
An Artificial Intelligence Outlook for Colorectal 
Cancer Screening

Panagiotis Katrakazas 
Zelus P.C.

Athens, Greece
ORCID ID: 0000-0001-7433-786X 

Ilias Spais
Zelus P.C.

Athens, Greece
e-mail: ilias.spais@zelus.gr

Aristotelis Ballas
Dept. of Informatics and Telematics

Harokopio University of Athens
Athens, Greece

ORCID ID: 0000-0003-1683-8433

Marco Anisetti
Dipartimento di Informatica (DI)
Università degli Studi di Milano

Milan, Italy
ORCID ID: 0000-0002-5438-9467

Abstract—Colorectal cancer is the third most common 
tumor in men and the second in women, accounting for 10% of 
all tumors worldwide. It ranks second in cancer-related deaths 
with 9.4%, following lung cancer. The decrease in mortality rate 
documented over the last 20 years has shown signs of slowing 
down since 2017, necessitating concentrated actions on specific 
measures that have exhibited considerable potential. As such, 
the technical foundation and research evidence for blood-
derived protein markers have been set, pending comparative 
validation, clinical implementation and integration into an 
artificial intelligence enabled decision support framework that 
also considers knowledge on risk factors. The current paper 
aspires to constitute the driving force for creating change in 
colorectal cancer screening by reviewing existing medical 
practices through accessible and non-invasive risk estimation, 
employing a straightforward artificial intelligence outlook.

Keywords—colorectal cancer, screening, risk factor analysis, 
artificial intelligence approach

I. INTRODUCTION

Colorectal cancer is the third most common tumor in men 
and the second in women, accounting for 10% of all tumors
worldwide. It ranks second in cancer-related deaths with 
9.4%, following lung cancer. About 1.9 million new cases 
were diagnosed in 2020, translating into 0.9 million deaths, 
while incidence is projected to rise significantly over the next 
decade, with 3.2 million new diagnoses annually by 2040. In 
affected European Union (EU) individuals, 5-year survival 
ranges from 28.5% to 57% in men and from 30.9% to 60% in 
women, with pooled estimations in 23 countries of 46.8% and 
48.4% respectively [1], [2]. Moreover, colorectal cancer is 
among the five most likely to metastasize cancers. Upon initial 
diagnosis, 22% of cases are metastatic, while about 70% of 
patients will eventually develop metastatic relapse [3].

In the colorectal cancer treatment domain, options include 
endoscopic and surgical excision, radiotherapy, 
immunotherapy, palliative chemotherapy, targeted therapy, 
extensive surgery and local ablative therapies for metastases
[1]. Meanwhile, screening methods consisting of endoscopic 
tests (e.g., colonoscopy) and non-invasive alternatives such as 
the fecal occult blood test (FOBT) have been put into action. 
Applied pathways have successfully inhibited cancer 
progression [4] contributing to decreased mortality rates 
through 2017. Moreover, some EU countries have adopted 
population-based screening programs over the last 15 years, 
seeking to halt incidence and mortality rates. In this regard, 
studies have compared mortality rates for symptom-detected 
vs screening-detected colorectal cancer, stating the 
considerable impact of screening via quantified reduction 
estimates surpassing 30% for screening-based detections [5]. 

Particularly, 5-year survival rate can reach 90% for stage I 
diagnosis, being less than 15% for advanced stages [6]. 
Therefore, routine screening is key for reducing mortality and 
declining incidence rates, since colorectal cancer is now 
considered a highly preventable disease with a considerably 
wide temporal development window [7]. Namely, the 
transitional path from normal mucosa to pre-malignant growth 
and then to malignant lesion might spread over 15 to 20 years, 
with scientists seeking means for earlier, cost-effective and 
less taxing detection of pre-malignant states.

In determining the colorectal cancer risk status, factors 
such as age, body mass index, diet, smoking habits and family 
history have been pinpointed by researchers and clinicians 
alike [8]. Namely, age, sex and family history have been 
integrated into practice as flagships on risk stratification [2], 
although evidence on the complete risk factor set has not been 
analyzed in the context of a detailed assessment. Indicatively, 
Western registry data show an increased incidence in the age 
group of 40-44, considerably lower than the 50-year threshold
[9]. This tendency is attributed to modern lifestyle alterations, 
although more assays are required as to the corresponding 
effects. Overall, despite the long-assumed colorectal cancer
preventability based on modifiable risk factors, awareness and 
knowledge exploitation remain extremely low.

Moreover, despite the available arsenal of screening 
practices, citizen participation is hindered due to suboptimal 
performance and invasive or overall taxing nature besetting 
these methods [10]. EU reports indicate participation rates of 
14%, a rather disappointing number compared to the >60% 
rate for breast cancer screening programs [11]. Poor screening 
outreach is augmented by limited penetration of Council 
recommendations into clinical practice. By 2019, only three
member states had adopted population-based screening 
targeting all citizens at risk, albeit purely based on age 
thresholds of 50-74 years. Over the last three years, other 
states have also launched population-based screening or 
regional programs. Still, there is little progress on 
standardized programs that unite knowledge on colorectal 
cancer towards EU-wide regulations. Overall, taxing 
procedures, citizen reluctance, poor awareness and screening 
accessibility are hindering participation, forcing researchers 
into the survey of accessible, non-invasive biomarkers that 
bear the potential to render cancer screening less burdensome 
and more accessible to citizens. In this vein, liquid biopsy 
appears to be a promising new tool on non-invasive, quick and 
safe assessment [6]. However, lack of operating protocols, 
reproducibility issues and cost-effectiveness discrepancies are 
impeding clinical implementation. Among all liquid biopsy 
products, blood-derived proteins seem to constitute the most 
cost-effective solution regarding resources, sensitivity and 
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research maturity. On this premise, a vast protein pool has 
been tested, albeit evidence lacks comparative validation, 
perplexing standardization margins. The current research
highlights (a) the existing practices in colorectal screening 
methodology along with a comparison matrix of their benefits 
and limitations, along with (b) a risk factor analysis that can 
be feasibly exploited for population-based screening and 
sustainably covered by health insurance bodies, via an 
artificial intelligence (AI)-enabled suggestion 

II. STANDARD OF CARE ON COLORECTAL SCREENING

Early cancer detection through effective screening 
constitutes the hallmark for providing patients and clinicians 
with the best possible “fighting chance”, more so for 
colorectal cancer, a highly preventable cancer with long (>10 
years) pre-malignant underlying processes. Specifically, the 
colorectal cancer field has been provided with a variety of 
screening tools [12], [13], which can be divided into two main 
groups (Table I). Each method bears specific benefits and 
limitations with regard to invasiveness, sensitivity, specificity, 
preparation, sampling process, risks and costs (Table 2).

TABLE I. COLORECTAL CANCER SCREENING TESTS

Group Description Tests Assessment
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l-B
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They are 
simpler and 
less invasive 

than 
structural 

tests, 
however 

they require 
frequent 

reassessment

Fecal
immunochemical 

test (FIT)
Every yearguaiac-Based 

Fecal Occult 
Blood Test 
(gFOBT)

Multi-targeted 
stool

DNA test (mt-
sDNA)

Every three
years

St
ru

ct
ur

al

They scan 
colon and 

rectum 
structure for 

abnormal 
areas. They 
are invasive 

tests 
conducted 

either with a 
scope inside 
the rectum 

or via 
special 

imaging.

Flexible 
Sigmoidoscopy 

(FSIG) Every five 
yearsComputed 

Tomography 
(CT)

Colonography

Colonoscopy Every ten
years

TABLE II. COLORECTAL CANCER SCREENING TESTS

Test Benefits Limitations

FIT

o No direct risk to the 
colon

o No bowel 
preparation

o No pre-test diet or 
medication changes

o At-home sampling
o Fairly inexpensive

Can miss many polyps 
and some cancers
Potential false-positive 
results
Needs annual 
reassessment
Requires colonoscopy if 
abnormal

gFOBT

o No direct risk to the 
colon

o No bowel 
preparation

o At-home sampling
o Inexpensive

Can miss many polyps 
and some cancers
Potential false-positive 
results
Pre-test diet changes and 
medication changes
Needs annual 
reassessment
Requires colonoscopy if 
abnormal

mt-sDNA

o No direct risk to the 
colon

o No bowel 
preparation

o No pre-test diet or 
medication changes

o At-home sampling

Can miss many polyps 
and some cancers
Potential false-positive 
results
Needs reassessment 
every three years
Requires colonoscopy if 
abnormal

FSIG

o Fairly quick and 
safe

o Usually doesn’t 
require full bowel 
prep

o Sedation usually not 
used

o Does not require a 
specialist

o Performed every 
five years

Not widely used as a 
screening test
Examines only about 1/3 
of the colon
Can miss small polyps
May cause some 
discomfort
Small risk of bleeding, 
infection or bowel tear
Requires colonoscopy if 
abnormal

CT 
Colonography

o Fairly quick and 
safe

o Can usually 
examine the entire 
colon

o Performed every 
five years

o No sedation needed

Can miss small polyps
Full bowel prep needed
Potential false-positive 
results
Exposure to radiation
Inability to remove 
polyps during testing
Requires colonoscopy if 
abnormal

Colonoscopy

o Can usually 
examine the entire 
colon

o Can include biopsy 
and polyp removal

o Performed every ten 
years

Can miss small polyps
Requires full bowel 
preparation & (usually) 
sedation
More expensive than 
other tests
Small risk of bleeding, 
bowel tears or infection

Evidently, in the context of colorectal cancer screening, 
the medical community is faced with the paradox of a 
dedicated screening procedure pool that is heavily under-
utilized by citizens. Although colonoscopy is recommended 
as the current gold standard, the long preparation and recovery 
procedures (~24 hours) as well as the potential adverse effects 
(colon tears, diverticulitis, abdominal pain, and risks in 
cardiovascular conditions) induce heavy reluctance for 
individuals to include colonoscopy in their regular check-up
routine. Moreover, all existing Standard-of-Care (SoC)
screening tests can miss small polyps, thus failing to detect 
potential pre-malignant lesions.

III. STATE-OF-THE-ART ON RISK FACTOR ANALYSIS

Numerous studies have investigated the association of 
colorectal cancer incidence with demographic, behavioral, 
and environmental risk factors including age, sex and lifestyle. 
For instance, a 25% higher incidence has been documented for 
males, varying among countries [2], while even race has been 
highlighted as a noteworthy parameter [14]. Overall, age 
comprises the main factor assessed by current guidelines, 
formulating at-risk groups for recommended screening. 
Guidelines suggest screening after 50 years, with healthy 
citizens advised to pursue regular testing through the age of 
75. For people aged 76-85, guidelines are based on overall 
health and prior history, while beyond this range there are no 
strict recommendations. However, clinical practice has shown 
that these thresholds are gradually decreasing, a fact under 
investigation by the medical community. This status creates a 
pressing need for alternative practices beyond age-only 
recommendation onset. Currently, the only such criteria 
correspond to medical history, family history or symptom 
manifestation. Indicatively, a meta-analysis of observational 
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studies found that having at least one affected first-degree 
relative (parents, siblings, or children) increased the risk of 
colorectal cancer by 2.2-fold and having at least two affected 
first-degree relatives increased the risk of colorectal cancer by 
almost 4-fold [15]. Moreover, patients with persistent 
Inflammatory Bowel Disease (IBD) are twice as likely to 
acquire colorectal cancer. Inflammation causes aberrant 
growth cytokines to be released, as well as increased blood 
flow, metabolic free radicals, and other variables that 
contribute to carcinogenesis [16]. Regarding symptoms, 
colorectal cancer may not cause any right away, thus 
constituting a particularly threatening cancer that necessitates 
early reliable screening. Alarming symptoms include rectal 
bleeding or changes in bowel habits such as diarrhea, 
constipation, or stool narrowing. In any other case, an 
individual is assigned with a “higher-than-average” risk status 
under the presence of one (or more) of the following: 

Personal history or family history of colorectal cancer or 
certain types of polyps 

Personal history of inflammatory bowel disease (ulcerative 
colitis or Crohn’s disease) 

Confirmed or suspected hereditary cancer syndrome (2%–
5% of all colorectal cancers), such as familial adenomatous 
polyposis coli and its variants (1%), Lynch-associated
syndromes (hereditary non-polyposis colon cancer) (2%–
4%), Turcot, Peutz–Jeghers and MUTYH-associated 
polyposis syndrome 

Personal history of radiation treatment on the abdomen or 
the pelvic area for a prior cancer 

The above elements comprise unalterable facts regarding
early detection or even cancer prevention. On the other hand, 
several lifestyle-related factors have been identified, which 
are modifiable through suitable behavioral screening and 
personalized interventions. In fact, the links of diet, weight 
and exercise to colorectal cancer risk are some of the strongest 
among all cancer types. For example, being overweight raises 
both the incidence and the mortality risk for colorectal cancer
in both men and women, but the link seems to be stronger in 
men. Body-mass index (BMI) and waist circumference (WC) 
are well-established risk factors for colorectal cancer, as 
evidenced by epidemiological research employing a variety of 
anthropometric measurements [17]. By extension, physical 
activity seems to constitute a key factor with evidence not 
favoring a sedentary lifestyle, as is the case for dietary habits. 
Namely, a diet that is high in red meats (such as beef, pork, 
lamb, or liver) and processed meats (like hot dogs and some 
luncheon meats) is assumed to raise colorectal cancer
incidence risk. Even cooking-related processes seem to play a 
part, with very high temperatures (frying, boiling, or grilling) 
generating chemicals that might raise the associated risk. 
Similarly, lifestyle habits like smoking or alcohol 
consumption are linked to colorectal cancer incidence [18]. 
Although smoking is a well-known factor for lung cancer, 
research has displayed association with additional 
malignancies. Similarly, heavy alcohol use may cause a 
number of significant health-related outcomes, with colorectal 
cancer bearing a connection. By extension, all these 
modifiable factors have the potential to be addressed via 
lifestyle interventions promoting healthy behaviors including 
physical activity, BMI control, appropriate eating/cooking 
habits and refraining from smoking or excessive alcohol. On 
the whole, although a large pool of risk factors has been 

assumed to correlate with colorectal cancer (among other 
malignancies as well), the underlying regulatory processes 
remain largely unknown. The key to quantifying the 
corresponding transition mechanisms might lie into specific 
biomarkers that are extracted in a minimally invasive and cost-
effective manner. Indicatively, it is a well-known fact that 
dietary habits are translated into alterations in routine blood 
biomarkers, such as the level of vitamin D in the blood,
directly associated with eating patterns [19]. However, such 
phenotype manifestations have not been analyzed within a 
colorectal cancer-centered protocol. A handful of studies have 
assessed some indicative biomarkers, albeit without proposing 
an interpretation model for behavior effects on biomarker 
alteration and colorectal cancer incidence [20], [21].

IV. THE POTENTIAL OF AI IN COLORECTAL CANCER 
SCREENING

Generally, outcome prediction has been the hallmark 
regarding AI utilization on cancer. Indicatively, AI models 
have attempted to predict 5-year colorectal cancer recurrence 
risk, outperforming grading and/or staging evaluation by 
expert pathologists. As far as screening is concerned, AI has 
been implemented for automated decision making in 
combination with various studied screening procedures [7]. 
Relying on the duration of the gradual transition path from 
normal mucosa to a premalignant growth and then to a 
malignant lesion spanning over 15-20 years, AI can detect 
suspect changes corresponding to abnormal tissue, which may 
be indicative of either a premalignant precursor lesion or an 
early-stage tumor. In particular, a high adenoma detection rate 
(ADR) has been validated as inversely correlated with 
adenoma miss rate and the risk of post-colonoscopy colorectal 
cancer), with every 1% increase in ADR corresponding to a 
3% reduction in colorectal cancer development risk and 5% 
reduction in fatal colorectal cancer incidence [22]. However, 
ADRs may range from 7% to 53% among different 
endoscopists, creating the demand for objective and 
reproducible assessment towards attaining a robust ADR in 
clinical settings. In this regard, convolutional neural networks 
(CNNs) have been found to accurately detect and localize
premalignant lesions on imaging data. In a prospective 
randomized trial under controlled conditions [23] with 
conventional vs computer-aided colonoscopy detection, ADR 
was significantly increased in favor of computer-aided 
detection (CAD). Similarly, virtual colonoscopy paired with 
machine learning (ML) modules was able to distinguish 
benign and precancerous colorectal polyps in an average-risk
asymptomatic colorectal cancer screening samples with a 
sensitivity of 82% and specificity of 85%.

In the field of liquid biopsy, AI impact has been examined 
with the use of supervised learning methods such as support 
vector machines (SVMs). Hierarchical classification has 
shown feasible applicability, with an initial classification level 
filtering out non- colorectal cancer samples and a subsequent 
level differentiating between non-malignant lesions and a “no 
findings” class [24]. Additionally, blood biomarkers have 
been considered for use, alongside risk factors (e.g.,
demographic), within an AI-based framework for estimating 
cancer risks. These biomarkers were not limited in complex 
resource-demanding analytics, but included standard blood 
test markers as well, such as red cell distribution width (RDW) 
and anemia findings [25], [26] . Further knowledge can be 
drawn from electronic health records (EHR), thus 
incorporating screening in primary healthcare settings. 
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Notably, combining such models with gFOBT seems to 
contribute to more than 2-fold increase in cancer detection 
capability for retrospective data cohorts. Based on this 
information pool, decision trees can be constructed for 
producing risk stratification scores and proposing clinical 
pathways. Finally, with regard to the Cancer of Unknown 
Primary (CUP) case, AI has been used with known metastatic 
colorectal cancer cases as training data, attempting subsequent 
testing and validation on both metastatic colorectal cancer and 
CUP data [27].

AI-powered virtual assistants can also provide 
personalized healthcare services and improve communication 
between patients and care providers [7]. By this principle, AI-
based mobile applications such as the Colorectal Cancer 
Awareness Application (ColorApp®) [28] have sought to 
foster community education and participation in screening 
programs, achieving a score of 72 in the System Usability 
Scale Questionnaire for the Assessment of Mobile Apps. 
However, there is a lack of regional adaptations and 
performance surveys beyond usability scores.

In general, despite the above AI advances in colorectal 
cancer risk and progression assessment, the medical 
community is still skeptical and reluctant in trusting the 
outcomes of machine learning methods. This is mainly due to 
the depth of most neural network approaches, which are 
regarded as “black boxes”, along with their confusing 
architecture. Furthermore, the majority of deep learning 
models fail to generalize adequately on previously ‘unseen’
data [29]. Since medical practices and methods are often 
altered and updated, AI models are expected to maintain their 
performance when evaluated on data that are sampled from a 
similar but different distribution than that of the model’s 
training data (e.g., datasets across hospitals or signals captured 
by different devices). To this end, several Domain 
Generalization (DG) [30]–[32] methods have been proposed. 
DG methods attempt to push AI models to extract invariant 

features present in the data and therefore be less affected by 
the potential distributional shift in different datasets. In 
addition, explainable artificial intelligence (XAI) is gradually 
becoming a prerequisite by clinicians and policy makers, 
seeking to instill accountability and medical transparency into 
AI-assisted decisions for launching trustworthy clinical. 

V. SUGGESTION OF AN AI-BASED SOLUTION

Under these suggestions, AI can be exploited in the 
context of assessing an extended risk factor pool compared to 
current limited clinical consideration and by creating a 
clinical decision support for stratifying high-risk cases as an 
output from a front-line screening tool to the main evaluation 
phase. Figure 1 depicts the suggested approach.

Organization of knowledge into a standardized format, 
can generate a homogenized dataset. This will be utilized 
where risk factor investigation will take place, producing a 
holistic colorectal cancer risk factor set and a set of biomarker 
‘hits’ to be further evaluated during a subsequent analytics 
step. This phase will in turn generate protein features for 
training and evaluating an AI model. In the latter phase, risk 
factor and protein features will undergo an AI-based analysis 
for generating a proposed subset of discriminative protein 
biomarkers as well as a full stratification model utilizing a
hybrid approach based on the combination of biomarker and 
risk factor phenotypes.

A. Phase I: Risk Factor and Colorectal Cancer Biomarker 
Early Discovery
Demographic, behavioral, environmental, medical and 

history factors will be filtered from available data based on 
expert knowledge and existing research for determining the 
set that will be used during Phase III in the context of AI 
model training. In cases where retrospective data are deemed 
insufficient for AI training regarding individual parameters, 
those will be incorporated in the subsequent protocol, 

Figure 1 Suggested Methodological Architecture of the AI-based solution  
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pending investigation and verification of their role based on 
prospective data. Regarding colorectal cancer biomarkers 
from blood samples, the necessary activities following the 
traditional biomarker discovery pipeline can be conducted by 
clinical entities, from early discovery and verification to 
clinical validation. Phase I corresponds to the early discovery 
phase, involving the identification of “hits” by searching 
thousands of proteins in limited number of samples that are 
present in blood serum/plasma using Proximity Extension 
Assay (PEA) by Olink, utilizing Next Generation Sequencing 
(NGS) methods to measure the concentration of thousands of 
human plasma proteins from small sample volumes [27]. 
PEA uses matched pairs of antibodies attached to unique 
DNA nucleotides for each protein to produce NGS readouts 
for the parallel quantification of up to 3000 proteins. 

NGS readouts will be analyzed using statistical methods 
to identify a projected panel of ~30 protein markers that are 
representative of colorectal cancer incidence, showing a 
significant difference between healthy and diseased blood 
samples. However, due to the complex nature of cancer and 
the lack of mechanistic insight of proteome-wide or large-
scale discovery screens, most of the identified biomarkers 
may still have poor diagnostic performance and clinical 
outcome. On that account, early discovery will be followed 
by main biomarker development in Phase II, exploiting an 
extended pool of retrospective as well as prospective data. 
Phase II will provide the complete list of colorectal risk 
factors to be included in the AI modelling process for risk 
stratification, behavioral monitoring, and interventions.

B. Phase II: Development of Colorectal Cancer Biomarkers
As stated above, due to the complex nature of cancer and 

the lack of mechanistic insight of proteome-wide or large-
scale discovery screens, the majority of identified biomarkers 
can still have poor diagnostic performance and clinical 
outcome. This is evident by the limited translation of 
candidate biomarkers into clinical diagnostic assays, with less 
than two overall approvals per year [28]. Thus, a mechanism-
based approach using multi-omics data is required to verify 
the role of the identified serum biomarkers in the complex 
colorectal cancer mechanism and select the most promising 
ones for clinical validation [33]. Recent advances in systems-
based approaches have led to the development of 
interdisciplinary methods that utilize multi-omics data and 
network-based technologies to elucidate the complex disease 
mechanism [34]. More specifically, transcriptomic and 
proteomic data from patients’ tissue samples are coupled with 
knowledge bases of bio-molecular interactions to create in-
silico models that best explain experimental data and are 
representative of the disease mechanism(s) [35]. These 
models are often represented as signaling networks, with 
nodes being the signaling proteins and edges depicting the 
directed flow of information in the system. 

Using pathway and network analysis methods, these 
models can be analyzed to identify the affected biological 
pathways and central protein nodes that are characteristic of 
the colorectal cancer mechanism. Being a representation of the 
colorectal cancer mechanism, these models can be applied to 
verify the connection and importance of the blood biomarkers 
identified during the early discovery phase. The result is a 
selection of verified biomarkers, present in blood, with 
mechanistic insight and improved performance for the early 

detection of colorectal cancer. Finally, the identified panel of 
biomarkers can be developed into highly specific and cost-
effective multiplex proteomic assays to provide powerful 
features for an AI-based detection system. 

A state-of-the-art method for multiplex diagnostic assay 
development involves the use of bead-based immunoassays. 
Multiplex assays utilize the xMAP technology (Luminex 
Corp) that relies on color-coded microspheres (bead regions) 
to allow for the simultaneous detection of responses against 
multiple protein targets from the same sample. Each bead 
region is coated with an antibody that recognizes and binds to 
a specific part of the protein. Mixtures of bead regions are used 
in a sandwich-type Enzyme-Linked Immunosorbent Assay 
(ELISA) assay to provide relative and absolute quantification 
of multiple proteins across the various conditions tested. 
These assays offer high multiplexability, sample throughput, 
quality of measurements and specificity for measurement of 
identified biomarkers in blood. Multiplex readouts from the 
developed assays can then be combined with logic-based and 
AI-based computational models to select the optimal 
combination of biomarkers that maximizes their detection and 
diagnostic performance [36]. In essence, this step constitutes 
the main proteinic feature selection process for AI modelling 
of Phase III towards the identification of the biomarkers 
associated with optimal screening capacity. Outputs of Phase
II will equip with protein features the AI analysis aiming to 
pinpoint the most significant biomarkers bearing biological 
explainability through the demonstration of their role within 
colorectal cancer regulatory network paths.

C. Phase III: AI-Modelling and System Deployment
Features pinpointed during Phases I & II (risk factors & 

proteinic markers) will comprise the necessary feature vector 
for training and testing the AI-enabled modules. Initially, a 
pool of state-of-the-art AI methodologies, encompassing 
supervised learning, unsupervised learning and 
reinforcement learning for operating on retrospective datasets 
will be deployed. Parametric and non-parametric techniques 
will be incorporated with network-based techniques also 
included, maintaining interpretability by individually testing 
feature subsets. As such, application of multiple frameworks 
in pursue of the optimal classification scheme, testing both 
individual algorithms and ensemble schemes (e.g., majority-
vote models) within various combinations and architectures 
can be pursued. Moreover, enhancing interpretability and 
transparency can be offered for avoiding class exclusion for 
cases close to the decision boundaries for colorectal cancer 
risk. This can be achieved by exploration of probabilistic and 
fuzzy classification, both for directly producing quantified 
estimates and for providing clinicians with comparative class 
predictions. This pursue will remain in the context of deep 
neural networks (DNNs), that bear high performance, 
although the multitude of layers and lack of understanding on 
prediction derivation render explainability a challenging task
[37]. To address this, dedicated techniques for investigating 
the models’ decisions such as SHapley Additive exPlanations 
(SHAP) values [38], saliency maps and Gradient-Based 
Localization [39] shall be deployed. Furthermore, Layer-wise 
Relevance Propagation (LRP) propagation-based approaches 
will take into account the internal structure of the neural 
network propagating the prediction from the output 
backwards to the input in order to assign relevance scores to 
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the input variables and in compliance with some predefined 
rules [40]. Moreover, Local Interpretable Model-agnostic 
Explanations (LIME) will be applied to the DL architecture, 
explaining the model’s response to local perturbations, 
occluding some of the inputs to investigate the importance of 
specific variables. 

As part of AI modelling, validation will also constitute a 
major step with regard to the trustworthiness and reliability 
of the optimal AI model. In this respect, the large pool of 
retrospective data comprises the required foundation for 
extensive evaluation of the tested schemes. By utilizing
cross-validation architectures and applying weighted multi-
class splitting within the available datasets, it possible to
extract unbiased estimations, while applying the traditional 
evaluation metrics (accuracy, specificity, sensitivity, 
precision etc.) on a class-specific scale. The above techniques 
will be applied on the extracted features consisting of serum 
sample protein features, demographic, behavioral and 
medical features. Classification will be attempted both 
individually for each feature class (i.e., separating protein 
data) and employing combinatorial schemes, attempting to 
link proteinic profiles with routine factors (modifiable or 
not), aiming for an enhanced model that valorizes routine data 
alongside protein markers. This will be done with the vision 
of generating two separate AI models appertaining to real-life 
use cases. Namely, the risk stratification AI model (RS-AI) 
will solely assess risk factors and potential risk adjustments 
based on suggested behavioral interventions. On the other 
hand, the screening AI model (S-AI) will assess liquid biopsy 
results – in combination with risk factors – to provide 
decision support on high-risk individuals that should undergo 
colonoscopy. 

On the whole, the AI system should also by-principle and 
by-design fulfil the requirements comprising (i) 
accountability, (ii) privacy and data governance, (iii) societal 
and environmental wellbeing, (iv) technical robustness and 
safety, (v) human agency and oversight, (vi) diversity and 
fairness, and (vii) transparency. In such manner, the front-end 
interface will provide relevant knowledge to clinicians, 
medical professionals and citizens regarding risks and 
guidelines for colorectal cancer, raising awareness and 
contributing to enhanced prevention through population 
knowledge and evidence-based recommendations.

VI. CONCLUSION

Strengthening the collaborative environment and 
building AI-based bridges between different fields of 
practice- and theory-driven research in colorectal cancer
screening is more than necessary given the cost of the existing 
healthcare pathway. By delivering an early screening and risk 
assessment solution via AI, solutions can associate 
significant advancements on many different levels, especially 
those related to patient acceptance and knowledge discovery. 
Embracing of new technologies in the colorectal screening 
pathway will improve public health, while generating 
knowledge to increase the quality of life. Thus, screening will 
become more accessible, offering risk assessment, health 
monitoring and better disease evaluation. Besides early 
diagnosis, identification of disease trajectories and relapse, as 
well as employment of cutting-edge technologies may shed 
light to the nature of the colorectal cancer biological initiation 

mechanisms, therefore improving the existing human 
condition.

While colorectal cancer screening tools have proven to 
be effective, the medical examinations usually employed 
present several obstacles. As such, a substantial colorectal 
cancer miss rate has been often reported, while the fact that 
certain screening methods (e.g., colonoscopy) usually require 
hospital/clinical settings puts excessive workload on the 
medical experts to program appointments and consultation. 
In this regard, information regarding colorectal cancer 
development could not only prioritize citizens clinic 
appointments (e.g., increasing the participation of high-risk 
colorectal cancer patients), but also allow healthcare 
professionals to be better positioned in terms of the required 
screening technique.

Allowing preliminary and evidence-based results, our 
suggested approach will provide medical experts with 
detailed information for an early and precise screening of 
colorectal cancer augmenting clinical decision reliability for
preventing unneeded invasive examination and thus potential 
adverse outcomes. Furthermore, it will improve quality in the 
clinical actions and patient care, reducing the time spent on 
routine administrative tasks, while providing easy and faster 
access to colorectal cancer knowledge staging and 
intervention planning. 

The knowledge generated by targeting subject-specific 
quantification of precise biomarkers determining 
divergencies and tolerance constraints on colorectal cancer 
determinants via Phases I & II of the methodology presented 
here, will be assessed based on cutting-edge AI tools (Phase 
III). This way, only the clinical validation will be left to be 
performed via medium or large-scale pilots. Thus, it will 
grant personalized staging and early protopathic/recurrence 
prediction, reducing human resources costs by unburdening 
the healthcare system of nonessential hospital/clinical visits. 
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