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FOURFOLDS OF WEIL TYPE AND THE SPINOR MAP

BERT VAN GEEMEN

Abstract. Recent papers by Markman and O’Grady give, besides their main results on the Hodge conjecture

and on hyperkähler varieties, surprising and explicit descriptions of families of abelian fourfolds of Weil type with
trivial discriminant. They also provide a new perspective on the well-known fact that these abelian varieties
are Kuga Satake varieties for certain weight two Hodge structures of rank six.

In this paper we give a pedestrian introduction to these results. The spinor map, which is defined using a
half-spin representation of SO(8), is used intensively. For simplicity, we use basic representation theory and we
avoid the use of triality.

Introduction

The recent papers [Mar], [O’G] by Markman and O’Grady provide new descriptions of families of abelian
fourfolds of Weil type. Markman uses these to prove that certain Hodge classes on these fourfolds are algebraic.
Both show that these abelian varieties are isogeneous to the intermediate Jacobians of algebraic hyperkähler
varieties of Kummer type. O’Grady further relates this to the Kuga Satake construction for the (primitive)
second cohomology group of algebraic Kummer type varieties. See also [V] for further developments.

An abelian fourfold of Weil type has an imaginary quadratic field K = Q(
√
−d) in its endomorphism algebra.

These fourfolds define two subspaces of the complexification of their first homology group H1, a free Z-module
of rank 8. They are the +i-eigenspace of the complex structure on H1 ⊗ R defined by A and one of the two
eigenspaces of the K-action. Markman obtains the polarization on the abelian fourfold, an alternating form on
H1, from a symmetric(!) form on H1 and the K-action. The two subspaces turn out to be maximally isotropic
subspaces for this symmetric form.

In this paper we will mainly follow Markman’s approach. He considers a free, rank 8, Z-module V equipped
with a bilinear form. This V will become the first cohomology group of the fourfolds of Weil type. The
maximally isotropic subspaces of the complexification VC of V are well-known to be parametrized by two copies
of a Legendrian Grassmannian, a complex manifold of dimension six. The spinor map is a natural embedding of
this Grassmannian in P7, the image is a quadric hypersurface Q+. This map already made several appearances
in algebraic geometry, for example in the study of vector bundles over hyperelliptic curves in [vG1], of K3
surfaces in [Muk], of secant varieties in [Man] and of integrable systems [BHH].

The spinor map is best constructed using the representation theory of Spin(V ), a double cover of the
orthogonal group SO(V ) defined by the bilinear form on V . The spin group has a half-spin representation
whose projectivization is P7. The spinor map is equivariant for the action of Spin(V ). A natural integral
structure on the half-spin representation allows one to identify it with the complexification of a free Z module
S+ of rank 8. There is a non-degenerate bilinear form on S+ which defines the quadric Q+.

An analytic open subset Ω ⊂ Q+ parametrizes complex structures on VR that preserve the bilinear form
on V . Fixing a general element s ∈ S+ and considering only the complex structures on VR corresponding to
ℓ ∈ Ω ∩ s⊥ produces a five dimensional family of complex tori Tℓ, not algebraic in general, that have a Hodge
class, called the Cayley class,

cs ∈ H2,2(Tℓ,Z) = H4(Tℓ,Z) ∩H2,2(Tℓ).
The idea of using these tori and the associated action of Spin(7) = Spin(s⊥) to study the Hodge conjecture for
fourfolds of Weil type is due to V. Muñoz [Mun]. In §3.3 we observe that the existence of the Cayley classes
can be deduced from a relation between the spinor and the Plücker map. Using representation theory we then
compute the class cs for certain s that are relevant for Markman’s results in Proposition 6.14.

For any h ∈ S+ such that the sublattice 〈h, s〉 of S+ spanned by h and s has rank two and is positive
definite, the tori parametrized by the four dimensional domain Ω ∩ 〈h, s〉⊥ turn out to be abelian fourfolds of
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Weil type. The imaginary quadratic field K depends on h, s, but fixing s and choosing h suitably, any such
field occurs. The polarization is determined by K and the bilinear form on V . A further discrete invariant, the
discriminant of a polarized abelian variety of Weil type, is always trivial for the fourfolds constructed in this
way. See Theorem 4.6 for these results of Markman and O’Grady.

The Hodge conjecture for an abelian fourfold A of Weil type is non-trivial. There is a natural 2-dimensional
subspace WK ⊂ H2,2(A,Q) of Hodge classes. It is not known in general if this subspace is spanned by classes
of algebraic cycles. If cs is algebraic, then all classes in WK are also algebraic. Markman makes important
progress in the study of the Hodge conjecture by showing that cs is algebraic for all abelian fourfolds appearing
in his construction, which are all fourfolds of Weil type with trivial discriminant. For this he uses deformation
theory of sheaves on hyperkähler manifolds, see §5 for a brief outline.

Triality, an automorphism of order three of Spin(V ), allows one to relate the standard representation of
Spin(V ) (via (SO(V ) on V ) and the two half-spin representations, one of which is S+. While it is prominent
in [Mar], we use instead an ‘ad hoc’ Lemma 6.9. It is of importance for instance in the results on the Cayley
class and for the Kuga Satake varieties.

We limit ourselves to a basic exposition of the constructions of Markman and O’Grady of the abelian fourfolds
of Weil type with trivial discriminant and of the Cayley classes of Muñoz and Markman. Some details of the
representation theory involved in the construction of the spinor map and the Cayley classes can be found in the
Appendix, §6. The relation with the Kuga Satake construction is indicated in §6.15 - 6.18.

Acknowledgements. Discussions with E. Markman and K.G. O’Grady were very helpful.

1. Tori with an orthogonal structure

1.1. The lattice V . The complex tori we consider are all quotients of a fixed real vector space, with a varying
complex structure, by a fixed lattice. Whereas one might expect an alternating form, a polarization, on the
first cohomology group to be important, Markman instead fixes a symmetric, non-degenerate, bilinear form
(•, •)V on a rank eight free Z-module V of signature (4+, 4−). He fixes a rank four free Z-module W , defines
W ∗ := HomZ(W,Z) and

V := W ⊕ W ∗,
(
(w1, w

∗
1), (w2, w

∗
2)
)
V

:= w∗
1(w2) + w∗

2(w1) .

If e1, . . . , e4 is a Z-basis of W and ei+4 := e∗i , where e∗1, . . . , e
∗
4 is the dual basis of W ∗ so that e∗i (ej) = δij

(Kronecker’s delta), then

(v1, v2)V :=

4∑

i=1

xiyi+4 + xi+4yi,
(
v1 :=

8∑

i=1

xiei, v2 :=

8∑

i=1

yiei ∈ V
)
,

hence (V, (•, •)V ) ∼= U⊕4, the direct sum of four copies of the hyperbolic plane U = (Z2,

(
0 1

1 0

)
).

In [Mar] one finds W := H1(X,Z) for an abelian surface X , but for the basic properties of the complex tori
this is not needed.

1.2. Complex structures on VR. Let VR := V ⊗Z R, it is an eight dimensional vector space over the real
numbers. A complex structure on VR is a linear map J : VR → VR with J2 = −I. Such a map has two (complex)
eigenspaces Z+, Z− ⊂ VC := V ⊗Z C corresponding to the eigenvalues i,−i ∈ C of J . These eigenspaces are
complex conjugate, Z+ = Z−, where the complex conjugation on VC is defined as v ⊗ z = v ⊗ z̄ for v ∈ V and
z ∈ C.

VC = Z+ ⊕ Z− = Z+ ⊕ Z+, J = (i,−i) ∈ End(Z+)⊕ End(Z−) .

Conversely, given two complex conjugate subspaces Z± ⊂ VC such that VC = Z+⊕Z− one can define a linear

map J̃ : VC → VC by J̃(v++ v−) = iv+− iv−. Then there is a linear map J : VR → VR whose C-linear extension

to VC is J̃ . In fact, the inclusion VR →֒ VC identifies VR with the (v+, v−) ∈ Z+ ⊕ Z− with v+ = v−. Writing

v ∈ VR as v = v+ + v−, with v− = v+, one has J̃v = iv+ + iv+ ∈ VR, so J is just the restriction of J̃ to VR.
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1.3. Orthogonal complex structures and isotropic subspaces. The R-bilinear extension of (•, •)V de-
fines a bilinear form on VR, denoted by the same symbol. We consider now the complex structures J that
preserve this bilinear form, so (Jv1, Jv2)V = (v1, v2)V for all v1, v2 ∈ VR. Equivalently, J ∈ SO(VR, (•, •)V ) and
we will call J an orthogonal complex structure. Notice that for such a complex structure J and for eigenvectors
v1+, v2,+ ∈ Z+ we have, for the C-bilinear extension of the bilinear form,

(v1+, v2+)V = (Jv1+, Jv2+)V = (iv1+, iv2+)V = i2(v1+, v2+)V = −(v1+, v2+)V .

Hence the restriction of (•, •)V to Z+ is identically zero. Thus Z+ is an isotropic subspace of VC (and since
dimZ+ = 4 = (1/2) dimVC it is a maximally isotropic, or Legendrian, subspace of VC). Similarly Z− is a
maximally isotropic subspace of VC (and since the bilinear form is non-degenerate it induces a duality Z+

∼= Z∗
−).

One easily verifies that, conversely, an isotropic subspace Z+ ⊂ VC such that VC = V+⊕V+ defines a complex
structure J on VR that preserves (•, •)V . We summarize this in the following lemma.

1.4. Lemma. There is a natural bijection between the following two sets:

• the orthogonal complex structures J ∈ SO(VR, (•, •)V ) on VR,
• the maximally isotropic subspaces Z of VC such that VC = Z ⊕ Z.

2. The Legendrian Grassmannian and the spinor map

2.1. In this section we recall that a connected component IG(4, VC)
+ of the Grassmannian of maximally

isotropic subspaces of VC is isomorphic to a smooth six dimensional quadric Q+ ⊂ PS+
C

∼= P7, where
(S+, (•, •)S+) is a certain lattice of rank eight. This isomorphism is induced by the spinor map, which is
equivariant for the action of the double cover Spin(V ) of SO(V ) on V and S+ respectively. We refer to the
Appendix §6 for more details.

2.2. The Grassmannian IG(4, VC)
+. The (complex) four dimensional subspaces of VC are parametrized by

the Grassmannian G(4, VC), which has dimension 4 · (8 − 4) = 16. The maximally isotropic subspaces for
(•, •)V (which are also those for the associated quadratic form) are parametrized by two (isomorphic, disjoint,
connected) complex submanifolds of dimension six of G(4, VC), denoted by IG(4, VC)

+ and IG(4, VC)
−. (See

[GH, Chapter 6] for linear subspaces of quadrics.) This generalizes the two rulings (families of lines) on a smooth
quadric Q ∼= P1 ×P1 in P3. We denote by IG(4, VC)

+ the connected component which contains the maximally
isotropic subspace W ∗

C . A complex maximally isotropic subspace Z defines a point [Z] ∈ IG(4, VC)
+ if and only

if the dimension of Z ∩W ∗
C is even. In particular, also [WC] ∈ IG(4, VC)

+.
We recall a local parametrization of IG(4, VC)

+ by alternating 4×4 complex matrices. A basis of W ∗ is given
by the last four basis vectors of V in §1.1. Thus W ∗

C is spanned by the columns of the 8× 4 matrix (0I). Slightly
deforming WC, we obtain another subspace spanned by the columns of an 8× 4 matrix. Since detI = 1 6= 0 we
may assume that the lower 4 × 4 submatrix is still invertible. Then we can find a basis of the same subspace
given by the columns of a matrix (BI ), the corresponding subspace will be denoted by ZB. Thus we found a
Zariski open subset G(4, VC)0 of G(4, VC) of dimension 42 = 16 parametrized by 4× 4 complex matrices.

In general ZB will not be isotropic, but one easily verifies that

(•, •)V |ZB×ZB
= 0 ⇐⇒

(
tB I

)(0 I
I 0

)(
B
I

)
= 0 ⇐⇒ tB + B = 0 .

Hence the vector space of alternating 4× 4 matrices Alt4 provides us with a parametrization of a Zariski open
subset of IG(4, VC)

+ of dimension 4(4− 1)/2 = 6 which we denote by IG(4, VC)
+
0 :

Alt4
∼=−→ IG(4, VC)

+
0 →֒ IG(4, VC)

+, B 7−→ [ZB] =

[(
B
I

)]
.

The isotropic subspace ZB is also the graph of the (alternating) map W ∗ → W , w∗ 7→ Bw∗.
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2.3. The Plücker map. The Grassmannian G(4, VC) has a natural embedding, the Plücker map π, into a
projective space PN = P ∧4 VC of dimension N + 1 =

(
8
4

)
= 70:

π : G(4, VC) −→ P ∧4 VC, Z 7−→ [∧4Z] .

The Plücker map is equivariant for the action of GL(VC).
On the open subset G(4, VC)0 of G(4, VC) the Plücker map is thus given by the determinants of the 4 × 4

submatrices of the 8× 4 matrix P := (BI ). Using the basis of V from §1.1, the coefficient of ei1 ∧ . . . ∧ ei4 in

[∧4ZB] = [r1 ∧ . . . ∧ r4],
(
rj =

8∑

k=1

Pkjek ∈ ZB, P := (BI )
)

is the determinant of the 4× 4 submatrix of P with rows i1, . . . , i4.

2.4. The spinor map. The Picard group of G(4, VC) is generated by the Plücker line bundle π∗OPN (1). The
restriction of this line bundle to IG(4, VC)

+ does not generate the Picard group of IG(4, VC)
+, but there is a

line bundle L on IG(4, VC)
+ such that

(π∗OPN (1))|IG(4,VC)+
∼= L⊗2 ,

and Pic(IG(4, VC)
+) ∼= Z is generated by L. One has h0(IG(4, VC)

+,L) = 8 and the natural spinor (or Cartan)
map

γ : IG(4, VC)
+ −→ PS+

C
∼= PH0(IG(4, VC)

+,L)∗

is an embedding whose image is a smooth quadric Q+ ⊂ PS+
C . Here S+

C is the complexification of a lattice S+

that will be defined below (in an ad hoc manner), see also §5.2 and §6.2.
For ZB in the open subset IG(4, VC)

+
0 , where B = (bij) is an alternating 4× 4 matrix, this map is given, in

a suitable basis of S+, by (see Theorem 6.8.4):

γ : ZB 7−→ (z1 : . . . : z7) =
(
1 : b12 : b13 : b14 : b12b34 − b13b24 + b14b23 : −b34 : b24 : −b23

)
.

The coordinate functions are, up to signs, the Pfaffians of the alternating submatrices of B with an even number
of rows and columns. The closure of the image of γ is the spinor variety, a smooth quadric:

Q+ = γ(IG(4, VC)
+) = { (z1 : . . . : z8) ∈ PS+

C : z1z5 + z2z6 + z3z7 + z4z8 = 0 } .

In fact the signs and the order of the coordinate functions on S+
C were chosen in such a way as to obtain this

simple equation.
The homogeneous coordinates above define a Z-module S+ ∼= Z8 ⊂ S+

C with bilinear form (•, •)S+ such that

for z = (z1, . . . , z8) ∈ S+ one has (z, z)S+ = 2(z1z5+z2z6+z3z7+z4z8). In particular, S+ ∼= U4 and for z ∈ S+
C

one has z ∈ Q+ iff (z, z)S+ = 0 where we use the C-bilinear extension of the bilinear form.

2.5. Orthogonal complex structures and their period space Ω. An orthogonal complex structure J on
VR is determined by (and determines) a maximally isotropic subspace Z+ such that VC = Z+ ⊕ Z+. Using the
spinor map we see that ℓ := γ([Z+]) is a point of the quadric Q+ ⊂ PS+

C , that is (ℓ, ℓ)S+ = 0. Since the spinor

map is defined over Q, we get [Z+] = ℓ̄, the complex conjugate of the point ℓ in PS+
C . The condition that

Z+ ∩Z+ = 0 is equivalent to the fact that the complex line spanned by ℓ, ℓ̄ is not contained in Q+ (see Lemma
6.9). This again is equivalent to (ℓ, ℓ̄)S+ 6= 0 and since (ℓ, ℓ̄)S+ ∈ R we see that (ℓ, ℓ̄)S+ is either positive or
negative.

We define an open (six dimensional, connected) analytic subset of Q+ by

Ω = ΩS+ := { ℓ ∈ PS+
C : (ℓ, ℓ)S+ = 0, (ℓ, ℓ)S+ > 0 } .

Then any ℓ ∈ Ω defines a maximal isotropic subspace Zℓ of VC such that VC = Zℓ ⊕ Zℓ and thus it defines an
orthogonal complex structure Jℓ on VR.
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The complex structure Jℓ on VR defines a complex torus Tℓ of dimension four by requiring an isomorphism
of weight 1 Hodge structures

H1(Tℓ,Z) = (V, Jℓ), i.e. H1,0(Tℓ) = Zℓ .

This complex torus can also be defined as Tℓ = VC/(Zℓ + V ).

3. Tori with an orthogonal structure and a Cayley class

3.1. Using representation theory (explained in more detail in the Appendix), we recall the relation between
the spinor and the Plücker map. We also find a natural map from S+ to ∧4V , the image of s ∈ S+ is denoted
by cs ∈ ∧4V . For ℓ ∈ Ω the complex torus Tℓ has H1(Tℓ,Z) = (V, Jℓ). Thus we can also identify the Hodge
structures ∧4V = H4(Tℓ,Z) and for s ∈ S+ we obtain a cohomology class cs ∈ H4(Tℓ,Z) which is Markman’s
Cayley class of s.

In §3.4 we recall Markman’s result that the Cayley class is a Hodge class, so cs ∈ H2,2(Tℓ,Z), if and only
if ℓ ∈ Ωs⊥ := s⊥ ∩ Ω where s⊥ is the hyperplane in S+

C defined by s using the bilinear form on S+. Hence
the five dimensional complex manifold Ωs⊥ parametrizes the four dimensional complex tori with an orthogonal
structure and Hodge class cs.

3.2. The spinor and the Plücker map. From the isomorphism π∗OPN
∼= L⊗2 over IG(4, VC)

+, one can
deduce that the Plücker map on IG(4, VC)

+ is the composition of the spinor map γ with the second Veronese
map ν on PS+

C . The Veronese map is induced by

ν : S+ −→ Sym2(S+), s 7−→ s⊙ s .

More precisely, the group Spin(VC), a double cover of SO(VC), has a natural (half-spin) representation on
S+
C and on the 36 dimensional vector space Sym2(S+

C ). This latter representation is reducible, due to the

Spin(V )-invariant quadric on S+ which dually defines an invariant one dimensional subspace Γ0 of Sym2(S+
C ).

A complement of this subspace turns out to be an irreducible Spin(VC)-representation and is denoted by Γ2α:

Sym2(S+
C ) ∼= Γ2α ⊕ Γ0 .

The subspace Γ2α is spanned by the symmetric tensors z ⊙ z ∈ Sym2(S+
C ) with [z] ∈ Q+ ⊂ PS+

C .
There is a decomposition of the 70-dimensional ∧4VC in two irreducible Spin(VC)-representations of dimension

35 (it corresponds to the decomposition of ∧4VC into dual and anti-selfdual 4-forms for the Hodge star operator
defined by (•, •)V ):

∧4VC = Γ2α ⊕ Γ2β .

The image of Q+ by the second Veronese map spans the linear subspace PΓ2α ⊂ PN = P ∧4 VC.

3.3. The Cayley classes. Another consequence of the relation between the Spin(V )-representations
Sym2(S+) and ∧4V is that any element s ∈ S+ defines a 4-form cs ∈ ∧4V , which is called the Cayley class of
s ([Mar, Remark 12.4], [Mun, §2.1]). It is obtained as the composition

S+ ν−→ Sym2(S+) ∼= Γ2α ⊕ Γ0 −→ Γ2α −→ ∧4V , s 7−→ cs .

This map is equivariant for the action of Spin(V ). The stabilizers in Spin(V ) of s and cs thus have the same
Lie subalgebra. If (s, s)S+

6= 0 the complexification of this Lie algebra is isomorphic to so(7)C.

3.4. The Cayley class and Hodge classes. Let ℓ ∈ Ω ⊂ Q+ and let Tℓ be the associated complex torus. The
Hodge decomposition of the first cohomology group H1(Tℓ,Z) = (V, Jℓ) is given by the eigenspaces Zℓ, Zℓ = Zℓ

of the orthogonal complex structure Jℓ in VC:

H1(Tℓ,C) = VC = Zℓ ⊕ Zℓ, Jℓ = (i,−i) ∈ End(Zl)⊕ End(Zℓ) .

To describe the Hodge structure on Hk(Tℓ,Z) we use the homomorphism

hV,ℓ : U(1) := {z ∈ C : zz = 1} −→ GL(VR), hV,ℓ(a+ bi) := aI + bJℓ,

where a, b ∈ R, a2 + b2 = 1. Notice that aI + bJℓ = (a+ bi, a− bi) ∈ End(Zl)⊕ End(Zℓ).
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Since Hk(Tℓ,Z) = ∧kH1(Tℓ,Z) = ∧kV , the Hodge decomposition Hk(Tℓ,C) = ⊕Hp,q(Tℓ) is defined by

Hp,q(Tℓ) =
(
∧p Zℓ

)
⊗
(
∧q Zℓ

)
= {x ∈ ∧kVC : hV,ℓ(a+ bi) · x = (a+ bi)p(a− bi)qx ∀a+ bi ∈ U(1) } ,

In particular, the Hodge classes in H2p(Tℓ,Z) are the invariants of the one-parameter subgroup hV,ℓ of SO(VR).
The following proposition is essentially [Mar, Lemma 12.2].

3.5. Proposition. Let cs ∈ ∧4V be the Cayley class defined by s ∈ S+, the integral lattice, and let ℓ ∈ ΩS+ .
Then cs is an integral Hodge class in H4(Tℓ,Z) exactly when (ℓ, s)S+ = 0:

cs ∈ H2,2(Tℓ,Z) := H4(Tℓ,Z) ∩H2,2(Tℓ) if and only if ℓ ∈ Ωs⊥ := {ℓ ∈ Ω : (ℓ, s)S+ = 0 } .

Proof. First we observe that hV,ℓ(z) ∈ SO(VR) for all z ∈ U(1). In fact, for v, w ∈ VR we have

(
(aI + bJℓ)v, (aI + bJℓ)w

)
V

= a2
(
v, w

)
V

+ ab
((

v, Jℓw
)
V

+
(
Jℓv, w

)
V

)
+ b2

(
Jℓv, Jℓw

)
V

=
(
v, w

)
V

,

because (Jℓv, Jℓw)V = (v, w)V implies (v, Jℓw) = (Jℓv, J
2
ℓw)V and J2

ℓ = −I.
The homomorphism lifting the one-parameter subgroup hV,ℓ : U(1) → SO(VC) to Spin(VC) is denoted by

hℓ : U(1) := {z ∈ C : zz = 1} −→ Spin(VC) .

The action of hℓ(z) ∈ Spin(VC) in the half-spin representation ρ+ on S+
C is (see Lemma 6.9):

ρ+(hℓ(z))ℓ = z2ℓ, ρ+(hℓ(z))ℓ = z̄2ℓ, ρ+(hℓ(z))s = s, ∀s ∈ 〈ℓ, ℓ〉⊥ .

Using the induced action of Spin(VC) on s⊙ s ∈ Sym2(S+
C ) and its image cs ∈ ∧4VC = H4(Tℓ,C) we see that

cs is invariant under hℓ(z) for all z ∈ U(1) if and only if s is invariant, so s ∈ 〈ℓ, ℓ〉⊥. For s ∈ S+ the condition
(s, ℓ)S+ = 0 implies, by complex conjugation, that also (s, ℓ)S+ = 0, which proves the proposition. �

4. Abelian varieties of Weil type

4.1. The complex tori Tℓ and abelian varieties. For a point ℓ ∈ Ω, an open subset of the spinor quadric
Q+, we defined a complex torus Tℓ of dimension four whose first cohomology group is identified with V and
whose Hodge structure is determined by H1,0(Tℓ) = Zℓ, the maximal isotropic subspace of VC corresponding to
ℓ.

Fixing an s ∈ S+ we also found that for ℓ ∈ Ωs⊥ this complex torus has an integral Hodge class (the Cayley
class) cs ∈ H2,2(Tℓ,Z). Now we assume that (s, s)S+ > 0 and we fix another, non-isotropic, class h ∈ s⊥ with
(h, h)S+ > 0. Hence the rank two sublattice 〈h, s〉 ⊂ S+ generated by h, s is positive definite for the bilinear
form on S+. For ℓ ∈ 〈h, s〉⊥ ∩ Ω the torus Tℓ turns out to be an abelian variety of Weil type and the Cayley
class cs is a non-trivial Hodge class. This result, Theorem 4.6 below, is due to O’Grady [O’G, Theorem 5.1] and
Markman [Mar, Corollary 12.9, Theorem 13.4]. First we recall the basic facts on abelian varieties of Weil type.

4.2. Abelian varieties of Weil type. Let A be an abelian variety and let K = Q(
√
−d), with d ∈ Z>0, be

an imaginary quadratic field. An abelian variety of Weil type (with field K) is a pair (A,K), where A is an
abelian variety and K →֒ End(A)Q is a subalgebra of the endomorphism algebra of A, such that for all x ∈ K,

x /∈ Q, the endomorphism of T0A defined by the differential of x = a+b
√
−d ∈ K, with a, b ∈ Q, has eigenvalues

x = a+ b
√
−d and x̄ = a− b

√
−d with the same multiplicity. Equivalently, the eigenvalues of x∗ on H1,0 have

the same multiplicity. In particular, if (A,K) is of Weil type, then dimA is even.
Given an abelian variety of Weil type (A,K), there exists a polarization ωK ∈ H1,1(A,Z) on A such that for

all x ∈ K its pull-back is

x∗ωK = Nm(x)ωK , Nm(x) = xx̄ ,

where Nm(x) is the norm of x ∈ K (see [vG2, Lemma 5.2.1]). We call such a 2-form a polarization of Weil type
and (A,K, ωK) is called a polarized abelian variety of Weil type.
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4.3. The Weil classes. For a general abelian variety of Weil type (A,K) of dimension 2n, the spaces of Hodge
classes

Bp(A) := Hp,p(A,Q) := H2p(A,Q) ∩Hp,p(A)

have dimensions ([W], see also [vG2, Theorem 6.12]):

dimBp(A) = 1, (p 6= n), dimBn(A) = 3 .

Since dimB1(A) = 1, any ω ∈ B1(A), ω 6= 0, defines (up to sign) a polarization on A which will be of Weil
type.

The action of the multiplicative group K× := K − {0} on H1(A,K) := H1(A,Q) ⊗Q K has an eigenspace
decomposition into two 2n-dimensional K subspaces

H1(A,K) = Zκ ⊕ Zκ, x∗(v, w) = (xv, xw)

that are conjugate over K. Since A is of Weil type, the complexifications of these eigenspaces both have Hodge
numbers h1,0 = h0,1 = n. Thus in H2n(A,K) = ∧2nH1(A,K) there are two 1-dimensional subspaces ∧2nZκ,
∧2nZκ of Hodge type (n, n). Since they are conjugate, their direct sum is defined over Q. This defines a
2-dimensional subspace of Hodge classes

WK ⊂ Hn,n(A,Q), WK ⊗Q K = ∧2nZκ ⊕ ∧2nZκ .

(There is also a natural identification of WK with ∧2n
K H1(A,Q) where H1(A,Q) is viewed as a 2n-dimensional

K vector space.) The subspace WK is called the space of Weil classes. For any A of Weil type one has

Qωn
K ⊕ WK ⊆ Bn(A)

where ωn
K , is the n-fold exterior product of ωK with itself. For a general A of Weil type one has Bn(A) =

Qωn
K ⊕ WK .
An element x ∈ K acts with eigenvalues (xx̄)n, x2n, x̄2n on Qωn

K ⊕ WK . Thus if a non-zero element c in
the three dimensional Q vector space Qωn

K ⊕ WK is algebraic and it is not an eigenvector for the K-action (so
it is not a multiple of ωn

K) then all classes in Qωn
K ⊕ WK are algebraic since ωn

K is and so is x∗c for all x ∈ K.

4.4. The Hermitian form. The Q vector space H1(A,Q) is also a K vector space for the action of K given
by x∗ for x ∈ K ⊂ End(A)Q. A polarization of Weil type ωK ∈ H2(A,Q) defines an alternating form on
H1(A,Q) and it also defines a K-valued Hermitian form H on this K-vector space by:

H : H1(A,Q)×H1(A,Q) −→ K, H(x, y) := ωK(x, (
√
−d)∗y) +

√
−dωK(x, y).

If Ψ ∈ Mn(K) is the Hermitian matrix defining H w.r.t. some K-basis of H1(A,Q) then det(Ψ) ∈ Q× = Q−{0}
and the class of det(Ψ) ∈ Q×/Nm(K×), called the discriminant of H , is independent of the choice of the basis.
Given two non-degenerate Hermitian forms H,H ′ on Kn, there is a K-linear map M : Kn → Kn such that
H(x, y) = H(Mx,My) for all x, y ∈ Kn if and only if H , H ′ have the same signature and the same discriminant.

The discriminant of a polarized abelian variety of Weil type (A,K, ωK) is the discriminant of H .
In Markman’s approach, the real part of H , which is a bilinear form, is (up to the duality between H1(A,Z)

and H1(A,Z) and up to a scalar multiple) the bilinear form (·, ·)V , cf. §4.8. In particular, it is the same for all
families of Weil type, for all fields, considered in [Mar] and in Theorem 4.6 below.

4.5. Complete families. Given a K vector space U of dimension 2n and a Hermitian form H : U ×U → K,
any 2n-dimensional abelian variety of Weil type A with field K and discriminant equal to the discriminant of
H is obtained by choosing a free Z-module Λ ⊂ U of rank 4n and a complex structure on J on ΛR := Λ ⊗Z R

such that J commutes with K, the two eigenspaces of x ∈ K, x /∈ Q, on (ΛR, J) have the same dimension and
finally the imaginary part ωK of H defines a polarization on the complex torus (ΛR, J)/Λ.

The unitary group U(H)R ∼= U(n, n) of the Hermitian form H on the C = K ⊗Q R vector space ΛR acts by
conjugation g · J := gJg−1 on these complex structures. From this one obtains a complete family of abelian
2n-folds of Weil type parametrized by a Hermitian symmetric domain isomorphic to U(n, n)/(U(n) × U(n)),
so of complex dimension n2. The unitary group SU(H) ⊂ GL(ΛQ), viewed as algebraic group over Q, is the
special Mumford Tate group of the general abelian variety in the family, see [vG2].

We discuss the proof of the following theorem in the remainder of this section.
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4.6. Theorem. Let h, s ∈ S+ be perpendicular and such that 〈h, s〉 ⊂ S+ is a positive definite rank two
sublattice. Let d := (h, h)S+(s, s)S+ ∈ Q>0 and let ℓ ∈ Ω{h,s}⊥ , where

Ω{h,s}⊥ := {ℓ ∈ Ωs⊥ : (ℓ, h)S+ = 0 } = {ℓ ∈ Ω : (ℓ, s)S+ = (ℓ, h)S+ = 0 }
is a complex manifold of dimension four. Then we have:

a) The complex four dimensional torus Tℓ has endomorphisms by K = Q(
√
−d), that is K ⊂ End(Tℓ)Q.

b) The complex torus Tℓ has a polarization ωK ∈ H2(Tℓ,Z) and (Tℓ,K, ωK) is polarized abelian fourfold
of Weil type.

c) The discriminant of the polarization ωK ∈ H2(Tℓ,Z) is trivial.
d) The Cayley class cs ∈ H2,2(Tℓ,Z) is not contained in the subspace Qω2

K where ω2
K = ωK ∧ ωK .

e) The four dimensional family of these fourfolds of Weil type parametrized by Ω{h,s}⊥ is complete.

4.7. Endomorphisms of Tℓ. Since the sublattice 〈h, s〉 is positive definite, we may assume that the restriction
q of the quadratic form on S+ is given by q(xh + ys) = ax2 + by2, with both a = (h, h)S+ , b = (s, s)S+ ∈ Q

positive. Hence d = ab > 0. The zero locus of q is defined by a−1((ax)2 + aby2) = 0, showing that there are two
isotropic lines in 〈h, s〉C defined by ax±

√
−dy = 0. These two lines are conjugate over K where the conjugation

on K is x+ y
√
−d = x− y

√
−d with x, y ∈ Q. In PS+

C they correspond to the two points of intersection of the
line P〈h, s〉C with the spinor quadric Q+ ∼= IG(4, VC)

+, which we denote by κ, κ:

{κ, κ} = Q+ ∩ P〈h, s〉C (⊂ PS+
C ) .

As Q+ = γ(IG(4, VC)
+), these two points define two maximal isotropic subspaces in VK := V ⊗Q K denoted

by Zκ, Zκ. Since the points κ, κ are conjugate over K, so are these subspaces: if w = v +
√
−dv′ ∈ Zκ with

v, v′ ∈ VQ then w = v −
√
−dv′ ∈ Zκ.

The plane 〈h, s〉C is not contained in Q+, hence these two subspaces have trivial intersection (Lemma 6.9,
[Ch, III.1.12]):

VK = Zκ ⊕ Zκ, (v1, v2) = (v2, v1) (v1 ∈ Zκ, v2 ∈ Zκ) .

We identify the Q vector space VQ with the image of VQ →֒ VK , it consists of the points (v1, v1) with v1 ∈ Zκ.
Now we define an action of K on VQ (⊂ VK) by

K × VQ −→ VQ, x · (v1, v1) := (xv1, x̄v1) = (xv1, xv1) (∈ VQ ⊂ Zκ ⊕ Zκ) ,

where x̄ is the conjugate of x ∈ K.
To show that this induces an inclusion K ⊂ End(Tℓ)Q, it suffices to verify that any x ∈ K commutes with

the complex structure Jℓ on VR. Since ℓ ∈ Ωh,s⊥ we have (ℓ, κ)S+ = 0 and similarly the scalar products of any

one of ℓ, ℓ and any one of κ, κ are zero. Therefore the intersection of Zℓ, Zℓ with the complexifications of Zκ, Zκ

is not zero by Lemma 6.9. Since these spaces are parametrized by the same connected component IG(4, VC)
+,

their intersection is even dimensional and thus it is two dimensional. From the eigenspace decomposition for
Jℓ, VC = Zℓ ⊕ Zℓ, we obtain the decomposition

VC = (Zℓ ∩ Zκ,C) ⊕ (Zℓ ∩ Zκ,C) ⊕ (Zℓ ∩ Zκ,C) ⊕ (Zℓ ∩ Zκ,C) .

The action of Jℓ and x ∈ K on these four summands are scalar multiplications (by ±i and x, x̄ respectively),
hence the action of K indeed commutes with Jℓ. Since each summand has dimension 2, the eigenvalues of
x ∈ K, x 6∈ Q, on Zℓ = H1,0(Tℓ) have the same dimension.

4.8. The polarization. The combination of the K-action on VQ = H1(Tℓ,Q) with the bilinear form (•, •)V
leads a polarization ωK ∈ H2(Tℓ,Q) on Tℓ. We define a bilinear form E on VQ by:

E : V × V −→ Q, E(v, w) = (
√
−d · v, w)V .

The duality V = H1(Tℓ,Q)dual implies that E defines an element ωK ∈ ∧2V = H2(Tℓ,Q). Similar to the
computations for Kähler forms and metrics we establish the basic properties of E which imply that (Tℓ,K, ωK)
is a polarized abelian fourfold of Weil type.

First of all, we have for all v, w ∈ VQ and all x ∈ K that

E(x · v, x · w) = xx̄E(v, w) .
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To verify this, we extend E K-bilinearly to VK and we use that Zκ, Zκ are isotropic subspaces. Thus, with
v = v1 + v1, w = w1 + w1 ∈ Zκ ⊕ Zκ we get

E(x · v, x · w) =
(
x
√
−dv1 + x

√
−dv1, xw1 + xw1)

)
V

=
(
x
√
−dv1, x̄w1

)
V

+
(
x̄
√
−dv1, xw1

)
V

= xx̄
(
(
√
−dv1, w1)V + (

√
−dv1, w1)V

)

= xx̄E(v, w) .

Next we show that E is alternating:

E(v, w) = (
√
−d · v, w)V = (w,

√
−d · v)V = 1

d
(
√
−d · v,

√
−d

2 · w)V = −(
√
−d · v, w)V = −E(w, v) .

To show that the 2-form ωK is of type (1, 1) it suffices to show that E(Jℓv, Jℓw) = E(v, w) for all v, w ∈ VR:

E(Jℓv, Jℓw) =
(√

−d · Jℓv, Jℓw
)
V

=
(
Jℓ(

√
−d · v), Jℓw)V =

(√
−d · v, w)V = E(v, w) .

Finally we verify that E(Jℓv, v) > 0 for non-zero v ∈ VR. That is, we must show that (
√
−d · Jℓv, w) >

0. The endomorphisms
√
−d, Jℓ of VR are both constructed from decompositions of VC with two conjugate

isotropic subspaces Zκ, Zκ and Zℓ, Zℓ respectively. The corresponding points κ, κ, ℓ, ℓ ∈ Q+ = IG(4, V )+

span a P3 ∈ PS+
C which is the projectivization of the complexification of the four dimensional subspace <

h, s, ℓ + ℓ, (ℓ − ℓ)/i >⊂ S+
R (here C = R + iR). Notice that this basis consists of perpendicular vectors for

(•, •)S+ and that the subspace is positive definite.
The group Spin(VR) acts via SO(S+

R ) on S+
R and this action is transitive on such subspaces. As Spin(VR)

also acts via SO(VR) on VR, we see that it suffices to show that (J1J2v, v) > 0 for all non-zero v ∈ VR where the
linear maps J1, J2 are defined by any two orthogonal positive definite 2-dimensional subspaces of S+

R . (Markman
shows that the map J1J2 is already determined, up to a scalar multiple, by the direct sum of these subspaces.)

We use the conventions from §2.4. A point z = (z1, . . . , z8) ∈ S+ ∼= U4 will be written as

z =

((
z1
z5

)
,

(
z2
z6

)
,

(
z3
z7

)
,

(
z4
z8

))
, (z, z)S+ = 2(z1z5 + . . .+ z4z8) .

The following four points ν1, . . . , ν4, where ν := (11) ∈ U , in S+ are perpendicular and span a positive 4-plane
in S+

R since (νi, νi)S+ = 8 and we also define ℓ1, ℓ2 ∈ S+
C :

ν1 = (ν, ν, ν, ν),

ν2 = (ν, ν,−ν,−ν),

ν3 = (ν,−ν, ν,−ν),

ν4 = (ν,−ν,−ν, ν),

ℓ1 := (ν1 + iν2)/(1 + i) = (ν, ν,−iν,−iν)

ℓ2 := (ν3 + iν4)/(1 + i) = (ν,−ν,−iν, iν)

Then ℓ1, ℓ1 and ℓ2, ℓ2 are all isotropic vectors and they span 〈ν1, ν2〉C and 〈ν3, ν4〉C respectively. Isotropic
vectors are in Q+ = γ(IG(4, VC)

+) and since these four all have first coordinate z1 = 1 they are in the image
of the open set IG(4, VC)

+
0 parametrized by the alternating 4 × 4 matrices. Using the explicit description of γ

one finds

ℓk = γ(ZBk
) (k = 1, 2), B1 =




0 1 −i −i
−1 0 i −i
i −i 0 −1
i i 1 0


 , B2 =




0 −1 −i i
1 0 −i −i
i i 0 1
−i i −1 0


 .

The eigenspace with eigenvalue −1 = i2 = (−i)2 of the endomorphism J1J2 of VR is the direct sum of Zℓ1 ∩Zl2

and its complex conjugate. Let ck, dk denote the k-th column of the matrix (B1

I ), (B2

I ) respectively, then Zℓ1 , Zℓ2

are spanned by the ck and the dk (k = 1, . . . , 4) respectively. Their intersection is spanned by

c1 − ic3 = d1 − id3, c2 − ic4 = d2 − id4 (∈ Zℓ1 ∩ Zℓ2) .
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Considering (c1 − ic3)± (c1 − ic3) etc., one finds a basis of the −1-eigenspace of J1, J2. Its perpendicular is the
+1-eigenspace. Recall that e1, . . . , e8 are the basis vectors of V as in 1.1, then the eigenspace decomposition is:

VR = V+ ⊕ V− = 〈e1 + e5, e2 + e6, e3 + e7, e4 + e8〉R ⊕ 〈e1 − e5, e2 − e6, e3 − e7, e4 − e8〉R .

Notice that (•, •)V is positive definite on V+ and negative definite on V−. Writing v = v+ + v− as sum of J1J2
eigenvectors, one has (J1J2v, v)V = (v+, v+)V − (v−, v−)V and thus indeed (J1J2v, v)V > 0 for all non-zero
v ∈ VR.

4.9. The discriminant. We refer to [Mar, Lemma 12.11] (cf. [O’G, Theorem 5.1]) for the computation of
the discriminant. See also Proposition 6.19 for a proof of the triviality of the discriminant using results from
Lombardo [Lo].

4.10. The Cayley class and the Weil classes. We define two subgroups of Spin(V ). Let Spin(V )s be
the subgroup which fixes s ∈ S+ and let Spin(V )h,s be the subgroup which fixes all elements in 〈h, s〉. Then
one can show that the Cayley class cs is the unique Spin(V )s-invariant in ∧4V and that ωK is the unique
Spin(V )s,h-invariant in ∧2V . This implies that cs 6∈ Qω2

K (cf. [Mun, Prop 2], [Mar, Thm 13.4] and §6.12).
One can also use that the K ⊗Q C ∼= C × C-action on VC has the eigenspaces (Zκ)C, (Zκ̄)C. The one

parameter subgroup hR of Spin(VC) which acts as multiplication by t, t−1 respectively on these eigenspaces
fixes E, and thus it fixes ωK ∈ ∧2V and also ω2

K ∈ ∧4V . On the other hand, hR has eigenvalues t2, t−2 on
〈κ, κ̄〉C = 〈h, s〉C ⊂ S+

C by Lemma 6.9. Therefore cs, the image of s⊙ s in ∧4V , is not invariant under hR and
thus it cannot be a multiple of ω2

K .

4.11. Complete families. The Lie group Spin(VR)h,s acts on Ω{h,s}⊥ . This action induces an action of

Spin(VR)h,s on the orthogonal complex structures on VR by Jg·ℓ = gJℓg
−1. The fixed points κ, κ̄ ∈ Q+ ∩ 〈h, s〉C

of the action of Spin(VR)h,s on Q+ correspond to the eigenspaces Zκ,C, Zκ̄,C of the K-action, which are thus
mapped into themselves. This implies that the image of Spin(VR)h,s in SO(VR) commutes with the K action
on VR. This image thus preserves the Hermitian form H and therefore Spin(V )h,s maps to the algebraic group
SU(H) which is the Mumford Tate group of the general Tℓ with ℓ ∈ Ω{h,s}⊥ . For dimension reasons this map
is surjective on the real points of these groups and thus the family of abelian fourfolds of Weil type is complete.

5. Moduli spaces of sheaves on an abelian surface

5.1. The constructions considered thus far have a natural geometrical interpretation in terms of moduli spaces
of sheaves on abelian surfaces. We now briefly recall the basic definitions and results, due to Mukai and Yoshioka.
The notation used thus far is now adapted to this context, for example, the free Z-module W of rank four will
become W = H1(X,Z) for an abelian surface X etc.

We conclude with a brief outline of Markman’s proof of the Hodge conjecture for the general abelian fourfolds
of Weil type with trivial discriminant.

5.2. The Mukai lattice of an abelian surface. Let X be an abelian surface and let X̂ = Pic0(X) be the
dual abelian surface. Let

W = H1(X,Z), W ∗ = H1(X̂,Z) = H1(X,Z)∗, V := W ⊕W ∗ .

The Chern character of a coherent sheaf on X takes values in

S+ := ∧evenH∗(X,Z) = H0(X,Z) ⊕ H2(X,Z) ⊕ H4(X,Z) ,

and we will identify H0(X,Z), H4(X,Z) with Z, using the generators 1 and a volume form compatible with the
orientation on the complex manifold X .

The Mukai lattice of X is the (free, rank 8) Z-module S+ with the bilinear form given by (this bilinear form
coincides up to sign with (•, •)S+):

(r, c, s) · (r′, c′, s′) := −(rs′ + r′s) + c ∧ c′ .

For v = (r, c, s) ∈ S+, with r > 0, c ∈ NS(X) ⊂ H2(X,Z) and v2 ≥ 6 the moduli space of sheaves E on X
with ch(E) = v, denoted by M(v), is a smooth holomorphic symplectic manifold of dimension v2 + 2.
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5.3. The case v = sn. We now take v = sn = (1, 0,−n), so that v2 = 2n ≥ 6 and dimM(v) = 2n+ 2. Let
Z ⊂ X be a subscheme of length n, then its ideal sheaf IZ has ch(IZ) = v (for an abelian surface, the Chern
character ch(E) is the Mukai vector v(E) of the sheaf E). This induces an inclusion of complex manifolds

Hilbn(X) = X [n] →֒ M(v) (v = sn = (1, 0,−n)) .

For L ∈ X̂ and IZ ∈ X [n] one also has L⊗ IZ ∈ M(v).
The Albanese map α : X [n] → X of X [n] fits in a diagram:

X [n]

↓ ց α

X(n) Σ−→ X

Σ([p1, . . . , pn]) := p1 + . . .+ pn ,

here X(n) is the n-th symmetric power of X and [p1, . . . , pn] ∈ X(n) is the image of (p1, . . . , pn) ∈ Xn in X(n).
The generalized Kummer variety Kn−1(X), of dimension 2n− 2, is the irreducible holomorphic symplectic

manifold obtained as

Kn−1(X) = α−1(0) ⊂ X [n] .

Using locally free resolutions of sheaves one defines a determinant map det : M(v) → X̂ and one has

det(L ⊗ IZ) = L for L ∈ X̂. Yoshioka [Y] showed that

M(v) ∼= X̂ × (det−1)(OX) ∼= X̂ × X [n] ∼= X̂ ×
(
(X ×Kn−1(X))/X [n]

)

where X [n] ⊂ X is the subgroup of n-torsion points. In particular, the Bogomolov decomposition of M(v) is

the product of the abelian fourfold X × X̂ and the irreducible holomorphic symplectic manifold Kn−1(X).

5.4. The cohomology of the generalized Kummer variety. The composition of the Mukai homomor-
phism and the restriction map

v⊥ −→ H2(M(v),Z) −→ H2(Kn−1(X),Z)

induces a Hodge isometry (for the weight two Hodge structure on v⊥ defined by (v⊥)2,0 = H2,0(X) and with
the BBF quadratic form on H2(Kn−1(X),Z)) [Y, Thm. 0.2].

This implies, by the surjectivity of the period map and with v = sn = s, that Ωs⊥ is the period space of
deformations of Kn−1(X), these deformations are called Kummer type varieties.

Moreover, h3,0(Kn−1(X)) = 0 so that H3(Kn−1(X),C) = H2,1 ⊕ H1,2 is essentially the first cohomology
group of its intermediate Jacobian H3(C)/(H2,1 ⊕H3(Z)) and one has ([Y, Prop. 4.20]):

H3(Kn−1(X),Z) = H1(X,Z) ⊕ H3(X,Z) ∼= H1(X,Z) ⊕ H1(X̂,Z) = V .

O’Grady and Markman showed that for ℓ ∈ Ωs⊥ and any deformation Yℓ of Kn−1(X) with period H2,0(Yℓ) =
Cℓ ⊂ (s⊥)C, there is an isomorphism of Hodge structures (up to Tate twist and isogeny) H3(Yℓ,Z) = H1(Tℓ,Z).
In case the complex manifold Yℓ is algebraic and h ∈ H2(Y,Z) = s⊥ is the class of an ample divisor, hence
ℓ ∈ Ω{h,s}⊥ , O’Grady [O’G] showed that the torus Tℓ is an abelian variety of Weil type. Moreover, he showed that

for algebraic Yℓ the Kuga Satake variety of the weight two polarized Hodge structure of rank six h⊥ ⊂ H2(Yℓ,Z)
is (isogeneous to) T 4

ℓ (see also §6.18 where h⊥ ∼= H2
ℓ ).

O’Grady also makes a detailed study of the cohomology of generalized Kummer varieties and in particular
he observes that there is a natural map (recall dim Yℓ = dimKn−1(X) = 2n− 2):

H3(Yℓ,Z) −→ H4n−6(Yℓ,Z) −→ H2(Yℓ,Z)
∨,

the last map is Poincaré duality, which relates the Hodge structures on H3(Yℓ) and H2(Yℓ).

5.5. Markman’s theorem. Given a sheaf F ′ ∈ M(v) (v = sn as in §5.3), there is a natural map

ιF ′ : X × X̂ −→ M(v), (x,L) 7−→ (t∗xF
′)⊗ L

where tx : X → X , y 7→ x + y is the translation by x. Deforming Kn−1(X) to Yℓ, with ℓ ∈ Ωs⊥ , this map
deforms to a map

ι : Tℓ −→ Yℓ.
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A universal sheaf E on X ×M(v) defines a sheaf E on M(v)×M(v) by E := Ext1π13
(π∗

12E , π∗
23E) where πij

are the projections from M(v)×X ×M(v). For F ∈ M(v) let EF the restriction of E to {F}×M(v) = M(v).

This defines a sheaf on X × X̂ whose second Chern class is exactly the Cayley class defined by v = sn ∈ S+

([Mar, Prop. 11.2], see also Prop. 6.14):

c2(ι
∗
F ′End(EF )) = cv ∈ ∧4V = H4(X × X̂,Z) .

Markman, using results of Verbitsky, shows that the sheaf EF on M(v) deforms to a sheaf over any defor-
mation Yℓ of M(v). Thus cv ∈ H4(Tℓ,Z) is an algebraic class whenever Tℓ is an abelian variety. From Theorem
4.6.d we have that cv is not an eigenvector for the action of the multiplicative group K× on the Hodge classes
in Qω2

K ⊕WK ⊂ H2,2(Tℓ,Z). Thus ω2
K , cv and the images of cv under the K× action span Qω2

K ⊕WK . Since
any fourfold of Weil type with trivial discriminant is isogeneous to a Tℓ, for any such fourfold the space WK is
spanned by algebraic classes.

6. Appendix: The spinor map

6.1. Background. The spinor map was defined by Cartan [Ca] (see also [BHH]). The description given by
Chevalley in [Ch] was used by Markman [Man, §2]. We define the spinor map using the representation theory
of orthogonal groups as in [FH, Chapter 20] (but our (v, w)V is 2Q(v, w) in [FH]).

We change the notation: in this Appendix V stands for VC, S
+ for S+

C etc. so all Z-modules are replaced by
their complexifications. Whenever convenient we will also write C2n for V and SO(2n) for SO(V ) etc.

6.2. The Clifford algebra of V . The Clifford algebra C(V ) of the complex vector space V , of dimension 2n,
with the bilinear form (•, •)V is the quotient of the tensor algebra

C(V ) := ⊕k≥0V
⊗k/〈v ⊗ w + w ⊗ v − (v, w)V · 1 〉 ,

by the two sided ideal generated by the v⊗w+w⊗ v− (v, w)V with v, w ∈ V , or equivalently, by the two sided
ideal generated by the v ⊗ v − (1/2)(v, v)V for v ∈ V .

The Clifford algebra has dimension 22n. We identify V with its image in C(V ). The even Clifford algebra
C(V )+ is the image of ⊕k≥0V

⊗2k.

Let V = W ⊕ W ∗ be the complexification of the lattices in §1.1. Since W,W ∗ are isotropic one has vw =
−wv ∈ C(V ) for all v, w ∈ W and also for all v, w ∈ W ∗. The subalgebras of C(V ) generated by W,W ∗ are
isomorphic to the exterior algebras ∧•W and ∧•W ∗ respectively.

Let e∗ := en+1 · · · e2n ∈ C(V ) be the product of the elements in a basis ofW ∗. Then the left ideal S := C(V )e∗

of C(V ) is isomorphic, as a C vector space, to ∧•W ,

σ : ∧•W
∼=−→ S := C(V )e∗, w1 ∧ w2 ∧ . . . ∧ wr 7−→ w1w2 . . . wre

∗ ,

([Ch, II.2.2], [FH, Exercise 20.12]). Under this isomorphism, left multiplication by w ∈ W and w∗ ∈ W ∗ on S
correspond to the following endomorphisms of ∧•W :

wσ(η) = σ(w ∧ η), w∗σ(η) = σ(Dw∗η) , (η ∈ ∧•W ) ,

where Dw∗ is the derivation on ∧•W defined by

Dw∗(1) = 0, Dw∗(w1 ∧ . . . ∧ wr) =
r∑

i=1

(−1)i−1w∗(wi)(w1 ∧ . . . ∧ ŵi ∧ . . . ∧ wr) ,

(here w∗(w) = (w,w∗)V for w ∈ W,w∗ ∈ W ∗).
These operations of W,W ∗ on ∧•W define a C(V )-module structure and σ is a homomorphism of C(V )-

modules. It induces an isomorphism of C-algebras between the even Clifford algebra and the direct sum of two
matrix algebras (cf. [FH, (20.13)])

C(V )+ ∼= End(S+) ⊕ End(S−), S+ := ∧evenW, S− := ∧oddW .

Since dimW = n one has dimS± = 2n−1.
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6.3. The spin group of V . The conjugation on C(V ) is the anti-involution given by

x := x1 · · ·xr 7−→ x∗ := (−1)rxr · · ·x1,

notice that it maps C(V )+ into itself. The spin group of V is

Spin(V ) := {x ∈ C(V )+ : xx∗ = 1, xV x∗ ⊂ V } .

Elements in Spin(V ) thus induce linear maps on V and one has the following result.

6.4. Theorem. There is a surjective homomorphism of complex Lie groups

ρV : Spin(V ) −→ SO(V ), x 7−→ [v 7−→ xvx∗]

with kernel {±1}.

Proof. For a proof see [FH, Thm 20.28]. �

6.5. The half-spin representations. Besides this ‘standard representation’ of Spin(V ) on V , one also has
the two half-spin representations ρ+, ρ− of Spin(V ) on S+ and S− respectively (vector spaces of dimension
2n−1), given by left multiplication in C(V ):

ρ± : Spin(V ) −→ GL(S±), x 7−→ [η 7−→ xη] .

See [FH, Exercise 20.38] for the fact that for n ≡ 0 mod 4 the image of Spin(V ) lies in SO(2n−1) (for a certain
bilinear form β on S+ ⊂ ∧•W also considered in [Ch, 3.2]). The center of Spin(V ), dimV > 2, is isomorphic
to (Z/2Z)2 if n is even and is cyclic of order four otherwise (cf. [FH, Exercise 20.36]). For n even, n > 2, the
three quotients of Spin(V ) by the order two subgroups of the center are SO(V ) and the images of Spin(V ) in
the two half-spin representations.

6.6. The Lie algebra spin(V ) = so(2n). The Lie algebra spin(V ) of the subgroup Spin(V ) of the multi-
plicative group of C(V )+ consists of the x ∈ C(V )+ such that x + x∗ = 0 and xv − vx ∈ V for all v ∈ V (cf.
[Ch, p.67-68]). It has a basis consisting of the following n(n− 1)/2 + n(n− 1)/2 + n2 = n(2n− 1) elements:

eiej, ei+nej+n with 1 ≤ i ≤ j ≤ n; eiej+n − 1
21, 1 ≤ i, j ≤ n .

To see that these elements are in spin(V ) (and to find their action on V ) one can use that for x, y, v ∈ V one
has

[xy, v] := xyv − vxy = x(−vy + (y, v)V ) − (−xv + (x, v)V )y = (y, v)V x − (x, v)V y .

The Lie algebra spin(V ) is isomorphic to the Lie algebra so(2n) of the orthogonal group SO(V ) = SO(2n).
This Lie algebra consists of the X ∈ End(V ) such that (Xv,w)V + (v,Xw)V = 0 for all v, w ∈ V . One finds
that

so(2n) =

{
X =

(
A B
C D

)
∈ End(V ) : A = −tD, tB = −B, tC = −C

}
.

An isomorphism spin(V ) → so(2n) is given by the differential of ρV , so by the representation of spin(V ) on V
given by x · v := xv− vx. Using the computation of [xy, v] above, one verifies that this isomorphism is given by

spin(V )
∼=−→ so(2n),





eien+j 7−→ Xi,j , Xi,j := Ei,j − En+j,n+i,
eiej 7−→ Yi,j , Yi,j := Ei,n+j − Ej,n+i,

ei+nej+n 7−→ Zi,j , Zi,j := En+i,j − En+j,i .

We choose the Cartan subalgebra of so(2n) to be the diagonal matrices in so(2n) (as in [FH, §18.1]):

h := ⊕n
i=1 CHi, Hi := Ei,i − En+i,n+i .

The dual h∗ of h then consists of the linear maps (weights)

h∗ := ⊕n
i=1CLi, Li(

n∑

j=1

tjHj) := ti .
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6.7. The spinor map. As before, we identify

V = W ⊕ W ∗ W := 〈e1, . . . , en〉, W ∗ := 〈en+1, . . . , e2n〉,

withW ∗ = Hom(W,C) the dual ofW , where w∗(w) := Q(w,w∗) for w ∈ W,w∗ ∈ W ∗. We denote by IG(n, 2n)+

the connected component of the Grassmannian of maximal isotropic subspaces of V = C2n that contains W ∗.
A complex maximally isotropic subspace Z defines a point [Z] ∈ IG(n, 2n)+ if and only if dim(Z ∩W ∗

C) ≡ n
mod 2 is even.

We denote by ZB, for an alternating n×n matrix B, the maximal isotropic subspace spanned by the columns
of (BI ) analogous to §2.4, notice that W ∗ = Z0.

The Grassmannian IG(n, 2n)+ = SO(V )/P is a homogeneous space where P = PW∗ is the stabilizer of
W ∗ in the group SO(2n). The Lie algebra of P , which are the X ∈ so(2n) with XW ∗ ⊂ W ∗, consists of the
X ∈ so(2n) with B = 0.

We recall that the Pfaffian of an alternating 2m× 2m matrix A is the complex number Pfaff(A) defined by
the following identity in ∧2mC2m:

Pfaff(A)e1 ∧ . . . ∧ e2m = m!ωm
A , (ωA :=

∑

i<j

aijei ∧ ej) .

6.8. Theorem. Let ρ+ : Spin(V ) → GL(S+) be the half-spin representation of Spin(V ) on S+ = ∧evenW :=
⊕k ∧2k W .

(1) In case n is even, the highest weight of S+ is (L1 + . . .+ Ln)/2 and it is (L1 + . . .+ Ln−1 − Ln)/2 if n
is odd.

(2) The one dimensional subspace

〈1〉 = 〈∧0W 〉 ⊂ ∧evenW

is invariant under the Lie algebra of P . Thus there is a Spin(V ) equivariant map

γ : IG(n, 2n)+ −→ PS+, γ([ρV (g̃)W
∗]) = ρ+(g̃)1

for g̃ ∈ Spin(V ).
(3) For an alternating matrix B ∈ Mn(C), let

XB :=

(
0 B
0 0

)
∈ so(2n), g̃B := exp(XB) ∈ Spin(V ) .

In the standard representation ρV : Spin(V ) → SO(2n) one has

ρV (g̃B) =

(
I B
0 I

)
(∈ SO(2n)) and ρV (g̃B)Z0 = ZB .

In the half-spin representation on S+ the action of g̃B is given by a left multiplication:

ρ+(g̃B) : S
+ −→ S+, ω 7−→ exp(ωB) ∧ ω ,

and one has

exp(ωB) =
∑

I,♯I≡0 mod 2

Pfaff(BI)eI ,

where I runs of over the subsets of {1, . . . , n} with an even number of elements and eI = ei1 ∧ . . .∧ei2k ∈
∧evenW = S+ with i1 < . . . < i2k.

(4) In the basis of S+ consisting of the eI , the spinor map γ on the open subset IG(n, 2n)+0 is given by

γ : IG(n, 2n)+0 −→ PS+, [ZB] 7−→ (. . . : Pfaff(BI) : . . .) .

The image of γ is defined by quadrics.

Proof. The highest weight of the half-spin representation S+ is determined in [FH, Proposition 20.15].
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The Lie algebra of P is generated by the Xi,j (matrices with B = C = 0) and the Zi,j (matrices with
A = B = D = 0). The images of these elements in End(S+) (as well as those of the Yi,j) are:

so(2n) −→ End(S+),





Xi,j 7−→ eien+j − 1
2δij 7−→ Lei ◦Den+j

− 1
2δij ,

Yi,j 7−→ eiej 7−→ Lei ◦ Lej ,

Zi,j 7−→ ei+nej+n 7−→ Dei+n
◦Dej+n

.

Since Dw∗(1) = 0 for all w∗ ∈ W ∗, we see that Xi,j and Zi,j map 1 to an element in 〈1〉. Hence Lie(P ) maps
〈1〉 into itself and thus also the inverse image of P in Spin(V ) maps this line into itself.

The element XB ∈ so(2n) determined by B is XB =
∑

i<j bijYi,j . It acts as left multiplication by ωB :=∑
bijei ∧ ej on ∧evenW and thus exp(XB) is left multiplication by exp(ωB) ∈ ∧evenW . The exponential map

of an endomorphism α is
∑

αn/n! and since the left multiplication 2-forms generate a commutative subalgebra
of nilpotent elements, exp(XB) is actually a finite sum and one also has

exp(ωB) =
∏

i<j

exp(bijei ∧ ej) =
∏

i<j

(1 + bijei ∧ ej) .

We now show that, with BI the submatrix of B with coefficients bi,j with i, j ∈ I,

exp(ωB) =
∑

I,♯I even

Pfaff(BI)eI .

In fact, exp(ωB) ∈ ∧evenW is a linear combination of the eI = ei1 ∧ . . . ∧ ei2k , where i1 ≤ . . . ≤ ei2k
I = {i1, . . . , i2k} ⊂ {1, . . . , n} is a subset with an even number of elements. Since for an integer p one has that
ωp
B ∈ ∧2pW , the coefficient of eI is homogeneous of degree 2k, with 2k = ♯I, in the coefficients bij of B and only

those with i, j ∈ I contribute. So the coefficient of eI is determined by the 2k × 2k alternating submatrix BI

of B with rows and columns indexed by I. Moreover this coefficient is (
∑

ik<il,ik,il∈I bikileik ∧ eil)
k/k!, which

is indeed Pfaff(BI).
Since ρV (g̃B)Z0 = ZB and γ([Z0]) = 1 ∈ S+ we get γ([ZB]) = ρ+(g̃)1 = exp(ωB) ∈ S+ = ∧evenW . The

description of the spinor map follows immediately. For the equations defining the image see [Ch, III.3.2] or
[Li]. �

The following lemma is used several times in this paper, for example to relate complex structures on VR to
elements of S+

C or to weight two Hodge structures on S+ as in the Kuga Satake construction. For dimV 6= 8
however, Spin(V ) only allows one to relate polarized weight two Hodge structures on V to complex structures
on the spin representation. The special feature in the case dimV = 8 is triality, an automorphism of order
three of Spin(V ), which allows one to permute the three irreducible 8-dimensional representations V, S+, S−,
see [FH, §20.3], [Ch, Chapter 4], and which is implicit in the proof of the lemma.

6.9. Lemma.

a) Let V = U ⊕U∗ be a decomposition of V = C8 with two maximally isotropic subspaces with [U ], [U∗] ∈
IG(4, VC)

+. For t ∈ C, t 6= 0, the orthogonal transformation (tidU , t
−1idU∗) ∈ (End(U) ⊕ End(U∗)) ∩

SO(V ) has a lift h(t) ∈ Spin(V ) which acts as follows on S+:

ρ+(h(t)) ℓU = t2ℓU , ρ+(h(t)) ℓU∗ = t2ℓU∗ , ρ+(h(t)) s = s, ∀s ∈ 〈ℓU , ℓU∗〉⊥ ,

where ℓU , ℓU∗ ∈ S+ are (any) representatives of γ([U ]), γ([U∗]) ∈ PS+.
b) Let Z1, Z2 be two distinct maximally isotropic subspaces of VC in the family parametrized by IG(4, VC)

+.
Then Z1 ∩ Z2 = {0} if and only if the complex plane 〈[Z1], [Z2]〉 is not contained in the spinor quadric
Q+.

Proof. We use that the spinor map is equivariant for the action of Spin(V ). There is an element of Spin(V )
mapping U to W since IG(4, 8)+ = SO(V )/P . Then U∗ is mapped to ZB for some B ∈ Alt4 and it is easy
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to see that there is another element in Spin(V ) fixing W (so with C = 0) and mapping ZB to Z0 = W ∗. We
thus may replace W,W ∗ with U,U∗. The one parameter subgroup h acts as multiplication by t on U ⊂ V ,
hence h is generated by an X ∈ h ⊂ spin(V ) with Li(X) = 1 for i = 1, . . . , 4 (and thus X =

∑
Hi). The

weights of S+ are (±L1 ± L2 ± L3 ±L4)/2 with an even number of − signs, hence their values on X are 2,−2,
with multiplicity one, and 0 with multiplicity six. Thus ρ+(h(t)) is semisimple with eigenvalues t2, t−2 and 1,
the last with multiplicity six. The eigenvalue t−2, the lowest weight of S+, is on ZU∗ , see Theorem 6.8. The
element g ∈ SO(V ) that maps ei 7→ ei+4, ei+4 7→ ei for i = 1, . . . , 4 interchanges U and U∗ and acts (in the
Adjoint representation) as −id on h, hence the eigenvalue t2 must be on ZU . As Spin(V ) preserves (•, •)S+ ,
the decomposition into these eigenspaces is orthogonal. (For any n, the one parameter subgroup of SO(V ) that
acts as multiplication by t2, t−2 on e1, en+1 respectively and is the identity on 〈e1, en+1〉⊥ is generated by an
X ∈ spin(V ) with L1(X) = 2, Li(X) = 0 for i ≥ 2 and thus (1/2)(±L1±L2 . . .±Ln)(X) = ±(1/2)X , showing
that the lift of this subgroup to Spin(V ) has only eigenvalues t, t−1 on S+, with the same multiplicities, and
the same holds for S−. A similar result holds for SO(V ) and its spin representation if dimV = 2n+ 1.)

Using the action of the orthogonal group, if Z1 ∩ Z2 = {0}, then we can map Z1, Z2 to W,W ∗. As [W ] =
e∗, [W

∗] = 1 ∈ S+ and (e∗, 1)S+ 6= 0 it follows that the plane 〈[Z1], [Z2]〉 is not contained in Q+. On the other
hand, if Z1∩Z2 6= 0, then we may assume Z1 = W ∗ and Z1 = ZB with B the rank two alternating 4× 4 matrix
with ωB = e1 ∧ e2. Then [Z1] = 1 and [Z2] = 1 + e1 ∧ e2 so that 〈[Z1], [Z2]〉 ⊂ Q+. �

6.10. The spinor map and the Plücker map. We relate the spinor and Plücker maps on IG(n, 2n)+. Even
if the theory of line bundles on homogeneous spaces provides a natural setting for the results below (cf. [FH,
§23.3, p.393], [BHH, §II]), we only use representation theory.

Let Γλ be the irreducible so(2n)-representation with highest weight λ. The irreducible so(2n)-representation
Sǫ, ǫ ∈ {+, −} has highest weight ωn := (L1 + . . . + Ln)/2, where ǫ = + if n is even and ǫ = − else, with
highest weight vector e∗ := e1 ∧ . . . ∧ en ∈ Sǫ, [FH, Prop. 20.15] (for n = 4 we wrote α for ωn in §3.2).

The highest weight of Sym2(Sǫ) is thus 2ωn = L1+ . . .+Ln, with highest weight vector e∗⊙e∗. In particular,
Γ2ωn

is an irreducible component of Sym2(S+). In case n = 4 we have dimΓ2ωn
= 35 = dimSym2(Γωn

) − 1
(see below for dimension formula) and thus (see [FH, Exercise 19.6] for general n):

Sym2(S+) = Sym2(Γωn
) = Γ2ωn

⊕ Γ0 , (n = 4),

where Γ0 is the trivial 1-dimensional representation (for n = 4 the representation Γωn
has an invariant quadratic

form and thus is self-dual [FH, Exercise 20.38]), this quadratic form produces Γ0).
Now we consider the representation of so(2n) on ∧nV . In the standard representation V of so(2n) the

basis vector ei has weight Li (and the basis vector ei+n has weight −Li). Thus e1 ∧ . . . ∧ en ∈ ∧nV has
weight L1 + . . . + Ln = 2ωn and it is the highest weight vector in ∧nV (cf. [FH, §19.2]). Therefore Γ2ωn

is
a subrepresentation of ∧nV . The so(2n)-representation ∧nV is in fact reducible and it has two irreducible
components of the same dimension ([FH, Remarks p.289-290; Exercise 24.43]),

∧nV = Γ2ωn
⊕ Γ2ωn−1

, dimΓ2ωn
= dimΓ2ωn−1

= 1
2

(
2n

n

)
,

where ωn−1 := (L1 + . . .+ Ln−1 −Ln)/2 is the highest weight of Sǫ′ (where {ǫ, ǫ′} = {+,−}). This splitting is
also obtained as the eigenspace decomposition for the Hodge star operator defined by the bilinear form (•, •)V ,
cf. [J, Example 3.5.2]. The two summands are known as the selfdual and anti-selfdual forms.

The Plücker map, restricted to IG(n, 2n)+, is the natural map π : IG(n, 2n)+ → P ∧n V and for n even it
is thus the composition

IG(n, 2n)+
γ−→ PS+ ν−→ PΓ2ωn

⊂ P ∧n V,

where ν is the second Veronese map (for odd n replace ωn by ωn−1, the highest weight of S+).
Since the spinor map is given by Pfaffians and the Plücker map is given by minors on the open subset of

IG(n, 2n)+ parametrized by alternating matrices, this result implies that any quadratic expression in Pfaffians
is a linear combination of minors, see [BHH].
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6.11. Cayley classes and Spin(7). We now restrict ourselves to the case n = 4. The half-spin representation
ρ+ on S+ maps the group Spin(V ) onto the orthogonal group SO(S+) of the bilinear form (•, •)S+ . For any
s ∈ S+ with (s, s)S+ 6= 0, the stabilizer of s in SO(S+) is the orthogonal group SO(s⊥) ∼= SO(7).

The inverse image of SO(s⊥) in Spin(V ) is denoted by Spin(V )s and it is isomorphic to Spin(7). In the
standard representation ρV of Spin(V ) on V , the subgroup Spin(V )s still acts irreducibly, in fact V is isomorphic
with the (unique, irreducible) spin representation of Spin(7).

6.12. Representations of spin(V )s = so(7). Recall from §3.3 that the image of s⊙ s under the composition
Sym2(S+) → Γ2α →֒ ∧4V is called the Cayley class cs of s. Since s is fixed by Spin(V )s, the 4-form cs is also
fixed by the Lie algebra spin(V )s ∼= so(7). We now show that cs is the unique spin(V )s-invariant in ∧4V by
considering the restriction to so(7) of the so(V ) = so(8)-representations considered in §6.10.

Multiplication by s gives an inclusion of spin(V )s-representations

S+ = 〈s〉 ⊕ s⊥ →֒ Sym2(S+) = Γ0 ⊕ Γ2ωn

= Γ0 ⊕ 〈cs〉 ⊕ s⊙ s⊥ ⊕ Γ(2,0,0)

= Γ0 ⊕ Γ(0,0,0) ⊕ Γ(1,0,0) ⊕ Γ(2,0,0) ,

where Γ0 and Γ(0,0,0) are trivial spin(V )s-representations, Γ(1,0,0)
∼= s⊙ s⊥ ∼= s⊥ is the standard seven dimen-

sional representation of spin(V )s ∼= so(7) and Γ(2,0,0) is irreducible of dimension 35− 1− 7 = 27 (the notation
Γ(a,b,c) for so(7)-representations is as in [FH]).

The representation of spin(V )s on the spin(V )-representation Γ2ωn
is thus a direct sum of three irreducible

representations. Its representation on the other irreducible component Γ2ωn−1
of ∧4V is irreducible and it is

isomorphic to Γ(0,0,2). Thus one has the spin(7) = so(7)-decomposition into irreducible representations (cf.
[Mun, Prop 2], [J, Prop. 10.5.4]):

∧4V = Γ(0,0,0) ⊕ Γ(1,0,0) ⊕ Γ(2,0,0) ⊕ Γ(0,0,2) ,

since there is a unique copy of the trivial representation of so(7) in ∧4V , the Cayley class is the unique spin(V )s
invariant in ∧4V .

6.13. The following proposition computes the 4-form cs, which spans the trivial spin(V )s-subrepresentation
Γ(0,0,0) in ∧4V , explicitly in a case of interest in Markman’s paper, cf. [Mar, 1.4.1, Proposition 11.2]. There s

is called w = sn. We consider in fact 1
n+1cw and we write n for his n+ 1. Notice that the computation below

uses only representation theory.

6.14. Proposition. Let n ∈ Z, n 6= 0, and let s = sn = 1 − ne∗ ∈ S+. where e∗ := e1 ∧ e2 ∧ e3 ∧ e4 ∈
∧evenW = S+. Then we have, up to a scalar multiple,

cs = −nα2 + 4n2β + 4γ (∈ ∧4V ) ,

where the forms, now in ∧∗V , involved are:

α := e1 ∧ e5 + . . .+ e4 ∧ e8, β := e1 ∧ . . . ∧ e4, γ := e5 ∧ . . . ∧ e8 .

Proof. The space of spin(V )s-invariants in ∧4V is one dimensional and it is spanned by cs, see §6.12. So it
suffices to show that the right hand side is a non-zero spin(V )s-invariant form.

The Lie algebra spin(V )1,e∗ that acts trivially on the two dimensional subspace of S+ spanned by 1, e∗ is
isomorphic to so(6) ∼= sl(4). The representation of sl(4) on V = W ⊕W ∗ is reducible and W is the standard
representation of sl(4) whereasW ∗ is the dual of the standard representation. This implies that β ∈ ∧4W ⊂ ∧4V
and γ ∈ ∧4W ∗ ⊂ ∧4V as well as the 2-form α, which is the sl(4)-invariant in W ⊗W ∗ ⊂ ∧2V corresponding
to the symplectic form ((w1, w

∗
1), (w2, w

∗
2)) = w∗

1(w2)− w∗
2(w1) on V , are spin(V )1,e∗ -invariants. On the other

hand,

∧4(W ⊕W ∗) = ∧4W ⊕W ⊗ ∧3W ∗ ⊕ ∧2W ⊗ ∧2W ∗ ⊕ ∧3W ⊗W ∗ ⊕ ∧4W ∗ .

Since W,W ∗ have dimension four, ∧3W ∗ ∼= W and it is well-known that there are no sl(4)-invariants in W ⊗W
nor in W ∗ ⊗W ∗. Also ∧2W is irreducible and thus the sl(4)-invariants in ∧2W ⊗ ∧2W ∗ ∼= End(∧2W ) are a
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one dimensional subspace spanned by the trace. Hence the subspace of sl(4)-invariants in ∧4V has dimension
three. Since α2, β, γ are linearly independent invariants, the invariant subspace is

(∧4V )spin(V )1,e∗ = (∧4V )sl(4) = 〈α2, β, γ〉 .
Since spin(V )1,e∗ ⊂ spin(V )s it remains to show that cs is the linear combination of α2, β, γ that is spin(V )s

invariant. This 21-dimensional Lie algebra is defined by

spin(V )s = {X ∈ spin(V ) : Xs = 0 }
and the action of spin(V ) on S+ is given in the proof of Theorem 6.8. It is then easy to check that the following
elements (of so(2n) ∼= spin(V )) span spin(V )s:

hs := {
∑

aiXi,i :
∑

ai = 0 }, Xi,j (i 6= j), nYi,j ± Zk,l ({i, j, k, l} = {1, . . . , 4}),
where the sign depends on i, . . . , l. In particular, X := nY1,2+Z3,4 ∈ spin(V )s (in fact X acts as e1e2+De3De4

on S+ and X(1) = ne1e2, X(e∗) = −e1e2, so Xs = 0). The action of X on V is given by

X(e1) = 0, X(e2) = 0, X(e3) = −e8, X(e4) = e7,
X(e5) = −ne7, X(e6) = ne8, X(e7) = 0, X(e8) = 0 .

Since the Lie algebra element X acts a derivation on ∧4V we have

X(α) = X(e1) ∧ e5 + e1 ∧X(e5) + . . . = −2ne1 ∧ e2 + 2e7 ∧ e8 .

Thus

X(α2) = 2α ∧X(α) = −4n(e1 ∧ e2) ∧ (e3 ∧ e7 + e4 ∧ e8) + 4(e1 ∧ e5 + e2 ∧ e6) ∧ (e7 ∧ e8) .

Similarly one finds

X(β) = (e1 ∧ e2) ∧ (e4 ∧ e8 + e3 ∧ e7), X(γ) = −n(e2 ∧ e6 + e1 ∧ e5) ∧ (e7 ∧ e8) .

Therefore the only non-trivial linear combination of α2, β, γ that is mapped to zero by X is −nα2 +4n2β+4γ.
Hence this must be the unique spin(V )s-invariant in ∧4V . �

6.15. Kuga Satake varieties. Let S+ be the lattice introduced in §2.4 (and not its complexification). As
in Theorem 4.6, let h, s ∈ S+ ∼= U⊕4 be two perpendicular elements such that their span is a positive definite
sublattice. Let H = Hh,s be the rank 6 sublattice of signature (2+, 4−) orthogonal to 〈h, s〉:

H := 〈h, s〉⊥ = {t ∈ S+ : (t, h) = (t, s) = 0 } .

With this notation we have

Ω{h,s}⊥ = {ℓ ∈ PHC : (ℓ, ℓ)S+ = 0, (ℓ, ℓ̄)S+ > 0 } .

Recall that any ℓ ∈ Ω{h,s}⊥ defines an abelian fourfold of Weil type with underlying torus Tℓ by Theorem
4.6. Such an ℓ also defines a weight two Hodge structure on H denoted by Hℓ as follows:

Hℓ,C = HC = ⊕p+q=2H
p,q
ℓ , H2,0

ℓ := Cℓ, H0,2
ℓ := Cℓ̄, H1,1

ℓ =
(
H2,0

ℓ ⊕H0,2
ℓ

)⊥
.

This Hodge structure is polarized since the restriction of (•, •)S+ to the two dimensional real subspace (H2,0
ℓ ⊕

H0,2
ℓ ) ∩HR is positive definite.

As dimH2,0
ℓ = 1, there is a Kuga Satake (abelian) variety Aℓ, of dimension 16, associated to Hℓ (see [KS],

[D], [vG3]). In general, it has the property that Hℓ is a Hodge substructure of H2(A2
ℓ ,Q), but in this case there

are actually several copies of Hℓ in H2(Aℓ,Q), see §6.18. The even Clifford algebra C(H)+ of H is a lattice
in the real vector space C(H)+ ⊗Z R of dimension 25 = 32. A complex structure on C(H)+R is defined by left

multiplication by f1f2 ∈ C(H)+R , with f1, f2 ∈ HR such that (f1, f1)S+ = 1 and H2,0
ℓ = 〈f1 + if2〉 (cf. [vG3,

§5.6]). The abelian variety Aℓ is the quotient (C(H)+R , f1f2)/C(H)+.
In [Lo, Cor. 6.3, Thm 6.4] it is shown that Aℓ is isogeneous to B4

ℓ , where Bℓ is an abelian fourfold of Weil
type with trivial discriminant. The following proposition, due to O’Grady ([O’G, §5.3]), shows that Bℓ and Tℓ
are isogeneous. In [O’G] one finds a more explicit description of this result, as well as applications to generalized
Kummer varieties.
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6.16. Proposition. For ℓ ∈ Ω{h,s}⊥ the Kuga Satake variety Aℓ of the polarized weight two Hodge structure

Hℓ is isogeneous to T 4
ℓ , where Tℓ is the abelian fourfold of Weil type defined by ℓ.

Proof. The right multiplication on C(H)+R by an element of C(H)+ preserves the lattice, commutes with the
complex structure and thus defines an element in End(Aℓ). The Q vector space HQ is not a direct sum of two
maximally isotropic subspaces and, whereas C(H)+C

∼= M4(C)⊕M4(C) (as in §6.2), one now has an isomorphism
of algebras ([Lo, Thm. 6.2]), where M4(K) are the 4× 4 matrices with coefficients in K,

C(H)+Q := C(H)+ ⊗Z Q ∼= M4(K) ⊆ End(Aℓ)Q, K := Q(
√
−ab).

This implies that any Aℓ is isogeneous to B4
ℓ , where Bℓ is an abelian fourfold with K ⊂ End(Bℓ)Q (Bℓ is only

determined up to isogeny).
It remains to show that Bℓ and Tℓ are isogeneous. The inclusion Spin(H) ⊂ Spin(S+) = Spin(V ) defines a

representation of Spin(H) on V which is its spin representation. The isomorphism C(H)+Q
∼= M4(K) implies

that

C(H)+Q
∼= V ⊕4

Q

as Spin(H)-representations. The same holds with Q replaced by R. The weight two Hodge structure on the
Spin(H)-representation Hℓ is defined by the one parameter subgroup hℓ of Spin(H)R ⊂ Spin(S+)R introduced
in the proof of Proposition 3.5. In fact, hℓ(t) acts on S+ as multiplication by t2 on Cℓ, by t−2 on Cℓ̄ and it is
trivial on 〈ℓ, ℓ̄〉⊥. The complex structure on C(H)+R

∼= V ⊕4
R , which defines the Kuga Satake variety Aℓ ∼ B⊕4

ℓ ,
is also defined by hℓ ([vG3, Prop. 6.3]), now acting on V 4

R . As ρV (hℓ) = hV,ℓ, the complex structure is Jℓ on
VR. It follows that Bℓ and Tℓ are isogeneous. �

6.17. Remark. The proof of Proposition 6.16 uses the (algebraic) subgroup Spin(H) = Spinh,s of Spin(S
+) =

Spin(V ). The decomposition S+
Q = HQ ⊕ RQ, with R := 〈h, s〉, implies that we actually have two commuting

subgroups Spin(H), Spin(R) ⊂ Spin(S+).
Recall from §4.7 that RC = Cκ ⊕ Cκ̄ with κ, κ̄ ∈ Q+. The decomposition of VC = Zκ,C ⊕ Zκ̄,C in the two

isotropic eigenspaces for the K-action defines, as in Lemma 6.9, a one parameter subgroup hR of Spin(S+
R ).

As hR(t)κ = t2κ, hR(t)κ = t−2κ̄, this identifies the subgroup Spin(RR) with this one parameter subgroup,
hR(U(1)) = Spin(RR). In particular, the K-action on VQ is generated by Spin(R) and the scalar multiples of
the identity.

The fact that Spin(H), Spin(R) ⊂ Spin(S+) commute implies that the subspaces Zκ,C, Zκ̄,C are Spin(HC)-
invariant subspaces. Thus the spin representation of Spin(HC) on VC is reducible. These two subspaces are the
two half-spin representations of Spin(HC).

There is an isomorphism Spin(HC) ∼= SL(4,C) and the half-spin representations are identified with the
standard representation C4 of SL(4,C) and its dual (C4)∗. The representation HC is identified with ∧2C4 ∼=
∧2(C4)∗, the isomorphism follows from the pairing, defined by the wedge product, (∧2C4)×(∧2C4) → ∧4C4 ∼= C.

6.18. The second cohomology group of Tℓ. In [Lo] the Hodge structure on the second cohomology group
H2(B,Q) of an abelian fourfold of Weil type with field K is studied. This group has dimension

(
8
2

)
= 28 and

decomposes under the K-action into a 16 = 1 + 15-dimensional subspace S′
B on which x ∈ K acts as xx̄,

this subspace includes the polarization of Weil type. There is a complementary subspace SB on which the
eigenvalues of x are x2, x̄2 of dimension 12. This subspace can be identified with the six dimensional K vector
space ∧2

KH1(B,K).

H2(B,Q) = SB ⊕ S′
B, S′

B := {ξ ∈ H2(B,Q) : x∗ξ = xx̄ξ, ∀x ∈ K } .

For a general fourfold of Weil type (so SMT (B)R ∼= SU(2, 2)) the Hodge structure SB is a simple Hodge
structure (so does not admit non-trivial Hodge substructures) if and only if the discriminant of B is non-trivial
[Lo, Cor. 3.6].
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In case the discriminant is trivial, one finds that SB
∼= H⊕2

B , for a weight two, rank six, polarized, Hodge
structure HB which has Hodge numbers (1, 4, 1). Moreover, the Kuga Satake variety of HB is isogeneous to B4,
so one recovers the weight two Hodge structure HB from its Kuga Satake variety.

The following proposition uses this result to show that the abelian fourfolds of Weil type Tℓ have trivial
discriminant.

6.19. Proposition. For ℓ ∈ Ω{h,s}⊥ , with h, s as in Theorem 4.6, the polarized abelian fourfold of Weil type
(Tℓ,K, ωK) has trivial discriminant.

Proof. By [Lo, Cor. 3.6] it suffices to show that (H2
ℓ,Q)

⊕2 is isomorphic to the Hodge substructure STℓ
⊂

H2(Tℓ,Q).
As in the proof of Proposition 3.5, the (weight one) Hodge structure on V = H1(Tℓ,Z) defines a one parameter

subgroup hℓ in Spin(V ) (actually in Spin(V )h,s ⊂ Spin(S+) = Spin(V )). A representation U of Spin(VR) on

a real vector space U defines a Hodge decomposition UC = ⊕Up,q, with Up,q = U q,p, given by the eigenspaces
Up,q = {u ∈ U : hℓ(z)u = zaz̄bu (but the weight is not uniquely defined since zz̄ = 1).

The representation ρ+ on S+
R has the Hodge decomposition

(S+)2,0 = H2,0
ℓ = Cℓ, (S+)0,2 = (S+)2,0, (S+)1,1 =

(
(S+)2,0 ⊕ (S+)0,2

)⊥

since these spaces are the eigenspaces for hℓ acting on S+
C (see Lemma 6.9). The Hodge structure S+

Q is a direct
sum of Hodge structures

S+
Q = H2

ℓ,Q ⊕ RQ, R := 〈h, s〉 ,
where RQ

∼= Q(−1)2 is a trivial Hodge substructure with R1,1
Q = RC.

There is an isomorphism of Spin(V ) = Spin(S+)-representations ∧2S+ = ∧2V (both are the irreducible
so(8)-representation with highest weight (L1 + L2 + L3 + L4)/2 + (L1 + L2 − L3 − L4)/2 = L1 + L2). Hence
we get a splitting of the Hodge structure on ∧2S+

Q (which is again defined by hℓ eigenspaces) in three Hodge

substructures which have dimensions
(
6
2

)
= 15, 6 · 2 = 12 and 1 respectively:

∧2S+
Q = (∧2H2

ℓ,Q) ⊕ (H2
ℓ,Q ⊗RQ) ⊕ (∧2RQ) .

(The Hodge structure S+ has weight two, so the Hodge structure on ∧2S+ should have weight four. However,
(dimS+)2,0 = 1, so ∧2S+

Q has trivial (4, 0) and (0, 4) summands and thus it is the Tate twist of a weight two

Hodge structure.)
Using the isomorphisms ∧2S+

Q = ∧2V = H2(Tℓ,Z) we see that

H2
ℓ,Q ⊗RQ

∼= (H2
ℓ,Q)

⊕2 →֒ H2(Tℓ,Q)

is a non-simple Hodge substructure of H2(Tℓ,Q).
It remains to check that x ∈ K has eigenvalues x2, x̄2 on this substructure. One can deduce this from the

fact that representation ∧2VC of the complex Mumford Tate group SL(4,C) of Tℓ is isomorphic to

∧2(C4 ⊕ (C4)∗) ∼= (∧2C4)⊕2 ⊕ C4 ⊗ (C4)∗

and the last summand is the direct sum of a trivial one dimensional representation and an irreducible 15
dimensional representation. As the complexification of a Hodge substructure is a subrepresentation, there is a
unique subrepresentation of dimension 12. Hence STℓ

= H2
ℓ,Q ⊗RQ as desired.

Alternatively, by Remark 6.17, the K×-action is essentially given by the subgroup Spin(R) of Spin(S+).
This subgroup acts trivially on ∧2H2

ℓ,Q and ∧2RQ, so K acts through the norm on these summands. Therefore

STℓ
= H2

ℓ,Q ⊗RQ is not simple. �
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[Mun] V. Muñoz, Spin(7)-instantons, stable bundles and the Bogomolov inequality for complex 4-tori, J. Math. Pures Appl. 102

(2014) 124–152.
[O’G] K.G. O’Grady, Compact tori associated to hyperkähler manifolds of Kummer type, Int. Math. Res. Not. IMRN (2021)

12356–12419.
[Y] K. Yoshioka, Moduli spaces of stable sheaves on abelian surfaces, Math. Ann. 321 (2001) 817–884.
[V] C. Voisin, Footnotes to papers of O’Grady and Markman, Math. Z. 300 (2022) 3405–3416.
[W] A. Weil, Abelian varieties and the Hodge ring, in: Collected Papers, Vol. III, 421–429. Springer Verlag 1980.
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