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Abstract: Following some previous work by some of us on the second order nonlinear optical (NLO)
properties of Zn(II) meso-tetraphenylporphyrin (ZnP), fullerene, and ferrocene (Fc) diads and triads,
in the present research, we explore the NLO response of some new hybrids with two-dimensional
graphene nanoplates (GNP) instead of a zero-dimensional fullerene moiety as the acceptor unit. The
experimental data, collected by Electric Field Induced Second Harmonic generation (EFISH) technique
in CH2Cl2 solution with a 1907 nm incident wavelength, combined with Coupled-Perturbed (CP) and
Finite Field (FF) Density Functional Theory (DFT) calculations, show a strongly enhanced contribution
of the cubic electronic term γ(−2ω;ω,ω, 0), due to the extended π-conjugation of the carbonaceous
acceptor moiety.

Keywords: porphyrins; graphene nanoplates; ferrocene; nonlinear optics; hybrid materials

1. Introduction

In the last decades, many materials such as graphene [1–3], fullerene [4–6], and quan-
tum dots [7–9] have attracted attention in the scientific community for their significant
nonlinear optical (NLO) properties. In parallel, a huge amount of research has been devoted
to the investigation of organic and organometallic chromophores, in which nonlinearity
mainly arises from the so-called push–pull architecture, involving a donor and an acceptor
moiety bridged by a π-delocalized spacer. Due to their thermal and chemical stability
and quite good solubility, porphyrins and their metal complexes are employed in a large
variety of fields, ranging from optoelectronics [10,11], catalysis [12–15], sensing technologies [16–20],
photovoltaics [21–28], and artificial photosynthesis [29–32]. They have also been long
investigated for their second order NLO properties, starting from the pioneering work by
Therien [33–35] to some more recent results achieved by some of us [36–40]. Indeed, por-
phyrins show a very high structural flexibility thanks to the four meso, the eight β-pyrrolic,
and the two axial positions, which allow a wide variety of chemical functionalizations
by playing with the substituents at the periphery of the macrocycle, the nature and the
oxidation state of metal center, and the type of axial ligands, for a fine tuning of the optical,
electronic, and electrochemical properties in view of an enhanced NLO response.

By using different chemical modifications, several carbonaceous organic moieties such
as fullerene, nanotubes, carbon sphere, and graphene [41–48] can efficiently be attached to
the porphyrin core to obtain new interesting conjugates [49–52].

In particular, in recent work [52], some of us investigated, using the Electric Field
Induced Second Harmonic generation (EFISH) technique, the second order NLO response
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in CH2Cl2 solution of some dyads (3b(Zn) and (6(Zn)-C60) and triads (10b(Zn)-C60) (Figure S1)
formed by the Zn(II) complex of meso-tetraphenylporphyrin (ZnP) (Figure S2) with an
electron donor ferrocene (Fc), and/or an electron acceptor fullerene (C60) moiety connected
to the core in 2 or 2,12 β-pyrrolic position via an ethynylphenyl spacer.

In addition to confirming the possibility for ZnP to act both as an electron acceptor
or an electron donor moiety (when connected to electron rich Fc or electron deficient
C60, respectively), that study surprisingly highlighted for all the investigated compounds
negative EFISH responses. Density Functional Theory (DFT) calculations provided an
almost null dipole moment (µ) for 3b(Zn) and µ values in the range 3.5–4.8 D for 6(Zn)-C60
and 10b(Zn)-C60, thus suggesting that these compounds feature a low polarity and, as a
consequence, a not negligible third-order contribution to their second order NLO response.

Following these results, this paper represents a part of a larger investigation that
we are interested in carrying out on electron donating-accepting multicomponent hybrid
systems in search of new promising materials with enhanced nonlinearity. Therefore, in the
present research we report and discuss the findings of a combined EFISH and theoretical
investigation on the second order NLO properties of some new hybrids, similar to the
previous ones, but with two-dimensional graphene nanoplates (GNP) instead of a zero-
dimensional C60 moiety, and two ethynylphenyl spacers instead of one (Figure 1). Indeed,
the lengthening of the spacer between the ZnP unit and the carbonaceous moiety, and the
more π-delocalization of the latter should assure a higher response in comparison to the
already studied systems.
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Figure 1. Dyad and triad investigated in this work.

GNP can be described as few layers of graphene, produced in high yields in research-
based laboratories. Graphene has been a subject of several investigations by the scientific
community, because of its unique physical and chemical properties. However, its appli-
cation has been hindered by its poor solubility due to the high π–π interlayer attraction
energies. This problem can be overcome by the functionalization on the sheet surface by
either a covalent or noncovalent method which opens new directions to introduce various
organic molecules into graphene sheets [53]. As reported, the π-delocalized electron sys-
tem of graphene acts as an electron acceptor when connected to a metal porphyrin [54].
Therefore, in our GNP-containing hybrids, push–pull interaction can be envisaged, that
may be exploited to boost the second order optical nonlinearity.

2. Materials and Methods
2.1. Materials

The synthesis of the dyad and triad here investigated involves a multi-step process (see
Section 3.1). We prepared GNP as reported in [44]. Then, we prepared and characterized
Fc-ZnP-CHO, ZnP-GNP, and Fc-ZnP-GNP as reported in [53]. the parent compounds Br-P,
Br2-P, EP2-CHO, Br-P-CHO, and Fc-P-CHO were also prepared as reported [51,55,56].

We characterized GNP by Scanning Electron Microscopy (SEM) analysis, carried out
with a TESCAN VegaII at 10 KV of voltage acceleration with a working distance of 14.67
mm. (Tescan, Brno, Czech Republic).
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We recorded the UV–Vis electronic absorption spectra of ZnP-GNP and Fc-ZnP-GNP
in CH2Cl2 solution at room temperature on a Shimadzu UV 3600 spectrophotometer
(Shimadzu Corporation, Kyoto, Japan).

2.2. EFISH Measurements

For the EFISH experiments, we used freshly prepared 10−3 M solutions in CH2Cl2.
We chose a 1.907 µm laser incident wavelength since its second harmonic (at 953 nm) is far
enough from the absorption bands of the chromophores in CH2Cl2 (see Section 3.3), that is
a necessary requirement to avoid any resonance effect on the second order NLO response.
We obtained the incident 1.907 µm wavelength by Raman shifting the 1.064 µm emission of
a Q-switched Nd:YAG laser in a high pressure hydrogen cell (60 bar). The Maker fringe
pattern, typical of the EFISH signal, was obtained through a liquid cell with thick windows
in the wedge configuration. In the experiment, we synchronized the incident beam with a
DC field applied to the solution, with 60 and 20 ns pulse duration, respectively, in order to
break its centrosymmetry. We assumed the NLO response to be real because we neglected
the imaginary part, and derived it from the experimental γEFISH value (Equation (1)):

γEFISH =
µβλ(−2ω; ω, ω)

5kT
+ γ(−2ω; ω, ω, 0) (1)

γEFISH is the sum of a quadratic dipolar orientational contribution µβλ(−2ω; ω, ω)/5
kT, and of a purely electronic cubic contribution γ(−2ω; ω, ω, 0). µ is the molecular
ground state dipole moment, and βλ the projection along the dipole moment direction of
the vectorial component βvec of the tensorial quadratic hyperpolarizability working with
the incident wavelength λ [57,58].

We performed the EFISH experiments at the Department of Chemistry of the Univer-
sity of Milano (Italy), on a prototype apparatus made by SOPRA (Paris, France), recording
firstly the second order response of the pure solvent, then the second order response of
the chromophore in solution, and finally the second order response of the solvent again.
The EFISH values reported in this paper are the average of twelve consecutive measure-
ments performed on the same sample. The uncertainty of the measure is about ±15%, and
the experimental EFISH β1.907 values are defined according to the “phenomenological”
convention [59].

2.3. Computational Details

We used the Gaussian16 suite of programs (Revision A.03; Gaussian, Inc.: Wallingford,
CT, USA, 2016) to perform DFT calculations. We optimized the molecular geometry with
the 6-311G(d) basis set using the PBE0 functional [60,61] in CH2Cl2, and we adopted
the Polarized Continuum Model in its integral equation formalism (IEFPCM) to describe
the solvent effect [62]. We modeled graphene as a single layer of 14 condensed benzene
rings and we anchored the porphyrin moiety on the center of the graphene-like system
in order to minimize boundary effects. We computed the Second Harmonic Generation
(SHG) first, β(−2ω; ω, ω), and second, γ(−2ω; ω, ω, 0), hyperpolarizability tensors by
the Coupled Perturbed Kohn–Sham (CPKS) approach and by the Finite Field technique,
respectively, at the same frequency of the EFISH experiments (1907 nm). We performed
hyperpolarizability calculations at LC-BLYP/6-31G(d) level, in agreement with what was
suggested by Wergifosse and Champagne in their thorough investigation on electron
correlation effects on the first hyperpolarizability of push–pull π-conjugated systems with
polyene and polyyne linkers [63]. We selected a pruned (99,590) grid for computation
and use of two-electron integrals and their derivatives. From the full tensors β and γ, we
derived the scalar quantities β‖ and γ‖, respectively, to have a meaningful comparison
with the experimental data. β‖ corresponds to 3/5 times βλ, the projection along the dipole
moment direction of the vectorial component of the β tensor, that is, β‖ = (3/5) ∑i(µiβi)/µ,
where βi = (1/5)∑j(βijj + βjij + βjji) [64,65]. Γ‖ is related to the tensor components according
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to the following: γ‖ = (1/15) [3(γxxxx + γyyyy + γzzzz) + 2(γxxyy + γxxzz + γyyzz + γyyxx +
γzzxx + γzzyy) + (γxyyx + γxzzx + γyzzy + γyxxy + γzxxz + γzyyz)] [64].

3. Results and Discussion
3.1. Synthesis

Although the NLO properties of graphene and porphyrins conjugates have already
been investigated, for example by the Z-scan technique [66,67], to the best of our knowledge,
the present work is the first EFISH investigation of the second order NLO response of
dyad ZnP-GNP and triad Fc-ZnP-GNP. On the other hand, their synthesis has already been
reported [53], but since it is not trivial, we wish to recall it (Scheme 1).

We synthesized GNP by a low cost, fast, scalable, and stable fabrication method using
a standard 800 W household microwave (MW) oven, developed by some of us [44]. The
procedure started with an Asbury Expandable graphite sample (Asbury Carbons, Detroit,
MI, USA), where the graphene planes were intercalated with chemical substances such as
sulphates and nitrates.

After MW irradiation, the samples were best described by a worm-like morphology
with a very large particle area. Using a short ultrasound treatment in isopropyl alcohol,
the overall wormlike structures were removed from GNPs. After the treatment, the 2D
particles show a lateral dimension of 10 µm and thicknesses < 5 nm, corresponding to
several layers of graphene.

Following the GNP synthesis process, we used the new carbon material as the electron
acceptor moiety for the formation of dyad ZnP-GNP and triad Fc-ZnP-GNP (Scheme 1).

The synthetic approach that involves the Sonogashira coupling reaction for the forma-
tion of carbon–carbon bonds allowed obtaining the desired β-pyrrolic mono and disubsti-
tuted compounds.

We chose ethynylphenyl functionalities as molecular bridges, because of their synthetic
versatility and their outstanding physicochemical properties. It was previously reported
that these linkers assist in a good conduction of the charges due to their high electron
density and the extended π-system [65,68–71].

The first step of the synthesis involved bromination of commercially available free-base
porphyrin P with N-bromosuccinimide (NBS) to obtain the monobromo derivative Br-P
or the dibromo-porphyrin Br2-P. We carried out the regiospecific antipodal bromination
of the macrocycle in 2,12 β-pyrrolic position using a light-induced reaction and NBS in
CH2Cl2 [72]. Then, the Sonogashira coupling of Br-P or Br2-P with 1.5 equivalents of
4-[(4′-ethynyl)phenyl]-ethynylbenzaldehyde (EP2-CHO) afforded derivatives P-CHO and
Br-P-CHO in 65 and 36% yield, respectively, after chromatographic purification [56].

For P-CHO, the subsequent step was the insertion of the Zn(II) ion in the cavity of
macrocycle, dissolving the free-base in chloroform and adding a 10% excess of a Zn(OAc)2
methanol solution, to afford the corresponding complex ZnP-CHO. Finally, the electron
acceptor unit GNP was connected to ZnP-CHO by the Prato–Maggini reaction [73], and we
obtained dyad ZnP-GNP.

On the other hand, the preparation of triad Fc-ZnP-GNP involved, before complexation
of the core with Zn(II) and the Prato–Maggini reaction, a second Sonogashira coupling
between Br-P-CHO and two equivalents of EP2-Fc, obtaining intermediate Fc-P-CHO in
53% yield [53].

Each intermediate compound of the reaction pathway was characterized and con-
firmed using mass spectrometry and 1H-NMR spectroscopy (Figures S3–S11 in
Supplementary Materials). On the other hand, the final products ZnP-GNP and Fc-ZnP-
GNP were characterized by X-ray photoelectron spectroscopy (Figures S12 and S13 in
Supplementary Materials) and Raman spectroscopy (Figure S14 in Supplementary Materials).
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3.2. SEM of GNP

We characterized the prepared GNP by SEM analysis (Figure 2). The image shows the
micrographs of GNP samples obtained after the irradiation power using a standard 800 W
household microwave oven. The SEM micrographs show a smooth surface of the pristine
GNP and confirm that the intercalated multilayer graphite had undergone expansion with
a good dispersion of the material.
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The 2D particles show a lateral dimension of around 10 µm, corresponding to several
layers of graphene (3–7 layers) [39].

3.3. UV–Vis Spectroscopy in Solution

We investigated dyad ZnP-GNP and triad Fc-ZnP-GNP by UV–Vis spectroscopy in
CH2Cl2 solution (that is, in the same solvent used in the EFISH experiments) to exclude
any resonance effect on the second order NLO response, and to see if the replacement of
C60 with GNP might have an influence on the electronic properties, since the spectra of
reference compounds 6(Zn)-C60 and 10b(Zn)-C60 have been previously reported in this
solvent [52].

Figure 3 shows the as-is spectra, together with that of precursor compound Fc-ZnP-
CHO (Scheme 1). A synopsis of the UV–Vis data of the investigated compounds and of
reference compounds is reported in Table 1.
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Table 1. Synopsis of the UV–Vis spectroscopic data in CH2Cl2 of the GNP-containing hybrids in
comparison to C60-containing ones and to precursors Fc-ZnP-CHO and ZnP.

Compound Soret Band λmax
(nm)

Qα Band λmax
(nm)

Qβ Band λmax
(nm)

ZnP-GNP 433 nd nd
Fc-ZnP-GNP 445 567 611
Fc-ZnP-CHO 442 567 605
6(Zn)-C60 1 434 560 598
10b(Zn)-C60 438 565 603

ZnP 1 420 548 589
1 from ref. [52].

The as-is UV–Vis spectra of ZnP-GNP and Fc-ZnP-GNP are dominated by the signif-
icant optical density in the near-IR region, due to the plasmonic resonance of GNP [44],
that hampers clearly perceiving the typical pattern of porphyrin metal complexes. In-
deed, the spectrum of precursor compound Fc-ZnP-CHO, lacking the GNP unit, shows
the classical spectroscopic features expected for a metal porphyrin according to the Gouter-
man’s “four orbital” model [74], that is an intense (ε ≈ 105 M−1 cm−1) Soret or B band at
400–450 nm, due to a S0→ S2 transition, and two less intense (ε≈ 104 M−1 cm−1) Q bands at
550–650 nm, ascribed to S0 → S1 transitions. For ZnP-GNP only, the Soret band is evident,
while the Q bands disappear in the background, so that their wavelength cannot be safely
determined, even normalizing the spectrum (Figure S15). On the other hand, in the spec-
trum of Fc-ZnP-GNP, both the B band and the two Q bands are noticeable, and the former
is accompanied by a shoulder at higher wavelengths, which can be ascribed to the Fc unit,
since it is present also in the spectrum of Fc-ZnP-CHO.

The covalent bonding of ZnP to GNP in 2 β-pyrrolic position through two ethynylphenyl
spacers causes a 13 nm bathochromic shift of the Soret band, supporting the electron
withdrawing character of the carbonaceous unit. The further introduction of a Fc moiety
in 12 β-pyrrolic antipodal position as in Fc-ZnP-GNP produces an additional 12 nm red-
shift in comparison to ZnP-GNP. Therefore, not only the interaction with GNP perturbs
the electronic state of ZnP [46], but this perturbation is also enhanced in the presence of
an electron donor moiety in the antipodal position of the core, suggesting an increased
π-delocalization within the system and a more evident push–pull character. Indeed, the
functionalization of the electron rich β-pyrrolic position with donor substituents was
already reported to be an effective way to enhance the second order NLO properties of
porphyrins [75]. The effect of the introduction of GNP on the electronic properties of the
investigated hybrids is also confirmed by the 3 and 6 nm redshift experienced by the B and
Qβ bands on going from Fc-ZnP-CHO to Fc-ZnP-GNP.

The comparison of the UV–Vis spectra of ZnP-GNP and Fc-ZnP-GNP with those of
6(Zn)-C60, 10b(Zn)-C60, and ZnP (Figures S16 and S17) allows to evaluate both the effect
of the replacement of zero-dimensional C60 with two-dimensional GNP as the acceptor
part of the push–pull system, and the effect of the presence of two ethynylphenyl linkers
instead of one in β-pyrrolic position of the porphyrin core.

Whereas the introduction on ZnP of a C60 moiety bridged by one ethynylphenyl
spacer to the core (ZnP → 6(Zn)C60) leads to significant bathochromic shifts of all the
absorption bands (14 nm for the B band and 12 and 9 nm for the Qα abd Qβ bands,
respectively), the addition of a further ethynylphenyl unit and the replacement of C60 with
GNP appears to have basically no effect on the electronic properties, since only a negligible
1 nm hypsochromic shift of the B band is observed comparing 6(Zn)C60 to ZnP-GNP
(Figure S14). C60 and GNP appear, thus, to behave as very similar acceptor groups.

Conversely, the linking of a Fc and a C60 unit in antipodal positions of ZnP
(ZnP→ 10b(Zn)-C60) produces significant red-shifts of all the absorption bands (18, 17, and
14 nm for the B, Qα, and Qβ bands, respectively), which are further enhanced by adding a
second ethynylphenyl spacer between the core and the donor and acceptor groups, and
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replacing C60 with GNP. Indeed, by comparison of the spectrum of 10b(Zn)-C60 with
that of Fc-ZnP-GNP, a 7 nm red-shift of the B band is evident, together with 2 and 8 nm
red-shifts for the Qα and Qβ bands.

In summary, the UV–Vis spectroscopic investigation would suggest that a GNP unit
linked in the 2 β-pyrrolic position of ZnP perturbs the electronic properties of the core in
a way that is similar to C60, thus behaving as an acceptor group of comparable strength.
The presence of a Fc moiety in 12 β-pyrrolic antipodal position of the macrocycle appears
essential to increase the push–pull character of the system, differently from the insertion of
a second ethynylphenyl spacer.

3.4. EFISH and CP-DFT Investigation of the Second Order NLO Properties

We investigated the second order NLO properties of ZnP-GNP and Fc-ZnP-GNP both
experimentally by the EFISH technique and theoretically by DFT (see Sections 2.2 and 2.3
for the details). We chose to calculate and discuss β‖ instead of the spherical averages of
the responses (Table S1), since it refers to the projection along the dipole moment direction
of the vectorial component of the overall β tensor, which is exactly the figure of merit of
the EFISH measure. To better highlight the role of GNP, we also included Fc-ZnP-CHO in
our investigation. Figure S18 shows the PBE0/6-311G(d) optimized structures of the three
compounds, while Table 2 collects the experimental and theoretical results, together with
the data previously reported for the reference compounds with C60 [43].

Table 2. Synopsis of the experimental EFISH and theoretical DFT results on the investigated com-
pounds in comparison to the reference ones.

Compound µ

(D)
γEFISH

(×10−36 esu)

µβ1907
(×10−48 esu)

(β1907 × 10−30 esu)

β‖
(×10−30 esu)

µβ‖/5 kT
(×10−36 esu)

γ‖
(×10−36 esu)

Dipolar vs. Cubic
Contribution % 3

ZnP-GNP 1.23 −3160 −650
(−528) 2 20 120 −1890 6.3

Fc-ZnP-GNP 1.17 −8800 −1880
(−1607) 2 9 75 −4388 1.7

Fc-ZnP-CHO 5.31 −4130 −850
(−160) 2 94 2920 −5484 53

6(Zn)-C60 1 4.77 −3470 −720
(−151) 2 30 696 −1543 45

10b(Zn)-C60 1 4.14 −6410 −1330
(−321) 2 42 845 −3225 26

1 from ref. [52]. 2 given by µβ1907/µ. 3 given by [(µβ‖/5 kT)/γ‖] × 100.

The experimental γEFISH and µβ1907 values for the GNP-containing hybrids are of the
same order of magnitude as those of their C60 counterparts, and, like them, negative [52].

A negative sign of the second order NLO response measured by the EFISH technique
can stem from intermolecular interactions or aggregation phenomena that may occur in
solution [36,37]. However, as for C60-carrying compounds, as well as ZnP-GNP and Fc-
ZnP-GNP, we can safely exclude them, owing to the significant steric hindrance which
characterizes A4 β-pyrrolic mono or disusbstituted Zn(II) porphyrins [37]. Indeed, the
dihedral angles between the aryl rings in the four meso positions of the core and the
mean plane of the macrocycle are in the range 70◦–90◦ (Figure S16), and induce an overall
lowering of the molecular flatness.

For 6(Zn)-C60 and 10b(Zn)-C60, some of us reported the negative sign of γEFISH
to be the result of a not-negligible contribution of the electronic third order cubic term
γ0(−2ω; ω, ω, 0) to the second order NLO response [52] (see Equation (1)). Indeed,
as for other β-pyrrolic mono- and di-substituted Zn(II) porphyrins [39], we observed
that in compounds featured by a low polarity, the dipolar orientational contribution
µβ1907(−2ω; ω, ω)/5 kT to γEFISH becomes less important and is outstripped by
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γ0(−2ω; ω, ω, 0), whereas in classical push–pull NLO-phores, this latter can be safely
overlooked [76].

The new results on GNP-containing conjugates further support these findings. In-
deed, experimental γEFISH and calculated γ‖ are almost comparable, at least as order of
magnitude, thus confirming the role of third order contributions to the second order NLO
response. Moreover, the computed ground state dipole moments (µ) of ZnP-GNP and
Fc-ZnP-GNP are very low: 4 and 3.5 times lower than those of reference compounds 6(Zn)-
C60 and 10b(Zn)-C60, respectively, and also lower than those of the other β-pyrrolic Zn(II)
porphyrins previously studied by some of us [39]. Therefore, from a NLO point of view,
we can conclude that GNP behaves as a weaker electron acceptor than C60, and that the
dipolar push–pull character of GNP-containing systems decreases in comparison to the
C60-containing counterparts, despite the red-shifts of the electronic spectra evidenced by
the spectroscopic analysis. Accordingly, the computed β‖ values for the GNP-containing
compounds are from 1.5 to 4.7 times lower than those of the corresponding C60-substituted
complexes. On the other hand, their experimental β1907 are apparently higher, but these
values must be considered carefully since they are the mathematical result of µβ1907/µ and
the µ values of GNP-hybrids are very low, as discussed above. As a general rule, indeed, for
the systems under investigation the comparison between β1907 and β‖ is critical, because
the former is derived from equation 1 in the assumption of neglecting γ0 (−2ω;ω,ω, 0),
that, instead, is crucial.

The role of GNP in the decrease of the dipolar character of the compounds under
investigation is confirmed by the fair 5.31 D value of µ obtained for Fc-ZnP-CHO, lacking
the GNP unit, which is also higher than those of C60-containing systems and thus leads to
a higher value of β‖. However, even Fc-ZnP-CHO gives rise to a negative γEFISH value, as
expected since the negative µβ‖/5 kT value is 53% that of γ‖.

Indeed, in an effort to give at least a qualitative idea of the relationship between
the theoretical dipolar and cubic components of the second order NLO response of the
investigate compounds, we calculated the ratio between µβ‖/5 kT and γ‖ (Table 2, last
column). For ZnP-GNP and Fc-ZnP-GNP, the ratio between the calculated dipolar and
cubic contribution decreases significantly, becoming less than 10% and supporting the
overwhelming role of γ0(−2ω; ω, ω, 0) to γEFISH. On the other hand, the corresponding
C60-containing hybrids and Fc-ZnP-CHO show higher ratios, in agreement with their
higher µ and β‖.

Thus, our combined EFISH and theoretical investigations suggest that the extended
π-delocalized structure of GNP enhances the overall polarizability of the GNP-containing
hybrids, but without increasing their push–pull character, and therefore leading to chro-
mophores with a not-negligible and significant third order contribution to the second order
NLO response.

4. Conclusions

In this work, we integrated an experimental EFISH and a theoretical DFT approach to
study the second order NLO properties of two hybrids formed by Zn(II) meso-tetraphenyl
porphyrin (ZnP), electron acceptor graphene nanoplates (GNP), and electron donor fer-
rocene (Fc).

The UV–Vis absorption spectra suggested that linking a GNP unit in 2 β-pyrrolic
position of ZnP perturbs the electronic properties of the porphyrin core, and that this
perturbation is similar to that induced by C60. Moreover, the presence of a Fc moiety in
antipodal position of the macrocycle appeared essential to increase the push–pull character
of the system, differently from the insertion of a second ethynylphenyl spacer.

EFISH measurements produced for the new GNP-conjugates negative γEFISH and
µβ1907 values are comparable to those of C60-containing compounds.

Interestingly, the DFT computed ground state µ for GNP-hybrids was very low, even
lower than those of the corresponding compounds with C60, supporting for GNP a less
electron acceptor character than C60. The peculiar role of GNP in lowering the µ value
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was sustained by the fair µ of Fc-ZnP-CHO, which matched with its higher ratio between
the computed dipolar and cubic contributions (53% vs. less than 10%). Nonetheless,
since all the investigated compounds, including Fc-ZnP-CHO, showed a negative sec-
ond order NLO response, we can conclude that γEFISH is dominated by the negative
pure electronic term γ0(−2ω; ω, ω, 0), which overwhelms the dipolar orientational one
µβ1907(−2ω; ω, ω)/5 kT. The extended π-delocalized structure of GNP is therefore very
efficient in increasing the overall polarizability of the hybrids, without increasing their
push–pull character, so that they basically behave as third order chromophores.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ma16155427/s1, Figure S1: Dyads and triads already investi-
gated by some of us; Figure S2: Synopsis of chemical structures; Figure S3: FAB spectrum of com-
pound P-CHO using as matrix NBA; Figure S4: 1H-NMR in CDCl3 of compound P-CHO; Figure S5:
1H-NMR in CDCl3 of compound ZnP-CHO; Figure S6: FAB spectrum of compound Br-P-CHO using
as matrix NBA: Figure S7: 1H-NMR in CDCl3 of compound Br-P-CHO; Figure S8: MALDI spectrum
of compound Fc-P-CHO using as matrix gentisic acid; Figure S9: 1H-NMR in CDCl3 of compound
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