
Revised submission to the Journal of Automata, Languages and Combinatorics
Revised on January 20, 2022

1-LIMITED AUTOMATA: WITNESS LANGUAGES AND
TECHNIQUES

Giovanni Pighizzini(A) Luca Prigioniero(A) Šimon Sádovský(B)

(A)Dipartimento di Informatica, Università degli Studi di Milano
via Celoria, 18, 20133 Milan, Italy

pighizzini@di.unimi.it prigioniero@di.unimi.it
(B)Department of Computer Science, Comenius University

Mlynská Dolina, 842 48 Bratislava, Slovakia
sadovsky@dcs.fmph.uniba.sk

ABSTRACT
1-limited automata are single-tape Turing machines with strong rewriting restrictions,
that do not allow them to recognize more than regular languages. However, 1-limited
automata can be significantly more succinct than equivalent finite automata: in fact,
the size gap from 1-limited automata to one-way deterministic finite automata is double
exponential. In this paper we present and discuss some languages which can be used as
witnesses of the gaps between different kinds of 1-limited automata and finite automata.
Among them, refining previous techniques, we show that a language proposed long time
ago by Meyer and Fischer as a witness of the optimality of the subset construction for
finite state automata, can also be used as witness of all the currently known size gaps
between 1-limited automata and different variants of finite automata. We also discuss
some open problems and possible further lines of investigation.

1. Introduction and Preliminaries

The investigation of computational models working with restricted resources is a
classical topic of theoretical computer science, connecting fundamental areas such as
computability and complexity. In this field of research, Thomas Hibbard introduced
long time ago limited automata, a kind of single-tape Turing machine with rewriting
restrictions [2]. This model has been recently reconsidered and deeply investigated in
a series of papers (e.g., [8, 9, 4, 3, 1, 7, 10, 16]). However, many problems related to
it are still open and deserve further investigations.

Limited automata are nondeterministic single-tape Turing machines which can
overwrite the contents of each tape cell only in the first d visits, for a fixed con-
stant d ≥ 0 (we use the name d-limited automaton to explicitly mention the con-
stant d). In his original paper Hibbard proved that, for any fixed d ≥ 2, d-limited
automata have the same computational power as pushdown automata, namely they
accept exactly context-free languages. Moreover, the deterministic version of such
devices defines a hierarchy where, for each d ≥ 2, the class of languages accepted

2 G. Pighizzini, L. Prigioniero, Š. Sádovský

by deterministic d-limited automata is properly included in the class of languages
accepted by deterministic (d + 1)-limited automata. This hierarchy does not cover
the whole class of context-free languages. Indeed, there are some context-free lan-
guages which cannot be accepted by any deterministic d-limited automaton, for each
arbitrarily large d [2]. At the bottom level of the hierarchy, deterministic 2-limited
automata recognize exactly the class of deterministic context-free languages [9].

For d = 0 no rewritings are possible, hence the resulting models are two-way finite
automata, which recognize exactly regular languages in both deterministic and nonde-
terministic cases [11, 13]. The computational power does not increase if the rewritings
in any cell are restricted only to the first visit. In other words, 1-limited automata are
no more powerful than finite automata [15]. However, their descriptions can be signif-
icantly more succinct. In particular, a double exponential size gap between 1-limited
automata and one-way deterministic finite automata has been proved in [8], while ex-
ponential size gaps have been proved for the conversions from 1-limited automata into
one-way nondeterministic finite automata and from deterministic 1-limited automata
into one-way deterministic finite automata. These and other bounds are summarized
in Figure 1.

In the investigation of these size relationships there are still some challenging open
problems (for a recent survey see [7]). Among them, we point out the cost of the
elimination of nondeterminism from 1-limited automata, for which we know a double
exponential upper bound and an exponential lower bound. These problems are also
related to the main longstanding open question of Sakoda and Sipser concerning
the state costs of the transformation of one-way and two-way nondeterministic finite
automata into equivalent two-way deterministic finite automata [12], as pointed out
in [7].

In order to solve this kind of problems, and in particular in order to try to increase
lower bounds and, in general, to better understand how these models work, it is useful
to investigate languages which are witnesses for some of the known gaps or seem to
be good candidates for better lower bounds. In this paper we will focus on some
of these languages. We will recall some known examples, we present some of their
variants, and we will discuss new examples. We think that reasoning on these witness
languages will be helpful to better understand these models and to stimulate further
research and new results and, hopefully, to solve some of the open problems.

The most important gaps in the literature between 1-limited automata and one-
way deterministic and nondeterministic finite automata have been witnessed by using
languages with a block structure. We will discuss such kind of languages in Section 3.
Among the languages of this type, we will present (in Section 6) the “subset parity”
language and one variant of it, as possible candidates for increasing the lower bound
for the elimination of nondeterminism from 1-limited automata. In Section 4 we recall
the results from [10] about the recognition of unary languages by 1-limited automata.
For these languages the techniques are different, in particular we cannot consider
block structures. This discussion will turn to be useful in Section 5 where we consider
the language proposed by Meyer and Fischer to prove the optimality of the subset
construction used to eliminate nondeterminism from finite automata. Adapting the
techniques for unary languages recalled in the previous section, we show that this

1-Limited Automata: Witness Languages and Techniques 3

d1-la

1nfa/2nfa 2dfa 1dfa

1-la
�

�
�
�

�
��	

exp

?

≥ exp

@
@
@
@
@
@@R
≥ exp

HH
HHH

HHH
HHH

HHj

double exp

@
@

@
@

@
@@I

exp

�
�
�
�
�
���

exp

��
��

�
��

�
��

�
��*

exp

Figure 1: State costs of conversions of 1-limited automata (1-la) and deterministic
1-limited automata (d1-la) into equivalent one-way and two-way deterministic and
nondeterministic finite automata (1/2 nfa/dfa). The upper bounds in the diagram
follow from the simulations of 1-limited automata by finite automata (Theorem 2). For
the lower bounds the following witnesses have been used in the literature: the block
language Ln presented in Section 3, with the exceptions of lower bounds from d1-las
to 2dfas, 1nfas, and 2nfas [8]; the unary language Un presented in Section 4, with
the exceptions of lower bounds from 1-las to d1-las and to 1dfas [10]. For a further
discussion on the bounds on this figure see [7].

language is a witness of all lower bounds for the conversions in Figure 1. We believe
that this is interesting, because this language does not have a block structure as the
languages in Section 3 which have been used, up to now, to prove the optimality
of the conversions from (deterministic and nondeterministic) 1-limited automata to
other kinds of finite automata.

In Section 6 we discuss some possible lines for future investigations.

The preliminary notions concerning limited automata are given in Section 2, with
a special emphasis on 1-limited automata. In general, we assume the reader familiar
with the standard notions concerning formal languages, finite automata, determinism
and nondeterminism. Given a machineM , the language accepted by it will be denoted
as L(M). Given a set S let us denote by #S its cardinality and by 2S the set of all
its subsets. The empty string will be denoted by ε.

2. Limited Automata

Given an integer d ≥ 0, a d-limited automaton (d-la, for short) is a tuple A =
(Q,Σ,Γ, δ, qI , F), where Q is a finite set of states, Σ is a finite input alphabet, Γ is a
finite working alphabet such that Σ ∪ {B,C} ⊆ Γ, B,C /∈ Σ are two special symbols,
called the left and the right end-markers, respectively, δ : Q × Γ→ 2Q×Γ×{−1,+1}

is the transition function. At the beginning of the computation, the input w is stored

4 G. Pighizzini, L. Prigioniero, Š. Sádovský

on the tape surrounded by the two end-markers, the left end-marker being at the
position zero. Hence, the right end-marker is on the cell in position |w| + 1. The
head of the automaton is on the cell 1 and the state of the finite control is the initial
state qI . In one move, according to δ and to the current state, A reads a symbol
from the tape, changes its state, replaces the symbol just read from the tape by a
new symbol, and moves its head to one position forward or backward. In particular,
(q,X,m) ∈ δ(p, a) means that when the automaton in the state p is scanning a cell
containing the symbol a, it can enter the state q, rewrite the cell contents by X, and
move the head to the left, if m = −1, or to the right, if m = +1. However, there are
the following restrictions:
• Replacing symbols is allowed to modify the contents of each cell only during the

first d visits, with the exception of the cells containing the end-markers, which
are never modified.

• The end-marker symbols cannot be used to replace the contents of any of the
cells which initially contain the input. (With the previous condition, this implies
that if (q,X,m) ∈ δ(p, a) and either X ∈ {B,C} or a ∈ {B,C}, then X = a.)

• The head cannot violate the end-markers, i.e, it cannot move to the left of the
left end-marker or to the right of the right end-marker, except at the end of
computation, to accept the input, as explained below.

Further technical details (which are not necessary in this paper) can be found in [9].
An automaton A is said to be limited if it is d-limited for some d ≥ 0. A accepts

an input w if and only if there is a computation path which starts from the initial
state qI with the input tape containing w surrounded by the two end-markers and
the head on the first input cell, and which ends in a final state q ∈ F after violating
the right end-marker, i.e., with the head which leaves the tape by moving to the right
of the right end-marker. A is said to be deterministic (dd-la, for short) whenever
#δ(q, a) ≤ 1, for any q ∈ Q and a ∈ Γ.

When d = 0, namely no rewritings are allowed, we obtain two-way finite automata,
shortly denoted as 2nfa or 2dfa depending on whether nondeterministic transitions
are allowed or not. So even for two-way automata we assume the same accepting
condition as for limited automata. By 1nfas and 1dfas we denote one-way nonde-
terministic and deterministic finite automata, respectively.

In this paper we focus on 1-limited automata in both deterministic and nonde-
terministic versions. We briefly recall some important results about 1-las. First,
concerning the computational power of these devices, the following has been proved:

Theorem 1 [15, Thm. 12.1]. The class of languages accepted by 1-limited au-
tomata coincides with the class of regular languages.

Hence, it is quite natural to compare the sizes of 1-las with the sizes of equivalent
finite automata, i.e., to study these devices from the descriptional complexity point
of view. We note that, fixing an input alphabet Σ, the number of symbols which are
used to write down the description of a 1-la is a polynomial in the cardinalities of
the state set and of the working alphabet. So, to define the size of 1-las we will take

1-Limited Automata: Witness Languages and Techniques 5

into account those two parameters. Concerning finite state automata we consider the
number of states to be a measure of their size, as usual.

Theorem 2 [8]. Each n-state 1-limited automaton can be transformed into equiv-
alent one-way nondeterministic and deterministic finite automata with n · 2n2 and
2n·2n2

states, respectively. Hence, the size costs of the transformation of 1-limited
automata into equivalent one-way nondeterministic and deterministic finite automata
are exponential and double exponential, respectively.

We point out that the costs of the transformations in Theorem 2 do not depend
on the size of the working alphabet of the given 1-la. Furthermore, the double
exponential cost of the transformation into 1dfas is related to a double role of the
nondeterminism in 1-las: when the head of a 1-la reaches for the first time a tape
cell, it overwrites the contents according to a nondeterministic choice; furthermore,
the set of nondeterministic choices that are allowed during the next visits to the same
cell depends on the symbol that has been chosen to rewrite it in the first visit and
that cannot be further changed, namely it depends on the nondeterministic choice
which was made during the first visit.

When the given 1-limited automaton is deterministic, the same simulation produces
a one-way deterministic finite automaton of exponential size. In particular, each n-
state d1-la can be transformed into an equivalent 1dfa with no more than n ·(n+1)n
states [8].

The results comparing the sizes of finite automata and 1-limited automata are
summarized in Figure 1 (see also [7]). The optimality of the bounds in Figure 1 has
been shown considering different witness languages. Some bounds are witnessed by
languages with a block structure, while other bounds has been proven using unary
languages. In the next two sections we will discuss these two kinds of languages.

3. Block Languages

A block language Bn is defined, with respect to an integer parameter n > 0, as the
concatenation of some strings of length n, called blocks, over a fixed alphabet Σ, which
satisfy some given constraints.

Some examples are:
• The set of strings in which the last block is equal to one of the previous ones:

Kn = {x1 · · ·xkx | k > 0, x1, . . . , xk, x ∈ {a, b}n,∃j ∈ {1, . . . , k}, xj = x} .

• The set of strings in which two blocks are equal:

En = {x1 · · ·xk | k > 0, x1, . . . , xk ∈ {a, b}n,∃i, j ∈ {1, . . . , k}, i < j, xi = xj} .

• The set Ln of strings in which at least n blocks are equal:
Ln = {x1 · · ·xk | k ≥ 0, x1, . . . , xk ∈ {a, b}n,

∃i1, i2, . . . , in ∈ {1, . . . , k}, i1 < i2 < . . . < in

s.t. xi1 = xi2 = · · · = xin} .

6 G. Pighizzini, L. Prigioniero, Š. Sádovský

For any of these languages, we can give a 1-la Mn of size O(n) which works as
follows:
• In a preliminary scan of the input, from left to right, using a counter modulo n,
Mn verifies whether the input length is a multiple of n. If this is not the case,
then it stops and rejects. Notice that, since the contents of the cells are frozen
after the first visit, only during this scan the cells can be overwritten. Indeed,
during the first scan, Mn marks the first cell of some blocks which are guessed
to be “interesting”, e.g., in the case of the language En, it marks the first cell
of two blocks which are guessed to be equal (according to the definition of En,
in the following discussion these two blocks will be called xi and xj). In the
case of Ln, the number of cells which are marked in this first scan is arbitrary
(anyway, according to the above-described strategy, each marked cell is the first
cell of a block); then a further scan is used to verify that such a number is n. In
this way, the number of states used to mark the “interesting” positions is O(n).

• In the remaining part of the computation the machine verifies whether the
previous guess was correct by comparing symbols in the corresponding positions
of the selected blocks. To locate these positions, a counter modulo n, which
is kept in the finite control, is used. This part can be implemented with O(n)
states. We describe a possible strategy for the language En, that can be adapted
to the other languages under consideration.
∗ Mn moves its head from the right end-marker, on which it is located after

the first scan, up to reach a marked cell, namely the cell containing the
first symbol of xj . The machine stores in its finite control the symbol and
continues to move to the left up to reach the other marked cell, namely
the cell containing the first symbol of xi.

∗ If the symbol in this cell is different from that stored in the control thenMn

rejects; otherwise, it moves its head one cell to the right, i.e., on the second
symbol of xi, stores it in the finite control, and moves to the right, to locate
the second symbol of xj . This can be done by counting the cells modulo n,
while moving to the right and stopping when, after having visited a marked
cell, the counter contains 0. Even in this case, if the symbol in the cell
is different from that stored in the control then Mn rejects, otherwise it
moves one cell to the right, stores the symbol in this cell in the finite
control, and moves to the left to search the corresponding cell in xi. This
is also done by using a counter modulo n, with a small modification of
the above described strategy. Continuing in this way, Mn can compare
symbols in corresponding positions of xi and xj . If one of the two marked
cells is reached with the counter containing 0, then all the corresponding
symbols in the two blocks have been successfully compared and Mn can
stop and accept.

∗ It is not difficult to verify that with a strategy of this kind, O(n) states are
enough. Furthermore the working alphabet Γ consists of two copies of Σ:
one copy for the symbols which are marked in the first scan, the other for
the symbols which are not marked.

1-Limited Automata: Witness Languages and Techniques 7

It is also possible to prove that every 1dfa accepting one of these languages should
require at least 22n states. This can be done by standard distinguishability arguments.

We give a sketch of the proof in the case of En. Let w1, w2, . . . , w2n be a list
of all strings in {a, b}n, in some fixed order, and let F be the set of all func-
tions from {1, 2, . . . , 2n} to {0, 1}. For each f ∈ F , consider the string wf =
w
f(1)
1 w

f(2)
2 · · ·wf(2n)

2n , where w0
i = ε and w1

i = wi, i = 1, . . . , 2n. Given f, g ∈ F ,
with f 6= g, it can be verified that any string wi with f(i) 6= g(i) distinguishes wf
and wg. In fact, each string of length n different from wi occurs at most one time as a
block in wfwi and in wgwi, while wi occurs two times in one of them. Since #F = 22n ,
the lower bound follows. A more detailed argument for the language Ln can be found
in [8].

From the previous discussion, it follows that all the block languages presented
in this section are witnesses of the double exponential gap from 1-las to 1dfas.
Furthermore, since the gap from d1-las to 1dfas is “only” exponential, each d1-la
accepting one of these languages should have size at least exponential in n.

We now describe how to get a d1-la of size exponential in n for the language En.
Actually, this can be done using a 2dfa An, i.e., without any overwriting. For each
string x ∈ {a, b}n, An makes a scan of the tape in order to check if there are two
blocks of the input which are equal to x. In this case it stops and accepts. An can
be implemented with O(n · 2n) states, by enumerating all the strings in {a, b}n in
some given order. (The factor 2n is to keep track of the strings of length n in the
enumeration, the factor n is to count the position in the input modulo n.)

A similar strategy can be also used for languages Kn and Ln.

4. Unary Languages

The acceptance of unary languages by 1-las was extensively studied in [10]. In this
section we give a short outline of some of the results presented in that paper. This
will turn out to be useful for the results we will prove in the next section.

We first notice that in the unary case block languages are quite trivial. Hence, the
techniques discussed in the previous section are not interesting in this case.

Let us start by recalling some useful notions. Then, we will give an example
illustrating them.

Definition 3 [14]. The binary carry sequence is the infinite integer se-
quence σ1σ2 · · ·σj · · · where σj is the exponent of the highest power of 2 which di-
vides j, for each integer j ≥ 1.

Definition 4. Given a finite sequence s = k1k2 · · · kj of integers, its backward
increasing sequence, denoted as bis(s), is the longest sequence which is obtained
by inspecting s from right to left and by selecting the element of s under con-
sideration when it is strictly greater than the elements selected until then, i.e.,
bis(k1k2 · · · kj) = (i1, i2, . . . , ir), j, r > 0, if and only if i1 = kh1 , i2 = kh2 , . . . , ir = khr

where h1 = j, ht = max{h′ < ht−1 | kh′ > kht−1} for t = 2, . . . , r, and kh′ < khr

for 0 < h′ < hr.

8 G. Pighizzini, L. Prigioniero, Š. Sádovský

For example, the prefix of length j = 21 of the binary carry sequence
is 010201030102010401020 and bis(010201030102010401020) = (0, 2, 4). Notice
that 21 = 24 + 22 + 20, i.e., the elements of bis(010201030102010401020) coincide
with the positions of bits 1 in the binary representation of 21. Furthermore, the
22nd element of the binary carry sequence is σ22 = 1 and coincides with the small-
est nonnegative integer which does not appear in bis(010201030102010401020). In a
similar way, by taking the prefix of length j = 11 of the binary carry sequence, we
get bis(01020103010) = (0, 1, 3), while 11 = 23 + 21 + 20. Even in this case, the next
element of the binary carry sequence is the smallest nonnegative integer which does
not appear in bis(01020103010), namely, σ12 = 2.

The above examples illustrate some general properties of the binary carry sequence,
which are fundamental in the definition of the d1-las we are going to present. The
proof can be found in [10]:

Lemma 5. Let σ1σ2 · · ·σj, j > 0, denote the prefix of length j of the binary carry
sequence.
• If bis(σ1σ2 · · ·σj) = (i1, i2, . . . , ir) then j =

∑r
t=1 2it , i.e., the value of bis,

applied to the first j elements of the binary carry sequence, gives the positions of
bits equal to 1 in the binary representation of j, starting from the least significant
bit.

• σj is the smallest nonnegative integer that does not occur in bis(σ1σ2 · · ·σj−1).

Now we shortly discuss the construction of a unary d1-la An accepting the sin-
gleton language {a2n}, for a given integer n > 0 [10]. The idea is that of replacing
input symbols on the tape with the elements of the prefix of length 2n of the binary
carry sequence. To this end, we take the working alphabet of An to contain the
symbols 0, 1, . . . , n.

At the beginning, the first input symbol is replaced by 0, namely by the first element
of the binary carry sequence. Suppose that at some point the first j−1 input symbols
have been replaced by the prefix σ1σ2 · · ·σj−1 of the binary carry sequence and the
head is on the cell j − 1, while the cell j is not yet visited. According to Lemma 5,
the element σj that should be written on the cell j is the smallest nonnegative integer
that does not occur in bis(σ1σ2 · · ·σj−1). This element can be easily computed by
visiting some of the cells to the left of the cell j.

For instance, for j = 12, the cells up to 11 contain the sequence 01020103010. By
moving the head from cell 11 to the left, up to cell 8 which contains 3, An can discover
that 2 is the smallest integer missing in the backward increasing sequence. So, An can
move the head to the right, up to the leftmost “fresh” cell, i.e., cell 12, and overwrite
it with the next element of the binary carry sequence, i.e., the number 2.

If the length of the input is exactly 2n, then at some moment the integer n will
be written on the rightmost input cell. At this point, the machine can accept after
verifying that the next cell contains the right end-marker. Otherwise, the machine
will reject either because after writing the integer n on a cell, the tape still contains
cells which are not yet visited (the input is too long), or because the head hits the
right end-marker before the integer n is written on the tape (the input is too short).

1-Limited Automata: Witness Languages and Techniques 9

We point out that the d1-la An can be implemented using O(n) states and O(n)
tape symbols (further details are presented in [10]). With a minor modification, we
can also obtain a d1-la of similar size accepting the language Un = {a2n}∗. The same
language needs 2n states to be accepted by finite automata, even if nondeterminism
and two-way motions are allowed, i.e., each 2nfa accepting Un must have at least 2n
states ([5], see also Theorem 9). Hence the language Un is a witness of all exponential
gaps from 1-las to finite automata in Figure 1.

We conclude this section by discussing how the above described d1-la can be
modified in order to recognize all the unary strings whose length is a multiple of a
given integer N > 0, which is not required to be a power of 2, i.e., the languageMN =
{aN}∗. This will be used in the next section for further constructions. To this aim,
adapting the previous argument, we build a d1-la BN in such a way that, after
reading the leftmost K tape cells, their contents will be overwritten as

σ1 · · ·σN−1] · · ·]σ1 · · ·σN−1]︸ ︷︷ ︸
bK/Nc times

σ1 · · ·σK mod N

where σ1 · · ·σN−1 is the prefix of length N − 1 of the binary carry sequence, and]
is a special “reset” symbol which is written in each cell whose position is a multiple
of N . To do that, BN computes the binary carry sequence in a way similar to that
of An, with two main differences:

(I) In BN , the computation of the next symbol of the binary carry sequence is
restricted to the suffix of the tape which starts after the rightmost reset symbol]
(if no reset symbol has been written all the tape is used; the left end-marker
and the symbol] play a similar role here). In other words, all the symbols to
the left of the rightmost] are not considered anymore. In this way, after having
written a symbol], the computation of the binary carry sequence on the next
tape cells is restarted from the beginning.

(II) To compute the next element of the binary carry sequence, the automaton An
has to find the smallest integer missing in the backward increasing sequence. The
automaton BN will also verify if the backward increasing sequence represents
the integer N − 1. In this case, the reset symbol] will be written on the first
fresh cell of the tape.

For instance, suppose that N = 14, then N − 1 = 13 = 23 + 22 + 20: each
time BN discovers that the backward increasing sequence starts by 0 followed
by 2, and hence the next element of the binary carry sequence is 1, it also
verifies if the complete backward increasing sequence is (0, 2, 3). In this case, it
will write] instead of 1 on the next tape cell.

The implementation of these changes, which is quite technical, keeps the number
of states and the size of the working alphabet linear in the maximum element of
the binary carry sequence we need to consider, namely the sizes of both these sets
are O(logN).

10 G. Pighizzini, L. Prigioniero, Š. Sádovský

5. Beyond the Block Structure

In Section 3 we discussed some block languages witnessing the double exponential
size gap from 1-las to 1dfas and the exponential gap from d1-las to 1dfas as well.
In this section we present another witness language for these gaps. In our knowledge,
this is the first example of witness which does not have a block structure similar to
the languages of Section 3.

The language we use was proposed longtime ago by Meyer and Fischer as a witness
of the exponential state gap between 1nfas and 1dfas [6] and it is the language
accepted by the N -state 1nfa SN depicted in Figure 2.

qN−1

q0 q1

q2

qN−2 q3

b

b

bb

b

a

a

aa

a

b

b

b

b

b

Figure 2: The N -state 1nfa SN accepting the language of Meyer and Fischer.

Theorem 6. Given an integer N let SN be the N -state 1nfa in Figure 2. Then:
(I) The minimum 1dfa equivalent to SN has 2N states.
(II) There exists a 1dfa with 2N states accepting the reversal of the language ac-

cepted by SN .
(III) There exists a 2dfa with 2N + 2 states equivalent to SN .

Proof. For Item I see [6].
To prove Item II, we observe that a 1nfa S′N accepting L(SN)R can be obtained

just reversing the arrows in the transition diagram in Figure 2. We claim that the only
reachable states in the subset automaton obtained from S′N are the states correspond-
ing to subsets {qi} and Q \ {qi}, for i = 0, . . . , N − 1, where Q = {q0, q1, . . . , qN−1}
is the set of states of SN . First, we observe that from the initial state q0, by reading
any sequence of a’s, only one state qi can be reached, 0 ≤ i ≤ N − 1; furthermore,
in this way all the states corresponding to singletons are reachable. Reading b in
one of the states qi does not change the current state, when i > 0, but leads to one
of the states in the set {q1, . . . , qN−1} = Q \ {q0}, when i = 0. Notice that this is
the only nondeterministic choice that can be taken by the automaton. Hence, the

1-Limited Automata: Witness Languages and Techniques 11

state corresponding to the subset Q \ {q0} is also reachable. Furthermore, from this
subset, reading sequences of a’s, all the subsets Q \ {qi}, for i = 0, ..., N − 1, can be
reached. Again, from the subset Q \ {qi} reading a letter b the set of reachable states
becomes Q \ {q0} when i > 0, and remains Q \ {q0} when i = 0. This allows us to
conclude that in the subset automaton obtained from S′N the only reachable states
are {qi} and Q \ {qi}, for i = 0, . . . , N − 1 (see Figure 3).

qN−1

q0 q1

q2

qN−2 q3

qN−1

q0 q1

q2

qN−2 q3

b

b

bb

b

a

a

aa

a

b

a

a

aa

a

b

b

b

b

b

Figure 3: The subset automaton obtained from the reversal of the 1nfa SN accepting
the language of Meyer and Fischer, restricted to reachable states. Here, the state qi

(resp., qi) corresponds to the singleton {qi} (the subset Q \ {qi}), for i = 0, . . . , N − 1.

For Item III we can construct a 2dfa that, in the initial state, scans the input
from left to right to locate the right end-marker and then simulates the 2N -state
1dfa accepting L(SN)R obtained at the previous point, while reading the input from
right to left. Finally, when it reaches the left end-marker, it moves in the final state in
which it performs a final left-to-right scan, violates the right end-marker, and accepts.

�

Now we are going to study how to recognize L(SN) using 1-las and d1-las.

Theorem 7. For each N > 1, the language L(SN) is accepted by a 1-la
with O(logN) states and O(logN) working alphabet symbols.

Proof. We define a 1-la CN which, roughly, simulates SN computations by over-
writing a tape cell by the symbol] when the transition on that cell in the simulated
computation leads to the initial state q0 of SN .

To this aim, while reading a’s, CN behaves as the d1-la BN accepting {aN}∗
described in Section 4, namely it transforms a sequence aK into the string

σ1 · · ·σN−1] · · ·]σ1 · · ·σN−1]︸ ︷︷ ︸
bK/Nc times

σ1 · · ·σK mod N .

12 G. Pighizzini, L. Prigioniero, Š. Sádovský

We now discuss the changes we have to make in order to deal with the symbol b. To
this aim, it is useful to observe the role of the letter b in the 1nfa SN :
• In the state q0 the letter b cannot occur.
• In the other states, either the letter b remains neutral, i.e., it does not produce

a state change, or it leads to a “reset” of the automaton.
According to these two points, the automaton CN behaves as follows, when reading
a b from the input:
• If the symbol on the tape in the cell to the left of the one containing b is the

left end-marker or the reset symbol], then CN is simulating SN being in the
state q0 in which the letter b cannot occur. Hence the move is not defined.

• Otherwise CN either overwrites the cell containing b by the “neutral” symbol _
(that will be skipped in the next computation steps), thus simulating the transi-
tion of SN that does not change the state, or overwrites it by the reset symbol],
so simulating the transition on b which leads to q0.

When, after writing the symbol] on a cell and moving to the right, the head hits
the right end-marker, CN accepts. It also accepts in the case the head is on the right
end-marker at the beginning of the computation, i.e., the input is the empty word.

According to this construction, the string finally written on the tape in any ac-
cepting computation on input x 6= ε has the form

w1]w2] · · ·wk]

where k ≥ 0, and for i = 1, . . . , k, wi ∈ {_, 0, 1, . . . , blog2Nc}+ is a prefix of the
binary carry sequence of length less than N padded with some occurrences of the
symbol _ (which cannot occur at the beginning of wi). Furthermore, the original
symbol in each position which finally contains the symbol _ was b, while the original
symbol in each position which finally contains the symbol] was a if the factor wi to
its left, after removing padding symbols, represents the prefix of length N − 1 of the
binary carry sequence, otherwise it was b. Hence, the positions of symbols] in this
string represent the positions in which the simulated computation of SN entered the
state q0.

We finally observe that CN uses the same set of states of BN , whose cardinality
is O(logN). Furthermore, the cardinality of the working alphabet is O(logN). �

For the recognition of L(SN) by deterministic 1-las we obtain:

Theorem 8. The language L(SN) is accepted by a d1-la with O(N) states and a
working alphabet of size O(1).

Proof. This is an immediate consequence of Item III of Theorem 6. �

Since by Item I of Theorem 6 the language L(SN) requires 2N states to be accepted
by 1dfas, from Theorems 7 and 8 it turns out that L(SN) is a witness of the double
exponential gap from 1-las to 1dfas and of the exponential gap from d1-las to
1dfas.

1-Limited Automata: Witness Languages and Techniques 13

We are now going to show that when N is a power of 2, i.e., N = 2n for some
integer n ≥ 0, then this language needs also N states to be recognized by any 2nfa.

First we recall that a unary language L is said to be ultimately λ-cyclic for some
integer λ > 0, if there exists an integer µ ≥ 0 such that for each n ≥ µ it holds
that an ∈ L if and only if an+λ ∈ L. If, furthermore, for each λ′ < λ the language L
is not ultimately λ′-cyclic then L is said to be properly ultimately λ-cyclic. A properly
ultimately λ-cyclic language L is said to be properly λ-cyclic when µ = 0, i.e., the
minimum 1dfa accepting it is a loop of λ states.

The following result has been proved in [5]:

Theorem 9. Let L be a unary language which is properly ultimately λ-cyclic,
where λ = pk1

1 p
k2
2 · · · pks

s , with p1, p2, . . . , ps prime numbers, and k1, k2, . . . , ks pos-
itive integers. Then the number of states in the cycles of each 2nfa accepting L is at
least pk1

1 + pk2
2 + · · ·+ pks

s .

We give the following simple generalization of Theorem 9.

Theorem 10. Given an alphabet Σ, a language L ⊆ Σ∗ and symbol a ∈ Σ,
let L∩{a}∗ be properly ultimately λ-cyclic, where λ = pk1

1 p
k2
2 · · · pks

s , with p1, p2, . . . , ps
prime numbers and k1, k2, . . . , ks positive integers. Then the number of states in the
cycles of each 2nfa accepting L is at least pk1

1 + pk2
2 + · · ·+ pks

s .

Proof. Given a 2nfa accepting L, we can obtain a 2nfa accepting L ∩ {a}∗ by
removing all transitions on input symbols others than a. Then the lower bound
derives from Theorem 9. �

As a consequence of Theorem 10 we obtain that:

Theorem 11. Each 2nfa accepting L(S2n) has at least 2n states.

Proof. From the transition diagram in Figure 2, we can observe that L(SN)∩{a}∗ =
{aN}∗, for each N > 0. Hence L(SN) ∩ {a}∗ is properly N -cyclic. When N = 2n for
some n ≥ 0, from Theorem 10 it follows that each 2nfa accepting L(SN) should have
at least N = 2n states. �

6. Conclusion

Merging the techniques for the unary case with the techniques for the general case,
we have found a family of languages which is a witness of all the size gaps in Figure 1.
This family is the same introduced by Meyer and Fischer to prove the optimality of
the subset construction and it was described in Section 5.

Several problems are still open. We mention here two problems from Figure 1 (for
a further discussion, in particular for other problems related to possible differences
between the unary and the general case, we address the reader to [7]): the size cost of
elimination of the nondeterminism from 1-las, namely the cost of the conversion of
1-las into equivalent d1-las, and that of the transformation of 1-las into equivalent

14 G. Pighizzini, L. Prigioniero, Š. Sádovský

2dfas. In both cases we have a double exponential upper bound, deriving from the
simulation of 1-las by 1dfas, and an exponential lower bound, which derives from the
fact that the cost of the transformation of d1-las into 1dfas is a simple exponential.

We observe that all the block languages presented in Section 3 are accepted by
1-las of size O(n). The languages Kn, En, and Ln are also accepted by 2dfas (and
hence by d1-las) of size exponential in n.

At the moment, in all known examples of languages having an exponential size gap
from 1-las to d1-las we actually know the same gap to 2dfas. We do not know any
example in which there is an exponential size gap from 1-las to d1-las, but the gap
to 2dfas seems to be larger.

Trying to prove that the size gap from 1-las to d1-las (or to 2dfas) is more
than an exponential, we considered the following “subset parity” language Pn and its
variant P ′n. Pn is a block language in which the last block of each string is the bitwise
XOR of some of the previous ones:

Pn = {x1 · · ·xkx | k > 0, x1, . . . , xk, x ∈ {0, 1}n,
∃h > 0, i1, i2, . . . , ih ∈ {1, . . . , k}, i1 < i2 < . . . < ih

s.t. x = xi1 ⊕ xi2 ⊕ · · · ⊕ xih} ,
where, given two strings of bits x = a1a2 · · · an and y = b1b2 · · · bn of the same
length n, x ⊕ y denotes the string obtained by the bitwise XOR of x and y, namely
the string c1c2 · · · cn, where ci = ai ⊕ bi, i = 1, . . . , n.

In P ′n we remove the block structure (in the sense of Section 3): we require that
the suffix of length n of a string is the bitwise XOR of some non overlapping factors
of length n of the corresponding prefix of the string, namely, unlikely as Pn, the
“interesting” blocks can start in any position of the string, provided that they are not
overlapping:

P ′n = {wx | w ∈ {0, 1}∗, x ∈ {0, 1}n,
∃h > 0, x1, x2, . . . , xh ∈ {0, 1}n, y0, y1, . . . , yh ∈ {0, 1}∗

s.t. w = y0x1y1 · · · yn−1xhyh and x = x1 ⊕ x2 ⊕ · · · ⊕ xh} .
Adapting the techniques of Section 3, we can devise 1-las of size polynomial in n
accepting Pn and P ′n. However, we did not found a way to obtain d1-las of size
exponential in n accepting these languages: indeed, while in languages En,Kn, and Ln
we have to check equality of a fixed number of blocks, here we have to compute a
more involved operation on a subset of them. So, at a first glance the languages Pn
and P ′n seem to be more complicated to be recognized than the other block languages
we presented.

Conjecture 1. The languages Pn and P ′n are not accepted by any d1-la of size
exponential in n.

References

[1] B. Guillon, L. Prigioniero, Linear-time limited automata. Theor. Comput. Sci. 798
(2019), 95–108.

1-Limited Automata: Witness Languages and Techniques 15

[2] T. N. Hibbard, A generalization of context-free determinism. Information and Control
11 (1967) 1/2, 196–238.

[3] M. Kutrib, G. Pighizzini, M. Wendlandt, Descriptional complexity of limited au-
tomata. Inf. Comput. 259 (2018) 2, 259–276.

[4] M. Kutrib, M. Wendlandt, Reversible limited automata. Fundam. Inform. 155
(2017) 1-2, 31–58.

[5] C. Mereghetti, G. Pighizzini, Two-way automata simulations and unary languages.
Journal of Automata, Languages and Combinatorics 5 (2000) 3, 287–300.

[6] A. R. Meyer, M. J. Fischer, Economy of description by automata, grammars, and
formal systems. In: FOCS . IEEE, 1971, 188–191.

[7] G. Pighizzini, Limited automata: Properties, complexity and variants. In: Descrip-
tional Complexity of Formal Systems - 21st IFIP WG 1.02 International Conference,
DCFS 2019, Proceedings. Lecture Notes in Computer Science 11612, Springer, 2019,
57–73.

[8] G. Pighizzini, A. Pisoni, Limited automata and regular languages. Int. J. Found.
Comput. Sci. 25 (2014) 7, 897–916.

[9] G. Pighizzini, A. Pisoni, Limited automata and context-free languages. Fundam.
Inform. 136 (2015) 1-2, 157–176.

[10] G. Pighizzini, L. Prigioniero, Limited automata and unary languages. Information
and Computation 266 (2019), 60–74.

[11] M. O. Rabin, D. Scott, Finite automata and their decision problems. IBM J. Res.
Dev. 3 (1959) 2, 114–125.

[12] W. J. Sakoda, M. Sipser, Nondeterminism and the size of two way finite automata.
In: R. J. Lipton, W. A. Burkhard, W. J. Savitch, E. P. Friedman, A. V. Aho
(eds.), Proceedings of the 10th Annual ACM Symposium on Theory of Computing, May
1-3, 1978, San Diego, California, USA. ACM, 1978, 275–286.

[13] J. C. Shepherdson, The reduction of two-way automata to one-way automata. IBM
J. Res. Dev. 3 (1959) 2, 198 –200.

[14] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences.
http://oeis.org/A007814.

[15] K. W. Wagner, G. Wechsung, Computational Complexity. D. Reidel Publishing
Company, Dordrecht, 1986.

[16] T. Yamakami, Behavioral strengths and weaknesses of various models of limited au-
tomata. In: SOFSEM 2019: Theory and Practice of Computer Science - 45th Inter-
national Conference on Current Trends in Theory and Practice of Computer Science,
Proceedings. Lecture Notes in Computer Science 11376, Springer, 2019, 519–530.

	1 Introduction and Preliminaries
	2 Limited Automata
	3 Block Languages
	4 Unary Languages
	5 Beyond the Block Structure
	6 Conclusion
	References

