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Spatial distribution of tumour immune infiltrate predicts
outcomes of patients with high-risk soft tissue sarcomas after
neoadjuvant chemotherapy
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Summary
Background Anthracycline-based neoadjuvant chemotherapy (NAC) may modify tumour immune infiltrate. This
study characterized immune infiltrate spatial distribution after NAC in primary high-risk soft tissue sarcomas (STS)
and investigate association with prognosis.

Methods The ISG-STS 1001 trial randomized STS patients to anthracycline plus ifosfamide (AI) or a histology-tailored
(HT) NAC. Four areas of tumour specimens were sampled: the area showing the highest lymphocyte infiltrate (HI) at
H&E; the area with lack of post-treatment changes (highest grade, HG); the area with post-treatment changes (lowest
grade, LG); and the tumour edge (TE). CD3, CD8, PD-1, CD20, FOXP3, and CD163 were analyzed at
immunohistochemistry and digital pathology. A machine learning method was used to generate sarcoma immune
index scores (SIS) that predict patient disease-free and overall survival (DFS and OS).
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Findings Tumour infiltrating lymphocytes and PD-1+ cells together with CD163+ cells were more represented in
STS histologies with complex compared to simple karyotype, while CD20+ B-cells were detected in both these
histology groups. PD-1+ cells exerted a negative prognostic value irrespectively of their spatial distribution.
Enrichment in CD20+ B-cells at HI and TE areas was associated with better patient outcomes. We generated a
prognostic SIS for each tumour area, having the HI-SIS the best performance. Such prognostic value was
driven by treatment with AI.

Interpretation The different spatial distribution of immune populations and their different association with prognosis
support NAC as a modifier of tumour immune infiltrate in STS.

Funding Pharmamar; Italian Ministry of Health [RF-2019-12370923; GR-2016-02362609]; 5 × 1000 Funds—2016,
Italian Ministry of Health; AIRC Grant [ID#28546].

Copyright © 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC
license (http://creativecommons.org/licenses/by-nc/4.0/).
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Research in context

Evidence before this study
In the context of soft tissue sarcomas (STS), the ISG-1001
randomized controlled trial (RCT) conducted a comparison
between anthracycline plus ifosfamide (AI) and histology-
tailored (HT) neoadjuvant chemotherapy (NAC). The results
of this study seem to support the AI for patients deemed at
high risk of mortality.
STS are often characterized by a limited immune infiltrate. In
diverse cancer types, NAC is recognized for its capacity to
influence the tumour immune microenvironment (TIME),
thereby augmenting the efficacy of immune checkpoint
inhibitors (ICI). Although there is existing evidence in the
realm of STS that underscores the influence of radiotherapy
on the TIME, a comprehensive understanding of the
implications of NAC remains to be fully elucidated.

Added value of this study
This study was carried out as part of the aforementioned trial
and focused on examining the spatial distribution of tumour

immune infiltrate in four specific regions of primary high-risk
STS following NAC.

Implications of all the available evidence
The composition of the immune microenvironment following
NAC plays a crucial role in stratifying patient risk. Patients
with tumours characterized by high PD-1 expression across
the entire tumour or low CD20 expression at the tumour’s
periphery, especially in areas with the richest immune
infiltrate, are at a high risk.
Notably, NAC with AI appears to influence these prognostic
associations, suggesting a potential impact of AI on the
immune microenvironment of STS. These findings provide a
strong rationale for the development of a clinical trial that
combines immune ICIs and AI for neoadjuvant treatment in
patients with high-risk primary STS located in the extremities
or trunk wall.
Introduction
Anthracyclines are used for their cytotoxic anti-cancer
activity and act as a modifier of tumour immune
microenvironment (TIME) in several solid tumours.1–6

These agents exert their immune-modulation effects
through several mechanisms, which include depletion
of myeloid-derived suppressor cells,7 induction of ter-
tiary lymphoid structures (TLS),8–10 increase of type I
interferon level,11 activation of the complement12 and
immunogenic cell death.13–15

In soft tissue sarcomas (STS), a randomized
controlled trial (RCT, ISG-100116,17) compared anthra-
cycline plus ifosfamide (AI) and histology-tailored
(HT) neoadjuvant chemotherapy (NAC) in the com-
monest STS types and suggested that AI should
remain the regimen to choose when NAC is
considered in patients with high-risk STS according to
the prognostic tool Sarculator.16,18–20 STS have been
considered tumours characterized by a relatively low
immune infiltrate reflecting their low tumour muta-
tion burden (TMB)21,22 and composition of TIME
shows variations across sarcoma histologies.23–32

Consequently, immune checkpoint inhibitors showed
some efficacy in metastatic patients with selected sar-
coma histologies25,33–41 or specific TIME features, such
as the presence of TLS.42 We hypothesized that
anthracycline-based NAC may act as modifier of TIME
in high-risk STS and conducted a planned translational
study of the above mentioned ISG-1001 RCT16,17 to
characterize the spatial distribution of tumour im-
mune infiltrate after NAC and investigate association
with patient risk.
www.thelancet.com Vol 106 August, 2024
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Methods
Patients
This was a pre-planned translational study of the ISG-STS
1001 clinical trial (ClinicalTrials.gov ID: NCT01710176;
European Union Drug Regulating Authorities Clinical
Trials database ID: 2010-023484-17).16,17 The study protocol
and all amendments were approved by the appropriate
independent ethics committee at each trial centre. The
ISG-1001 was conducted in accordance with the Declara-
tion of Helsinki. All patients provided written informed
consent before enrolment. The study design was reported
elsewhere16,17 and is summarized in online available
Supplementary material. Reporting of this manuscript
met the Strengthening the Reporting of Observational
Studies in Epidemiology (STROBE) statement.
Fig. 1: Tumour immune microenvironment (TIME) of patients with
(N = 246). After neoadjuvant chemotherapy and surgery, the following f
the area showing morphologically highest lymphocyte infiltrate (HI) at H&
with lack of post-treatment changes; 3) the lowest grade (LG) stainable
tumour edge (TE), defined as the area within 1 mm from tumour border (A
T cell subsets from HI to TE, while no major difference was observed in
presence of immune infiltrate was consistent within the different cores in
observed for all immune cell subsets (C). In tumours characterized by a hi
appeared to be intimately associated with macrophages and B cells, co-lo

www.thelancet.com Vol 106 August, 2024
Spatial detection and quantification of immune cells
Tissue MicroArray (TMA) were generated sampling both
pre-treatment biopsies and post-operative specimens.
Pre-treatment biopsy where selected when formalin-fixed
paraffin-embedded (FFPE) were left after diagnosis of
other translational studies planned in the ISG-1001.
Surgical specimens were selected when residual stain-
able tumour was present after surgery. In pre-treatment
biopsy, two 1 mm cores were punched from FFPE. In
surgical specimen, the area for TMA sampling was
selected after revision of the original slides by a soft-
tissue pathologist and haematoxylin and eosin (H&E)
stained sections were prepared. Four areas of the surgical
specimens were sampled (Fig. 1A) according to the study
protocol whenever possible as follow:
high-risk soft tissue sarcomas after neoadjuvant chemotherapy
our tumour areas were sampled at histopathological examination: 1)
E; 2) the highest grade (HG) stainable tumour representing the area
tumour representing the area with post-treatment changes; 4) the
). There was a progressive and statistically significant decrease of the
the distribution of CD20+ B cells and CD163+ macrophages (B). The
each tumour, as indicated by the statistically significant correlation

gh number of immune cells in their microenvironment, T cell subsets
calizing in a selected patient cluster according to UMAP analysis (D).
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1. One 1 mm core from the area showing morpho-
logically highest lymphocyte infiltrate (HI) at H&E;

2. Three 1 mm cores from the highest grade (HG)
stainable tumour representing the area with lack of
post-treatment changes (i.e., high number of re-
sidual stainable tumour cells43);

3. One 1 mm core from the lowest grade (LG) stain-
able tumour representing the area with post-
treatment changes (i.e., low number of residual
stainable tumour cells43);

4. Two 1 mm cores from the tumour edge (TE), defined
as the area within 1 mm from the tumour border.

Detailed information on TMA, immunohistochem-
istry (IHC) and digital pathology44 are reported in online
available Supplementary material.

Statistical analysis
Firstly, statistical analysis was performed to test the as-
sociation between investigated immune cell populations
with the following tumour and treatment features: i) STS
histology, comparing STS characterized by histologies
with a complex karyotype [ck-STS, including undifferen-
tiated pleomorphic sarcoma (UPS), malignant peripheral
nerve sheath tumour (MPNST) and leiomyosarcoma
(LMS)] to those with a simple karyotype [sk-STS, such as
synovial sarcoma (SS) and high-grade myxoid lip-
osarcoma (HG-MLPS)]; ii) NAC, comparing AI and HT
schedules; and iii) neoadjuvant radiotherapy (RT),
comparing STS treated or not with preoperative RT.

Secondly, an explorative analysis was conducted in
patients who had paired pre-treatment tumour biopsy
Clinico-pathological characteristics Neoadjuvant AI

No.

Age (years) Median 53 (IQR, 4

Sex

Female 63

Male 104

Size (mm) Median 110 (IQR,

Sarcoma histology

HG-MLPS 36

UPS 40

SS 19

LMS 14

MPNST 9

Others 49

Neoadjuvant RT

Not performed 109

Performed 58

AI: anthracycline + ifosfamide; HT, histology-tailored chemotherapy; No., number; IQR, in
pleomorphic liposarcoma; SS, synovial sarcoma; LMS, leiomyosarcoma; MPNST, malign

Table 1: Clinical and pathological features of included patients.
and post-operative surgical specimen to assess the
modulation of infiltrating immune cells induced by
NAC.

Thirdly, multivariable models were built exploiting
AIM, which is a machine learning method incorpo-
rating variable selection and dichotomization,45 to
generate sarcoma immune index scores (SIS) that pre-
dict patient disease-free and overall survival (DFS and
OS).46 DFS was defined as the time from randomization
to either local recurrence or distant metastasis, while OS
was defined as the time from randomization to patient
death for any cause. Description of statistical analysis44,47

is included in online available Supplementary material.
Results
Overall, 246 over 435 study patients were included in this
analysis (CONSORT diagram, clinic-pathological features
and follow-up data are reported in Supplementary
Figure S1 and Table 1, respectively).

Distribution of immune cell infiltrate in STS after
NAC
The four tumour areas that were sampled for each study
patient showed a progressive and statistically significant
decrease of all investigated cell subsets from HI to TE
(Fig. 1A and B). CD3+ and CD8+ T-cells were the most
represented populations in all four areas; PD-1+ cells
were also abundant, suggesting the presence of
exhausted effectors. Similarly, the distribution of CD20+
B-cells, which differed although to a lesser extent, were
scantly, albeit detectable (≤1 cell), in a relevant
Neoadjuvant HT

% No. %

2.5–60.5) Median 51 (IQR, 41.5–58.5)

0.38 28 0.35

0.62 51 0.65

80–149.5) Median 97 (IQR, 75–137.5)

0.22 18 0.23

0.24 28 0.35

0.11 18 0.23

0.08 9 0.11

0.05 6 0.08

0.29 0 0

0.65 69 0.87

0.35 10 0.13

terquartile range; HG-MLPS, high grade myxoid liposarcoma; UPS, undifferentiated
ant peripheral nerve sheath tumor; RT, radiotherapy.

www.thelancet.com Vol 106 August, 2024
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proportion of patients. The presence of immune infil-
trate was consistent within the different cores in each
tumour, as indicated by the significant correlation be-
tween immune cell subsets (Fig. 1C and Supplementary
Figure S2). T-cell subsets appeared to be intimately
associated with B-cells and CD163+ tumour associated
macrophages (TAM), co-localizing in a selected patient
cluster (Fig. 1D).

In all the four tumour cores, expression of T-cell
subsets, including PD-1+ cells, and CD163+ TAM was
higher in ck-STS compared to sk-STS (Fig. 2A).
Conversely, the number of CD20+ B-cells appeared in-
dependent of tumour karyotype.
Fig. 2: Quantitative evaluation of tumour immune microenvironment
four tumour cores, T cell subsets, including PD1+ cells, and CD163+ cells w
karyotype (ck)-STS (N = 155) compared to simple karyotype (sk)-STS (N
tumour karyotype (A). The following STS were labelled as sk-STS: HG-M
MPNST, myxofibrosarcoma, pleomorphic liposarcoma, pleomorphic rha
exception of CD163+ macrophages, level of infiltrating T cells and B cells i
not differ statistically (B). Number of infiltrating CD3+, CD8+ and PD-1+ c
neoadjuvant radiation (N = 68) compared to TIME of patients with STS

www.thelancet.com Vol 106 August, 2024
With the exception of CD163+ TAM, no quantitative
differences in the level of infiltrating T- and B-cells in
patients who received neoadjuvant AI compared to pa-
tients treated with neoadjuvant HT were observed
(Fig. 2B). Neoadjuvant RT lowered CD3+, CD8+ and
PD-1+ cells compared to patients who had NAC alone
(Fig. 2C).

We performed an explorative analysis in a limited
number of patients who had matched pre-treatment
tumour biopsy and post-operative surgical specimen
available (N = 13), showing association of AI with an
increase of CD3+, CD8+, PD-1+, and CD163+ cells
(Supplementary Figure S3).
(TIME) of patients with high-risk soft tissue sarcomas (STS). In the
ere expressed at a statistically significant higher number in complex
= 91), while number of CD20+ B cells appears to be independent of
LPS and SS. The following STS were labelled as ck-STS: UPS, LMS,
bdomyosarcoma and unclassified spindle cell sarcoma. With the
n patients who received neoadjuvant AI (N = 167) or HT (N = 79) did
ells is higher in the TIME of patients with high-risk STS treated with
that did not receive neoadjuvant radiation (N = 176) (C).

5
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Identification of prognostic sarcoma immune index
scores (SIS) in spatially distinct TMA cores
Key information on the SIS built on the level of immune
markers in each tumour area (i.e., HI, HG, LG, and TE)
is provided in Supplementary Table S1. The stability of
each SIS is determined by multiple results obtained
through iterative analysis (Supplementary Table S2)
which resulted in different weights for each immune
cell population (Supplementary Figure S4).

Overall, PD-1+ (above cut-off) and CD8+ and CD3+
T-cells (below cut-off) were consistently selected in all
the scores, while the CD20+ B-cells (below cut-off) was
highly represented in HI and TE areas (Supplementary
Table S1). CD163+ TAM (above cut-off) was selected
only at TE. Of note, the cut-off values of CD20+,
FOXP3+ (Treg) and CD163+ cells were generally low in
all tumour areas, suggesting that a quantitatively mar-
ginal presence of B-cells, T-reg and TAM may influence
disease course and patient outcomes. A comprehensive
description of the immune cell populations included in
each SIS together with their cut-off values at the single
patient level is reported in Supplementary Figure S5.

In the HI area, the HI-SIS included CD8+, CD20+
and PD-1+ cells, with a prevalent role of low CD8+ cells
(below cut-off) and a comparable contribution of CD20+
(below cut-off) and PD-1+ (above cut-off; Supplementary
Figure S5). This score demonstrated the best stability
among the analyzed scores.

In the HG zone, the HG-SIS included CD3+ and PD-
1+ cells, which were consistently selected, with PD-1
being chosen in every iteration and CD3 in 86% of the
cases. However, the CD3 cut-off value exhibited high
variance and resulted in low precision of its prognostic
value.

In the LG area, potentially representing the residual
stainable tumour characterized by post-treatment
changes, SIS encompassed a more complex immune
marker panel, including CD8+, PD-1+, FOXP3+ and
CD3+ cells. This evidence indicates that tumour control
might require activated non-exhausted T-cells and a
limited impact of Treg. These selected markers
demonstrated a high number of occurrences across all
iterations and the precision of their cut-off values was
high, indicating their significance in the prognostic
model. However, this score was calculated on a relatively
low number of patients (N = 153) due to technical issues
with generating TMA from tumours with meaningful
post-treatment changes.

Finally, the TE-SIS included the broadest array of
immune cell subsets, including T-, B-cells and, for the
first time, CD163+ TAM, with a comparable contribu-
tion of all markers except CD8+ T-cells, which was
apparently less relevant at this site. However, the in-
clusion of a higher number of markers makes the score
more complex. Notably, the CD3 marker shows a
considerable variance in its cut-off values, making it
unreliable for prognostic assessment.
Association of the prognostic sarcoma immune
index scores (SIS) with patient DFS and OS
The SIS for the different tumour areas displayed a
remarkable association with patient DFS (Fig. 3).
Indeed, when grouped in two or three clusters based on
the score complexity, patients with low SIS values
showed overall a better DFS with respect to patients with
high scores (Fig. 3). HI-SIS, which was built on the
statistically most stable CD8+, PD-1+ and CD20+ cells,
clustered patients in two balanced groups (N = 93 for
score ≤1 vs N = 132 for score >1) with DFS curves
diverging at 12 months and reaching a median DFS of
82 and 45 months, respectively (log-rank test, P < 0.001).
DFS maintained statistically significant differences
when adjusted for patient risk according to Sarculator
nomogram score (Supplementary Table S3). Patients
clustering according to three remaining SIS groups also
showed convincing association with DFS, particularly
for LG-SIS (log-rank test, P < 0.001) and TE-SIS (log-
rank test, P < 0.001). The SIS-HG score, possibly
reflecting a poorly effective immune infiltrate in the
‘non-responding’ tumour area, showed instead a
weaker, although statistically significant, correlation
(log-rank test, P = 0.033) compared to the other SIS
scores.

Analysis of OS showed that the HI-SIS score
confirmed a statistical significance association with OS,
while the remaining three scores did not show convincing
associations with OS (Supplementary Figure S6;
Supplementary Table S4).

Finally, differences between NAC schedules were
investigated to evaluate whether anthracycline-based
NAC may drive the prognostic value of the SIS scores.
The HI-SIS and TE-SIS were significantly associated to
DFS after AI (log-rank test, P < 0.001 and P = 0.001,
respectively) but not after HT chemotherapy (log-rank
test, P = 0.65 and P = 0.086, respectively; Fig. 4). AI
resulted in significant prognostic value of SIS also in the
area with most pronounced post treatment changes (LG,
log-rank test, P < 0.001) compared to HT chemotherapy
(log-rank test, P = 0.062). As expected for the HG area,
the association of HG-SIS score with DFS for either AI
or HT chemotherapy did not reach statistical signifi-
cance (log-rank test, AI: P = 0.18, HT: AI: P = 0.18;
Supplementary Figure S7).
Discussion
This study investigated the spatial distribution of
tumour immune infiltrate in high-risk STS treated with
AI or an HT NAC followed by surgery with or without
RT in a RCT. We analyzed four different tumour areas
after NAC, characterized by the richest tumour infiltrate
at H&E (HI), high and low grade (HG and LG) accord-
ing to histopathological response to NAC,43,48 and the
tumour edge (TE). Quantitative differences in distribu-
tion of immune populations in the different STS areas
www.thelancet.com Vol 106 August, 2024
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Fig. 3: The Sarcoma index score (SIS) at each of the four sampled tumour areas: composition of the score and association with patient
disease-free survival (DFS). Composition of the SIS in each tumour area and direction of the association with patient DFS. Each marker scores a
point (+1) when detected above/below the cut-off, according to the direction of the association. Kaplan-Meier survival curves for DFS of the SIS
at each tumour area. P-values of log-rank tests are reported in each figure. Highest lymphocyte infiltrate (HI; A); highest grade (HG; B); lowest
grade (LG; C); tumour edge (TE; D).

Articles
and, most importantly, their different association with
patient prognosis support the hypothesis that NAC may
act as a modifier of TIME in STS. In addition, such
hypothesis is reinforced by the observation that this
prognostic association holds in patients treated with AI
but not with HT NAC, a group of chemotherapy
schedules that did not include an anthracycline. Overall,
these findings provide the background to design a
clinical trial to investigate the addition of immune
checkpoint inhibitors to NAC with anthracyclines in
patients with high-risk STS.
www.thelancet.com Vol 106 August, 2024
The evidence generated by this study is limited by
the small number of patients with available both pre-
treatment biopsy and post-surgical specimen as these
biopsies were primarily utilized for diagnostic purposes
and in other translational studies associated with this
trial.49,50 However, a higher tumour immune infiltrate
was detected after AI when both pre-treatment biopsy
and tumour specimen were available (N = 13).
Furthermore, this study examined the correlation be-
tween the composition of TIME following NAC and
patient outcomes. It is important to acknowledge that
7
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Fig. 4: The association of the sarcoma index score (SIS) with prognosis is driven by treatment with neoadjuvant anthracycline plus
ifosfamide (AI). The Kaplan-Meier survival curves visualize the association of the HI-SIS (A), the TE-SIS (B), and the LG-SIS (C) according to
whether patients were treated with anthracycline plus ifosfamide (AI, left column) or histology-tailored (HT) chemotherapy (HT, right column).
P-values of log-rank tests are reported in each figure.
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functional validation regarding the specific effects of
anthracyclines on the TIME of STS was not included in
these investigations. Additionally, findings of this study
may be limited by issues with multiple comparisons that
carry a risk of inflating false positive results. Although
this study included multiple STS histologies (N = 8) and
did not focus on a specific STS, these are the most
frequently detected sarcomas in the extremities and
superficial trunk wall and are commonly grouped
together in clinical trials investigating perioperative
therapies for primary localized high-risk patients.16

Whilst this study investigated a relatively low number
of immunological markers, it was designed to interro-
gate the TIME of STS patients treated with NAC to
capture the key infiltrating cells that may influence pa-
tient outcomes and possibly add new prognostic infor-
mation. We showed that the concerted triggering of
both adaptive and innate immunity, possibly driven by
B-cells,51 is apparently required to mediate clinically
effective tumour control. This concept confirms and
extends the prognostic role of TLS in STS,9,27,42 albeit the
use of TMA did not formally allowed TLS quantification
in our case sets.52 Interestingly, T-cells and TAM were
more represented in ck-STS compared to sk-STS, which
is consistent with the neoantigen nature of immuno-
logical determinants recognized by T-cells.53 Conversely,
CD20+ B-cells appeared independent of STS karyotype
group,27,54 likely thanks to their ability of detecting self-
proteins51 and possibly promoting antitumour immu-
nity even in cancers with reduced neoantigen repertoire.

Following treatment with NAC, we detected the
concerted presence of effector (i.e., CD8+ T-cells and
CD20+ B-cells) as well as exhausted and regulatory (i.e.,
PD-1+ cells, T-reg, and TAM) cells, supporting the in-
duction of a full-fledged antitumour immune response,
which is generally associated to the engagement of ho-
meostatic mechanisms aimed at restraining damage in
normal tissue. However, this effect appears to play a
detrimental role on immune-mediated disease control
as showed by the association of PD-1+ cells, Treg cells
and TAM infiltrate with shorter DFS. Indeed, it could be
hypothesized that strategies aimed at antagonizing reg-
ulatory immune pathways, such as PD-1 blockade, could
contribute to prolong the benefit of NAC-induced im-
mune responses in STS patients. This evidence support
a clinical trial to test the implementation of immune
checkpoint inhibitors together with NAC for patients
with high-risk STS.

Spatial immunohistochemical data were gathered
together in a prognostic sarcoma immune index score
(SIS) for each tumour area, having the HI-SIS score the
best performance. In the HI-SIS, patients with low
expression of CD8+ T-cells and B-cells were at higher
risk of developing disease recurrence after NAC plus
surgery, a condition that was worsened by PD-1+ cells
which suggested the presence of exhausted T-cells. The
prognostic value of the HI-SIS was detected only after
www.thelancet.com Vol 106 August, 2024
NAC with AI, supporting a functional modulation of
TIME in high-risk STS after anthracycline-based NAC.
In addition, in areas of tumours with lack of histo-
pathologic response to NAC, here identified as the HG
area, the negative prognostic effect of PD-1+ cells was
coupled with that of CD3+ T-cells, suggesting that
additional immune populations, such as CD4+ T-cells
could influence risk of disease progression. The char-
acterization of cell populations at the TE showed that
presence of non-exhausted T-cells and lack of effect
from Treg cells may result in a favourable prognostic
scenario for patients treated with NAC and surgery.
Conversely, TAM detected at the TE did associate with a
higher risk, which is in keeping with previous reports
on the detrimental effect of these cells in sarcomas55 and
at the invasive front in multiple solid cancers.56–58 Our
study confirmed the prognostic relevance of CD20 B
cells detected at the TE.9,27,42 Indeed, Petiprez et al.
evaluated TLS at the tumour edge and demonstrated the
association of mature TLS with longer patients survival
and chances to develop a tumour response after treat-
ment with an immune checkpoint inhibitor.27

This study has implications for future clinical research
in STS. Firstly, it shows that anthracycline may modulate
immune infiltrate in these tumours, a condition that has
been investigated before in other solid tumours, such as
breast cancer.1,7,11,13 Secondly, our study identified PD-1 as a
negative prognostic factor and a possible therapeutic target
in primary high-risk STS treated with neoadjuvant AI.
Consistently, patients who benefitted from pem-
brolizumab in the SARC0028 trial33 were mostly affected
by ck-STS (i.e., UPS or DDLPS) and had higher activated
T-cells characterized by PD-1 expression, TAM character-
ized by PD-L1 expression, densities of effector memory
cytotoxic T-cells and regulatory T-cells compared with
non-responders.59 In addition, this finding is in keeping
with a retrospective study on primary STS after neo-
adjuvant therapy, where PD-1+ cells were associated with
shorter survival.60 An independent validation of the prog-
nostic value of PD-1+ cells in patients with high-risk STS
treated with NAC is needed.

Although we generated prognostic scores at each
tumour area, the SIS score created in the HI area seems
the best candidate for an independent validation.
Remarkably, the HI area could be accurately identified
by pathologists compared to HG and LG areas, the latter
being also burdened by technical issue with TMA gen-
eration for the presence of post-chemotherapy changes.
Computational analysis suggested that both the selected
markers and their cut-offs for the HI-SIS were more
reproducible compared to the scores achieved at the
remaining three areas. In addition, fewer markers
(N = 3) were selected by the HI score compared to the
TE score (N = 6), easing the possible application of the
HI score.

Finally, this study may have relevance also for the
identification of patients who are more likely to have a
9
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benefit after neoadjuvant AI. Indeed, the HI-SIS
seems specifically related to treatment with AI. The
relevance of this findings is related to the conflicting
results of studies investigating the association be-
tween histopathological response and patient
outcomes.43,48,61

In conclusion, this study shows the prognostic rele-
vance of PD-1+ cells when analyzed in different areas of
selected high-risk STS of extremities or trunk wall
treated with NAC. CD20+ B cells correlate with better
survival after chemotherapy at HI and TE areas. Prog-
nostic risk stratification of immune infiltrate was
observed when patients were treated with anthracyclines
suggesting the possible role of this class of agents in
modulating TIME. Although validation of these findings
through functional experiments and analyses of inde-
pendent cohort are needed to confirm these findings,
the analyses here conducted support the design of a
clinical trial that combine an immune checkpoint in-
hibitor and AI for the treatment of patients with high-
risk STS of extremities or trunk wall.
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