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Abstract 

In this thesis, we delve into the realms of integrative genomics, employing advanced 

sequencing techniques across two distinct but interconnected projects. Integrative 

genomics combines transcriptomic, genomic, epigenomic, and proteomic data, offering a 

comprehensive perspective on the interplay within and between different functional layers 

to fully underscore biological systems and processes. This approach is key to 

understanding and elucidating the complex molecular mechanisms underlying the project 

presented in this dissertation.  

An Integrated Screening to Infer Transcription Factor Regulatory Networks 

Governing Cell Fate Decisions 

Recent advancements in cellular reprogramming have revolutionized our understanding of 

cellular differentiation, highlighting the crucial role of transcription factors (TFs) in shaping 

cellular fate. Despite these breakthroughs, current cellular conversion strategies remain 

inefficient, often yielding immature cellular phenotypes. This is primarily due to the complex 

regulatory landscape of TF activity, involving numerous constraints that heavily affect its 

modus operandi. Notably, a critical challenge in the field is the need for a systematic and 

comparative workflow for concurrently surveying TFs across multiple cellular systems, 

processes, and conditions to fully unlock their potential. This shortfall significantly impedes 

the comprehensive understanding of TFs' regulatory capabilities and the transcriptional and 

epigenetic barriers that modulate their activities.  

In this context, we hypothesize that various TFs, yet uncharacterized, play crucial roles in 

cellular fate determination. In this project, we developed a comprehensive transcriptomic, 

epigenomic, and morphological screening of 130 developmental TFs to appraise their effect 

on cellular transdifferentiation. Our approach represents one, if not the only, case of side-

by-side comparison of TF dosages within the same experimental setting. Essentially, by 

analyzing well-established and yet uncharacterized TFs, we identify novel pioneer factors 

that, either individually or in combination, play a pivotal role in regulating cellular identity. 

We anticipate that this strategy will ultimately lead to novel paradigms in deciphering crucial 

dynamics driving cell-fate decisions, which potentially allow us to unlock the full potential of 

the pioneer TF repertoire.
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Spatial Transcriptomics Reveals Sub-Tumoral Identities and Novel 

Diagnostic markers in Triple Negative Breast Cancer with Immune Evasion 

Capacity 

Triple-negative breast cancer (TNBC) is marked by its aggressiveness and inherent 

heterogeneity among diverse cell populations, presenting significant challenges to 

ineffective treatment. Despite extensive research in the field, efficient and comprehensive 

therapy for TNBC remains elusive. A critical aspect of managing TNBC involves an accurate 

histological diagnosis of the immune checkpoint protein, programmed death-ligand 1 (PD-

L1), which is essential for the effectiveness of targeted immunotherapies. However, the lack 

of standardization across different PD-L1 diagnostic tests leads to inconsistent and often 

incomplete therapeutic outcomes. Nevertheless, recent advancements in spatial 

transcriptomics technologies have opened new opportunities to spatially resolve crucial 

aspects of tumor heterogeneity and, foremost, identify more novel diagnostic markers. 

In light of these challenges, we hypothesize that integrating spatial context into the study of 

TNBC will significantly deepen our understanding of its intricate tumor architecture. This 

approach may reveal aspects often overlooked by traditional histological analysis, thereby 

facilitating the discovery of novel therapeutic diagnostic markers. 

Therefore, in this study, we developed a cost-effective clinical workflow combining spatial 

transcriptomics, clinical-grade RNA sequencing (RNAseq), and Immunohistochemistry 

(IHC) to analyze TNBC at a spatial level focusing on PD-L1 status. Essentially, this method 

allowed us to explore sub-tumoral variations, understand tumor-microenvironment 

interactions, and identify LY6D as a novel diagnostic marker potentially complementing 

conventional PD-L1 test. Our findings underscore the importance of spatial transcriptomics 

in advancing personalized medicine for TNBC, offering new therapeutic avenues.
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Thesis Outline 

This thesis highlights the varied applications of integrative genomics through two projects, 

using advanced sequencing techniques. The first project examines transcription factors 

(TFs) activity in shaping cellular identity, employing Assay for Transposase-Accessible 

Chromatin with Sequencing (ATACseq) and RNA sequencing (RNAseq) for a novel 

screening approach. The second one investigates triple-negative breast cancer (TNBC) 

using spatial transcriptomics and RNAseq, focusing on the role of Programmed Death-

Ligand 1 (PD-L1) in tumor immunity. This study is currently under revision in the Journal of 

‘Modern Pathology’.  

Each chapter in this thesis is divided into two sections dedicated to a specific project. 

In the introduction (Chapter 1), we briefly review the scientific background and the current 

state-of-the-art. In the first project, we provide an overview of the essential properties of 

TFs, different approaches to studying them, and the forefront advances and challenges in 

shaping cellular identity in vitro. Subsequently, in the second project, we highlight the 

aggressive nature of TNBC, the role of PD-L1 in immune checkpoints, and spatial 

transcriptomics as a cutting-edge technology to decipher its highly heterogeneous 

landscape. 

The materials and methods chapter (Chapter 2) then provides a detailed description of the 

sequencing techniques and computational strategies we developed. This includes the 

experimental workflows and approaches for data interpretation, tailored to the objectives of 

each project. 

Then, in the results chapter (Chapter 3), the findings of the two projects are presented and 

analyzed in detail. The first project presents the outcomes of our novel screening approach 

of both known and uncharacterized TFs. The results highlight their effects on transcriptional, 

epigenetic, and phenotypic cellular levels during transdifferentiation and infer their 

functional interconnectivity. Subsequently, the discoveries of the second project centered 

on the use of spatial transcriptomics in TNBC, particularly in resolving tumor architecture, 

crosstalk dynamic between tumor and microenvironment, and identifying novel diagnostic 

markers. 

The thesis concludes with a final discussion chapter (chapter 4) that presents the insights 

from both projects. The discussion for the first project delves into the implications of our TF 

study to understand their global role in re-wiring cellular identity. For the second project, we 

demonstrate that our TNBC study significantly contributes to a better understanding of 

tumor biology and identifies LY6D as a potential alternative diagnostic marker to PD-L1. 



4 
 

Overall, the insights gained from these studies illustrate the transformative potential of 

integrative genomics in addressing intricate biological questions and advancing cancer 

research.
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1. Introduction 

1.1. First Project - An Integrated Screening to Infer Transcription 

Factor Regulatory Networks Governing Cell Fate Decisions 

1.1.1. Essential Properties of Transcription Factors  

The term ‘transcription factors’ (TFs) is used to describe proteins that bind to DNA 

sequences and subsequently influence gene regulation1,2. Overall, TFs are categorized into 

two groups, ‘general TFs’ (GTFs) and ‘specific TFs’. GTFs identify core promoters and 

recruit RNA Polymerase II (Pol II), thereby forming the pre-initiation complex (PIC), which 

is essential for initiating transcription machinery3 (Figure 1). Conversely, ‘specific TFs’ bind 

to unique genomic regulatory regions and modulate gene expression in a cell-type-specific 

manner4 (Figure 1). Due to their restricted expression and targeted regulatory roles, ‘specific 

TFs’ are more likely to regulate cell fate identity than GTFs, which are ubiquitously 

expressed. Hence, in this thesis, the term 'TFs' exclusively denotes ‘specific TF’. 

Figure 1. General and Specific Transcription Factors Role in Gene Expression Machinery. 
Schematic representation of the gene expression machinery. GTFs target core promoters to form the PIC, which 

initiates the transcription. Specific TFs uniquely bind to regulatory elements like distally located enhancers and 

recruit coactivators that transmit activation signals to the PIC at the core promoter. Pre-Initiation Complex (PIC); 

General transcription factors (GTFs); transcription factors (TFs). Adapted from Spitz & Furlong, Nature Reviews 

Genetics (2012)4.      

Extensive studies have established the integral role of TFs in re-wiring cellular identity5,6, 

with a considerable majority being distinctly expressed across varied types of cells2,7. 

Through examining the functional multiplicity of TFs, this thesis underscores their 

importance in the regulatory networks orchestrating cellular identity. Subsequent sections 

will further explore the molecular mechanisms governing TF binding specificity, the 

regulatory variables impacting TF activity, and the far-reaching applications of their dynamic 

interplay in shaping cellular identity in vitro. 

1.1.2. DNA Binding and Specificity 

TFs have a modular structure, with a specific domain for DNA binding (DBD), through which 

they recognize and bind to definite consensus sequences on the genome, often referred to 

https://paperpile.com/c/2TIuTo/U2naC+aSmoW
https://paperpile.com/c/2TIuTo/XbjGT
https://paperpile.com/c/2TIuTo/aYvWi
https://paperpile.com/c/2TIuTo/aYvWi
https://paperpile.com/c/2TIuTo/RK9eZ+6b56v
https://paperpile.com/c/2TIuTo/aSmoW+6xEEX


9 
 

as ‘motifs’8. Motif sequences are primarily organized into enhancer clusters, which are 

groups of binding sites situated far from the promoters they regulate, often tens to hundreds 

of kilobases apart. Only a minority of these motifs are found adjacent to the promoter 

regions9. While motifs contain both fixed and variable bases, a given TF can bind to these 

genomic sequences without necessarily changing its binding affinity10. However, the mere 

presence of TF binding motifs in a stretch of DNA is a poor predictor of its regulatory activity. 

This is primarily due to the various constraints that influence TF functionality6. For instance, 

chromatin structure imposes profound and ubiquitous effects on almost all DNA- related 

processes, serving as a primary determinant of TF occupancy and activity. Moreover, TFs 

frequently act in conjunction with other factors to fulfill their function. Also, TFs can be 

regulated by post-transcriptional mechanisms, which influence their activation state and 

their subcellular localization6 (as detailed in section 1.1.3).  

Upon DNA binding, TFs demonstrate significant variability in their effects on transcriptional 

dynamics (Figure 2). Certain TFs have the capability to directly engage RNA polymerase, 

while others recruit accessory factors, resulting in either transcriptional activation or 

repression11. Such coactivators and corepressors function as intermediary effectors, 

working in conjunction with TFs to regulate gene expression through various mechanisms. 

Typically, TFs comprise varied structural domains designated for chromatin engagement, 

\nucleosome restructuring, and the covalent adjustment of various proteins, including 

histones, other TFs, and RNA polymerase.  

representation of TF functionality. TF binds to specific sites on DNA, known as TFBS, using their, such as C2H2-

ZF. The functional activity of a TF can be influenced by various effectors, including ligand binding, cooperative 

interactions with other proteins, and enzymatic modifications that can reshape the chromatin state. Transcription 

Factor (TF); TF binding sites (TFBS); DNA binding domains (DBD).  Adapted from Lambert, Samuel A et al., 

Cell (2018)6. 

A recent comprehensive study has unravelled the DNA binding specificities of over 1,600 

TFs across both mouse and human genomes12. These TFs have been systematically 

categorized into ten distinct superclasses based on their DBDs topology. Nine of these 

superclasses have well-defined characteristics, while the tenth consists of TFs with 

unresolved 3D structures and those that lack significant sequence similarity to other known 

Figure 2. Transcription Factor Functionality Constrained by Diverse Regulatory Mechanisms 

https://paperpile.com/c/2TIuTo/FyHZv
https://paperpile.com/c/2TIuTo/7XrcT
https://paperpile.com/c/2TIuTo/EGYkM
https://paperpile.com/c/2TIuTo/6b56v
https://paperpile.com/c/2TIuTo/6b56v
https://paperpile.com/c/2TIuTo/Ea0dN
https://paperpile.com/c/2TIuTo/6b56v
https://paperpile.com/c/2TIuTo/G45x1
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TFs. Such categorizations suggest that numerous TFs may exhibit shared DNA binding 

specificities due to analogous structural configurations of their DBDs. Furthermore, of the 

1,639 human TFs, 93% are known or expected to associate with DNA through monomeric 

or homomultimeric interactions. While most TFs include repetitive units of an identical DBD 

type, only a minority, approximately 3%, incorporate multiple types of DBDs6. Overall, the 

varied binding properties of different TFs establish them as central components in achieving 

specificity for transcriptional regulation. This specificity allows TFs to regulate gene 

expression only under conditional genomic contexts, thus making them essential in guiding 

the process of cellular differentiation across various tissue types.  

1.1.3. Regulation of Transcription Factor Activity 

The diverse array of effectors influencing TF activity presents a significant challenge for 

studies attempting to comprehensively analyze TF functionality. A thorough investigation 

into TFs requires an evaluation of their DNA binding affinity, the nature of their interactions 

with other molecular entities, their distribution across various tissue types, and the extent to 

which external conditions modulate their functional capacity. Therefore, the complex 

interplay of these regulatory determinants increases the likelihood of overlooking certain 

aspects of TF functionality. In the subsequent sections, we will overview the various 

constraints that may impact TF activity. 

1.1.3.1. Transcription Factors Post-Translational Modification 

TFs, like many other protein classes, are subject to an array of post-translational 

modifications (PTMs). These PTMs occur after protein biosynthesis (translation) and involve 

the covalent addition of functional groups, cleavage of regulatory subunits, or the 

degradation of entire proteins. These modifications play a crucial role in orchestrating TFs 

functionality and binding capacity through a spectrum of underlying mechanisms. These 

include subcellular localization, protein-protein interactions, specificity to DNA sequences, 

transcription regulation, protein stability, and varied epigenetic regulations13. Among the 

varied types of PTMs, phosphorylation, acetylation, ubiquitination, methylation, 

SUMOylation, and O-GlcNAcylation stand out for their pronounced roles in modulating TF 

activity13,14 (Figure 3). Phosphorylation, regulated by protein kinases and phosphatases, 

acts as a TF activity switch. Similarly, acetylation often enhances TF activity by increasing 

DNA binding affinity and stability. Ubiquitination mainly targets TFs for degradation but can 

also alter protein function or localization within the cell. Methylation, on the other hand, 

influences gene expression by altering TF interactions with chromatin and DNA, with 

histone methylation affecting TF dynamics. SUMOylation involves the addition of SUMO 

protein to lysine residues, a modification that can compete on the same lysine sites targeted 

with other PTMs, thereby influencing TF action. Lastly, glycosylation, the attachment of 

https://paperpile.com/c/2TIuTo/6b56v
https://paperpile.com/c/2TIuTo/VpMey
https://paperpile.com/c/2TIuTo/VpMey
https://paperpile.com/c/2TIuTo/XWBik
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sugar units to amino acids, though less common, is crucial in dictating TF stability and their 

propensity for protein-protein and DNA interactions. In summary, the efficacy of TFs to carry 

out its functionality is extensively shaped by PTMs. Therefore, to comprehensively 

understand TF's regulatory roles, it is crucial to consider the PTMs that govern their activity. 

 

 

A table showing the six main PTMs of TFs, grouped into 'O-linked' (phosphorylation, glycosylation) affecting 

oxygen atoms, and 'N-linked' (methylation, acetylation, sumoylation, ubiquitination) targeting nitrogen atoms. 

Post-translational modifications (PTMs). Transcription Factors (TFs); Adapted from Filtz, Theresa M et al., 

Trends in pharmacological sciences (2014)13. 

 

1.1.3.2. Nucleosome Positioning and Chromatin Accessibility Influencing 

Transcription Factor Activity 

Nucleosome positioning and chromatin structure dynamics are central to understanding 

how the physical organization of DNA in the nucleus influences TF activity and gene 

regulation. Nucleosomes are fundamental to the structure of chromatin and are composed 

of roughly 147 base pairs of DNA enfolded around a histone protein complex that includes 

matched sets of H2A, H2B, H3, and H415. This structural foundation facilitates DNA 

compaction to control the exposure of gene regulatory regions, thereby enabling or 

hindering the binding of TFs and serving as a dynamic regulatory mechanism16 (figure 4). 

Nucleosomes can be dynamically repositioned in response to cellular signals, altering the 

landscape for TF bindings. Techniques such as Assay for Transposase-Accessible 

Chromatin with Sequencing (ATACseq) have become instrumental in exploring these 

Figure 3. Post-Translational Modifications Regulating Transcription Factor Activity 
 
 

https://paperpile.com/c/2TIuTo/VpMey
https://paperpile.com/c/2TIuTo/4wrZa
https://paperpile.com/c/2TIuTo/yVBD7
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dynamic elements of the genome, shedding light on the chromatin accessibility that marks 

active regulatory domains where TFs are likely to bind16,17. Such high-resolution insights 

into nucleosome organization and chromatin accessibility are integral to decoding the 

complexities of gene regulation.  

 

The diagram shows three chromatin states. Closed chromatin is compact, limiting TFs and RNA Pol II 

accessibility, signifying gene repression (left). Permissive chromatin has a more dynamic structure that permits 

TFs to bind and begin sequence-specific remodeling for accessibility, indicating a state primed for gene 

expression (middle). Finally, open chromatin is characterized by the active engagement of TFs and Pol II in 

transcription, denoting gene activation (right). Transcription Factor (TF); RNA polymerase II (Pol II). Adapted 

from Sandy L. Klemm, Zohar Shipony, & William J. Greenleaf, Nature Reviews Genetics (2019)16.  

Another epigenetic modification influencing TF activity is the addition of a methyl group to 

the cytosine bases within CpG dinucleotides. This epigenetic modification plays a crucial 

role in the regulation of gene expression. It is mainly known for its gene-silencing effects 

when it occurs in promoter regions, thereby blocking TF binding and altering the 

transcriptional landscape18. Some TFs are deterred by methylation at their binding sites, 

whereas others are attracted to methylated DNA, promoting chromatin changes that lead 

to gene repression19. This dynamic epigenetic mark influences cell differentiation and 

identity maintenance, and its dysregulation is implicated in disease pathogenesis, including 

cancer20. 

1.1.3.3. Physical Interactions with Cofactors and Chromatin Remodelers 

Central to the functionality of TFs is their interaction with an accessory of cofactors, which 

modulate their binding affinity, specificity, and regulatory activity. These cofactors are 

composed of diverse entities, ranging from small molecule ligands, which can directly affect 

the TF's conformation and DNA binding affinity, to chromatin remodelers and histone-

modifying enzymes, which alter the accessibility of DNA to TFs6,21,22. Specifically, cofactors 

may induce conformational changes to the TF structure, thereby enhancing or diminishing 

the protein's ability to recognize and bind to its target DNA sequence. For example, the 

steroid hormone receptor family of TFs, such as the glucocorticoid receptor (GR), requires 

the binding of a steroid hormone to induce a conformational change that permits 

Figure 4. Chromatin Accessibility and Transcription Regulation 
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dimerization and binding to specific DNA response elements23. Additionally, cofactors such 

as the nuclear receptor coactivators (NCOAs) can alter the functional state of TFs by 

promoting or stabilizing their dimerization, a condition often required for effective DNA 

binding and transcription initiation24. Cooperative TF-TF interactions can also function as 

cofactors by forming complexes that modulate transcriptional machinery at gene promoters. 

For instance, the TF NFAT cooperates with AP-1 (a dimer composed of Fos and Jun 

proteins) in T-cells to activate the expression of interleukin-2, a key cytokine in the immune 

response25. 

Furthermore, cofactors are instrumental in facilitating chromatin structure remodeling, 

thereby influencing TF access to DNA that is tightly wound in chromatin. An example of this 

is the SWI/SNF complex, which interacts with various TFs to remodel chromatin and 

regulate gene expression26. This chromatin remodeling is achieved by the recruitment of 

additional enzymatic activities that modify the histones around which DNA is wrapped, 

leading to either the exposure or occlusion of TF binding sites. The interaction between TFs 

and cofactors is also crucial for recruiting the transcriptional machinery to the promoter 

regions of genes, thereby dictating the rate and pattern of gene expression. The mediator 

complex, for instance, serves as a hub for signals from multiple TFs and transmits them to 

RNA Pol II, ultimately influencing transcriptional output27. TF-protein interactions mediated 

by cofactors can determine the assembly of this machinery, leading to either the activation 

or repression of transcriptional activity. Essentially, the multifaceted roles of cofactors are 

essential for both the fine-tuning of TF activity and the overall control of gene expression 

that defines cell functionality and identity.  

1.1.3.4. Modulation of Transcription Factor Activity by Noncoding RNAs 

RNA molecules such as microRNA (miRNA)28, long noncoding RNA (lncRNA)29, and 

enhancer RNAs (eRNAs)30 also play crucial roles in regulating TF activities. miRNAs often 

target mRNAs for degradation or inhibit their translation, influencing TFs indirectly. An 

example is miR-34a, which is involved in the TP53 tumor suppressor network by modulating 

genes for cell cycle and apoptosis31. miRNAs also have a role in signal transduction, with 

the Let-7 family modulating RAS pathway signaling, which is essential for various TFs' 

functions32. On the other hand, lncRNAs like Gas5 and HOTAIR influence TFs by serving 

as molecular decoys, altering chromatin structure, or affecting transcription machinery 

assembly33,34. Additionally, lncRNAs such as MALAT1 are key in post-transcriptional 

regulation by influencing the splicing of pre-mRNAs, thereby altering the types and functions 

of TF isoforms35. eRNAs, on the other hand, are believed to be critical components of active 

enhancers, contributing in multiple ways30. Firstly, eRNAs interact with chromatin looping 

factors and bind to various TFs, aiding in enhancer-promoter loop formation, RNA Pol II 

loading, and histone modification. They also facilitate RNA Pol II pause release by activating 
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the P-TEFb complex and function as decoys, sequestering cofactors to prevent transcription 

repression. These RNA-TF networks are crucial for adaptive cellular responses and have 

significant therapeutic potential. 

1.1.4. The Fundamental Role of Transcription Factors in Development 

The development and regenerative capacity of multi-cellular organisms are crucially 

dependent on the correct temporal and spatial control of gene expression. The selective 

use and distinctive interpretation of identical genetic material in each cell are orchestrated 

by various TFs. During developmental processes, TFs interpret cellular and environmental 

signals, ensuring that the cell's genetic information is read correctly during processes such 

as differentiation, morphogenesis, and growth36. In doing so, TFs initiate the commitment 

toward unique and irreversible cell fate. Specifically, TFs act by coordinating protein 

complexes at the associated promoter of developmental genes and distal enhancer 

elements, consequently modulating gene expression patterns4,6,37. Overall, TFs are crucial 

in embryonic development, guiding numerous cell fate decisions and cellular differentiation 

trajectories. This process initiates with a totipotent zygote cell that divides to form the 

blastocyst, featuring an inner cell mass (ICM) of pluripotent cells. These cells differentiate 

into the three germ layers (endoderm, ectoderm, and mesoderm), eventually leading to 

functionally differentiated cells (Figure 5).  

This schematic illustration depicts the unidirectional process of embryonic development from a totipotent zygote 

through terminally differentiated cells. The totipotent zygote divides into a blastocyst with pluripotent cells in the 

ICM. Then the gastrula is formed and generates the three germ layers, ectoderm, mesoderm, and endoderm, 

which eventually establish all specialized body cell types, and into gametocytes (germ cells), which will later 

Figure 5. Embryonic Development Consists of Numerous Cell Fate Decisions Orchestrated by 
Transcription Factors 
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form gametes. These numerous cell fate decisions are regulated by transcription factors (TFs), which guide the 

cells toward their specialized functions within the developing embryo. Inner cell mass (ICM); Transcription 

Factors (TFs). Adapted from National Institutes of Health (U.S.), June. 200139. 

For instance, TFs like OCT3/4, CDX2, and TEAD4 guide early embryonic cell lineage 

differentiation, with complex interactions determining the eventual path to cell specialization. 

TFs such as NANOG, GATA6, SALL4, and SALL1 also play crucial roles in maintaining 

pluripotency and directing organ development36. Essentially, TFs operate within hierarchical 

cascades, with one TF's activity potentially affecting another, leading to sequential effects 

that either amplify or diversify the initial signal4,38. This, in turn, allows for a series of tightly 

regulated, stepwise events to guide cell identity trajectory toward a specific functional state. 

However, due to the intricate network of TFs, the precise mechanisms underlying their 

interplay and coordination with other regulatory molecules remain not yet fully understood. 

Thus, understanding the molecular mechanisms by which developmental TFs control 

cellular fate decisions is essential for accurate implementation to efficiently shape cellular 

fate in vitro. 

1.1.5. Shaping Cellular Identity In Vitro and the Current State of the Art 

In the past decades, the discoveries of myogenic reprogramming from somatic fibroblasts40 

and, more recently, the generation of induced pluripotent stem cells (IPSCs)41,42, have 

shattered the long-held dogma that cellular differentiation was a unidirectional process (from 

pluripotency to terminally differentiated cell). These seminal findings have provided 

evidence that the ectopic expression of a critical set of TFs can effectively re-wire cell 

identity43,44. Indeed, current cellular conversion protocols enable the transformation of cell 

identities through several strategies: i) reprogramming to IPSCs, which involves reverting 

somatic cells back to a pluripotent state; ii) differentiation, also referred to as directed 

differentiation’, where pluripotent cells are guided to become specific differentiated types; 

iii) transdifferentiation, the direct conversion of one type of somatic cell into another distinct 

somatic lineage5 (Figure 6). In this context, recent studies have sought to decipher the 

functional mechanisms of TFs and how they affect genome conformation and activity. For 

instance, a recent study by Julia Joung et al.45 established a barcoded library of more than 

1600 human TF isoforms and assessed their influence on cellular identity in human 

embryonic stem cells (hESCs). Their research demonstrated that these TFs effectively 

induced distinct transcriptional signatures from all three germ layers and trophoblasts. 

Likewise, over a quarter of these TFs, when applied singly, had a substantial impact on the 

cellular state. Additional studies also proved that using a minimal set of key TFs can induce 

significant changes in gene regulatory networks, suggesting an additive or synergistic 

effect. These studies include not only the discovery of reprogramming to IPSCs, but also 

the conversion of somatic fibroblast cells into neurons, cardiomyocytes, hepatocytes, and 
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blood progenitors46–49. Despite extensive research in the field, the functional role of 

numerous TFs has not been fully elucidated. With over 1,800 TF genes and more than 

3,500 isoforms, the complexity of regulatory pathways is immense. Therefore, while 

significant advancements have been made, the thorough understanding of TF roles in gene 

regulation remains an ongoing and challenging area of exploration. 

Schematic illustration of cell fate commitment using the Waddington landscape model. TF-mediated cellular 

conversion protocols include: i) Reprogramming to IPSC, reverting somatic cells to pluripotency; ii) 

Differentiation, transforming pluripotent cells into differentiated ones; iii) Transdifferentiation, directly converting 

somatic cells into a different somatic lineage. Transcription Factor (TF); Induced Pluripotent Stem Cell (IPSC). 

Created with BioRender.com 

1.1.5.1. Interplay of Pioneer Transcription Factors and Cooperative Binding 

in Cellular Fate Reprogramming 

Not all TFs possess the same functional capacity. Some factors, known as 'pioneer’ TFs, 

demonstrate higher functional capacity to re-wire cellular fate. These TFs can interact with 

heterochromatin, thereby enabling a more permissive cellular state that facilitates the 

recruitment of other co-factors to further drive the developmental progression50 (Figure 7). 

Essentially, pioneer factors are considered at the top of the TF hierarchy, playing a crucial 

role in initiating the commitment toward a unique cellular identity in vivo and in vitro. 

Therefore, TF-mediated cellular conversion protocols require at least one pioneer TF to 

initiate the commitment toward a target cell type51. 

a) A pioneer TF, represented as a gold sphere, laterally scans across chromatin, and targets a nucleosome. b) 

The pioneer TF reveals an underlying nucleosome in chromatin, resulting in the displacement of linker histone. 

Figure 6. Strategies for Shaping Cellular Identity In Vitro 

Figure 7. Functional Mechanisms of Pioneer Transcription Factors 
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c) The pioneer TF facilitates the binding to other TFs, co-activators or co-repressors, and nucleosome 

remodelers. Green flags indicate activating histone modifications, while red flags denote repressive histone 

modifications. Transcription Factor (TFs). Adapted from Kenneth S Zaret, Annual review of genetics (2020)50. 

For instance, during the reprogramming of somatic cells to IPSCs using the classical 

Yamanaka factors (OCT4/POU5F1, SOX2, KLF4, and c-MYC), evidence of interactions 

between pioneer TFs and nucleosomes was observed41. OCT4, SOX2, and KLF4 were 

found to bind specific loci within condensed chromatin regions in the early reprogramming 

stages, thus functioning as pioneer TFs. In contrast, c-MYC exclusively exhibited binding 

capability to open chromatin regions52.  

1.1.5.2. Pre-Established Cellular Epigenetic State Affects Cellular 

Reprogramming Efficacy 

The ability of TFs to affect cellular identities strongly depends on the cellular pre-established 

epigenetic state. In line with this, emerging evidence indicates that while pioneer TFs have 

the capability to remodel chromatin states, their effectiveness in re-wiring cellular identity is 

significantly influenced by the primary cellular context53. This is evident by the limitations of 

present cellular conversion techniques, marked by their inefficiency and the generation of 

immature target cell types54,55, along with the ineffective translation of cellular 

reprogramming protocols from transgenic mouse models to human applications56–58. 

Additionally, in an atypical epigenetic environment, TFs may diverge from their canonical 

roles, leading to unforeseen results. This was exemplified in a paradoxical observation 

where SNAI1, a TF linked with epithelial-to-mesenchymal transition (EMT), unexpectedly 

improved the efficiency of reprogramming to IPSC instead of inhibiting it59. Typically, the 

process of reprogramming somatic cells to IPSC involves the opposite processes of 

mesenchymal-to-epithelial transition (MET). Essentially, these impediments highlight the 

difficulty in predicting the universal TF activities for practical applications. 

1.1.6. Decoding the Intricacies of Transcription Factors Genomic 

Dynamics 

At present, research on TF activity employs both experimental and computational 

approaches to better understand and refine TF-driven processes that determine cellular 

identity. This includes in vivo studies, which explore TFs activity in their native cellular 

environment, offering insights into their role in gene regulation amid various influencing 

factors60,61. In vitro studies simplify our understanding by isolating the direct interactions 

between TFs and gene regulation, excluding or controlling confounding effectors. This 

effector may introduce complexity into the regulatory network, thus potentially masking the 

global functionality of TFs 62,63. Nevertheless, it is important to note that this approach may 
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misrepresent essential TF interactions, such as promiscuous DNA binding, which can lead 

to non-canonical transcriptional effects. 

1.1.6.1. Functional Assays to Study Transcription Factor Role in Cellular 

Differentiation 

To dissect the multifaceted roles of TFs in cellular differentiation, functional assays often 

rely on overexpression techniques. Common methods involve vector-based, plasmid gene 

delivery, and viral transduction, noted for their efficiency crucial for studying TFs in cell fate 

determination62. The CRISPR/dCas9 system could also employed for its precision in 

upregulating specific TFs without off-target effects63. Alternatively, it can be used to induce 

transdifferentiation by permanently silencing specific genes. Another method, direct TF 

mRNA transfection, allows for accurate transient TF delivery to cells without leaving 

genomic scars64. Despite these advances, the results obtained by TF overexpression are 

subject to multiple constraints (such as pre-established epigenetic state, presence of varied 

effectors, experimental settings, etc), consequently leading to overestimation of TF 

functionalities and inconsistent outcomes across different cellular conversion protocols. 

Hence, while these techniques have advanced our knowledge, careful data interpretation is 

imperative to avoid misleading results and truly comprehend TFs' global interactions in 

varied cellular systems. 

1.1.6.2. Omic Technologies and Computational Strategies to Study 

Transcription Factor Functionality 

After conducting functional assays, the next critical step is further analyzing TF functionality 

assays from the retrieved data. Identifying a DNA-binding motif is an essential first step in 

unraveling the intricacies of genomic dynamics related to a TF of interest, as it sheds light 

on the TF's functional role. Specifically, facilitating the identification of TF’s putative binding 

site in differentially accessible chromatin regions enriches our understanding of the TF's 

prospective target genes and the biological processes it may regulate. In recent years, our 

ability to connect motif sequences to specific TF’s genomic binding sites has heavily relied 

on a curated database of eukaryotic TFs and their genomic binding sites, such as 

TRANSFAC65, JASPAR66, and HOCOMOCO67. Numerous in vitro and in vivo techniques 

are available for evaluating the sequence preferences and binding sites of a given TF. 

Chromatin Immunoprecipitation sequencing (CHIPseq)68 is one such method that has 

revolutionized the field of ‘TF binding’ study by enabling the identification of genome regions 

occupied by TF of interest and thus inferring potential target genes. Specifically, following 

the cleavage and crosslinking of query chromatin into fragments, TF-bound DNA fragments 

are immunoprecipitated using antibodies specific to the TF of interest and subsequently 

sequenced. Then, by applying various computing methodologies, such as MEME tools69, 
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and drawing upon the previously described curated motif dataset, the attributes of TF 

binding can be identified by examining genomewide TF-bound DNA fragments. The motif 

enrichment data offers a limited foresight into the functional capabilities of its associated 

TF, since additional constraints (such as promiscuous binding due to high expression levels, 

PTMs, cofactor dynamics, and the epigenetic landscape) influence the function of a given 

TF. Hence, distinct tests are required to pinpoint the exact sites where a TF attaches to 

DNA and to assess if such attachment is evidently probable to influence the associated 

downstream gene activity.  

An alternative approach is the ATACseq, which allows the profiling of both TF-induced 

chromatin accessibility and binding characteristics (Figure 8). The ATACseq protocol works 

by fragmenting and amplifying DNA sequences found in open chromatin areas using 

hyperactive Tn5 transposase that has preloaded adapters before proceeding with the 

sequencing step. The lack of a size-selection step allows us to determine the location of 

nucleosomes and identify accessible regions simultaneously. This is because DNA 

fragments larger than ~147 base pairs are where nucleosomes are located, whereas shorter 

fragments indicate accessible regions. Additionally, utilizing motif search tools mentioned 

earlier (such as the MEME tools)69, it is possible to identify and quantify the probability of 

motifs present in an accessible chromatin region. These findings can then be evaluated 

against a random background or different conditions for comparative analysis to identify 

motifs in TF-induced open chromatin regions. Another way to decipher the TF binding 

regulation is to use footprint analysis70. In ATACseq, a footprint is an observable pattern 

denoting the interaction between an active TF and DNA, which effectively hinders Tn5 

cleavage within the TF binding site. As a result, there is a discernible drop in the accessibility 

of the open chromatin area (Figure 8). Nevertheless, it is crucial to emphasize that TF 

footprint analysis's accuracy hinges on the quality and depth of the ATACseq data, as it 

necessitates the identification of subtle protective patterns at the sites where TFs bind71. In 

summary, ChIPseq and ATACseq are powerful epigenomic-based tools for identifying 

potential TF binding sites and chromatin accessibility. However, they do not provide direct 

evidence of TFs' functional gene expression regulation.  

Figure 8. Schematic Diagram of ATACseq Technology for Studying Chromatin Accessibility 
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Schematic representation of ATACSeq experiment, Tn5 transposase targets open chromatin, integrating 

sequencing adapters. Sequencing identifies open chromatin (black) and transcription factor footprints (blue). 

NRFs indicate open chromatin that is more accessible for TF binding, while nucleosome-bound fragments (gray-

shaded tracks) show nucleosome positions. Assay for Transposase-Accessible Chromatin with Sequencing 

(ATACseq); Nucleosome-free regions (NFRs); Nucleosome-free regions (NFRs). Adapted from Yan, Feng et 

al., Genome biology (2020)71.  

Further experiments and analyses are usually required to determine whether a TF is actively 

regulating the expression of various target genes. These include gene expression assays, 

such as RNA Sequencing (RNAseq)72, namely bulk RNAseq, to measure changes in 

transcriptional profile in response to TF-mediated cellular conversion assays. Specifically, 

RNAseq is a high-throughput method enabling a comparative analysis, namely differential 

expression analysis (DEA), of TF-induced transcriptional modifications against a given 

background or other biological condition of interest. Thus, this technique facilitates the 

discovery of target genes regulated by specific TFs of interest, offering insights into the 

molecular underpinnings of gene regulation. Additionally, it was demonstrated that cellular 

conversion protocols induce transient waves of developmental gene expression throughout 

the cellular differentiation process53. Consequently, time-series RNAseq studies are 

frequently employed to investigate TF functionality along the course of cell fate 

reprogramming. Tracking the temporal dynamics in gene expression enhances our 

understanding of whether these intermediate genetic signatures represent distinct cell 

populations or whether they are indicative of various transient cellular states during 

differentiation. Overall, despite the transformative potential of RNAseq, the success of this 

approach is limited. RNAseq data represent the sum of transcriptional activity and RNA 

molecular stability within the cell. This signifies that retrieved data encompasses both newly 

synthesized RNA molecules and pre-existing cellular ones. Hence, RNAseq results should 

be interpreted as an indirect measure of TF-induced transcription. 

The main focus of this thesis is to investigate the properties of TFs by utilizing the advanced 

omic techniques of ATACseq and RNAseq. However, we acknowledge the extensive array 

of additional alternative experimental methods, which span from qualitative techniques like 

Electrophoretic Mobility Shift Assay (EMSA)73, which visualizes TF-DNA interactions; to 

quantitative ones, including co-immunoprecipitation followed by mass spectrometry (IP-

MS)74,75 for detecting TF-related proteins, and additional sequencing approaches such as 

‘DNase I hypersensitive sites sequencing’ (DNaseseq)76, ‘Cap Analysis of Gene Expression 

sequencing’ (CAGEseq)77, and ‘RNA And DNA Interacting Complexes Ligated and 

sequenced’ (RADICLseq)78. 
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1.1.6.3. Computational Methodologies of Multiomic Data Integration and 

their Application in Transcription Factor Studies 

As outlined above, each omic technology offers a unique insight into a distinct cellular layer 

(epigenetic, transcriptomic, proteomic, etc), bounded by its respective strengths and 

limitations. However, relying on a single omic data provides only a partial view of the inner 

complex functionality of a TF. Recently, the emergence of multiomic integration methods 

has facilitated a more precise dissection of various functional levels. Consequently, these 

strategies could be beneficial for gaining deeper insights into the complex TF regulatory 

network, which involves numerous interconnected cellular functional domains with multiple 

constraint79. Specifically, these methodologies integrate distinct omics data derived from 

various cellular levels, either sequentially or concurrently, thereby bridging the genotype-to-

phenotype gap. Previously, Subramanian, Indhupriya et al. (2020)79 broadly classified 

different multiomic data integration methodologies into six distinct approaches, each with 

unique applications and advantages79 (Figure 9). These include the similarity-based 

methods, that exploit the inherent similarities across omics data to group or classify 

biological entities80,81. Correlation approaches, employ statistical tools to find correlations 

across omics datasets82. Network-based methods, involve constructing and analyzing 

biological networks to elucidate the relationships and interactions between various 

biological molecules, offering insights into the systemic organization and its 

perturbations83,84. Bayesian methods, introduce a probabilistic framework for integrating 

data, which is useful for incorporating prior knowledge and handling the uncertainty of 

biological data85,86. Fusion methods, integrate multiomics data at various stages, enabling 

a comprehensive analysis that leverages the strengths of each omic layer87,88. Lastly, 

multivariate methods, consider multiple variables and their interactions, facilitating a robust 

analysis of the interdependencies within multiomic data89,90.  
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Multiomic data integration methods are categorized into six groups based on their methodological approach. 

Color-coding indicates their applications: disease subtypes (blue), disease insights (orange), and biomarker 

prediction (green), providing a clear and concise overview of their functions. Several strategies, like PARADIGM 

and similarity network fusion (SNF), share several strategies across the categories. Adapted from Subramanian, 

Indhupriya et al., Bioinformatics and biology insights (2020)79. 

 

In this thesis, we repurposed the Similarity Network Fusion (SNF)84 algorithm, a fusion and 

network-centric approach, to infer interconnectivity relationships among numerous TFs, 

determined by shared or distinct epigenetic and transcriptional traits. The integration 

approach used in SNF, known as "passage-based data integration," creates individual 

networks for each data type and then fuses these through iterative updates, enhancing 

similarity measures. Consequently, SNF offers more comprehensive and insightful 

biological interpretations, making it a powerful tool for understanding intricate biological 

systems. Eventually, this process leads to a single, integrated multiomic network that better 

captures the complexities of the data. 

1.1.6.4. Advanced Morphological Assays in Elucidating Transcription Factor 

Roles in Phenotypic Determination 

Morphological assays serve as an additional approach to studying TF activity in cellular 

conversion protocols. This includes a variety of high-resolution and high-throughput 

techniques that measure cellular properties such as volume, area, and shape. 

Consequently, these strategies allow for evaluating TFs' capacity to alter cellular identity at 

the phenotypic level and validate the agreement with transcriptional and epigenomic 

signatures. For instance, a common method used for capturing structural changes is 

immunofluorescence, which includes direct and indirect methods. The direct method 

involves a fluorophore-linked antibody binding directly to the antigen, while the indirect 

method uses a secondary antibody to amplify the signal. This allows for the precise 

visualization of proteins within cells and tissues under fluorescence microscopy. The 

utilization of specific antibodies such as DAPI (for nuclear shape), Tubulin (for microtubules, 

including the outer boundary of the cell and cytoplasmic structure), Fibronectin (for 

extracellular matrix organization and cell adhesion), and Cell Mask (for the cellular 

membrane) provides valuable insights into TF-induced changes in cellular morphology, 

highlighting their characteristics compared to reference cell types91. Moreover, staining of 

cellular-specific marker genes like ACTA2 (smooth muscle) or MAP2 (neuron) can help to 

assess the position of TF within a cell (nucleus - implies on its activation, cytoplasm - 

unactivated)45,92. An additional commonly used technique involves the introduction of 

fluorescently tagged proteins into live cells through exogenous overexpression. This is often 

Figure 9. Categorization of Multiomic Data Integration Methods 

https://paperpile.com/c/2TIuTo/V77Jk
https://paperpile.com/c/2TIuTo/cMAKe
https://paperpile.com/c/2TIuTo/sJZO3
https://paperpile.com/c/2TIuTo/5eU59+htWu7


23 
 

accomplished by fusing the protein of interest with a fluorescent protein tag or by 

incorporating a fluorescent protein tag coding cDNA at the endogenous loci93.  

1.1.7. Major Challenges Addressed in This Dissertation 

In the last decades, the primary dogma that cellular differentiation was a unidirectional 

process (naive to determined functional cellular fate) has been shattered by the paradigm-

shifting discoveries of cellular reprogramming to IPSC and transdifferentiation of fibroblasts 

toward myogenic fate40,41. This has led to a new school of thought in which an ectopic 

expression of a crucial subset of TFs can re-wire cellular programmes94. Consequently, this 

has triggered an unprecedented boost in the study of TFs to precisely shape cellular fate in 

vitro51. These advancements are critical for addressing the growing needs of regenerative 

medicine, tissue engineering, and disease modeling. Nonetheless, implementing cellular 

conversion assays is a complex and challenging process. This complexity mainly arises 

from the intricate regulatory landscape governing TF activity. As a result, existing cellular 

conversion methods remain inefficient and yield phenotypically immature cells54,55. A 

significant limitation in this field is the influence of the initial cellular context, which can 

greatly affect the functioning of TFs. Indeed, TF-mediated cellular conversion protocols 

have shown varied and inconsistent outcomes, making it challenging to predict the overall 

activity and functionality of TFs. To date, research in this field has mainly focused on 

identifying the most effective TFs for generating specific target cell types of interest, such 

as hepatocytes, neurons, and IPSCs. While this approach is beneficial for producing distinct 

cell types, it tends to neglect comparative analyses across various TFsWhile this approach 

is beneficial for producing distinct cell types, it tends to neglect comparative analyses across 

various TFs, thus may overlook the TF global functionalities and co-interactions. Therefore, 

establishing a systematic workflow for side-by-side comparative analysis of TFs is crucial 

to gaining novel insights into their interconnectivity and overarching functionalities, 

extending beyond the constrained findings of focused cellular conversion protocols tailored 

toward the generation of unique target cell types. Such a breakthrough would not only 

unlock the full potential of TFs but also expand their utility across a wider range of cellular 

systems, enhancing the scope and effectiveness of cellular fate reprogramming studies. 

To address the abovementioned challenges, we developed a comprehensive 

transcriptomic, epigenomic, and morphological screening of 130 developmental TFs to 

appraise their effect on cellular transdifferentiation. Our approach represents one, if not the 

only, case of side-by-side comparison of TF dosages within the same experimental setting. 

Essentially, by analyzing well-established and yet uncharacterized TFs, we identify novel 

developmental TFs that, either individually or in combination, play a pivotal role in regulating 

cellular identity. We anticipate that this strategy will ultimately lead to novel paradigms in 

https://paperpile.com/c/2TIuTo/Yeml7
https://paperpile.com/c/2TIuTo/fbjev+JnLfV
https://paperpile.com/c/2TIuTo/eZO1F
https://paperpile.com/c/2TIuTo/HIlAP
https://paperpile.com/c/2TIuTo/ZmmWO+hBx3C


24 
 

deciphering crucial dynamics driving cell-fate decisions, which potentially allow us to unlock 

the full potential of pioneer TF repertoire. 

1.2. Second Project - Spatial Transcriptomics Reveals Sub-Tumoral 

Identities and Novel Diagnostic markers in Triple Negative Breast 

Cancer with Immune Evasion Capacity 

1.2.1. Overview of Breast Cancer 

In the United States, breast cancer significantly impacts women's health, ranking just behind 

nonmelanoma skin cancers in frequency. The year 2023 was projected to see about 

300,000 new cases of breast cancer, with the disease expected to claim the lives of 

approximately 43,000 women95. Despite advancements in detection through mammography 

and targeted therapies for hormone receptor-positive types, breast cancer continues to be 

a major cause of cancer-related deaths among women96. Crucially, this cancer is classified 

by gene expression patterns into five distinct molecular subtypes, luminal A, luminal B, 

HER2-enriched, basal-like, and normal breast-like-based97–100 (Figure 10). Specifically, 

Luminal A cancers, the most prevalent, are characterized by lower aggressiveness and 

positive estrogen receptor (ER)/progesterone receptor (PR) expression, but are human 

epidermal growth factor receptor 2 (HER2) negative101. On the other hand, Luminal B 

cancers, comprising approximately 15-20% of cases, exhibit a heightened level of 

aggression. This is attributed to an elevated expression of genes related to cell proliferation 

and growth factor receptor signaling. Additionally, these cancers frequently express HER2 

alongside ER and PR, further distinguishing their aggressive nature101. HER2-enriched 

cancers, which have a similar prevalence, exhibit minimal to no ER/PR expression and are 

known for their aggressiveness. This is largely due to the role of HER2 in regulating critical 

cellular processes such as proliferation, survival, angiogenesis, invasion, and metastasis101. 

Basal-like cancers, which constitute ~8-37% of breast cancer cases, are characterized by 

the absence of ER, PR, and HER2 receptors and are known for their notable 

aggressiveness. These tumors express high levels of basal myoepithelial markers, 

Caveolins 1 and 2, and the epidermal growth factor receptor (EGFR). Their aggressive 

nature is further amplified by frequent TP53 mutations and genomic instability, coupled with 

deregulated integrin expression, all contributing to their rapid progression and aggressive 

behavior101. Normal breast-like cancers, the least common subtype, are uniquely 

characterized by the absence of both standard markers (ER, PR, and HER2 receptors) and 

basal-like markers101. Essentially, although these subtypes are distinctly classified by their 

gene expression patterns, their application is primarily in research settings. The translation 

of these subtypes into clinical treatment strategies is not always direct or straightforward, 
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highlighting the need for a nuanced approach to breast cancer treatment. A more clinically 

pertinent and prognostically insightful approach to classifying breast cancer subtypes relies 

on the available treatment options, dividing them into three distinct subgroups: hormone 

receptor-positive, HER2-positive, and triple-negative (i.e., TNBC)102.  TNBC and basal-like 

breast cancer are often conflated due to a high incidence of overlap. The majority of TNBCs 

exhibit basal-like characteristics, and most basal-like cancers are categorized as TNBC. 

Nevertheless, their identification is based on distinct criteria, basal-like cancers are defined 

through gene expression profiling, whereas TNBC is characterized by the absence of 

hormone receptors as determined by immunohistochemical tests. Despite their frequent 

overlap, a notable discordance rate of 20-30% between these subtypes underscores the 

importance of precise diagnostics99,100,102. 

Schematic representation of breast cancer molecular subtype classification, categorized by distinct gene 

expression patterns. This includes an overview of their characteristics and levels of aggressiveness. The 

subtypes are arranged from left to right as follows: Luminal A, HER2-enriched, Basal-like, Normal Breast-like, 

and Luminal B. Adapted from Bobal, Pavel et al., International Journal of Molecular Sciences (2021)103. 

1.2.2. Molecular Characterization of TNBC 

TNBC is an aggressive type of cancer that accounted for 10% of all breast cancer diagnoses 

in the US in 2019, demonstrating a higher prevalence among younger female populations, 

particularly those of African or Hispanic descent96,104. Unlike other breast cancer types, 

TNBC is characterized by the lack of expression of ER and PR receptors, and the absence 

of HER2, as defined by the ASCO/CAP criteria105,106. It is characterized by a notably poorer 

prognosis compared to other breast cancer subtypes, exhibiting lower overall survival rates 

and a higher recurrence frequency. Particularly, TNBC patients diagnosed at stages III and 

IV have an estimated 5-year survival rate of around 25%107,108. In the middle of the 2000s, 

the acronym TNBC emerged to classify a subset of breast cancers defined by the absence 

Figure 10. Molecular Subtypes of Breast Cancer 
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of ER, PR, and HER2109. However, subsequent studies have shown that TNBC comprises 

a constellation of malignancies that display distinct molecular characteristics, clinical 

outcomes, and responses to therapy. Due to this wide heterogeneity, it is necessary to 

conduct comprehensive molecular profiling of the various TNBC subtypes to accurately 

diagnose and plan a suitable and targeted therapeutic approach. Indeed, recent 

advancements in the molecular profiling of TNBC have led to the identification of four distinct 

subtypes at the genetic level110. These subtypes include basal-like 1 (BL1), basal-like 2 

(BL2), mesenchymal (M), and luminal androgen receptor (LAR)99,100,111,112 (Figure 11). 

Specifically, BL1 subtype is primarily characterized by a high expression of genes involved 

in cell cycle regulation, cell division, DNA damage response, and NOTCH signaling. The 

BL2 subtype exhibits a strong presence of genes associated with growth factor signaling. 

The M subtype is defined by genes linked to cell motility and differentiation, while LAR 

tumors, although estrogen receptor-negative, are enriched in hormonally regulated genes. 

Although there is no standardized method for classifying TNBC subtypes, the categorization 

into distinct molecular subtypes has been instrumental in pinpointing varied treatment 

responses. Basal-like TNBCs, in particular, have shown increased sensitivity to 

chemotherapy. Research also indicates that LAR tumors may respond well to anti-androgen 

therapy111,113. Therefore, a deeper understanding of TNBC's heterogeneous nature is vital 

for identifying effective therapeutic targets, predicting chemotherapy responses, and 

improving TNBC diagnosis tests and patient standard care.  

The various molecular subtypes of TNBC as they were refined by Lehmann et al. in 2021114. It encompasses 

basal-like 1 (BL1), basal-like 2 (BL2), mesenchymal (M), and luminal androgen receptor (LAR) subtypes. For 

each subt-ype, the figure highlights the principal histopathological characteristics, specific markers, and the key 

signaling pathways involved. Adapted from Mahmoud, Rinad et al. Cancers (2022)115. 

1.2.2.1. Current Approaches in Treatment of Triple Negative Breast Cancer 

TNBC has traditionally been challenging to treat due to its aggressive nature and limited 

responsiveness to hormonal and targeted therapies (i.e. anti-HER2 therapy). Therefore, 

Figure 11. Distinct Histological and Transcriptional Signatures of Triple Negative Breast Cancer 
Molecular Sub-Types 
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chemotherapy remains the cornerstone of treatment for most TNBC cases116. At present, 

the field faces a significant challenge with a limited range of predictive diagnostic markers 

for chemotherapy efficacy in recurrent or metastatic TNBC. Additionally, there is a 

noticeable shortfall in effective therapeutic approaches for these advanced stages of TNBC. 

A critical and promising direction in addressing these challenges involves enhanced 

molecular profiling of TNBC, which is anticipated to not only improve the prediction of 

chemotherapy response but also aid in the discovery of novel, targeted treatment 

options117,118. With that said, recent studies and clinical trials have shown that 

immunotherapy has an important role in the treatment of TNBC, particularly for patients with 

high Programmed Death-Ligand 1 (PD-L1) expression. Therefore, for TNBC patients, 

evaluating the PD-L1 Combined Positive Score (CPS) is a crucial aspect of the therapy 

management process119. Current standard care protocols, applicable across a range of 

cancer types in both early-stage (neoadjuvant/adjuvant) and metastatic settings, now 

increasingly incorporate the integration of chemotherapy with immunotherapy, specifically 

pembrolizumab or atezolizumab120. These drugs, which target the programmed death 

protein 1 (PD-1) and PD-L1 pathways, respectively, represent significant advances in TNBC 

treatment. In the following sections, I will provide a comprehensive overview of the canonical 

PD-1/PD-L1 pathway and how it contributes to tumor immune escape mechanisms in 

TNBC. 

1.2.3. Immune Landscape and Targeted Therapies in Triple Negative 

Breast Cancer 

Given the limited treatment options and the tendency to develop resistance to 

chemotherapy, managing patients with TNBC poses significant challenges. Recent studies 

on TNBC are increasingly focused on diagnostic marker approaches, especially the tumor 

immune landscape, due to the significant presence of tumor-infiltrating lymphocytes (TILs). 

This is often evidenced by the concurrent expression of PD-L1 on both neoplastic and 

immune cells within the tumor microenvironment121,122. To date, PD-L1 serves as a key 

biomarker to select patients with metastatic or locally advanced TNBC for immune 

checkpoint inhibitors (ICIs) treatment123,124. This often coincides with PD-L1 expression on 

both neoplastic and immune cells within the tumor microenvironment, a phenomenon that 

is key to understanding tumor immune mechanisms125. Canonically, PD-L1 and PD-1 

regulate the immune response through the phosphorylation of PD-1, leading to the 

inactivation of CD28 and T cell receptor (TCR) function and signaling pathways125. This 

process attenuates the activation signal of T cells. When PD-L1 is expressed by neoplastic 

cells, it significantly contributes to the activation of the immune escape mechanism by 

binding to PD-1 receptors on T cells, thereby inactivating them125. This interaction 

suppresses the immune response against the tumor, facilitating immune evasion by the 
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cancer cells. PD-L1 expression was suggested to be associated with cytokines within the 

tumor microenvironment (TME), particularly with interferon-γ (IFN-γ), indicating a potential 

crosstalk between the TME and the tumor (Figure 12)126. 

Schematic representation of the PD-1/PD-L1 inhibitory pathway in cancer immunology. Lymphocyte 

proliferation, mediated by the TCR, is suppressed upon engagement of PD-1 with PD-L1, thus facilitating 

immune evasion. The greater the expression of PD-L1 in tumors, the more immunosuppressive the TME may 

become. Cytokines within the TME, such as IFN-γ, can induce the upregulation of PD-L1 expression in tumor 

cells. Therapeutic inhibitors targeting PD-1/PD-L1, including pembrolizumab (anti-PD-L1) (right) and 

atezolizumab (anti-PD-L1) (left), have demonstrated significant efficacy in treating various types of 

malignancies. T Cell Receptor (TCR); Programmed death-ligand 1 (PD-L1); Programmed cell death protein 1 

(PD-1); Tumor Microenvironment (TME); Interferon-γ (IFN-γ). Adapted from Yang, Tinglin et al., Journal of 

personalized medicine (2023)126. 

Targeting the PD-1/PD-L1 pathway with ICIs has been developed to disrupt this 

mechanism, enhancing the host anti-tumor immune response to attack cancer cells, which 

is a pivotal strategy in treating various cancers, including TNBC. Indeed, the FDA's approval 

of atezolizumab (anti-PD-L1) and pembrolizumab (anti-PD-1), combined with 

chemotherapy for first-line therapy in PD-L1-positive metastatic TNBC, is based on the 

successful results of the IMpassion130 and KEYNOTE-355 clinical trials127,128. These trials, 

however, used different criteria for determining tumor’s PD-L1 positivity. The addition of 

these drugs to chemotherapy significantly increased the overall response rates (ORR), thus 

marking a notable advancement in TNBC treatment. However, the efficacy of PD-1/PD-L1 

therapy is highly varied129 and influenced by a range of factors, notably the complexity of 

accurately determining PD-L1 expression levels. Histological diagnosis, which is crucial for 

identifying patients most likely to benefit from these treatments, represents a significant 

challenge. This complexity arises from variations in testing methodologies, the subjective 

interpretation of PD-L1 staining, and the dynamic nature of PD-L1 expression within the 

tumor microenvironment. indeed, the prevalence of PD-L1 positivity in TNBC varies widely, 

ranging from 17% to 59%, depending on the diagnostic methods and scoring used130. 

Additionally, while some TNBC patients with PD-L1 positive tumors respond well to ICIs, 

there are also cases where PD-L1 negative patients still benefit from these 

Figure 12. Tumor Immune Escape Mechanism Through PD-1/PD-L1 Pathway 
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treatments128,131,132. ICIs represent a promising frontier in cancer therapy and are poised to 

transform cancer care in the near future. However, to enhance their applicability in TNBC, 

further detailed characterization and understanding of ICIs are required.  

1.2.4. Advances in Triple Negative Breast Cancer Research 

With the pressing need to unravel the biological complexity of TNBC, the emergence of 

next-generation sequencing (NGS) technologies has helped to discover new diagnostic, 

predictive, and prognostic markers, and enables the exploration of inter- and intra-tumor 

heterogeneity on the molecular level110. Specifically, bulk RNA sequencing (bulk RNAseq) 

has been used to identify transcriptional aberrations in TNBC. RNAseq has indeed brought 

significant advancements in classifying TNBC subtypes. As mentioned above, TNBC was 

primarily identified based on the absence of estrogen receptors, progesterone receptors, 

and HER2 amplification, which are phenotypic characteristics. However, this approach did 

not provide a comprehensive understanding of the diverse biology of TNBC. With the advent 

of RNAseq technology, researchers have been able to delve deeper into the molecular 

landscape of TNBC. This led to the discovery of more accurate molecular subtypes133 that 

were first identified using microarray technology110. While bulk RNAseq offers valuable 

insights into gene expression patterns, it can obscure critical transcriptional trends within 

distinct subpopulations as it averages gene expression across subpopulations within a 

sample (also known as Simpson's Paradox134). This phenomenon has become particularly 

significant in cancer research as Tumors are inherently heterogeneous, consisting of 

various cell types each with unique transcriptional and epigenomic profiles. This 

heterogeneity, crucial for understanding the nuances of tumorigenesis and tumor 

progression, may be masked by the averaging effect of bulk RNAseq. The ability to discern 

these subtle yet vital differences in gene expression is pivotal, as it informs our 

understanding of cancer's complexity and guides the development of targeted therapies.   

1.2.4.1. Single-Cell RNA Sequencing  

The emergence of single-cell RNA sequencing (scRNAseq) effectively bridged this hurdle, 

offering a groundbreaking perspective for examining gene expression at an individual 

cellular level. Since its first introduction in 2009135,136, this technique has been pivotal in 

revealing the intricate cellular heterogeneity within composite biological systems. Presently, 

efficient and cost-effective technologies enable standard labs to assemble sequencing 

libraries from thousands of cells, cementing scRNAseq role as a fundamental method in 

research134. These technological strides have facilitated the identification of previously novel 

cell types137,138 and the in-depth analysis of cellular dynamics at a previously unattainable 

resolution139,140. Furthermore, this advancement has provided a new avenue for facilitating 

profound knowledge into subtle changes occurring in tumor biology by identifying distinctive 
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clusters of cells, examining the tumor surrounding environment, and characterizing 

mutations in cellular genomics141. Focusing specifically on TNBC research, key studies 

have elucidated the intratumoral heterogeneity and distinct molecular subtypes within TNBC 

and the therapeutic implications of low PD-L1 expression in certain TNBC subtypes114. 

Essentially, these emphasize the importance of scRNAseq in developing TNBC treatments. 

However, accurately profiling tumor architecture through unlabeled scRNAseq without 

spatial context remains challenging due to the innate heterogeneity of tumors and their 

microenvironments142. ScRNAseq workflow is typically delineated into six fundamental 

stages: i) Dissociation of tissue samples to achieve a homogeneous single-cell suspension; 

ii) Optimization of input material quality through the assessment of cell viability; iii) Removal 

of lysed cells to ensure sample integrity; (IV) Barcoding of the transcriptome at the single-

cell level; (V) Generation of complementary DNA (cDNA) from the processed cells; and vi) 

Construction of sequencing libraries followed by the sequencing process itself134 (Figure 

13). Consequently, the cell dissociation process inherent in scRNAseq impairs the ability to 

accurately determine the spatial organization and inter-cellular relationships within the 

original tissue architecture. 

Schematic representation of scRNAseq workflow steps. I) Cells are dissociated from the tissue, consequently 

leading to the loss of spatial information of cells. II) Optimization of input material quality. III) Removal of lysed 

cells. IV) Barcoding of captured RNA molecules at the single-cell level. V) Generation of cDNA. VI) Construction 

of sequencing libraries. Single cell RNA sequencing (scRNAseq); Complementary DNA (cDNA). Adapted from 

Slovin, Shaked, et al. Methods in molecular biology (2021)134 

1.2.4.2. Spatial Transcriptomics and the State of the Art 

With the advent of spatial transcriptomic methods, it is now possible to overcome these 

limitations by retrieving expression data while preserving cells’ positional context, both in 

fresh and formalin-fixed paraffin-embedded (FFPE) tissues143. Spatial transcriptomics 

technologies can be broadly classified into two main categories143 (Figure 14). The first 

category encompasses methods based on NGS. These methods encode positional 

information onto transcripts, thereby enabling the concurrent querying of the entire 

transcriptome. The second category comprises traditional approaches, primarily imaging-

Figure 13. scRNA-Seq Workflow and the Inherent Loss of Spatial Information 
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based, which include in situ sequencing-based methods and in situ hybridization-based 

methods. In the former method, transcripts are amplified and sequenced directly within the 

tissue, while in the latter, imaging probes are sequentially hybridized within the tissue144. 

While traditional image-based spatial transcriptomic methods excel in visualizing specific 

transcripts and their spatial distribution within tissues, NGS-based technologies offer more 

extensive coverage of the transcriptome, enabling a broader and more detailed analysis of 

gene expression patterns with quantitative precision. In this thesis, we will use the term 

"spatial transcriptomics" specifically to denote NGS-based technology.  

a) NGS-based methods barcode transcripts based on their spatial location in a grid of spots. (c-b) Imagine-

based technologies. b) In situ sequencing reads transcript sequences directly from the tissue. c) In situ 

hybridization target sequences of interest using fluorescent probes. d) The outcome of all spatial transcriptomic 

technologies is a spatially resolved gene expression count matrix. Next Generation Sequencing (NGS). Adapted 

from Rao, Anjali et al. Nature (2021)144. 

The innovation in spatial transcriptomics technique is rooted in the use of capture probe 

slides featuring unique spatial barcodes (Figure 14). These barcodes allow the capture of 

poly-adenylated RNA molecules and subsequently spatially label them before the reverse 

transcription process144.  Each capture probe slide has over a thousand spatial barcoded 

spots, offering spatial resolution ranging from ~0.5 to 100 micrometers145. Consequently, 

this breakthrough enables the precise mapping of gene expression data to its native spatial 

coordinates within the tissue of interest. NGS-based spatial transcriptomic technologies 

typically involve several key steps: 1) tissue block preparation and sectioning, 2) placement 

of sections on capture probe slides, 3) Hematoxylin and Eosin (H&E) staining and imaging, 

4) barcoding cellular RNA based on their spatial positions, and 5) library construction 

followed by sequencing144,145. The resulting data can be used to create detailed spatial maps 

of gene expression patterns, which can be employed to infer crucial spatiotemporal 

dynamics of cancers, study the interactions between tumor and microenvironment cells, 

and, foremost, identify more accurately novel diagnostic markers146. 

Figure 14. Next Generation Sequencing and Imaging Approaches in Spatial Transcriptomics 
Technologies 
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Spatial transcriptomics analysis in the scope of TNBC has provided key insights. A recent 

study compared PD-L1-positive and PD-L1-negative tumors in TNBC, revealing differences 

in their tumor microenvironments and implications for immune therapy147. An additional 

study employed spatial transcriptomics to analyze 38,706 spatial features from a cohort of 

TNBC tissues, revealing nine distinct transcriptional clusters and race-associated 

differences in tumor characteristics, indicating a conserved spatial-transcriptional 

architecture in TNBC148. Nonetheless, the number of studies of TNBC using spatial 

transcriptomics is limited as it is a relatively new field. Indeed, until recently, the technologies 

required for such analysis were both complex and expensive. The early spatial 

transcriptomics strategies, such as the method introduced by Ståhl et al.149 and Slide-

seq150,151, necessitated customized setups and specialized skills due to their Intricacy and 

labor-intensive nature. However, as spatial transcriptomics technologies have evolved, 

recent advancements have led to the commercialization and standardization of these 

methods, making them more accessible in any laboratory bench. Examples of this 

commercialization include the Visium technology by 10x Genomics, and the GeoMx 

platform by NanoString Technologies152, which have significantly simplified the 

implementation of spatial transcriptomics techniques, reducing barriers to entry for 

researchers and clinicians alike. These advancements offer a promising avenue for 

advancing our understanding of TNBC's spatial and molecular heterogeneity, potentially 

leading to more effective treatments and enhanced patient care. 

1.2.5. Tumor Microenvironment and its Role in Cancer Progression 

TME plays a significant role in cancer biology, particularly in TNBC. It represents a complex 

and dynamic entity, encompassing several cellular components like lymphocytes, myeloid 

cells, fibroblasts, mesenchymal cells, endothelial cells, and non-cellular elements, including 

the extracellular matrix. Central to cancer biology, the transformation of somatic cells into 

malignant cells is closely linked with dynamic changes in the TME153. This transformation, 

signified by the onset of dysplasia and progression to cancer cells, is usually driven by 

genetic and epigenetic alterations that disrupt normal cellular functions154. Dysplasia, 

marked by abnormal cell growth, often precedes cancer, indicating a shift from regulated to 

uncontrolled cell proliferation. Concurrently, the TME undergoes significant changes 

through bidirectional cross-talk153. These changes denote a gradual shift from a state of 

homeostasis to one favoring tumor growth and survival. This includes immune response 

suppression, metabolic modification, angiogenesis, inflammation, and remodeling of the 

extracellular matrix, collectively promoting the survival and proliferation of cancer cells153. 

As a result, tumor cells and surrounding TME continuously adapt and interact to foster tumor 

growth, like PD1/PD-L1 biomarkers. Specifically, TME-resident growth factors, including 

Epidermal Growth Factor (EGF) and Vascular Endothelial Growth Factor (VEGF), along 
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with the regulation of immune responses within the TME, which involves the production of 

cytokines such as Interferon-gamma (IFN-γ) and Tumor Necrosis Factor-alpha (TNF-α), 

promote Programmed Death-Ligand 1 (PD-L1) expression and T cell exhaustion, paving 

the way for tumor immune evasion155. 

1.2.5.1. Tumor Interactions with Microenvironment 

Recent studies have significantly enhanced our understanding of the interaction between 

tumor cells and TME to promote tumor progression. These interactions occur through direct 

cell-to-cell contact, involving structures like gap junctions (GJs), or through the release of 

various soluble signaling molecules. Moreover, the communication can involve the 

deposition of ECM that affects the behavior of ECM-binding cells156,157, thereby highlighting 

the complexity of the tumor microenvironment. In the realm of direct cell-cell 

communication, one key player is the presence of intercellular channels is the GJs which 

composed of connexin proteins. The alteration of connexins in tumor cells is linked to 

increased invasive behaviors158, and tumor cells use these junctions to connect with stromal 

cells, promoting their own growth and survival159. Another cell-cell communication involves 

integrins, transmembrane receptors that mediate cell-ECM interactions160. These receptors 

are important for responding to environmental cues and facilitating cell adhesion and 

signaling. Integrins bind to various ECM components like fibronectin or collagen, and are 

capable of bidirectional signaling, thus acting as a bridge between intracellular and 

extracellular environments. Through integrin receptors, tumor cells are known to migrate 

toward areas with higher concentrations of ECM components like fibronectin, a 

phenomenon observed at tumor borders and near vascular structures161,162. Integrins can 

further induce ECM remodeling through the regulation of extracellular proteinases, such as 

metalloproteinases (MMPs)163. Consequently, this leads to changes in the ECM's 

composition and stiffness, thereby facilitating the formation of pre-metastatic niches and the 

process of metastasis164. Nonetheless, long-distance communication is facilitated by the 

dispersion of exosomes and small soluble molecules, such as cytokines, chemokines, and 

growth factors165. These substances function in both autocrine and paracrine ways by 

attaching to specific receptors. Consequently, this triggers a cascade of signaling pathways 

that influence cellular processes like survival, growth, and mobility, as well as the continued 

generation of soluble factors or the ECM165. 

1.2.5.2. Ligand-Receptor Analysis to Infer Tumor-Microenvironment 

Interactions 

In the realm of oncology, the dynamic interplay between tumor cells and TME is pivotal in 

orchestrating the signaling cascades that drive tumor progression. This necessitates a 

comprehensive understanding of the cellular constituents within the TME and their 
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interactive roles. Central to this understanding is the identification and quantification of 

specific ligand-receptor pairs expressed by each cell type to facilitate the tumor-TME 

crosstalk. These pairs serve as crucial communicative links, dictating the direction, intensity, 

and biological significance of interactions within the tumor landscape166. Different methods 

exist to uncover ligand-receptor interactions, such as Protein-Protein Interaction (PPI) 

assays167. Complementing these, proteomics and transcriptomics not only allow the 

detection of interactions but also confirm the presence of these proteins through evidence 

of their expression166. While proteomic-based methods offer the advantage of direct 

measurement, expression-based technologies often emerge as the preferred choice due to 

their comprehensiveness, availability, straightforward analysis, and adaptability to various 

sample types. With tools like bulk RNAseq, scRNAseq, and spatial transcriptomics, 

expression-based approaches provide a multifaceted view of ligand-receptor dynamics, 

offering insights at different levels of resolution. Emerging computational methods for 

deciphering cellular communication through transcriptional data are contingent upon the co-

expression of ligand-receptor pairs, wherein each gene of a pair is expressed by one of the 

two interacting cells. These methods operate under the assumption that the levels of gene 

expression are reflective of protein abundance, thereby indicating the intensity of protein-

protein interactions. However, this might overlook crucial factors such as post-translational 

modifications and the assembly of protein complexes, both of which play significant roles in 

protein interactions. Typically, the analysis of ligand-receptor interactions involves six steps, 

as was reviewed by Armingol et al.166 (Figure 15); (i) measuring gene expression in cells or 

samples through NGS transcriptomics; (ii) preprocessing this data into a gene expression 

count matrix; (iii) compiling or sourcing from existing literature a list of known ligand-receptor 

pairs; (iv) refining the retrieved count matrix to focus on genes for these pairs; (v) computing 

an interaction score for each ligand-receptor pair based on expression values; and (vi) 

visualizing these scores using heatmaps and network diagrams to interpret intercellular 

communication. 
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1) Gene expression measurement using NGS transcriptomics; 2) Data preprocessing into a gene expression 

count matrix; 3) Compilation of a list of known ligand-receptor pairs; 4) Refinement of the matrix to focus on 

these pairs; 5) Calculation of interaction scores based on expression values; and 6) Visualization of these scores 

through heatmaps and network diagrams, providing insights into intercellular communication dynamics. Next 

generation Sequencing (NGS). Adapted from Armingol, Erick et al. Nature reviews (2021)166. 

Given the intricate nature of tumor-TME dynamics, the application of ligand-receptor 

analysis in cancer research has been pivotal not only to enrich the comprehension of tumor 

progression but also for the identification of potential diagnostic and therapeutic markers. 

Landmark studies, such as the Pan-Cancer Analysis of Ligand-Receptor Cross-talk168, have 

shed light on these interactions across a spectrum of cancers. An additional study by 

Maffuid et al., utilized ligand-receptor analysis to elucidate the complex intercellular 

communications within the TME, aiming to understand how these interactions contribute to 

tumor progression and immune evasion169. In the context of colon adenocarcinoma, ligand-

receptor interactions have shown promise in guiding treatment strategies170. Similarly, 

research in colorectal cancer has underscored the potential of ligand-receptor interactions 

in understanding cancer biology and developing treatment approaches171. Overall, ligand-

receptor analysis represents a promising avenue for uncovering critical interactions within 

oncogenic pathways, potentially paving the way for improving diagnostic and therapeutic 

strategies. This holds particular significance for TNBC, given its limited current treatment 

options. 

1.2.6. Hallmarks of Cancer 

Despite the complex and genetically diverse nature of cancer, a universal characterization 

is achievable through the six hallmark traits identified by Hanahan and Weinberg in their 

seminal 2000 paper172. These hallmarks offer a conceptual framework for studying the 

intricate biological processes governing the development and progression of cancer. 

Significantly, the tumor-TME interactions play a pivotal role in facilitating the acquisition of 

these six hallmarks alongside epigenetics modifications and mutagenic events. i) Sustaining 

Proliferative Signaling. Cancer cells maintain unregulated growth through autocrine 

stimulation and external growth factors, activating pathways like BRAF/MAPK and 

PIK3/AKT. This is often triggered by mutations in genes like BRAF and PIK3CA173. ii) 

Evading Growth Suppressors. Cancer cells bypass growth suppression by impairing tumor 

suppressor genes such as RB1 and TP53, leading to unrestrained cell proliferation174. iii) 

Resisting Cell Death. Tumor cells avoid apoptosis by manipulating the BCL-2 family and 

inactivating TP53. They exploit autophagy for survival and use necrosis to promote tumor 

growth175,176. iv) Enabling Replicative Immortality. Cancer cells achieve limitless replication 

by upregulating telomerase to extend telomeres, contributing to genomic instability and 

Figure 15. A step-by-Step Workflow of Ligand-Receptor Analyzing Workflow 
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influencing processes like WNT signaling177,178. v) Inducing Angiogenesis. Cancer promotes 

new blood vessel formation using angiogenic factors like FGF and VEGF, and can be 

influenced by oncogenes like RAS and MYC. vi) Activating Invasion and Metastasis. 

Alterations in cell adhesion and cytoskeletal dynamics, involving the loss of E-cadherin and 

changes in ECM adhesion, enable cancer cells to invade and metastasize. This is facilitated 

by the EMT process regulated by transcription factors and ECM proteins like fibronectin-

1179,180. In addition to the six hallmark capabilities identified in their 2000 study, Hanahan 

and Weinberg in 2011181 suggested two additional hallmarks, Reprogramming of Energy 

Metabolism and Evading Immune Destruction. These suggested hallmarks complement the 

original six by addressing the cancer cells' ability to alter metabolism for sustained growth 

and their strategies to evade detection and destruction by the immune system, respectively. 

Collectively, the comprehension of cancer hallmarks has undergone substantial growth, 

facilitating the investigation into intricate genetic and molecular landscapes that drive cancer 

development and progression.  

1.2.7. Major Challenges Addressed in This Dissertation 

As discussed above, in the realm of TNBC, one of the foremost challenges is its intrinsic 

heterogeneity. TNBC is characterized by complex and dynamic interactions between 

diverse cell populations, which significantly affect its heterogeneity and present a formidable 

obstacle in understanding and effectively treating this disease107,108. Despite the extensive 

research dedicated to TNBC, the development of an efficient and comprehensive therapy 

remains elusive. This gap underscores the pressing need for continued exploration and 

innovation in treatment strategies, particularly in the face of TNBC's variable nature. 

A pivotal aspect of managing TNBC involves the precise evaluation of PD-L1 expression 

status for an effective application of ICI therapies, which are now fundamental to TNBC's 

standard of care120. However, the variability in Immunohistochemistry (IHC)-based PD-L1 

diagnostic tests and the wide dynamic range of PD-L1 expression levels obstruct patient 

selection130, resulting in inconsistent therapeutic outcomes and fluctuating ORR129. This 

variability emphasizes the challenges of employing PD-L1 as a reliable diagnostic marker 

and highlights the need for standardized clinical approaches to enhance the sensitivity and 

reproducibility of diagnostic tests. Establishing such a uniform framework is essential for 

refining patient selection and enhancing the precision of patient selection for anti-PD-1/PD-

L1 therapies, consequently enabling the development of more effective treatment strategies 

that improve patient outcomes 

Addressing these challenges necessitates the adoption of innovative strategies, such as 

spatial transcriptomics. This technology offers precise mapping of tumor environments, thus 

directly addressing the limitations of current PD-L1 diagnostic methods. Unlike traditional 
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transcriptomic analyses like scRNAseq, which lose spatial context during the cell 

dissociation procedure, spatial transcriptomics retains crucial locational information within 

tissues. This capability not only enhances the resolution of transcriptional data but also 

facilitates a deeper understanding of the complex interactions between tumor cells, immune 

cells, and their milieu. By enabling the identification of novel diagnostic markers and 

therapeutic targets, spatial transcriptomics holds the promise of refining PD-L1 testing. This 

refinement could be achieved through the integration of new diagnostic markers in a clinical 

workflow, thereby fully leveraging spatial transcriptomics' potential to navigate the 

complexities of TNBC. 

Collectively, this project addresses a spectrum of challenges in TNBC research, ranging 

from the inherent heterogeneity of tumors to the intricacies of PD-L1 diagnostic tests and 

the emerging role of spatial transcriptomics in enhancing our understanding of this complex 

disease.  

To effectively navigate these challenges, we have developed an efficient and cost-effective 

clinical workflow that harnesses the innovative potential of spatial transcriptomics to dissect 

the multifaceted landscape of TNBC, with a particular focus on understanding PD-L1 

expression. Our approach seamlessly integrates spatial transcriptomics, bulk RNAseq, and 

immunohistochemistry (IHC). Notably, it offers a distinct advantage by requiring minimal 

spatial transcriptomic input samples and being compatible with standard laboratory 

equipment. This methodology has enabled us to provide systems-level insights into the 

transcriptomic and cellular architecture of tumors and demonstrated how spatial expression 

data augments traditional histological annotation. Consequently, this allowed us to 

intricately delineate sub-tumoral variation and identify unique ligand-receptor interactions 

between tumors and TME that corresponded to the immunogenic capacity of TNBC based 

on PD-L1 status.  At the core of our research is the identification of lymphocyte antigen 6 

family member D (LY6D) as a potential novel diagnostic marker that could enhance PD-L1 

testing in TNBC. Essentially, our research underscores the transformative impact of spatial 

transcriptomics on decoding TNBC architecture and molecular variability, paving the way 

for novel therapeutic strategies. 
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2. Materials and Methods 

2.1. First Project - An Integrated Screening to Infer Transcription Factor 

Regulatory Networks Governing Cell Fate Decisions 

2.1.1. Candidate Transcription Factor 

We identified promising candidate TFs for our integrative screening through a de novo 

discovery process (Figure 17). Our multi-tiered approach prioritized TFs influencing cellular 

plasticity, starting with those showing ≥20 reads per kilobase per million mapped reads 

(RPKM) in fibroblast cell lines, Human Lung Fibroblasts (HLF), retinal pigment epithelium 

(RPE), human foreskin fibroblasts (BJ). We aimed to select pioneer TFs, considering their 

expression in different germ layers. The top 250 TFs with human-specific expression were 

shortlisted after comparing mouse (FANTOM5)182 and human (ROADMAP/ENCODE)183,184 

epigenetic datasets. These TFs were evaluated using the Transcription Factor Epigenetic 

Remodelling Activity (TERA) score185 for their epigenetic impact on cellular fate. 

Additionally, we used Mogrify186, a gene expression-based network algorithm, to predict TFs 

essential for cellular fate transformation in HLF, RPE, and BJ human primary cell lines, by 

identifying TFs influencing 95% of genes required for 132 different target cell types. The 

resulting TF list was used to purchase plasmids containing the gene of interest from the 

ORF Library Clones of the Broad Institute, and using the following specific filters: 1) vector: 

pLX317 2) % of insert sequenced (any): ≥30%, 3) Intended mutant: NO, 4) Best Match is 

mutant: NO, 5) Best Match Taxon ID: 9606, 6) Best Match % (Nucl): ≥90%, 7) Best Match 

% (Prot): ≥90%. To broaden our study's scope, we included an additional 54 TFs that, while 

initially not meeting our strictest criteria, held significant scientific value.  This 

comprehensive method yielded a final list of 277 candidate TFs. At present, we successfully 

screened a subset of 130 TFs that completed the cellular conversion process and stand the 

sequencing quality control (QC) thresholds.  

2.1.2. Plasmids Preparation 

The ORFs of all TFs were integrated into the pLX-317 lentiviral vector backbone. A total of 

223 TFs were sourced from the Broad Institute ORFeome collection, while an additional 54 

TFs were cloned starting with a green fluorescent protein (GFP) containing pLX317 vector. 

The cloning process was initiated by digesting the vector with NheI and EcoRV restriction 

enzymes. Subsequently, the insert (comprising the TFs ORFs) was efficiently cloned using 

the NEBuilder® HiFi DNA Assembly Master Mix (Catalog #E2621L). 
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2.1.3. Lentiviral Production and Transduction 

Lentiviral production was conducted in X293T cells using a refined protocol developed in 

our laboratory, which enhances the efficiency and consistency of the lentiviral preparations. 

Cells, at 95-99% sub-confluency, were transfected in 6-well plates with Lentiviral and 

packaging plasmids. The next day, the medium was switched to DMEM/F12 with 20% heat-

inactivated FBS and 1x Glutamax. This modification from the standard protocol, employing 

20% FBS, enhances cell nutrition under stress, and the inactivated medium prevents 

complementary protein activity against virions, increasing production efficiency. After 48 

hours, the supernatant was harvested.  

For the transduction process, BJ fibroblast telomerase (BJ-T) cells were exposed to 10uL 

of the lentiviral preparation in a medium enriched with heat-inactivated serum and 

Polybrene, to facilitate efficient viral entry into the cells. 

2.1.4. Cell Culture 

To enhance the cellular lifespan and optimize growing conditions, BJ cells underwent 

immortalization via human telomerase reverse transcriptase (hTERT) lentiviral 

transduction. The cells were cultivated in DMEM/F12 (Euroclone, Catalog # ECM0095), 

enriched with a supplement mix. This mix included 10% FBS (Euroclone, Catalog # 

ECS0186L), 1x Glutamax (Thermo Fisher Scientific, Catalog #35050061), 1x Non-Essential 

Amino Acids (NEAA) (Thermo Fisher Scientific, Catalog #11140035), 2-Mercaptoethanol 

(Thermo Fisher Scientific, Catalog #21985023), and Hygromycin B (Invitrogen, Catalog # 

10687010), providing a nutrient-rich environment conducive to robust cell growth. 

2.1.5. Cellular Conversion Protocol 

The cells underwent transduction with lentiviral vectors carrying V5-tagged TFs ORF, in the 

presence of 4 µg/ml polybrene (Sigma, Catalog #TR-1003-G) to enhance viral entry. Two 

days post-transduction, the culture medium was supplemented with 1 µg/ml puromycin 

(Thermo Fisher Scientific, Catalog #A1113803) for an additional two days to select 

successfully transduced cells. Following the antibiotic selection phase, the cells were 

maintained and allowed to grow and differentiate until day 9, with the medium being 

refreshed every two days. On day 9, the serum concentration in the medium was reduced 

to 2%, and the cells continued to grow until day 11. At the completion of this process, cells 

were either harvested or prepared for further downstream analysis, depending on the 

specific requirements of the subsequent experiments. 
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2.1.6. Immunofluorescence 

Upon completing the cell conversion protocols, the cells were fixed with 4% 

paraformaldehyde (PFA) for 10 minutes at room temperature. This was followed by 

permeabilization using 100% Ethanol for another 10 minutes. Blocking was then performed 

for 40 minutes using a solution composed of 5% Bovine Serum Albumin (BSA) and 0.5% 

Triton X-100 in phosphate buffered saline (PBS). The cells were subsequently stained with 

the appropriate primary antibody (details provided below) for 2 hours at room temperature 

or overnight at 4°C. Post-primary antibody incubation, the samples underwent two washes 

with the blocking solution, followed by staining with the corresponding secondary antibody 

at a dilution of 1:500, DAPI at a dilution of 1:1000, or with a conjugated primary antibody, 

based on the primary antibody used, for 1 hour. Finally, the samples were washed twice 

with PBS and stored at 4°C until further analysis. The samples were then qualitatively 

analyzed using the Opera Phenix Plus High-Content Screening System. 

Primary antibodies in used: i) Anti-V5 (clone 1H6, MBL, Catalog # M167-3), Anti-Tubulin 

Alexa Fluor 488 (clone 22833, Thermo Fisher Scientific, Catalog #MA3-22600-A488)Cell 

Mask (Abcam, Catalog #C10046) 

Secondary Antibodies Used: 

● Alexa Fluor 568 anti-mouse (Catalog #A-11004) 

● Alexa Fluor 488 anti-mouse (Catalog #A28175) 

2.1.7. RNA Sequencing   

2.1.7.1. Sample Preparation and Library Construction 

Before library preparation, RNA samples were extracted with RNadvance cell V2 kit 

(Beckman #A47943), quantified with Qubit™ RNA High Sensitivity (HS) (Q32852) and 

diluted to 50 ng/uL. The libraries were generated with QuantSeq 3' mRNA-Seq Library Prep 

Kit FWD for Illumina (Lexogen) according to the manufacturer's specifications or by halving 

the originally recommended volumes without compromising library quality. One or two sets 

of 96 library pools were sequenced on a SE100 cycles SP Novaseq flow-cell (Illumina). 

2.1.7.2. RNA Sequencing Preprocessing  

Sequencing data were preprocessed by Next Generation Diagnostic srl proprietary 

NEGEDIA Digital mRNAseq pipeline (v2.0). This pipeline encompasses several key steps, 

i) quality filtering and ii) trimming of reads,  iii) alignment to the reference genome, and iv) 

gene counting. To enhance the analysis, samples were further filtered based on specific 

criteria, i) TF-transgene expression below 5 counts per million (CPM), ii) fewer than 10,000 
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detected genes, iii) a uniquely aligned reads ratio below 80%, and iv) a minimum of three 

samples per condition. Additionally, genes that did not demonstrate more than 3 CPM in at 

least one condition were omitted from the analysis. For normalizing the raw transcript 

counts, the DESeq2 package (version 1.38.3)187 was utilized, employing the 'median of 

ratios' method for normalization. This approach ensures a robust and accurate adjustment 

of the transcriptomic data, facilitating reliable downstream analysis. 

2.1.7.3. Infection Noise Inference 

n the 'dose-dependent Multiplicity of Infection (MOI) experiment', we conducted a controlled 

study to model the noise structure derived from the infection procedure in our data. This 

was achieved by infecting BJ cells with varying levels of MOI, specifically at ratios x0.05, 

x0.25, x0.5, x1, x2, x4, and x8 of a GFP-viral vector. These levels were chosen relative to 

the original MOI used in the TF vector transduction protocol, as (detailed in section 2.1.3). 

After a cultivation period of 11 days, we collected samples from these cultures for RNAseq 

analysis, aiming to understand the dose-dependent responses of the cells to the viral vector 

infection. 

To identify genes associated with varying infection intensities, we compared gene 

expression in cells infected at MOI x8 versus x0.05 using DESeq2 (version 1.38.3)187. 

Genes showing significant upregulation (log fold change (LFC) > 2, false discovery rate 

(FDR) < 0.05) in the MOI x8 condition were grouped into eight clusters through C-means 

clustering188. This clustering approach, typically employed in time-point studies, was 

adapted to analyze gene expression across different MOI levels. 

Notably, cluster number 3, containing 64 genes, exhibited a correlation between increased 

gene expression and rising MOI levels (Figure 21). To ascertain the relevance of these 

genes in the infection process, we conducted gene set enrichment analysis using EnrichR 

package (version 3.2)189, referencing the 2023 Gene Ontology (GO) Biological Process (BP) 

database190,191. 

We subsequently employed these identified genes to assess the infection level (i.e., 

infection score) in each TF sample (Figures 23). This involved modifying the script of the 

AddModuleScore function in the Seurat package (version 4.3.0)192, a technique based on 

the strategy described by Tirosh et al.193. This adaptation enabled a more precise 

assessment of infection scores in our experimental samples. 
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2.1.7.4. Differential Expression Analysis and Pathways Enrichment 

Prior to the DEA, we merged all RNAseq data from both the TF-driven transdifferentiation 

screening and dose-dependent MOI exploratory and performed batch effect correction 

(BEC) analysis using the Combat-seq function in the sva package (version 3.46.0)194. 

Notably, Combat-seq algorithm194 distinguishes itself from many BEC methods by ensuring 

that the adjusted data remain as integer counts. This aspect is critical as it maintains the 

compatibility of the data for downstream DEA software like edgeR195 and DESeq2187. For 

BEC using ComBat-seq, we input RNAseq count matrices from two experimental batches: 

i) TF-driven transdifferentiation screening, and ii) dose-dependent MOI exploratory, along 

with a corresponding batch separation vector. GFP samples from both experiments were 

utilized as a reference in the BEC model, forming the intercept column to normalize the 

overall mean and variance across batches. Notably, TF samples were not included in the 

intercept column to avoid confounding influences in the batch effect estimation, as they are 

not comparable due to their prompt different biological outputs (Figure 16).  

PCA plots demonstrate the variability of data before (left) and after (right) BEC. At the top, each dot represents 

GFP-infected samples from the screening assay (in green) and samples from the Dose-Dependent MOI 

Experiment (in orange), illustrating a reduction in batch effect variability. At the bottom, dots representing 

different samples infected at various MOI levels, revealing a clear directionality aligned with the MOI levels both 

before and after batch effect correction. Principal component analysis (PCA); batch effect correction (BEC); 

green fluorescent protein (GFP); Multiplicity of infection (MOI). 

The DEA was conducted using the DESeq2 package (version 1.38.3)187, comparing pairs 

of TF-samples to GFP-control with corresponding infection scores (Figure 23). For each TF 

condition, we averaged the infection scores across all replicates. These averages were then 

paired with GFP replicates at specific MOI concentrations. Pairing was based on minimizing 

Figure 16. Batch Effect Correction Reduces Technical Artefacts While Preserving Biological Variability 
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the difference (delta) between the mean infection scores of the TF condition replicates and 

those of the GFP replicates at each MOI concentration. Likewise, the 64 infection-

associated genes were excluded from downstream analyses. 

The DEA was then conducted using the DESeq2 package (version 1.38.3)187. More 

specifically, we compare pairs of TF samples to GFP-control exhibiting corresponding 

infection scores (Figure 10 300tf results). More specifically, using the inferred 64 genes 

linked to the infection procedure, we scored the infection efficacy for each sample in the TF-

driven transdifferentiation screening and GFP-controls exploratory from the dose-

dependent MOI exploratory and averaged them for each condition (a given TF or GFP-

control). GFP samples were categorized into eight classes based on their respective MOI 

levels. TF samples were paired with specific MOI classes that showed the smallest 

difference in average infection scores at each MOI concentration. This meticulous pairing 

was essential for ensuring the accuracy of the differential gene analysis. This careful 

matching was key to preventing the misattribution of differentially expressed (DE) gene 

changes to TF activity. Likewise, the 64 infection-associated genes were excluded from 

downstream analyses. 

Gene set enrichment analysis was done using the fgsea R package (version 1.24.0)196, 

referencing the implemented C5 Molecular Signatures Database (GO). For each TF 

condition, we ranked genes by the product of LFC-(log10(FDR)). Focusing on NEUROD6, 

MYOD1, and TP63, we identified and visualized the top 20 pathways, exhibiting the highest 

Normalized Enrichment Score (NES) coupled with the lowest p-value (NES-(log10(FDR)). 

Gene set enrichment analysis using the fgsea R package (version 1.24.0)196, referencing 

the implemented C5 Molecular Signatures Database (GO). For each TF condition, we 

ranked genes by the product of 𝐿𝐿𝐿𝐿𝐿𝐿 × −(𝑙𝑙𝑙𝑙𝑙𝑙10(𝐿𝐿𝐹𝐹𝐹𝐹)). Focusing on NEUROD6, MYOD1, 

and TP63, we identified and visualized the top 20 pathways, exhibiting the highest 

normalized enrichment Score (NES) coupled with the lowest p-value (𝑁𝑁𝑁𝑁𝑁𝑁 ×

−(𝑙𝑙𝑙𝑙𝑙𝑙10(𝐿𝐿𝐹𝐹𝐹𝐹))  

2.1.7.5. Assessing Similarity Scores Based on Enrichment of Mutual Target 

Genes 

To infer the similarity between screened TFs without setting an arbitrary threshold on 

differential gene expression values, we proposed the computational strategy from ‘Mode of 

Action by NeTwoRk Analysis’ (MANTRA)197 to our data requisites (figure 13 results 300TF). 

We first created a matrix of genes LFC values for all TFs. Then, we scaled these values 

across all TFs using z-scoring. This step reduced the influence of genes that are up or 

downregulated universally across all TFS, which could distort our MANTRA analysis by 
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indicating false TF similarities. Next, we identified an 'optimal' gene signature for each TF, 

selecting the top 250 overexpressed and bottom 250 most down-regulated genes based on 

z-scored LFC values. Using MANTRA's gene set enrichment approach, we analyzed if the 

'optimal' gene signature of one TF consistently appeared at the extreme ends in the other 

TF's differentially expressed genes list and vice versa. We averaged the enrichment scores 

between each TF pair, creating a singular metric to quantify their relationship. This metric 

was then applied to construct an Euclidean distance matrix, serving as the basis for 

hierarchical clustering analysis. 

2.1.8. ATACseq 

2.1.8.1. Sample Preparation and Library Construction 

ATACseq experiments were conducted by combining the methodology established by Bao 

et al. in 2015198 with the OmniATAC approach developed by Coerces et al. in 2017. This 

allowed adapting the omniATAC protocol to high-throughput screening experiments. 

Briefly, cells were permeabilized in situ prior to detachment from the 96-well plate. 

Permeabilization was accomplished by treating the cells with an ice-cold solution consisting 

of 0.1% NP40, 0.1% Tween 20, and 0.01% digitonin. The plates were left on ice for 3 

minutes during the permeabilization process. Subsequently, a solution of 0.1% Tween 20 

was used to rinse the cells and remove mitochondria. The supernatant was then discarded, 

and the cells were treated with 25 μL of tagmentation solution, following the methodology 

outlined by Coerces et al., and incubated with shaking at 37°C for 1.5 hours. 

Tagmented nuclei were lysed using the Zymoclean DNA binding solution and transferred to 

a PCR 96-well plate. The tagmented DNA was subsequently extracted using 1.8 volumes 

of Ampure DNA clean beads. Finally, the ATAC-seq library was generated according to the 

protocol described by Coerces et al. in 2015 (omniATAC). And purified using ampure beads. 

Once pulled samples were sequenced on a SE100 cycles SP Novaseq flow-cell (Illumina) 

with the following specifics: Read-1 50 bp, Read-2 50 bp, Index-i5 8 bp, Index-i7 8 bp 

2.1.8.2. ATACseq Preprocessing Pipeline 

Preprocessing ATACseq data lacks a standardized, universally accepted pipeline and 

instead involves a mix of stand-alone tools, many of which were initially developed for 

techniques like ChIPseq and DNaseseq. While there are emerging best practices and 

consensus on certain steps, such as alignment and peak calling, the field is dynamic, with 

continuous development leading to new methodologies and tools, contributing to the 

diversity of approaches in data preprocessing. Thus, herein, we developed a 

comprehensive ATACseq preprocessing pipeline by combining the best practice tools and 

https://paperpile.com/c/2TIuTo/yQZZM
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approaches from various established pipelines and research studies. In the development of 

this pipeline, the primary framework was based on the established NextFlow pipeline199. 

Subsequent refinements and enhancements were systematically incorporated following an 

extensive review of the literature, notably integrating key methodologies outlined by Ou et 

al. (2018)200, Yan et al. (2020)71, and ENCODE’s pipeline201, which were selected for their 

demonstrated efficacy in improving ATACseq data quality assessment. The ATACseq 

preprocessing pipeline encompasses 18 steps as delineated in (see Table S1). Briefly, first 

the sequenced data undergoes demultiplexing, followed by the removal of adaptors. 

Subsequently, the data is aligned to the human reference genome. After alignment, the 

reads are filtered according to specific ATACseq quality criteria. The final stages involve 

Irreproducible Discovery Rate (IDR) peak calling, peak counting, and peak annotation, as 

referenced in (see Table S1). 

2.1.8.3. Peak Differential Analysis  

Quality Control (QC) 

In our ATACseq analysis, samples underwent systematic QC filtering based on established 

ATACseq quality thresholds. While adhering to general guidelines71,202, we adopted slightly 

more lenient criteria due to the extensive nature of our study, which involved dual replicates 

for over 130 TFs  and limited sequencing depth. Key quality metrics included: i) fraction of 

reads in peaks (FRiP): Samples with FRiP score below 0.3 were excluded. This threshold, 

recognized by ENCODE standards, ensures minimal background noise in our dataset, with 

a FRiP score above 0.3 indicating acceptable quality; ii) number of peaks in IDR Files: 

According to ENCODE standards, a minimum of 50,000 peaks within an IDR peak file is 

generally required. However, due to our lower sequencing depth, we halved this threshold 

to 25,000 peaks; iii) number of reads for open chromatin detection: For mammalian species, 

a standard minimum of 50 million reads is recommended for effective open chromatin 

detection and differential analysis. In our study, this threshold was adjusted to 20 million 

due to the sequencing depth limitation. For consistency and reliability, all conditions were 

tested with two replicates. If one replicate failed to meet the QC criteria, its paired replicate 

was also excluded from further analysis.  

Normalization and Peak Differential Analysis 

Initially, a filtering criterion was applied to the peaks, requiring a minimum of 10 reads in at 

least one condition to ensure no peak had zero reads. Subsequently, we utilized the 

DESeq2 package in R (version 1.38.3)187 to normalize the count peak matrix. It is 

noteworthy that many ATACseq peak differential analyses presuppose a negative binomial 

(NB) distribution and necessitate biological replicates for dispersion estimation. 

Consequently, these analyses often rely on RNAseq DE analysis packages such as 

https://paperpile.com/c/2TIuTo/ac4WO
https://paperpile.com/c/2TIuTo/RFF5R
https://paperpile.com/c/2TIuTo/W9Bb6
https://paperpile.com/c/2TIuTo/NqG6U
https://paperpile.com/c/2TIuTo/snvar+W9Bb6
https://paperpile.com/c/2TIuTo/eopWz


46 
 

DESeq2. Thereafter, to discern regions where chromatin accessibility was significantly 

augmented in samples treated with the TF of interest, in comparison to control samples 

introduced with GFP, we conducted a pairwise peak differential analysis. This analysis 

employed a one-sided alternative hypothesis test using the altHypothesis="greater" option 

in DESeq2. Peaks were designated as differentially open chromatin regions only if they 

exhibited an 𝐿𝐿𝐿𝐿𝐿𝐿 > 3 and 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 − 𝐻𝐻𝑙𝑙𝐻𝐻ℎ𝑏𝑏𝐵𝐵𝑏𝑏𝑙𝑙 𝑝𝑝 − 𝐵𝐵𝑎𝑎𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎𝐵𝐵𝑎𝑎 𝑣𝑣𝐵𝐵𝑙𝑙𝑎𝑎𝐵𝐵 < 0.01. 

2.1.8.4 Differential Motif Enrichment Analysis 

Peaks over 2500 base pairs in differential open chromatin regions (OCRs) were filtered out. 

To normalize predictive TF binding site distribution, we evaluated size distribution, with the 

median at ~500bp. Peak lengths were standardized to 500 bp, extending 250 bp from the 

center. We matched these regions with a standard model for TF DNA binding specificities 

using a comprehensive positional weight matrix (PWM). We retrieved human TF binding 

motifs from JASPAR 202066, HOCOMOCO-v1167, and TRANSFAC 201465 databases, 

using MEME file formats and the transfac2meme tool (version 5.1.1). TF motif matching 

was performed with the FIMO tool (version 4.10.2)203 using my PWM as a reference and 

kept motif alignments to retrieved OCRs below a significance of 1e-04. We then log-

transformed the motif alignments p-value, and aggregated r summed them for each stand-

alone peak, resulting in the motif enrichment map. This was necessary due to multiple motif 

occurrences per peak. To rank the motif enrichment for each TF distinctively, we applied 

‘Sparse Partial Least Squares regression’ (sPLS)204 analysis (spls library in R version 2.2-

3). More specifically, we compared the motif binding enrichment matrix, which served as 

the predictor, with the normalized peak count matrix, including only the differential OCRs. 

This resulted in the following regression model: 

y=β0+β1x 

The term x represents the predictor variable - a given motif enrichment score. The 

dependent variable, y, is the peak count of a given OCR. The coefficient β1 indicates the 

degree of influence each predictor has on y.  

The delta between the estimated beta coefficients of each motif in a given TF and the GFP-

control was used as a weighting factor to assess its importance in the activity of the 

examined TF: 

Δβ1=β1TF-β1GFP

2.1.8.5. Motif Reshape Analysis 

To assess pairwise motif similarities, I utilized the TOMTOM tool (version 5.4.1)205, 

employing the parameter “-thresh=1” to collect comprehensive alignment results, using the 

merged PWM as a reference. Subsequently, for each TF, motifs with an alignment q-value 

https://paperpile.com/c/2TIuTo/9fKYV
https://paperpile.com/c/2TIuTo/WJh85
https://paperpile.com/c/2TIuTo/zmiQ8
https://paperpile.com/c/2TIuTo/hBwkZ
https://paperpile.com/c/2TIuTo/tzwjN
https://paperpile.com/c/2TIuTo/gOPlh


47 
 

less than 0.05 were classified as “Expected motifs,” while those not reaching this threshold 

were labeled as “Observed motifs.” Additionally, for each motif, I assigned beta coefficient 

scores derived from motif differential analysis, categorizing them under “Expected motifs” 

and “Observed motifs.” Ultimately, TFs were ranked based on their motif reshape score, 

which was calculated by combining the delta of the mean motif enrichment scores between 

'Expected' and 'Observed motifs' and the statistical significance of this difference. 

2.1.9. Multiomics Data Integration 

2.1.9.1. Transcription Factor Activity Scores 

The normalized count matrices from RNAseq and ATACseq were refined to include only 

relevant genes or peaks. In the RNAseq count matrix, we maintained DE genes with an 

LFC>1 and a p-value<0.05. Similarly, in the ATACseq count matrix, we focused on peaks 

exhibiting an LFC>2 and a p-value<0.05. Subsequently, we calculated the mean expression 

of each gene or peak across replicates for each TF and GFP-control. Following this, 

principal Component Analysis (PCA) analysis was performed, and we calculated the 

Euclidean distance between the TFs and GFP-control within the latent space defined by the 

first two principal components (PC1 and PC2). Finally, to rank the overall TF activity, we 

scaled the Euclidean distances derived from both RNAseq and ATACseq data, combining 

them to yield a consolidated score. 

2.1.9.2. Similarity Network Fusen 

To adeptly navigate the complexities inherent in multiomic data integration, we adopted the 

SNF method84 Unlike the conventional approach of using count matrices, we input 

enrichment matrices from both RNAseq and ATACseq to highlight biologically significant 

aspects of TF similarities. Specifically, we utilized the target gene enrichment matrix for the 

RNAseq omic level and the motif enrichment matrix for the ATACseq omic level. We 

constructed individual weighted network graphs for each omic level and identified the 

minimal number of edges necessary to maintain all nodes intact. We set thresholds for edge 

weights below which they were disregarded: less than 0.09 for RNAseq-based data and 

less than 0.24 for ATACseq-based data. Consequently, all values in the similarity matrices 

falling below these thresholds were set to zero. These refined matrices were then employed 

in the SNF process, which constructed standalone networks from RNAseq and ATACseq 

data. These networks were then fused through a message-passing process, a technique 

that maintains strong connections between factors while filtering out weaker ones. This 

selective fusion underscores the most pertinent interactions among TFs. Finally, in the 

resulting fused weighted network, we again applied the principle of retaining the minimal 

number of edges necessary to preserve all nodes, setting a threshold of less than 0.05. This 

https://paperpile.com/c/2TIuTo/cMAKe
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approach ensured a focus on the most significant and robust connections in our multiomic 

data analysis. 

2.2. Second Project - Spatial Transcriptomics Reveals Sub-Tumoral 

Identities and Novel Diagnostic markers in Triple Negative Breast Cancer 

With Immune Evasion Capacity 

2.2.1. Samples Selection 

Clinical samples for spatial, bulk RNAseq, and IHC were collected from the files of the 

Division of Pathology, European Institute of Oncology (IEO), Milan, Italy, under project 

registration number UID 2886, which includes appropriate informed consent and approval 

from the local ethical board. Samples were selected based on PD-L1 CPS gold standard 

thresholds206,116, tumoral content, and, in the case of spatial profiling, a capture area at the 

edge of tumor and normal breast tissue.  

Clinical samples for bulk RNAseq (LY6D/CD274 expression levels in a larger patient cohort 

- at least 50% cellularity TNBCs) are provided under a research agreement with Next 

Generation Diagnostic Srl (NEGEDIA), which holds appropriate ethical approval and/or 

MTA. For confidentiality and ethical restrictions, NEGEDIA does not hold the authorization 

to share such sequencing data. 

2.2.2. Spatial Transcriptomics Library Preparations And Data Processing 

For spatial transcriptomics, FFPE tissue blocks of sufficient quality obtained from 2 TNBC 

tumors positive and negative for PD-L1 were sectioned to a thickness of 5 µm and 

processed through 10X Visium technology (10X Genomics Inc). Briefly, samples were 

mounted on Visium Spatial capture probe slides, then underwent deparaffinization, staining 

with HE, imaged, and de-crosslinked as per the given protocol. Subsequent library 

preparation was carried out using the Visium Spatial Gene Expression Reagent Kits 

according to manufacturers’ specifications. The final purified libraries were sequenced on a 

NovaSeq 6000 sequencing system (Illumina Inc.) according to Visium sequencing strategy. 

Sequencing data preprocessing was done by using Spaceranger (version 1.3.1 - 10X 

Genomics Inc) to perform sample demultiplexing, alignment, tissue detection, fiducial frame 

detection, and unique molecular identifiers (UMIs) counting. The obtained data from 

Spaceranger were analyzed, visualized and integrated with histological annotation using 

Loupe Browser (version 6.0.0 - 10X Genomics Inc).  

https://paperpile.com/c/2TIuTo/wsmRc
https://paperpile.com/c/2TIuTo/9sxV5
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The output of the spaceranger pipeline was imported into R (version 4.2.0) and analyzed 

using Seurat R package (version 4.3.0)207. Utilizing the Load10X_Spatial function, both 

spot-level expression data and the corresponding tissue slice images for each sample were 

retrieved. The data underwent normalization via the SCTransform method, followed by 

dimensionality reduction using the UMAP (Uniform Manifold Approximation and Projection) 

approach, adopting Seurat's default parameters. For initial clustering, the FindClusters 

function was employed, setting the resolution parameter at 0.6 for PD-L1 negative samples 

and 0.8 for PD-L1 positive samples. Subsequently, the histological annotation CSV file from 

Loupe Browser was imported and integrated with the Seurat object using AddMetaData 

function. 

2.2.3. Spatial Transcriptomics Data Analysis 

Deduce tumor and stromal signatures from spatial data. The ESTIMATE R package 

(version 1.0.13)208 was used to leverage gene signatures obtained from stromal cells to 

assess the relative enrichment of the Stromal Score. The computation of Tumor Purity 

followed the methodology outlined by Yoshihara et al208. The application of ESTIMATE was 

conducted on normalized expression data extracted from individual spatial spots. The 

output of the analysis yielded corresponding Stromal Scores and Tumor Purity values for 

each spatial spot, facilitating their representation through spatial visualization or in the form 

of a violin plot. 

Gene expression clustering. Clustering was performed using the FindAllMarkers function in 

Seurat package (version 4.3.0)207 with parameters set at only.pos=TRUE, min.pct=0.25, 

and logfc.threshold=0.25. For each cluster we reported the top 10 marker genes, prioritizing 

them based on the product of - log10 of Bonferroni-corrected p-values and log-fold change 

(LFC).  

We then identified the top 10 marker genes for each cluster, ranking them by the product of 

LFC*-log10(adjusted-p-value) and conducted text mining to relate each cluster to a specific 

biological context.  

Pathway Enrichment analysis. Differential gene expression analysis was performed using 

the FindMarkers function in Seurat package. Marker genes were identified for individual 

clusters annotated as tumor in comparison to all other surrounding clusters, and vice versa. 

After isolating the differentially expressed genes, we proceeded with the Gene Set 

Enrichment Analysis (GSEA) utilizing the fgsea R package (version 1.24.0) using the 

hallmark gene sets from the Molecular Signatures Database (MSigDB)209. For each distinct 

cluster, the foremost five pathways were chosen based on their rank, determined by the 

product of the -log10 of Bonferroni-corrected p-values and NES values.  

https://paperpile.com/c/2TIuTo/F7nHW
https://paperpile.com/c/2TIuTo/h2tjY
https://paperpile.com/c/2TIuTo/h2tjY
https://paperpile.com/c/2TIuTo/F7nHW
https://paperpile.com/c/2TIuTo/bH8AR
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Spatial visualization of biological pathways enrichment scores. For all pathways identified 

as enriched through the GSEA analysis, we further assessed their spatial enrichment 

profiles to discern whether they were predominantly enriched in the tumor or in its 

surrounding environment. The pathway score was computed for each spatial spot and  for 

every pathway using the Seurat function 'AddModuleScores', which employed the gene set 

specific to each pathway193.  

Ligand Receptor analysis. From a list of ligand-receptor pairs210, we filtered out those 

couples that were not experimentally validated and were not detected in our data. Cluster-

to-cluster interaction scores were computed as shown in Panariello et al., 2023211. 

Interactors that demonstrated significance within the same clusters’ class, either Tumor or 

Surrounding, were disregarded.  Briefly, the average gene expression value of a ligand in 

a certain cluster was multiplied by the average value of its related receptor in another one. 

Significance was assessed with empirical p-value, generating a null distribution of 1000 

permutations on the association between spots and clusters. Through the calculation of 

mean interaction scores for each cluster (see materials and methods), we succeeded in 

classifying ligand-receptor pairs into discrete Interaction Modules (IMs) through hierarchical 

clustering analysis.  

2.2.4. Bulk RNA Sequencing  

Total RNA was extracted from FFPE slides using the Maxwell RNA FFPE kit (Promega 

Corp.) and quantified using the Qubit 4.0 fluorimetric Assay (Thermo Fisher Scientific). 

Libraries were prepared from 250 ng of total RNA using the NEGEDIA Digital mRNA-seq 

clinical grade sequencing service (Next Generation Diagnostic srl)212, which included library 

preparation, quality assessment and sequencing on a NovaSeq 6000 sequencing system 

using a single-end, 100 cycle strategy (Illumina Inc.). 

Sequencing data were analyzed by Next Generation Diagnostic srl proprietary NEGEDIA 

Digital mRNA-seq pipeline (v2.0), which involves a cleaning step by quality filtering and 

trimming, alignment to the reference genome and counting by gene. The DESeq2 

package187 (version 1.38.3) was used to normalize raw transcript counts and perform 

differential expression (only on genes >5 CPM). Genes with an adjusted p-value less than 

0.05 (using the Benjamini-Hochberg procedure) and LFC>2 were considered significantly 

differentially expressed. 

https://paperpile.com/c/2TIuTo/261vu
https://paperpile.com/c/2TIuTo/MNOPd
https://paperpile.com/c/2TIuTo/r71U9
https://paperpile.com/c/2TIuTo/Gfb0z
https://paperpile.com/c/2TIuTo/eopWz
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2.2.5. Integration Of Spatial Transcriptomics With Bulk RNA Sequencing 

For The Identification And Ranking Of Candidate Diagnostic markers 

Spatial differential gene expression analysis was performed using the FindMarkers function 

from the Seurat package (version 4.3.0)207 with parameters set as min.pct=0, 

logfc.threshold=0, min.cells.feature=0 , min.cells.group=0. Marker genes were identified for 

spatial spots annotated as tumor in comparison to all other spatial spots annotated as 

surrounding. These analyses were executed separately for both PD-L1 positive and PD-L1 

negative samples. Subsequently, the outcomes of the spatial differential analyses from both 

sample sets were integrated with the DEA results from a comparison between the bulk 

RNAseq of PD-L1 positive and PD-L1 negative samples. 31 genes resulted as being 

upregulated in PD-L1 positive tumor areas and bulk FFPE samples. Of these, only those 

genes that exhibited downregulation in the tumor regions of the PD-L1 negative spatial 

transcriptomics sample or were not expressed at all were earmarked as potential diagnostic 

marker candidates. This led to the identification of eight key genes out of which two 

discovered as outliers (see Table S2). In order to further prioritize the eight candidate 

diagnostic markers, we assessed their LFC values within each of the PD-L1 positive sub-

tumor clusters and examined their variance across the different clusters. The comparison 

between the average LFC values and their variance across sub-tumor clusters enabled us 

to gain a better understanding of not only the diagnostic marker candidate specificity but 

also the consistency across the tumor area. This allowed us to select the top diagnostic 

marker gene that shows the best ratio between sub-tumor LFC variance and averaged LFC. 

2.2.6. Immunohistochemistry Analysis And PD-L1 Expression 

Quantification 

For clinical PD-L1 evaluation, four-microns thick FFPE sections of each block were 

subjected to PD-L1 IHC using the 22C3 pharmDx CE-IVD assay on a Dako Autostainer Link 

48, according to the manufacturer’s instructions, as previously described213. Briefly, we used 

the 22C3 PharmDx assay (mouse monoclonal primary anti-PD-L1 antibody, prediluted, 

clone 22C3; Dako, Carpinteria, CA, USA) on the Dako Autostainer Link 48 with the EnVision 

3,3′-Diaminobenzidine (DAB) Detection System (Agilent Technologies, Santa Clara, CA, 

USA). All the evaluations were performed on whole slides. The CPS was determined as the 

number of PD-L1-positive infiltrating tumor cells, lymphocytes, and macrophages divided 

by the total number of viable infiltrating tumor cells, multiplied by 100. Any perceptible and 

convincing partial or complete linear membranous staining of viable infiltrating tumor cells 

that were perceived as distinct from cytoplasmic staining was considered to be positive PD-

L1 staining and was included in the scoring. Likewise, any membranous and/or cytoplasmic 

staining of mononuclear inflammatory cells within tumor nests and/or adjacent supporting 

https://paperpile.com/c/2TIuTo/F7nHW
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stroma was considered to be positive PD-L1 staining and was included in the CPS 

numerator. Neutrophils, eosinophils, plasma cells, and inflammatory cells associated with 

in situ components, benign structures, or ulcers were excluded from the CPS. For the 

purpose of this study, cases with CPS>1 were considered PD-L1(+). 

For LY6D and PD-L1 automated staining, seven-micron FFPE sections were processed 

with VENTANA BenchMark Ultra automated staining instrument (Ventana Medical 

Systems, Roche), using VENTANA reagents except as noted, according to the 

manufacturer's instructions. Slides were then counterstained with hematoxylin II followed 

by Bluing reagent. Bright-field sections were scanned with ZEISS Axio Scan.Z1. The whole 

digital slides were viewed using Zen Blue software. LY6D antibody (Sigma-Aldrich 

HPA024755) was used for immunostaining. DAB positive signals for PD-L1 and LY6D 

markers were quantified with QuPath software. The same 3 tumoral regions areas were 

selected for both PD-L1 and LY6D in each sample, and the results were expressed as a 

percentage. 

3. Results 

3.1. First Project - An Integrated Screening to Infer Transcription Factor 

Regulatory Networks Governing Cell Fate Decisions 

3.1.1. Multiomic Screening Approach to Study the Key Role of 

Transcription Factors in Transdifferentiation 

The understanding of TFs in defining cellular identity and their transcriptional and epigenetic 

barriers has been hindered by the variability of cellular engineering platforms and the lack 

of a systematic approach. Consequently, this has led to a substantial gap in our knowledge 

of molecular networks governed by different TFs, leaving many potentially key ones yet 

uncharacterized. In this study, we performed an unbiased survey of 130 key developmental 

TFs, examining their effect on gene expression, chromatin architecture, and cellular 

morphology. Our objective was to identify novel pioneer factors that, either individually or in 

combination, play a pivotal role in shaping cellular identity.  

3.1.1.1. Transcription Factor Selection and Prioritization 

The human genome contains over 1,800 TF loci, resulting in more than 3,500 isoforms that 

offer a wide range of possible regulatory effects45. Therefore, to identify the most promising 

candidates for our integrative screening, we used a multi-tiered approach to create a 

focused list of TFs potentially involved in developmental processes (Figure 17). To this end, 

https://paperpile.com/c/2TIuTo/5eU59
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we initially identified TFs exhibiting minimal expression levels in different human primary 

fibroblast cell lines (HLF, RPE, BJ), each derived from a distinct germ layer. This was 

implemented to address the effect of cellular context, thereby focusing on TFs that are more 

likely to act as pioneer factors. We further refined this selection by keeping the top 250 TFs 

that demonstrated the highest levels of human-specific expression. These TFs were then 

assessed using the “Transcription Factor Epigenetic Remodelling Activity” (TERA) score185 

which predicted their epigenetic functional capacity by integrating genomic and epigenetic 

data.  

To complement our epigenetic approach, we utilized Mogrify186, a network-based algorithm 

that leverages gene expression data. This method predicts TFs that are likely to regulate a 

designated target cell type, considering the gene expression profiles of the predetermined 

initial cellular state. In our application, we used the HLF, RPE, and BJ primary fibroblast cell 

lines as the starting cellular states and effectively predicted the optimal set of TFs that can 

regulate 95% of the genes within each of the 132 target cell types examined implemented 

in Mogrify platform.  

We then merged the two candidate collections obtained from epigenomic and transcriptional 

approaches to create a comprehensive list of candidate TFs. From this set, we excluded 

those that did not exhibit a 'TF' or 'DNA binding' characteristic, ultimately yielding a list of 

223 candidate TFs. To broaden our study's scope, we used a literature-based data 

extraction approach to include an additional 54 TFs that hold scientific value, despite not 

meeting our strictest selection criteria. 

 

 

 

First, TFs were prioritized based on their gene expression (Mogrify algorithm) and epigenetic activity (TERA 

score). The resulting lists were then combined and filtered for specific gene ontology terms. An additional 54 

TFs were identified from a systematic literature review, resulting in a total of 277 potential TFs. Of these, 130 

have been analyzed and reviewed in this dissertation. Transcription Factors (TFs). 

Through our integrative methodology, we have selected a comprehensive list of 277 TFs, 

categorized into eight distinct TF superclasses, out of a possible total of 10 as proposed by 

Figure 17. Representative Scheme of Candidate Transcription Factors Selection Process 

https://paperpile.com/c/2TIuTo/rv998
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Wingender E et al. (Fig 18).12. However, in this thesis we have successfully screened and 

analyzed a subset of 130 TFs from the original set, which includes six superclasses, ‘Alpha 

Exposed by Beta Structures’ (2.3%), ‘Basic Domain’ (35.4%), ‘Helix Turn Helix’ (36.2%), 

‘Immunoglobulin Fold’ (6.2%), ‘Other All Alpha Helical DBD’ (1.5%), and ‘Zinc Coordinating 

DBD’ (18.5%). All 130 TFs successfully passed the screening procedure and met the data 

QC standards, as detailed in the Materials and Methods chapter. Although the entire scope 

of our screening study is not yet complete, this focused dataset of 130 TFs continues to 

underscore the complexity of their varied structural domains, thus offering insights into their 

diverse roles in regulating cell fate decisions (Figure 18). 

A diagram illustrates the proportion of each superclass in the initial TFs collection (277), and the screened set 

in this dissertation (130 TFs). Transcription Factors (TFs). 

3.1.1.2. Experimental Design 

Next, the selected TFs were subsequently tested through unbiased transcriptomic, 

epigenomic, and morphological assays. To this end, we developed a systematic approach 

for surveying TFs under the same experimental settings. This enabled us to assess the 

impact of ectopic TF expression on cellular fate, using human primary fibroblasts as a 

terminally differentiated model (Figure 19). First, TFs were cloned into pLX317 vectors, 

each equipped with dedicated barcodes for identifying the inserted ORF and quantifying its 

expression level. The TFs were regulated by the EF-1a promoter and in-frame with a V5-

tag, which facilitated the validation of their expression and nuclear localization. The EF-1a 

promoter was chosen due to its high expression capacity and to prevent potential 

methylation events. We then infected BJ-T cells (human immortalized foreskin fibroblasts) 

with the lentiviral vectors and cultured them for 11 days in low serum conditions to highlight 

their capacity to introduce new cellular functionality. Next, we accurately monitor the TF-

induced changes in i) cellular morphology through high-content imaging (section 3.1.6), ii) 

gene expression dynamics using RNAseq (section 3.1.2), and iii) chromatin accessibility via 

ATACseq (section 3.1.3). Later, the collected data was used to create an integrated network 

Figure 18. Superclass Representation in Candidate Transcription Factors Portfolio 

https://paperpile.com/c/2TIuTo/G45x1
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depicting TF similarities in both transcriptional and epigenomic regulations (Results section 

3.1.5).  

A flowchart depicting the steps of our multiomic screening approach. Initially, potential candidate TFs were 

selected and subsequently integrated into lentiviral vectors to infect BJ fibroblast cells. Following 11 days of 

cellular conversion protocol, morphological assays, RNAseq, and ATACseq were conducted. Eventually, these 

individual datasets were then integrated to establish a comprehensive multiomic TFs connectivity network. 

Transcription Factors (TFs); RNA sequencing (RNAseq); Assay for Transposase-Accessible Chromatin with 

Sequencing (ATACseq) 

3.1.2. Dissecting Transcription Factors Regulation in Gene Expression 

Dynamics Revealed Significant Impact on Cell Fate Identity 

In initiating our investigation into the impacts of the screened TFs on cellular fate, we first 

applied systematic analysis of their effects on the dynamics of gene expression. Upon 

completion of the cellular conversion process, we harvested cell samples and sequenced 

them using bulk RNAseq. This effectively captured data from over 130 quadruplicate TF 

conditions and GFP-infected cells as a control group (details in Materials and Methods). 

Given the large scale of the data, substandard analytical strategies were used to address 

associated challenges, such as considerable technical noise, data sparsity, and high 

variability.  

3.1.2.1. Modeling Infection-Induced Variability for Effective Noise Reduction 

in Gene Expression Analysis 

In our preliminary analysis, we delved into the biological variability present in our expression 

data. This examination revealed an unintended source of variation inherited from the 

infection procedure. Specifically, we identified a focused set of genes closely associated 

with the cellular stress response induced by this process (detailed below), exhibiting varying 

enrichment levels across all tested samples (Figure 20). The observed variation likely 

Figure 19. Multiomic Screening Approach to Deciphering Transcription Factors Role in Modulating 
Cellular Fate 



56 
 

results from the inconsistent effectiveness of cellular infection and the extent to which the 

viral vector, containing the transgene, effectively integrates into the cells. Such technicality 

is expected, especially considering the wide-ranging scope of our screening strategy.  

A UMAP plot of RNAseq data visualizes each sample's transcriptional profile, with the infection scores color-

mapped, indicating a directional effect on gene expression variability (left). And color-coded condition-specific 

data with TF-infected samples are in blue, and GFP-controsl are in green (right). Uniform Manifold 

Approximation and Projection (UMAP); RNA sequencing (RNAseq). 

Notably, this variability is likely to introduce a technical bias in downstream analysis results, 

consequently, masking the true biological variation introduced by TF regulatory activity on 

gene expression dynamics. Therefore, to model the noise structure in our data, we 

performed a dose-dependent MOI control assay. In this experiment, we infected BJ-T cells 

with an increasing MOI concentration range (from 0.05x to x8 MOIs with respect to the 

original experiment) of the GFP-containing viral vector (Figure 21). To quantitatively 

measure the infection level observed in each sample, we first performed pairwise DE 

analysis between 8x and 0.05x MOI infected cells. Genes whose expression significantly 

changed (>2 LFC) were subdivided into eight groups by C-means clustering214. Hereof, we 

focused on a single cluster that demonstrated gene expression kinetics compatible with the 

incline MOI levels (Figure 21).  

Z-scored normalized expression (Y-axis) of 64 genes from the selected cluster, aligned with MOI concentrations 

(X-axis), shown as a line plot (left), heatmap (middle), and boxplot (right). Multiplicity of infection (MOI). 

Figure 20. Infection-Inherited Variability Introduces Technical Noise in Gene Expression Data 

Figure 21. Selected Gene Cluster for Modeling Infection Score 

https://paperpile.com/c/2TIuTo/r9BRR


57 
 

Notably, the 64 genes within the selected cluster demonstrated enrichment in pathways 

predominantly involved in immune and inflammatory cellular responses using GO 

enrichment analysis190,191 (Figure 22). These findings highlight that these genes are indeed 

associated with the cellular response to the infection procedure.  

A bar plot illustrating the top 10 most enriched biological processes in the selected genes, ranked by -log10 of 

their resulting FDR. False Discovery Rate (FDR); Gene Ontology (GO). 

Building upon these findings, we employed the inferred genes to score each sample for its 

infection level using a computational strategy described by Tirosh et al193. Briefly, for each 

sample, we calculated the average expression level of the selected 64 genes and then 

subtracted the aggregated expression of control feature sets with a similar expression level 

(see Materials and Methods), thus generating unitless scores that can be compared across 

all samples. The resulting infection scores exhibited marked consistency with the dose-

dependent MOI incline, thereby providing further evidence for the effectiveness application 

of our computational approach for modelling the infection-derived variability (Figure 23, left). 

Three heatmaps depicting the 20 ranked motifs for NEUROD6 (left), TFAP2B (middle), and MYOD1 (right). The 

color gradient from light red to dark red corresponds to the enrichment score of each motif, denoting a unitless 

measurement scales from low to high enrichment. 

Figure 22. Cluster Selected 64 Genes Demonstrate an Enrichment in Infection-Related Gene Ontology 
Terms 

Figure 23. Stratification of Infection Scores for Differential Gene Expression Analysis 

https://paperpile.com/c/2TIuTo/CeyiC+DV82q
https://paperpile.com/c/2TIuTo/261vu
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Then, to mitigate the impact of infection-derived variability in subsequent analyses, we 

applied DEA by systematically pairing TF samples with GFP controls based on their 

corresponded infection levels (Figure 23, right). Initially, we calculated the average infection 

scores (𝐼𝐼{𝑇𝑇𝑇𝑇})  for each set of TF replicates (𝐵𝐵 number of replicates). 

 
These scores were then leveraged to categorize TFs into designated MOI concentration 

groups (𝐼𝐼{𝐺𝐺𝑇𝑇𝐺𝐺}(𝑀𝑀𝑀𝑀𝐼𝐼)), GFP control infection scores at a distinct MOI concentrations), 

prioritizing the ones that exhibited the smallest differences in infection levels. This can be 

represented as followed: 

 

Essentially, this approach enabled the normalization of inherent infection variability, by 

enhancing the accuracy of gene expression comparisons across TF and control samples, 

which are likely to exhibit similar transcriptional responses to the infection procedure. 

3.1.2.2 The Majority of Transcription Factors Induce Profound 

Transcriptional Changes in Transcriptional Cell State 

DEA results revealed a substantial impact on gene expression dynamics, this underscoring 

the potential role of these TFs in shaping cellular identity (Figure 24). Specifically, we found 

that a significant portion of the 130 TFs exhibited either a large effect 26.9% (> 400 DE 

genes), or a moderate impact 40.8% on gene expression (>100 and < 400 DE genes). 

Notably, a smaller fraction, 32.3%, showed a minimal or negligible effect (<100 DE genes).  

A three-tiered pie chart illustrating the proportion of screened TFs categorized by their extent to affect gene 

expression, 'Small-Non' (blue), 'Moderate' (green), and 'Large' (pink). Each tier further delineates the distribution 

of TF superclasses, indicating the variety within each category. Transcription Factors (TFs). 
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Figure 24. Categorization of Transcription Factors Impact on Gene Expression 
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Key pioneer factors such as FOXA2 (helix turn helix), TP63 (immunoglobulin fold), MEF2B 

(alpha-helices exposed by beta-structure), and MYOD1 (basic domain) significantly 

influenced gene expression, whereas other well-known TFs like HIF1A (basic domain), 

SNAI1 (zinc coordinating DBD), HOXA1 (helix turn helix), and LMX1B (helix turn helix) 

exhibited minimal impact. Additionally, when examining the distribution of the superclasses 

across these effect categories, it becomes clear that TFs belonging to Helix-Turn-Helix and 

Basic Domain are particularly influential (Figure 24). This trend may reflect the high 

representation of Helix-Turn-Helix and Basic Domain superclasses among the 130 

examined TFs, rather than indicating a true intrinsic influence on gene expression 

dynamics. Such distinction in superclass representation highlights the need for further 

investigation into the unique characteristics of different TF structural domains in gene 

expression modulation. 

Next, to validate our methodological approach, we conducted a pathway enrichment 

analysis using the transcriptional profiles of cells infected with well-characterized TFs as a 

reliable positive control (Figure 25). To this end, we focused on the gene expression data 

of MYOD1, NEUROD6, and TP63, aiming to assess their consistency with published data. 

Indeed, our results confirmed that the enriched signatures of each TF align with documented 

biological processes (Figure 25). Cells infected with MYOD1 revealed significant 

enrichment of varied myogenic pathways215, NEUROD6 cells predominantly expressed 

gene signatures correlated with neuronal fate216,217, while TP63 unveiled expressional 

dynamic linked with epithelial cell fate (in the contexts of skin development)218.  

 

 

 

 

The top 20 most enriched pathways resulted from Gene set enrichment analysis using the C5 GO curated 

database colored by their NES for MYOD1 (left), NEUROD6 (middle), and TP63 (right). Gene Ontology (GO); 

Normalized Enrichment Scores (NES). 

3.1.2.3. Analyzing Transcription Factors Target Genes Reveals Similarities 

in Gene Regulation Activity 

Then, to unravel relationships between groups of TFs, we developed a gene set enrichment 

strategy that allowed us to evaluate to which extent candidate TFs impinge on common sets 

of target genes (Figure 26). Specifically, we repurposed the computational approach from 

Figure 25. Key Transcription Factors Demonstrating Consistent Gene Signature with Published 
Literature 

https://paperpile.com/c/2TIuTo/JpUYP
https://paperpile.com/c/2TIuTo/Xfznr+LKtQy
https://paperpile.com/c/2TIuTo/YMFTh
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the ‘Mode of Action by NeTwoRk Analysis’ (MANTRA) tool197, and refined it to adjust to our 

data requisites. This approach allowed us to analyze TF transcriptional changes without  

setting an arbitrary cutoff in expression changes that may overlook the nuanced functional 

capacities of some TFs. These factors, while not significantly altering transcription dynamics 

on their own, can potentially re-wire cellular identity in combination with other TFs and 

additional effectors such as chromatin state, post-transcriptional mechanisms, and 

cofactors. First, for each TF we created a list of genes ranked according to their differential 

expression changes with respect to the GFP-control cells. We then extracted an "optimal" 

gene signature for each TF by selecting the top 250 genes that were overexpressed and 

the last 250 genes that were the most down-regulated. Using the gene set enrichment 

approach implemented in MANTRA, we then checked if the “optimal” gene signature of the 

first TF was graded consistently at the top or bottom of the entire ranked list of the second 

TF, and vice versa. By combining the enrichment score of the first TF in the second one, 

and reciprocally, we obtained a single value quantifying the similarity between a pair of TFs 

(Figure 26). In this dissertation, we refer to these similarity values as "Mantra Scores". 

Gene set enrichment strategy for evaluating TF-A and TF-B similarity. Optimal gene signatures, derived from 

the top and bottom 250 differentially expressed genes from each TF, are cross-analyzed. The combined 

enrichment scores produce a single similarity score. Transcription Factor (TF).  

Using the retrieved Mantra Scores, we performed hierarchical clustering, which successfully 

identified 37 distinct clusters (Figure 27). The dendrogram revealed that TFs sharing co-

functional activities and those belonging to the same family tend to group closely together. 

For example, the clustering of TFs like MYOD1, MYF5, and MYOG represented myogenic 

fate219, while the grouping of ATOH1, NEUROD and, NEUROG genes highlighted 

neurogenic fate220,221. Our analysis also sheds light on closely grouped TFs within the same 

family, such as the Hepatocyte Nuclear Factors (HNFs), including HNF1A, HNF1B, 

Forkhead box (FOX), with members like FOXA2, FOXA3, and homeobox genes (HOX) like 

HOXA6, HOXB6, and HOXD4. Interestingly, we observed uncharacterized TF 

interconnections. For instance, CREB5 an uncharacterized TF was closely associated with 

Figure 26. Cross-Enrichment Analysis of Transcription Factors’ Target Genes 

https://paperpile.com/c/2TIuTo/WzY8v
https://paperpile.com/c/2TIuTo/mjLu4
https://paperpile.com/c/2TIuTo/ZfA2b+kkdOy
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TBX20222, a key factor in cardiac development. Additionally, ASCL1, known to play a role in 

neuronal development223 was closely grouped with myogenic TFs. Essentially, the 

clustering patterns not only confirmed the known functions and tissue-specific roles of the 

screened TFs but also highlighted the potency of our methodological approach to uncover 

previously unidentified TF Interconnections. 

 

Figure 27. Transcription Factors Clustering Identifies Traditional and Novel Interconnections Based on 
Their Similarity in Downstream Target Genes 
A dendrogram demonstrates the hierarchical clustering of 130 screened TFs into 37 distinct clusters, based on 

their respective target gene similarity (Mantra scores). Clusters below a threshold height of 1.5 are marked in 

black. Transcription Factors (TFs). 

3.1.3. Transcription Factor Regulation on Chromatin Accessibility and 

Cellular State 

As a further validation step, we added epigenomic data through ATACseq, aiding in the 

completion of our TF-induced transcriptional profiling. This integration offered insights into 

chromatin remodeling events and the identification of enriched binding sites. Given the lack 

of a standardized ATACseq data preprocessing protocol, we have developed a 

comprehensive pipeline that combines best practices from diverse sources, including 

NextFlow framework199, ENCODE pipeline224, and additional strategies from pivotal 

studies71,200 (see Materials and Methods). Then, to identify TF-induced OCR, we performed 

differential peak analysis. For each query TF in our experiment, we created a list of 

significant differential OCR with respect to the GFP-control (LFC>2 P-adj<0.05). Systemic 

analysis showed that the majority of TFs demonstrated significant influence, with 22% 

having a large or 32% moderate effects. However, 46% of the TFs had a small to no impact 

(Figure 28).  Further analysis into the superclasses proportion in each category, matched 

the findings from the RNAseq data (Figure 29). Specifically, the Helix-turn-helix TFs were 

particularly notable in the moderate effect group, while the Basic domains were most 

dominant in the large effect category. 

https://paperpile.com/c/2TIuTo/dDyVK
https://paperpile.com/c/2TIuTo/uLlti
https://paperpile.com/c/2TIuTo/ac4WO
https://paperpile.com/c/2TIuTo/5cjXE
https://paperpile.com/c/2TIuTo/RFF5R+W9Bb6
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A three-tiered pie chart illustrating the proportion of TFs categorized by their extent to open new chromatin 

regions, 'Small-Non' (blue), 'Moderate' (green), and 'Large' (pink). Each tier further delineates the distribution of 

TF superclasses, indicating the variety within each category. Transcription Factors (TFs). 

Overall, at both transcriptional and epigenetic levels, the majority of the 130 screened TFs 

exhibited a major to large impact on cellular processes. However, not all TFs that induced 

substantial changes in gene expression correspondingly affected chromatin architecture, 

and vice versa, indicating a partial overlap (Figure 29). This observation suggests that TFs 

not only vary in their efficiency to alter cellular state but also demonstrate distinct capacities 

in regulating transcriptional and epigenetic mechanisms.  

 

 

 

Figure 28. The Majority of Screened Transcription Factors Exhibit Moderate to Large Impacts on 
Chromatin Architecture 
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A bar plot (bottom) and accompanying pie charts (top) represent the varying impacts of TFs on transcriptional 

and epigenetic mechanisms. Both the bar plot and the pie charts are color-coded to signify the influence of TFs 

specifically at the transcriptional level (green), epigenetic level (purple), and on both levels concurrently 

(orange). Atop each bar, numerical values denote the count of TFs within each respective category and the pie 

charts detail their percentage. Transcription Factors (TFs). 

3.1.3.1. Differential Motif Enrichment Analysis Reveals Distinct and Shared 

Transcription Factors Regulatory Modules 

Next, we developed computational approach designated to evaluated the extent to which 

TFs can induce new OCRs that contain shared motifs with other factors, suggesting 

potential collaborative roles (Figure 30). Initially, we computed the likelihood of each motif 

sequence appearing in differential OCRs. Utilizing the FIMO tool203, we computationally 

detected motif occurrences within uniformly sized peaks, drawing on a PWM matrix 

constructed from the TRANSFAC65, JASPAR66, and HOCOMOCO67 databases as 

reference points (see Materials and Methods). Next, to prioritize the enriched motifs for each 

screened TF and effectively address background considerations, we developed differential 

motif enrichment analysis using Sparse Partial Least Squares regression (sPLS)204 

analysis. More specifically, we compared the motif binding enrichment matrix, which served 

as the predictor, with the normalized peak count matrix including only the differential OCRs. 

This resulted in the following sPLS regression equation    

y=β0+β1x 

In this representative regression formula y represents the peak count for the differential 

OCRs of a given TF; X the motif enrichment; β0 represents the baseline level of the peak 

count when there is no motif enrichmen; β1 is the beta coefficient showing the connection 

between TFs impact on OCRs and the motif enrichment. 

Figure 29. Transcription Factors Demonstrate Partial Consistency of Transcriptional and Epigenetic 
Mechanisms. 

https://paperpile.com/c/2TIuTo/hBwkZ
https://paperpile.com/c/2TIuTo/zmiQ8
https://paperpile.com/c/2TIuTo/9fKYV
https://paperpile.com/c/2TIuTo/WJh85
https://paperpile.com/c/2TIuTo/tzwjN
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The ranking of each motif in relation to a specific TF was determined using a differential 

motif enrichment analysis method we developed. This method involves calculating the 

difference in beta coefficients (β1) between a given TF and a GFP-control. We express this 

calculation as:  

Δβ1= β1TF +β1GFP-control 

β1TF represents the beta coefficient for a given motif under the influence of the a given 

TF. β1GFP-control is the beta coefficient for the same motif under the GFP-control.  

The resulting Δβ1, is then used as a weight factor to rank the likelihood of a given motif 

sequence being influenced by the TF, with higher Δβ1 values indicating a stronger 

influence of the TF on the motif. 

 

 

 

 

 

 

Flowchart overviewing the different steps in our differential motif enrichment analysis. Initially, preprocessing of 

ATACseq data produces an IDR peak count matrix (orange), followed by differential accessibility analysis to 

identify upregulated peaks (green). Motif enrichment analysis (blue) is then conducted by standardizing 

upregulated peaks to 500bp for FIMO tool analysis. Lastly, sPLS regression compares peak counts to motif 

enrichment, followed by the ranking motifs in TFs based on beta coefficient differences from GFP controls. 

Assay for Transposase-Accessible Chromatin with Sequencing (ATACseq); Irreproducible Discovery Rate 

(IDR); Sparse Partial Least Squares regression (sPLS); Transcription Factors (TFs); Green Fluorecent Protein 

(GFP). 

To validate our computational epigenetic approach, we assessed the accuracy of our 

differential motif analysis by testing well-characterized TFs as reliable positive controls. To 

this end, we focused on NEUROD6, MYOD1, and TFAP2B and compared their motif 

enrichment scores with the expected target motifs (Figure 31). Indeed, the results 

underscore a notable coherence between the top-ranked motifs and their respective 

anticipated ones (Figure 31). OCRs induced by NEUROD6 were found to be enriched in 

motifs associated with TFs crucial for neuronal development. This includes OLIG1, ZIC1, 

and ATOH1. Additionally, TFAP2B preferentially leads to OCRs enriched with motifs 

recognized by other members of the TFAP family like TFAP2A, and TFAP2C. MYOD1, on 

the other hand, was found to enrich motifs that are characteristic of myogenic TFs such as 

MYF5, MYF6, and MYOG219. Importantly, these TFs also demonstrate enrichment beyond 

Figure 30. . Differential Motif Enrichment Analysis Workflow 

https://paperpile.com/c/2TIuTo/mjLu4
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their anticipated scope. For instance, NEUROD6 shows enrichment with motifs of cardiac 

TFs such as HAND2, MEF2C, and TBX20222,225,226. Meanwhile, TFAP2B induces motifs 

characteristic of ZNF genes, and MYOD1 enhances motifs associated with neuronal TFs 

like ASCL1, ATOH1, and OLIG2221,223,227. 

Heatmaps illustrate the 20 top-ranked motifs for NEUROD6 (left), TFAP2B (middle), and MYOD1 (right), with a 

color gradient reflecting each motif's enrichment score, depicting both the anticipated and non-canonical results. 

The color range corresponds to the motif enrichment level for each TF, ranging from low (light red) to high (dark 

red) enrichment, referring the unitless characteristics of the scoring method. Transcription factor (TF) 

Next, we inferred TFs that potentially exhibit co-functionality by evaluating their consistency 

in motif enrichment. To this end, we assessed the Euclidean distances among TFs based 

on their differential motif enrichment scores and applied hierarchical clustering, leading to 

the identification of 34 unique clusters (Figure 32). Similarly to RNAseq clustering results, 

we found that TFs with similar functions or belonging to the same family tend to cluster 

together. This includes the MESP, HOX, and PAX genes, and tissue-specific TFs like 

EOMES and NKX2-5 for cardiac induction228,229, MYOG, MYOD1, and MYF5 for myogenic 

differentiation219, and NEUROG/D genes220, and ATOH1221 for neurogenic fate regulation. 

Furthermore, our analysis revealed unexpected clusters of TFs that are closely grouped 

with a set of factors known to co-regulate similar cellular fate. This includes observations 

aligned with the clustering results derived from RNAseq data, which showed ASCL1 

neuronal TF223, clustered alongside myogenic factors, and CREB5 grouped with TFs 

regulating cardiomyocyte differentiation. 

Figure 31. Well-Studied Transcription Factors Demonstrate Consistent Motif Enrichment and Reveal 
Extended Scope Beyond Published Data 

https://paperpile.com/c/2TIuTo/Ny7lb+yyCli+dDyVK
https://paperpile.com/c/2TIuTo/kkdOy+uLlti+6VL5b
https://paperpile.com/c/2TIuTo/XnsNu+Fukvp
https://paperpile.com/c/2TIuTo/mjLu4
https://paperpile.com/c/2TIuTo/ZfA2b
https://paperpile.com/c/2TIuTo/kkdOy
https://paperpile.com/c/2TIuTo/uLlti
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A dendrogram demonstrates the hierarchical clustering of 130 screened TFs into 34 distinct clusters, based on 

their similarity in differential motif enrichment. Clusters below a threshold height of 2.3 are marked in black. 

Transcription Factors (TFs). 

We then conducted a comparative analysis of the dendrograms obtained from ATACseq 

and RNAseq analyses, depicting the clustering of TFs based on motif similarities or target 

gene enrichment, respectively. This comparison demonstrated a complex interplay between 

chromatin states and transcriptional activity (Figure 33). Notably, 11 clusters in the 

ATACseq dendrogram directly aligned with those in the RNAseq, particularly among TFs of 

the same family, such as TFAP, NEUROD, and HNF genes. Although not perfectly aligned, 

TFs like SNAI1 and SNAI2 were adjacent at both epigenetic and transcriptional levels. 

Interestingly, uncharacterized TF interactions were consistently observed at both levels. For 

instance, CREB5 in the ATACseq dendrogram clustered with early heart development TFs 

HAND1 and HAND2, while in the RNAseq it clustered with TBX20, indicating its potential 

role in cardiomyogenesis. Similarly, ASCL1 was grouped with myogenic TFs MYOG, 

MYOD1, and MYF5. Moreover, PRDM1 was consistently found alongside nuclear receptor 

family members NR5A2, RORB, and NR4A1 in both dendrograms, suggesting potential 

regulatory connections. 

Visual comparison of two distinct clustering approaches. The bottom dendrogram shows TF clustering based 

on motif similarity (ATACseq), and the top shows clustering by target gene enrichment (RNAseq). Lines connect 

Figure 32. Transcription Factors Clustering Identifies Traditional and Novel Interactions Based on Their 
Similarity in Motif Enrichment 

Figure 33. . Comparative Analysis of Transcription Factor Clustering from ATACseq and RNAseq Data 
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11 corresponding TF clusters. Transcription Factors (TFs); Assay for Transposase-Accessible Chromatin with 

Sequencing (ATACseq); RNA Sequencing (RNAseq).  

Then by employing Baker’s Gamma Index under the null hypothesis (which assumes fixed 

tree topologies), the results indicated a low level of statistical similarity between the two 

dendrograms (index=0.012, p-value=0.22). Therefore, the results imply that the TF-induced 

regulatory landscapes, as captured by ATACseq and RNAseq represent different aspects 

of regulatory mechanisms.  

3.1.3.2. Motif Reshape Analysis to Highlight Transcription Factors with 

Greater Potential as Chromatin Remodelers 

Next, we developed a ‘motif reshape’ analysis that allows for the identification of TFs with 

high potential to act as chromatin remodelers. Specifically, our goal was to determine 

whether a TF is more likely to target chromatin regions enriched with its expected motifs, or 

if it tends to regulate a broader range of areas without specific targeting, potentially due to 

its high expression levels (Figure 34). To this end, each TF was linked with a collection of 

similar or indirectly related motifs. Using the TOMTOM tool205, we aligned each TF's motif 

sequence against others, categorizing significantly aligned ones as 'Expected' (q-value < 

0.05) and the rest as 'Observed'. Then, for each category, we assigned their respective 

motif enrichment scores. Finally, TFs were ranked based on the delta of the two categories' 

enrichment scores and the statistical significance of these variances. Our results highlighted 

that while many key influential TFs (such as TFAP2B, FOXA2, MYOD1, OLIG2, and 

ATOH1) were highly ranked, other known TFs like NEUROG1, TP63, and SNAI2 

demonstrated low epigenetic rankings.  

Figure 34. Variability in Transcription Factors Ability to Reshape Chromatin Regions with Target 
Regulatory Elements 

https://paperpile.com/c/2TIuTo/gOPlh
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scatter plot illustrates the ranking of TFs based on their capacity to reshape target regulatory elements. The Y-

axis represents the delta between the expected and observed sets of motifs, while the X-axis indicates the 

significance of this difference. TFs are marked in green if they significantly and positively reshape target 

regulatory regions, and in red if the effect is otherwise. Transcription Factors (TFs). 

3.1.4. Multiomics Data Analysis Enables the Inference of Transcription 

Factor Potential Activity Levels 

As not all TFs hold the same functional capacity to alternate cell fate decisions, we 

prioritized them based on their impact on gene expression and chromatin architecture. 

Specifically, PCA analysis was applied separately to the mean-normalized count matrices 

from RNAseq and ATACseq data, focusing on genes or peaks exhibiting differential 

regulation (see Materials and Methods). Considering the linear nature of PCA, we quantified 

the Euclidean distance of each TF from the GFP-control within the latent space defined by 

the first two principal components (PC1 and PC2). This Euclidean distance was then used 

as a measurement to rank the activity of the TFs, with a larger distance from GFP-control 

corresponding to a higher activity rank (Figure 35).  

PCA plots from RNAseq (left) and ATACseq (right) show mean-normalized expressions of cells infected with 

TFs (grey) versus GFP control (green). Distance from GFP indicates TF activity level. Principal Component 

Analysis (PCA); RNA sequencing (RNAseq); Assay for Transposase-Accessible Chromatin with Sequencing 

(ATACseq); Green Fluorescent Protein (GFP). 

 

Results showed a notable consistency in the TF activity scores across both RNAseq and 

ATACseq analyses, as evidenced by a 0.44 Pearson correlation with a p-value < 0.05 

(Figuer 36 top and middle). This consistency was particularly prominent among the top-

ranked TFs, such as the neuronal TFs (NEUROD and NEUROG genes, ATOH1, and 

ONECUT1)221,230 and the HNF genes hepatocyte afate associated TFs (HNF1A, HNF1B)231. 

Interestingly, despite their canonical roles in ectodermal and endodermal fates, 

respectively, these TFs exhibited high activity scores in BJ fibroblast cells derived from the 

Figure 35. . Quantifying Transcription Factors Activity by Euclidean Distance from GFP-Control 

https://paperpile.com/c/2TIuTo/kkdOy
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https://paperpile.com/c/2TIuTo/xW4L4
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mesoderm germ layer. On the other hand, certain TFs exhibited substantial activity scores 

at the transcriptional level, independent of their lower epigenetic activities and contrariwise. 

This includes IRX6, MESP2, and SNAI1, all TFs involved in early embryonic 

development232–234. Then, to get the overall activity score we scaled the Euclidean distances 

from RNAseq and ATACseq and combined them (Figure 36 bottom). In this way, we 

prioritized TFs with potentially higher capacity to convert cell fate, thus focusing our study 

on potential pioneer factors. This will be taken into consideration in the next step of this 

project, where we will test non-canonical combinations of TFs to enhance the efficacy of 

cellular conversion protocols toward target cell identity. 

 

Figure 36. Integrated Transcription Factor Activity Scores at Transcriptional and Epigenetic Levels 
TFs activity rankings from RNAseq (top) and ATACseq (middle) analyses, along with their combined scores 

(bottom). Each TF is color-coded based on its relative activity score. Transcription Factors (TFs). 

3.1.5. Integrated Similarity Network Reveals Novel Co-functional 

Transcription Factor Modules 

Next, we evaluated the similarity between TFs at both transcriptional and epigenomic levels, 

with the objective of identifying more comprehensive co-functional TF modules than those 

obtained from individual omic-level. To this end, we adopted the Similarity Network Fusion 

(SNF)84 methodology, to effectively address the complexities of multiomic data integration. 

Specifically, this method allowed us to effectively retain strong connections between TFs 

while filtering out weaker ones, thereby emphasizing the most significant interactions. In 

contrast to the original study, which takes as input the count matrices from each omic level, 

our approach employs the TF similarity matrices tailored to highlight biologically meaningful 

aspects. Specifically, we focus on TF similarity from RNAseq data, which underscores their 

connectivity based on enriched target genes (Figure 27), and from ATACseq data, which 

highlights relatedness in terms of motif enrichment consistency (Figure 32). The retrieved 

fused TF similarity network effectively captured both shared and complementary information 

from epigenetic and transcriptional datasets, thus enabling us to infer TF modules that 

potentially co-function across both regulatory levels (Figure 37). The results obtained 

allowed us to generate several critical biological observations. First, we showed that TFs 

https://paperpile.com/c/2TIuTo/IOE07+K2ada+nfpdq
https://paperpile.com/c/2TIuTo/cMAKe
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are grouped in closer clusters when they induce similar signatures, either transcriptional 

(green lines), epigenetic (yellow), or both (blue). Second, it is also possible to appreciate 

that many TFs belonging to the same family, induced the same transcriptional and 

epigenetic outputs (i.e., SNAI genes, NEUROG/D genes, JUN genes). At other times, the 

SNF analysis generated only similar epigenetic states (i.e., PTX genes, PAX genes, MESP 

genes). Additionally, TFs were closely grouped into a single module by exerting similar 

biological functions, such as cardiac fate (TBX20, HAND1, HAND2)222,225,226, myogenic fate 

(MYOG, MYOD1, MYF5), and neuronal fate (ATOH1 and NEUROG/D genes)221,230. 

However, we identified unexpected connections of TFs that were closely grouped within 

modules of known co-regulator TFs. Such cases include ASCL1, which is known to regulate 

neurogenic development pathways223, however it was clustered with pure myogenic TFs; 

and CREB5, which was grouped with pure cardiomyocyte developmental TFs, although its 

developmental role is not thoroughly studied. 

 

Figure 37. Integrated Connectivity Network Demonstrating Known and Uncharacterized Transcription 
Factors Modules 
An integrated network represents similarities among TFs derived from RNAseq and ATACseq analyses. Color-

coded lines indicate TFs exhibiting similar signatures at transcriptional (green) and epigenetic (yellow) levels, 

or both (blue). Transcription Factors (TFs); Assay for Transposase-Accessible Chromatin with Sequencing 

(ATACseq); RNA sequencing (RNAseq). 

https://paperpile.com/c/2TIuTo/Ny7lb+yyCli+dDyVK
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3.1.6. Resolving Transcription Factors Induced Cellular Morphology 

Changes During Cellular Fate Conversion 

To bolster the accuracy of our multiomic TF similarity network, we also assessed the 

morphological alterations resulting from TF modulation. This was accomplished through a 

high-throughput immunofluorescence staining, utilizing morphological markers such as 

TUBULIN for cytoskeletal visualization, CELL MASK to delineate membranal contours, 

DAPI for nuclear identification, and a V5-tag to confirm TF expression and its nuclear 

localization (Figure 38).  

 

 

 

 

 

 

 

 

 

Representative imaging results from a high-throughput immunofluorescence assay, employing morphological 

markers TUBULIN, CELL MASK, DAPI, and V5-tag, to capture structural changes. 

Analyzing cellular morphology in transdifferentiation assays is particularly challenging, as 

this highly stressful procedure often triggers apoptosis in a considerable subset of the cells. 

Despite this, we were able to qualitatively identify substantial changes in cellular 

morphology in 15.4% of the 130 screened TFs, in contrast to cells infected with a GFP-

control (Figure 39, left). Notably, only TFs that are part of the Basic domain, Helix-turn-helix, 

and other all-alpha helical DBD superclasses exhibited these morphological alterations 

(Figure 39, right). These observations might be attributed to the fact that the first two 

superclasses are the most prevalent in our survey (Basic Domain - 35.4%, and Helix Turn 

Helix - 36.2%, as shown in Figure 18).  

Figure 38. A High-Throughput Immunofluorescence Assay to Capture Induced Morphological Changes. 
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Figure 39. Differential Impact of Transcription Factors on Cell Morphology 
A pie chart (left) and a bar plot (right) illustrate the effect of TFs on cellular morphology. The pie chart shows the 

proportion of TFs inducing morphological changes, while the bar plot compares the distribution of TF 

superclasses. Transcription Factors (TFs). 

Additionally, we found that TFs successfully induced various types of morphological 

changes. For example, MYOD1219, induced changes such as increased cell length and 

nuclei fusion, aligning with characteristics typical of myogenic-like cell types. Furthermore, 

TFAP2B, a key regulator of various developmental processes235, led to changes in cell 

polarization and flatteningSimilarly, NEUROG1 promoted the formation of neuronal-like 

shapes220, marked by the emergence of stellate cells and multilayering (Figure 40). Overall, 

these findings underscore a disparity between the induced morphological changes at the 

phenotypic level and the ones observed at the transcriptional-epigenomic scale. 

The top row exhibits V5-tag immunostaining, while the bottom row presents anti-tubulin immunostaining. The 

control, GFP, maintains a standard fibroblast morphology.  

Figure 40. Differential Morphological Changes Induced by Key Transcription Factors Relative to GFP 
Control 

https://paperpile.com/c/2TIuTo/mjLu4
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3.2. Second Project - Spatial Transcriptomics Reveals Sub-Tumoral 

Identities and Novel Diagnostic markers in Triple Negative Breast Cancer 

With Immune Evasion Capacity 

3.2.1. Cost-Effective Clinical Workflow for Accurately Identifying Novel 

Spatial Transcriptomics Signatures 

To date, PD-L1 has been established as a crucial diagnostic marker for selecting patients 

with metastatic or locally advanced TNBC and for immune checkpoint inhibitor 

treatment123,124. While it achieved notable successes, the overall efficacy of PD-1/PD-L1 still 

needs to be fully realized116. Recent advances in spatial transcriptomics platforms might 

offer a way to identify surrogate and complementary diagnostic markers to augment the PD-

L1 test and targeted therapies. Therefore, in this study, we have developed an efficient and 

cost-effective clinical workflow to spatially resolve the heterogeneous nature of TNBC 

architecture, focusing on the expression status of PD-L1. Our workflow is specifically 

designed to benefit from a minimal requirement of input samples and compatibility with 

standard laboratory equipment. This methodology involves three critical steps (Figure 41): 

1) Spatial transcriptomic sequencing to delineate variations in gene expression across 

different tumor regions. 2) Clinical-grade RNAseq to evaluate the viability of potential 

diagnostic markers identified in the preliminary step. 3) IHC of the selected therapeutic 

diagnostic marker candidates to verify their protein expression levels and precisely map 

their locations within the tissue sections. 

Our strategy involves spatial transcriptome sequencing, clinical-grade RNAseq for diagnostic marker feasibility, 

and IHC validation of protein expression and localization. RNA sequencing (RNAseq); Immunohistochemistry 

(IHC). 

Initially, we acquired two FFPE tissue blocks of primary TNBC samples. These samples 

were rigorously confirmed as PD-L1 positive and negative in alignment with established 

clinical practices116 (see Materials and Methods). Subsequently, sections of 5µm thickness 

Figure 41.Schematic Representation of Our Three-Tier Spatial Transcriptomic Workflow. 

https://paperpile.com/c/2TIuTo/VtaRG+nZPkh
https://paperpile.com/c/2TIuTo/9sxV5
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were carefully positioned onto the Visium (10X Genomics Inc) spatial probe slide, 

successfully acquiring both the tumor edges and surrounding tissue. This aspect is 

essential, given that the Visium capture area is confined to a limited size of only 6.5x6.5mm. 

Capturing both the tumor and its adjacent surrounding tissue is crucial for analyzing the 

dynamics and interactions between these areas, especially in the context of PD-L1's role in 

tumor immune escape mechanisms. Next, the slides were stained with H&E, followed by a 

detailed histopathological analysis (Figure 42). This analysis involved annotating various 

regions within the tissues, including tumor, fat, stroma, and blood vessels. In certain 

instances, regions were designated as "mixed" annotations as the pathologists were unable 

to assign them to a singular, specific tissue compartment (Figure 42, right). Finally, the 

tissues were sequenced using Visium capture probe slides, each containing 5000 spots 

with unique spatial barcodes and a resolution of 100 µm. Essentially, this allowed for the 

accurate mapping of retrieved mRNA reads back to their original locations in the tissue 

section. 

H&E stained TNBC samples placed on Visium spatial capture probe slides (left) and their associated histological 

annotation, delimiting areas identified as tumor, stroma, fat, blood vessels, or mixed regions (right). Hematoxylin 

and Eosin (H&E); Triple Negative Breast Cancer (TNBC). 

3.2.2. Spatial Transcriptomics Reveals Alignment of Histological Features 

with Tumor Architecture and Heterogeneity in Triple Negative Breast 

Cancer Biopsies 

Then, we evaluated the spatial integrity of the sequenced data. To this end, we examined 

the spatial gene expression profiles across the various histological compartments, including 

tumor, stroma, fat, and mixed histological regions. However, we omitted spatial spots 

identified as blood vessels due to their scarcity (less than 1.5% in both samples). Although 

results indicated an average of 7,842 mRNA counts per spatial spot in PD-L1 positive 

Figure 42. Hematoxylin and Eosin Stained Triple Negative Breast Cancer Samples and Corresponding 
Histological Annotations on Visium Spatial Capture Probe Slides 
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samples and 7,222 in negative samples, a notable increase in mRNA counts was observed 

specifically within tumor areas (Figure 43). This suggests a marked increase in 

transcriptional activity within the tumor region, consistent with prior studies showing a 

significant induction of gene expression in cancer cells236.  

Figure 43. Tumor Regions Demonstrated Higher Transcriptional Activity 
. Distribution of transcriptional activity represented by the read counts for each histological compartment (left) 

and their spatial arrangement across tissue sections (right). 

This observation was further supported by the distinct and predominant expression of 

cancer-associated genes in spatial spots within tumor areas, specifically AKT1, BRCA1, 

E2F2, E2F4, EGFR, MYC, PIK3CA, STAT3, and TP53 ( 

Heatmaps presenting the z-score normalized expression levels of well-established cancer-associated genes 

across the different histological compartments. 

Subsequently, we assessed PD-L1 expression as a sample-specific marker to determine 

its consistency with the initial evaluation. Indeed, the results revealed a reduced number of 

Figure 44. Cancer-Associated Genes Demonstrate Predominant Expression in Tumor Areas 

https://paperpile.com/c/2TIuTo/e8E2B


76 
 

spatial spots expressing CD274 (the gene coding for the PD-L1 protein) in the PD-L1 

negative sample compared to the PD-L1 positive sample (Figure 45, left and middle). 

Furthermore, our examination of CD274 positive spatial spots distribution across different 

histological compartments revealed a pronounced specificity in tumor areas of the PD-L1 

positive sample and, to a lesser degree, in stroma/fat regions of the negative sample. The 

finding is consistent with previous studies indicating that PD-L1 can be expressed by either 

infiltrating immune cells within the microenvironment or by tumor cells237,238. As we 

evaluated the Euclidean distance distribution between CD274 expressing spots, our results 

showed a significantly higher spatial density (i.e., smaller mean Euclidean distance) within 

tumor regions of the PD-L1 positive sample (Figure 45, right). Overall, these results suggest 

that in the PD-L1 positive sample, CD274 positive spots are closely linked to neighboring 

cancer cells, resulting in a higher spatial density. Conversely, in the PD-L1 negative sample, 

positive spots are more likely associated with infiltrating immune cells, resulting in a more 

heterogeneous spatial density distribution throughout the entire tissue area. 

Spatial spots expressing PD-L1 projected over the tissue space and their distribution among the different 

histological compartments (left), followed by the distributions of the Euclidean distances between PD-L1 

expressing spots, **p-value < 2.2e-16 (right). Programmed death-ligand 1 (PD-L1).  

Finally, we examined the agreement between labeled histological annotations and 

established diagnostic markers for breast cancer (KRT7), fat (FABP4), and stroma 

(FN1)111,239,240 (Figure 46). These findings confirmed that these markers' expression levels 

were enriched and exhibited high spatial specificity for the corresponding tissue type. 

Specifically, KRT7-positive spots were enriched within tumor areas, irrespective of PD-L1 

status. Similarly, FABP4 exhibited higher specificity in spots assigned as fat tissue. FN1 

exhibited high expression in spots assigned to mixed and stromal regions but demonstrated 

slightly higher specificity in cancer cells. This is expected, given the dual role of FN1 in both 

tumor cells and the microenvironment162. Essentially, these findings suggest that the 

sequencing data effectively maintains spatial integrity, thus serving as an additional layer 

of information for discovery analyses. 

 

Figure 45. Comparative Spatial Expression Analysis of PD-L1 Among the Two Samples 

https://paperpile.com/c/2TIuTo/BNCML+rKfrf
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 Spatial spots that are positive for KRT7 (tumor diagnostic marker), FABP4 (fat diagnostic marker), and FN1 

(stroma/transitioning cells diagnostic marker) projected onto the tissue space and their distribution among the 

different histological compartments (see materials and methods).  

3.2.3. Spatially Resolved Transcriptomics Refines Histological 

Annotations of Tumoral and Stromal Areas 

Next, to gain a deeper understanding of the tumor and microenvironment architectures 

beyond standard histological analysis, we analyzed non-annotated spatial-expression data. 

Specifically, we summarized the transcriptional data into a lower dimensional space 

(UMAP) to infer data variability driven by biological differences. Then, we applied clustering 

analysis with the aim of revealing overlooked spatial characteristics in the histological 

analysis. This resulted in 10 clusters for the PD-L1 negative sample and 5 for the PD-L1 

positive sample (Figure 47, left). Notably, these clusters exhibited a distinct separation 

without intermixing, evident both in the UMAP latent space and upon their projection onto 

the tissue space (Figure 47, middle). Additionally, the projection of histological annotations 

onto UMAP embeddings showed a general agreement between clusters and histological 

classes. 

Figure 46. Tissue Marker Genes Exhibited High Spatial Specificity for Their Corresponding 
Histological Annotation 

Figure 47. Clustering Non-Annotated Expression Data Revealed Overlooked Spatial Characteristics 
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Overlay of transcriptional-based clustering data on top of tissue histology (left). UMAP embeddings illustrate the 

distribution of transcriptional-based clusters (middle) and histological compartments within the tissue 

coordinates (right) for both PD-L1 negative (top) and positive (bottom) samples. Uniform Manifold Approximation 

and Projection (UMAP); Programmed death-ligand 1 (PD-L1). 

However, a detailed quantitative evaluation of histological compartment compositions within 

each cluster, both in PD-L1 negative and positive, revealed a complex spatial pattern, with 

most clusters not being exclusively associated with a single histological class (Figure 48).  

Figure 48. Histological Compartment Compositions Within Each Cluster Revealed Complex Spatial 
Patterns 
Bar plots displaying the histological compartment compositions of each cluster for both PD-L1 negative (top) 

and positive (bottom) samples. Programmed death-ligand 1 (PD-L1). 

Therefore, to gain a more comprehensive understanding of bonafide tumoral and stromal 

architecture, we used ESTIMATE (Estimation of Stromal and Immune cells in MAlignant 

Tumor tissues using Expression data)208, a gene signature-based computational method. 

This approach allowed us to infer stromal and tumor signatures for each cluster, exclusively 

using the retrieved normalized expression data (see Materials and Methods). Notably, the 

identified signatures corresponded closely with their respective histological compartments 

(Figure 49). The stromal score was primarily found in spatial spots within tissue regions 

annotated as stroma and fat cells, while the Tumor Purity score was mainly enriched in 

spatial spots designated as tumor cells. Importantly, both Stromal and Tumor Purity scores 

were also attributed to spatial spots labeled as 'mixed' (i.e., those lacking distinct histological 

identification), thereby offering an additional quantitative annotation for these tissue 

compartments (Figure 49). Furthermore, the ESTIMATE’s signature annotations within 

clusters exclusively linked to a singular histological class (i.e., Tumor or Stroma) allowed us 

to refine the histological analysis. For instance, even though histopathological analysis 

identified clusters ‘8’ and ‘10’ in the PD-L1 negative sample as tumor regions (Figure 48), 

they exhibited distinct transcriptional characteristics (Figure 49). Cluster ‘8’ showed a high 

Tumor Purity score and low stromal signature, which aligned with annotated tumor regions. 

On the other hand, cluster ‘10’, despite being categorized as a tumor, exhibited a high 

stromal signature and a low tumor purity score. 

https://paperpile.com/c/2TIuTo/h2tjY
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ESTIMATE’s Stromal and Tumor Purity scores are visualized in three ways: spatial representation in tissue 

samples (left), distribution among identified clusters (middle), and across diverse histological compartments 

(right), for both PD-L1 negative (top) and positive (bottom) samples.  

Then, we utilized the ESTIMATE algorithm results to independently annotate the identified 

clusters. Notably, clusters 3, 8, and 9 in the PD-L1 negative sample, along with clusters 3 

and 5 from the PD-L1 positive sample, exhibited high tumor purity and low stromal scores 

(Figure 49). Therefore, we classified these as tumor clusters, while the others were 

designated as surrounding (Figure 50, left). This categorization was then integrated with the 

initial histological analysis, to enhance the comprehension of the spatial annotations within 

the tissue. Consequently, by reannotating the identified clusters as either tumor (T) or 

surrounding (S) classes, we effectively distinguished between the tumor and its surrounding 

area (Figure 50, left), while also preserving the granularity of sub-tumor and 

microenvironment clusters (Figure 50, right). Specifically, we reassigned "Mixed" spots to 

either T or S, based on their classification in transcriptional data. Spots labeled as tumors 

in the expression data but identified as stroma in histological annotations were excluded. 

Similarly, spots recognized as surrounding areas in expression data but marked as tumor 

regions by pathologists were also removed. Then, to direct our downstream analysis toward 

tumor-microenvironment interactions, we eliminated all spots identified as fat tissue.  

Figure 49. ESTIMATE Algorithm Inferred Stromal and Tumor signatures form Unlabaled Expression 
Data 
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Spatial visualization of tumor and surrounding tissue annotations based on ESTIMATE scores (left) and 

transcriptional-based clustering projections (right) after integrating ESTIMATE-score with histological 

annotations (see materials and methods). 

Notably, the reannotated clusters demonstrate more consistent annotation with the 

preliminary labeled histological compartments (Figure 51). Overall, by integrating spatial 

spot annotations and removing inconclusive ones, we obtained a more accurate molecular 

makeup of tissue architecture to better examine the tumor and its microenvironment 

(section 3.2.4) and predict their molecular interactions (section 3.2.5).  

A bar plot displaying the histological compartments composition of each cluster, for both PD-L1 negative (top) 

and positive (bottom) samples. 

3.2.4. Spatial Profiling of Gene Expression Identifies Distinct 

Transcriptional Signatures in Sub-Tumor and Microenvironment Regions  

The re-annotation of spatial spots has not only successfully subdivided them into two major 

categories, Tumor (T) and Surrounding Environment (S), but has also effectively maintained 

Figure 50. Spatial Spots Reannotation by Integrating Histological Analysis and Inferred Transcriptional 
Signatures 

Figure 51. . Histological Compartment Compositions Within Each Cluster Following Spatial 
Annotation Refinement. 
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subclusters within each category, characterized by distinct transcriptional profiles (Figure 

52). To better understand the biological context of cells represented by individual sub-

clusters, we initially conducted a spatial gene expression analysis, comparing each cluster 

with all others. Subsequently, we focused on the top 10 spatially variable genes (SVGs) 

within each sub-cluster to gain more detailed insights (Figure 52). Through a systematic 

literature review, we discovered that the genes predominantly expressed in the tumor sub-

clusters were primarily linked with breast cancer and cancer hallmarks. For instance, 

SNCG, ATP1B1, and PGGHG in the PD-L1 positive sample, and EEF2, CHI3L2, and 

CRYAB in the PD-L1 negative sample. In contrast, the top genes expressed in the 

surrounding sub-clusters were mostly related to immune response (e.g., IGKV4-1), activities 

associated with cancer-associated fibroblasts (CAFs) (e.g., FN1), and factors contributing 

to cellular transformation and tumor invasiveness (e.g., FOS). Interestingly, the intratumor 

clusters in each sample exhibited both shared and unique SVGs, implying a degree of 

intratumor variability. This suggests that each sub-cluster may influence distinct key 

signaling pathways involved in regulating cancer progression. 

Top: Heatmaps of z-score normalized gene expression values for the top 10 up-regulated spatial-marker genes 

from the PD-L1 negative sample, showcased within individual sub-clusters from both PD-L1 negative (left) and 

positive (right) samples. Each cluster is indicated with the associated biological program and the top 5 genes 

with the highest rank score. Bottom: Heatmaps of z-score normalized gene expression values for the top 10 up-

regulated spatial-marker genes from PD-L1 positive sample, showcased within individual sub-clusters from both 

PD-L1 negative (left) and positive (right) samples. 

Figure 52. . Histological Compartment Compositions Within Each Cluster Following Spatial Annotation 
Refinement. 
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To further investigate these findings, we conducted a gene set enrichment analysis based 

on the spatial variation in gene expression (Figure 53). The results indicated that 

subclusters identified as tumor (T) exhibited a greater enrichment in pathways typically 

prevalent in cancer cells. These include MYC target pathways, WNT and NOTCH signaling, 

oxidative phosphorylation, and others. Conversely, the surrounding clusters (S) 

predominantly displayed enrichment in pathways related to tumor immune response, 

invasiveness, and metastasis. The distinct spatial enrichment patterns observed in tumors 

and their surrounding clusters suggest a distinguished functional specialization within the 

tumor landscape. While tumor cells are focused on growth and metabolism, the surrounding 

tissue aids in invasion and immune response.  

bubble plot illustrates the results of the GSEA by clusters utilizing curated Hallmark pathway datasets as a 

referene, for both PD-L1 negative (left) and positive (right) samples. Bubbles are color-coded based on the 

normalized enrichment score (NES). Bubbles size reports the significance of the enrichment, reported as -

log₁₀(adjusted p-value). Gene Set Enrichment Analysis (GSEA); Normalized Enrichment Scores (NES). 

Indeed, the spatial visualization of pathway enrichment scores depicted a distinct spatial 

separation between the tumor and its surrounding regions in most enriched pathways in 

PD-L1 positive samples and, to a lesser extent, in PD-L1 negative ones, consistent with the 

GSEA results (Figure 54). More specifically, we computed for each spatial spot their relative 

pathways enrichment score (with respect to all other spatial spots) employing the approach 

proposed by Tirosh et al193. For the two most significant pathways in either tumor 

subclusters (MYC targets, Oxidative phosphorylation) or surrounding subclusters (TNFa 

signaling via NF-kB, epithelial-mesenchymal transition), we calculated the average 

expression level of the pathway’s “leading genes” (key genes that are most strongly 

associated with the pathway) and then subtracted the aggregated expression of control 

feature sets with a similar expression level. 

Figure 53. Gene Set Enrichment Analysis Demonstrate Distinguished Functional Specialization. 

https://paperpile.com/c/2TIuTo/261vu
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Spatial visualization of pathway enrichment scores derived from the expression levels of pathway’s leading 

genes, with two showing enrichment in the tumor regions, MYC targets and Oxidative phosphorylation (left), 

and two in the surrounding areas, TNFa signaling via NF-kB and epithelial-mesenchymal transition (right). 

Then, to assess the commonalities and uniqueness of PD-L1 expression status in primary 

TNBC tumors, we compared the upregulated and downregulated SVGs in both samples 

(Figure 55). Specifically, we performed pairwise differential analysis between all spatial 

spots within tumor areas versus all the spatial spots in the surrounding areas. Most 

upregulated SVGs in the tumor areas, 65%, were common to both PD-L1 positive and 

negative samples, while 11.1% were downregulated in both. On the other hand, 16.6% and 

7.3% of SVGs were uniquely upregulated in PD-L1 positive and negative samples tumor 

areas, respectively. Interestingly, genes upregulated in the tumor area of both samples were 

linked to known TNBC and general cancer-associated markers, including CTNNB1, DDR1, 

EPCAM, and KRT7. Conversely, genes downregulated in tumor areas and thus upregulated 

in the surrounding ones in both samples were predominantly involved in the extracellular 

matrix's structure, organization, angiogenesis, and metastasis, including DCN, MMP2, FN1, 

and COL3A1. Finally, a specific inflammatory signature can be identified only in the PD-L1 

positive tumor area and is represented by immune hallmarks like STAT2, IFI6, ISG15, and 

BGN. Interestingly, IFI6, ISG15, and STAT2 are involved in interferon signaling pathways 

that can play a pivotal role in the upregulation of PD-L1 expression241. Additionally, while 

BGN does not have a direct connection to the PD-L1/PD-1 pathway, its role in immune 

regulation and inflammatory processes242 suggests a potential indirect influence. 

 

 

 

 

Figure 54. Pathway Enrichment Scores Underscore Distinct Spatial Separation Between the Tumor and its 
Surrounding Regions 

https://paperpile.com/c/2TIuTo/ItsS1
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Scatter plot of genes expressed in tumor- against surrounding-associated clusters, displayed as Log2 Fold 

Change in both negative (x-axis) and positive (y-axis) samples. Green dots represent differentially expressed 

genes that are significant (FDR < 0.5). Genes mentioned in the text are reported. 

3.2.5. Spatial Transcriptomics Depict Ligand-Receptor Crosstalk in 

Tumor and Adjacent Tissue Regions 

After delineating the distinct functionalities of spatially categorial areas within the tumor and 

adjacent tissues, we examined potential crosstalks among their subclusters. This is 

particularly important in the context of PD-L1 to better understand the underlying 

mechanisms of tumor immune evasion. To this end, we inferred ad hoc interaction between 

ligands and receptors expressed along the tumoral assigned clusters and the surrounding 

tissue (Figure 56). Specifically, we adapted our previous ligand-receptor interaction 

analysis211 using 2557 experimentally validated pairs210. To enhance the precision of our 

data analysis, we filtered out ligand-receptor pairs that exhibited no expression in the count 

matrix, resulting in sets of 802 and 769 interactors for PD-L1 negative and positive samples, 

respectively. We then computed the interaction score by multiplying the average gene 

expression of a ligand in a specific subcluster with the average value of its corresponding 

receptor in another cluster.  Subsequently, we evaluated the significance of the results 

under a null hypothesis of spatial spots and cluster annotations. Only significant ligand-

receptor pairs were selected, ensuring their enrichment in distinct cluster categories, either 

within the tumor or the surrounding tissue. 

Figure 55. Triple Negative Breast Cancer Positive and Negative to PD-L1 Show Uniq and Shared Spatial 
Gene Expression Profiles 

Figure 56. Schematic Representation of Our Ligand-Receptor Analysis 

https://paperpile.com/c/2TIuTo/r71U9
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The Analysis was applied to preselected interactors (left), emphasizing those with statistical significance across 

distinct cluster classes, Tumor or Surrounding (middle), while excluding interactions that were significant within 

the same class (right). 

A hierarchical clustering of the interaction scores resulted in 11 Interaction Modules (IMs) 

exemplifying the intercommunication between distinct clusters within the tumor and the 

surrounding areas. Among these, 7 IMs were exclusively present in PD-L1 negative 

samples (Figure 57, left), while 4 were specific to PD-L1 positive samples (Figure 57, right). 

Although certain IMs demonstrated exclusive communication towards a particular cluster, 

only three IMs—IM2 in PD-L1 negative and IM11 and IM8 in PD-L1 positive—consistently 

exhibited robust interaction patterns across all clusters of the same category (either tumor 

or surrounding), thereby shedding light on the consistent dynamics between tumor and  

Heatmap of mean-centered interaction scores for each cluster in PD-L1 negative (left) and positive (right) 

samples, with detailed Ligand-receptor couples for selected IMs (IM2, IM8, and IM11). Interaction Modules 

(IMs). 

Then, to characterize the type of interactions within each IM, we performed GO analysis of 

their respective receptor sets. Specifically, IM2 is characterized by the induction of cancer 

pathways in the tumoral area of the PD-L1 negative samples, sustained by the secretion of 

ligands from the surrounding environment. This includes the activation of the Wnt signaling 

Figure 57. Hierarchical Clustering Analysis Identified Distinct Interaction Modules 
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pathway, the PI3K-Akt signaling pathway, the regulation of the bile acid biosynthetic 

process, and the NOTCH1-mediated regulation of endothelial cell calcification. A prominent 

example of a ligand-receptor pair involved in this process is APOE and LRP5, which are 

known to have a role in tumor development through the Wnt/β-catenin pathway and have 

been recently prioritized in ovarian cancer243 (Figure 58, top). Likewise, IM11 in the PD-L1 

positive sample, demonstrated the impact of the surrounding tissue on the induction of 

Epithelial-Mesenchymal Transition (EMT) in tumor-associated clusters. This process 

involves key pathways such as the MAPK signaling pathway, focal adhesion, and TNFR1-

mediated signaling, among others. Specifically, the spatial visualization of FN1 and 

COL3A1 ligands and ITGAV and DDR1 receptors, respectively, distinctly shows the 

compartmentalization of interactors within the tumor areas and its adjacent tissue (Figure 

58, bottom). Conversely, exclusively in the PD-L1 positive sample, IM8 demonstrated that 

the tumor tissue itself may also secrete ligands. These ligands influence the surrounding 

extra-tumoral region, by inducing transcriptional programs associated with inflammatory 

responses. This includes pathways such as Inflammatory Response, TNF-alpha Signaling 

via NF-kB, Interleukin-6 Signaling, and cytokine-mediated signaling pathways. In this 

context, the projection of CALR-LRP1 and APP-LRP1 ligand-receptor pair expressions onto 

the tissue embeddings reveals a pronounced spatial dichotomy, with ligands predominantly 

located in the tumor region and receptors in the adjacent areas244,245 (Figure 58, middle). 

This result is particularly interesting as PD-L1 expression is known to be linked to cellular 

responses to inflammation and immune signaling246,247. Altogether, ligand-receptor 

interactions allow us to highlight dynamic crosstalk networks occurring in TNBC and how 

they are specifically re-shaped in an immunomodulatory environment. 

https://paperpile.com/c/2TIuTo/8gQuX
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Top: Spatial representation of ligand-receptor interactions between surrounding and tumor areas projected over 

tissue space for the selected IMs. Black arrows show the directionality of the examined interaction. Bottom: 

Gene expression of selected ligand and receptor couples for each IM projected over tissue space. Interaction 

Modules (IMs). 

3.2.6. LY6D Unveiled as a Complementary Diagnostic marker to PD-L1 

Positivity 

Next, in order to explore new potential diagnostic markers that could improve current PD-

L1 testing, we combined expression analysis of spatial transcriptomic and clinical grade 

RNAseq. Firstly, we conducted spatial expression analysis on all tumor and surrounding 

subclusters in both PD-L1 positive and negative samples. We selected genes that were 

significantly up-regulated in PD-L1 positive tumor areas but were downregulated or not 

expressed in the tumor area of PD-L1 negative samples. Then, to assess the suitability of 

these genes as alternative diagnostic markers for PD-L1, we performed clinical-grade 

Figure 58. Ligand-Receptor Interactions Highlighted Dynamic Crosstalk between Tumor and 
Surrounding Tissue 
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RNAseq on PD-L1 positive and negative FFPE samples (Table S2). Bulk RNAseq was used 

for this analysis as it provides a more standardized and consistent sequencing method, with 

reduced technical artifacts, making it a reliable baseline for confirming the insights gained 

from spatial transcriptomic analysis. Specifically, we conducted a differential expression 

analysis using the bulk RNAseq data and compared the results with the spatial expression 

patterns of the selected genes to determine their concordance. We retained eight candidate 

genes, ISG15, IFI27, TAP1, OASL, LY6D, CLIC3, RSAD2 (Table S2), which showed higher 

expression levels in PD-L1 positive tumor areas compared to PD-L1 negative ones (Figure 

59).  

 

Figure 59. Candidate diagnostic Markers Demonstrated Substantial Specificity in PD-L1 Positive 
Tumor Areas. 
Violin plot representing the normalized expression reads from spatial transcriptomic data of the eight selected 

candidate diagnostic markers and C274 as a control (mark in red) in PD-L1 positive and negative samples. 

As previously shown, the sub-tumor clusters demonstrated an elevated transcriptional 

heterogeneity. Therefore, we prioritized candidate genes with the highest and most 
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consistent expression across all PD-L1 tumoral clusters. This was determined by assessing 

the ratio between their average LFC values (tumor vs. surrounding areas) and their 

respective variance across all sub-tumor clusters (Figure 60). Notably, LY6D (Lymphocyte 

Antigen 6 Family Member D) emerged as the most prominent diagnostic marker candidate, 

demonstrating the highest LFC to variance ratio across all tumor clusters in the PD-L1 

positive sample (Figure 60). Notably, ISG15 and IFI27 were identified as outliers and 

subsequently excluded from the pool of candidate diagnostic markers. Despite their high 

average LFC values, indicative of elevated expression levels in PD-L1 positive tumor areas, 

the considerable variance in their expression across tumor clusters revealed a lack of 

consistent expression (Figure S1). This inconsistency within different tumor subpopulations 

could compromise the reliability of diagnostic results. Therefore, these genes were 

considered unsuitable for further analysis. 

 

Figure 60. Diagnostic Markers Prioritization Highlight LY6D as the Most Promising Candidate 

Scatter plot of the selected diagnostic marker candidates, representing the ratio between their respective LFC 

variance among tumor clusters in PD-L1 positive sample (y-axis) and their average LFC (x-axis). Notably, ISG15 

and IFI27 have been excluded due to their outlier status (see Figure S1). Log2 Fold Change (LFC) 

This observation was further corroborated as evident from both spatial transcriptomics and 

bulk RNAseq data (Figures 59, 61, and Table S2). More specifically, mapping LY6D 

expression onto tissue samples of PD-L1 positive and negative embeddings revealed an 

increased number of spatial spots positive for LY6D, particularly concentrated in tumor 

areas of the PD-L1 positive samples (Figure 61, left). Correspondingly, in the bulk RNAseq 

analysis, LY6D showed higher expression levels in PD-L1 positive samples compared to 

the negative ones (Figure 61, right). It was also evident that LY6D exhibited higher 

expression levels compared to CD274 within the same PD-L1 positive samples, indicating 

that it may serve as a more detectable diagnostic marker than PD-L1.  
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Comparative 

spatial expression analysis of LY6D among the two samples. Spatial spots expressing PD-L1 projected over the 

tissue space (left). A bar plot represents the normalized expression levels of PD-L1 and LY6D in each query 

sample (right). 

To assess the feasibility of our findings, we used an automated IHC workflow to detect LY6D 

at the proteomic level (Figure 62). We used the same samples that were employed in the 

bulk RNAseq validation (Figure 61, right). Each sample was divided into three consecutive 

slices and subjected to separate IHC staining for PD-L1 (as control), LY6D, and H&E 

staining for histological annotation. To determine the percentage of the tumor area positive 

for PD-L1 or LY6D, we calculated the results for each slide (see Materials and Methods and 

Table S3). Consistent with both bulk RNAseq and spatial transcriptomics, IHC analysis 

showed minimal to no PD-L1 and LY6D expression in negative samples, while 

demonstrating pronounced signal in PD-L1 positive tumor areas (Figure 62 and Table S3). 

Furthermore, PD-L1 and LY6D consistently co-localized within the same PD-L1 positive 

tumor regions, with LY6D exhibiting significantly higher signal intensity compared to PD-L1 

(Figure 62, right panels). Overall, the alignment of these findings across diverse analytical 

methods, probing distinct regulatory layers (proteomic and transcriptional), suggests a 

complex interplay between PD-L1 positivity and LY6D expression in the intricate and 

dynamic landscape of TNBC. Essentially, this reinforces the effectiveness of our clinical 

workflow in precisely mapping complex biological systems. 

Figure 61. LY6D Exhibits Higher Expression Levels Compared to CD274 in both 
Spatial Transcriptomics and Bulk RNAseq Data 
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Representative images display IHC staining for PD-L1 (left) and LY6D (right) in two sequential sections from a 

pair of TNBC samples, PD-L1 positive (top – sample A4) and PD-L1 negative (bottom – sample BR_0124). The 

left panels for PD-L1 and LY6D depict large tissue sections at a 500 µm scale with tumor regions marked by 

dashed red lines. Insets in these regions (dashed black lines), magnified to a 50 µm scale on the right panels. 

The 'Area' metric quantifies signal robustness by averaging the ratio of the stained area to the total area in three 

tumor regions per sample. The tumor areas, delineated in the PD-L1 panels, correspond to identical regions in 

the LY6D staining due to the sequential processing of slides 4 μm apart. The CPS score clarifies the PD-L1 

status. Immunohistochemistry (IHC); Triple-Negative Breast Cancer (TNBC); Combined Positive Score (CPS) 

Next, we validated the expression of LY6D in a cohort of 23 TNBC characterized by high 

cellularity levels (≥50%), establishing that LY6D exhibits a broader dynamic expression 

range compared to CD274 (Figure 63). Essentially, the elevated expression levels of LY6D, 

coupled with its distinguishable and robust IHC signals, provide further evidence of its 

potential as a complementary marker for enhancing PD-L1 diagnostic assays. 

 

 

 

 

 

 

 

A box plot displays the normalized expression (log2 scale) of CD274 (PD-L1) and LY6D across 23 clinical 

samples of TNBC with cellularity above 50%. The plot indicates the relative expression levels of each marker, 

without correlation to PD-L1 immunostatus. 

Figure 62. Immunohistochemistry Shows a High and Consistent Presence of LY6D within PD-L1 
Positive Sub-tumor Areas 

Figure 63. A Cohort of 23 Clinical Triple Negative Breast Cancer Samples Confirming LY6D Broad 
Expression Dynamic Range 
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4. Discussion

4.1. First Project - An Integrated Screening to Infer Transcription Factor 

Regulatory Networks Governing Cell Fate Decisions 

Despite recent advances in studying TFs for accurately shaping cellular identity in vitro51, 

current cellular conversion methods remain inefficient and yield phenotypically immature 

target cell types54,55. This is due to the complex regulatory landscape of TF activity, which 

includes multiple constraints that impact their activity16. Therefore, when studying TFs 

functionality it is crucial to consider the pre-established cellular state, which can significantly 
affect its modus operandi. Correspondingly, cellular conversion protocols necessitate at 

least one pioneer TF which initiates the commitment toward a unique cell fate by engaging 

silent and unmarked chromatin50. This, in turn, facilitates a permissive epigenetic state that 

allows additional factors to further specify cell identity51. With that said, evidence suggests 

that even though pioneer TFs possess the ability to reshape the chromatin state, their 

efficiency in shaping cellular fate hinges on a pre-existing epigenetic state248. Indeed, 

different TF-mediated cellular conversion protocols demonstrate highly variable outcomes, 

as any changes in the experimental settings can affect the TF functionality, making it 

challenging to predict its global activity and functionality. Up to date, there is a lack of a 

systematic workflow to survey TF activity agonistically of the cellular conversion platform. 

This significantly hampers a comprehensive understanding of molecular pathways 

regulated by each TF and how they might be interconnected. 

In light of this, we hypothesize that various TFs, yet uncharacterized, play crucial roles in 

shaping cellular fate. Therefore, in this study, we developed a comprehensive 

transcriptomic, epigenomic, and morphological screening to assess the effect of numerous 

developmental TFs on cellular transdifferentiation. Our approach represents one, if not the 

only, case of side-by-side comparison of TF dosages within the same experimental setting. 

Consequently, this allowed us to identify novel pioneer factors that, either individually or in 

combination, play a pivotal role in regulating cellular identity.  

A recent study, similar in focus to ours, systematically screened 3,548 TF splice isoforms 

to identify TFs that trigger changes in cellular state45. However, the study was conducted 

on human embryonic stem cells (hESCs), which have a relatively more open overall 

chromatin structure as compared to differentiated cells. This, in turn, makes their DNA more 

accessible, thus allowing easier genetic manipulation. Consequently, it may lead to 

overestimating TF capacity and poorly predicting their global activity in different cellular 

contexts. Our study complements these observations by accounting for pre-existing 

https://paperpile.com/c/2TIuTo/HIlAP
https://paperpile.com/c/2TIuTo/ZmmWO+hBx3C
https://paperpile.com/c/2TIuTo/yVBD7
https://paperpile.com/c/2TIuTo/kwoIT
https://paperpile.com/c/2TIuTo/HIlAP
https://paperpile.com/c/2TIuTo/B7hrs
https://paperpile.com/c/2TIuTo/5eU59
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epigenetic states, thus offering more applicable insights for in vitro cellular conversion 

processes. 

In this dissertation, I demonstrate a proof-of-principle for our systematic screening 

approach, focusing on a subset of 130 TFs. This subset is part of a more comprehensive 

list of 277 TFs, carefully selected for their ability to influence cellular fate at both 

transcriptional and epigenetic levels (Figure 17). Although our screening study is 

incomplete, these 130 TFs continue to elucidate the complexity of various structural 

domains across six superclasses (Figure 18) and shed light on their roles in regulating cell 

fate decisions. 

To impartially compare these TFs and predict their global functionality, we performed the 

transdifferentiation assays under unfavorable conditions that did not intrinsically promote 

specific cellular fates. This approach allowed us to highlight TFs that are likely to act as 

pioneer factors by introducing new cellular functionality despite the impediments derived 

from the pre-existing epigenetic state. 

Indeed, our results indicate that a majority of TFs, particularly those in the Helix-Turn-Helix 

and Basic Domain categories, significantly impact cellular changes at both transcriptional 

(67.7%) and epigenetic (54%) levels (Figures 24 and 28). This observation may be 

influenced by their prevalence among the 130 TFs studied, rather than an inherent effect 

on gene expression dynamics. Further insights will be gained by completing the screening 

of all 277 TFs in our study. Interestingly, we observed partial overlap between TFs impacting 

gene expression and those altering chromatin accessibility, implying varied TF capacities 

in regulating transcriptional and epigenetic levels (Figure 29). 

While the mere presence of TF binding motifs and dynamic gene expression can offer hints 

of potential regulatory activity, it remains a poor predictor in practice. This is primarily due 

to the various constraints that influence TF functionality. To address this limitation, we have 

developed novel computational approaches designed to extract the crucial biological 

context of TFs from each omic data. Consequently, this has enabled us to go beyond raw 

count matrices, which otherwise yield primary information on TF functionality, and highlight 

TFs interconnectivity by focusing on shared signatures of cell fate alterations. Notably, we 

successfully delineated clusters of TFs based on their enrichment in target gene expression 

(RNAseq) and motif enrichment similarities (ATACseq) (Figures 27 and 32). We observed 

that TFs with similar functions or belonging to the same family tend to group closely 

together. However, despite this resemblance, the clustering results from the different omic 

levels were not significantly similar, suggesting distinct regulatory mechanisms at the 

transcriptional and epigenetic levels (Figures 33 and 34). 
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Nevertheless, our analysis yielded critical observations demonstrating consistent patterns 

of uncharacterized TF interactions across both cellular levels. For instance, CREB5, a 

previously uncharacterized TF, was associated with cardiac fate. Similarly, ASCL1, known 

for its role in neuronal development, was linked to myogenic factors. These results were 

further corroborated by the multiomic connectivity network that captures both shared and 

complementary information from epigenetic and transcriptional datasets (Figure 37). 

Additionally, by utilizing multiomic data, we developed a computational method to prioritize 

TFs based on their predominant effect on gene expression and chromatin accessibility 

(Figure 36). Interestingly, despite displaying different clustering results dependent on their 

biological context, we found a significant consistency in the TF activity scores across both 

omic levels. In line with this, our observations revealed that key TFs, pivotal in regulating 

cellular differentiation across all three germ layers, exhibited high functional activity. These 

include NEUROD/G genes (ectodermal fate)230, HNF genes (endodermal fate)249, and 

MYOD/G genes (mesodermal fate)215. This was observed, although they were introduced 

into BJ fibroblast cells, which originate from the mesodermal germ layer. Consequently, this 

suggests that the differences between the inferred clusters of TFs at the transcriptional and 

epigenetic levels stem from real differences in TFs' functional mechanisms at each omic 

level and not due to artifacts of the analytical methods or biases in the data. 

Overall, in our initial comparative analysis of 130 TFs, we successfully identified 

uncharacterized TF interactions and effectively distinguished paralog genes, which have 

evolved to diversify their functions (examples include MYF/MYO genes), from those 

maintaining identical biological functions, where differences primarily manifest in their 

spatial and temporal regulation (such as TBX20 and HAND genes). Consequently, this 

demonstrates the effectiveness of our screening approach in characterizing TF 

functionalities and revealing novel interconnections, thus providing a reliable approach for 

studying diverse sets of TFs in various biological contexts.  

4.1.1. Perspectives: Enhancing In Vitro Myogenic and Cardiogenic 

Reprogramming Protocols Leveraging Insights from Our Transcription 

Factor Atlas Study

After completing the exploratory phase across all 277 selected TFs, they will be further 

tested in combination to improve conversion assay toward a myogenic and cardiac fate. We 

specifically selected these two cellular identities due to their unique yet interconnected 

nature, offering insights into the complexities of cell fate determination and potential 

advancements in regenerative medicine. 

https://paperpile.com/c/2TIuTo/OgEbV
https://paperpile.com/c/2TIuTo/VVPYj
https://paperpile.com/c/2TIuTo/JpUYP
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The myogenic pathway, centered on the pioneering role of MYOD1, offers a classic model 

for understanding how pioneer factors can initiate and direct cell fate conversion40. This 

pathway has historically been a cornerstone in cellular reprogramming, demonstrating the 

profound potential of specific TFs in cell fate determination. However, to date, the process 

is challenged by the limited responsiveness of certain cell types, such as ADSCs and MSCs, 

for clinical application of myocyte fate conversion protocols250. Additionally, the inability to 

achieve full maturation of muscle fibers underlines the need to investigate and overcome 

the influence of the chromatin epigenetic landscape on TF activity. 

In contrast, cardiac differentiation, while sharing some mechanistic similarities with 

myogenic differentiation, presents further challenges. The complexity of inducing 

cardiomyocyte fate in human cells, requiring a composite orchestration of multiple TFs and 

microRNAs, contrasts with the simpler processes observed in murine models251,252. The fact 

that the most advanced human induced cardiomyocytes (iCM) generation protocols achieve 

only partial success and result in cells with immature properties, further emphasizes the 

need for comprehensive studies in this area253. 

To find potential candidate TFs that, in combination with the traditional ones can induce 

myogenic or cardiac fate, we will create multiomic network of 277 TFs to identify the nearest 

neighbors of known myogenic/cardiac reprogramming TFs and compute their connectivity 

level in the network. Using this information, we will compile a list of potential candidate TFs. 

These candidates will be ranked based on the product of their connectivity level and the 

activity score as we demonstrated in this dissertation. Additionally, we will further analyze 

the morphological changes to provide additional impetus to precise the concluded multiomic 

TF connectivity network. 

Eventually, the expected data will represent a state-of-the-art encyclopedia of pioneer TF 

landscapes, including binding sites, downstream target genes, and enriched functional 

pathways. 

4.2. Second Project - Spatial Transcriptomics Reveals Sub-Tumoral 

Identities and Novel Diagnostic markers in Triple Negative Breast Cancer 

With Immune Evasion Capacity 

Recent advancements in spatial transcriptomics have shed light on novel approaches for 

investigating breast tumor heterogeneity and microenvironmental composition254,255. In this 

study, we have developed a novel clinical workflow that seamlessly integrates spatial 

transcriptomics with detailed histological examination, bulk RNAseq and IHC. This 

methodology was used to explore TNBC biological landscape, focusing on PD-L1 

expression status and its role in tumor immune escape mechanisms (Figure 41). Our 

https://paperpile.com/c/2TIuTo/fbjev
https://paperpile.com/c/2TIuTo/FM6TF
https://paperpile.com/c/2TIuTo/Hw2c9+p13xd
https://paperpile.com/c/2TIuTo/xm4xV
https://paperpile.com/c/2TIuTo/TEoOc+xnxXA
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methodological approach was specifically designed to be a cost-efficient and easy-to-

implement strategy in any lab bench, requiring minimal input sample sizes yet ensuring the 

preservation of data integrity. 

A recent study, which shares a similar scope to ours, delved into the spatial features of 

TNBC while focusing on immune checkpoint pathways256. Specifically, they utilized imaging 

mass cytometry (IMC) to analyze 43 proteins and bulk RNAseq of 101 genes for subtyping 

purposes. In contrast, our study completes these observations with a more comprehensive 

approach by employing a non-targeted experimental approach using spatial transcriptomics 

and RNAseq alongside IHC validation.  

While conventional histopathology remains the benchmark in tumor diagnostics, its 

accuracy can be variable and often necessitates specialized expertise that may not be 

readily available in pathology laboratories. This challenge is especially pronounced in the 

detection of PD-L1 in TNBC, necessitating the collaboration of skilled pathologists, state-

of-the-art instrumentation, and digital pathology technologies116. Indeed, Due to this 

challenge there is a lack of standardization in PD-L1 diagnostic tests, leading to complexity 

in selecting patients immunotherapies257. Accordingly, the variability of the overall efficacy 

of PD-1/PD-L1 targeted therapy in TNBC is also a significant concern258,259.  

To address this, we applied an unbiased spatial transcriptomics analysis, which not only 

enabled a precise determination of PD-L1 (CD274) expression status in-situ, but also 

facilitated detailed gene expression mapping. This approach was crucial for the in-depth 

analysis of tumor architecture and the identification of potential alternative diagnostic 

markers, thereby expanding the scope of current oncological investigations. These results 

were further corroborated by clinical-grade RNAseq and IHC, which are globally accepted 

and standardized experimental approaches. This demonstrates consistent results at both 

the transcriptomic and proteomic cellular levels (Figures 61 and 62). 

 

We first confirmed the spatial integrity of our sequencing data by conducting a thorough 

validation analysis using the histological annotations as our benchmark. Aligned with 

previous studies236, our findings indicated an elevated transcriptional activity in tumor 

regions compared to the adjacent tissues (Figures 43 and 44). Additionally, we observed 

that known tissue markers accurately correspond to their respective histological 

compartments (Figure 46). Our analysis also showed that the expression profiles of CD274 

were in line with the initial assessment of PD-L1 status (positive or negative) (Figure 45). 

These findings were in agreement with previous studies indicating that PD-L1 can be 

expressed by either infiltrating immune cells within the microenvironment or by tumor 

cells237,238. Overall, these results demonstrate the effectiveness of our methodological 

https://paperpile.com/c/2TIuTo/poBxL
https://paperpile.com/c/2TIuTo/9sxV5
https://paperpile.com/c/2TIuTo/hjnb7
https://paperpile.com/c/2TIuTo/vca8C+BZBjf
https://paperpile.com/c/2TIuTo/e8E2B
https://paperpile.com/c/2TIuTo/BNCML+rKfrf
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approach in maintaining tissue architecture while providing a comprehensive expression 

profile. 

 

Therefore, we employed spatial transcriptomic data to enhance the precision of tumor and 

stromal annotations, addressing potential oversights inherent in traditional histological 

methods (Figure 49). Subsequent downstream analysis identified spatial signatures within 

the reclassified tumor clusters that were linked to various cancer hallmarks, with a specific 

focus on breast cancer. Conversely, marker SVGs in the surrounding tissue correlated with 

well-known characteristics of the tumor microenvironment260 (Figures 52 and 53).  

By refining our previously developed ligand-receptor analysis211, we successfully pinpointed 

crucial interaction pairs that are essential for the communication between the tumor and 

adjacent tissue clusters (Figure 56). This highlights the importance of spatial interactions in 

the dynamics of the tumor microenvironment. Notably, among the three identified interaction 

modules, IM8, which was prevalent in PD-L1 positive samples, shed light on the potential 

role of tumor-secreted ligands in modulating inflammatory responses (Figure 57). This 

finding is in line with earlier research on the involvement of inflammasomes in immune 

checkpoint responses, including the expression of PD-L1261,262. 

The in-situ detection of mRNA in both tumor and stromal areas of PD-L1 positive and 

negative patients enabled us to prioritize alternative diagnostic marker candidates for PD-

L1. During this investigation, LY6D emerged as a promising diagnostic marker with the 

highest and most consistent occurrence in PD-L1 positive sub-tumor regions (Figure 60). 

This was further corroborated in a broader sequencing cohort and at the protein level 

(Figures 61-63). Canonically, LY6D is involved in lymphocyte differentiation263, and recent 

gene expression atlases allowed us to track its expression in several epithelial tissues, 

including certain glandular breast subtypes264. This finding suggests a connection between 

LY6D expression and both immune and glandular myo/epithelial components, which are 

notably altered in TNBC. Moreover, a previous study indicated that proteins in the LY6 

family can enhance cytokine-induced PD-L1 activation, leading to immune evasion265. 

These insights imply a potential functional or regulatory link between LY6D and PD-L1. 

PD-L1 serves a dual role in TNBC therapy, acting as both a predictive diagnostic marker 

and a therapeutic target. However, its low expression levels present significant challenges 

in diagnosis and antigen targeting266,267, complicating patient management for targeted 

therapies. This factor has been hypothesized as a key reason behind the varied responses 

observed in anti-PD-1/PD-L1 therapies257,268. Given these considerations and in light of our 

research findings, we propose LY6D as a complementary diagnostic marker to PD-L1 in 

immune checkpoint-positive TNBC. This suggestion is based on the heightened expression 

https://paperpile.com/c/2TIuTo/8GfRG
https://paperpile.com/c/2TIuTo/r71U9
https://paperpile.com/c/2TIuTo/lgKmr
https://paperpile.com/c/2TIuTo/K3ZRc
https://paperpile.com/c/2TIuTo/FP0FS
https://paperpile.com/c/2TIuTo/VLMEA
https://paperpile.com/c/2TIuTo/x5RVL
https://paperpile.com/c/2TIuTo/xDK1T
https://paperpile.com/c/2TIuTo/0ytKQ
https://paperpile.com/c/2TIuTo/hjnb7
https://paperpile.com/c/2TIuTo/1N0Fu
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dynamic range of LY6D (Figures 59, 61, and 63) and its more distinguishable and robust 

IHC signals, even when using research-grade antibodies. 

In conclusion, our research highlights the critical importance of integrating spatial 

transcriptomics and histopathology to decode the intricate structure and ligand-receptor 

dynamics in tumor environments. This approach has shed light on new therapeutic 

possibilities for treating both PD-L1 positive and negative TNBC. The findings from our study 

are particularly promising for improving diagnostic methods and advancing therapeutic 

trials, especially with the use of emerging diagnostic markers such as LY6D. This integrated 

method marks a significant stride towards more effective and personalized cancer 

treatments.
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Abbreviations 

Assay for Transposase-Accessible Chromatin with Sequencing (ATACseq)  

Basal-Like 1 (BL1) 

Basal-Like 2 (BL2) 

Batch Effect Correction (BEC) 

BJ fibroblast telomerase (BJ-T)  

Bovine Serum Albumin (BSA) 

Chromatin Immunoprecipitation Sequencing (CHIPseq) 

Combined Positive Score (CPS) 

Combining Chromatin Immunoprecipitation (ChIP) 

Complementary DNA (cDNA) 

Counts Per Million (CPM) 

Differential Expression Analysis (DEA) 

Differentially Expressed (DE) 

DNA Binding Domain (DBD) 

DNase I Hypersensitive Sites Sequencing (DNaseseq) 

Electrophoretic Mobility Shift Assay (EMSA) 

Enhancer RNAs (eRNAs) 

Epidermal Growth Factor Receptor (EGFR) 

Epithelial-to-Mesenchymal Transition (EMT) 

Estimation of Stromal and Immune cells in MAlignant Tumor tissues using Expression data 

(ESTIMATE) 

Estrogen Receptor (ER) 

European Institute of Oncology (IEO) 

False Discovery Rate (FDR) 
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Formalin-Fixed Paraffin-Embedded (FFPE)  

Fraction of Reads in Peaks (FRiP) 

gap junctions (GJs) 

Gene Expression sequencing (CAGEseq) 

Gene ontology (GO) 

Gene Set Enrichment Analysis (GSEA) 

General Transcription Factors (GTFs) 

Glucocorticoid Receptor (GR) 

Green fluorescent protein (GFP) 

Hematoxylin and Eosin (H&E) 

Human Embryonic Stem Cell (hESCs) 

Human Epidermal Growth Factor Receptor 2 (HER2) 

Human Foreskin Fibroblasts (BJ) 

Human Lung Fibroblasts (HLF) 

Human Telomerase Reverse Transcriptase (hTERT) 

Imaging Mass Cytometry (IMC) 

Immune Checkpoint Inhibitors (ICIs)  

Immunohistochemistry (IHC) 

Immunohistochemistry (IHC) 

Immunoprecipitation-Mass Spectrometry (IP-MS) 

Induced Cardiomyocytes (iCM) 

Induced Pluripotent Stem Cells (IPSCs) 

Inner Cell Mass (ICM)  

Interaction Modules (IMs)  

Interferon-γ (IFN-γ) 
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Irreproducible Discovery Rate (IDR) 

Irreproducible Discovery Rate (IDR) 

Log fold change (LFC) 

Long Noncoding RNA (lncRNA) 

Luminal Androgen Receptor (LAR) 

Mesenchymal (M)  

Mesenchymal-to-Epithelial transition (MET) 

MicroRNA (miRNA) 

Mode of Action by NeTwoRk Analysis (MANTRA) 

Multiplicity of infection (MOI) 

Negative Binomial (NB) 

Next-Generation Sequencing (NGS) 

Normalized Enrichment Score (NES) 

Nuclear Receptor Coactivators (NCOAs)  

Nucleosome-Free Regions (NFRs) 

Nucleosome-Free Regions (NFRs) 

open chromatin regions (OCR) 

Open Reading Frame (ORF) 

Overall Response Rates (ORR) 

Paraformaldehyde (PFA) 

Positional Weight Matrix (PWM) 

Post-Translation Modifications (PTM) 

Pre-Initiation Complex (PIC) 

Principal Component Analysis (PCA) 

Progesterone Receptor (PR) 
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Programmed cell death protein 1 (PD-1) 

Programmed death-ligand 1 (PD-L1)  

Protein-Protein Interaction (PPI) 

Quality Control (QC) 

Reads Per Kilobase per Million mapped reads (RPKM) 

Retinal Pigment Epithelium (RPE) 

RNA And DNA Interacting Complexes Ligated and sequenced (RADICLseq) 

RNA polymerase II (Pol II) 

RNA Sequencing (RNAseq) 

Similarity Network Fusion (SNF) 

Single-Cell RNA Sequencing (scRNAseq) 

Sparse Partial Least Squares regression (sPLS) 

Spatially Variable Genes (SVGs) 

T Cell Receptor (TCR)  

Transcription Factor (TF) 

Transcription Factor Binding Sites (TFBS) 

Triple Negative Breast Cancer (TNBC) 

Tumor Microenvironment (TME) 

Tumor-Infiltrating Lymphocytes (TILs) 

Uniform Manifold Approximation and Projection (UMAP) 

Unique Molecular Identifiers (UMIs)
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Supplementary Data 

Table S1  

 

Step Description Special Argument Programs Inputs Outputs Main Commands 

1) 
Demultiplexing 

Conversion of 
BCL to FASTQ 

files using 
BCL2fastq 

v2.20.0.422 

--use-bases-mask 
Y51I8I8Y51 BCL2fastq 

BCL 
format 
data 

FASTQ 
files 

BCL2fastq 
conversion 

2) Adaptor 
Trimming and 
Pre-Alignment 

QC 

Adaptors 
trimming with 
TrimGalore 

v0.6.3 

--nextera, --length 30, -
-fastqc TrimGalore Raw 

fastqs 
Trimmed 
fastq files 

--fastqc --paired 
commands 

3) Alignment 
and 

Preliminary 
filtering 

Mapping reads 
to the human 

reference 
genome hg38 
using BWA- 

MEM (v0.7.10) 
and SAMTools 

(v1.3) 

-M, -F 0x0100 BWA-MEM, 
SAMTools 

Trimmed 
fastq 
files 

Sorted- 
indexed- 
BAM files 

bwa mem and 
samtools commands 

4) Evaluate 
library 

complexity 

Assessing 
library 

complexity 
with Preseq 

(v2.0.0) 

N/A preseq 
Raw 

aligned 
reads 

TXT file for 
MultiQC 

Preseq lc_extrap 
command 

5) Remove 
Duplicates 

Using Picard 
tools (v2.9.2) 
for removing 
duplicates 

REMOVE_DUPLICATE 
S=T 

Picard 
MarkDuplica 

tes 

Primary 
BAM file 

Semi 
filtered 

BAM file 

Picard 
MarkDuplicates 

command 

6) Secondary 
filtering 

Refining the 
read dataset 

with SAMTools 
(v1.3) and 
BAMTools 

(v2.2.2) 

Various, including tag 
and cigar options 

samtools, 
bamtools 

Sorted 
semi- 

filtered 
BAM 

Semi- 
filtered 
BAM 

SAMTools and 
BAMTools filtering 

commands 

7) Third 
filtering 

Filtering 
orphan reads 

and mates 
with a custom 
Python script 

N/A bampe_rm_ 
orphan.py 

Sorted 
semi- 

filtered 
BAM 

Final 
filtered 
BAM 

bampe_rm_orphan.p 
y command 

8) Assessing 
Replicate 

Correlation 

Using 
Deeptools' 

tools (v3.5.1) 
for replicate 
BAM files 
correlation 

N/A Deeptools 
Final 

filtered 
BAM file 

Correlation 
matrix, 
plots 

Deeptools 
multiBamSummary 
and plotCorrelation 

commands 

9) Conversion 
to BEDPE and 

Alignment 
Shifting 

Converting 
BAMPE to 

BEDPE and 
adjusting 

alignments 
using 

BEDTools 
(v2.29.1) and 
an awk script 

N/A BEDTools 
Final 

filtered 
BAM file 

BEDPE file BEDTools and awk 
commands 
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10) Peak 
calling and 
FRiP QC 

Peak calling 
with MACS2 

(v2.2.7.1) 
adapted for 
ATAC-seq 

--shift -100, --extsize 
200 MACS2 BEDPE Peak 

calling files 
MACS2 callpeak 

command 

11) Assessing 
Replicate 
Similarity 

Using 
BEDTools 

(v2.29.1) for 
evaluating 

replicate peak 
similarity 

Jaccard coefficient 
threshold >= 0.5 BEDTools Peak 

files 

Jaccard 
coefficient 

plot 

BEDTools jaccard 
command 

12) Peak 
Calling QC 

Plots 

Generating 
QC plots for 
peak calling 
using an R 
script from 
NextFlow 

N/A 
Rscript, 

NextFlow 
script 

Peak 
files 

PDF with 
QC plots 

R script commands 
for QC plots 

13) Identifying 
Consistent 
Peaks with 

IDR 

Using IDR 
software 

(v2.0.3) for 
assessing 

peak 
reproducibility 

-log10(p-value) > 
1.30103 IDR Peak 

files 

IDR 
intersected 

peaks 
IDR commands 

14) ATAQV 

QC of peaks 
using ATAQV 

software 
(v1.2.1) for 
ATACseq- 

specific 
visualizations 

N/A ataqv 

Various, 
including 

peak 
and 
BAM 
files 

Json, html 
files ataqv command 

15) Create 
bigwig files 

Creating 
normalized 
bigwig files 

using 
BEDTools 

genomecov 
(v2.29.1) and 

bedGraphToBi 
gWig (v2.9) 

N/A 
bedtools, 

bedGraphTo 
BigWig 

Final 
filtered 
BAM 
files 

Bigwig, 
bedgraph 

files 

BEDTools and 
bedGraphToBigWig 

commands 

16) Create a 
consensus 
peak- set 

Integrating 
individual peak 

sets into a 
consensus set 

using 
BEDTools 

merge 
(v2.29.1) 

N/A BEDTools 
IDR 
peak 
files 

Consensus 
peak set 

BEDTools merge 
command 

17) Peaks 
Annotation 

Annotating 
peaks using 
HOMER's 

annotatePeaks 
.pl 

N/A annotatePea 
ks.pl 

Consens 
us peak 

set 

Annotated 
peak file 

HOMER 
annotatePeaks 

command 

18) Create 
SAF file and 
Count Reads 

Counting 
reads with 

featureCounts 
(v2.0.3) using 

SAF files 

N/A featureCoun 
ts 

Annotate 
d peak 

file, BAM 
files 

Peak count 
matrix 

featureCounts 
command 

 
 
Table S1 ATACseq Preprocessing Pipeline Steps. This table outlines the 18 steps of the ATACseq analysis 

pipeline, designed to process sequencing data from initial raw BCL files to the final peak count matrix. Our 

approach integrates best practices and methodologies from a variety of established pipelines and research 

findings, as described in the materials and methods chapter. For each step, the table specifies its objective, the 

software and commands utilized, the parameters applied, and the formats of the input and output data. 
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Table S2 

  

 

Table S2. Differential Expression Analysis of PD-L1 Candidate Genes Across Spatial Transcriptomics 
and Clinical Bulk RNAseq. This table compiles differential expression analysis for PD-L1 positive and negative 

samples, integrating data from spatial transcriptomics and clinical-grade bulk RNA sequencing. For spatial 

transcriptomics, analysis compared tumor areas with surrounding spots in PD-L1 positive (middle column) and 

negative (right column) samples. In bulk RNAseq, differential expression between PD-L1 positive and negative 

samples is evaluated (left column). Filters are applied to select genes with a log fold change (LFC) > 0 and p-

value < 0.05, specific to PD-L1 positive samples in both spatial transcriptomics and clinical RNAseq, while in 

spatial transcriptomic data of PD-L1 negative sample, we applied log fold change (LFC) < 0. Gene rankings are 

determined by a composite score, multiplying LFC by the negative logarithm of adjusted p-values across 

datasets, highlighting the top 8 candidates highlighted. The final six candidates are emphasized in bold text, 

while the two genes excluded due to being outliers are not highlighted. 

Table S3: Immunohistochemistry test results 

 

Condition Sample gene position_1 position_2 position_3 

PDL1_pos BR218 PD-L1 0.0181 0.0181 0.0181 

LY6D 0.1869 0.1568 0.3504 

A7 PD-L1 0.4845 0.7678 0.1025 

LY6D 8.2205 3.1233 8.9423 

A4 PD-L1 6.3081 30.9757 27.3345 

LY6D 14.3203 31.7115 44.8106 
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BR593 PD-L1 0.0002 0.0002 0.0001 

LY6D 3.9638 0.025 4.65 

A3 PD-L1 0.5778 0.1133 0.2034 

LY6D 0 0.0001 0.0005 

PDL1_neg 

BR118 PD-L1 0.0021 0.0009 0.0041 

LY6D 2.2945 0.0632 0.0525 

BR0124 PD-L1 0 0.0004 0 

LY6D 0.0002 0 0 

BR171 PD-L1 0.0022 0.0115 0.0004 

LY6D 0.0014 0.0029 0.0005 

BR202 PD-L1 0.0013 0.0039 0.0013 

LY6D 0 0 0.0008 

BR0164 PD-L1 0.0012 0.003 0.0068 

LY6D 0.0013 0.0067 0.0003 
 

 Figure S1 
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Figure S1. Prioritization of Candidate Diagnostic Markers Highlight ISG15 and IFI27 as Outliers. Scatter 

plot of the all 8 selected diagnostic marker candidates, representing the ratio between their respective LFC 

variance among tumor clusters in PD-L1 positive sample (y-axis) and their average LFC (x-axis). ISG15 and 

IFI27 are highlighted as outliers due to their marked variance, indicating substantial inconsistency in expression 

across different tumor clusters. 
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