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We show that an analogy between crowding in fluid and jammed phases of hard spheres captures
the density dependence of the kissing number for a family of numerically generated jammed states.
We extend this analogy to jams of mixtures of hard spheres in d = 3 dimensions, and thus obtain an
estimate of the random close packing (RCP) volume fraction, φRCP, as a function of size polydis-
persity. We first consider mixtures of particle sizes with discrete distributions. For binary systems,
we show agreement between our predictions and simulations, using both our own and results re-
ported in previous works, as well as agreement with recent experiments from the literature. We
then apply our approach to systems with continuous polydispersity, using three different particle
size distributions, namely the log-normal, Gamma, and truncated power-law distributions. In all
cases, we observe agreement between our theoretical findings and numerical results up to rather large
polydispersities for all particle size distributions, when using as reference our own simulations and
results from the literature. In particular, we find φRCP to increase monotonically with the relative
standard deviation, sσ, of the distribution, and to saturate at a value that always remains below
1. A perturbative expansion yields a closed-form expression for φRCP that quantitatively captures
a distribution-independent regime for sσ < 0.5. Beyond that regime, we show that the gradual loss
in agreement is tied to the growth of the skewness of size distributions.

I. INTRODUCTION

Hard spheres represent one of the most important ref-
erence system in statistical mechanics. This system ad-
mits a single control parameter, the fraction of space oc-
cupied by the particles, or volume fraction, φ, and was
initially devised to model the short-range repulsive forces
of an idealized atomic liquid. On the theoretical side,
trailblazing simulations by Alder and Wainwright [1], as
well as theoretical work by Kirkwood and coworkers [2–
4], led to a wide array of predictions on the behaviour of
equilibrium hard spheres that paved the way for models
of more complicated liquids. Pioneering experiments by
Pusey, van Megen, Vrij [5, 6], since followed by others
[7], showed that colloidal systems, such as polymethyl-
methacrylate (PMMA) and silica particles coated with
polymers, can be approximately modelled as hard-sphere
fluids. Overall, the phase behaviour of hard spheres has
been studied in great detail and by now it can be said to
be well understood [8, 9].

When slowly compressing a hard-sphere fluid at con-
stant temperature, a thermodynamically stable liquid
branch can be defined from the ideal gas limit, φ = 0,
until freezing, φfreeze ≈ 0.494. Further slow compres-

∗Electronic mail: carmine.anzivino@unimi.it,
†Electronic mail: alessio.zaccone@unimi.it

FIG. 1: Close packings of monodisperse hard spheres.
fcc configuration (left), and random packing with φ ≈ 0.644
(right) of monodisperse hard spheres.

sion yields an entropy-driven first-order phase transition
[5, 10–12] to a solid (crystalline) branch that extends
from the melting packing fraction, φmelt ≈ 0.545, to the
face-centered-cubic (fcc) close-packing, φfcc = π

6

√
2 ≈

0.7405, shown in Fig. 1. As already predicted by Ke-
pler in his conjecture [13] and formally proved by Hales
[14–16], the fcc crystal coincides with the densest ordered
arrangement of hard spheres in 3d. In this arrangement,
the pressure diverges since the system cannot be further
compressed.

It is well-known that by compressing hard spheres
quickly, crystallization can be avoided [17–19], so that
the maximum close-packing density, φfcc, is not reached
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and instead the particles “jam” in a disordered configura-
tion at a lower volume fraction. Just like the fcc crystal,
these jammed configurations exhibit a diverging pressure,
as further compression would lead to overlaps or defor-
mation [20]. The determination of the so-called random
close packing (RCP) density, φRCP, defined as the high-
est packing fraction for a “disordered” arrangement of
hard spheres, remains an open problem [13, 21, 22]. In
a classic experiment [23], Bernal and Mason found that
when equally sized spheres are poured and shaken in a
container they occupy a volume fraction φRCP ≈ 0.64,
a number that they conjectured to be “mathematically
determinable”. An example of such a packing is shown
in Fig. 1. Since then, measurements of φRCP have been
reproduced in a myriad of experiments and numerical
simulations, yet there is no consensus as to what the pre-
cise definition of RCP is [13, 24–26].

In both experiments and in simulations, dense amor-
phous packings of hard spheres are produced by nonequi-
librium dynamical processes, whose states are challenging
to predict analytically [27, 28]. To overcome this diffi-
culty, many authors have proposed that the RCP states
correspond to the infinite-pressure limit of metastable
glassy states [29–34], thus reducing a dynamical prob-
lem into a much simpler equilibrium one. According to
this view, when compressing a hard-sphere liquid beyond
the freezing packing fraction, φfreeze, the pressure of the
system first follows a metastable extension of the liquid
branch and then becomes trapped in a glassy state, an
amorphous solid state in which particles vibrate around
random reference positions. Upon further compression,
the amplitudes of the vibrations eventually vanish and
the pressure diverges as the system jams in a random
packing. Simulations showed that, depending on the
compression rate, several glassy branches can arise from
the metastable continuation of the liquid branch above
φfreeze, and that different glasses can jam at different jam-
ming densities [30, 32]. Simulations and mean-field-level
theory [29, 35, 36] indicate that these jamming densities
live in a finite interval, between a lower bound obtained
by compressing the least stable glassy branch, and an up-
per bound, usually called the glassy close-packing (GCP)
density, defined as the densest possible jam with a glassy
structure.

Alternative ways of thinking about random packings
of hard spheres have been proposed by Torquato, Still-
inger and co-workers [37–39], Kamien and Liu [24], and
most recently Wilken et al. [26]. Torquato, Stillinger
and collaborators argued that the mechanical (compres-
sion) route to RCP is ill defined because one can al-
ways increase the volume fraction by locally ordering
the particles [37, 40, 41]. Motivated by this observa-
tion, they introduced the alternative notion of a max-
imally random jammed (MRJ) state corresponding to
some minimum value of a structural order parameter,
such as bond-orientational order [42]. Adopting this cri-
terion in numerical simulations, Rintoul and Torquato
[38, 39] measured precise values of the pressure for the
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FIG. 2: Defining RCP in the (φ, z) plane. Sketch of
the convex hull of the ensemble of stable frictionless jammed
packings (hashed gray region), in the packing fraction-kissing
number plane. The least coordinated jam at every density
form the MRJ-line for kissing numbers (solid red line). It
starts at the loosest stable packing, here called LSP (teal dot),
and ends at the densest possible packing fraction, fcc (blue
dot). Between these extreme densities, there is a plateau of
isostatic packings, which ends at a finite value, that we here
use as a definition of RCP (purple dot). Past RCP, the kissing
number picks up and reaches 12 at fcc.

hard-sphere system on the metastable continuation of the
liquid branch above the freezing point, φfreeze. They
found no evidence of thermodynamically stable amor-
phous (glassy) states, and observed a diverging pressure
at φRCP ≈ 0.644 [38, 39].

Kamien and Liu [24], conjectured a different definition
for φRCP as the endpoint of the metastable extension of
the equilibrium liquid branch. More precisely, they linked
the rate at which accessible states disappear to the pres-
sure of the metastable liquid, and found that they both
to diverge at φRCP ≈ 0.64, in accordance with previous
numerical fits of the divergence of the pressure of the
liquid branch [43, 44]. In both approaches, φRCP is iden-
tified with the infinite pressure limit of a continuation of
the equilibrium liquid branch, in agreement with ideas of
Aste and Coniglio [45] and with recent work by Katzav
et al. [46].

Finally, recent work by Wilken et al. has proposed
that RCP could be found as a dynamical critical point in
an absorbing-state model, Biased Random Organization
(BRO) [26].

We propose to define φRCP as a special point in the en-
semble of jammed states, defined as follows, and sketched
in Fig. 2. In the Torquato-Stillinger picture, for each
density at which stable jammed states exist, one can rig-
orously define a conditional maximally random jammed
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state with respect to a given observable ψ. This is an
extension of the usual concept of MRJ, which defines
a single density, to a whole MRJ-line (solid red line in
Fig. 2), extending from the density of the loosest stable
packing (LSP), which is generally assumed to be part
of a small family of defective crystalline states [13, 47],
all the way to the densest packing, fcc. A particularly
simple choice of observable (sometimes used in the MRJ
picture [48, 49]) is the average number of contacts, or
kissing number, z. In addition to being convenient, this
choice is physically motivated by the fact that all the in-
terpretations of RCP given above agree on the fact that
RCP should be a point in the ensemble of jammed states
where rigidity vanishes or, equivalently [50], where the
packing is isostatic, z = 6 in 3d. One can then seek
a special density, that we shall henceforth call RCP, as
the densest isostatic jammed packing, i.e., the right-most
point on the MRJ line in Fig. 2.

Since the “minimally coordinated” jammed packings
for each density (i.e., on the MRJ-line) are in principle
those closest in structure to liquid states, we adopt the
viewpoint of Ref. [51] and model the kissing number by
well-known analytical approximations for the equation of
state of a liquid, thereby invoking an analogy between the
crowding of liquid and jammed states. Like in all simple
calculations, we make an assumption (here about crowd-
ing) that is wrong in detail, but we show that it captures
critical aspects of the physics thus leading to nontrivial
predictions that we validate by comparison with simula-
tions and experiments.

In the following, Sec. II, we back the picture presented
above in the case of monodisperse jammed packings, by
showing that the number of contacts, z, empirically ob-
served on the MRJ-line qualitatively agree with predic-
tions from the ansatz of Ref. [51]. Then, taking ad-
vantage of known extensions of liquid-state equations of
state to polydisperse systems, we extend the framework
of Ref. [51] to predict the value of φRCP as a function of
polydispersity in hard-sphere fluids in 3d. While it is well
known that polydisperse systems may pack to higher vol-
ume fractions than monodisperse systems (see example in
Fig. 3), deriving good approximations for the values for
φRCP as a function of the size polydispersity is not only
of theoretical interest, but also of practical importance
since these predictions can be used to guide experiments
[52].

In Sec. III A, we show that our approach is reason-
able for discrete distributions of particle sizes, using the
example of a bidisperse mixture. Since this system has
been studied extensively, we compare our predictions to
simulations of our own, as well as to data from a num-
ber of past computational [34, 53–55] and experimen-
tal [56] works. Then, in Sec. III B, we extend our ap-
proach to continuous polydispersities. We assume the
diameter of the spheres to follow three different size dis-
tributions, which have been widely employed to describe
polydisperse colloidal suspensions in numerical simula-
tions [30, 57–59]. We start by assuming the particle di-

FIG. 3: Random packing of polydisperse hard spheres.
Random packing of polydisperse hard spheres with diameters
drawn from the truncated power law considered in this paper,
(sσ ≈ 0.5, φ ≈ 0.719).

ameter to follow a log-normal distribution [60], for which
results from numerical simulations are available in the
literature [57]. We then consider the particle diameter
to follow a Gamma distribution, also known as Schulz
distribution in this context [61], and a truncated power-
law distribution recently introduced by Berthier and co-
workers [58, 59]. In all three cases, we show that φRCP

increases monotonically with the relative standard devi-
ation sσ of the distribution. We compare the theoretical
predictions both to data from the literature and to our
own simulations. Finally, by a perturbative expansion we
arrive at a closed form solution that captures a distribu-
tion independent regime for relative standard deviation
sσ < 0.5, and perform an analysis showing that the grad-
ual loss of agreement for sσ > 1 can be associated with
the growth of skewness in the distributions.

We end by drawing our conclusions in Sec IV.

II. THEORY

A. Monodisperse systems

A property of random jammed states is that they are
rigid, meaning that they exhibit a positive shear modu-
lus, G. For a disordered d-dimensional (with d = 2, 3)
system of compressible spheres, the shear modulus can
be shown to grow with coordination number, z, as G ∼
z − 2d [50]. Thus, for this class of systems, mechanical
stability arises at a critical coordination number zc ≡ 2d,
in agreement with Maxwell’s isostaticity criterion. The
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system is fluid for z < zc, and jammed for z ≥ zc.
The value z = 6 for hard spheres at RCP was indepen-

dently reported in various contexts. It was advanced as a
result of analytical predictions stemming from the replica
method [25]. Numerical simulations of fast compressions
of finite-pressure glassy states confirmed this result over
the whole range of replica-symmetry-breaking jammed
states, that lie on the so-called “J-line” [35, 36]. Isostatic-
ity was also empirically observed in simulations aiming
to reach RCP while resorting to various dynamical pro-
cesses unrelated to glassy physics [26, 62]. In this context,
isostaticity has been observed in correspondence with the
hyperuniformity of the disordered sphere packings, mean-
ing that long-range density fluctuations become anoma-
lously suppressed or, equivalently, that the structure fac-
tor vanishes at small wavevectors as S(|k| → 0) = |k|α,
with α ≈ 1/4 [26, 63]. Since hyperuniformity has been
proposed as a prerequisite of RCP [62], the observation
that hyperuniformity and z = 6 were observed at the
same time lends credence to the validity of the isostatic-
ity criterion.

Thus, using isostaticity, zc ≡ 6, as a necessary (but
not sufficient) criterion for RCP, we seek an ansatz for
z(φ) along the MRJ line of the jammed domain. To this
end, we introduce the radial distribution function (RDF),
g(r), representing the probability of finding (the center
of) a particle in a shell of thickness dr at a radial distance
r from (the center of) a test particle placed at the origin
of the reference frame [9]. By definition of the RDF,
the average number of spheres lying in the range r +
dr is given by dz = 4πρg(r)r2dr. By introducing the
quantity σ+ ≡ σ + ε, where ε → 0+ is an arbitrarily
small number, the average number of particles in contact
with (just touching) the test particle is given by

z = 4πρ

∫ σ+

0

g(r)r2dr. (1)

The key point of the method introduced in Ref. [51] is to
treat f(r) = 4πρg(r)r2/(N − 1) as a partially continuous
probability distribution function (PDF).

In probability theory, besides fully continuous and fully
discrete PDFs, one can define partially continuous dis-
tributions, also known as mixed distributions [64]. As an
example of a fully discrete distribution, the PDF fd(x)
of a distribution consisting of a set of possible outcomes
xi = {x1, · · · , xn} with corresponding probabilities pi =
{p1, · · · , pn} , can be written as fd(x) =

∑n
i=1 piδ(x−xi).

A partially continuous (PC) distribution can be written
as [64]: fPC(x) = c(x) +

∑n
i=1 piδ(x − xi) where c(x) is

the continuous part and the second term is the discrete
part. Upon normalizing to 1 over the relevant domain,∫∞

0
fPC(x)dx = 1, fPC(x) becomes a valid PDF [65].

In short, we write the RDF as

g(r) = gc(r) + gBC(r), (2)

where gBC(r) is the continuous part describing the prob-
ability of finding particles in the region of space beyond

FIG. 4: Partially continuous RDF. Radial distribution
function (RDF) g(r) of a system of hard spheres with di-
ameter σ in d = 3 dimensions, at the random close packing
density φRCP. The orange curve, representing data obtained
in the simulations introduced hereafter, is the continuous part
gBC(r) of the RDF. We here indicate the exponent from Ref.
[66] (note that a slightly different exponent 0.4 was discovered
in Ref. [67] and appears in agreement with replica theory [68],
distinguishing between these values is beyond the scope of this
paper). The thick vertical arrow represents the Dirac delta in
the discrete part gc(r) of the RDF (see Eq. (3)).

contact (BC) r > σ+, while gc(r) is the discrete part
describing the probability of having nearest neighbors in
direct contact with the test particle. We then write gc(r)
as

gc(r) = g0g(σ;φ)δ(r − σ), (3)

where g0 is a normalization length, while g(σ;φ) is the so-
called (dimensionless) contact value of the RDF at pack-
ing fraction φ, and represents the probability of finding
particles at exactly r = σ. The total g(r) given by Eq.
(2) obeys the usual condition

∫∞
0

4πρg(r)r2dr = N − 1,
imposed by normalization. This separation of the g(r) of
jammed states of hard spheres into a continuous and a
discrete part, illustrated in Fig. 4, is consistent with the
previous works [69–71].

Upon insertion of Eq. (3) into Eq. (2) and the result-
ing expression into Eq. (1), the coordination number z
arising from the particles in permanent contact with the
test particle is given by

z = 24φ
g0

σ
g(σ;φ). (4)

If g0/σ and g(σ;φ) were known on the branch of max-
imally random jammed states, the RCP density φRCP

could be found by solving Eq. (4) while imposing the
critical condition for the onset of mechanical stability
z = zc ≡ 6. However, jammed states are notoriously
hard to model due to their non-equilibrium nature. In
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order to use Eq. (4) to predict RCP, in the absence of a
better theory, we introduce an analogy with equilibrium,
that has also the benefit of yielding analytically tractable
equations.

In equilibrium hard spheres, due to the virial theorem,
the value geq(σ;φ) of the RDF at contact provides the
pressure p of the uniform fluid as a function of its packing
fraction φ ≡ 4

3π(σ/2)3ρ, through the relation [9, 72, 73]

Z(φ) = 1 + 4φgeq(σ;φ), (5)

where Z ≡ p/ρkBT is the so-called compressibility factor,
ρ is the number density, T and kB are the temperature
and the Boltzmann constant, respectively. This expres-
sion (that is exact for equilibrium liquids) can of course
not be used directly for jammed states. In particular, geq

is a regular function of r for all r > σ, so that geq(σ;φ)
is fundamentally different from g(σ;φ), the amplitude of
the singular part of the jammed RDF at contact. This
difference is consistent with the fact that the pressure has
to diverge in collectively jammed states [24, 37–39, 45].

By analogy with equilibrium states, to qualitatively de-
scribe local crowding in hyperstatic, maximally random
jammed states, we propose to write

g(σ;φ) ∝ geq(σ;φ) =
Z(φ)− 1

4φ
, (6)

with Z an approximate analytical equation of state of
equilibrium hard spheres. We list the expressions for Z
used in this paper in App. A. Injecting Eq. (6) into Eq. (4)
yields

z = 6φC0 (Z(φ)− 1) , (7)

where C0 ≡ g0/σ is a constant number to be determined.
Intuitively, this ansatz assumes that the most random
branch of jammed states undergoes crowding in a way
that would be qualitatively similar to an equilibrium liq-
uid.

The last ingredient needed to solve Eq. (7) and thus
to find an expression for φRCP, is the value of the con-
stant factor C0. To fix its value, we insert in Eq. (7)
a known (φref , zref) combination, typically from a per-
fect crystalline packing, as well as a choice of equation of
state. This procedure can be seen as an effective “bound-
ary condition” in our problem. In Ref. [51], the author
chose fcc ordering, i.e. a coordination number zfcc = 12
and a packing fraction φCP

fcc = π/3
√

2 ≈ 0.74 [13]. This
choice is justified by the picture that maximally random
jammed states have to connect RCP to the fcc point,
see Fig. 2. Another suggestion [74] has been to use per-
fect bcc ordering, identified by the coordination number
zbcc = 8 and packing fraction φCP

bcc = π
√

3/8 ≈ 0.68.
In order to check how reasonable our ansatz is, we gen-

erate 105 jammed packings of N = 108 particles using
the Torquato-Jiao algorithm [48], which was designed to
generate strictly jammed packings that are as random as
possible (See App. D for details on the algorithm). The
reason for using a small number of particles and a large

FIG. 5: Kissing number of maximally random jams.
Scatter plot of the kissing number against the final packing
fraction for 105 compressions of N = 108 particles, using a
Torquato-Jiao algorithm. Each open gray square represents
one compression. Black disks are binned averages, and the
gray area represent the confidence interval around it. Colored
disks represent three known special points: fcc (blue), bcc
(green), and the Parisi-Zamponi [29] estimate of GCP in d =
3 (red). Colored lines represent our ansatz, when using fcc
(blue) or bcc (green) boundary conditions to set C0. Solid
lines were obtained, from left to right, using the PYv, CS,
and PYc equations of state. The dashed lined was obtained
using the Young-Alder equation of state.

number of compressions is that the distribution of final
jammed densities of such compression algorithms is typi-
cally heavily peaked around φ = 0.64, so that measuring
configurations in the regime leading up to fcc requires
a lot of compressions. At the end of each compression,
we measure the average kissing number in the system, as
well as the final packing fraction, and we report these val-
ues in Fig. 5. The lowest jammed densities are obtained
at roughly φ ≈ 0.6, as reported in previous works [48],
while the densest packings are found at the fcc density.
As described in similar simulations of hard disks [49], a
roughly flat region indicates that only isostatic packings
are found at the lowest observed jammed densities. Be-
tween these two regimes, the kissing number picks up,
joining the z = 6 region and the z = 12 point.

To give a better idea of the statistics of points within
the scatter plot in Fig. 5, we show binned averages as
a black line, and binned standard deviations as a grey
area. While only rare fluctuations around isostaticity
are observed up to φ ≈ 0.67, the average kissing number
picks up after that value, with a rather large spread un-
til fcc, that could be attributed to finite-size effects. On
this plot, we also represent three special points as col-
ored disks: fcc, in blue at (π/

√
18, 12), bcc, in green at
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(π
√

3/8, 8), and the 3d value of the Glass Close-Packing
(GCP) predicted by mean-field theory [29], at (0.6836, 6).
Note that the GCP point roughly matches with the point
where the lower bound of the scatter plot picks up from
z = 6. Moreover, the bcc point seems to lie on the upper
limiting curve around the observed points. Finally, we
plot predictions from our ansatz as solid lines, in blue
when fcc is used to determine C0, and in green when bcc
is used instead. The solid lines are obtained using (from
left to right on the plot) the PYv, CS, and PYc equations
of state, while the dashed line was obtained using the YA
expression (see App. A for their expressions).

These different predictions are spread in a rather broad
region, but they follow the right qualitative trend com-
pared to data – which was not guaranteed, since the an-
alytical equations of state used to draw them are not
supposed to describe this regime. For each boundary
condition and equation of state, a value of C0 as well as
a closed-form expression for φRCP can be obtained. The
obtained values are summarised in Table 1.

Note that it is not clear at this stage whether any of
these approximations is objectively better than the oth-
ers, since there is no ground truth for the value of RCP,
nor for the branch of interest of z(φ), which in the nu-
merical measurements of Fig. 5 is probably marred by
finite-size effects. More specifically, all tested equations
of state yield values in a reasonable interval compared to
the literature [103], suggesting that models of z(φ) that
travel close to fcc and bcc would also yield reasonable
values. For instance, as far as the value of the monodis-
perse RCP density alone is concerned, one could also use
a completely unphysical fit for z(φ). An extreme exam-
ple of this would be, say, a linear approximation going
through both fcc and bcc: this completely unjustified ap-
proximation would lead to yet another reasonable value
in closed form, φRCP = π(9

√
3− 4

√
2)/48 ≈ 0.65.

However, we shall show in the next section that there
is a major advantage in using an actual equilibrium equa-

fcc PYv CS PYc YA

102 · C0 3.31894 1.87416 1.53909 N/A

φRCP 0.658963 0.677376 0.68086 N/A

bcc PYv CS PYc YA

102 · C0 3.74068 2.42946 2.06716 3.73673

φRCP 0.643320 0.650594 0.652187 0.660868

TABLE 1: Normalization factor C0 (see Eq. (7)) and random
close packing density φRCP of a monodisperse fluid of hard
spheres with diameter σ, in d = 3 dimensions, obtained for
different approximations (Percus-Yevick with either the virial
(PYv) or compressibility (PYc) equation of state, Carnahan-
Starling (CS), and Young-Alder (YA)) for the contact value
g(σ) of the radial distribution function, and different config-
urations (fcc or bcc) as boundary conditions. Note that the
YA equation diverges at fcc, so that it is not usable with fcc
as a reference.

tion of state as a model for crowding. Namely, since equa-
tions of states of monodisperse hard spheres have been
extended to polydisperse hard spheres, there is a natural
extension of this computation to polydisperse systems,
which we shall show correctly captures the evolution of
φRCP with increasing polydispersity.

B. Polydisperse systems

In order to extend this theoretical framework to poly-
disperse systems, we consider an m-component mixture
of additive hard spheres in d = 3 dimensions. We call
σij = 1

2 (σi + σj) the contact distance between a sphere
of species i and a sphere of species j, where σii ≡ σi is the
diameter of a sphere of species i. We indicate the number
fraction of species i with xi = ρi/ρ, where ρ is the number
density of the mixture while ρi is the number density of
spheres of species i. Finally, we define 〈σn〉 ≡

∑m
i=1 xiσ

n
i

such that the packing fraction of the system is given by
φ = πρ

〈
σ3
〉
/6.

To predict the RCP density, φRCP, of a mixture as we
did above, Eq. (4) needs to be suitably modified. The
mean number of contacts, zij , between particles of species
i and those of species j is linked to the partial RDF, gij ,
restricted to ij pairs, through

zij = 4πρ

σ+
ij∫

0

drr2gij(r). (8)

Like in the monodisperse case, the only part of gij that
participates in the kissing number is the contact value
gij,c, so that

zij = 24φ
σ2
ij

〈σ3〉
gij,c(σij ;φ). (9)

We then write the value of the species-averaged kissing
number, 〈z〉, as

〈z〉 = 24φ

m∑
i,j

xixj
σ2
ij

〈σ3〉
gij,c(σij ;φ). (10)

Finally, one needs to assume an expression for gij,c. The
latter should be i ↔ j symmetric, and converge to its
monodisperse expression, g0g(σ;φ), in the limit of a sin-
gle species, which is attained either by enforcing that
m = 1, or by imposing that all diameters are equal,
σi = 〈σ〉. A simple functional form that verifies all of
the above is

gij,c(σij ;φ) ≡ σij
〈σ〉

g0(〈σ〉)gij(σij ;φ), (11)

which yields the expression

〈z〉 = 24φ
g0

〈σ〉

m∑
i,j

xixj
σ3
ij

〈σ3〉
gij(σij ;φ). (12)
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This last equation is consistent with known expressions
of the compressibility factor Z(m) (and therefore the
species-averaged pair correlation function at contact ap-

pearing in the virial theorem, g
(m)
eq ) of equilibrium poly-

disperse hard spheres [8, 75–77]

g(m)
eq (σ;φ) ≡ Z(m)(φ)− 1

4φ
=

m∑
i=1

m∑
j=1

xixj
σ3
ij

〈σ3〉
gij(σij ;φ).

(13)
All in all, the analogy between least-coordinated jammed
packings and equilibrium fluids invoked in the monodis-
perse case naturally generalizes to the polydisperse case
as

〈z〉 = 6C0(Z(m)(φ)− 1). (14)

Furthermore, the mechanical stability criterion still re-
quires isostaticity at the level of the average number of
contacts, 〈z〉 = zc ≡ 6, so that the only change between
monodisperse and polydisperse packings in our approach
is the equilibrium equation of state used in the analogy.

This result can be further generalized to the case of a
continuously polydisperse system of hard spheres whose
diameters follow a continuous distribution f(σ), by con-
sidering the limit m→∞. In this case, Eq. (13) becomes
[78]

g(m→∞)
eq (σ;φ) ≡ Z(m→∞)(φ)− 1

4φ
=

1

8 〈σ3〉

∫ ∞
0

dσ

∫ ∞
0

dσ′f(σ)f(σ′)(σ + σ′)3g(σ, σ′;φ),

(15)

where now 〈σn〉 =
∫∞

0
dσf(σ)σn. Note that Eq. (13) for

the m-component mixture can be recovered by taking
f(σ) =

∑m
i=1 xiδ(σi − σ).

The protocol used in this paper to compute the RCP
density, φRCP, of a polydisperse hard-sphere system then
goes as follows. We use an approximate expression for
the EOS, Z(m→∞)(φ), of the system under study, which
yields an estimate of g(m→∞)(φ) through Eq. (15). By
analogy with the monodisperse case, we then find φRCP

by substituting Z(m→∞)(φ) into Eq. (14) and imposing
the critical condition for jamming, 〈z〉 = zc ≡ 6. In other
words, we solve

1 = C0

(
Z(m→∞)(φRCP)− 1

)
, (16)

where, since Eq. (15) correctly reduces to Eq. (5) in the
limit of a one-component system, we use the values in
the upper rows of Table 1 for the normalization factor
C0. The equations of states used in the polydisperse
case are the Boubĺık-Mansoori-Carnahan-Starling- Le-
land (BMCSL), extended Carnahan-Starling (eCS), and
extended Percus-Yevick (ePY) equations. ZBMCSL(φ),
ZeCS(φ) and ZePY(φ), are defined in App. A.

C. Strategy recap

The strategy we propose to predict φRCP in a polydis-
perse hard-sphere system can be summarised as follows.
First, given a size distribution f(σ), we derive an approx-
imate analytical EOS Z(m→∞)(φ) from either Eq. (A4)
or (A5). From this EOS, we deduce an estimate of the
averaged (over the size distribution) contact value of the
radial distribution function for the polydisperse system
through Eq. (15),

g(m→∞)
eq (σ, φ) ≡ Z(m→∞)(φ)− 1

4φ
.

Furthermore, we compute the value of C0 using the
monodisperse limit of the EOS, Z(φ), and some known
combination of φref and zref for the monodisperse fluid,
by solving

C0 =
zref

6(Z(φref)− 1)
.

Finally, we insert Z(m→∞) and C0 into Eq. (14), and
impose 〈z〉 = zc ≡ 6. In the end, an estimate of φRCP is
obtained by solving

1 = C0

(
Z(m→∞)(φRCP)− 1

)
. (17)

Note that, since the compressibility factor of the liquid
branch is typically a strictly growing function of the pack-
ing fraction, Z(m→∞) can be inverted and this equation
admits a single solution.

III. RESULTS

In this section, we present predictions for φRCP ob-
tained using the framework of Sec. II C, first in the
case of discrete polydispersity, Sec. III A, then in the
case of a continuous distribution of particle diameters,
Sec. III B. Our predicted values for each size distribu-
tion are compared to numerical data, some adapted from
previous numerical work, and some obtained ourselves
using the same method as in Ref. [79], namely a mod-
ified Lubachevsky-Stillinger [80, 81] compression algo-
rithm that enables to reach large packing fractions in
random packings (see Appendix D for details of the sim-
ulations). Where available we also compare to experi-
mental data [56].

A. Discrete polydispersity (bidispersity)

We start by assuming the particle diameter σ to follow
a discrete probability distribution. More specifically, in
order to compare our results with those present in the
literature [34, 53–56], we consider the particle diameter
to follow a bidisperse distribution. The system then con-
tains N1 spheres with diameter σ1, and N2 = N − N1
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FIG. 6: Polydispersity-induced shift of RCP of a bi-
nary mixture of hard spheres. Shifted random close pack-
ing density ∆φRCP ≡ φRCP − φmono

RCP against the volume frac-
tion of spheres with diameter σ2, in a binary mixture with
fixed diameter ratio σ1/σ2 = 1.2 (yellow), σ1/σ2 = 1.4 (red),
σ1/σ2 = 1.5 (blue), and σ1/σ2 = 2 (black), respectively. In all
cases full, dashed and dot-dashed black lines represent results
obtained when using the ZePY(φ), ZeCS(φ) and ZBMCSL(φ)
approximations for the equation of state of the system, re-
spectively, and the bcc configuration as a boundary condi-
tion to determine C0. Open points represent simulations from
Ref. [34] while filled points are simulations of our own. Black
star-shaped points are results recently obtained in Ref. [82]
for a binary granular system.

spheres with diameters σ2. Introducing the number frac-
tion of each species, x1,2 ≡ N1,2/N , the corresponding
size distribution can be written as

f(σ) = x1δ(σ1 − σ) + x2δ(σ2 − σ). (18)

The n-th moment 〈σ〉 ≡
∫∞
−∞ dσf(σ)σn of the probability

distribution (18) is given by

〈σn〉 = x1σ
n
1 + x2σ

n
2 . (19)

Insertion of Eq. (19) in the ZBMCSL(φ), ZeCS(φ) and
ZePY(φ) introduced in the previous section, allows us to
find three distinct approximate analytical expressions for
the EOS Z(m=2)(φ) of this bidisperse system. The effect
of the discrete polydispersity on the system can be fully
described by the diameter ratio, σ1/σ2, and either one
of the number fractions x1,2. It is however common in
the literature to use the volume fractions of the species,
η2 ≡ x2/

(
x2+x1(σ1/σ2)3

)
and η1 = 1−η2, instead of the

number fraction. For the rest of this section, we adopt
the same convention: we denote the species with larger
diameter with index 1, so that σ1/σ2 > 1, and plot the
RCP density as a function of the volume fraction η2 of
the species with smaller diameter.

First, we focus on the shift ∆φRCP ≡ φRCP−φmono
RCP in-

duced by the discrete polydispersity on the RCP density

FIG. 7: RCP of a binary mixture of hard spheres. Ran-
dom close packing density φRCP against the volume fraction
of spheres with diameter σ2, in a binary mixture with fixed
diameter ratio σ1/σ2 = 2 (top) and σ1/σ2 = 5 (bottom). Full,
dashed and dot-dashed black lines represent results obtained
when using the ZePY(φ), ZeCS(φ) and ZBMCSL(φ) approxi-
mations for the equation of state of the system, respectively,
and the bcc configuration as a boundary condition to deter-
mine C0. Either in (top) and in (bottom) red points are sim-
ulations of our own, while yellow and white points are data
adapted from Refs. [53] and [54], respectively. Green points
are adapted form Ref. [56] in (top) while are adapted from
Ref. [55] in (bottom). Blue points in (top) are adapted from
Ref. [34].

of the pure sphere fluid, φmono
RCP . In Fig. 6, we plot ∆φRCP

as a function of the volume fraction η2 of small spheres,
for several values of σ1/σ2 ∈ [1, 2]. We use solid, dashed
and dot-dashed lines to represent results obtained when
using the ZePY(φ), ZeCS(φ) and ZBMCSL(φ) approxima-
tions for the EOS Z(m=2)(φ) of the system, respectively,
with the bcc configuration used as a boundary condi-
tion to determine C0. Open points represent simulations
from Ref. [34] while filled points are for our own sim-
ulations. For all the considered size ratios, our theory
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predicts the typical “triangular” shape of the obtained
density as a function of η2. Furthermore, a good match
can be observed between the numerical values and our
predictions, with a disagreement of the same order of
magnitude as the fluctuations between numerical sets of
data. These fluctuations, as well as the quantitative dis-
agreement with our prediction, might have to do with
the very small shifts in the RCP density which are hard
to measure accurately using finite numbers of particles.
In fact, at size ratios very close to one, the differences
between reported values for monodisperse RCP are typ-
ically of the same order of magnitude as the shift due to
polydispersity, which is why we here choose to plot the
shift with respect to the monodisperse value. For the case
σ1/σ2 = 2, we show that our approach correctly captures
the behavior of a binary granular system recently stud-
ied experimentally in Ref. [82] and represented by black
star-shaped points in Fig. 6.

In Fig. 7 we now plot the absolute (viz., not relative)
value of φRCP as a function of η2 in the cases σ1/σ2 = 2
(top) and σ1/σ2 = 5 (bottom). For σ1/σ2 = 2, we show
good agreement with simulations over the whole range of
volume fractions. For σ1/σ2 = 5, this time, we report
agreement for η2 > 0.2, but a rather strong deviation
between our prediction and data for η2 < 0.2, where our
prediction overestimates the packing fraction. The cause
of this disagreement is unclear, but it is worth mentioning
that it is notoriously difficult to produce stable random
packings in that region, as the system tends to form a
jammed configuration of the large particles within which
smaller particles can roam freely [34]. A different choice
of the EOS could also improve the agreement at large
σ1/σ2.

Note that an EOS different from those used in this
paper was recently considered as part of an analogous
calculation in Ref. [83].

B. Continuous polydispersity

Henceforth, we assume the particle diameter σ to fol-
low a continuous probability distribution f(σ). We con-
sider three different functional forms for f(σ), which have
been widely employed to describe polydispersity in col-
loidal systems [30, 57–59].

We start by assuming the particle diameter σ to follow
the log-normal distribution [60], for which results from
numerical simulations are available in the literature [30,
57]. We use these numerical results to test our theoretical
findings. The log-normal distribution flog(σ) is defined
as [60]

flog(σ) =
1

σ
√

2πα2
e−(lnσ−µ)2/2α2

, (20)

where α and µ are arbitrary parameters. The n-th mo-
ment 〈σn〉 ≡

∫∞
−∞ dσflog(σ)σn of flog(σ) is given by

〈σn〉 = enµ+n2α2/2, (21)

such that the average value is 〈σ〉 = eµ+α2/2 and the

variance is var[σ] ≡
〈
σ2
〉
− 〈σ〉2 = eα

2−1e2µ+α2

. The
relative standard deviation can be written as

slog
σ ≡

( 〈
σ2
〉
− 〈σ〉2

)1/2
〈σ〉

= (eα
2

− 1)1/2. (22)

Insertion of Eq. (21) in the ZBMCSL(φ), ZeCS(φ) and
ZePY(φ) approximations introduced in the previous sec-
tion, yields three distinct approximate analytical expres-
sions for the EOS Z(m→∞)(φ) of our polydisperse system.
It can be easily verified the Z(m→∞)(φ) thus obtained
does not depend on the parameter µ but only on the
parameter α. As it is clear from Eq. (22), the relative
standard deviation slog

σ of the flog(σ) distribution also
depends exclusively on α. It follows that the effect of the
polydispersity on the system can be fully described by
either α or slog

σ , for any arbitrary value of µ.
In Fig. 8, we show the predicted RCP density, φRCP,

against the reduced standard deviation slog
σ . We use yel-

low, red and blue lines to indicate the φRCP obtained
using the ZBMCSL(φ), ZeCS(φ) and ZePY(φ) approxima-
tions for the EOS Z(m→∞)(φ) of the system, respectively.
Moreover, we use solid and dashed lines to represent re-
sults obtained when the bcc and fcc configurations, re-
spectively, are used as a boundary condition to determine
C0 ≡ g0/σ. We predict that φRCP increases monotoni-
cally with slog

σ , until a plateau is reached. Taking either
of the proposed EOS, Eqs. (A4) or (A5), in the limit of
infinite skewness and variance predicts a limiting value of
packing fraction, φlog

max = 1/(1 +C0) ≈ 0.97−0.98, which
reassuringly lies below the physical limit of φ = 1. The
increase of φRCP with the size polydispersity is in agree-
ment with the fact that, when increasing polydispersity,
smaller spheres typically fill the voids created between
neighboring larger spheres, so that polydisperse hard-
sphere fluids may reach larger packing fractions than
monodisperse fluids [84].

These predictions are compared to both data from sim-
ulations adapted from Ref. [57] (white squares), and to
our own simulations (black squares). First, we note that
a monotonic increase of φRCP as a function of slog

σ is
also observed in simulations. Furthermore, in the region
slog
σ < 1, we find good agreement between our predictions

and results from both sets of simulations, as emphasized
in the lower panel of Fig. 8. Either choice of boundary
condition (bcc or fcc) yield the right form as a function
of ∆φRCP. The better agreement of the bcc curves can
be attributed to the fact that the typical states found
by the numerical compression protocols always lie below
φRCP as defined in Fig. 2, which is better approximated
by the fcc curve, as shown in Fig. 5.

At larger polydispersities, there is growing disagree-
ment between our predictions and numerical data. We
note that in the large polydispersity regime, it is very
challenging to write a good approximate EOS, so that
previous work typically designed piece-wise EOS to ac-
commodate for large polydispersities [85], and other
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FIG. 8: RCP of log-normal-distributed hard spheres.
Random close packing density φRCP against the reduced stan-
dard deviation slogσ . Yellow, red and blue lines indicate results
obtained when using the ZBMCSL(φ), ZeCS(φ) and ZePY(φ)
approximations for the equation of state of the system, re-
spectively. Solid and dashed lines represent results obtained
when using the bcc and fcc configurations, respectively, as a
boundary condition to determine C0. White squares are data
from Ref. [57], while black squares are results from our own
simulations. Top: Full range up to a final plateau. Bottom:
Zoom on the small polydispersity region.

choices of EOS than ours might work better at large slog
σ .

Furthermore, we note that it becomes increasingly chal-
lenging to obtain dense random jammed states as the
polydispersity increases. This is illustrated, for instance,
in Ref. [79], where slower and slower compression is re-
quired to approach the densest random packing as sσ
increases. Therefore, simulation results with finite com-
pression rates always underestimate the actual maximal
density, with an error that should become greater as the

degree of polydispersity increases. In summary, both the
EOS and the numerical results become progressively less
reliable as sσ grows larger.

Having checked that our predictions hold for the log-
normal distribution, we also consider in App. B two other
common choices for f(σ), namely a Gamma distribution
and a truncated power-law distribution. We again find
good agreement between the predicted and measured val-
ues for sσ < 1.

C. Universal behaviour at small polydispersity

It is worth noting that numerical data for all three
continuous size distributions display remarkably similar
shifts, ∆φRCP ≡ φRCP − φmono

RCP , in the limit of small
polydispersity, sσ < 0.5, as illustrated in Fig. 9. In
this figure, we also show data for a binary mixture,
which forms a loop around the same universal trend.
This similarity suggests that the shift of RCP only de-
pends on the second moment of the size distribution
in the regime of small polydispersity, an effect which
can be captured analytically from our approach. Con-
sider the approximate EOS used to construct the eCS
and ePY expressions, Eq. (A5). In the limit of small

polydispersity, 1 � var[σ]/ 〈σ〉2 � skew[σ]/ 〈σ〉3, with

skew[σ] ≡
〈

(σ − 〈σ〉)3
〉

the skewness of the distribution.

We can approximate the EOS by taking its zero-skewness
limit, and rewrite it as a function of sσ

Z(m→∞)(φ, sσ) ≈ Z(φ)
(1 + s2

σ)(2 + 5s2
σ + s4

σ)

2(1 + 3s2
σ)2

+ s2
σ

5 + 12s2
σ − s4

σ + 3φ(1− s4
σ)

2(1− φ)(1 + 3s2
σ)2

. (23)

This expression can be inserted into Eq. (17),

1 = C0

(
Z(m→∞)(φRCP, sσ)− 1

)
. (24)

At small polydispersity, the packing fraction at RCP can
be written as φRCP = φmono

RCP +∆φRCP, with ∆φRCP � 1.
Taylor-expanding Eq. (24) to leading order in ∆φRCP

finally yields a closed-form small-polydispersity approxi-
mation

∆φRCP ≈
a1s

2
σ + a2s

4
σ + a3s

6
σ

1 + b1s2
σ + b2s4

σ + b3s6
σ

, (25)

with coefficients that only depend on the monodisperse
value of the RCP density, C0 and the derivative of Z at
that density. The coefficients of this rational function are
given in App. C.

This approximation captures the universal parabolic
dependence of the RCP density observed at small poly-
dispersities in simulation data, as shown in Fig. 9. In
practice, this simplified expression could be useful in ex-
perimental contexts, in which the standard deviation of
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FIG. 9: Universal behaviour at small polydispersity.
With points we plot the numerically obtained shift ∆φRCP ≡
φRCP − φmono

RCP at small polydispersity, for all four size dis-
tributions considered in this paper. The dashed line is the
closed-form expression for the shift in φRCP for small poly-
dispersity, Eq. (25), for the PY EOS and the bcc boundary
condition.

diameters is more easily accessible than the higher mo-
ments of the size distribution.

Note that the closed-form expression, as well as the
best agreement with data, is found in the limit of small
skewness compared to the variance. In Fig. 10, we
check the validity of this statement for all tested dis-
tributions, showing that our predictions are best when
skew[σ]2/var[σ]3 is small. Interestingly, this corresponds
to intermediate number fractions of either species, or
large variance, in the bidisperse case, but to small vari-
ance for the continuous distributions. These results high-
light the importance of the choice of equations of state,
which for polydisperse systems are generally designed for
mixtures with small higher-order moments, as they are
written as moment expansions [85]. Thus, it is possible
that more faithful equations of state would lead to better
results in the limit of large polydispersities.

IV. CONCLUSIONS AND OUTLOOK

In this paper we investigated the effect of polydisper-
sity on the random close packing (RCP) density φRCP

of a hard-sphere fluid in d = 3 dimensions. The main
insight of our approach is that we can arrive at a reason-
able model of crowding for maximally random jammed
states on the basis of approximate liquid theories. This
analogy is reminiscent of analogies between quenched
disorder in type-II superconductors and thermal liquid
structures [86, 87], where a thermal average of the liq-
uid theory matched the quenched average over disorder
sufficiently well to get quantitative estimates of physical

FIG. 10: Growth of the error with the skewness. Log-
linear plot of the numerically obtained φRCP for a bidisperse
mixture (top) and all three considered continuous distribu-
tions (bottom) considered in this paper, against the dimen-
sionless ratio of skewness to variance. Lines represent pre-
dictions from our theory for various equations of state (solid
lines: ePY, dotted lines: eCS, dashed lines: BMCSL, all with
a bcc boundary condition). In the bottom panel, white points
are adapted from Ref. [57].

quantities.
This model of crowding allows us to estimate the ef-

fect of volume fraction on the contact value of the radial
distribution function and, therefore, the kissing number,
z. By combining this model for z(φ) with the isostaticity
condition, z = 6, required for the onset of shear rigidity
at jamming [50], we derive a value for the RCP volume
fraction φRCP for monodisperse hard-spheres.

We show that a generalization of this approach to poly-
disperse systems amounts to a straightforward substitu-
tion of the compressibility for a monodisperse hard sphere
system, Z(φ), with its generalization to an m-component
system, Z(m)(φ), obtained from the generalization of an
approximate equation of state to a mixture with a given
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choice of particle size distribution (either discrete or con-
tinuous).

First, we consider a bidisperse distribution of parti-
cle sizes, and compare our predictions to data from a
large selection of past works [34, 53–56, 82], as well as
simulations of our own. For a wide range of size ratios
and molar fractions, we observe good agreement between
our theoretical predictions and the data. Then, we con-
sider the particle diameter to follow one of three different
types of continuous distribution widely used to approx-
imate polydispersity in colloidal systems. In all cases,
we find φRCP to increase monotonically with the relative
standard deviation of the distribution, sσ. We show that
these predicted values are in good agreement with nu-
merical results obtained from compression algorithms for
polydispersities going up to sσ = 0.5 (viz., 50% standard
deviation over mean ratio). Moreover, we show that in
the limit of small polydispersity, a closed-form expression
for the RCP density that only depends on the reduced
variance of the size distribution can be written, and ac-
counts for universal behaviour observed for all tested size
distributions. We finally argue that the predictions be-
come less reliable with increasing skewness over variance
ratio, which is typically assumed to be small by the equa-
tions of states used in this paper. This raises the question
of whether better equations of state for polydisperse sys-
tems could lead to better estimates.

More generally, this work raises an interesting numeri-
cal question worth investigating in future work: the pre-
cise determination of the location of the MRJ-line all
the way to fcc, and the nature of states along it. While
states are routinely sampled either exactly at fcc, or on
the isostatic line z = 6 across densities [35, 49], it is ex-
tremely unlikely for usual compression schemes to end up
anywhere between these two regimes, on the hyperstatic
part of the MRJ-line. One would therefore need to devise
an algorithm to impose either minimal kissing numbers
at a fixed density, or maximal density at a fixed kissing
number. Such work, while challenging, would shed light
on the nature of the densest isostatic jammed packing, in
particular on its fundamental ties with glassiness [29, 79]
and critical points of absorbing-state models [26, 63].

Finally, the introduced theoretical scheme could be
used to investigate the additional jamming line recently
found for binary mixtures of hard spheres in Refs.
[88, 89]. Furthermore, using known equations of states,
it could be applied not only to arbitrary polydispersity
of hard spheres, but also to other particle shapes, which
could serve as a simple tool to understand the jamming
transition of general hard objects.
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Appendix A: Equations of state

We here list the equations of state used in the main text
within our analogy between jammed states and equilib-
rium configurations of hard spheres.

1. Monodisperse equations of state

For a monodisperse hard-sphere system in three dimen-
sions, from the analytical solution of the Percus-Yevick
(PY) equation for the direct correlation function, two
analytical EOS can be obtained [9]. By injecting the
PY solution into the compressibility equation, the com-
pressibility EOS, ZcPY(φ), is derived, while by injecting
it into the virial expansion the virial EOS, ZvPY(φ), is
obtained. Thiele [90] and Wertheim [91] independently
found the compressibility and the virial equations of state
to be given by ZcPY(φ) = (1 + φ + φ2)/(1 − φ)3 and
ZvPY(φ) = (1 + 2φ + 3φ2)/(1 − φ)2, respectively. Sub-
sequently, Carnahan and Starling [92] showed that a
more accurate EOS for hard spheres is given by a lin-
ear combination of ZvPY(φ) and ZcPY(φ), and introduced
the so-called Carnahan-Starling (CS) EOS, ZCS(φ) ≡
2
3Z

c
PY(φ) + 1

3Z
v
PY(φ) = (1 + φ+ φ2 − φ3)/(1− φ)3. Upon

insertion of the ZvPY(φ) EOS into Eq. (5), one obtains
[93]

gPY(σ;φ) =
1 + φ/2

(1− φ)2
, (A1)

while insertion of the ZCS(φ) EOS into Eq. (5), leads to

gCS(σ;φ) =
1− φ/2
(1− φ)3

. (A2)

Likewise, phenomenological equations of state with nu-
merical fitting factors have been proposed to match
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numerical data on the equilibrium fcc branch of hard
spheres, that diverges at fcc. For instance the Young
and Alder (YA) equation of state reads [8, 94],

ZY A(α) =
3

α
+ 2.81 + 0.47α− 1.36α2 + 6.41α3, (A3)

with α = (φfcc − φ)/φ.

2. Polydisperse equations of state

In this paper, we consider three different equations of
state for mixtures of hard spheres at equilibrium. The
first one is the Boubĺık-Mansoori-Carnahan-Starling-
Leland (BMCSL) EOS, which reads [76, 95]

ZBMCSL(φ) =
1

1− φ
+

3φ

(1− φ)2

〈σ〉
〈
σ2
〉

〈σ3〉

+
φ2(3− φ)

(1− φ)3

〈
σ2
〉3

〈σ3〉2
,

(A4)

and reduces to the CS EOS ZCS(φ), in the monodisperse
limit f(σ) =

∑m
i=1 xiδ(σi − σ) with m = 1. To get two

other candidates for the EOS, we follow the recipe intro-
duced by Santos et al. in Ref. [77] to derive the EOS
Z(m→∞)(φ) of a polydisperse mixture of additive hard
spheres in terms of the EOS Z(φ) of a one-component
system,

Z(m→∞)(φ) = 1 +
[
Z(φ)− 1

] 〈σ2
〉

2 〈σ3〉2
( 〈
σ2
〉2

+ 〈σ〉
〈
σ3
〉 )

+
φ

(1− φ)

[
1−

〈
σ2
〉

〈σ3〉2
(
2
〈
σ2
〉2 − 〈σ〉 〈σ3

〉 )]
.

(A5)
In this paper we consider the cases Z(φ) = ZCS(φ) and

Z(φ) = ZvPY(φ), which respectively yield the so-called
extended Carnahan-Starling (eCS) EOS,

ZeCS(φ) = ZBMCSL(φ) +
φ3

(1− φ)3

〈
σ2
〉

〈σ3〉2
(
〈σ〉
〈
σ3
〉
−
〈
σ2
〉2 )

,

(A6)
and extended Percus-Yevick (ePY) EOS, ZePY(φ). By
construction, ZeCS(φ) and ZePY(φ) reduce to the ZCS(φ)
and ZPY(φ) EOS, respectively, in the monodisperse limit.

Appendix B: Gamma and Truncated Power-law
distributions

In the main text, we present a full set of results for con-
tinuous polydispersity drawn from the log-normal distri-
bution, then briefly discuss results for two other common
distributions. In this appendix, we show the full set of
results for these distributions.

FIG. 11: RCP of gamma-distributed hard spheres.
Random close packing density φRCP against the reduced stan-
dard deviation sSchulzσ for hard spheres with diameter follow-
ing the Gamma, or Schulz distribution. Top: full range up
to a final plateau. Bottom: Zoom on the small polydispersity
region.

The first one is the Gamma distribution, also called
the Schulz distribution in this context [61], which reads

fSchulz(σ) =

(
α+ 1

σ̄

)α+1
σαe−(α+1)σ/σ̄

Γ(α+ 1)
, (B1)

where Γ(z) is the gamma function [96]. The moments of
fSchulz(σ) are given by

〈
σj
〉

=
Γ(j + α+ 1)

Γ(α+ 1)

(
σ̄

α+ 1

)j
, (B2)

such that the average value is 〈σ〉 = σ̄ and the variance is

var[σ] ≡
〈
σ2
〉
−〈σ〉2 = σ̄2/(1+α). The relative standard
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FIG. 12: RCP of power-law-distributed hard spheres.
Random close packing density φRCP against the reduced stan-
dard deviation sBσ for hard spheres with diameter following a
truncated power-law. Top: full range up to a final plateau.
Bottom: Zoom on the small polydispersity region.

deviation can be written as

sS
σ =

( 〈
σ2
〉
− 〈σ〉2

)1/2
〈σ〉

=
1(

α+ 1
)1/2 . (B3)

The last distribution we consider is a truncated power-
law distribution, which scales as the inverse of the occu-
pied volume, introduced by Berthier and co-workers in
the context of supercooled liquids [58, 59],

fB(σ) =
A

σ3
, (B4)

where A is a normalizing constant and σ ∈ [σmin, σmax]
with σmin and σmax the minimum and maximum di-
ameter values, respectively. By imposing the normal-
ization condition

∫ σmax

σmin
fB(σ) = 1, it follows that A =

2σ2
minσ

2
max/(σ

2
max − σ2

min). The mean value and the vari-
ance of the distribution are 〈σ〉 = 2σminσmax/(σmin +

σmax) and var[σ] = −4σ2
minσ

2
max/(σmin + σmax)2 +

2σ2
minσ

2
max ln(σmin/σmax)/(σ2

min−σ2
max), respectively. By

introducing β ≡ σmax/σmin, the relative standard devia-
tion can be written as

sB
σ =

( 〈
σ2
〉
− 〈σ〉2

)1/2
〈σ〉

=

(
1 + β

2(β − 1)
lnβ−1

)1/2

. (B5)

Like in the case of the log-normal distribution, we take
advantage of the explicit knowledge of the moments of
the fSchulz(σ) and the fB(σ) distributions to compute the
EOS of the system, for each of the approximations con-
sidered in the previous section. We observe that again
Z(m→∞)(φ) only depends on a single parameter repre-
senting the spread of the distribution. This is the α
parameter in the Schulz distribution (B1) and β in the
distribution of Berthier and co-workers (B4). We then
follow the same protocol of the log-normal distribution
to find φRCP as a function of the size polydispersity, ex-
pressed in terms of the reduced standard deviation.

The results for the Gamma and the truncated power-
law distributions are shown in Figs. 11 and 12, respec-
tively. The same color and line-style codes as in Fig. 8
are used therein to show predictions of RCP using dif-
ferent EOS and boundary conditions. We find results
qualitatively similar to those discussed in the case of the
log-normal distribution, with quantitative differences in
both the rate of increase of the RCP packing fraction,
and the precise value of the large-polydispersity plateau.
Furthermore, we show values of φRCP measured from our
own simulations as symbols.

Appendix C: Analytical expression at small
polydispersity

In the main text, we present an explicit analytical ex-
pression for the shift of the RCP density at small poly-
dispersity. We here give its complete expression,

∆φRCP ≈
a1s

2
σ + a2s

4
σ + a3s

6
σ

1 + b1s2
σ + b2s4

σ + b3s6
σ

, (C1)

with

a1 =
5− φmono

RCP (5 + 8C0)

2C0(1− φmono
RCP )Z ′(φmono

RCP )
, (C2)

a2 = 6
1− (C0 + 1)φmono

RCP

C0(1− φmono
RCP )Z ′(φmono

RCP )
, (C3)

a3 =
(4C0 + 1)φmono

RCP − 1

2C0(1− φmono
RCP )Z ′(φmono

RCP )
, (C4)

b1 =
7

2
+

4

(1− φmono
RCP )2Z ′(φmono

RCP )
, (C5)

b2 = 3 +
6

(1− φmono
RCP )2Z ′(φmono

RCP )
, (C6)

b3 =
1

2
− 2

(1− φmono
RCP )2Z ′(φmono

RCP )
, (C7)
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where the derivative of the EOS for instance takes the
values

ZCS
′(φmono

RCP ) =
4 + 2φmono

RCP (2− φmono
RCP )

(1− φmono
RCP )4

, (C8)

ZcPY
′(φmono

RCP ) =
4 + 8φmono

RCP

(1− φmono
RCP )3

, (C9)

using the CS and compressibility PY EOS, respectively.

Appendix D: Numerical methods

We here describe the numerical simulations used to
validate our predictions of φRCP. In the qualitative val-
idation of the analogy with equilibrium liquid, the data
used in Fig. 5 was generated using a Torquato-Jiao (TJ)
algorithm [48, 49]. This algorithm starts from a low-
density isotropic state, in our case, following Ref. [97], a
φ = 0.1 arrangement of monodisperse spheres generated
by random sequential adsorption (RSA). It then proposes
isotropic compression, simple shear, and particle motion
in such a way that density gain is optimized at every step,
with the constraint that each type of move has an ampli-
tude bounded by a user-defined value. The direction of
motion is determined by a user-defined interaction radius
around particles, a so-called “sphere of influence” [48].
At each step, particles look up neighbors that lie within
that sphere, then move towards their center of mass (or,
in the case of a single neighbor, the move is performed
away from the particle). In our case, we set maximal
compression, shear, and displacement amplitudes to 0.01
times the diameter of a particle, and we make the radius
of the sphere of influence 3.5 particle diameters. These
values were set using Refs. [48, 97] to favor higher densi-
ties. The program ends when the volume change between
two steps changes by less than 2×10−12 in units of diam-
eters cubed. As mentioned in the main text, this algo-
rithm favors maximally random configurations, but also
overwhelmingly generates densities around a central one,
at roughly 0.63−0.64, see the histogram in Fig. 13. That
is why we choose a relatively small number of particles
N = 108, so that we can get a large set of independent
compression events and manage to measure final states
far away from the mean of that histogram.

To generate the data in the polydisperse case, we
use a variation of the Lubachevsky-Stillinger (LS) algo-

rithm [80, 81], introduced in Ref. [79], in which dense ran-
dom packings are obtained using increasingly slow com-
pression, alternated with free evolution to let the pressure
of the system relax to smaller values every time it crosses
the threshold value 1012. In practice, we used the same
code and followed the same recipe as in Ref. [79]: starting
from random positions obtained by Poisson point-picking
in a cubic box, we pre-compressed particles to a target
packing fraction of 0.4 − 0.6 using a force-biased algo-
rithm. We then ran a first, fixed-rate LS algorithm, at
compression rate γ. We finally ran the modified LS algo-
rithm (MLS), yielding a final packing fraction φMLS(γ)

FIG. 13: Histogram of output densities of the TJ al-
gorithm. This histogram was obtained by performing about
105 compressions of N = 108 hard spheres.

that depends on the compression rate of the preliminary
fixed-rate compression. The RCP packing fractions pre-
sented in the text are values of the density estimated
from an extrapolation of the observed trend φMLS(γ) in
the limit γ → 0. In our simulations, we used N = 104

particles and, using Fig. 2 of Ref. [79] as a guide, we used
inverse compression rates in the range γ−1 ∈

[
102; 105

]
in the LS algorithm, except for sσ < 0.1 where we used a
maximal inverse rate of 2× 103 to avoid crystallization.
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[95] T. Boubĺık, The Journal of Chemical Physics 53, 471
(1970).

[96] M. Abramovitz and I. A. Stegun,
Handbook of Mathematical Functions (Dover, New
York, 1972).

[97] S. Atkinson, F. H. Stillinger, and S. Torquato, Physi-
cal Review E - Statistical, Nonlinear, and Soft Matter
Physics 88, 1 (2013), ISSN 15393755.

[98] W. S. Jodrey and E. M. Tory, Physical Review A 32,
2347 (1985).

[99] R. Jullien, J.-F. Sadoc, and R. Mosseri, Journal de
Physique I 1997, 1677 (1997).

[100] J. Tobochnik and P. M. Chapin, The Journal of Chem-
ical Physics 88, 5824 (1988).

[101] A. Z. Zinchenko, Journal of Computational Physics 114,
298 (1994), ISSN 10902716.

[102] W. M. Visscher and M. Bolsterli, Nature 239, 504
(1972), ISSN 00280836.

[103] Commonly cited values are φRCP ≈ 0.642 − 0.649 by
finite-rate compression compression [98, 99], 0.68 by a
Monte Carlo method [100], 0.64 by differential-equation
densification [101], 0.60 by “drop and roll” [102], 0.64−
0.65 by the LS algorithm and its variants [13, 79], and
0.64 by Biased Random Organization [26].

https://arxiv.org/abs/2205.01934

	I Introduction
	II Theory 
	A Monodisperse systems
	B Polydisperse systems
	C Strategy recap 

	III Results
	A Discrete polydispersity (bidispersity)
	B Continuous polydispersity
	C Universal behaviour at small polydispersity

	IV Conclusions and outlook 
	 Acknowledgments
	 Data availability
	A Equations of state
	1 Monodisperse equations of state
	2 Polydisperse equations of state

	B Gamma and Truncated Power-law distributions 
	C Analytical expression at small polydispersity 
	D Numerical methods
	 References

