and let-7e in the CSF of FTD patients compared 

with controls [383,384]. 

 

1.4.3.2  LncRNA 

LncRNAs are located in the nucleus and a few in the cytoplasm. They are mostly polyadenylated and 

transcribed by RNA polymerase II, and derive from all genomic regions, including intergenic areas and near 

or inside of protein-coding genes [385]. lncRNAs are involved in several cellular processes, but their major 

role is in the regulation of gene expression patterns. They exert  this function through interactions with 

chromatin modifiers, DNA, RNA, and RNA-binding proteins (RBPs) [385,386]. At the transcriptional level, 

lncRNAs affect chromatin organization, the formation of nuclear speckles and RNA polymerase II activity 

[386,387]. At the post-transcriptional level, lncRNAs, interacting with various RNAs and proteins, regulate 

splicing, mRNA turnover and protein translation [385,386,388,389]. LncRNAs can also be a trap for 

microRNAs and RBPs, influencing their availability to other molecules, particularly mRNAs. At the post-

translational level, lncRNAs form scaffolds to assemble functional ribonucleoprotein complexes, affecting 

protein stability [385,386]Moreover, lncRNAs are involved in neural differentiation and synaptic plasticity. By 

altering these processes, they can contribute to neurodegeneration. 

 

 

1.4.3.2.1  lncRNA in AD  

Expression of lncRNA BACE1-antisense is selectively increased in AD brains and competes with miR-545-5p 

binding to stabilize BACE1 mRNA. This will finally result in increased expression of BACE1 that contribute to 

the formation of the toxic Aβ peptides [390].  

LncRNA 51A is an antisense transcript of Sortilin-related receptor 1 (SORL1), involved in APP transport. The 

expression of lncRNA 51 causes alternatively spliced protein form [391]. This change causes the processing 



33 
 

of APP to shift in the direction of increased Aβ formation. The expression of 51A is increased in the cerebral 

cortex of Alzheimer’s patients [392].  

lncRNA 17A is highly expressed in cerebral tissue of AD patients. It drives alternative splicing of GABA B2 

receptor. This event abolishes GABAB R2 intracellular signalling. 17A transcription increases amyloid β 

peptide (Aβ) secretion and Aβ42/Aβ40 peptide ratio. 17A synthesis can be induced by inflammatory stimuli 

[393].   

The expression of BC200 RNA in the brains of AD patients is significantly upregulated [394]. It is involved in 

the regulation of protein synthesis in synapses, and thus regulating synaptic plasticity [395,396].  

BDNF-AS inhibits BDNF mRNA transcription by altering chromatin at its locus, and BDNF is an important 

trophic factor involved in nerve growth and development, underlying its potential for the treating AD 

[395,396]. 

 

1.4.3.2.2  lncRNA in FTD  

The expression of lncRNAs NEAT1_2 and MALAT1 are significantly increased in FTD [397]. In FTLD-TDP cases, 

it can be observed increase in the combination of TDP-43 and lncRNA NEAT1 in the cortex. In addition, the 

overexpression of lncRNA NEAT1 ameliorates the toxicity of TDP-43 in Drosophila and in TDP-43 protein 

disease yeast models [398].  
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2. AIM 

AD and FTD are complex heterogeneous disorders with a strong genetic background, but the identification 

of a genetic cause is difficult given the multifactorial aetiology of the disorders and the overlap between them 

and other neurodegenerative diseases. Generally, early-onset cases have the stronger heritability, while late-

onset dementia is less heritable but highly polygenic. The pleiotropic nature of dementia emerges, as a 

spectrum of phenotypes can result from the same or different mutations in the same gene. Many AD and 

FTD cases with an unclear family history of neurodegenerative disease remain unexplained as the genetic 

basis have been identified in a small percentage of apparently sporadic cases. This suggests that other genetic 

risk factors have not been revealed so far, which in combination with additional non-genetic factors could be 

responsible for the remaining familial and apparently sporadic patients. 

In light of these evidences, the aim of this project was to explore the two most common forms of dementia 

using genetic and epigenetic approaches.  

1. Genetic study: 188 subjects were investigated at the genomic level, using a Next Generation Sequencing 

(NGS) approach.  

In particular, different custom panels were designed to screen the most common genes involved in AD and 

FTD, applied on a well characterized cohorts of patients. Specifically: 

1.1 A small dimension NGS design was applied to 136 dementia patients homogeneous from a molecular 

point of view, with low CSF levels of Aβ or positivity to PET with Aβ tracer.  

1.2 A larger NGS panel customised with 43-genes, able to screen causative genes and risk factors for AD and 

FTD, along with gene related to other neurodegenerative diseases causing dementia, was applied to a 

clinically heterogeneous cohort of patients. 

1.3 SureSelect Custom Constitutional Panel 17Mb (CCP17) was applied to patients negative for the genetic 

screening of common causative genes but with strong family history for dementia and/or young onset of  

symptoms. It is a targeted NGS for inherited disease comprising more than 5000 genes, curated by field 

experts in human genetics research. It is, therefore, also called Clinical Exome.  

 

2. Epigenetic study: a genetic FTD cohort consisting of 40 patients and 20 controls was investigated for the 

expression of miRNAs. 

Advances in the study of human genome revealed that only 2% of DNA is translated into proteins, while the 

remaining part is mostly transcribed into non-coding RNA (ncRNA), with regulatory functions. Among them, 

microRNA (miRNA) recently raised great interest. MiRNA are small noncoding molecules that regulate gene 
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expression by suppressing translation of mRNA or by degrading it [399]. Therefore, they are pivotal actors in 

cellular processes such as proliferation, differentiation and apoptosis [357].  

In genetic cases, the underneath pathology is known, therefore, this facilitates the enrollment in specific 

clinical trials. In non-genetic cases, it is impossible to predict the pathology in vivo. Therefore, it is important 

to meet the need for biomarkers for this form of the disease. In this scenario, miRNA have great potential as 

biomarkers, being present in several biological fluids. To this purpose, genetic FTD cases were enrolled in the 

project, since they represent the gold standard, being known the underlying pathology.  

In particular: 

2.1. A first discovery phase was performed to test the expression levels of 754 miRNAs in 30 patients carrying 

mutations in C9ORF72, GRN and MAPT genes, and 10 control subjects.  This part of the project focused on 

exploring the expression profile of 754 miRNA.  

2.2 Results were validated in additional 30 patients and 10 controls.  

Statistical analyses were performed comparing controls with each genetic group, in order to find differences 

specific for each group and therefore for the mutated gene. Moreover, since C9ORF72 and GRN mutated 

genes underlie the same pathology, expression profile of miRNA in these two groups were jointly compared 

with controls. 
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3. Materials and Methods 

 

3.1 Genetic screening in dementia 

 

3.1.1 Population 

One hundred and eighty-eight patients with neurodegenerative diseases afferent to the Alzheimer unit of 

the Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico were enrolled for the study. All patients 

were referred to our Centre in suspicion of dementia. They underwent the standard clinical workup, 

comprising detailed medical history, physical and neurological examination, screening laboratory tests, Mini-

Mental State Examination (MMSE); qualitative brain magnetic resonance imaging (MRI) or computed 

tomography (CT). The presence of significant vascular brain damage was excluded (Hachinski Ischemic Score 

< 4). All patients underwent lumbar puncture for the analysis of CSF biomarkers Aβ, total tau (tau), and tau 

phosphorylated at position 181 (Ptau). In case of borderline Aβ CSF levels (about ±10% of reference value), 

patients underwent Amyloid-PET.  In table 1 shows demographic information of the patients screened. 

 

 

Table 1. Demographics  

 AD (n=133) bvFTD (n=46) OTHER (n=9) 

Gender (male: female) 62:70 24:22 5:4 

Mean age (SD) yrs 71.8 (7.6) 74 (7) 69 

Mean age of onset (SD), yrs 68.9 (7.6) 69,5 (6,9) 67 

Mean CSF Aβ42 (SD), pg/ml 465.3 (94.3) 840,8 (279,4) 643,2 (253) 

Mean CSF tau (SD), pg/ml 615.6 (420.1) 522 (420,7) 514,3 (232) 

Mean CSF ptau (SD), pg/ml 78.5 (37.6) 73,9 (45) 80,5 (22) 

APOE status  

ε4+ 

ε4- 

66 

67 

11 

35 

3 

6 

Positive family history of neurodegenerative 
or psychiatric diseases (%) 

100% 54% 100% 

Relatives with neurodegenerative 
Disease (range) 
 
 

 
3-8 
 
 

 
1-4 
 
 

 
2-5 

 
 

Family history of psychiatric disease (%) 7,3% 7,7% 11% 

 
SD= standard deviation; Yrs= years; AD= Alzheimer Disease; CBS= Corticobasal Syndrome; PSP= Progressive 
supranuclear palsy, bvFTD= behavioural variant Frontotemporal dementia. *LBD: Lewy body dementia; CCA: cerebral 
amyloid angiopathy; bvFTD: Logopenic variant FTD; MCI: mild cognitive impairment 
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The panels were designed to screen exons of targeted gens and 50 bps of flanking regions.  

The small size panel comprised APP, PSEN1, PSEN2 (causing familial AD[6]), GRN and MAPT[257] (associated 

with familial FTD) along with NPC1 and NPC2 genes (causing NPC[400]). This study originates from the 

observation that NPC and AD share clinical and neuropathological similarities: in the adult forms, NPC mimic 

AD clinic; moreover, neurofibrillary tangles [183] and amyloidogenic processing [184] have been observed in 

NPC patients. 

The Dementia panel (Table 2) comprised: the common genes involved in AD and FTD, genetic risk factors and 

genes associated to neurodegenerative diseases, known to cause dementia. 

 

 

 Table 2. Dementia Panel 

Gene Coding Protein Associated disease Mode of transmission 

APOE Apolipoprotein E Alzheimer’s Disease Risk factor 

APP Amyloid precursor protein Alzheimer’s Disease Autosomal dominant 

ATP13A2 Lysosomal 5 P-type ATPase Kufor-rakeb Autosomal recessive 

C19ORF12 Protein unknown 
Mitochondrial membrane protein associated 

neurodegeneration (MPAN) 
Autosomal recessive 

CHCHD10 
Coiled-coil-helix-coiled-coil-helix 

domain containing 10 
FTLD/ALS Autosomal dominant 

CHMP2B 
Charged multivesicular body 

protein 2B 
FTLD Autosomal dominant 

CP Ceruloplasmin Aceruloplasminemia Autosomal recessive 

CSF1R 
Colony stimulating factor 1 

receptor 
HDLS Autosomal dominant 

DCTN1 Dynactin subunit 1 Perry syndrome/ALS Autosomal dominant 

EIF2B 1-5 
Eukaryotic translation initiation 

factor 2B subunits 

Leukoencephalopathy with vanishing white 

matter (VWM) 

Autosomal dominant 

 

FTL 

 
Ferritin light chain  neuroferritinopathy 

Autosomal dominant 

 

FUS FUS RNA binding protein FTLD/ALS 
Autosomal dominant 

 

GBA Glucosylceramidase beta Gaucher Disease Autosomal recessive 

GFAP Glial fibrillary acidic protein Alexander disease Autosomal dominant 

GRN progranulin FTLD Autosomal dominant 
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LRRK2 Leucine rich repeat kinase 2 PD type 8 Autosomal dominant 

MAPT tau FTLD Autosomal dominant 

MATR3 Matrix protein  ALS/FTLD Autosomal dominant 

NOTCH3 Notch CADASIL Autosomal dominant 

NPC1 e 2 
NPC intracellular cholesterol 

transporter 1 
Niemann-Pick type C Autosomal recessive 

PANK2 Pantothenate kinase 2 
Pantothenase kinase-associated 

neurodegeneration 
Autosomal recessive 

PFN1 Profiling 1  ALS/FTLD Autosomal dominant 

PLA2G6 Phospholipase A2 group VI 
Phospholipase A2-associated 

neurodegeneration (PLAN) 
Autosomal recessive 

PRNP Prion Protein 

Creutzfeldt-Jacob disease, fatal familial 

insomnia, Kuru Gerstmann-Straussler 

disease, Huntington disease-like, 

Autosomal dominant 

PARKAR1B 
Protein kinase cAMP-dependent 

type 1 regulatory subunit beta 
FTD/PD/AD like dementia Autosomal dominant 

PSEN1 and 

2 
Presenilin 1 and 2 AD Autosomal dominant 

SNCA Alpha synuclein PD Autosomal dominant 

SORL Sortilin related receptor 1 AD Risk factor 

SQSTM1 Sequestosome 1 Paget disease/FTD Autosomal dominant 

TARDBP TAR DNA binding protein FTD Autosomal dominant 

TBK1 TANK binding kinase 1 FTD/ALS Autosomal dominant 

TMEM230 Transmembrane protein 230 PD Autosomal dominant 

TREM2 
Triggering receptor expressed on 

myeloid cells 
Nasu-Hakola Autosomal dominant 

UBE3A Ubiquitin protein ligase E3A Angelman Syndrome Autosomal dominant 

VCP Valosin containing protein Paget disease/IBMFTD Autosomal dominant 
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3.1.2 Libraries preparation 

To create DNA libraries, HaloPlex target enrichment system was used.  

• 50ng of gDNA was fragmented using 16 restriction enzymes (RE) in the format of eight double digestion. 

- Each DNA is diluted to 1.8 ng/μL in 10mM Tris buffer (pH 8.5).  

- A reaction mix was prepared combining 24,5 μL of  RE buffer and 0.64 μL of  Bovine serum albumin 

(BSA) per sample and dispensed in 8-well strip tube (2,8 μL per tube) . 

- 0,35 μL of  each enzyme of the first set of enzymes was added to of the 8-well strip tube. 

- After, 0,35 μL of  each enzyme of the second set was added. 

- 3,5 μL of  the RE mix was dispensed in 8 well per sample. 

- 3,5 μL of  diluted gDNA was added to RE mix. 

- The thermal cycle program for restriction digestion was as follow: 

 

STEP TEMPERATURE TIME  

STEP 1 37°C 30 min 

STEP 2 4°C Hold  

  

 

• Fragments hybridized to probes targeting exons and 25 bp of exon padding to cover flanking regions: 

HaloPlex HS probes hybridized to both ends of target DNA, directing circularization. During hybridization, 

molecular barcodes and Illumina sequencing motifs, including index sequencing were incorporated into 

the targeted fragment.  

- The hybridization master mix was prepared combing 34 μL of  Hybridization Solution and 5 μL of  

Probes. 

- 39 μL of  mix were distributed to a new tube 

- 5 μL of  index primer was added. 

- Digested DNA samples from each of the eight RE reaction were transferred and added to the 

hybridization mix. 

- Thermal cycler program for hybridization was as follow:  

STEP TEMPERATURE TIME  

STEP 1 95°C 5 min 

STEP 2 58°C 2 h  
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• The hybridization buffer was then removed in preparation of the next step. 

- A mix of 20 μL of  Stop solution and 80 μL of  AMPure XP beads was added to each sample. 

- Samples were incubated 5 minutes at room temperature with continuous shaking at 1300 rpm. 

- On a magnetic plate, the cleared solution was discarded and 200 μL of  70% ethanol. 

- Again, on a magnetic plate, the cleared solution was discarded and samples were air-dried.  

 

• Following, the circularized hybrids were closed in a ligation step.  

- DNA ligation master mix comprised for each sample 10 μL of  Ligation solution, 0,6 μL of 1 mM rATP 

and 39,4 μL of  nuclease-free water. 

- 50 μL of  ligation master mix were added to each sample and beads were resuspended. 

- Samples were incubated at room temperature for 2 minutes. 

- Beads were collected through a magnetic plate and 47,5 μL of  supernatant were transferred to a 

fresh tube 

- 2,5 μL of  DNA Ligase were added to each sample 

- Samples were incubated in a thermal cycler at 55°C for 10 minutes 

 

• The DNA-Probe hybrids containing biotin were captured on streptavidin beads. 

- 40 μL of Dynabeads suspension for each sample was cleared  on a magnetic rack and 40 μL of  Capture 

solution were added to the beads. 

- 40 μL of  Capture solution + streptavidin bead mixture were added to each ligation reaction 

- Samples were incubated 15 minutes at room temperature with continuous shacking. 

- After that, the solution was cleared on a magnetic plate and the supernatant removed. 

- The beads were washed with 100 μL of  Wash 1, cleared from the supernatant. 

- The washing step was repeated with  150 μL of  Wash 2.  

 

 

• Captured target libraries were amplified by PCR. PCR master mix was prepared as follow. For each 

samples:  

- 53,2 μL of  Nuclease-free water, 

- 30 μL of  Herculase II reaction buffer, 

- 0.8 μL of  dNTPs  

- 4 μL of  Primer 1 

- 8 μL of  primer 2 

- 4 μL of  Herculase II fusion DNA Polymerases. 

- 100 μL of  PCR master mix were added to each sample. Thermal cycle program was: 
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STEP N OF CYCLES TEMPERATURE TIME  

1 1 98°C 2 min 

2 

24 

98°C 30 sec 

 60°C 30 sec 

 72°C 1 min 

3 1 72°C 10 min 

4 1 8°C Hold 

 

 

 

• The next step was the purification of PCR products. 

- 40 μL of  nuclease-free water and 100 μL of  AMPure XP bead suspension were mixed and added to 

each sample. 

- Samples were incubated for 5 minutes at room temperature with continuous shaking. 

- The solution was cleared with the magnetic plate and 200 μL of  70% ethanol was added per sample. 

- The solution was cleared and additional 200 μL of  70% ethanol was added. 

- The solution was cleared and the beads were air-dried.  

- 45 μL of  Elution Buffer were added to each sample, which was incubated at room temperature for 

2 minutes 

- approximately 40 μL of  cleared supernatant were removed to a fresh tube . 

 

 

3.1.3 Qualitative and quantitative analysis of DNA 

Libraries were validated and quantified using High sensitivity DNA kit (Agilent Technologies) containing chip 

and reagents designed for sizing and analysing DNA fragment. Each DNA chip contains an interconnected set 

of microchannels that is used for electrophoretic separation of nucleic acids acid fragments based on their 

size. The protocol used was as follow: 

1. Prepare the gel-dye mix allowing the DNA dye concentrate and DNA gel matrix to equilibrate to room 

temperature for 30 minutes.  

2. Pipette 15 μL of  the blue capped dye concentrate into a red-capped DNA gel matrix vial. 

3. Vortex for 10 seconds. Visually inspect proper mixing of gel and dye. 

4. Transfer the gel-dye mix to the top receptacle of a spin filter. 

5. Centrifuge for 15 minutes at room temperature at 2240 g ± 20 % . 

Reagent and samples are loaded on a chip by mean of a priming station holding the chip  and a syringe which 

create the pressure for filling.  

6. Put a DNA chip on the chip priming station. 
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7. Pipette 9.0 μL of  the gel-dye mix at the bottom of the well marked   

8. Press the plunger of the syringe down until it is held by the clip. 

9.  Wait for exactly 60 seconds and then release the plunger with the clip release mechanism. 

10. Wait for 5 seconds, then slowly pull back the plunger to the 1 ml position. 

11.  Open the chip priming station and pipette 9.0 μL of  the gel-dye mix in each of the wells marked

. 

12.  Pipette 5 μL of green-capped DNA marker into the well marked with the ladder symbol and into each 

of the 12 sample wells. 

13. Pipette 1 μL of the yellow-capped DNA ladder in the well marked with the ladder symbol.  

14.  In each of the 12 sample wells pipette 1 μL of sample (used wells) or 1 μL of deionized water (unused 

wells) 

15. Place the chip horizontally in the adapter of the IKA vortex mixer and vortex for 60 seconds at 2400 

rpm. 

16. Run the chip in the Agilent 2100 instrument within 5 minutes. 

 

 

3.1.4 Clinical exome sequencing 

Patients negative for the genetic screening but with family history for dementia and/or young onset were 

further investigated with SureSelect Custom Constitutional Panel 17Mb (CCP17). It is a targeted NGS for 

inherited disease comprising more than 5000 genes, curated by field experts in human genetics research. It 

is, therefore, also called Clinical Exome.  

 

The protocol used was the following: 

 50 ng input gDNA were used, for a total volume of 7 μL  

 DNA Fragmentation 

− For each sample, 2 μL of 5X SureSelect Fragmentation Buffer and 1 μL of SureSelect 

Fragmentation Enzyme were added. 

− Fragmentation conditions were: 

 

 

STEP TEMPERATURE TIME  

STEP 1 37°C 15 min 

STEP 2 65°C 5 min 

STEP 3 4°C Hold  
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 Repair and dA-Tail the DNA ends 

− For each sample, 16 μL of  End Repair-A Tailing Buffer and 4 μL of  End Repair-A Tailing Enzyme 

were mixed and added 

− Thermal cycling was as follow: 

  

STEP TEMPERATURE TIME  

STEP 1 20°C 15 min 

STEP 2 72°C 15 min 

STEP 3 4°C Hold  

 

 

 Ligation of the molecular-barcoded adaptor 

− The ligation master mix was prepared mixing 23 μL of Ligation Buffer and 2 μL of T4 DNA Ligase 

for each sample. 

− 25 μL of ligation master mix and 5 μL of Adaptor Oligo mix were added to each end-repaired/dA-

tailed DNA sample 

− The ligation thermal conditions were: 

 

STEP TEMPERATURE TIME  

STEP 1 20°C 30 min 

STEP 2 4°C Hold  

 

 Sample purification  

− 80 μL of AMPure XP beads were added to each DNA sample 

− Samples were incubated for 5 minutes at room temperature 

− On a magnetic plate the supernatant was discarded  

− 200 μL of 70% ethanol in each sample was added 

− Ethanol was discarded and samples were dried in the thermal cycler, set to hold samples at 37°C 

for 1-2 minutes. 

− 35 μL of nuclease-free water were added and the sample was incubated for 2 minutes at room 

temperature 

− The supernatant was cleared and transferred to a fresh tube 
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 Amplification of library 

− Pre-Capture PCR mix was prepared adding per sample: 

10 μL of 5× Herculase II Reaction Buffer 

0.5 μL of 100 mM dNTPs mix 

2 μL of Forward Primer 

1 μL of Herculase II Fusion DNA Polymerase 

− 13,5 μL of PCR mix were added to each sample 

− 2 μL of the appropriate SureSelect XT HS Index Primer were mixed to each reaction. 

− PCR conditions were as follow:  

 

STEP N OF CYCLES TEMPERATURE TIME  

1 1 98°C 2 min 

2 

9 

98°C 30 sec  

 60°C 30 sec  

 72°C 1 min 

3 1 72°C 5 min 

4 1 4°C hold 

 

 

 Library purification 

− 50 μL of AMPure XP beads were added to each PCR amplification reaction and samples were 

incubated at room temperature for 5 minutes. 

− Beads were washed twice with 200 μL of 70% ethanol  

− Ethanol was discarded and samples were dried in the thermal cycler, set to hold samples at 37°C 

for 1-2 minutes 

− 15 μL of nuclease-free water were added to each sample that were incubated for 2 minutes at 

room temperature 

− The supernatant was cleared and transferred to a fresh tube 

 

 Quality and quantity assess 

− 2100 Bioanalyzer and DNA 1000 Assay was used 

 

 Hybridization of libraries 

−  500–1000 ng of each library sample were brought to the final volume of 12 μL using nuclease-

free water. 

− 5 μL of SureSelect XT HS and XT Low Input Blocker Mix were added 
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− The Thermal cycle was as follow: 

 

STEP N OF CYCLES TEMPERATURE TIME  

1 1 95°C 5 min 

2 1 65°C 10 min 

3 1 65°C 1 min 

4 
60 

65°C 1 min 

 37°C 3 sec 

5 1 35°C hold 

 

 

− During segment 3 of the program,  13 μL of Probe Hybridization Mix were added to each samples, 

comprising  

2 μL of 25% RNase Block solution 

2 μL of probes 

6 μL of SureSelect Fast Hybridization Buffer 

3 μL of nuclease-free water 

 

 Capture the hybridized DNA 

− 50 μL of Dynabeads MyOne Streptavidin T1 magnetic beads for each sample were washed three 

times with 200 μL of SureSelect Binding Buffer. 

− The beads were resuspended in 200 μL of  SureSelect Binding Buffer 

− The entire volume of each hybridization mix was transferred into the washed beads and 

incubated for 30 minutes at room temperature 

− The supernatant was discarded and 200 μL of SureSelect Wash Buffer 1 were added. 

− The supernatant was discarded and 200 μL of  Wash Buffer 2 were added 

− The samples were incubated for 5 minutes at 70°C in the thermal cycler 

− The wash buffer was removed and 25 μL of  nuclease-free water was added. 

 

 Amplification of captured libraries 

− Post-Capture PCR was prepared mixing: 

12,5 μL of nuclease-free water 

10 μL of 5× Herculase II Reaction Buffer 

1 μL of Herculase II Fusion DNA Polymerase 

0,5 μL of 100 mM dNTP Mix 

1 μL of SureSelect Post-Capture Primer Mix 
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− 25 μL of PCR mix were added to samples  

− The PCR Thermal conditions were as follow: 

 

STEP N OF CYCLES TEMPERATURE TIME  

1 1 98°C 2 min 

2 9 

98°C 30 sec 

60°C 30 sec 

72°C 1 min 

3 1 72°C 5 min 

5 1 4°C hold 

 

− On a magnetic plate, supernatant was transferred into a new tube. 

 

 Library purification 

− 50 μL of AMPure XP beads were added to each PCR amplification reaction and samples were 

incubated at room temperature for 5 minutes. 

− Beads were washed twice with 200 μL of 70% ethanol  

− Ethanol was discarded and samples were dried in the thermal cycler, set to hold samples at 37°C 

for 1-2 minutes 

− 25 μL of nuclease-free water were added to each sample that were incubated for 2 minutes at 

room temperature 

− The supernatant was cleared and transferred to a fresh tube 

− after assessing quality and quantity of library, samples were pooled  

 

 

 

3.1.5 Sequencing  

For the custom panels, the sequencing pool was loaded on Illumina Cartridge V2 300 cycles and run on 

Illumina MiSeq platform (Illumina). 

Sequencing of clinical exome was performed on NextSeq 550 platform (Illumina) 

 

 

 

3.1.6 Bioinformatic analysis 

The fastq NGS data were analysed using Alissa Align&Call software (Agilent Genomics) which aligned the 

reads to human genome reference (UCSC hg19, GRCh37, February 2009). Align&Call analysis pipeline 
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automatically performed quality control, filtering variants for robust coverage metrics and high phred score. 

Variant calling format (VCF) files from Align&Call were processed with the Expert Variant Interpreter (eVai) 

platform (enGenome, https://evai.engenome.com, version 2.7) to perform annotation and categorization of 

the variants. Variants were classified using a combined approach based on American College of Medical 

Genetics and Genomics (ACMG) and Association for Molecular Pathology (AMP) criteria [401] automatically 

provided by the platform. ACGM/AMP criteria consist in twenty-eight items which describe each variant with 

respect to different characteristics, such as population allele frequency, segregation and functional data. The 

criteria  are hierarchically organized in five groups of different levels of evidence to support pathogenic or 

benign classification: “Pathogenic”, “Likely pathogenic”, “Benign”, “Likely benign”, “Variant of Uncertain 

Significance” (VUS). Moreover, a score of pathogenicity is automatically assigned to variants by the software  

[402]. eVai platform also provides a list of condition and phenotypes associated to a gene, and the direct link 

to ClinVar database, a public archive of reports of the association variants-phenotype, supported by evidence 

(https://www.ncbi.nlm.nih.gov/clinvar/) 

Moreover, the impact of the variants was assessed by in silico predictions using PolyPhen2 

(http://genetics.bwh.harvard.edu/pph2/) which evaluates the effect of missense substitutions on protein 

sequence and structure, and Mutation Taster (http://www.mutationtaster.org/), which accesses the effect 

of missense and nonsense substitutions, and intronic alterations, based on the effect on protein sequence.  

 

 

 

3.1.7 Allelic discrimination 

To validate variants found, allelic discrimination assay was performed. To this purpose, specific TaqMan 

probes (ThermoFisher Scientific) were used, able to detect Single Nucleotide Polymorphisms (SNPs) in 

genomic DNA samples. The probes are oligonucleotides complementary to the region of interest, containing 

in the 5’ end a fluorescent molecule, usually VIC® for wild-type nucleotide and FAM©® for the mutated 

nucleotide.  

The  genotyping reaction comprised: 

12.5 μL of Genotyping Master Mix 

1 μL of probes  

1 μL of genomic DNA  

10.5 μL nuclease free water. 

 

 

 

 

 

https://evai.engenome.com/
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The RT-PCR was run of QuantStudio 12K flex system, with the following thermal profile: 

 

STEP N OF CYCLES TEMPERATURE TIME  

1 - activation 1 95°C 10 min 

2 - denaturation  40  95°C 15 sec 

3 - annealing/elongation 1 60°C 1 min 
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3.2 MiRNA expression profile in genetic FTD 

3.2.1 Population 

For miRNA expression profile, I took advantage of samples from Genetic FTD Initiative, an international 

consortium of research centers across Europe and Canada, whose aim is to further knowledge in genetic FTD. 

Preliminary results have been obtain on a cohort comprising 10 C9ORF72 hexanucleotide expansion carriers, 

9 GRN and 10 MAPT mutation carriers, and 9 healthy subjects. Results have been validated on a cohort 

comprising additional 10 subjects per group (Table 3). 

 

Table 3. FTD patients’ demographics 

 C9ORF72 

(N=20) 

GRN 

(N=19) 

MAPT 

(N=20) 

CONTROLS 

(N=19) 

Gender (male:female) 14:6 10:9 12:8 11:8 

Mean age (SD) yrs 59,55 (12,8) 60,1 (12,5) 59,9 (12,5) 59,9 (12,6) 

Mean age of onset (SD), yrs 58.4 (9.1) 60,2 (8.4) 59,1 (8,6) n.a. 

SD= standard deviation; Yrs= years, n.a.= not applicable 

 

 

3.2.2 Total RNA extraction  

Total RNA was extracted from whole blood collected in PAXgene tubes, containing reagents that lyse blood 

cells and stabilize RNA for downstream analysis. After blood collection, the PAXgene tubes have been 

incubated for at least 2 hours at room temperature to ensure complete lysis of blood cells. Tubes were stored 

firstly at 20°C and then at 80°C until used.  

Before starting the procedure, tubes were incubated at room temperature for 2 hours.  

RNA was purified using PAXgene® blood miRNA kit (PreAnalytix), following the protocol below: 

1. Centrifuge the PAXgene tube at 4000 g for 15 min to pellet the samples.  

2. Remove the supernatant and add 4 mL of RNAse-free water.  

3. Vortex to dissolve the pellet and centrifuge for 15 minutes at 4000 g.  

4. Remove the entire supernatant and 350 μL of  Buffer BM1. 

5. Vortex until the pellet is visibly dissolved, and centrifuge for 15 min at 4000 x g 

6. Remove the entire supernatant by decanting or pipetting, and discard. 

7. Add 350 μL of Buffer BM1, and vortex until the pellet is visibly dissolved. 

8. Pipet the sample into a 1.5 ml microcentrifuge tube. Add 300 μL of Buffer BM2 and 40 μL proteinase K. 

Mix by vortexing for 5 s and incubate for 10 min at 55°C in  

9. Pipet the sample into a PAXgene Shredder spin column (lilac) placed in a 2 ml processing tube, and 

centrifuge for 3 min at full speed (do not exceed 20,000 x g). 
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10. Carefully transfer the entire supernatant of the flow-through from the PAXgene Shredder spin column to 

a new 1.5 ml microcentrifuge tube without disturbing the pellet in the processing tube. 

11. Add 700 μL of  isopropanol (100%, purity grade p.a.), and mix by vortexing. 

12. Pipet 700 μL of sample into the PAXgene RNA spin column (red) placed in a 2 ml processing tube. Close 

the lid gently, and centrifuge for 1 min at 8000–20,000 x g. 

13. Place the spin column in a new 2 ml processing tube and discard the old processing tube containing flow-

through. 

14. Pipet the remaining sample into the PAXgene RNA spin column (red). Close the lid gently, and centrifuge 

for 1 min at 8000–20,000 x g. Place the spin column in a new 2 ml processing tube, and discard the old 

processing tube containing flow-through. 

15. Add 350 μL Buffer BM3 to the PAXgene RNA spin column. Close the lid gently, and centrifuge for 15 s at 

8000–20,000 x g. Place the spin column in a new 2 ml processing tube, and discard the old processing 

tube containing flow-through. 

16. Add 10 μL  DNase I stock solution to 70 μL Buffer RDD in a 1.5 ml microcentrifuge tube. 

17. Mix by gently flicking the tube, and centrifuge briefly to collect residual liquid from the sides of the tube. 

18. Pipet the DNase I incubation mix (80 μl) directly onto the PAXgene RNA spin column membrane, and 

incubate on the benchtop (20–30°C) for 15 min. 

19. Add 350 μL Buffer BM3 to the PAXgene RNA spin column. Close the lid gently, and centrifuge for 15 s at 

8000–20,000 x g. Place the spin column in a new 2 ml processing tube and discard the old processing 

tube containing flow-through. 

20. Add 500 μL  Buffer BM4 to the PAXgene RNA spin column. Close the lid gently, and centrifuge for 15 s at 

8000–20,000 x g. Discard the flow-through. Place the spin column in a new 2 ml processing tube and 

discard the old processing tube containing flowthrough. 

21. Add another 500 μL Buffer BM4 to the PAXgene RNA spin column. Close the lid gently, and centrifuge for 

2 min at 8000–20,000 x g. 

22. Discard the processing tube containing flow-through and place the PAXgene RNA spin column in a new 2 

ml processing tube (supplied). Centrifuge at 8000–20,000 x g for 1 min. 

23. Discard the processing tube containing flow-through. Place the PAXgene RNA spin column in a new 1.5 

ml microcentrifuge tube, and pipet 40 μL Buffer BR5 directly onto the spin column membrane. Close the 

lid gently, and centrifuge for 1 min at 8000–20,000 x g to elute the RNA. 

24. Repeat the elution step (step 18) as described, using 40 μL Buffer BR5 and the same microcentrifuge 

tube. 

25. Incubate the eluate for 5 min at 65°C in the shaker–incubator without shaking. After incubation, chill 

immediately on ice. 

26. Store the RNA at –80°C. 
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3.2.3 Qualitative and quantitative analysis of DNA 

RNA was analysed with 2100 Bioanalyzer and RNA 6000 Nano kit (Agilent Genomics) for qualitative and 

quantitative characterization (Agilent Genomics).  RNA quality is indicated by RNA integrity number (RIN). It 

is determined by no longer the ratio of the ribosomal bands alone, but by the entire electrophoretic trace of 

the RNA sample, including the presence or absence of degradation products. The protocol above has been 

followed: 

1. Heat denature the ladder for 2 min at 70 °C. 

2. Cool down the vial on ice and prepare aliquots in RNase- free vials with the required amount for a typical 

daily use. Store aliquots at - 70°C.  

3. Before use, thaw ladder aliquots and keep them on ice  

4.  Place 550 μL of  Agilent RNA 6000 Nano gel matrix into the top receptacle of a spin filter and centrifuge 

for 10 minutes at 1500 g ± 20 %. 

5. Aliquot 65 μL filtered gel into 0.5 ml RNase- free microfuge tubes.  

6. Add 1 μL of  RNA 6000 Nano dye concentrate to a 65 μL aliquot of filtered gel  

7. Cap the tube, vortex thoroughly and visually inspect proper mixing of gel and dye. Store the dye 

concentrate at 4 °C in the dark again. 

8.  Spin tube for 10 minutes at room temperature at 13000 g.  

9. Place the chip on the chip priming station. 

10. Pipette 9.0 μL of  the gel-dye mix at the bottom of the well marked and dispense the gel-dye 

mix.  

11.  Close the chip priming station and wait for exactly 30 seconds and then release the plunger with the clip 

release mechanism. 

12. Wait for 5 seconds, and then slowly pull back the plunger to the 1 ml position. 

13. Open the chip priming station and pipette 9.0 μL of  the gel- dye mix in each of the wells marked .  

14. Pipette 5 μL of  the RNA 6000 Nano marker into the well marked with the ladder symbol and each of the 

12 sample wells 

15. Pipette 1 μL of  the RNA ladder into the well marked  

16. Pipette 1 μL of  each sample into each of the 12 sample wells. 

17. Place the chip horizontally in the adapter of the IKA vortex mixer and vortex for 60 seconds at 2400 rpm. 

18.  Start the run is started within 5 minutes. 
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3.2.4 MiRNA retrotranscription and pre-amplification 

100 ng of total RNA in 3 μLwere retrotranscribed to cDNA using Megaplex™ RT Primers (ThermoFisher). Two 

reverse transcription (RT) reactions were run per sample, each containing a pool of primers (A and B).  

4.5 μL of  RT mix were added to total RNA, containing: 

 

RT reaction mix components Volume per 

reaction 

Megaplex™ RT Primers (10X), Pool A or Pool B 0.75 μL 

dNTPs with Dttp (100mM) 0.15 μL 

Multiscribe™ Reverse Transcriptase (50 U/μL) 1.50 μL 

10X RT Buffer 0.75 μL 

MgCl2 (25mM) 0.90 μL 

RNase Inhibitor (20 U/μL) 0.09 μL 

Nuclease-free water  0.35 μL 

 

 

RT was run following the thermal cycling conditions:  

STAGE TEMP TIME 

CYCLE  

(40 CYCLES) 

16°C 2 min 

42°C 1 min 

50°C 1 sec 

HOLD  85°C 5 min 

HOLD 4°C ∞ 

   

 

2.5 μL of  RT product were preamplified, adding 22.5 μL of  PreAmp Reaction Mix containing: 

PreAmp Reaction Mix components 
Volume per 

reaction 

TaqMan® PreAmp Master mix (2x)  12.5 μL 

Megaplex™ PreAmp Primers (10X), Pool A or Pool B 2.5 μL 

Nuclease-free water 7.5 μL 
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The Preamplification was run with the following parameters: 

STAGE TEMP TIME 

HOLD 95° 10 min 

HOLD 55° 2 min 

HOLD 72° 2 min 

CYCLE  

(12 CYCLES) 

95°C 2 min 

60°C 15 sec  

HOLD  99.9°C 10 min 

HOLD 4°C ∞ 

 

4 μL of  each preamplification reaction have been diluted adding 156 μL of  1X TE pH8.0. 

Per sample, 22.5 μL of  TaqMan® OpenArray® Real-Time PCR Master Mix for Pool A and Pool B were dispensed 

in new tubes.  

22.5 μL of  diluted Pool A/Pool B preamplification product were added.  

5 μL of  each PCR reaction Mix were dispensed into each of 8 well on an OpenArray® 384-Well Sample Plate,  

as showed in the figure below: 

 

Figure 11 

 
 

The automated Accufill™ system was used to load the samples and PCR mix from 384-well plate to OpenArray

™ plate, a microfluidic system comprising about 3000 of 33nm of volume. Three samples can be loaded per 

OpenArray™ plate.  

PCR was run on QuantStudio 12k Flex system. 
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3.2.5 Taqman MicroRNA Assay 

 

miRNAs were validated with TaqMan® microRNA Assays.  

 

They were specifically retrotranscribed using custom RT primer pools. Each 5X RT primer was diluted in 1X 

TE for a final concentration of 0,05X. 

3 μL of  total RNA was added to 12 μL of  RT mix containing: 

 

RT reaction mix component Volume 

RT primer pool 6 μL 

dNTPs with dTTP (100mM) 0.30 μL 

MultiScribe™ Reverse transcriptase (50U/ μL) 3 μL 

10X RT buffer 1.50 μL 

RNase Inhibitor (20U/ μL) 0.19 μL 

Nuclease-free water 1.01 μL 

 

After 5 minutes of incubation on ice, samples underwent the following thermal cycle: 

 

STEP TEMP TIME 

1 16°C 30 min 

2 42°C 30 min 

3 85°C 5 min 

HOLD 4°C ∞ 

 

 

The PCR reaction mix was prepared as follow: 

 

Components Volume 

TaqMan® microRNA Assays 0.5 μL 

RT product 0.3 μL 

PCR Master Mix 5 μL 

Nuclease-free water 4.2 μL 
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PCR was run on QuantStudio 12k Flex system, following the thermal cycling condition below:  

 

STEP TEMP TIME CYCLES 

ENZYME ACTIVATION 95°C 10 min 1 

DENATURE 95°C 15 sec 
45 

ANNEAL/EXTEND 60°C 60 sec 

 

 

 

 

3.2.6 Bioinformatic analyses 

Normalized CT values of miRNAs were used to analyze differences between healthy subjects and patients. 

Statistical significance of miRNAs modulation was assessed by Wilcoxon rank sum test. Significance was 

defined at the 5% level. 

Principal Component Analysis and unsupervised hierarchical clustering based on the Euclidean distance 

metric were performed to individuate specific pattern of expression.  

Average expression values of selected miRNAs were used to fit a binomial model in predicting of healthy 

subjects and patients. 

Prediction scores from the classifier were used to evaluate the true positive rate (sensitivity) and the false 

positive rate (1-specificity) in a ROC curve. Performance of the curves was assessed by calculating the Area 

Under Curve (AUC) with 1000 bootstrap replicas for computation of the confidence bounds. 

The analyses were completely conducted with Matlab R2022a.  

 

3.2.7 Target prediction and pathway enrichment analysis 

MiRNet (https://www.mirnet.ca/miRNet/home.xhtml) web tool was used to determinate miRNA-target 

interaction and pathways enrichment analysis. Targets were also associated to specific diseases by using 

DisGeNET (https://www.disgenet.org/home/).  

 

 

 

 

 

 

 

 

https://www.mirnet.ca/miRNet/home.xhtml
https://www.disgenet.org/home/
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4. Results 

4.1 Genetic study 

A total of 188 patients was screened using an NGS approach. 136 dementia patients were analysed with NPC 

panel, 52 patients were screened with Dementia panel. From the whole cohort, 35 patients with an 

interesting family history and/or early onset of the disease were further studied with the Clinical Exome. NGS 

was successfully completed for all the samples. An average of 97% of bases at >20x coverage was observed, 

with 98% high quality reads.  The number of variants per sample was variable, depending on the gene panel 

applied.  

 

 

4.1.1 NPC study 

Patients screened with the NPC panel showed an average of 30 variants passing the quality control.  

Five NPC variants in heterozygosis were found in seven patients (Table 4).  

Two of these were previously found in NPC patients (in homozygosity or compound heterozygosity): the near-

splicing variant c.441+1 G>A[403], located in the consensus-donor splice site of intron 4 of the NPC2 (one 

with CBS and two with AD) and the missense NPC2 p.V30M [404](in one AD patient). The former was 

predicted to be disease causing by Mutation Taster. The latter was predicted to be possibly damaging by 

PolyPhen software, while Mutation taster categorized it as tolerated.  

Two were rare known variants: the missense p.K71R in NPC2 and the nonsense p.Q241X in NPC1, each found 

in patients diagnosed with AD (Table 4). The former, according to Mutation Taster Software, is damaging 

since it causes a premature stop signal and therefore leads to an absent or disrupted protein product. This 

variant was identified in a patient The latter was predicted to have a disease-causing impact by Poly-Phen2 

and Mutation Taster.  

Moreover, a novel variant of uncertain significance was found in NPC1 (NM_000271: exon11, c.T1708C, 

p.Y570H) in one patient with AD. It was predicted to be disease causing by in silico analysis performed with 

Mutation Taster software, while PolyPhen2 categorized it as polymorphism. 
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Table 4. Mutations identified in the present study 

Mutation dbSNP Previously reported in  
In silico predictions 

Carrier’s diagnosis 
PolyPhen2 Mutation 

taster 

NPC2 c.441+1 G>A rs140130028 [403,405–407] n.a. D 

CBS 

AD frontal variant 

AD frontal variant  

NPC2 p.V30M rs151220873  [404,405] D T AD frontal variant 

NPC2 p.K71R rs142075589 [406] 

 

D 

 

D AD 

NPC1 p.Q241X rs1064795718 / T D AD 

NPC1 p.Y570H / / T D AD 

CBS: Corticobasal syndrome; AD: Alzheimer’s disease; n.a.: not applicable; D: disease causing; T: tolerated 

 

 

To test whether the novel variant p.Y570H is a common polymorphism or may have a pathogenic role, the 

allelic frequency was investigated in a cohort of 200 healthy geriatric controls. The variant was absent in 

controls. The remaining variants were tested as well: three out of 200 controls (1.5%) presented two variants 

in heterozygosity. In particular, two controls displayed the c.441+1 G>A (MAF=0.005) and one healthy subject 

presented the variant p.K71R (MAF=0.0025), whereas no one showed the p.V30M and p.Q241X variants. 

There were no significant differences in MAF distribution for the detected variants in patients compared with 

controls. 5.2% of the cohort carried a variant as compared with 1.5% in healthy geriatric controls. Regarding 

the clinical phenotype, beside cognitive impairment, which was present in all patients studied, five out of 

seven carriers developed psychosis, mainly delirium, and two had extrapyramidal symptoms. 

The screening also led to the  identification  of  two  patients  who displayed  causal  mutations:  one  in APP 

(p.V717I) in  a  male  patient  diagnosed  with  AD  at  55  years, and  one  in  GRN (p.C157fs),  predicted  to  

lead  to haploinsufficiency  and  previously  associated  with phenotypes of FTD spectrum [408], in a woman 

diagnosed with prodromal AD at 76 years of age. 
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4.1.2 Dementia panel and clinical exome  

The results from the Dementia panel showed an average of 255 variants. The bioinformatic analysis led to 

the identification of 14 known and two novel rare variants in 13 genes, carried by 15 patients. All had 

MAF<1% and were pathogenic for at least one in silico prediction tool. ACMG/AMP guidelines were used to 

classify the variants[401]. 

Among all patients screened, 35 subjects, negative for the preliminary genetic screening, but with significant 

family history for dementia and/or young onset were further investigated. Genetic screening with the clinical 

exome approach provided a huge amount of data per patients (14000 variants on average) to be analysed. 

Since results were not-necessarily related to neurodegenerative diseases, a virtual panel of genes associated 

to dementia was applied. eVai platform also provides conditions and phenotypes associated to the genes 

where variants were called. Therefore, variants filtered by the bioinformatic tool as Pathogenic, Likely 

pathogenic or VUS were searched for references to dementia or neurodegeneration. This approach led to 

the identification of 10 known and 6 novel variants in 16 patients. All the results are shown in table 5. 

 

Table 5. Results of Dementia panel and Clinical Exome screening  

Gene Variant dbSNP ACMG/AMP criteria 
Suggested 

Classification 
Carriers’ diagnosis 

AARS2 p.Arg199Cys rs200105202 PM2, PP3, PP5 Pathogenic* bvFTD 

AARS2 p.Phe74Tyr rs757169781 PM2, PP3 VUS bvFTD 

AARS2  p.Pro368fs novel PVS1, PM2 Likely Pathogenic AD 

CACNA1G  p.Trp1103Cys  novel PP2, PM2, PP3 VUS AD frontal variant 

COL18A1 p.Glu301del rs765971874 PM2, PM4 VUS* AD frontal variant 

CSF1R c.1511-61C>T novel PM2, BP7 VUS AD 

CYP27A1 c.1184+1G>A rs587778777 PVS1, PM2, PP5 Pathogenic* - 

DCTN1 c.3345+9G>A rs762136929 PM2 VUS AD   

DCTN1 p.Cys191Thr rs768268418 PM2 VUS bvFTD 

EIF2B1  c.253-27C>T rs770625902 PM2, BP7 VUS AD 

GBA p.Asn409Ser rs76763715 
PP5, PM2, PM1, PP3, 

PM5, PP2 

Pathogenic* 

 
bvFTD 

GFAP p.Glu223Gln rs56679084 PM2, PP2, PP3 VUS bvFTD 

GRN c.1179+3A>G - PM2, PP3 VUS bvFTD 

ITPR1  p.His2686fs  novel PM2, PM4 VUS AD 

MAPT p.Asp740Gly  - PM1, PM2, PP3 VUS LBD 

http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=rs587778777
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=rs770625902
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=rs76763715
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NPC1  p.Asn222Ser  rs55680026 PP2, BS1 VUS* MCI 

PLA2G6 p.Ile131Phe novel PP2, PM2 VUS 
Cerebral amyloid 

angiopathy 

PSEN2  p.Thr18Met  rs143061887 PM2 VUS* AD 

PSEN2 c.141+15C>T rs756117413 PM2, BP7 VUS AD   

SORT1 p.Pro15Ser rs150163924 PM2,BP4 VUS bvFTD 

SORT1 p.Met428Thr rs529921012 PM2 VUS AD frontal variant 

SNCA p.Asp2Glu  novel PM2 VUS AD frontal variant 

SQSTM1 p.Pro118Ser rs200152247 PM2,BP4 VUS bvFTD 

SQSTM1 p.Pro392Leu rs104893941 PM2, PP3, PP5 Likely Pathogenic* bvFTD 

SQSTM1 p.Tyr383* novel PVS1, PM2 Likely Pathogenic AD frontal variant 

TBK1 p.Ile73Val rs751253214 PM2, BP4 VUS bvFTD 

TMEM106B p.Lys129Arg rs150868186 PM2 VUS bvFTD 

TREM2 p.Arg161K novel PM2, PP3 VUS bvFTD 

TREM2 p.Asp134Gly rs28939079 PM2 VUS* bvFTD 

TYMP  p.Val208Met  rs121913039 
PM1, PM2, PM5, PP3, 

PP5 
Pathogenic* AD 

*= reported in ClinVar database. VUS: Variants of unknown significance; BP: supporting benign; PM: Pathogenic 

moderate; PP: Supporting pathogenic; PVS= pathogenic strong  

 

4.1.2.1 Variants consistent with carrier’s phenotype 

Several variants were found in genes causative or known risk factors for the carrier’s phenotype.   

A VUS in GRN gene (c.1179+3A>G) was found in a patient diagnosed with FTD. Interestingly, the carrier also 

harboured a mutation in GBA gene (D409S) reported to be pathogenic in ClinVar database.  

Two known VUS in PSEN2 gene were carried by two patients with AD. The variant p.Thr18Met was reported 

in ClinVar with uncertain significance, c.141+15C>T is an intronic variant for whom no evidence was reported, 

but predicted by the bioinformatic tool to be VUS.   

In a bvFTD patient, a rare variant of uncertain significance (I73V) was found in TBK1 (TANK-Binding Kinase 1). 

Three variants were found in Sequestosome 1 (SQSTM1) gene. Two were harboured by two patients 

diagnosed with bvFTD: p.Pro118Ser was classified a VUS, while Pro392Leu is reported to be pathogenic and 

is the most frequent variant among Paget disease patients [409]. The third is a novel variant predicted to be 

pathogenic by in silico prediction tools, and was instead carried by a patient diagnosed with the frontal 

variant of AD. 
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Two known variants of uncertain significance were found in SORT1 gene: Pro15Ser variant was found in a 

patient with bvFTD, Met428Thr variant in a patient diagnosed with the frontal variant of AD. 

A known VUS (Cys191Thr) was found in DCTN1 gene, in a bvFTD patient. , c.3345+9G>A in a patient with AD.  

Another interesting finding are two variants in TREM2 (Triggering Receptor Expressed On Myeloid Cells 2) 

gene. Both variants were found in patients suffering from bvFTD. p.R161K is a novel variant, D134G is 

reported as uncertain in ClinVar, although it was found in Nasu-Hakola disease patients [410–412].                                 

 

4.1.2.2 Variants non-classically associated to carriers’ phenotype 

Other variants belong to genes that were classically associated to different diseases.  

Three variants were found in AARS2 gene: two known variants were carried by bvFTD patients: p.Arg199Cys 

was reported to be pathogenic in ClinVar, p.Phe74Tyr was classified as VUS. The variant p.Pro368fs was novel 

and predicted to be likely pathogenic by bioinformatic tools. It was carried by a patient with AD.  

A rare known variant of uncertain significance (p.Glu223Gln) in GFAP gene, classically associated to 

Alexander’s disease [413]was found in a patient diagnosed with bvFTD.  

A patient suffering from AD was carrier of a VUS in EIF2B1 (c.253-27C>T), a gene causing 

Leukoencephalopathy with vanishing with matter.  

In CSF1R (Colony stimulating factor 1 receptor) gene, causing hereditary diffuse leukoencephalopathy with 

spheroids (HDLS), a novel variant predicted as VUS was found in a patient diagnosed with AD.   

A known VUS (c.3345+9G>A) was found in DCTN1, gene responsible for Perry Syndrome and ALS, in a patient 

with AD. 

A patient diagnosed with Lewy Body Dementia (LBD) carried the variant p.Asp740Gly in MAPT gene. 

A patient with Mild Cognitive Impairment (MCI) harboured a mutation in NPC1 (p.Asn222Ser), associated to 

Niemann-Pick type C disease.  

The variant p.Ile131Phe in PLA2G6 gene was found in another patient with AD. 

 

4.1.2.3 Variant unexpected in the clinical setting 

Following clinical exome sequencing, five mutations gained attention since were filtered by the 

bioinformatics tool being pathogenic or VUS and reported in ClinVar. Two were pathogenic: the first was 

p.Val208Met in TYMP (Thymidine Phosphorylase) gene, carried by an AD patient, the second was 

c.1184+1G>A  in CYP27A1 (Cytochrome P450 Family 27 Subfamily A Member 1). 

Three mutation were reported as VUS in ClinVar and were of interest as they occur in genes associated to 

processes possibly involved in AD: p.Glu301del in COL18A1 (encoding for collagen type XVIII), p.Trp1103Cys 

in CACNA1G gene (encoding for CaV3.1 T-type calcium channel) and p.His2686fs in ITPR1 gene (encoding for 

an intracellular receptor for inositol 1,4,5-trisphosphate). 
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4.2 MiRNA expression profile in genetic FTD 

To study miRNA expression profile of subjects, I took advantage of OpenArray technology, which allow the 

detection of 754 target simultaneously. I was able to find an average of 125 miRNA expressed per group. 

 

4.2.1 C9ORF72 expansion carriers vs Controls 

 

4.2.1.1 MiRNA expression profile 

Two miRNA were found to be significantly altered in patients compared to control group (Figure 12).  

Has-miR-20b and has-miR-223# were upregulated in patients (p-value 0,04347 and 0,03499 respectively).  

 

 

 
Figure 12.  Box plot showing median of 30-ΔCt  and min and max value for healthy controls (Ctrl) and C9ORF72 expansion 

carriers (C9) 

 

These two miRNAs underwent to PCA and hierarchical clustering (Figure 13 A and B respectively) and the 

plots show a good clustering, with C9ORF72 group positioning on the right.  

 

 

  
Figure 13. Principal component analysis (A) and Unsupervised Hierarchical clustering (B) showing how patients and 
healthy subject cluster due to miRNAs signature-expression pattern. 

B 

 

A 
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This 2 miRNAs signature predicted patients and controls with 80% sensitivity and 78% specificity [AUC= 0,87 

(0,60-0,98)] (Figure 14). 

 

 

 
Figure 14. Receiver Operating Characteristic (ROC) curve showing sensitivity and specificity in predicting patients and 
controls. AUC: area under the curve. 
 

 

 

4.2.1.2 Target prediction and pathway enrichment analysis 

The figure 15 shows pathways associated to the miRNAs signature. Significance of the  association is set at 

0.05, and the pathways with higher p-values are at the top of the graph. 

For C9ORF72 signature, beside cell cycle regulation and p53 signalling pathways, in common to the other 

group, endocytosis appears to associate with high significance. 
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Figure 15. Biological pathway (y-axis) associated to the miRNAs signature. -log10(p-value), expressing the significance of 
this association, is reported on x-axis. Higher p-value are at the top of the graph.
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4.2.2. GRN mutation carriers vs Controls 

4.2.2.1 MiRNA expression profile 

Six miRNA appeared to be significantly altered in patients compared to control group (Figure 16). 

Five of them were upregulated in patients, namely  hsa-miR-28-3p (p=0,03998), hsa-miR-342-3p (p=0,03147), 

hsa-miR-365 (p=0,3998), hsa-miR-576-5p (p=0,03998), hsa-miR-642 (0,03998). Conversely, hsa-miR-590-5p 

was downregulated compared to controls (p=0,02443). 

 

 

 
Figure 16. Box plot showing median of 30-ΔCt  and min and max value for healthy controls (Ctrl) and GRN mutation  
carriers. 
 

There is a good clustering of the patients and control group, with variability within GRN group, explained by 

PC2 (Figure 17). 

 

  

  
Figure 17. Principal component analysis (A) and Unsupervised Hierarchical clustering (B) showing how patients and 
healthy subject cluster due to miRNAs signature-expression pattern 
 

A 

 

B 
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Again, this signature predicts patients and controls with high sensitivity and specificity (figure 18) 

 

 

 
Figure 18. Receiver Operating Characteristic (ROC) curve showing sensitivity and specificity in predicting patients and 
controls. AUC: area under the curve. 
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4.2.2.2 Target prediction and pathway enrichment analysis 

For GRN miRNA signature, target prediction (Figure 19) highlighted significant association with TGF-b, ErbB 

and neurotrophin signalling. This is in line with the trophic and neuroprotective function of progranulin. 

 

 

 
Figure 20. Biological pathway (y-axis) associated to the miRNAs signature. -log10(p-value), expressing the significance of 
this association, is reported on x-axis. Higher p-value are at the top of the graph 
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4.2.3 MAPT mutation carriers vs Controls  

 

4.2.3.1 MiRNA expression profile 

In the comparison between MAPT mutation carriers and control subjects, 9 miRNA were found to be 

differently expressed (Figure 21). Hsa-miR-146a, hsa-miR-192, hsa-miR-25, hsa-miR-28, hsa-miR-28-3p, hsa-

miR-30c, and hsa-miR-576-3p were upregulated compared to control subjects (p= 0,01327, p=0,0006, 

p=0,04347, p=,02201, p=0,01721, p=0,03499, p=0,0222 respectively). Hsa-miR-339-5p and hsa-miR-532-3p 

were instead downregulated in patients (p=0,022 and p=0,04347, respectively). 

 

 

Figure 21.  Box plot showing median of 30-ΔCt  and min and max value for healthy controls (Cntrl) and MAPT  mutation 
carriers  
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Due to this 9 miRNA signatures, there is an almost complete clustering of the two groups, as shown in figure 

22.   

 

A                                                                                   B 

  
Figure 22. Principal component analysis (A) and Unsupervised Hierarchical clustering (B) showing how patients and 
healthy subject cluster due to miRNAs signature-expression pattern 
 

It predicts patients and controls with 90% sensitivity and 100% sensitivity [AUC=0,94 (0,68-1)] (figure 23). 

 

 

 

Figure 23. Receiver Operating Characteristic (ROC) curve showing sensitivity and specificity in predicting patients and 
controls. AUC: area under the curve. 
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4.2.3.2 Target prediction and pathway enrichment analysis  

 

For MAPT miRNA signature, we can observe several pathways associated with high significance (Figure 24). 

ErbB signalling pathway and Apoptosis appear to be significant. Of note, compared to the other two group, 

there is a greater involvement of pathways associated to inflammation, namely TLR-, mTOR-, MAPK signalling 

pathways. 

 

 

 

Figure 24. Biological pathway (y-axis) associated to the miRNAs signature. -log10(p-value), expressing the significance of 
this association, is reported on x-axis. Higher p-value are at the top of the graph.
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4.2.4 Evaluation of underlying pathology 

From a neuropathological point of view, FTD patients can be grouped in FTD-Tau, comprising carriers of MAPT 

mutations, and FTD-TDP43, comprising C9ORF72 and GRN mutation carriers. In order to find a signature 

related to the neuropathology underneath, the expression profile of miRNAs in MAPT group and the one of 

C9ORF72 and GRN carriers jointly were compared with control subjects. Four miRNAs appeared to be 

statistically significant (Figure 25).   

                           

              
Figure 25.  Box plot showing median of 30-ΔCt  and min and max value for GRN+C9ORF72 and MAPT  mutation carriers 
compared to healthy controls (Cntrl). 
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4.2.5 Validation of results 

Results were validated with single TaqMan probes. Mean relative quantification (RQ) calculated with the  

2-ΔΔCt  method. 

For C9ORF72 group (figure 26) both miRNAs identified in the discovery phase were validated (hsa-miR-20b 

p: 0,0373; hsa-miR-2223# p: 0,0307).  

 

A                                                                            B 

 
Figure 26. Comparison of mean RQ ± SEM between C9ORF72 and Control group for hsa-miR-20b (A)  and    hsa-miR-
2223# (B) 

 

Concerning GRN signature, five miRNAs were validated (hsa-miR-28-3p, p: 0,0267 ; hsa-miR-365, p: 0,0313; 
hsa-miR-576-5p, p: 0,0409 ; hsa-miR-590-5p, p:0,0365. Fiure 27A, B,C,D, E). Significance was lost for has-
miR-642 (p:0,01936. Figure 27F). 
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A B C 

 

D E F 

 
Figure 27. Comparison of mean RQ ± SEM between GRN and Control group for hsa-miR-28-3p (A), hsa-miR-365 (B), 
hsa-miR-576-5p (C), hsa-miR-590-5p (D), hsa-miR-342-3p (E), hsa-miR-642 (F) 
 

 

For MAPT mutation carriers, significance was validated for hsa-miR-146a (p:0,0277), hsa-miR-192 (p:0,0155), 

hsa-miR-28 (p: 0,0380), hsa-miR-28-3p (p:0,0373), hsa-miR-339-5p (p:0,0391), hsa-miR-532-3p (p:0,0188) 

and hsa-miR-576-3p (p:0,0028), as shown in figure 33 A-G).  the trend from the discovery phase was 

confirmed for hsa-miR-25 and hsa-miR-30C (p:0,0563 and p: 0,0551, respectively, figure 28 H and I) 
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Figure 28. Comparison of mean RQ ± SEM between GRN and Control group for hsa-miR-146a (A), hsa-miR-192 (B), hsa-
miR-28 (C), hsa-miR-28-3p (D), hsa-miR-339-5p (E), hsa-miR-532 (F), hsa-miR-25 (G), hsa-miR-30c (H) 
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5. Discussion 

 

Alzheimer’s disease and Frontotemporal dementia are two of the most common forms of neurodegenerative 

dementia. They are complex multifactorial disorders with a strong genetic background. For both the diseases, 

a familial and a sporadic form is recognised. Most of the cases are sporadic with no or less apparent familial 

aggregation and late-onset of the symptoms, while familial cases present Mendelian inheritance and 

predominantly earlier onset age. The dichotomy Familial-Sporadic form is an oversimplification that do not 

account for the complexity of the disease. There are early-onset cases without evidence for Mendelian 

transmission while, conversely, late-onset forms are frequently observed with a strong familial clustering, 

sometimes resembling a Mendelian pattern. Moreover, a considerable proportion of these cases is 

genetically determined [414,415]. Genetic, epigenetic and environmental factors interplay to influence this 

complex aetiology. In light of these evidences, this study aimed to explore AD and FTD from a genetic and 

epigenetic point of view. 

 

For the genetic analysis, I took advantage of Next Generation Sequencing (NGS) technologies, rapid and cost-

effective methods enabling the screening of several genes simultaneously. 188 patients were screened with 

customised genes panels, designed ad hoc according to the clinical phenotype. 

136 patients with low CSF levels of Aβ or positivity to PET with Aβ tracer and a clear anamnestic family history 

for neurodegenerative diseases or psychiatric disorder were screened with the NPC panel. Seven of these 

patients carried mutation in NPC1 and NPC2 genes. Since the cohort was well characterized for the ongoing 

amyloid deposition in the brain, it can be speculated a correlation between the presence of NPC1 and NCP2 

variants and the pathogenic amyloid cascade, leading to neurodegeneration. Regarding the clinical 

phenotype, beside cognitive impairment, which was one of the main inclusion criteria, five of seven carriers 

developed psychosis (70%) as compared with non-carriers (43%), mainly delusions, and two had 

extrapyramidal symptoms (28%, compared with 10% in non-carriers). Three out of four known variants found 

in the present study were previously found in the heterozygous status in three genetic screening conducted 

independently in cohorts of patients from different European countries affected by neurodegenerative 

diseases. In particular, the p.V30M mutation was found in one patient with PD [406] and one with CBS [405]. 

The c.441 + 1 G>A variant was present in patients diagnosed with PD, FTD [406], and CBS [405] and in a 

patient with psychosis [407]. This could suggest that NPC heterozygosity might promote neurodegeneration 

in combination with other environmental or genetic factors. Carriers account for 5.2% of the whole cohort. 

Although not statistically significant, the number of carriers is higher than in healthy subject cohort (1,3%). 

This result is in accordance with evidence previously reported in the Exome Variants Project (EVP, 2%) and 

the recent paper by Bremova and colleagues [416] (NPC heterozygosity of 1:200 in the general population) 
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and in line with previous studies in cohorts of patients with neurodegenerative or psychiatric disorders [405–

407].  

 

Following Dementia panel and clinical exome sequencing, both predictable and unconventional variants were 

found.  

Two patients suffering from AD carried two variants in PSEN2. One of this, Thr18Met variant was first 

discovered in a PD patient interestingly presenting a CSF profile comparable with AD risk.  

A patient with FTD displayed a variant in GRN, previously reported by Bartoletti-Stella and colleagues in a 

patient with reduced levels of plasma progranulin [417]. Interestingly the patient also carried a mutation in 

Glucocerebrosidase (GBA). The gene encodes for a lysosomal membrane protein that cleaves the beta-

glucosidic linkage of glycosylceramide, an intermediate in glycolipid metabolism. GBA mutations cause the 

autosomal-recessive lysosomal storage disorder Gaucher’s disease, but in the heterozygous status represent 

the most common risk factors for Parkinson’s disease. D409S variant is a relatively common mutation in PD 

patients [418].  

In a bvFTD patient, a VUS was found in TBK1 gene, associated to FTLD-ALS spectrum. The gene encodes a 

multifunctional kinase regulating a number of cellular processes, including the innate immune system and 

inflammation, autophagy, and cell proliferation [290].   

Both AD and FTD patients displayed variants in SQSTM1, SORT1 and DCTN1.  

SQSTM1 encodes for a multifunctional protein that binds ubiquitin and regulates activation of the nuclear 

factor kappa-B (NF-kB) signalling pathway. Mutations in this gene result in sporadic and familial Paget disease 

of bone but are also proven to influence susceptibility to FTD [291].   

SORT1 is a known FTD risk factor and has been proposed to be involved in AD pathogenesis as well [419]: the 

encoded protein is a neuronal receptor involved in intracellular protein transport and cellular signal 

transduction and in particular of progranulin [286].  

DCTN1 encodes a subunit of dynactin, a microtubule-binding protein involved in the transport of molecules. 

Mutations in this gene are associated to Perry Syndrome, a brain disease characterized by parkinsonism, 

psychiatric changes, weight loss and hypoventilation[420]. Variants in this gene have been reported FTD/ALS 

patients [421,422]. Hori and colleagues reported variants in this gene also in elderly Japanese dementia 

patients [421,422].   

Two bvFTD patients carried variants in TREM2. This gene encodes a membrane protein that forms a receptor 

signalling complex with the TYRO protein tyrosine kinase binding protein. The encoded protein functions in 

immune response and may be involved in chronic inflammation by triggering the production of constitutive 

inflammatory cytokines. Mutations in this gene are responsible for Nasu-Hakola disease. Interestingly, both 

homozygous and heterozygous mutations in TREM2 have been found in patients with FTD-like phenotypes 

but without any bone-associated symptoms [423].  
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Interestingly, a patient diagnosed with LBD carried a VUS in MAPT. This variant was previously reported in an 

Italian patient with lower motor neuron disease [424]. MAPT variants are not frequently related to LBD: some 

studies report an association with MAPT H1 haplotype [425], and only the paper form Orme and colleagues 

reported a LBD patient harbouring a variant in MAPT gene [426] 

VUS were found in genes classically associated to other phenotypes (AARS2, GFAP, PLA2G6, EIF2B1, NPC1 

and CSF1R) but included in the screening as they can cause dementia. Although the clinical characteristics of 

the carriers do not reflect the phenotypes of such diseases, the presence of variants in these genes could 

indicate common pathways possibly involved in dementia aetiology.  

AARS2 encodes for alanyl-tRNA synthetase 2, a mitochondrial enzyme that specifically aminoacylates alanyl-

tRNA. Defects in this gene have been associated to two very different phenotypes: early-onset 

cardiomyopathy and late-onset leukoencephalopathy, the latter associated with a variety of clinical 

phenotypes dominated by dementia, psychiatric changes, movement disorders, and upper motor neuron 

signs [427]. 

CSF1R gene is responsible for hereditary diffuse leukoencephalopathy with neuroaxonal spheroids, and have 

been also found in patients with sporadic FTD [428].  

The novel variant found in PLA2G6 falls in a domain mutated in late-onset presentation of phospholipaseA2-

associated neurodegeneration, a disease presenting with ataxia and cognitive decline [429].  

The variant in NPC1 found in a patient with MCI was also reported by Cupidi and colleagues in CBS patients 

[405].   

 

Following clinical exome sequencing, five mutations gained attention since were filtered by the bioinformatic 

tool being pathogenic or VUS and reported in ClinVar. They were found in patients with AD. 

CAGNA1G and ITPR1 call into play Calcium homeostasis. The first encodes for a T-type calcium channel, the 

latter for a receptor for inositol 1,4,5-trisphosphate, implicated in calcium signalling. Ca2+ is a tightly 

regulated second messenger that is crucial for normal neuronal function. By binding to proteins, Ca2+ 

modulates different neuronal processes, such as energy production, survival and death, and plays an 

important role in learning and memory. A study by Rice and colleagues showed that the expression of 

CAGNA1G and of genes encoding inositol triphosphate receptors (IP3R) is altered in several brain regions 

with aging [430]. Cacna1g expression appears to be significantly decreased in the AD brain compared with 

aged, non-demented controls. Moreover, they proved that in an animal model, blockade of this calcium 

channel increases the Aβ production. Moreover, in animal studies, PSEN2 mutations modulate kinetics of 

inositol 1,4,5-trisphosphate-mediated calcium signals [431]. 

CYP27A1 encodes a member of the cytochrome P450 superfamily of enzymes, which is important for overall 

cholesterol homeostasis. Mutations in this gene cause cerebrotendinous xanthomatosis, a rare autosomal 

recessive lipid storage disease presenting in the childhood and causing progressive cognitive decline. The 
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gene synthesize 27-hydroxycholesterol (27-OHC), an oxidative derivative of cholesterol, which was proven 

by Wang and colleagues to affect learning and memory in mice, through tau phosphorylation [432]. 

Interestingly, 27-OHC shows high concentration in plasma of AD patient [433]. 

COL18A1 encodes for a type of heparan sulfate proteoglycans, molecules involved in several aspects of the 

pathogenesis of AD, since they have the ability to enhance Aβ fibrillization. In particular, collagen XVIII 

appears to be associated with vascular amyloid depositions and senile plaques in Alzheimer’s disease brains 

[434].  

TYMP gene encodes an angiogenic factor, which promotes angiogenesis in vivo and stimulates the in vitro 

growth of a variety of endothelial cells. It has a highly restricted target cell specificity, acting only on 

endothelial cells. Mutations in this gene have been associated with mitochondrial neurogastrointestinal 

encephalomyopathy. The mutation found here was reported by Martì and colleagues in a patient presenting 

impaired shot-term memory and inappropriate behaviour [435].  

 

 

The second part of the project focused on the study of expression profile of miRNAs in a cohort of genetic 

FTD patients. To this purpose, I employed the OpenArray technology, which allowed the simultaneous 

detection of 754 miRNAs. Analysis was performed comparing three groups of mutation carriers, namely 

C9ORF72, GRN and MAPT groups, to control subjects.  

For each group, the expression levels of a set of miRNAs were found to be significantly altered compared to 

control group. In particular, two miRNAs (has-miR-20b and has-miR-223#9) were found upregulated in 

C9ORF72 group; in GRN mutation carriers five miRNAs (hsa-miR-28-3p, hsa-miR-342-3p, hsa-miR-365, hsa-

miR-576-5p and hsa-miR-642) were overexpressed, one (hsa-miR-590-5p) was downregulated. In MAPT 

mutation carriers, seven miRNAs were overexpressed (hsa-miR-146a, hsa-miR-192, hsa-miR-25, hsa-miR-

28, hsa-miR-28-3p, hsa-miR-30c, hsa-miR-576-3p), and two (hsa-miR-532-3p and hsa-miR-339-5p) were 

downregulated. These specific miRNA signatures predicted patients with high sensitivity and specificity. 

Pathways analysis was performed for each signature, and several biological processes have been highlighted 

with high significance association. Some were in common among the three groups, while others were more 

specifically associated to a mutated gene. 

p53 signalling and cell cycle pathways appeared to be in common among the three group, associated with 

high significance. p53 is a transcription factor, critical for many important cellular functions involved in 

genome integrity, including cell cycle control, DNA damage response, and apoptosis [436]. The level and 

transcriptional activity of p53 massively increase in cells undergoing different types of stress including 

oxidative stress, DNA damage, telomere erosion or ribosomal stress [437]. p53 has previously been 

implicated in neurodegeneration. A significant increase in p53 levels and activity were detected in post-

mortem CNS tissues of patients with ALS as well as in other neurodegenerative diseases, including Alzheimer 
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disease, Parkinson disease and Huntington disease [438]. Recently, Nof and colleagues associated p53 to 

C9ORF72 mutations, since they proved the ability of p53 reduction to rescue C9ORF72 mouse and fly models 

as well as iPSC motor neurons derived from C9ORF72 ALS patients, suggesting that p53 is one of the drivers 

of neurodegeneration caused by C9ORF72 mutations [439]. 

Concerning C9ORF72 group, endocytosis appeared to be a specific pathway. Endocytosis is pivotal process 

involved in cellular trafficking of molecules, influencing cell signalling and nutrient uptake. In 

neurodegeneration, dysfunction in endocytic membrane trafficking is a recurrent theme, often accounting 

for abnormal protein deposition. As reviewed by Tang, C9orf72 interacts with multiple members of the Rab 

small GTPases family, consequently exerting important influences on cellular membrane traffic and the 

process of autophagy. Its loss can impair endocytosis in neuronal cell lines, and attenuated autophagosome 

formation [440].  

For GRN miRNA signature, target prediction highlighted significant association with TGF-β, ErbB and 

neurotrophin signalling. This is in line with the trophic and neuroprotective functions of progranulin. 

TGF-β family is a group of pleiotropic cytokines with important neuroprotective functions. It is known to 

synergize with neurotrophins to protect neurons against insults and maintain neuronal health [441]. ErbB is 

a family of receptor tyrosine kinases through which neurotrophins exert their function [442]. 

For MAPT miRNA signature, several pathways can be observed, associated with high significance. ErbB 

signalling pathway and Apoptosis appear to be significant. Of note, compared to the other two group, there 

is a greater involvement of pathways associated to inflammation, namely TLR-, mTOR-, MAPK signalling 

pathways. Recently, inflammation is emerging as an important process in the pathology of FTD, although the 

timing and exact contribution to disease pathogenesis remains unclear. As reviewed by Bright and colleagues, 

several genes involved in FTD pathogenesis have also been implicated in neuroinflammation, indicating that 

it might contribute directly to the disease process in FTD rather than being secondary to neurodegeneration.   

[443]. Recent works tried to assess association with MAPT, finding a correlation between 

mutation/overexpression in the gene and neuroinflammation in animal models  [444,445] 

A further analysis was performed comparing MAPT and C9ORF72+GRN groups to control subjects, in order 

to identify miRNAs specific for the underlying pathology. Four miRNAs reached statistical significance. 

Three (has-miR-579, has-miR-223# and has-miR-18b) were significantly overexpressed and one (has-miR-

590-5p) was downregulated in C9ORF72+GRN group compared to controls. No statistical differences were 

found between MAPT and control groups. Therefore, it can be speculated that the dysregulation of these 

miRNAs could be involved in the neuropathological differences between the two groups. 
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6. Conclusions  

Alzheimer’s disease and Frontotemporal dementia are two of the most common forms of dementia, causing 

a progressive and irreversible cognitive decline. As the population ages, these pathologies are becoming a 

major global health issue and a burden for society. Therefore, is critical to deepen our knowledge of these 

types of pathologies, meeting the need for early diagnosis and effective treatments. 

This project focused on the study of AD and FTD using genetic and epigenetic approaches.  

 

For the first part of the project, a NGS methodology was used to explore the genomic background of 

dementia patients. Of 188 patients screened, 36 carried pathogenic mutations or variants of uncertain 

significance. Some of these variants occurred in causative genes or in genetic risk factors associated to AD 

and FTD (GRN, PSEN2, SQSTM1, TREM2, ect.). Other genes were classically associated to other phenotypes 

(PLA2G6, AARS2, CSF1R). Moreover, variants in genes unexpected in the clinical setting provide links to 

biological process that need to be further explored, as the case of the calcium signalling (CAGNA1G and 

ITPR1). The presence of an important family history for dementia in the population screened prompted me 

to further investigate the genetic background of this patients, searching for rare sequence variant that could 

further contribute to understanding the aetiology of dementias. The heterogeneous nature of the variants 

found in this study, both in AD and FTD patients, confirms the complex genetic background of these 

pathologies. It can be speculated that many genetic variations of small effect interact to increase risk of 

dementia, interplaying with epigenetic and environmental factors. 

 

The second part of the project was based on the analysis of the expression profile of miRNAs in genetic FTD. 

Genetic cases have been chosen as gold standard for this study since the underlying pathology is known due 

to the occurrence of a mutation. A specific signature of miRNAs has been found, which can distinguish 

patients from healthy subjects with high sensitivity and specificity. This signature is different for each genetic 

group and therefore is able also to predict the underlying pathology. These findings have potential to be 

translated to non-genetic cases for whom is impossible to predict the pathology underneath in vivo and 

therefore is predicted the early enrollment of patients in clinical trials based on intervention on the protein 

deposition. 

 

The advances in genomic and epigenetic technologies gave great impulse to the understanding of the 

molecular mechanisms underlying neurodegenerative dementia. Due to NGS techniques, new associated loci 

and a large number of variants of uncertain significance are being identified and in this scenario is crucial the 

translation of this genetic knowledge into the understanding of the affected molecular mechanisms. To this 

purpose, studying the expression profile of miRNAs and the interaction with targeted genes would give new 
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insights into the pathogenic processes that took place in these diseases. In this scenario, miRNAs would have 

great potential also as therapeutic target, hopefully in the next future. 
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