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ABSTRACT

Accreting neutron stars are one of the main targets for continuous gravitational
wave searches, as asymmetric accretion may lead to quadrupolar deformations, or
‘mountains’, on the crust of the star, which source gravitational wave emission at
twice the rotation frequency. The gravitational wave torque may also impact on the
spin evolution of the star, possibly dictating the currently observed spin periods of
neutron stars in Low Mass X-ray Binaries and leading to the increased spindown
rate observed during accretion in PSR J1023+0038. Previous studies have shown that
deformed reaction layers in the crust of the neutron star lead to thermal and com-
positional gradients that can lead to gravitational wave emission. However, there are
no realistic constraints on the level of asymmetry that is expected. In this paper we
consider a natural source of asymmetry, namely the magnetic field, and calculate the
density and pressure perturbations that are expected in the crust of accreting neutron
stars. In general we find that only the outermost reaction layers of the neutron star
are strongly perturbed. The mass quadrupole that we estimate is generally small and
cannot explain the increase of spin-down rate of PSR J1023+0038. However, if strong
shallow heating sources are present at low densities in the crust, as cooling observations
suggest, these layers will be strongly perturbed and the resulting quadrupole could ex-
plain the observed spindown of PSR J1023+0038, and lead to observable gravitational
wave signals from systems with higher accretion rates.

Key words: stars: neutron — gravitational waves — pulsars: individual (PSR
J1023+0038)

1 INTRODUCTION

The first detection of gravitational waves (Abbott et al.
2016) has opened the field of Gravitational Wave (GW) as-
tronomy and the recent detection of a binary Neutron Star
(NS) inspiral (Abbott et al. 2017) has already begun to con-
strain the Equation of State (EoS) of dense matter (Abbott
et al. 2018). NSs are expected to be prolific GW emitters
and we not only expect them to play a role in inspirals, but
also to emit continuous gravitational waves (CWs), due to
unstable modes or non-axisymmetric deformations (dubbed
‘mountains’) that turn the star into a GW pulsar (Riles
2017).

This last scenario, in particular, has attracted much in-
terest, as on the one side the neutron star crust is thought
to be strong enough to support a significant deformation be-
fore cracking (Haskell et al. 2006; Horowitz & Kadau 2009;

Baiko & Chugunov 2018; Johnson-McDaniel & Owen 2013),
on the other accretion onto a magnetised star provides a nat-
ural mechanism to produce crustal asymmetries and source
a deformation (Bildsten 1998; Ushomirsky et al. 2000). It
has even been suggested that the spin rate of accreting NSs
in Low Mass X-ray Binaries (LMXBs) may be set by the
competition between the accretion torque that is spinning-
up the star and the GW torque that removes angular mo-
mentum from the system (Papaloizou & Pringle 1978). This
would explain why we do not observe sub-millisecond pul-
sars, despite the Keplerian breakup frequency of a NS νk,
being above νk ≈ 1200 Hz for any physically realistic model
that is causal in the core and includes a crust (Haskell et al.
2018).

A recent analysis of the spin-distribution of accreting
NSs in LMXBs by Patruno et al. (2017) has also revealed
that the distribution is bimodal, with a broad population
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2 N. Singh et al.

appearing at lower frequencies (and consistent with the
observed population of millisecond radio pulsars, of which
the LMXBs are thought to be the progenitors Alpar et al.
(1982)) and a much more narrowly distributed population
of rapidly rotating neutron stars with 550 Hz . ν . 720
Hz. This feature, in particular, suggests a torque that scales
strongly with frequency and is difficult to explain simply in-
volving accretion torques, but can be naturally explained if
GW torques are acting on the system (Gittins & Andersson
2018).

One of the pulsars in the fast population, PSR
J1023+0038, has attracted particular attention. This is a
transitional pulsar, that transitions from being accretion
powered in outburst to radio emission during quiescence
(Archibald et al. 2009). It has been possible to time this pul-
sar both in the X-ray and radio phases, and measurements
of the spin-down rate have revealed that the NS is spin-
ning down ≈ 27% faster when it’s accreting (Jaodand et al.
2016). This result is somewhat unexpected, as standard ac-
cretion models can predict spin-down during accretion, but
generally require some fine-tuning for the spin-down rate in
both phases to differ so little (Jaodand et al. 2016). Gravi-
tational wave emission, however, offers a scenario that can
explain the slight increase in spin-down rate quite naturally
if a mountain is being built on the crust during the accretion
outburst (Haskell & Patruno 2017).

If light elements are accreted at the surface, they are
subsequently pushed deeper into the crust when new mate-
rial is added, and here they undergo several reactions, in-
cluding pycno-nuclear reactions and electron capture, that
change the composition and release heat locally (Haensel
& Zdunik 1990). This deep-crustal heating is responsible
for heating X-ray transients, which then cool during qui-
escence as has been observed in many systems (Wijnands
et al. 2017). If part of the reaction layers are not exactly
axisymmetric, temperature and composition gradients can
source a ‘mountain’ and lead to GW emission (Bildsten
1998; Ushomirsky et al. 2000).

The main parameters that determines the size of the
mountain are the total accreted mass, which depend on
the accretion rate and outburst duration, and the amount
of asymmetry in the heat release. For example Haskell &
Patruno (2017) found that if ≈ 2% of the heat released
is quadrupolar, then a large enough mountain, that ex-
plains the observed spindown rate, can be built on PSR
J1023+0038.

How much of the heat emission will be quadrupolar, or
how quadrupolar the surfaces of equal composition will be,
is however, generally unknown. One can put an upper limit
of around 50% on the ratio between quadrupolar and spher-
ical components of the heat deposition from the fact that
no pulsations are visible in quiescence with an amplitude
larger than ≈ 50%, while if there were quadrupolar heat de-
position, the heat would diffuse out in quiescence and cause
pulsations at twice the rotation frequency with similar am-
plitude (see Haskell et al. (2015) for a detailed analysis).
There is, ultimately, no realistic estimate of how large the
quardupolar component is expected to be, thus limiting the
predictive power of this model.

In this paper we consider a natural source of asymme-
try, namely the magnetic field. We model accretion onto the
polar cap of a neutron star numerically with the code of

Mukherjee & Bhattacharya (2012), and calculate how dis-
torted the density and pressure profiles will be in the outer
layers of the star. We then extrapolate to higher densities,
to calculate the quadrupolar component of the temperature
perturbation due to reactions in the outer crust up to neu-
tron drip density (ρ ≈ 1011 g cm−3). From this we use the
results of Ushomirsky et al. (2000) to estimate the induced
ellipticity and gravitational wave signal. In general we find
that only relatively small ellipticities can be produced by
this mechanism, smaller than could be detected by Advanced
LIGO and Virgo and smaller than what would be required
to explain the additional spindown of PSR J1023+0038.

2 DEEP CRUSTAL HEATING

A NS in an LMXB accretes matter, generally hydrogen
or helium, from the companion, and as accretion proceeds
these light nuclei are pushed down to higher densities, and
can undergo a number of reactions, including electron cap-
tures and pycno-nuclear fusions, which produce heavier nu-
clei and push the composition towards equilibrium (Haensel
& Zdunik 1990). This process releases a few MeV per ac-
creted baryon of heat in the crust, which is thought to power
the quiescent luminosity of NS in LMXBs and can explain
the observed cooling of transient LMXBs (Wijnands et al.
2017). If the reaction layers are not perfectly axisymmet-
ric, gradients in temperature and composition resulting from
asymmetric accretion can source a quadrupolar deforma-
tion, sustained by the rigidity of the crust (Bildsten 1998).
Ushomirsky et al. (2000) examined this problem in detail
and calculated the quadrupole induced by reactions in the
outer crust. Their results, assuming a quadrupolar temper-
ature increase δTq, can be approximated as:

Q22 = 1.5× 1035R4
10

(
δTq
105

)(
Eth

30 MeV

)3

g cm2 (1)

where R10 is the radius in units of 10 km, Eth = µe, with
µe the electron chemical potential, is the threshold energy
for the pycnonuclear reactions responsible for deep crustal
heating in a given layer. Since the required quadrupole Q22

to explain the behaviour of PSR J1023+0038 is 4.4×1035I45

g cm2 Haskell et al. (2018), where I45 is the moment of
inertia of the NS in units of 1045 g cm2, from eq. (1) we
see that the required quadrupolar temperature variation for
this star is

δTq ≈ 2.9× 105R−4
10 I45

(
Eth

30 MeV

)−3

K . (2)

Assuming that deep crustal heating is the only source of
temperature increase, the total increase in temperature is
given as Ushomirsky & Rutledge (2001):

∆T ≈ 102C−1
k p−1

30 QM∆M21 K (3)

where Ck is the heat capacity in units of the Boltzman con-
stant per baryon, p30 is the pressure in units of 1030 erg/cm3,
QM is the heat released locally by the reactions per accreted
baryon, in units of MeV, and M21 is the accreted mass in
units of 1021 g.

To obtain an estimate for PSR J1023+0038 Haskell &
Patruno (2017) considered a simplified model with only the
contribution due to the most energetic reactions close to
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Asymmetric accretion and thermal mountains 3

the neutron drip layer, at ρ ≈ 4 × 1011 g cm−3, although
note that for accreted crusts this may be shifted to higher
densities depending on the composition of the ashes of X-
ray bursts, as discussed by Chamel et al. 2015. We have
used ∆M21 = 0.1 following Haskell & Patruno (2017), which
is reasonable for a month of accretion. In this case, taking
Eth = 30 MeV, QM = 0.5 MeV, Ck = 10−6 and p30 = 1,
one obtains

δTq
∆T

& 0.03 (at neutron drip) (4)

Naturally a more detailed analysis should consider the
contribution due to all reaction layers, which will add up to
contribute to the total quadrupole, thus reducing the esti-
mate in (4). Taking the results of Haskell & Patruno (2017)
and summing the contribution of all layers in the outer crust,
as suggested by Ushomirsky et al. (2000), for a linearized
model, the total quadrupole generated by i reactions in dif-
ferent layers will be given as:

QT ≈ 1.5× 1032∆M21R
4
10

∑
i

(QM )i(E
3
30)i

(p30)i(Ck)i

(
δTq
∆T

)
i

(5)

where E30 is Eth in units of 30 MeV, and all quantities
with the subscript i must be calculated at the pressure and
density corresponding to the reaction layer i.

It remains an open issue whether deformations of order
δTq/∆T ≈ 0.01 can occur in the crust of an accreting NS,
and without an estimate of this quantity it is impossible to
obtain a meaningful theoretical estimate of the quadrupole
from (5), let alone compare this to observations.

There is, however, a natural source of asymmetry in
the system, as the NS is magnetised, and unless the field
is too weak, matter is accreted onto the polar caps and
then spreads due to lateral pressure gradients, that are op-
posed by magnetic stresses. This can lead to the creation
of magnetic mounds in accreting systems (Payne & Melatos
2004, 2007; Mukherjee 2017), and significantly deform the
field structure, leading to burial of the dipolar component
(Shibazaki et al. 1989). In fact, for high magnetic fields and
accretion rates, the magnetically confined mountain may it-
self be large enough to lead to a detectable gravitational sig-
nal (Priymak et al. 2011; Haskell et al. 2015). We will see,
however, that for the weaker fields we consider the magnetic
contribution to the ellipticity is generally much smaller than
the ‘thermal’ contribution due to deep crustal heating.

In summary our strategy consists of splitting the full
problem, which would include contributions due to magnetic
stresses, elasticity and the readjustment of the reaction lay-
ers due to the non-barotropic nature of a realistic EoS in
the crust, into following steps. First we calculate barotropic
magnetic equilibrium to estimate the temperature asymme-
tries in the crust of the accreting star. Then we use these to
calculate the source terms that lead to the readjustment of
the capture layers and then using the results of Ushomirsky
et al. (2000), we obtain the elastic response of the crust.

3 TEMPERATURE ASYMMETRIES

To calculate the temperature asymmetries in the crust we
consider a sequence of static equilibria of a mound of ac-
creted matter confined by a magnetic field in the neutron
star outer layers. The equilibrium solution is constructed

by numerically solving the Grad-Shafranov (GS) equation
using the numerical GS solver developed by Mukherjee &
Bhattacharya (2012), described in detail in Section 3.1. As
in the original algorithm of the GS solver, the effects of
continued accretion are not taken into account. Although it
has been demonstrated that pressure driven MHD instabil-
ities Mukherjee et al. (2013a,b) can occur beyond a thresh-
old mass of the magnetically confined mounds, Vigelius &
Melatos (2008) have shown that the instabilities may satu-
rate to a new equilibrium configuration. For analytical sim-
plicity, we perform the analysis in this paper on the equilib-
rium solutions obtained from the GS solver, without explor-
ing the stability of the mound, to obtain an upper limit on
the deformations and the resultant gravitational wave sig-
nals. We then, use the equilibrium solution to estimate the
asymmetries in the crust which is described in Section 3.2

3.1 Formulation of Grad-Shafranov equation

To simulate the mass and magnetic field configuration on
the surface of a neutron star in an LMXB we consider the
equilibrium profile of a ‘mountain’ on the surface of a star
accreting matter from a disc, where the magnetosphere cuts
off the accretion disk at the Alfven radius, the distance from
the star where the energy density of the stellar magnetic field
is balanced with the energy density of the inflowing matter
and the matter is accreted onto the poles. As we shall see in
the following this allows us to define the extent of the polar
cap on which matter is deposited by accretion. More detailed
treatments of the inner disc radius are possible (Ghosh &
Lamb 1979; Wang 1996; Spruit & Taam 1993; Andersson
et al. 2005; Kluźniak & Rappaport 2007), but generally the
position of the inner edge of the disc rinner is found to be
proportional to the Alfven radius rA, such that rinner = ξrA,
with 0.4 . ξ . 1 (D’Angelo 2017). For simplicity, and given
the other sources of uncertainty in our treatment, we will
thus simply take rinner = rA.

The initial magnetic field is dipolar and the polar caps
are assumed to be axisymmetric about the magnetic axis
z. For zero toroidal magnetic field in an axisymmetric sys-
tem (r, θ, φ), in ideal magnetohydrodynamics (MHD) the
poloidal magnetic field is given as:

Bp =
∇ψ(r, θ)× φ̂

r sin θ
(6)

where ψ, the flux function is given as:

ψ = r sin θAθ (7)

where, Aθ is the azimuthal component of the vector poten-
tial and the system is symmetric with respect to azimuthal
coordinate φ. The azimuthal component of the current is
then,

jφ = − c

4π

∆2ψ

r sin θ
(8)

∆2 =
∂2

∂r2
+

sin θ

r2

∂

∂θ

(
1

sin θ

∂

∂θ

)
(9)

where, ∆2 is the Grad-Shafranov operator in spherical coor-
dinates. For a system in static equilibrium, the Euler equa-
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tion is,

∇p+ ρ∇Φ =
j×B
c

= ρ∇F (10)

where Φ is the gravitational potential and ∇F = ∇p
ρ

+
∇Φ, so F is a function constant along a flux surface. For
a spherical coordinate system and Newtonian gravity with
constant acceleration,

g = −1.86× 1014

(
Ms

1.4M0

)(
Rs

10km

)−2

cms−2r̂ (11)

assuming p = f(ρ), the density profile is obtained by inte-
grating eq.(10) to get,

1

ρ

df

dρ
∇ρ = ∇(F (ψ)− Φ) (12)

For a polytropic equation of state p = KρΓ eq.(12) gives,

ρ =

(
g(Γ− 1)

ΓK

) 1
Γ−1

(r0(ψ)− r)
1

Γ−1 (13)

where r0 = F (ψ)/g is an arbitrary mound height function,
the choice of which gives the shape of the mound. The con-
stant of integration is taken to be zero. Substituting eq.(13)
in eq.(10) gives,

∆2ψ = −4πr2 sin2 θρ
dF

dψ
= −4πr2 sin2 θρg

dr0

dψ
(14)

Eq.(14) is the Grad-Shafranov equation in spherical coordi-
nates. The above equation has been solved using a parabolic
mound height function of the form:

r0(ψ) = Rs + rc

(
1−

(
ψ

ψA

)2
)

parabolic profile (15)

, and hollow mound height function given as:

r0(ψ) = Rs +
rc

0.25

(
0.25−

(
ψ

ψA
− 0.5

)2
)

hollow profile

(16)
which accounts for the fact that mass loading will occur
over a finite range of accretion disc radii, as discussed by
Mukherjee et al. (2013a). Here ψA is the flux function at
the Alfven radius and rc the cutoff chosen for the mound
height. The density is determined by mound height profile
and eq.(13).

Specifically we take polytropic equation of state (EOS)
of the form : p(ρ) = KρΓ where Γ is the adiabatic index and
K is measured in cgs units (dyn g−Γcm3Γ−2). The values
of K = 5.4 × 109 and Γ = 5/3 are chosen to crudely ap-
proximate to the density regimes of interest in the crust i.e
degenerate neutron gas 1012 ≤ ρ/(g cm−3) ≤ 1016. The neu-
tron star parameters are taken asMs = 1.4M�, Rs = 10km,
where Ms and Rs are the mass and radius of the neutron
star and M� is the solar mass. We note that our choice of
EOS is mainly dictated by the desire to simulate high densi-
ties and models with large values of the accreted mass. Our
choice ensures this (see Priymak et al. (2011) for a more de-
tailed discussion) but is not entirely consistent as, in prac-
tice, models used for our extrapolation do not reach such
high densities. A consistent model should consider the pres-
sure as mainly due to degenerate electrons rather than neu-
trons. We computed equilibria using various EOS and found
that a degenerate electron EOS is suitable for modelling the

accreted matter only in the upper layers and for small ac-
creted mass. To explore the maximum limit of the accreted
mass sustainable inside the crust we use the non-relativistic
degenerate neutron EOS to model the possible confinement
of denser matter, keeping in mind that it is likely to provide
an upper limit to the true value of the quadrupole that we
calculate, and that a more realistic EOS should be consid-
ered in future work.

The Alfven radius rA is deduced by equating ram pres-
sure to magnetic pressure and can be expressed as Elsner &
Lamb (1977)

rA = 3.53× 103

(
Bs

1012 G

)4/7(
Rs

10 km

)12/7

×
(

Ṁ

10−9 M�yr−1

)−2/7(
Ms

1.4 M�

)−1/7

km (17)

The maximum size of the polar cap is determined by the
field lines from the Alfven radius on to the neutron star
surface. The polar cap radius Rp can be expressed in terms
of Alfven radius rA as :

Rp =

(
Rs
rA

)1/2

Rs (18)

If Rp, θp are the polar cap radius and the opening polar cap
angle respectively, then θp is given as:

θp = sin−1

(
Rp
Rs

)
(19)

3.2 Estimate of asymmetries in the crust

In the spherical coordinate system (r, θ, φ) used here, with
r the distance from the center of the star, θ the angle from
the magnetic axis, and φ the azimuthal angle, the system is
symmetric with respect to the azimuthal coordinate φ. The
density values can be written as ρ (r, cosθ), and expanded in
terms of standard spherical harmonics with m = 0 (Yl0) in
the form:

ρ (r, cosθ) =
∑
l

ρl(r)Yl0 (20)

and each component is calculated as :

ρl(r) = 2π

∫
ρ(r, cosθ)Yl0d cos θ (21)

As we are interested in the quadrupolar deformation which
gives the leading order contribution to the gravitational
wave flux, we focus on the l = 2 coefficients and calculate
the values for the ratio, ρ2/ρ0 for each layer in the mound.
This quadrupolar variation in density generated due to mag-
netic stress is then used to evaluate quadrupolar variation in
the temperature for the estimation of the quantity δTq/∆T ,
from equations (26), (27) and (30).

We note that as the numerical setup of the system is
symmetric with respect to the azimuthal coordinate φ, a
direct expansion in Legendre polynomials may have been
more natural. However we choose to expand in spherical har-
monics as the true quantity that is needed to estimate the
quadrupolar deformation in eq. (2) is the l = 2,m = 2 com-
ponent of the temperature perturbation. We make the as-
sumption as in Haskell et al. (2008) that δT22 ≈ δT20, δρ22 ≈
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Table 1. Reactions in the crust of an accreting NS assuming that the ashes of X-ray bursts consist of pure 56Fe using the EDF BSk21
as described in Fantina et al. (2018). We provide pressure P , density ρ, threshold energy Eth and heat release per accreted baryon QM .
For completeness we also provide the free neutron fraction Xn and the density jump in the layer ∆ρ/ρ.

P ρ Reactions Xn ∆ρ/ρ Eth QM
(dyn cm−2) (g cm−3) (MeV) (keV)

6.48× 1026 1.38× 109 56Fe→ 56Cr− 2e− + 2νe 0 0.08 4.47 37.0
1.83× 1028 1.81× 1010 56Cr→ 56Ti− 2e− + 2νe 0 0.09 10.22 41.2
1.06× 1029 7.37× 1010 56Ti→ 56Ca− 2e− + 2νe 0 0.10 15.83 39.1
3.43× 1029 1.96× 1011 56Ca→56 Ar− 2e− + 2νe 0 0.11 21.22 8.1
8.75× 1029 4.38× 1011 56Ar→ 55Cl + n− e− + νe 0 0.06 26.55 0
9.40× 1029 4.79× 1011 55Cl→ 53S + ∆N · n− e− + 2νe 0.05 0.06 27.04 0
1.18× 1030 6.04× 1011 53S→ 48Si + ∆N · n− 2e− + 2νe 0.15 0.14 28.57 45.0

2.54× 1030 1.22× 1012 48Si→ 30O + ∆N · n− 6e− + 2νe
30O + 30O→ 51Si + ∆N · n− 2e− + 2νe 0.54 0.68 32.64 908.1

5.78× 1030 3.73× 1012 53Si→ 32O + ∆N · n− 6e− + 2νe
32O + 32O→ 62S + ∆N · n 0.72 0.23 35.47 355.9

8.69× 1030 6.16× 1012 64S→ 57Si + ∆N · n− 2e− + 2νe 0.74 0.03 37.74 3.5

3.20× 1031 1.65× 1013 65Si→ 40O + ∆N · n− 6e− + 2νe
40O + 40O→ 76S + ∆N · n 0.83 0.05 43.8 98.2

1.85× 1032 7.26× 1013 91S→ 86P + ∆N · n− e− + νe 0.81 0.006 69.10 0

δρ20, the subscripts being the l and m values respectively.
We have chosen to do so since for slow rotation of the star the
two quantities differ only by a geometric factor due to the
misalignment of the rotation axis (which sets the spherical
coordinate basis with respect to which the spherical harmon-
ics are defined) and the magnetic axis. The estimate made
here thus gives the l = 2,m = 0 component of the tempera-
ture perturbation rather than the l = 2,m = 2 component,
but allows us to solve for more tractable model in which
the magnetic and rotational axis are aligned (Bonazzola &
Gourgoulhon 1996; Haskell et al. 2008).

Keeping in mind the approximation δT22 ≈ δT20, to
estimate the quadrupolar perturbation in the temperature,
let us consider linear perturbations of the pressure, around
a spherically symmetric background value p0(r) i.e,

p(r, θ) = p0(r) + δp(r, θ) +O (δp)2 (22)

where δp(r, θ) can also be written in terms of density per-
turbations as,

δp(r, θ) =
∂p0

∂ρ0
δρ(r, θ) (23)

If we assume an expansion in spherical harmonics for the
perturbations also, such that , e.g.

δp(r, θ) =
∑
l

δpl(r)Yl0(θ) (24)

we can use this linear perturbation in eq. (3) to obtain the
value for quadrupolar temperature variation as,

δTq = −102C−1
k p−1

30 QM∆M21

[(
δp30,q

p30

)
+

(
δCk,q
Ck

)]
(25)

or, equivalently:

δTq
∆T

= −
[(

δp30,q

p30

)
+

(
δCk,q
Ck

)]
(26)

where with the subscript q we are now indicating the l = 2
coefficient of the expansion. We assume QM to be constant
which is a good approximation on the timescale of an ac-
cretion outburst as QM can only change on much longer
evolutionary timescales when the star first starts accreting
and the cold catalyzed crust is replaced by accreted mate-
rial. Assuming a polytropic equation of state we can write

(
δp30,q

p30

)
= Γ

δρq
ρ

(27)

At the densities of interest the main contribution to the heat
capacity is that of the ions in the lattice (Potekhin et al.
2015). We therefore take (Chong & Cheng 1994):

Ck =
3

A
f

(
T

ΘD

)
(28)

where ΘD = 3.48×103ρ1/2Z/A K is the Debye temperature
at a given density ρ, is function of the proton number Z
and the atomic number A. The Debye function f(x), with
x = T/ΘD, can be approximated as (van Riper 1991)

f(x) =


0.8π4x3 x ≤ 0.15

1− 0.05x−2 x ≥ 0.4
1.7x+ 0.0083 otherwise

(29)
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Perturbing eq. (28) we have,

δCk,q =
∂Ck,q
∂ρ

δρq +
∂Ck,q
∂T

δTq =
3

A

df

dx

(
δTq
ΘD
− x

2

δρq
ρ

)
(30)

so that for the temperatures of interest i.e. T . 107K or
x ≤ 0.4 we have

δCk,q
Ck

≈

 −
1
2

(
δρq
ρ

)
+
(
δTq

T

)
0.15 < x ≤ 0.4

− 3
2

(
δρq
ρ

)
+ 3

(
δTq

T

)
x ≤ 0.15

(31)

In the following we will assume that the crustal heat-
ing is strong enough in the capture layers, so that T ≈
∆T (l = 0) (Ushomirsky & Rutledge 2001). We obtain δTq

∆T

by combining eq. 31, 26 and 27. Thus the spherically sym-
metric heat increase obtained from equation (3) sets the
background temperature of our model, and also identify the
background ρ with ρ(l = 0) extracted from our simulation.
Thus the main assumption that allows us to obtain the result
is that ratio δTq/∆T can be expressed in terms of the ratio
of l = 2 and l = 0 component of mass density perturbation
ρ2/ρ0, which is generated due to the confinement of accreted
material by magnetic stress produced by the bending of field
lines. It is based on the fact that the temperature of the
crust in many cases is set by crustal heating (Ushomirsky
& Rutledge 2001). The only additional ingredient we need
for our calculation of the quadrupole is the density ρ, pres-
sure p, threshold energy Eth and energy release QM of the
deep crustal heating reactions in the outer crust. We take
the recent results of Fantina et al. (2018), and the relevant
parameters can be found in table 1.

4 RESULTS

To determine the quadrupolar density deformations we com-
puted equilibria for varying values of accreted mass ∆M and
magnetic field strength B, for two different values of the ac-
cretion rate, a low value of Ṁ = 6 × 10−13M� yr−1 which
would be appropriate for a system such as J1023+0038
in which continuous gravitational wave emission was sug-
gested (Haskell & Patruno 2017), and a high value of Ṁ =
3 × 10−8M� yr−1, more appropriate for persistent sources
accreting close to the Eddington limit, which are likely to
be the best targets for gravitational wave searches (Haskell
et al. 2015).

We compute the density profile for each model and ex-
pand it as equation 20, after which we compute the ratio
ρ2/ρ0. Assuming that the effect of the magnetic field is weak
compared to gravity, so as to maintain a spherically sym-
metric background density, we make the approximation that
δρq/ρ0 ≈ ρ2/ρ0, which allows us to determine δTq/∆T from
equation (26).

In tables 2, 3 and 4 we show example of the results for
an initial magnetic field strength of B = 108 G (appropriate
for J1023+0038) for both the parabolic (filled) and hollow
profile. Examples of the ratio ρ2/ρ0 are plotted in figures 1
and 2, for different values of the accreted mass (or alterna-
tively mound height), and extensive tests have been run for
different values of the magnetic field strength. Table 5 shows
the results of the simulation for a magnetic field strength of
B = 1010 G and accretion rate Ṁ = 3× 10−8M� yr−1, (ap-

proximately the Eddington limit), for a parabolic mound
profile.

We see that, in general, the densities at the base of
the crust are lower than that of many of the reaction lay-
ers we consider, and the ratio ρ2/ρ0 appears to be linearly
decreasing with density. This suggests that we may extrap-
olate our results to higher densities by means of a fit of the
dependence of ρ2/ρ on ρ. We choose a linear fit, mostly for
simplicity, as this appears to be a good approximation to
our data. In fact we do not have enough data points close
to the base of the mountain and spread over a large enough
dynamical range to meaningfully perform a logarithmic fit,
or fit a power-law with varying index. We can further assess
this approximation with a simple analysis of the forces act-
ing on the system. Let us consider a plane parallel section
of a neutron star, where gravity g is directed in the negative
z direction. The Alfven wavelength, i.e. the length-scale at
which magnetic stresses become the dominant force in the
system Heng & Spitkovsky (2009)

λa = H
√
gH

(
Bz√
2πρ

)−1

(32)

with Bz the magnetic field along the z axis and the scale-
height H = p/ρg. We can now estimate the quadrupolar
mass distribution by assuming that the accreted material
can only spread within λa and make the approximation that
λa can be taken to be also the curvilinear length-scale over
which matter is confined at a given radius (Cavecchi et al.
2011). Then the l = 2 component of the density is given by

ρ2 ≈ 2π

∫ (λa/R)

0

ρY20 sin θdθ ∝ sin2(λa/R) cos(λa/R) (33)

which as expected vanishes for λa/R = 0 and λa/R = π/2,
i.e. when matter has spread to the whole surface. If we ex-
pand close to λa/R = π/2 we see that for high densities
ρ2/ρ ∝ (π/2 − λa/R). Assuming a polytropic equation of
state, we have from (32)

ρ2

ρ
∝ ρ3Γ/2−1 (34)

which gives ρ2
ρ
∝ ρ3/2 for our Γ = 5/3 equation of state,

thus indicating a powerlaw behaviour that is not, however,
too far from our linear approximation. Note that the above
analysis is valid for weak fields in which matter can spread
significantly. An approximate estimate of the confinement
radius can be found by equating the magnetic Lorentz force
to the pressure gradient, as derived in Brown & Bildsten
(1998)

Rc ≤
8πHp

B2
(35)

Repeating the same analysis as above, we find that for strong
fields we may expect ρ2/ρ ∝ ρ(2Γ−1), which for our polytrope
gives ρ2/ρ ∝ ρ7/3. In practice in the presence of significant
bending of the field lines due to large accreted masses, the
ratio ρ2/ρ0 obtained from our simulations deviates signifi-
cantly from a linear relation, as can be seen in figures 1 and
2, and the effects of the lower boundary play a significant
role. In these cases, we do not attempt to extrapolate our
results to higher densities, but rather extrapolate only when
the linear fit is justified by the data. An example of a linear
fit for parabolic mound profile is shown in figure 3
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Table 2. Results of our simulations for a parabolic mound profile with a magnetic field B = 108G, Accretion rate: 6× 10−13M� yr−1.
The polar spread corresponding to this field strength is 14.9 degrees and the maximum mound height that can be obtained is of 0.2 m,
after which the models are unstable. We also compute the ellipticity for this model, although the reader should keep in mind that this
is purely the contribution induced by the magnetically supported mound, and does not include contributions due to crustal reactions.
The maximum base density is the maximum that is obtained scanning over all grid points of a simulations, while the maximum and
minimum of ρ0 represent the spherical l = 0 component of the multipole expansion of the density.

Mound Height Max base density Accreted mass ρ2/ρ0 (Max) ρ2/ρ0 (Min) ρ0 (Max) ρ0 (Min) Ellipticity
(m) (g cm−3) (M�) (g cm−3) (g cm−3)

0.05 1.808× 106 2.44× 10−15 2.2251 2.1605 6.323× 105 2.933× 102 4.93× 10−17

0.10 5.114× 107 1.23× 10−14 2.2249 2.1605 1.788× 106 8.415× 102 2.44× 10−16

0.15 9.395× 107 3.48× 10−14 2.2237 2.1605 3.286× 106 1.685× 103 7.24× 10−16

0.20 1.446× 108 9.34× 10−14 2.2150 2.1425 5.104× 106 3.930× 103 2.46× 10−15

0.25 unstable

Table 3. Results of the simulation for a magnetic field strength of B = 108 G and accretion rate Ṁ = 6× 10−13M� yr−1, but a hollow
mound profile. All other parameters are set as in table 2.

Mound Height Max base density Accreted mass ρ2/ρ0 (Max) ρ2/ρ0 (Min) ρ0 (Max) ρ0 (Min) Ellipticity
(m) (g cm−3) (M�) (g cm−3) (g cm−3)

0.040 1.294× 107 1.16× 10−15 2.1252 2.1249 4.541× 105 2.122× 102 3.82× 10−17

0.046 1.596× 107 1.63× 10−15 2.1252 2.1249 5.601× 105 2.619× 102 5.38× 10−17

0.052 1.918× 107 2.20× 10−15 2.1252 2.1249 6.732× 105 3.169× 102 7.26× 10−17

0.058 2.259× 107 2.88× 10−15 2.1251 2.1248 7.930× 105 3.770× 102 9.52× 10−17

0.064 2.618× 107 3.68× 10−15 2.1251 2.1247 9.191× 105 4.431× 102 1.21× 10−16

0.070 2.225× 107 4.61× 10−15 2.1251 2.1245 1.051× 106 5.165× 102 1.52× 10−16

0.076 3.388× 107 5.67× 10−15 2.1251 2.1242 1.189× 106 5.991× 102 1.88× 10−16

0.082 3.797× 107 6.89× 10−15 2.1250 2.1239 1.333× 106 6.933× 102 2.28× 10−16

0.088 4.221× 107 8.28× 10−15 2.1249 2.1234 1.482× 106 8.024× 102 2.75× 10−16

0.094 4.661× 107 9.87× 10−15 2.1252 2.1228 1.636× 106 1.012 3.29× 10−16

0.100 5.114× 107 1.16× 10−14 2.1251 2.1220 1.795× 106 9.016 3.90× 10−16

0.106 5.581× 107 1.37× 10−14 2.1251 2.1210 1.959× 106 2.589× 10 4.61× 10−16

0.112 6.062× 107 1.61× 10−14 2.1250 2.1196 2.128× 106 5.332× 10 5.44× 10−16

0.118 6.555× 107 1.88× 10−14 2.1249 2.1178 2.301× 106 9.388× 10 6.42× 10−16

0.124 7.062× 107 2.20× 10−14 2.1249 2.1155 2.479× 106 1.512× 102 7.58× 10−16

0.130 7.580× 107 2.57× 10−14 2.1249 2.1124 2.661× 106 2.303× 102 8.97× 10−16

0.136 unstable

Table 4. Results of the simulation for a magnetic field strength of B = 108 G and accretion rate Ṁ = 3×10−8M� yr−1, (approximately
the Eddington limit), for a parabolic mound profile. The polar spread is now 60.66 degrees at this high accretion rate.

Mound Height Max base density Accreted mass ρ2/ρ0 (Max) ρ2/ρ0 (Min) ρ0 (Max) ρ0 (Min) Ellipticity
(m) (g cm−3) (M�) (g cm−3) (g cm−3)

0.24 1.901× 108 1.40× 10−12 2.0987 1.2938 8.9918× 107 3.8860× 104 3.52× 10−13

0.25 2.022× 108 1.58× 10−12 2.0962 1.2938 9.5595× 107 4.1953× 104 3.99× 10−13

0.26 2.144× 108 1.77× 10−12 2.0931 1.2938 1.0139× 108 4.5307× 104 4.53× 10−13

0.27 2.269× 108 1.98× 10−12 2.0894 1.2938 1.0729× 108 4.8980× 104 5.16× 10−13

0.28 2.396× 108 2.23× 10−12 2.0849 1.2938 1.1331× 108 5.3043× 104 5.91× 10−13

0.29 2.526× 108 2.52× 10−12 2.0793 1.2907 1.1943× 108 5.7600× 104 6.83× 10−13

0.30 2.657× 108 2.85× 10−12 2.0724 1.2733 1.2566× 108 6.2793× 104 7.99× 10−13

0.31 2.791× 108 3.26× 10−12 2.0635 1.2331 1.3199× 108 6.8832× 104 9.51× 10−13

0.32 unstable
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Figure 1. Plots of the ratio ρ2/ρ0 versus the spherical density distribution ρ0 for two parabolic (full) mound models with B = 108 G
and other parameters as in table 2. The ratio is plotted for two heights of the mound, 0.1 m on the left and 0.2 m, which is the last
stable model, on the right. As can be seen for lower mound heights the ρ2/ρ0 decreases roughly linearly with density, but for the highest
mound models (and thus largest accreted masses) the relation is highly non linear, and we thus do not attempt to extrapolate these
models to higher densities in the crust.

Figure 2. Plots of the ratio ρ2/ρ0 versus the spherical density distribution ρ0 for two hollow mound models with B = 108 G and other
parameters as in table 3. The ratio is plotted for two heights of the mound, 0.04m on the left and 0.13m, which is the last stable model,
on the right, as in figure 1. Also in this case the relation between ρ2/ρ0 and ρ0 appears linear for lower accreted masses.

Overall, our main justification for a linear fit is, thus,
numerical. Although a power-law fit of the form ρ2/ρ = ρk0
may be more justified, the analysis above suggests that
1 . k . 2, and is generally valid only for small mounds
in which the field lines are not bent significantly and matter
does spread far from the polar caps. Given the large physi-

cal uncertainties in the model for larger mounds, and small
dynamical range of the data we can fit over, we choose a lin-
ear fit as suggested by the data. If, indeed, the deformation
ρ2/ρ scales with a somewhat higher power of density, closer
to k ≈ 2, then our results are to be interpreted as upper
limits.
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Table 5. Results of the simulation for a magnetic field strength of B = 1010 G and accretion rate Ṁ = 3×10−8M� yr−1, (approximately
the Eddington limit), for a parabolic mound profile. The polar spread is 16 degrees.

Mound Height Max base density Accreted mass ρ2/ρ0 (Max) ρ2/ρ0 (Min) ρ0 (Max) ρ0 (Min) Ellipticity
(m) (g cm−3) (M�) (g cm−3) (g cm−3)

1.05 1.740× 109 4.59× 10−12 2.2315 2.1492 7.0045× 107 6.0412× 102 1.05× 10−13

1.10 1.866× 109 5.21× 10−12 2.2308 2.1492 7.5106× 107 1.0863× 103 1.21× 10−13

1.15 1.994× 109 5.90× 10−12 2.2302 2.1492 8.0285× 107 1.7004× 103 1.38× 10−13

1.20 2.126× 109 6.67× 10−12 2.2297 2.1492 8.5576× 107 2.4445× 103 1.58× 10−13

1.25 2.260× 109 7.52× 10−12 2.2292 2.1492 9.0983× 107 3.3190× 103 1.80× 10−13

1.30 2.397× 109 8.49× 10−12 2.2287 2.1492 9.6495× 107 4.3264× 103 2.07× 10−13

1.35 2.537× 109 9.59× 10−12 2.2283 2.1487 1.0211× 108 5.4724× 103 2.39× 10−13

1.40 2.679× 109 1.09× 10−11 2.2341 2.1473 1.0784× 108 3.6423× 101 2.78× 10−13

1.45 2.824× 109 1.23× 10−11 2.2330 2.1445 1.1367× 108 2.0099× 102 3.27× 10−13

1.50 2.971× 109 1.41× 10−11 2.2321 2.1399 1.1960× 108 4.9756× 102 3.91× 10−13

1.55 3.121× 109 1.62× 10−11 2.2314 2.1340 1.2563× 108 9.2825× 102 4.70× 10−13

1.60 unstable

Figure 3. Linear fitting for mound of height 0.1m formed for
magnetic field strength of B = 108 G and a parabolic mound
profile as shown in figure 1. The linear fitting is done for the points
at higher ρ0 which show a linear behavior with ρ2/ρ0. Note that
the ticks have been chosen in order to have a convenient labeling.

We also test the validity of our extrapolation procedure
and of the perturbative expansion by plotting also the ra-
tio between higher l multipoles of density and the spherical
component, i.e. the ratios ρl/ρ0, up to l = 10. The results are
given in figure 5 for both the parabolic and hollow mound
profiles. We see that for a parabolic mound, in general higher
multipoles decrease faster as density increases, validating
our approximation that at higher densities at which the re-
actions in table 1 occur, the density distribution is mainly
spherical with small deviations from axisymmetry. For a hol-
low mound profile the situation is different, as the density

Figure 4. Linear fitting for mound of height 0.046m formed for
magnetic field strength of B = 108 G and a hollow mound profile.

distribution is still highly asymmetric at the base of our
grid. This is to be expected given the ’hollow’ nature of the
profile that naturally leads to a roughly bimodal density dis-
tribution. This can be seen clearly by comparing the density
distributions in figure 6, where it is clear that even for small
accreted masses and mound heights of 0.1 m for a parabolic
mound, the density distribution has a single peak centered
around the axis, while for a hollow mound the peak is off
center, and the density distribution is highly non-spherical.
As we will see below this is not only a more realistic setup,
but also the most interesting for gravitational wave emission
as it naturally leads to higher asymmetries and ‘mountains’.
It is also, however, the setup for which our extrapolation is
less reliable and our results are thus likely to only be lower
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Figure 5. Left panel: Ratios of higher harmonics of the density distributions ρl/ρ0 versus distance from the surface for a parabolic (left)
and hollow (right) mound profile. In the parabolic case it can be seen that higher harmonics of the density distribution fall off faster
than the l = 2 harmonic with increasing depth, justifying our approximation that this is the main contribution at high densities. For the
hollow case this approximation is questionable, as the density distribution still requires the contribution of higher order harmonics to be
described also at high densities.

limits, as they neglect non-linear effects and the contribu-
tion from higher values of l. A consistent, non-linear analysis
of the problem is clearly needed in the future to assess this
problem quantitatively.

The results for the extrapolation are given in tables 6,
7 and 8 where we show the results of our fitting procedure,
for which we assume a linear dependence between ρ0 and
the ratio ρ2/ρ0 of the form:

ρ0 = A
ρ2

ρ0
+B (36)

In general we see that for small amounts of accreted mass,
comparable to what a weakly magnetised and slowly ac-
creting source such as PSR J1023+0038 would accrete in
a few days of outburst, the quadrupolar deformation, for
filled accretion mounds, vanishes at densities of a few times
ρ ≈ 108g cm−3. Deformations are present at higher den-
sities for higher magnetic fields, which limit the spread of
matter on the star, but generally are not present above
ρ ≈ 109g cm−3. The same is true also for sources accret-
ing close to the Eddington limit, which suggests that even
in persistently accreting sources, which are prime targets
for gravitational wave detection (Haskell et al. 2015), one
cannot obtain large thermal mountains.

For the more realistic case of a hollow mound, however,
deformations can persist up to ρ ≈ 1010g cm−3 in weakly
magnetised neutron stars. For strong magnetic fields, how-
ever, the the ratio ρ2/ρ0 is a strongly non-linear function
of ρ, as is also the case for large accreted masses, for which
the mound height approaches it’s critical value. In all cases
where the extrapolation to high densities is possible, i.e. for
weak fields and low accretion rates (as is the case for PSR
J1023+0038) deformations of the order of δTq/∆T ≈ 0.01

are not possible at densities ρ ≈ 1012g cm−3, such as those
of the most energetic pycno-nuclear reactions considered by
Haskell & Patruno (2017).

5 INDUCED QUADRUPOLE

Following the results of the previous section, it is clear that
in most cases no significant deformation persists up to densi-
ties at which reactions can occur. For parabolic mounds this
is only the case for high accretion rates and strong magnetic
fields. For weaker fields, of the order of B ≈ 108 G, as com-
monly inferred in LMXBs, only the hollow mounds allow
significant deformation at the densities at which the reac-
tions in table 1 take place.

We consider this case first, and calculate the quadrupole
for such a hollow mound. Despite not releasing as much en-
ergy as reactions in deeper layers, it is clear that shallow lay-
ers play a role, as deformations can be large at those depths.
As an example let us consider the case of PSR J1023+0038,
for which the increase in spin-down rate during outburst can
be explained by a quadrupole of Haskell & Patruno (2017)

Q22 = 4.4× 1035 g cm2 (37)

where we assume a moment of inertia I = 1045 g cm2. We
can compare this to the quadrupole of our model with an
elliptical mound, B = 108 G and an accreted mass of 4 ×
1018 g (approximately the amount of mass PSR J1023+0038
would accrete in the first day or two of outburst).

The maximum density at the base of our grid is ρ0 =
5.601 × 105g cm−3 and the corresponding ρ2/ρ0 = 2.1249.
The relation between ρ2/ρ0 and ρ appears linear, as can be
seen in figure 4 so we extrapolate our results with the linear
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Figure 6. Density distributions for a parabolic mound in the top panel, for two mound heights, 0.1 m and 0.2 m and for a hollow
mound in the bottom panel, for mound heights of 0.04 m and 0.13 m. Other parameters are as in tables 2 and 3, although note that
for numerical reasons a maximum grid height of 5 m was used for parabolic mounds, and of 1 m for hollow mounds. The magnetic axis
being the symmetry axis of our basis of spherical harmonics, the parabolic mound remains symmetric around the pole and only begins
to be strongly deformed for higher mounds. The hollow mound is much more asymmetric as expected, and requires a larger number of
spherical harmonics to be reconstructed for all mound heights.

Table 6. Results of the linear extrapolation of the ratio ρ2/ρ0 at higher densities, following the relation in (36), ρ0 = A ρ2
ρ0

+B, for the
parabolic mound models in table 2. It can be concluded from the ρ0 value for ρ2/ρ0 = 1% in last column that the ratio ρ2/ρ0 will be
already less than 1% for densities well below 109g cm−3 and thus at densities lower than those of the first deep crustal heating reactions
in table 1.

Accreted mass Mound Height A(slope) B(intercept) ρ0 for (ρ2/ρ0 = 1%)
(M�) (m) (g cm−3) (g cm−3) (g cm−3)

2.44× 10−15 0.05 −2.382× 107 5.209× 107 5.2053× 107

1.23× 10−14 0.10 −7.094× 107 1.550× 108 1.5493× 108

3.48× 10−14 0.15 −1.857× 108 4.043× 108 4.0402× 108

9.34× 10−14 0.20 Not linear
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Table 7. Results of the linear extrapolation as in table (6), but for the hollow mound models in table 3. The ratio ρ2/ρ0 remains sizeable
at higher densities than for a parabolic mount, up to densities at which reactions in table 1 can occur.

Accreted mass Mound Height A(slope) B(intercept) ρ0 for (ρ2/ρ0 = 1%)
(M�) (m) (g cm−3) (g cm−3) (g cm−3)

1.16× 10−15 0.040 −4.111× 109 8.735× 109 8.7321× 109

1.31× 10−15 0.042 −5.231× 109 1.112× 1010 1.1113× 1010

1.46× 10−15 0.044 −7.136× 109 1.516× 1010 1.5155× 1010

1.63× 10−15 0.046 −9.721× 109 2.065× 1010 2.0644× 1010

1.81× 10−15 0.048 Not linear

Table 8. Results of the linear extrapolation as in table (6), for the parabolic mound models in table 4 with accretion rates close to
the Eddington limit and B = 108 G. As can be seen the ratio ρ2/ρ0 is larger at higher densities than for the weaker accretion rates
considered in table (6), but vanishes just before reaching the densities at which reactions in table 1 can occur.

Accreted mass Mound Height A(slope) B(intercept) ρ0 for (ρ2/ρ0 = 1%)
(M�) (m) (g cm−3) (g cm−3) (g cm−3)

1.40× 10−12 0.24 −3.735× 108 5.715× 108 5.7118× 108

1.58× 10−12 0.25 −4.381× 108 6.610× 108 6.6047× 108

1.77× 10−12 0.26 −5.111× 108 3.800× 108 7.5983× 108

1.98× 10−12 0.27 −6.590× 108 5.176× 108 9.5642× 108

2.23× 10−12 0.28 Not linear

Table 9. Results of the linear extrapolation of the ratio ρ2/ρ0 at higher densities, following the relation in eq.(36), ρ0 = A ρ2
ρ0

+ B, for
the parabolic mound models in table 5 with accretion rate at the Eddington limit and B = 1010 G.

Accreted mass Mound Height A(slope) B(intercept) ρ0 for (ρ2/ρ0 = 1%)
(M�) (m) (g cm−3)

4.59× 10−12 1.05 −3.286× 109 7.129× 109 7.1258× 109

5.21× 10−12 1.10 −3.785× 109 8.207× 109 8.2034× 109

5.90× 10−12 1.15 −4.437× 109 9.665× 109 9.6605× 109

6.67× 10−12 1.20 −5.464× 109 1.182× 1010 1.1821× 1010

7.52× 10−12 1.25 Not linear

fit ρ0 = −9.721×109(ρ2/ρ0)+2.065×1010g cm−3. From this,
and using the data from table 1 in equation (5), we obtain,
assuming a background temperature T = 107 K, A = 85
and Z/A = 0.4.

QT ≈ −1031 g cm2 (38)

In comparison the mass quadrupole induced by the
matter confined by the magnetic field on the surface is
Q ≈ 1029 g cm2 and negligible. We see that the quadrupole
is well below what is needed to explain the observations.
One may object that a larger amount of mass is accreted
during an outburst, ∆M ≈ 1020 g, and despite our models
showing that the mound is unstable for such values, numeri-
cal time-evolutions suggest that the mound height saturates
even if additional mass is added (Vigelius & Melatos 2008).
We may thus extrapolate to larger values of the accreted
mass. QT grows linearly with accreted mass, so even for ac-
creted masses of order 1021 g, which is generally more than

accreted during an outburst the quadrupole would not be
large enough to explain the spin-down of PSR J1023+0038.

Let us now turn our attention to the high accretion rate,
where the star is accreting close to the Eddington limit and
the background field is B = 1010 G. In this case density
perturbations extend to the first reaction layer in table 1.
If we assume in this case, a hotter star with an internal
temperature of T = 108 K, from the results in table 9 we
obtain a quadrupole of

QT ≈ −4× 1034 g cm2 (39)

which corresponds to an ellipticity of ε ≈ 5 × 10−11 and a
signal that is likely to be too weak for detection with current
ground based interferometers (Abbott et al. 2019a,b,c).

We note, however, that several studies of cooling X-
ray transients have found that the cooling curves cannot
be reproduced unless a shallow heating source with QM ≈
1 − 10 MeV is included at densities ρ ≈ 108 − 1010g cm−3

(Deibel et al. 2015; Waterhouse et al. 2016; Parikh et al.
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2017, 2018). If an additional shallow heating layer is added
to the reactions in table 1, at ρ = 109g cm−3 and with
QM ≈ 5 MeV, using the BSk20 EoS (Goriely et al. 2010),
and take an accreted mass of ∆M ≈ 1020 g, we obtain QT ≈
−8 × 1034 g cm2. A strong shallow heating source is thus
consistent with a scenario in which gravitational waves spin
down PSR J1023+0038 during outburst. Furthermore if such
hypothetical shallow heating sources are present in systems
accreting close to the Eddington limit, with a magnetic field
of B = 1010 G, then one would have QT ≈ −3×1038 g cm2,
corresponding to an ellipticity of ε ≈ 4×10−7 and potentially
detectable in the near future by Advanced LIGO and Virgo
from known persistently accreting neutron stars in LMXBs.

The above is an estimate of the quadrupole that can be
formed during a single outburst. If the quadrupole is indeed
sourced uniquely by temperature asymmetries, we expect it
to be washed out on a thermal timescale for the crust, which
for a capture layer at a pressure P30 in units of 1030 erg/cm3,
is given by Brown et al. (1998)

τth = 0.2P
3/4
30 yrs (40)

so that a shallow ‘thermal’ mountain as we have consid-
ered would be washed out entirely a few months after
the outburst. However, as a consequence of the outburst,
compositional asymmetries will build up as the reactions
proceed, and may be accumulated over several outbursts
(Ushomirsky et al. 2000), allowing to build up a mountain
over several outbursts. In fact, the recent analysis of the
spin-distribution of accreting neutron star by Gittins & An-
dersson (2018) shows that population synthesis models in-
cluding a quadrupole from a mountain built up over many
outbursts fit the data better than the models which assume
that a mountain is built up over a single outburst and then
washed away.

6 CONCLUSIONS

We have calculated numerical models of the outer layers of
an accreting magnetised neutron star, using the numerical
Grad-Shafranov code of Mukherjee & Bhattacharya (2012).
The density profile in these models has been expanded in
spherical harmonics and the ratio between the quadrupo-
lar and spherical density perturbations δρ2/δρ0, extrapo-
lated linearly to higher densities. We find that for a filled
mound with a parabolic profile function for the height, the
quadrupolar density perturbation vanishes at densities lower
than ρ ≈ 109g cm−3 for field strengths of B ≈ 108 G, typ-
ical of neutron stars in LMXBs, for all accretion rates, and
only for higher magnetic fields of B = 1010 G do we have
significant perturbations up to densities of ρ ≈ 1010g cm−3

. For a more realistic hollow accretion profile (Mukherjee
et al. 2013a) the quadrupolar density perturbation persists
up to densities at which deep crustal heating reactions oc-
cur (Fantina et al. 2018). For these models we calculate
the quadrupolar temperature perturbations due to the reac-
tions, following the formulation of Ushomirsky et al. (2000),
to estimate the size of the additional mass quadrupole that
would be induced. We consider in particular the case of
PSR J1023+0038, for which it has been suggested that a
gravitational wave mountain may be created during an ac-
cretion outburst (Haskell & Patruno 2017), explaining the

enhanced spin-down of the star. For standard reactions we
obtain quadrupoles of the order

QT ≈ 1031 − 1033 g cm2 (41)

for this source, which is not sufficient to explain the addi-
tional spin-down.

However the cooling curves of many accreting sources
reveal the need to add additional shallow heating sources at
densities ρ . 1010g cm−3 (Deibel et al. 2015; Waterhouse
et al. 2016; Parikh et al. 2017, 2018). Indeed if we add a
strong shallow heating source which releases Q = 5 MeV
of heat at a density of ρ = 109g cm−3, we find that one
can build, over the outburst, a mountain corresponding to
a quadrupole

QT ≈ −8× 1034 g cm2 (42)

which would explain the increased spin-down of PSR
J1023+0038 during outburst. Furthermore, for a system ac-
creting persistently at the Eddington rate and with a mag-
netic field of B = 1010 G, the quadrupole could be as large
as

QT ≈ −3× 1038 g cm2 (43)

and lead to a GW signal that is potentially detectable by
Advanced LIGO and Virgo for known persistently accreting
LMXBs, although even at this level the search would be
challenging (Watts et al. 2008).

We stress, however, that our estimates rely on extrapo-
lations at densities higher than those of our computational
domain, and that the large quadrupoles we obtain, larger
than those induced by the magnetic deformations them-
selves, indicate that treating this effect as a linear pertur-
bation is likely to be an inadequate approach. By limit-
ing ourselves to cases in which the relation between the
quadrupolar and spherical density perturbations is linear,
we are limiting ourselves to cases in which there is no sub-
stantial line bending, and the magnetic deformations are
also small. For larger deformations, MHD instabilities may
be present (Litwin et al. 2001; Mukherjee et al. 2013a,b)
and may limit the growth of mounds beyond the heights
considered in this work. In reality the true values of the
mass quadrupole may thus be close to the lower limits we
compute. Furthermore, the equation of state we use does not
consistently model all the regions of the crust we consider,
and in particular is inadequate for low densities in the outer
layers, where one should account for degenerate electrons.
In the current work we considered only a single polytropic
EOS, adequate to describe degenerate neutrons, as this al-
lowed us to obtain models for higher accreted masses. Poly-
tropic models for degenerate electron EOSs (both relativis-
tic and non-relativisitc) were also explored, but displayed
a non-linear relation between the quadrupolar and spheri-
cal density perturbations already for values of the accreted
mass much lower than those of interest, and did not allow to
extrapolate the behaviour of the quadrupole to higher den-
sities. Future work will aim to consistently model magnetic
deformations and crustal reactions, with a realistic equa-
tion of state, in order to accurately estimate the induced
quadrupole.

Finally we note that we have only considered deforma-
tions of the magnetic field and corresponding density profile.
However the early evolution of the magnetic field due to Hall
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drift can lead to small scale structures that can persist for
timescales greater than 106 yrs, leading to sizable deforma-
tions Suvorov et al. (2016). If these structures can persist,
even partially, in the crust of accreting neutron stars, they
will lead to additional deformations at high density and de-
form deep reaction layers, possibly allowing for larger moun-
tains and stronger gravitational wave emission.
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