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Abstract
Proteins populate a manifold in the high-dimensional sequence space whose geometrical structure
guides their natural evolution. Leveraging recently-developed structure prediction tools based on
transformer models, we first examine the protein sequence landscape as defined by an effective
energy that is a proxy of sequence foldability. This landscape shares characteristics with
optimization challenges encountered in machine learning and constraint satisfaction problems.
Our analysis reveals that natural proteins predominantly reside in wide, flat minima within this
energy landscape. To investigate further, we employ statistical mechanics algorithms specifically
designed to explore regions with high local entropy in relatively flat landscapes. Our findings
indicate that these specialized algorithms can identify valleys with higher entropy compared to
those found using traditional methods such as Monte Carlo Markov Chains. In a proof-of-concept
case, we find that these highly entropic minima exhibit significant similarities to natural sequences,
especially in critical key sites and local entropy. Additionally, evaluations through Molecular
Dynamics suggests that the stability of these sequences closely resembles that of natural proteins.
Our tool combines advancements in machine learning and statistical physics, providing new
insights into the exploration of sequence landscapes where wide, flat minima coexist alongside a
majority of narrower minima.

1. Introduction

Protein evolution can be described as a stochastic
process in the space of sequences. Although it is not
possible to predict exactly the course of this process
[1], evolution is strongly constrained by functional
requirements. One of them is that of foldability,
namely that most proteins must display a unique and
well-defined native conformation to be functional.
This is quite a robust requirement that filters out the
vast majority of protein sequences [2].

The space of folding sequences is then a subset of
the space of all sequences, whose properties affect the
evolution of the protein. Proteins displaying a given
function tend to conserve their structure (within an
RMSDof 2.5 Å) even among very distant homologous
[3]. Consequently, it is reasonable to assume that

conformational similarity to the wild-type protein is
a feature that contributes to the functionality of a
mutant, and thus to its evolutionary fitness. Such con-
formational similarity can be quantified by a distance
from the structure of a reference wild-type protein,
thus defining a landscape in which evolution is expec-
ted to take place through low conformational distance
trajectories.

This landscape in sequence space is analogous
to the energy landscape of other complex systems
studied in physics. In the case of disordered systems,
like spin glasses, the energy landscape is rugged [4]
and its minima are separated by high barriers that
prevent diffusion across their conformational space
[5]. Although the excluded volume of the amino
acids is like geometric frustration in glasses and in
jamming problems, proteins are quite different from
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prototypical models of disordered systems. Proteins
are small, the hydrophobic amino acids superpose a
ferromagnetic-like interaction to the other disordered
interactions, and their backbone makes their physical
properties quite peculiar.

The space of sequences of proteins that fold to
a stable native conformation was studied using min-
imal protein models that, although not realistic from
the biochemical point of view and thus not predict-
ive, display some of the complexity of natural proteins
[6]. The properties of a sequence in these models are
only determined by its native energy because the rest
of the conformational spectrum is self-averaging [7];
the thermodynamic properties of a sequence are thus
determined essentially by the energy EN of the nat-
ive conformation. Monte Carlo techniques that con-
trol EN are then a suitable tool for sampling the space
of sequences. In this way, it was shown that stable
proteins display a complex hierarchical organization
with regions not connected by single-pointmutations
and conserving fewmutually interacting residues [8].
Nonetheless, it was shown that folding sequences con-
nected by neutral paths can visit vast regions of the
space [9].

The recent development of machine-learning
algorithms [10, 11] able to predict the native struc-
ture of an input sequence paves the way to studying
the space of folding sequences in the context of a real-
istic, predictive model. Using these algorithms, one
can bypass the need of using effective energies, which
are not always reliable, to characterize the foldability
of a sequence.

In the present work, we chose a reference protein
structure of interest and used structure predictors to
define an effective energy for each sequence. The goal
was to characterize the low energy manifolds of the
associated landscape. For this purpose, we cast the
exploration problem in the physical framework of the
canonical ensemble, where several efficient sampling
algorithms are available [12].

We use a large language model for structure pre-
diction and we combine it with different exploration
algorithms. Our method is designed to navigate effi-
ciently through regions of sequence space that have
high local entropy (neutral regions). We have put this
method to the test on a well studied protein structure,
generating predictions that are validated against exist-
ing data or through molecular dynamics simulations.
The objective of this study is to demonstrate how vari-
ous innovative approaches, such as language models
and algorithms driven by local entropy, can be effect-
ively merged.

The paper is organized as follows: first we describe
the methods used to define the effective energy and
sample the associated space within the framework of
the canonical ensemble. Then, we present the results
obtained varying the selective temperature of the sys-
tem. After selecting a realistic value of the selective
temperature, we describe the structure of the energy

minima in sequence space, focusing particularly on
the width of the corresponding basins. Inspired by the
techniques used in connection with artificial intelli-
gence, we finally test an algorithm that can identify
large energy minima. We discuss the relevance of
these results for protein evolution.

2. Methods

2.1. Sampling the effective energy of a sequence
In order to sample the space of sequences folding to
a given reference conformation r0, we employed a
canonical ensemble formalism where each sequence
is characterized by an effective energy defined as the
fraction of contacts that its native conformation has
in common with r0,

E(σ) =

∑
ij |∆ij (r(σ))−∆ij (r0) |

∑
ij

[
∆ij (r(σ))+∆ij (r0)

] , (1)

where ∆ij(r) (∆ij(r0)) is the contact map of the nat-
ive conformation r (r0), whose elements are 1 if any
heavy atom of amino acid i is within 4Å from any
heavy atom of amino acid j and 0 otherwise, with
|j− i|> 1 in order to eliminate the contribution of
trivial contacts. Thus, the energy ranges between 0,
when all contacts of a sequence are the same as in r0,
and 1 if all contacts are different.

The native conformation associated to a generic
sequence of amino acidsσ was predicted by ESMFold
[11], a transformer protein language model defined
by approximately 15 billion parameters trained over
65million protein sequences. The same model was
also employed to predict the structure r0 = r(σ0) of
the reference sequence σ0.

The sampling was carried out with a Metropolis
algorithm [13] at different temperatures Ts

(expressed in energy units, cf figure 1(a), that here
have the meaning of evolutionary bias towards good
(i.e. low-energy) folding sequences. Throughout the
simulation, at each step, a random single-site muta-
tion was proposed and the newly generated mutant
was accepted or rejected based on its energy, that is
the Metropolis rate is here w(σ ′|σ) = pap(σ ′|σ) ·
min[1,exp(−[E(σ ′)− E(σ)]/Ts)], where the a priori
probability is uniform for pairs of sequences with
only one different site.

Summing up, at each step a random single-point
mutation is proposed, the conformation associated
with the mutated sequence is predicted by ESM-Fold,
its structural difference quantified by the effective
energy of equation (1) and the mutation is accep-
ted or rejected according to the Metropolis criterion.
Here, the temperatureTs controls the acceptance rate,
in the sense that the lower the temperature, the more
unlikely are accepted mutations that modify the con-
tact map of the protein. This procedure is iterated
105 − 106 times.

2



Phys. Biol. 21 (2024) 026002 A Zambon et al

Figure 1. A sketch of the algorithms used in the present work. (a) We used a Monte Carlo scheme to sample the sequence (σ)
landscape, in which the probability of accepting a mutation depends on the change∆E of effective energy. (b) In the ratchet
simulations used to generate trajectories from a sequence σA to σB, a time-dependent energy Er damps the fluctuations in the
direction opposite to σB. (c) To estimate the local entropy∆S(σ), we used thermodynamic integration on simulations restrained
by a pulling force to σ. (d) Wide energies basins are sampled by an algorithm in which different replicas are mutually restrained
by pulling forces.

2.2. Ratcheted sampling
In order to estimate the energy barriers along tra-
jectories from a sequence σA to a sequence σB,
we employed a Metropolis algorithm which starts
from σA and damps the fluctuations in the direction
opposite to σB (cf figure 1(b). This is based on the
principle of the ratchet and the paw and it was used
to generate trajectories in the space of protein con-
formations that resemble physical trajectories [14].

The Metropolis algorithm is applied with an
energy that is given by equation (1) summed to

Er (σ (t))

=






k
2 [d(σ (t) ,σB)− dm (t)]2 if d(σ (t) ,σB)> dm (t)

0 if d(σ (t) ,σB)! dm (t)

(2)

where dm(t)≡mint ′<t d(σ(t ′),σB) is the minimum
Hamming distance to σB encountered along the tra-
jectory. This time-dependent energy favors themoves
towards σB, without exerting work to push the sys-
tem. In this way, the system crosses the lowest energy
barriers as in the unbiased trajectories [15].

2.3. Local Entropy
The local entropy has been introduced as a tool for
analyzing complex energy landscapes in which flat
regions coexist with rugged ones, in the context of
non-convex neural networks [16]. The local entropy
of a discrete system is defined as

STs,γ (σ) = log

[
∑

σ ′

e−E(σ ′)/Ts−γdPAM(σ,σ ′)

]
(3)

and is meant to quantify the width of the energy basin
around a sequenceσ . Here γ is a Lagrangemultiplier
that controls the average distance from σ.

To define the neighborhood of a sequence, we
define a distance

dPAM (σ,σ ′) = N−1
∑

i

[
1− P(σi,σ ′

i )+ P(σ ′
i ,σi)

2

]

(4)
that keeps into account the chemical similarity

between amino acids, where

P(α,β) =
PAM1 [α,β]∑
γ #=β PAM1 [γ,β]

is the transition rate from the β to theα amino acid as
defined by the PAM1 matrix, whose elements are the
empirical probabilities multiplied by 1000 of single-
point mutations in proteins [17], setting the diagonal
elements P(α,α) = 1. A further advantage of dPAM
with respect to the Hamming distance d is that it var-
ies essentially as a real variable.

From the identity

∂STs,γ (σ)

∂γ
=−

∑
σ ′ dPAM (σ,σ ′)e−E(σ ′)/Ts−γdPAM(σ,σ ′)

∑
σ ′ e−E(σ ′)/Ts−γdPAM(σ,σ ′)

=−〈dPAM
(
σ,σ ′)〉Ts,γ (5)
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and keeping in mind that

lim
γ→∞

STs,γ (σ) =−E(σ)/Ts (6)

one can derive the local entropy difference
∆STs,γ(σ)≡ STs,γ(σ)− STs,∞(σ) with respect to
the single sequence σ. The subtraction of the ref-
erence entropy STs,∞(σ) allows us to compare dir-
ectly the values of∆STs,γ(σ) associated with different
sequences σ. This is found by calculating the integral

∆STs,γ (σ) =

ˆ ∞

γ
〈dPAM (σ,σ ′)〉Ts,γ ′ dγ ′, (7)

that can be estimated numerically from simulations
performed at different values of γ (cf figure 1(c).

2.4. Replica simulations
It was shown in [18] that it is possible to bias the
sampling of wide minima, that is states of the sys-
tem with high local entropy, with a replicated Monte
Carlo algorithm; here, one does not sample the stand-
ard Boltzmann distribution, but a distribution based
on the local entropy. We then consider Monte Carlo
algorithms in which different replicas of the sys-
tem are coupled together by an interaction poten-
tial depending on the distance between their mutual
sequences (cf figure 1(d). Each replica evolved by a
Metropolis algorithm based on the coupling poten-
tial

Erep
(
{σi}yi=1

)
=

y∑

i=1

E(σi)+ γ∗
y∑

i=1

y∑

j #=i

dPAM

×
(
σi,σj

)
(8)

where E(σi) is the effective energy of the ith replica
(see equation (1)) and γ∗ = γTs, with γ being the
Lagrange multiplier indicated in equation (3).

In each simulation, we increased slowly that value
of γ, until the y replicas collapsed on a single high-
entropy sequence. Eventually, we obtained a single
sequence from each simulation. We repeated the
whole procedure to collect more sequences.

3. Results

3.1. Thermodynamics of the space of sequences
We performed samplings of the sequence space at
different temperatures Ts for protein G, a widely-
studied small protein [19] made of an alpha helix and
two beta hairpins. Each simulation lasted for at least
∼3× 105 steps (see some examples in figures S1 and
S2 in the supplementarymaterial); we calculated from
them the average energy and the specific heat using a
multiple-histogram algorithm [20]. The system dis-
plays a marked transition at temperature Tc

s ≈ 1.1×
10−2 between sequences whose native structure has
more than 80% common contacts with the reference

structure to sequenceswith less than 50%of predicted
contacts (upper panel in figure 2). The specific heat
also displays a broad shoulder centered at Tn

s ≈ 2.4×
10−3, at which the average similarity between the con-
tact maps is approximately 95%. It should be noted
that the typical relative error in the prediction of
the contacts of experimentally known structures is
approximately 0.1 (cf figure S3 in the supplement-
ary material), so in the low-temperature phase (i.e.
Ts ! 3.2× 10−3), native conformations are indistin-
guishable from the experimental one.

It is worth mentioning that, although the space of
sequences is combinatorially large, the quantities of
interest seem to have reached convergence in the sim-
ulation time. To check this, we removed the first steps
of the simulation at which the auto-correlation of the
Hamming distance from the reference sequence was
above 0.1, we then divided the rest of the simulation
into non-overlapping time blocks and we calculated
the average and the standard deviation in each block,
showing that they reach stationary values (cf figures
S1 and S2 in the supplementary material).

ESMFold quantifies the degree of confidence in
the predicted position of each atom with the pLDDT
parameter [10]. We calculated the average pLDDT
over all the Cα atoms of each sequence sampled at
a defined temperature. The average pLDDT (lower
panel of figure 2) of sequences sampled at low tem-
peratures is comparable with that of extant sequences
obtained from the pdb, which is 80.1 ± 12.6 (cf
figure S3 in the supplementary material), suggest-
ing that the algorithm is confident that the pre-
dicted structures correspond to the unique native
state of the protein. The pLDDT is roughly constant
at the value of approximately 85 for Ts < Tn

s , and
then it starts decreasing. However, it remains above
70, which is commonly regarded as the threshold
for a good prediction, up to Tc

s . At higher temper-
atures, it drops to 40, which is considered a mark of
disorder [21]. This suggests that at high temperatures
not only sequences are not folding to structures dif-
ferent from the reference one, but they are not folding
at all.

Interestingly, at all temperatures, the sequence
can step away from the initial, reference sequence
(cf figure S4 in the supplementary material). Even
at the lowest simulated temperature Ts = 8× 10−4 at
which the effective energy is essentially zero, the aver-
age similarity from the initial reference sequence is
q(σ,σ0) = 0.37. This result agrees with the experi-
mental observation that real proteins can change up
to ∼75% of their sequence while still maintaining
their function [3].

The main assumption we made in sampling the
sequence space, as described above, is that ESMFold
inference for mutant sequences is as good as that
for native ones. Although it is difficult to validate
this hypothesis, and we cannot rule out the presence
of artifacts when sequences are distant from natural
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Figure 2. Upper panel: the measured average effective energy E (blue circles) calculated from the samplings at different
temperatures Ts. The solid lines indicate E and Cv as estimated from a multiple-histogram algorithm. Lower panel: the values of
pLDDT (green circles) representing the average degree of confidence associated to a sequence for its predicted native structure at
the different temperatures Ts.

ones, we did perform some checks on the generated
sequences.

First, we performed some molecular dynamics
simulations of three sequences generated by ESMFold
(table 2) with a protein model that is regarded as
realistically predictive [22], starting from the putat-
ive native conformation for 200 ns at T= 310K. The
three sequences display an average RMSD to the ini-
tial conformation of 0.18± 0.04 nm, 0.22± 0.06 nm
and 0.25± 0.09 nm, respectively (cf figure S5 in the
supplementary material). These values are the typical
mutual similarities of homologous proteins [3], and
they are lower than the value 0.36± 0.10 nm found
for a selected high-energy sequence.

Moreover, we verified that sampled sequences dis-
play concentrations of the twenty kinds of amino
acids comparable to those of natural proteins (figure
S6 in the supplementary material). In particular, at
Ts = 3.2× 10−3 the overall concentration of hydro-
phobic and negatively-charged residues is similar in
natural (0.30 and 0.12, respectively) and designed
(0.29 and 0.11, respectively) proteins. Only the frac-
tion of positively-charged residues is slightly lower in
designed proteins (0.08) than that in natural proteins
(0.11). These results suggest that the proteins sampled
at low temperature are native-like.

3.2. Structure of the space of sequences
A standard tool used to study the energy landscape
of complex systems is the distribution of similarity q
between the sampled states [4]. In the present case,
the value of q between two sequences is defined as

Table 1. The results of the fit of p(q) with the model of
equation (9). The lowest temperature cannot be fitted with a
binomial.

T Nf naa

1.7× 10−2 0 20
6.4× 10−3 0 11
3.2× 10−3 0 6
1.6× 10−3 6 5
8.0× 10−4 1 3

the fraction of sites that host the same kind of amino
acids. The sampled distribution p(q) displays a unim-
odal shape in all simulations, whose maximum qEA
increases at lower temperatures (figure 3).

A preliminary interpretation of these curves can
be obtained using a very simple model in which the
amino acids of the protein of length N = 56 can vary
with uniform probability, except for a number Nf of
them that are fixed and identical in all sequences. This
gives a binomial distribution

p(q) =

(
N−Nf

qN−Nf

)
1

nqN−Nf
aa

(
1− 1

naa

)N(1−q)

, (9)

where naa is the number of different types of amino
acids.

At high temperature (T= 1.71× 10−2) we find
Nf ≈ 0 and naa ≈ 20 (see table 1), with the distribu-
tion peak centered at qEA ≈ 1/20. This is compatible
with a state in which amino acids vary essentially at
random. Thus, we conclude that for Ts > Tc

s the sys-
tem displays a single disordered phase.

5
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Figure 3. The distribution of sequence similarity q between the pairs of sequences sampled at different temperatures Ts. The
dot-dashed line is the binomial fit of equation (9). The dotted line at Ts = 8× 10−4 is obtained by decimation of the data, taking
one sequence every 104 steps.

At lower temperatures (e.g.Ts = 6.4× 10−3,Ts =
3.2× 10−3 and Ts = 1.6× 10−3, figure 3), the p(q)
is still compatible with a binomial distribution. The
first two of them (where Tn

s < Ts < Tc
s) are fitted with

the parameters Nf = 0 and naa < 20 indicating that,
according to the minimal model, all residues of the
chain can still change, but there is a selection on the
type of amino acids they can host.

At the lowest temperature Ts = 8× 10−4 (Ts <
Tn
s , at which the predicted structure is essentially

identical to the reference one), the shape of p(q) is
more irregular, with a tail reaching as maximum sim-
ilarity qM = 1. This suggests that the explored man-
ifold is more complex than at larger temperatures,
with energy minima at any mutual distance. The fact
that qM = 1 indicates that the number of minima
is small enough that the probability that the system
returns to the same sequences is not negligible. To
rule out the possibility that these results are artifacts
due to long correlation times in the sampling, we
have down-sampled the data, obtaining a distribu-
tion almost identical to the original one (dotted line
in figure 3).

To challenge the minimal binomial model, we
have then analyzed the degree of conservation of the
sites of the protein as a function of the temperature.
The site entropy S(i)≡−

∑
α pi(α) logpi(α), where

pi(α) is the probability of observing the amino acid of
kind α at site i, is zero if the site is perfectly conserved
and log20≈ 3 if it displays a uniform probability of
hosting the 20 amino acids.

At high temperatures (Ts > Tc
s), the distribution

of amino acids is uniform in all sites (figure 4).
At the lowest temperature (Ts < Tn

s ), there are 7
sites that are never mutated and another 9 that are

highly conserved, their entropy being lower than 1.
Interestingly, approximately one-third of sites dis-
play an entropy larger than 2, comparable to that
of high-temperature sequences. At the intermediate
temperatures (Tn

s < Ts < Tc
s) there is still a (variable)

number of low-entropy, highly conserved sites, and a
majority of sites whose entropy is comparable to that
of high-temperature sequences.

The picture that emerges is that, at all temper-
atures Ts < Tc

s , there is a clear partitioning between
highly and poorly conserved sites, and that the main
effect of temperature is to define the ratio between
the two. As a consequence, in the case of protein
sequences the distribution p(q) (figure 3) may not
contain all the relevant information and it could be
misleading, erroneously suggesting that even at low
temperatures the system is in a highly disordered
state.

In particular, there are some sites, i.e. 5, 14, 26,
30, 41, 43 and 54, that are completely conserved at
the lowest temperature Ts = 8× 10−4 in figure 4 and
are remarkably conserved at all Ts < Tc

s . We call them
K-sites and their conservation is not apparent in the
plot of p(q) (but can nonetheless be accounted by
another, tailor-made similarity measure; cf figure S7
in the supplementary material). At Ts < Tn

s visited
combinations of the K-sites amino acids are closely
distributed in the sequences space, contrary to the
information carried by the standard Hamming sim-
ilarity distribution (cf figure 3). Above Tn

s , the K-sites
start mutatingmore freely. Here, the number of relev-
ant sites for the structural properties of the sequence
diminishes as the temperature rises, since the struc-
tural constraint on the amino acid sequences becomes
less and less rigid.

6
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Figure 4. The degree of conservation S of the sites quantified by the associated site entropy for the sequences sampled at different
temperatures Ts (colored lines) and for the experimental homologs of protein G (dashed line).

Table 2. Some of the sequences used in the calculations. 1PGB, E1NUT2, K9EXL1A and K9EXL1B are natural sequences labeled by their
pdb code. S1, S2 and S3 are artificial sequences obtained by quenching the temperatures in Monte Carlo samplings. In bold, the K-sites
amino acids for each sequence.

id E sequence

1PGB 0 MTYKLILNGKTLKGETTTEAVDAATAEKVFKQYANDNGVDGEWTYDDATKTFTVTE
E1NUT2 0.17 TVYHFQYDKKGTSIRQDFAAVNKEIAEMHFKEYATESGLDAHFAYNEANQTFVYKD
K9EXL1A 0.31 EVYTFYYRTQNQNGATTVKASSPREALEYFQNFLSERGLDFNWHYESEDRVFTASE
K9EXL1B 0.14 AVYTFVYNTKGKNGATTVKASSPEEALEYFQNWAKENDLELDWSYDEDTKTFTGRE
S1 0.04 PTYRMEVMSTHFEAVVGIEAPNYPAALHGFVLFCHCLGVLAQFTYCATHNFFKVWQ
S2 0.07 HWYRFVHHGPNHECMGVARVPHVHWLMNAVEKATKAANIKCKYRWSARHRTLWCYT
S3 0.06 HEYSCMLISPLRTATQVFEATNRAMAHWFFEDMALWLGYIKKWTYNERFHMYTVTF

3.3. Comparison with experimental data

Sequences produced by the natural evolution of pro-
tein G can be obtained from the PFAM database [23].
The main statistical observable that can be calculated
from these data and compared with the simulations is
the site entropy (dashed curve in figure 4).

There are at least two important reasons that
make the comparison difficult. First, PFAMsequences
are not an unbiased ensemble that reflects the evolu-
tion of organisms but they are affected by the choices
of researchers to study specific homologs. Moreover,
simulations only require that a sequence folds to the
correct native state but does not add any functional
requirement. This simplification is likely to increase
the entropy of sites that lie on the surface of the pro-
tein and that are involved in interactions with the cel-
lular environment.

For this reasons, there is no value of Ts at which
the entropy of the simulated sequences matches that
of the experimental data. Natural sequences conserve
non-K-sites much more than any simulation. On the
other hand, K-sites are partially conserved similar to
what simulations do in the intermediate temperature
range.

Studying the Pearson correlation coefficient
between the experimental and the simulated entropy
per site (cf figure S8 in the supplementary material),
it is clear that there is not a significant difference in
correlation for temperatures Ts < Tc

s ≈ 1.1× 10−2.
In what follows, we shall focus our attention on

temperature Ts = 3.2× 10−3, which belongs to the
intermediate regime as experimental data seem to do;
at the same time, it is high enough that simulations
are computationally fast.

3.4. Ruggedness of the landscape is mainly
determined by changes in K-sites
An interesting feature of the energy landscape of
sequences is its ruggedness. To investigate this point,
we generated some artificial low-energy sequences,
starting from infinite Ts, that is from random
sequences and quenching the temperature to 3.2×
10−3 (see table 2), studying the energy landscape
along the trajectories that link them to the protein G
sequence (1PGB in table 2).

We used a ratchet algorithm (see Methods,
section 2.2) to generate trajectories at Ts = 3.2×
10−3 between pairs of sequences. This algorithm

7
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Figure 5. The Hamming similarity parameter q (upper panel) and the effective energy E (lower panel) along trajectories generated
with a ratchet algorithm between the system and the 1PGB sequence at Ts = 3.2× 10−3. The Hamming similarity parameter q is
calculated from the initial (dashed curve) and from the target 1PGB (solid curve) sequence along each trajectory. The grey line
and the shaded area in the lower panel are the mean energy and the associated standard deviation, respectively, at
Ts = 3.2× 10−3. The vertical dotted lines mark the time when the K-sites approached the target combination of the 1 PGB
sequence. In the legend, the starting sequences for each trajectory (cf table 2).

does not push the sequence toward its target but
only dumps fluctuations in the opposite direction.
Consequently, we expect that it will not force the sys-
tem to cross barriers higher than those that would
cross spontaneously by thermal fluctuations [15].

Trajectories can leave the initial sequence in a few
thousand mutations and reach the target sequence in
less than 105 mutations (upper panel in figure 5).

The maximum energy reached by the simulation
is in the range between 0.09 and 0.14 (lower panel in
figure 5), which is larger than the spontaneous fluctu-
ations that the system displays at this temperature, at
which the mean effective energy is E= 0.074± 0.016
(cf figure 2). This fact indicates that the system can
encounter relevant energy barriers along its motion.
The peak in the energy is close to the timewhen theK-
sites approach that of the target sequence (dashed ver-
tical lines) (cf figure S9 in the supplementary mater-
ial). The peak is largest for sequence S2, which dis-
plays the most different K-sites combination from
that of the protein G (cf table 2).

After the K-sites are changed, all sequences take
several tens of thousands generations to reach the
target sequence. However, mutations of amino acids
in sites that are not K-sites do not generate energy
barriers comparable to thermal fluctuations.

Summing up, trajectories between low-energy
sequences are neutral except for changes in K-sites,
which generate barriers that are anyway surmount-
able by thermal fluctuations.

3.5. Local entropy of the basins
Proteins are expected to tolerate randommutations in
order to be evolutionary fit [24]. Such tolerance can
be characterized by the width of the neighborhood of
a protein sequence σ, quantified by its local entropy
difference ∆STs,γ(σ) (equation (7)), as done in the
energy landscape of other kinds of complex systems
[18].Note that the definition of this entropy has noth-
ing to dowith the entropyS defined above to describe
the conservation of amino acids in protein sites.

We calculated the local entropy of the basins
defined by natural sequences and by low-energy
sequences sampled by theMonte Carlo algorithm but
not present in nature (cf table 2). For each natural
sequence (see table 2), we first ran∼104 steps at Ts =
3.2× 10−3 in order to obtain, for each basin, typ-
ical sequences for that temperature which still main-
tain the same K-sites of the starting natural ones.
The sequences produced by this equilibration pro-
cess, which is necessary to compare correctly the
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Figure 6. The local entropy difference∆STs,γ(σ) plotted as a function of the parameter γ for (equilibrated) natural sequences
and artificial ones. The grey dotted line represents the theoretical local entropy difference for the binomial model at
Ts = 3.2× 10−3 (see table 1).

width of the basins within the framework of the
canonical ensemble, are labeled with an overbar (cf
figure 6 and table S1). We then proceeded to calcu-
late the local entropy difference ∆STs,γ as a function
of the Lagrange multiplier γ that controls the aver-
age distance from the representative sequence, using
equation (7).

Interestingly, at any value of γ the local entropy
of the basins defined by natural sequences is signi-
ficantly larger than those of artificial sequences (see
figure 6). So, at any length scale around each σ, nat-
ural sequences display a wider energy basin than arti-
ficial ones, while the associated energies are similar (cf
table S1).

The entropy ∆STs,γ is for all folding sequences
markedly lower than that of the binomial model
(dashed curve in figure 6). This is not unexpected, as
the manifold sampled at realistic Ts is not convex, as
would be if the binomial approximation were correct.

Matching the dependence of ∆STs,γ on γ with
that of q on γ, one can infer the dependence of∆STs,γ

as a function of q (see figures S10 and s11 in the
supplementary material). This curve displays a lin-
ear growth, indicating that the number of low-energy
sequences in the neighborhood of eachσ grows expo-
nentially with the distance from it.

3.6. Searching for high-local entropy sequences
A relevant question is then whether there is a way
to find efficiently sequences in wide energy basins,
avoiding those that lie in narrow minima. In the field
of artificial neural network, this goal was achieved
sampling the space of the network parameters with
replicas whose mutual distances are coupled together
by the Lagrange multiplier γ and varying (annealing)
slowly γ until the system converges to a unique set of

parameters [18]. We have applied the same strategy
to the space of protein sequences, as described in
section 2.4.

Starting from random sequences, the system can
converge to a unique sequence of low energy with
annealings of the order of∼105 steps (figure 7(a). We
compared the K-sites of these sequences with those
of sequences generated with quenches from infinite
temperature to Ts = 3.2× 10−3 (figure 7(b), record-
ing a sequence when its energy reaches the average
value at this temperature (cf figure 2). The quench-
ing procedure is meant to obtain sequences in the
neighborhood of the initial, random one but with an
energy typical for the final temperature of the quench;
not being allowed to explore massively the sequence
space, we expect that these sequences are distributed
evenly in sequence space. In this way, we build neg-
ative examples of sequences with the same average
energy as those produced by the replica algorithm but
that are not selected based on the local entropy of the
energy basins where they lie.

In particular, we compared the K-sites of ten
sequences obtained from the replica simulations with
sequences obtained from ten temperature quenches.
We defined qK as the maximum Hamming simil-
arity between the K-sites of a simulated sequence
with those of any natural sequence taken from the
PFAM database. In this way, qK(σ) = 1 if there is
at least a natural sequence displaying the same K-
sites of the simulated sequence σ. The average qK
of the sequences obtained from the replica simula-
tions is 0.71± 0.21, which is significantly larger than
the value 0.39± 0.20 obtained from the quenches
(cf figures 7(c) and (d). Furthermore, the p-value
(obtained from a t-test) for the two distributions is
2.4× 10−3. Thus, sequences in large basins are more
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Figure 7. (a) The effective energy of replicated simulations with y= 5. Transparent curves are the effective energy of each replica
sequence, while the solid lines represent their mean. The vertical grey dotted lines indicate the value of γ along the annealing. (b)
The effective energy of quenched simulations. The horizontal grey dotted line is the mean effective energy at Ts = 3.2× 10−3

(reported in the bottom left corner). (c) The non-normalized distributions of qK for the replicated (in blue) and quenched (in
orange) simulations. (d) The K-sites found from the replicated and quenched simulations, compared to the most similar amino
acids from the PFAM database and the associated qK.

similar from the point of view of K-sites combina-
tions to natural sequences than other ones selected at
random (by the temperature quench) with compar-
able energy.

Molecular-dynamics simulations of a sequence
found by the replica algorithm (cf figure S5 in the sup-
plementary material) display a RMSD to the putative
native structure of 0.14± 0.02 nm, which is the more
similar to the wild-type sequence 1pgb than those
obtained from a temperature quench.

It is also worth mentioning that if sequences
are let evolve for ≈3× 105 generations after the
quench, they can reach the widest basins where nat-
ural sequences lie (cf figure S12 in the supplementary
material). This makes the case of protein sequences
different from other complex systems for which the
replica algorithm was originally developed, where the
system is unable to reach wide basins with simple
Monte Carlo moves [18]. The main reason for this
difference seems to be that the relevant dimensions
of the sequence space are just the seven ones that
define the K-sites. Thus, the effective dimension of
this system is much smaller and it can therefore be

sampled much more easily, than that of other com-
plex systems.

We stress that the advantage of the replica
algorithm to find wide basins is not much that of
computational efficiency, that is marginal for a pro-
tein as small as protein G, but that of guaranteeing
to ignore narrow basins, allowing us to distinguish
the properties of wide minima (in the present case,
the composition of K-sites) from those of minima at
large. Our proof of concept however shows that the
algorithm can be easily extended to the case of more
complex, larger proteins.

4. Discussion

Characterizing the space of sequences folding to a
well-defined native structure is useful to define the
constraints that bind evolutionary trajectories of pro-
teins. Recently developed machine-learning models
like ESMFold are an efficient tool to define the land-
scape of foldable sequences.

A concern intrinsically associated with this
approach is the reliability of the predictions of the
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machine-learning model for sequences that are far
from natural ones. A feature of ESM-Fold that makes
it particularly suitable for our goal is that, at vari-
ance with other predictors, it does not use inform-
ation from alignments of homologous sequences.
Its prediction does not stem from what amino acids
are observed in the very same sites in evolutionary-
related proteins, but from the overall information
coming from all available protein structures, which
gives good predictions even for test sets not con-
taining sequences homologous to those used for the
training (cf appendix B in [25]). Consequently, its
performance is not expected to drop as the sampling
departs from the set of naturally-observed sequences.
In fact, the molecular dynamics simulations we did
starting from the predicted native conformation of
sequences very far from the natural ones proved
very stable. On the contrary, AlphaFold [10] did
not produce any reasonable structure given the same
sequences, since no homologs are found. Moreover,
an advantage of ESM-Fold with respect to Alphafold
is that the former is remarkably faster (cf figure S13
in the supplementary material).

Assessing the ability of ESM-Fold to predict the
folding ability of sequences that are distant from
those in available families is a difficult task. A massive
experimental study was performed with 228 proteins
generated by a simulated annealing of the similar-
ity to different target structures [26]. The 67% of
these sequences, displaying no or weak similarity to
known sequences, fold to soluble and monomeric
structures.

Some indirect studies are also available in the lit-
erature. Analysis of de novo proteins, that is weakly-
structured proteins that do not have known homo-
logs, has shown that ESM-Fold displays the same
variability of specific disorder-predictors in assess-
ing the degree of folding of proteins far from the
training set [27]. Using back-propagation to design
novel sequences shows that while Alphafold generates
sequences with unnatural profiles, ESM-Fold does
not undergo this limitation [28].

The picture that emerges from our sampling of
the sequence space of protein G is that foldable
sequences form a wide basin that contains all natural
homologs and a constellation of smaller basins that
display similar effective energy as the main one but
that are narrower, displaying lower entropy. The dif-
ferent basins are characterized by different combina-
tions of amino acids in a limited number of specific
sites, here termed K-sites. The other amino acids, not
belonging to K-sites, are rather free to mutate, thus
generating a connected set of well-folding sequences
up to very large Hamming distance from the wild-
type. Only mutations in the K-sites seems to gener-
ate energy barriers corresponding to poorly-folding
sequences.

The presence in the sequence landscape of differ-
ent basins characterized by specific choices of amino

acids in few key sites of the protein was already
found in minimal models [8] and in simplified mod-
els with knowledge-based potentials [29]. This fact
suggests that it is not a consequence of the particular
energy function used here, but it is a general feature
of this kind of systems. Differently from what sug-
gested in the case of simplified protein models, the
key sites we found are not those critical for folding
kinetics [19].

An important result of this study is that natural
sequences folding to the structure of protein G belong
to a wide basin, which maximizes the local entropy.
One could hypothesize that being able to accumu-
late several mutations while maintaining the same
native structure is an evolutionary advantage for a
protein.

Wide energy basins can be found very efficiently
with algorithmic schemes borrowed from the theory
of complex systems. These do not seem to mimic in
any way the evolutionary dynamics of proteins but
are indeed a fast computational tool. For a small pro-
tein like protein G, we saw that it is possible to find
the widest basin simply with aMonte Carlo algorithm
in a manageable computational time, even without
resorting to local entropy minimization. However, it
seems unlikely that the same can be done for lar-
ger system, in which the dimension of the sequence
space is larger. On the other hand, the algorithm for
entropy-driven search can be made more efficient
than in the present proof of concept in a number of
ways [30].

The computational scheme described here
can be extended in many ways, for example by
modifying the effective energy to include other
evolutionary constraints beyond that of foldab-
ility, such as thermodynamic stability or affin-
ity for other molecules. In addition, the a priori
move of the Monte Carlo algorithm can be mod-
ified to allow for insertions and deletions as well
as mutations, making the length of the protein
variable.

The structure of the energy landscape we found
for protein sequences seems quite different from the
typical landscapes of systems with complex interac-
tions like spin glasses and constraint minimization
problems, which are much more rugged and display
a much larger number of well-separated basins. As
a matter of fact, the ruling role that K-sites have on
the effective energy of sequences makes their phys-
ical properties simpler than those of other complex
systems.

Of course, foldability is just one of the constraints
that the evolution of a protein must satisfy. Large
language models can anyway be employed to define
effective energies that encode other properties of
sequences, like their thermodynamic stability or their
binding properties to specific targets. The strategy
developed here is agnostic of the physical meaning of
the effective energy.
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5. Conclusions

We defined an effective energy based on currently-
available large language model and explored the
energy landscape associated with the sequences fold-
ing to the native conformation of a small protein. This
problem can be conveniently cast into the framework
of the canonical ensemble of statistical physics, using
the tools developed in this field. We found that fold-
ing sequences populate few basins of similar energy;
one of them is much wider than the others and con-
tain naturally-evolved sequences. Different basins are
characterized by specific arrangement of the amino
acids in a small subset of the sites of the protein.
We showed that a computational algorithm based on
replicated searchers can identify very efficiently the
widest basins.
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