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Abstract
We propose a model where a producer and a consumer can affect the price dynamics
of some commodity controlling drift and volatility of, respectively, the production
rate and the consumption rate. We assume that the producer has a short position in a
forward contract on λ units of the underlying at a fixed price F , while the consumer has
the corresponding long position. Moreover, both players are risk-averse with respect
to their financial position and their risk aversions are modelled through an integrated-
variance penalization. We study the impact of risk aversion on the interaction between
the producer and the consumer as well as on the derivative price. In mathematical
terms, we are dealing with a two-player linear-quadratic McKean–Vlasov stochastic
differential game. Using methods based on the martingale optimality principle and
BSDEs, we find a Nash equilibrium and characterize the corresponding strategies and
payoffs in semi-explicit form. Furthermore, we compute the two indifference prices
(one for the producer and one for the consumer) induced by that equilibrium and we
determine the quantity λ such that the players agree on the price. Finally, we illustrate
our results with some numerics. In particular, we focus on how the risk aversions and
the volatility control costs of the players affect the derivative price.
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1 Introduction

In this paper, we develop an economic model of a commodity market where a repre-
sentative producer interacts with a representative processor who buys the commodity
and transforms it into a final product sold to the retail market (think of crude oil pro-
duction transformed into gasoline or wheat transformed into bread). For the sake of
simplicity, the processorwill be referred to as consumer fromnowon. In ourmodel, the
production and the consumption rates are described as Itô processes driven each by an
independent Brownian motion and whose coefficients are controlled by, respectively,
the producer and the consumer. We stress that in our model the producer can con-
trol, in particular, the volatility of the production rate (by investing in devices making
the production more reliable), and similarly the consumer can control the one of the
consumption rate (by investing in storage devices, for instance). Further, the players
are risk-averse (see below for details) and they are linked by a financial derivative in
the commodity, a plain forward agreement on price and volume exchanged. For some
motivations on the control of volatility, we refer the reader to the paper by Aïd et al.
[2], which focuses on the interaction between a producer controlling the drift of the
spot price and a trader controlling the volatility, and exchanging a quadratic derivative.
In that paper, it was shown that when the trader is short in the derivative, he would
increase the volatility of the spot price in order to get a higher price of the derivative
sold to the producer. In the present setting, we are interested in the joint effect of the
costs of controlling the volatility of production or consumption rates and the players’
risk aversion parameters on the “agreement indifference price”. Indeed, when only
one player has market power, the effect of the parameters on the forward price is clear.
On the other hand, when the two players interact, the joint effect is not obvious. In this
paper, we are interested in the outcome of the combined effect on the forward price
of the relative risk aversions and the volatility control costs of the producer and the
consumer.

Both players have market power on the spot price of the commodity: the spot price
depends linearly on production and consumption rates so that the higher the rate of
production, the lower the spot price and the higher the rate of consumption, the higher
the spot price. Furthermore, they agree to exchange a forward contract with finite
maturity T over a certain quantity λ of the commodity that will be determined at
equilibrium together with its price F . This setting is inspired from the seminal papers
of Allaz [3] and Allaz and Villa [4], where the authors establish the mitigating effect
of forward agreement on the exercise of producers market power.

In our framework, since production and consumption rates are driven by two
independent Brownian motions and there is only one tradable risky asset, i.e. the com-
modity spot price, the market is incomplete. Therefore, we define the forward price
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in the spirit of the indifference pricing approach (see the paper [18] for an overview
and [7] for an application to power markets). The players’ goal is to maximize their
respective objective functionals, which are expectations of the following main compo-
nents: the profit from selling, the sourcing costs (only for the consumer), the costs from
exerting the controls, the forward contract payoff and, finally, the integrated variance
of the market price of the derivative.

The latter component describes the risk aversion both players have towards their
financial position. More precisely, in this context where the agents can control the
volatility of their state variable, the modelling of their risk aversion using utility func-
tions (e.g. exponential utility) would lead to nonlinear PDEs which are difficult to
handle. Hence, for technical convenience we turn to a sort of dynamic mean-variance
criterion leading to the objective functionals described above. Mathematically speak-
ing we are dealing with a two-player stochastic differential game with objective
functionals of McKean–Vlasov type, i.e. depending on the laws of the state vari-
ables. Economically speaking, it means that both players act as speculators on the
forward market, as they disconnect their forward position from their production or
transformation profit. Although this feature of our model originates from a computa-
tional limitation induced by the linear-quadratic McKean–Vlasov game setting, there
exists some evidence, documented by a stream of the economic literature, that large
commodity players can act as speculators on their markets (see [11] for such evidence
and references on the subject of financiarisation of commodity markets).

This modeling approach for the risk aversion has been already investigated and
used for portfolio selection by Zhou and Li [31] and more recently by Ismael and
Pham [23] and Lefebvre et al. [28]. Moreover, due to the fast development of mean-
field games as a new framework to study stochastic differential games for a large
number of players since the seminal papers by Lasry and Lions [25–27] and Huang
et al. [22] (see also [8] for a survey), there has been a regain of interest for control
problems of McKean–Vlasov dynamics. The latter, also known as mean field control,
corresponds in some way to the limit of a sequence of stochastic control problems
for a regulator willing to optimize the average expected payoff of a group of agents
interacting through the empirical distribution of their states (see [24] and the two-
volume book [9]). In particular, the linear-quadratic case has been treated in Graber
[17], Bensoussan et al. [6] and Basei and Pham [5]. Recently, stochastic differential
games with both state dynamics and objective functionals of McKean–Vlasov type
has been addressed in, e.g., Miller and Pham [30], Cosso and Pham [12] and also Fu
and Horst [16] for a Stackelberg game arising from an optimal portfolio liquidation
problem. Although a large number of applications in economics and finance have been
developed with mean field games and mean field control, the applications of games
with finitely many players and McKean–Vlasov dynamics and objective functionals
in economics is much more recent, hence less developed (see, e.g., Aïd et al. [1]).

We will analyse the model along the following program: first we will find a Nash
equilibrium for a fixed quantity λ of the commodity exchanged through the forward
contract with fixed price F ; second, we will compute the indifference prices of the
forward contract for the two players separately (they are going to depend on λ); third,
we will compute the quantity λ such that the two prices are equal, hence making the
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exchange compatible with the equilibrium found in the first step. This price will be
called agreement indifference price.

This framework makes it possible to analyse the formation of the risk premium
defined as the difference between the (unitary) agreement indifference price and the
expected spot price of the commodity. The question of the determinants of the risk
premium on commodity markets goes back (at least) to Keynes’s Treatise on Money,
(1930). Keynes formulated the normal backwardation theory, i.e. the claim that for-
ward prices should be lower than expected spot prices because risk-averse producers
are willing to sell forward at a premium to avoid price risk. Presently, the hedging
pressure theory (see [14, 19–21]) provides explanation of the sign of the risk premium
depending on the relative size of population types in the market (producers, storers,
speculators) and their risk-aversion (see [15] for a complete equilibrium model with
mean-variance utility players explaining the different possible sign of the premia).

Mathematical results The main mathematical contribution of the paper (ref. The-
orem 3.1) consists in a complete description of a Nash equilibrium in open loop
strategies of the two-player stochastic differential game arising from the interaction
model described above. More in detail, we adopt the following resolution approach:
first, we prove a suitable version of a verification theorem exploiting the weak mar-
tingale optimality principle; second, the verification theorem and the linear-quadratic
structure of the game allows to provide a semi-explicit form for the best response
map; third, a Nash equilibrium is found as a fixed point of the best response map with
closed-form expressions for the equilibrium strategies and payoffs of both players up
to solving numerically a Riccati system of ODEs. Once we have a Nash equilibrium
at our disposal, computing the corresponding agreement indifference price together
with the exchanged quantity at equilibrium is a pretty straightforward task.

Economic insights First, we find that the forward agreement indifference price is
higher (resp. lower) than the expected spot price when the producer is more (resp. less)
risk-averse than the consumer. Because in our model, the players act as speculators on
the forward market, a seller requires a higher forward price to enter in the agreement
and a buyer asks for a lower price. The presence ofmarket power of both players allows
for the formation of an equilibrium. In that sense, our model is consistent with the
economic intuition of the hedging pressure theory applied to a market populated with
producers and consumers acting as speculators. Second, we observe that producers
can achieve the same agreement indifference price and the same trading volume either
by having high risk aversion and a low volatility control cost, or a low risk aversion
and a high volatility control cost. This effect manifests itself whatever the relative risk
aversion of the producer and the consumer or the relative costs of volatility control.
Nevertheless, it is more apparent when the volatility control costs are low. Thus, to
the list of determinants of the sign of the risk premium of forward commodity price,
one could add the costs of reducing the production uncertainty. For commodity where
storage is utmost costly like electricity, reducing production uncertainty is highly
costly and thus, leads to higher risk premium.

Organization of the paper The paper is organised in the following way. The model is
described in Sect. 2.1 together with the definition of a forward agreement indifference
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price and quantity in Sect. 2.2. The main result on the existence of a Nash equilibrium
is given in Sect. 3. The proof of the main result is given is Sect. 4. Numerical results
on the comparative static of the risk premium and the joint effect of risk aversion and
volatility control costs are given in Sect. 5.

Notations We denote by R+ (respectively R−) the closed semi-interval [0,+∞)

(respectively (−∞, 0]). Given a function f : R → S, with S a regular space, we
denote its first derivative by f ′. The expected value of a random variable X will
be equivalently denoted by E[X ], as usual, or by X̄ , for brevity. Let (�,F ,P) be a
probability space. Given a positive integer d, a strictly positive time horizon T and a
filtration F := (Ft )t∈[0,T ], we set

L2([0, T ],Rd ) :=
{
ϕ : [0, T ] → R

d , s.t. ϕ is measurable and
∫ T

0
|ϕt |2dt < ∞

}
,

L∞([0, T ],Rd ) :=
{

ϕ : [0, T ] → R
d , s.t. ϕ is measurable and sup

t∈[0,T ]
|ϕt | < ∞

}
,

L2
FT

(�,Rd ) :=
{
ψ : � → R

d , s.t. ψ is FT -measurable and E
[
|ψ |2

]
< ∞

}
,

L2
F
(� × [0, T ],Rd ) :=

{
η : � × [0, T ] → R

d , s.t. η is F-adapted and E

[∫ T

0
|ηt |2dt

]
< ∞

}
,

S2
F
(� × [0, T ],Rd ) :=

{
η : � × [0, T ] → R

d , s.t. η is F-adapted and E

[
sup

t∈[0,T ]
|ηt |2

]
< ∞

}
.

2 TheModel

We consider a stochastic game between a representative producer and a representative
consumer. While the producer produces a good at a certain rate, the consumer buys
the commodity and transforms it into a final good sold in the retail market.

2.1 Market Model

We consider a finite time window [0, T ] and a probability space (�,F ,P) endowed
with a two-dimensional Brownian motion (W , B) = {(Wt , Bt )}t∈[0,T ] and its natural
filtration F = (Ft )t∈[0,T ] augmented with the P-null sets in F . The production rate of
the producer {qt }t∈[0,T ] evolves according to a dynamics given by

dqt = ut dt + zt dWt , q0 > 0,

where {ut }t∈[0,T ] and {zt }t∈[0,T ] are the producer’s strategies. The associated instan-

taneous costs are kp
2 u2

t and �p
2 (zt − σp)

2, respectively, with kp, �p ≥ 0 and where
σp > 0 represents the nominal uncertainty in production without dedicated effort of
the producer to reduce it. In a similar way, the consumption rate (or selling rate to the
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retail market) of the consumer, {ct }t∈[0,T ], has dynamics given by

dct = vt dt + yt d Bt , c0 > 0.

Here, {vt }t∈[0,T ] and {yt }t∈[0,T ] are the consumer’s strategies, and the associated
instantaneous costs are, respectively, kc

2 v2t and �c
2 (yt − σc)

2, with kc, �c ≥ 0 and
σc > 0. We assume a linear impact on the observed market price, {St }t∈[0,T ], namely
{St }t∈[0,T ] evolves according to

St := s0 − ρpqt + γρcct , s0 > 0

withρp, ρc > 0 and γ > 0 (the role of γ will be clear in a few lines). The instantaneous
profits at time t of the producer π

p
t and of the consumer πc

t are given by:

π
p
t : = qt St − kp

2
u2

t − �p

2
(zt − σp)

2,

πc
t : = ct (p0 + p1St ) − γ ct (St + δ) − kc

2
v2t − �c

2
(yt − σc)

2,

where ct (p0 + p1St ) is the income from selling the quantity ct at the retail price
p0 + p1St , a linear function of the commodity price, with p0, p1 > 0 and γ ct (St + δ)

represents the sourcing cost of buying the quantity γ ct (which is used to obtain ct

to be sold) at price St plus the transformation cost δ, with γ, δ > 0. We assume
γ > p1 to ensure the concavity of the objective functional of the consumer (i.e.
the processor cannot charge increasing prices to final consumers without seeing the
demand decreasing).

Remark 2.1 Our producer and consumer are large players as their actions have an
effect on market prices. This is the reason why we did not impose any constraint on the
relation between consumption and production: there could be other small producers
and consumers present and so the consumption ct might, in principle, be greater
than qt . Moreover, we consider a commodity for which storage has a little effect on
the price and in our framework we do not include neither capacity constraints nor
consumption/production constraints for technical reasons.

The producer and the consumer exchange a forward contract of λ units of the
commodity at a fixed amount of money F ∈ R. Both players aim at maximizing their
respective objective functionals, which have two components: an expected profit term
and a penalisation term modelling the player risk aversion (more comments below).
In formulae, they are given by

Jλ,F
p (u, z; v, y) := E

[
P p

T

]− ηp

∫ T

0
V [λSt ] dt, ηp > 0, (2.1)

Jλ,F
c (v, y; u, z) := E

[
Pc

T

]− ηc

∫ T

0
V [λSt ] dt, ηc > 0, (2.2)
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where V stands for the variance and the process P p
T (resp. Pc

T ) represents the cumu-
lative profit over the time period [0, T ] of the producer (resp. the consumer), i.e.

P p
T :=

∫ T

0
π

p
t dt + F − λST , Pc

T :=
∫ T

0
πc

t dt − F + λST . (2.3)

The set of admissible strategies for the players is given by A2 := A × A, where
A = L2

F
(� × [0, T ],R2).

The way risk aversion is modelled and the choice of the derivative require two
comments. First, a more standard way to take into account the players’ risk aversion
would consist in using utility functions. In our case and with an exponential utility
function, where players can control the volatility of their production and consumption
rates, this approach would lead toMonge-Ampère PDEs, which are difficult to handle.
For this reason, we turn to a different way to model risk aversion, which is reminiscent
of what is done in mean-variance optimal dynamic portfolio choice (see [31] andmore
recently by Ismael and Pham [23] and Lefebvre et al. [28]). A similar approach was
also previously used for distributed renewable energy development in Aïd et al. [1].
Second, we observe that the variance penalisation term involves only the derivative and
not the profit from production or transformation. As already stated in the introduction,
this representation of risk aversion transforms players into speculators on the forward
market. Indeed, players only care about the variance of their financial position λSt −F ,
not about their production or consumption profits. This modeling is motivated by the
desire to remain in a framework where tractable solutions can be exhibited. Its sole
consequence would be to reverse the sign of the risk premium: producers wish to sell at
a lower price than the expected spot price whereas speculators want to sell at a higher
price. For the sake of simplicity, we have chosen to consider only a static hedging
position with a simple forward contract in order to analyse the risk premium between
the forward “agreement indifference price” and the expected price at maturity (see
Sect. 2.2 for a definition of the forward agreement indifference price).

To sum up, we deal with a two-player stochastic differential game of McKean–
Vlasov linear-quadratic type. Hence, it is natural to look for Nash equilibria according
to the following definition.

Definition 2.2 We call the couple
(
(u∗, z∗)�, (v∗, y∗)�

) ∈ A×A a Nash equilibrium
if

Jλ,F
p (u∗, z∗; v∗, y∗) ≥ Jλ,F

p (u, z; v∗, y∗), for all (u, z)� ∈ A, (2.4)

Jλ,F
c (v∗, y∗; u∗, z∗) ≥ Jλ,F

c (v, y; u∗, z∗), for all (v, y)� ∈ A. (2.5)

2.2 Equilibrium Forward Agreement

For a Nash equilibrium (v∗, y∗; u∗, z∗), we denote by

J ∗
c (λ, F) = Jλ,F

c (v∗, y∗; u∗, z∗), J ∗
p (λ, F) = Jλ,F

p (u∗, z∗; v∗, y∗),
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the corresponding equilibrium payoffs of consumer and producer, respectively. They
depend on the number of units λ, on which the forward contract is written, and the
respective forward price F . Both players determine their prices using the indifference
pricing approach, namely the consumer computes Fλ,∗

c as solution of J ∗
c (λ, F) =

J ∗
c (0, 0) and analogously for the producer, leading to a price Fλ,∗

p as a solution of
J ∗

p (λ, F) = J ∗
p (0, 0). By linearity of the payoffs with respect to F , we get

J ∗
c (λ, F) = J ∗

c (λ, 0) − F and J ∗
p (λ, F) = J ∗

p (λ, 0) + F,

yielding

Fλ,∗
c = J ∗

c (λ, 0) − J ∗
c (0, 0), and Fλ,∗

p = J ∗
p (0, 0) − J ∗

p (λ, 0).

Thus, Fλ,∗
c represents the maximum amount the consumer is willing to pay, while

Fλ,∗
p is the minimum amount the producer is willing to accept for selling a forward

contract on λ units of the underlying. As a consequence, trading is possible if and only
if

Fλ,∗
p ≤ Fλ,∗

c . (2.6)

We conclude this section with the definition of agreement indifference price.

Definition 2.3 Let λ∗ be the number of units of the underlying for which the two
parties agree on the forward price, namely Fλ∗,∗

p = Fλ∗,∗
c . We define the agreement

indifference price as
F∗

λ∗ := Fλ∗,∗
p = Fλ∗,∗

c .

In Sect. 5, we will provide some numerical illustrations on how the risk aversion
parameters and the volatility control costs of the players might affect the quantity λ∗
as well as the corresponding agreement indifference price F∗

λ∗ .

3 Nash Equilibrium

In this section we state and comment the main result of the paper. In particular we
show that a Nash equilibrium exists and we characterize the corresponding strategies
and payoffs in a semi-explicit way. Its proof will be given in full detail in the next
section.

3.1 Main Result

Let us start with some useful notation: for t ∈ [0, T ],

K p(t) = −kp

2

√
2(ρp + ηpλ2ρ2

p)

kp
tanh

⎛
⎝
√
2(ρp + ηpλ2ρ2

p)

kp
(T − t)

⎞
⎠ , (3.1)
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p(t) = −kp

2

√
2ρp

kp
tanh

(√
2ρp

kp
(T − t)

)
, (3.2)

Kc(t) = −kc

2

√
2(γρc(γ − p1) + ηcλ2γ 2ρ2

c )

kc

× tanh

⎛
⎝
√
2(γρc(γ − p1) + ηcλ2γ 2ρ2

c )

kc
(T − t)

⎞
⎠ , (3.3)

c(t) = −kc

2

√
2γρc(γ − p1)

kc
tanh

(√
2γρc(γ − p1)

kc
(T − t)

)
, (3.4)

� =
(

0 −ρpγρcηpλ
2 − γρc

2

−ρpγρcηcλ
2 − ρp(γ−p1)

2 0

)
,

�̂ =
(

0 − γρc
2

−ρp(γ−p1)
2 0

)
, R =

(− 2
kp

0

0 − 2
kc

)
,

�(t) =
(− 2

kp
K p(t) 0

0 − 2
kc

Kc(t)

)
, �̂(t) =

(− 2
kp

p(t) 0

0 − 2
kc

c(t)

)
,

� =
( −s0/2

− p0+p1s0−γ (δ+s0)
2

)
.

Furthermore, let us introduce the following system of ODEs defined on t ∈ [0, T ]:
{

π ′(t) = � + �(t)π(t) + π(t)�(t) + π(t)Rπ(t), π(T ) = 0,
π̂ ′(t) = �̂ + �̂(t)π̂(t) + π̂(t)�̂(t) + π̂(t)Rπ̂(t), π̂(T ) = 0,

(3.5)

dh(t) =
{[

π̂(t)R + �̂(t)
]
h(t) + �

}
dt, h(T ) = 1

2λ(ρp, γρc)
�, (3.6)

and let us denote by Tmax the right end of the maximal interval where the system
(3.5) admits a unique solution according to Picard-Lindelöf Theorem (see, e.g., Cod-
dington and Levinson [13, Ch. I, Theorem 2.3], which can be applied by standard
time-inversion).

Theorem 3.1 Assume that the following conditions hold:

(A1) T < Tmax ,
(A2) �p −2(K p(t)+π11(t)) > 0 and �c −2(Kc(t)+π22(t)) > 0, for all t ∈ [0, T ].

Then,

1. there exists a Nash equilibrium ((u∗, z∗)�, (v∗, y∗)�) ∈ A2 in the following
feedback form
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u∗
t = 2

kp

[
(K p(t) + π11(t))(qt − q̄t ) + π12(t)(ct − c̄t ) + (p(t)

+π̂11(t))q̄t + π̂12(t)c̄t + h1(t)
]
,

z∗(t) = σp�p

�p − 2(K p(t) + π11(t))
,

v∗
t = 2

kc

[
(Kc(t) + π22(t))(ct − c̄t ) + π21(t)(qt − q̄t ) + (c(t)

+π̂22(t))c̄t + π̂21(t)q̄t + h2(t)
]
,

y∗(t) = σc�c

�c − 2(Kc(t) + π22(t))
. (3.7)

2. The equilibrium payoffs satisfy

J ∗
p (λ, F) = p(0)q

2
0 + 2Ȳ p

0 q0 + Rp(0) + F − λs0 − 1

2
�pσ

2
p T , (3.8)

J ∗
c (λ, F) = c(0)c

2
0 + 2Ȳ c

0 c0 + Rc(0) − F + λs0 − 1

2
�cσ

2
c T , (3.9)

Ȳ p
t = π̂11q̄t + π̂12c̄t + h1, Ȳ c

t = π̂22c̄t + π̂21q̄t + h2, (3.10)

where

Rp(0) = R(λ)
p (0) =

∫ T

0

[
2

kp
E[(Y p

u )2] − ηpλ
2γ 2ρ2

cV[cu]

+2
(
π11(u)z∗

u + �pσp
2

)2
�p − 2K p(u)

]
du − λγρcE[cT ],

Rc(0) = R(λ)
c (0) =

∫ T

0

[
2

kc
E[(Y c

u )2] − ηcλ
2ρ2

pV[qu]

+2
(
π22(u)y∗

u + �cσc
2

)2
�c − 2Kc(u)

]
du − λρpE[qT ]. (3.11)

See Appendix 1 for the details on the computations of the quantities involved in
the definition of Rp and Rc.

3.2 Comments

1. Although our model is close to the one presented in Miller and Pham [30], it is
not possible to directly exploit their results, since their hypotheses (H2)(a) and
(H2)(d) are not satisfied in our case. Therefore, in order to be self contained, we
decided to prove a suitable verification theorem from scratch.

2. We observe that the functions i , i ∈ {p, c}, do not depend on λ. It is also the
case for the functions π̂i j . Furthermore, the functions hi , i = 1, 2, are linear in λ
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because they depend on it only by their terminal conditions. Besides, they are also
nondecreasing in λ. Thus, the average production and consumption rates, q̄t and
c̄t , which satisfy

dq̄t = ū∗
t dt = 2

kp

[(
p(t) + π̂11(t)

)
q̄t + π̂12(t)c̄t + h1(t)

]
dt,

dc̄t = v̄∗
t dt = 2

kc

[(
c(t) + π̂22(t)

)
c̄t + π̂21(t)q̄t + h2(t)

]
dt,

are increasing in λ. As the terminal conditions of hi , i ∈ {p, c}, depend only on
λ and on the parameters ρp and γρc, the resulting effect on the average spot price
S̄t = s0−ρpq̄t +γρcc̄t only depends on the relative market power of the producer
and the consumer. Thus, if γρc < ρp (resp. ρp < γρc), when the quantity of the
commodity λ of the producer increases, the average spot price decreases (resp.
increases).

3. The functions p, c and the π̂i j do not depend on the risk aversion parameters
ηp and ηc, therefore the average production and consumption rates do not depend
on them either, as one could expect. Regarding the volatilities, while it is clear
that K p and Kc are nondecreasing in ηp and ηc, respectively, it is not so obvious
what to expect for π11 and π22, and thus to deduce the effect of risk-aversion on
z∗ and y∗. However, one can find numerically that the higher the risk aversions of
the players, the lower the volatilities, even in the absence of forward agreement.
Nevertheless, it is possible to provide more insight on this issue when the producer
has no market power, i.e. ρp = 0, and the consumer does have some, i.e. γρc > 0.
In this case, the price process appears as exogenously driven for the producer and
as a controlled variable for the consumer. Hence K p = p = 0 and Kc < 0,
c < 0. Further, if ρp = 0, then π21 = 0, leading to π11 = 0 due to K p = 0, and
it holds also thatπ22 = 0 and π̂11 = π̂21 = 0. Thus, z∗ = σp and the producer does
not reduce her volatility. On the other hand, the production does covariate with
consumption. Indeed, in Theorem 3.1, the Nash equilibrium consumer’s strategies
depend on the state variables only via ct − c̄t and c̄t :

u∗
t = 2

kp
{π12(t)(ct − c̄t ) + π̂12(t)c̄t + h1(t)} , z∗

t = σp,

v∗
t = 2

kc
{Kc(t)(ct − c̄t ) + c(t)c̄t + h2(t)} , y∗

t = σc�c

�c − 2Kc(t)
< σc.

Finally, since Kc(t) is nonincreasing in λ, the higher the exposure to the financial
risk coming from the forward contract, themore the consumer reduces his volatility,
as the intuition predicts.

4. Exploiting Theorem 3.1-2., we can specify more precisely the nonlinear equations
giving the forward agreement values F∗

λ∗ andλ∗. Indeed, it holds that (see equations
(3.8) and (3.9))

J ∗
p (λ, F) = p(0)q

2
0 + 2Ȳ p(λ)

0 q0 + R(λ)
p (0) + F − λs0 − 1

2
�pσ

2
p T ,
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J ∗
c (λ, F) = c(0)c

2
0 + 2Ȳ c(λ)

0 c0 + R(λ)
c (0) − F + λs0 − 1

2
�cσ

2
c T ,

where the superscript (λ) is used to emphasize the dependency on the number of
options traded. We can isolate the parts jp(λ, F) and jc(λ, F) depending on λ and
F , defined as

jp(λ, F) = 2h(λ)
1 (0)q0 + R(λ)

p (0) + F − λs0,

jc(λ, F) = 2h(λ)
2 (0)c0 + R(λ)

c (0) − F + λs0.

Thus, for a fixed λ the indifference prices Fλ,∗
p and Fλ,∗

c are given by

2h(0)
1 (0)q0 + R(0)

p (0) = 2h(λ)
1 (0)q0 + R(λ)

p (0) + Fλ,∗
p − λs0,

2h(0)
2 (0)c0 + R(0)

c (0) = 2h(λ)
2 (0)c0 + R(λ)

c (0) − Fλ,∗
c + λs0.

Thus, if it exists, the equilibrium price should be given by Fλ∗,∗
p = Fλ∗,∗

c = F∗
λ∗ ,

i.e.,

2(h(0)
1 (0) − h(λ∗)

1 (0))q0 + R(0)
p (0) − R(λ∗)

p (0)

= 2(h(λ∗)
2 (0) − h(0)

2 (0))c0 + R(λ∗)
c (0) − R(0)

c (0),

or, equivalently,

2h(0)
1 (0)q0 + 2h(0)

2 (0)c0 + R(0)
c (0) + R(0)

p (0)

= 2h(λ∗)
1 (0)q0 + 2h(λ∗)

2 (0)c0 + R(λ∗)
c (0) + R(λ∗)

p (0), (3.12)

with R(λ∗)
p (0) and R(λ∗)

c (0) defined in Equation (3.11) and h(λ∗) in Equation (3.6).

The last remark speeds up considerably the computations for the plots that appear
in the Sect. 5. Indeed, all the quantities that we need to compute can be obtained by
solving numerically the ODEs presented in Appendix 1.

4 Proof of Theorem 3.1

4.1 The Solution Approach

We prove Theorem 3.1 following a methodology based on a combination of a suitable
Verification Theorem and of the weak Martingale Optimality Principle. As already
stressed in the first comment below Theorem 3.1, despite our model is very close to
the class of games studied in Miller and Pham [30], their results cannot be applied
directly here, thereforewe had to adapt themethodology to our framework.Weproceed
through the following steps:
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1) we compute the best response maps of both players;
2) we check that the system coming from the best response computations has a unique

solution;
3) we get a Nash equilibrium as a fixed point of the best response map;
4) we verify that there exists a unique solution to the system characterizing the fixed

point found in step 3).

4.2 Preliminary Reformulation of the Problem

For convenience, we introduce the following vector notation for the players’ strategies:

α =
(
(α p)�, (αc)�

)� ∈ A2, α p :=
(

u
z

)
=
{(

ut

zt

)}
t∈[0,T ]

and αc :=
(

v

y

)
=
{(

vt

yt

)}
t∈[0,T ]

,

so that the dynamics of the state variables can be rewritten as

dqt = e�
1 α

p
t dt + e�

2 α
p
t dWt , (4.1)

dct = e�
1 αc

t dt + e�
2 αc

t d Bt , t ∈ [0, T ], (4.2)

with e�
1 = (1, 0) and e�

2 = (0, 1).
The following identity is exploited to get a suitable reformulation of our problem:

using the dynamics of St and applying Fubini’s theorem, it is easy to see that

∫ T

0
V [St ] dt = E

[∫ T

0

{
ρ2

p(qt − E[qt ])2 + γ 2ρ2
c (ct − E[ct ])2

−2ρpγρc(qt − E[qt ])(ct − E[ct ])
}

dt
]
. (4.3)

Rearranging the terms in the expressions of the producer objective functional, we
obtain

Jλ,F
p (u, z; v, y) = J̃λ

p (u, z; v, y) + F − λs0 − �pσ
2
p T

2
,
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where

J̃λ
p (u, z; v, y) :=E

[ ∫ T

0

(
− (ρp + ηpλ

2ρ2
p)(qt − E[qt ])2 − ρpE[qt ]2 + [s0 + γρcct

+ 2ρpγρcηpλ
2(ct − E[ct ])]qt − kp

2
u2

t − �p

2
z2t

+ �pσpzt − ηpλ
2γ 2ρ2

c (ct − E[ct ])2
)

dt

+ λρpqT − λγρccT

]
.

(4.4)
Then, neglecting the constant terms, we can study without loss of generality the equiv-
alent formulation in which the producer aims at maximizing J̃λ

p (u, z; v, y).

Remark 4.1 Fixing a strategy α p for the producer (resp. αc for the consumer) is equiv-
alent, from the perspective of the competitor, to fixing the corresponding state qα p

(resp. cαc
). Thus, with some abuse of notation we will write simply q (resp. c) when

the strategy used is clear from the context. Moreover, to ease the notation, we will also
omit the dependence on c̄ and q̄ .

For a given consumption process {ct }t∈[0,T ], we write

J̃λ
p (α p; αc) = J̃λ

p (α p; c)

:= E

[∫ T

0
f p(t, qt ,E[qt ], α p

t ,E[α p
t ]; c)dt + gp(qT ,E[qT ]; c)

]
, with

f p(t, q, q̄, ap, āp; c) = Q p(q − q̄)2 + (Q p + Q̃ p)q̄
2

+ 2M p(c)t q + a�
p Npap + 2H�

p ap + T p(c)t ,

gp(q, q̄; c) = 2L pq + T̃ p(c),
(4.5)

where
Q p := −ρp − ηpλ

2ρ2
p, Q̃ p := ηpλ

2ρ2
p,

M p(c)t := s0
2

+ γρc

2
ct + ρpγρcηpλ

2(ct − E[ct ]),

Np :=
(

− kp
2 0

0 − �p
2

)
, Hp :=

(
0

σp�p
2

)
,

T p(c)t := −ηpλ
2γ 2ρ2

c (ct − E[ct ])2, L p := ρpλ

2
,

and T̃ p(c) := −λγρccT .

(4.6)

Now, let us turn to the objective functional of the consumer. From (2.2) and (4.3), we
have

Jλ,F
c (v, y; u, z) = J̃λ

c (v, y; u, z) − F + λs0 − �cσ
2
c T

2
,
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where

J̃λ
c (v, y; u, z)

:= E

[ ∫ T

0

(
− [γρc(γ − p1) + ηcλ

2γ 2ρ2
c ](ct − E[ct ])2 − γρc(γ − p1)E[ct ]2

+ [(p0 + s0 p1 − γ δ − γ s0) + ρp(γ − p1)qt + 2ρpγρcηcλ
2(qt − E[qt ])]ct

− kc

2
v2t − �c

2
y2t + σc�c yt − ηcλ

2ρ2
p(qt − E[qt ])2

)
dt − λρpqT + λγρccT

]
.

(4.7)
Analogously as above, let {qt }t∈[0,T ] be a given production rate. We can write

J̃λ
c (αc;α p) = J̃λ

c (αc; q) := E

[∫ T

0
fc
(
t, ct ,E[ct ], αc

t ,E[αc
t ]; q

)
dt

+gc(cT ,E[cT ]; q)] , with

fc(t, c, c̄, ac, āc; q) = Qc(c − c̄)2 + (Qc + Q̃c)c̄
2

+ 2Mc(q)t c + a�
c Ncac + 2H�

c ac + T c(q)t ,

gc(c, c̄; q) = 2Lcc + T̃ c(q),

and

Qc := −γρc(γ − p1) − ηcλ
2γ 2ρ2

c , Q̃c := ηcλ
2γ 2ρ2

c , Nc :=
(− kc

2 0
0 − �c

2

)
,

Mc(q)t := p0 + p1s0 − γ (s0 + δ)

2
+ ρp(γ − p1)

2
qt + ρpγρcηcλ

2(qt − E[qt ]),

Hc :=
(

0
σc�c
2

)
, T c(q)t := −ηcλ

2ρ2
p(qt − E[qt ])2, Lc := λγρc

2
,

and T̃ c(q) := −λρpqT .

(4.8)

Finally, we set

V λ
p (αc) := sup

α p∈A
J̃λ

p (α p;αc), αc ∈ A, (4.9)

V λ
c (α p) := sup

αc∈A
J̃λ

c (αc;α p), α p ∈ A. (4.10)

4.3 First Step: Computation of the Best ResponseMaps

The first step is focused on the computation of the best response map of each player.
This is done by exploiting the following version of the Verification Theorem:
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Theorem 4.2 (Verification Theorem) Fix a couple of strategies β p, βc ∈ A for the

producer and the consumer, respectively. Let W p,α p

t and Wc,αc

t be defined as

W p,α p

t = w
p
t (qα p

t ,E[qα p

t ]), Wc,αc

t = wc
t (c

αc

t ,E[cαc

t ]), t ∈ [0, T ], α p, αc ∈ A,

(4.11)

where the F-adapted random fields {w p
t (q, q̄), t ∈ [0, T ], q, q̄ ∈ R} and

{wc
t (c, c̄), t ∈ [0, T ], c, c̄ ∈ R} satisfy the following growth conditions: for all t ∈

[0, T ], for all x, x̄ ∈ R,

|w p
t (x, x̄)| ≤ C p(ν

p
t + |x |2 + |x̄ |2), |wc

t (x, x̄)| ≤ Cc(ν
c
t + |x |2 + |x̄ |2), (4.12)

for some constants C p, Cc > 0 and for some non-negative processes ν p and νc such
that

sup
t∈[0,T ]

E
[
ν

p
t + νc

t

]
< ∞.

Furthermore, we assume that the following conditions are fulfilled:

(i) E[w p
T (qα p

T , q̄T
α p

)] = E[gp(qα p

T , q̄T
α p ; cβc

)] and E[wc
T (cαc

T , c̄T
αc

)] = E[gc(cαc

T ,

c̄T
αc ; qβ p

)], for any α p, αc ∈ A.

(ii) The application [0, T ] 
 t �→ E[S p,α p

t ]
(

resp. E[Sc,αc

t ]
)

is well-defined and non-

increasing, for any α p ∈ A (resp. for any αc ∈ A), where:

S p,α p

t = W p,α p

t +
∫ t

0
f p(s, qα p

s , q̄α p

s , α
p
s , ᾱ

p
s ; cβc

)ds,

Sc,αc

t = Wc,αc

t +
∫ t

0
fc(s, cαc

s , c̄αc

s , αc
s , ᾱ

c
s ; qβ p

)ds.

(4.13)

(iii) For some α p,� ∈ A and αc,� ∈ A, the application [0, T ] 
 t �→
E[S p,α p,�

t ]
(

resp. E[Sc,αc,�

t ]
)

is constant.

Then, the control α� = (α p,�, αc,�) is the best response to the control (β p, βc) meaning
that

α p,� = Bp(β
c) := argmaxα p∈A J̃λ

p (α p;βc),

αc,� = Bc(β
p) := argmaxαc∈A J̃λ

c (αc;β p), (4.14)

and

J̃λ
p (α p,�; cβc

) = V λ
p (βc) = E[W P,α p

0 ] and J̃λ
c (αc,�; qβ p

) = V λ
c (β p) = E[WC,αc

0 ].

Finally, if α̃ = (̃α p, α̃c) is another best response to the control (β p, βc), then condition
iii) holds also for α̃ p and α̃c.
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We define the best response map B : A2 → A2 as B := (Bp,Bc). The Nash
equilibrium we find will be a fixed point of this map.

Once we have fixed the strategies β p and βc inA, the first step can be divided into
four sub-steps:

1.1 Since the players objective functionals are quadratic, we propose a suitable can-
didate (W p,α p

t ,Wc,αc

t ) in feedback form.

1.2 Applying Itô’s formula, we compute d
dt E[S p,α p

t ] and d
dt E[Sc,αc

t ] corresponding
to the candidate (W p,α p

t ,Wc,αc

t ).
1.3 We postulate that the conditions of Theorem 4.2 are satisfied and get a system of

backward SDEs involving the coefficients of the candidate (W p,α p

t ,Wc,αc

t ).
1.4 We compute each player’s best response by looking for strategies cancelling the

expectation of the drifts of the processes S p,α p

t and Sc,αc

t .

Sub-step 1.1
Given the quadratic nature of our objective functional, it seems natural to look

for a family of processes (W p,α p

t ,Wc,αc

t )t∈[0,T ] of the following form: W p,α p

t =
w

p
t (qα p

t ,E[qα p

t ]) andWc,αc

t = wc
t (c

αc

t ,E[cαc

t ]), for some parametric adapted random
field {wi

t (x, x̄), t ∈ [0, T ], x, x̄ ∈ R}, i ∈ {p, c}, such that

wi
t (x, x̄) = Ki (t)(x − x̄)2 + i (t)x̄2 + 2Y i

t x + Ri (t),

with (Ki ,i , Y i , Ri ) ∈ L∞([0, T ],R−)2 × S2
F
(� × [0, T ],R) × L∞([0, T ],R),

i ∈ {p, c}, solving the systems of ODEs and SDEs:

⎧⎪⎪⎨
⎪⎪⎩

d K p(t) = K ′
p(t)dt, K p(T ) = 0,

dp(t) = ′
p(t)dt, p(T ) = 0,

dY p
t = Y p

t
′dt + Z p,B

t d Bt + Z p,W
t dWt , Y p

T = λρp
2 ,

d Rp(t) = R′
p(t)dt, Rp(T ) = −λγρcE[cT ],

(4.15)

⎧⎪⎪⎨
⎪⎪⎩

d Kc(t) = K ′
c(t)dt, Kc(T ) = 0,

dc(t) = ′
c(t)dt, c(T ) = 0,

dY c
t = Y c

t
′dt + Zc,B

t d Bt + Zc,W
t dWt , Y c

T = λγρc
2 ,

d Rc(t) = R′
c(t)dt, Rc(T ) = −λρpE[qT ],

(4.16)

for some deterministic processes K ′
i ,

′
i , R′

i and for some F-adapted processes

Y i ′, Zi,W , Zi,B , i ∈ {p, c}.
Sub-step 1.2 For the sake of simplicity, from now on, we explicitly develop only the
producer case. The consumer problem can be studied in same way. Let t ∈ [0, T ] and
α p ∈ A. As in (4.13) in Theorem 4.2 (Verification Theorem), we set

S p,α p

t = w
p
t (qα p

t ,E[qα p

t ]) +
∫ t

0
f p(u, qα p

u ,E[qα p

u ], α p
u ,E[α p

u ]; cβc
)du.
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In the following, we write simply c instead of cβc
(resp. q instead of qβ p

), when the
strategies are clear from the context (see Remark 4.1). After some computations (see
Appendix 1 for details), we obtain

d

dt
E[S p,α p

t ] = E

[
(K ′

p(t) + Q p)(qt − E[qt ])2

+ (′
p(t) + Q p + Q̃ p)E[qt ]2

+ 2(Y p
t

′ + M p(c)t )qt

+ R′
p(t) + T p(c)t + χ

p
t (α

p
t )
]
,

(4.17)

where, for any t ∈ [0, T ], we have set

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

χ
p
t (α

p
t ) := (α

p
t )�Sp(t)α

p
t + 2[Up(t)(qt − E[qt ]) + Vp(t)qt + ξ

p
t + ξ̄

p
t + Op(t)]�α p(t)

Sp(t) := Np + e2K p(t)e�
2

Up(t) := K p(t)e1
Vp(t) := p(t)e1
Op(t) := Hp + e1E[Y p

t ] + e2E[Z p,W
t ]

ξ
p

t := Hp + e1Y p
t + e2Z p,W

t

ξ̄
p

t := Hp + e1E[Y p
t ] + e2E[Z p,W

t ],
(4.18)

where Q p, Q̃ p, M p(c), Np, Hp and T p(c) are defined in Equation (4.6).
Sub-step 1.3 Now, we find conditions granting that assumptions i), ii) and iii) of
Theorem 4.2, involving S p,α p

, hold. Suppose that the matrix Sp(t) is negative definite
and thus invertible. We check this later, verifying that K p(t) ≤ 0, for all t ∈ [0, T ]
(see Remark 4.5). We complete the squares and rewrite the Eq. (4.17) as

d

dt
E[S p,α p

t ] = E

[(
K ′

p(t) + Q p − Up(t)
�Sp(t)

−1Up(t)
)
(qt − E[qt ])2

+ (′
p(t) + Q p + Q̃ p − Vp(t)

�Sp(t)
−1Vp(t)

)
E[qt ]2

+ 2
[
Y p

t
′ + M p(c)t − Up(t)

�Sp(t)
−1(ξ

p
t − ξ̄

p
t ) − Vp(t)

�Sp(t)
−1Op(t)

]
qt

+ R′
p(t) + T p(c)t − (ξ

p
t − ξ̄

p
t )�Sp(t)

−1(ξ
p

t − ξ̄
p

t ) − Op(t)
�Sp(t)

−1Op(t)

+ (α
p
t − η

p
t )�Sp(t)

−1(α
p
t − η

p
t )
]
,

where, for all t ∈ [0, T ], we have defined

η
p
t := −Sp(t)

−1 [Up(t)(qt − E[qt ]) + Vp(t)E[qt ] + (ξ
p

t − ξ̄
p

t ) + Op(t)
]
. (4.19)
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Choosing processes K p,p, Y p and Rp, whose existence is shown in the next sub-
step, that solve the following system of BSDEs

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K ′
p(t) + Q p − Up(t)�Sp(t)−1Up(t) = 0, K p(T ) = 0,

′
p(t) + Q p + Q̃ p − Vp(t)�Sp(t)−1Vp(t) = 0, p(T ) = 0,

dY p
t = [−M p(c)t + Up(t)�Sp(t)−1(ξ

p
t − ξ̄

p
t ) + Vp(t)�Sp(t)−1Op(t)

]
dt

+Z p,B
t d Bt + Z p,W

t dWt ,

Y p
T = L p,

R′
p(t) + E[T p(c)t − (ξ

p
t − ξ̄

p
t )�Sp(t)−1(ξ

p
t − ξ̄

p
t ) − Op(t)�Sp(t)−1Op(t)] = 0,

Rp(T ) = E[T̃ p(c)],
(4.20)

we obtain
d

dt
E[S p,α p

t ] = E

[
(α

p
t − η

p
t )�Sp(t)

−1(α
p
t − η

p
t )
]
, (4.21)

which is clearly non-positive for all t ∈ [0, T ], since Sp(t) (defined in Equation (4.18))
is negative definite for all t ∈ [0, T ].

Remark 4.3 We stress the fact that the processes Y p, Z p,W , Z p,B and Rp depend only

on the strategy of the consumer through the state process {ct }t∈[0,T ], with ct = cβc

t , t ∈
[0, T ], which is controlled only by βc. Thus, the feedback best response control are
functions of different state variables, namely the best response for the producer is
feedback in q and its expectation, whereas the best response for the consumer is
feedback in c and its expectation.

Sub-step 1.4
Now we combine the results in the previous steps in order to get the best response

maps.

Proposition 4.4 The best response maps are given by

Bp(β
c)t = −(Np + e2K p(t)e

�
2 )−1[e1K p(t)(qt − E[qt ])

+ e1p(t)E[qt ] + e1Y p
t + e2Z p,W

t + Hp],
Bc(β

p)t = −(Nc + e2Kc(t)e
�
2 )−1[e1Kc(t)(ct − E[ct ])

+ e1c(t)E[ct ] + e1Y c
t + e2Zc,B

t + Hc], (4.22)
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where the processes (K p,p, Y p, Rp) and (Kc,c, Y c, Rc) above solve the fol-

lowing systems of backward ODEs and SDEs, given ct = cβc

t (respectively, given

qt = qβ p

t ), t ∈ [0, T ]:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K ′
p(t) = − 2

kp
K p(t)2 + ρp + ηpλ

2ρ2
p, K p(T ) = 0,

′
p(t) = − 2

kp
p(t)2 + ρp, p(T ) = 0,

dY p
t = −

{
s0
2 + γρc

2 ct + ρpγρcηpλ
2(ct − E[ct ]) + 2

kp

[
K p(t)

(
Y p

t − E[Y p
t ])+ p(t)E[Y p

t ]
]}

dt

+Z p,B
t d Bt + Z p,W

t dWt ,

Y p
T = λρp

2 ,

R′
p(t) = ηpλ

2γ 2ρ2
cV[ct ] − 2

kp
(V[Y p

t ] + E[Y p
t ]2) − 2

�p−2K p(t) (V[Z p,W
t ] + (E[Z p,W

t ] + �pσp
2 )2),

Rp(T ) = −λγρcE[cT ],
(4.23)

and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K ′
c(t) = − 2

kc
Kc(t)2 + γρc(γ − p1) + ηcλ

2γ 2ρ2
c = 0, Kc(T ) = 0,

′
c(t) = − 2

kc
c(t)2 + γρc(γ − p1), c(T ) = 0,

dY c
t = −

{
p0+p1s0−γ (s0+δ)

2 + ρp(γ−p1)
2 qt + ρpγρcηcλ

2(qt − E[qt ]) + 2
kc

[
Kc(t)(Y c

t − E[Y c
t ])

+c(t)E[Y c
t ]
]}

dt + Zc,B
t d Bt + Zc,W

t dWt ,

Y c
T = λγρc

2 ,

R′
c(t) = ηcλ

2ρ2
pV[qt ] − 2

kc
(V[Y c

t ] + E[Y c
t ]2) − 2

�c−2Kc(t)
[V[Zc,B

t ] + (E[Zc,B
t ] + �cσc

2 )2],
Rc(T ) = −λρpE[qT ].

(4.24)
So, we have

J̃λ
p (Bp(β

c);βc) = V λ
p (βc) and J̃λ

c (Bc(β
p);β p) = V λ

c (β p).

Moreover, we have an explicit expression for the Nash equilibrium values which are
given by

V λ
p (βc) = p(0)q

2
0 + 2E[Y p

0 ]q0 + Rp(0) and

V λ
c (β p) = c(0)c

2
0 + 2E[Y c

0 ]c0 + Rc(0).
(4.25)

Remark 4.5 Notice that the first two equations in the systems (4.23) and (4.24) are
one-dimensional Riccati differential equations, for which it is known that there exists
a unique global solution given by Equation (3.1). In the following we face more
complicated Riccati equations (non-symmetric matrix Riccati equations) for which
existence of solutions is not guaranteed. The fact that K p(t) and Kc(t) are given
by a hyperbolic tangent with a positive argument multiplied by a negative constant
yields that K p(t) ≤ 0 and Kc(t) ≤ 0, granting that Sp(t) = Np + e2K p(t)e�

2 and
Sc(t) = Nc + e2Kc(t)e�

2 are negative definite for all t ∈ [0, T ], hence matching the
assumptions made at the beginning of Sub-step 1.3.

Proof To prove the proposition we need to apply Theorem 4.2. So, let us check that its
hypotheses are fulfilled. Fix a couple of strategies β p, βc ∈ A. First of all, condition i)
is a consequence of the terminal conditions of systems (4.23) and (4.24). Furthermore,
we notice that assumption ii) is verified, for any α p ∈ A (resp. for any αc ∈ A),
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because the fact that the processes (K p,p, Y p, Rp) and (Kc,c, Y c, Rc) solve the

systems (4.23) and (4.24) yields that d
dt E[S p,α p

t ] and d
dt E[Sc,αc

t ] are negative and so

the monotonicity of the functions [0, T ] 
 t �→ E[S p,α p

t ](resp. E[Sc,αc

t ]). Then, by
(4.21), we notice that, given βc ∈ A, d

dt E[S p,α p

t ] = 0, for all t ∈ [0, T ], if and only
if, for all t ∈ [0, T ], we have

α
p
t = η

p
t = −Sp(t)

−1
[
Up(t)(qt − E[qt ]) − Vp(t)E[qt ] − (ξ

p
t − ξ̄

p
t ) − Op(t)

]
, P-a.s.,

and analogously, given β p ∈ A, 0 = d
dt E[Sc,αc

t ], for all t ∈ [0, T ], if and only if, for
all t ∈ [0, T ], we have

αc
t = ηc

t = −Sc(t)
−1 [Uc(t)(ct − E[ct ]) − Vc(t)E[ct ] − (ξ c

t − ξ̄ c
t ) − Oc(t)

]
, P-a.s.

Hence, the strategies in (4.22) satisfy iii) as well.
Finally, let us check the admissibility of the strategies Bp(β

c) and Bc(β
p), i.e.

Bp(β
c) ∈ A and Bc(β

p) ∈ A. We need to verify their square-integrability. Let
us check it for Bp(β

c), the same can be done for Bc(β
p). The state variable

q = {qt }t∈[0,T ] = {qBp(βc)(t)}t∈[0,T ] is the solution of a linear SDE and so it satisfies
E[supt∈[0,T ] |qt |2] < ∞. Furthermore, Sp, Up, Vp, defined in (4.18), are bounded,
being continuous matrix-valued functions over a finite time-interval, and the process
(Op, ξ

p) belongs to L2([0, T ],R2)× L2
F
(�×[0, T ],R2). This implies that the feed-

back control Bp(β
c) ∈ L2

F
(� × [0, T ],R2). �

4.4 Second Step:Well-Posedness of the Best ResponseMap System

This subsection provides the proof of existence and uniqueness of solutions to the
systems in (4.23) and (4.24),

K p, Kc, p and c ∈ L∞([0, T ],R−), Rp and Rc ∈ L∞([0, T ],R),

(Y p, Z p,W , Z p,B) and (Y c, Zc,W , Zc,B) ∈ S2
F
(� × [0, T ],R) × L2

F
(� × [0, T ],R)2,

given the state controlled by the other player.
The fact that there exist unique K p, Kc,p,c ∈ L∞([0, T ],R+) is straightfor-

ward (see Remark 4.5). We also have explicit formulae for them (see Equation (3.1)).
Moreover the non-positivity of K p and Kc implies that the matrices Sp and Sc, defined
in (4.18), are negative definite.

Now, consider themean-field BSDE associated to the processes (Y p, Z p,W , Z p,B),
given K p and p :

⎧⎪⎨
⎪⎩

dY p
t = −

{
s0
2 + γρc

2 ct + ρpγρcηpλ
2(ct − E[ct ]) + 2

kp

(
K p(t)(Y

p
t − E[Y p

t ]) + p(t)E[Y p
t ])} dt

+Z p,B
t d Bt + Z p,W

t dWt ,

Y p
T = λρp

2 .
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Existence and uniqueness of the solution (Y p, Z p,W , Z p,B) ∈ S2
F
(� × [0, T ],R) ×

L2
F
(� × [0, T ],R)2 is a consequence of Li et al., [29, Theorem 2.1] and the fact that

c ∈ S2
F
(� × [0, T ],R) by the admissibility of the associated control βc.

Finally, given (K p,p, (Y p, Z p,W , Z p,B)), the linear ODE associated to Rp in
system (4.23) has a unique solution given by

Rp(t) = − λγρcE[cT ] +
∫ T

t

[
− ηpλ

2γ 2ρ2
cV[cu] + 2

kp

(
V[Y p

u ] + E[Y p
u ]2
)

+ 2

�p − 2K p(u)

(
V[Z p,W

u ] +
(
E[Z p,W

u ] + �pσp

2

)2
)]

du.

The same arguments are used to prove existence and uniqueness for the processes
(Y c, Zc,W , Zc,B) in S2

F
(�×[0, T ],R)×L2

F
(�×[0, T ],R)2 and Rc ∈ L∞([0, T ],R).

This ends the proof of existence and uniqueness for systems (4.23) and (4.24).

4.5 Third Step: Fixed Point of the Best ResponseMap

Here, we prove the existence of a fixed point of the best response maps in order to
get a Nash equilibrium. First of all, for convenience of notation, we rewrite the two-
dimensional state variable as Xt := (qt , ct )

�, for all t ∈ [0, T ], and so its linear
dynamics is given by the following SDE

d Xt =
(

dqt

dct

)
=
(

ut

vt

)
dt +

(
zt

0

)
dWt +

(
0
yt

)
d Bt , (4.26)

with a deterministic initial condition X0 = (q0, c0)� ∈ R
2+. Then, we have

d Xt = bαt dt + σ W αt dWt + σ Bαt d Bt ,

with

b =
(
1 0 0 0
0 0 1 0

)
, σ W =

(
0 1 0 0
0 0 0 0

)
, σ B =

(
0 0 0 0
0 0 0 1

)
.

Then, we rewrite explicitly the form that a candidate equilibrium feedback control
α∗ = ((α∗,P )�, (α∗,C )�)� should have, together with the backward dynam-
ics of the corresponding process Y = ((Y p)�, (Y c)�)� (we write Z W for
((Z p,W )�, (Zc,W )�)�, respectively Z B for ((Z p,B)�, (Zc,B)�)�),1

α∗
t − ᾱ∗

t = �(t)
(
Xt − X̄t

)+ �
(
Yt − Ȳt

)+ H W (t)
(

Z W
t − Z̄ W

t

)
+ H B(t)

(
Z B

t − Z̄ B
t

)
,

ᾱ∗
t = �̂(t)X̄t + �Ȳt + H W (t)Z̄ W

t + H B(t)Z̄ B
t + �(t), (4.27)

1 Here, we have omitted, in all the processes but α, the superscript ∗ in order to have a simpler notation.
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dYt = [
�
(
Xt − X̄t

)+ �(t)
(
Yt − Ȳt

)]
dt + [�̂X̄t + �̂(t)Ȳt + �

]
dt + Z B

t d Bt + Z W
t dWt ,

(4.28)

with

�(t) =

⎛
⎜⎜⎜⎝

2
kp

K p(t) 0

0 0
0 2

kc
Kc(t)

0 0

⎞
⎟⎟⎟⎠ , �̂(t) =

⎛
⎜⎜⎜⎝

2
kp

p(t) 0

0 0
0 2

kc
c(t)

0 0

⎞
⎟⎟⎟⎠ , � =

⎛
⎜⎜⎜⎝

2
kp

0

0 0
0 2

kc

0 0

⎞
⎟⎟⎟⎠ ,

�(t) =

⎛
⎜⎜⎜⎝

0

σp(1 − 2 K p(t)
�p

)−1

0
σc(1 − 2 Kc(t)

�c
)−1

⎞
⎟⎟⎟⎠ , H W (t) =

⎛
⎜⎜⎝

0 0
2

�p−2K p(t) 0

0 0
0 0

⎞
⎟⎟⎠ , H B(t) =

⎛
⎜⎜⎝
0 0
0 0
0 0
0 2

�c−2Kc(t)

⎞
⎟⎟⎠ ,

and �, �̂, �(t), �̂(t) and � as defined at the beginning of Sect. 3.1.
Now, as an ansatz for Y , we assume Y linear in the state:

Yt = π(t)(Xt − X̄t ) + π̂(t)X̄t + ζt , (4.29)

with π, π̂ deterministicR2×2-valued processes and ζ ∈ S2
F
(�×[0, T ],R2) satisfying

the SDE

dζt = ψt dt + φW
t dWt + φB

t d Bt , ζT = 1

2
λ(ρp, γρc)

�, (4.30)

for someψ, φB, φW in suitable spaces. The affine term in the expression (4.29) allows
Y to have some extra stochasticity apart from the linear dependency on the state.
Furthermore, the terminal condition in (4.30) guarantees that Y satisfies its terminal
condition.

An application of Itô’s formula to the ansatz (4.29) yields

dYt =[π ′(t)(Xt − X̄t ) + π(t)b(α∗
t − ᾱ∗

t ) + ψt − ψ̄t ]dt + (π̂ ′(t)X̄t + π̂(t)bᾱ∗
t + ψ̄t )dt

+ (π(t)σ W α∗
t + φW

t )dWt + (π(t)σ Bα∗
t + φB

t )d Bt .

(4.31)
If we match the two dynamics of Y in Eqs. (4.28) and (4.31), and then replace Y with
its ansatz (4.29) and α∗ with its feedback form (4.27), we get the following system of
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equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

π ′(t)(Xt − X̄t ) + π(t)b(I − H W (t)π(t)σ W − H B(t)π(t)σ B)−1[(�(t)
+�π(t))(Xt − X̄t ) + �(ζt − ζ̄t ) + H W (t)(φW

t − φ̄W
t ) + H B(t)(φB

t − φ̄B
t )]

+ψt − ψ̄t = �(Xt − X̄t ) + �(t)(π(t)(Xt − X̄t ) + ζt − ζ̄t )

π̂ ′(t)X̄t + π̂(t)b(I − H W (t)π(t)σ W − H B(t)π(t)σ B)−1[(�̂(t) + �π̂(t))X̄t + �ζ̄t

+�(t) + H W (t)φ̄W
t + H B(t)φ̄B

t ] + ψ̄t = �̂X̄t + �̂(t)(π̂(t)X̄t + ζ̄t ) + �

Z B
t = π(t)σ W α∗

t + φW
t

Z W
t = π(t)σ Bα∗

t + φB
t .

(4.32)
Finally, exploiting the fact that:

b
(
I − H W (t)π(t)σ W − H B(t)π(t)σ B

)−1 = b, (4.33)

we find the equations that the coefficients (π, π̂, ψ, φW , φB) in the ansatz for Y should
solve in order to provide a fixed point of the best response map:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

π ′(t) = � + �(t)π(t) + π(t)�(t) + π(t)Rπ(t), π(T ) = 0,
π̂ ′(t) = �̂ + �̂(t)π̂(t) + π̂(t)�̂(t) + π̂(t)Rπ̂(t), π̂(T ) = 0,
dζt = ψt dt + φW

t dWt + φB
t d Bt , ζT = 1

2λ(ρp, γρc)
�,

ψt = ψt − ψ̄t + ψ̄t =
(
π(t)R + �(t)

)
(ζt − ζ̄t ) + (π̂(t)R + �̂(t)

)
ζ̄t + �,

(4.34)

where R =
(−2/kp 0

0 −2/kc

)
. In fact, inserting (Y , Z) from the ansatz and Equation

(4.32) into the best response given byEquations (4.27) provides an equilibriumstrategy
α∗ in feedback form which is computed in details in the next step.

Remark 4.6 To obtain explicit expressions for α∗ and Z , we have used Assumption
(A2) in Theorem 3.1. Indeed, such a condition is needed for the invertibility of the
matrices D(t) := (I − H W (t)π(t)σ W − H B(t)π(t)σ B), t ∈ [0, T ], that appear in

Z W
t = φW

t + π(t)σ W α∗
t , Z B

t = φB
t + π(t)σ Bα∗

t , (4.35)
where

α∗
t = D(t)−1[(�(t) + �π(t))(Xt − X̄t ) + (�̂(t)

+ �π̂(t))X̄t + �ζt + H W (t)φW
t + H B(t)φB

t + �(t)].

4.6 Fourth Step: Nash Equilibrium Strategies

In order to complete the proof of the main theorem, we are left with showing that the
system (4.34) has a unique solution over the finite time interval [0, T ]. The equations
associated to t �→ (π(t), π̂(t)) are non-symmetric matrix Riccati equations for which
there is no general condition ensuring the global existence of solutions. Nevertheless,
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the regularity of the coefficients and the Picard-Lindelöf Theorem ensure the local
existence and uniqueness of solutions over a compact interval [0, Tmax ]2. Thus, we
recover the existence and uniqueness condition in Assumption (A1) of Theorem 3.1
choosing a time horizon T small enough, namely T < Tmax . Then, for a given (π, π̂),
the process (ζ, ψ, φW , φB) evolves according to the following linearmeanfieldBSDE:

dζt = ψt dt + φW
t dWt + φB

t d Bt , ζT = 1

2
λ(ρp, γρc)

�,

ψt = ψt − ψ̄t + ψ̄t = (π(t)R + �(t))(ζt − ζ̄t ) + (π̂(t)R + �̂(t))ζ̄t + �.

(4.36)

Exploiting once more [29, Theorem 2.1], we have a unique solution (ζ, φW , φB) ∈
S2
F
(� × [0, T ],R2) × L2

F
(� × [0, T ],R2)2. Furthermore, we notice that the drift ψ

in the system (4.36) does not depend on φW and φB and all the coefficients involved
in the second line of (4.36) are deterministic. Moreover, the terminal condition is
also deterministic. Thus, the unique solution (ζ, φW , φB) to this system is given by
(h, 0, 0), where h : [0, T ] → R

2 is the unique (deterministic) solution to the following
backward linear ODE:

{
dh(t) = {[

π̂(t)R + �̂(t)
]

h(t) + �
}

dt,
h(T ) = 1

2λ(ρp, γρc)
�.

(4.37)

So, the system of ODEs and SDEs in (4.34) reduces to the one made up of Equations
(3.5) and (3.6).

We write the Nash equilibrium strategies α∗ = ((α∗,P ), (α∗,C ))� = ((u∗, z∗)�,
(v∗, y∗)�)� explicitly as

α∗
t = D(t)−1(�(t) + �π(t))(Xt − X̄t ) + D(t)−1(�̂(t)

+ �π̂(t))X̄t + D(t)−1(�h(t) + �(t)), (4.38)

that is

2 Despite it is not possible in general to obtain an explicit characterization of Tmax , we notice that we
did not observe any explosion for all typical values of the parameters we have considered in the numerical
experiments (ref. Sect. 5).
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u∗
t = 2

kp

[
(K p(t) + π11(t))(qt − q̄t ) + π12(t)(ct − c̄t ) + (p(t)

+π̂11(t))q̄t + π̂12(t)c̄t + h1(t)] ,

z∗(t) = σp�p

�p − 2(K p(t) + π11(t))
,

v∗
t = 2

kc
[(Kc(t) + π22(t))(ct − c̄t ) + π21(t)(qt − q̄t ) + (c(t)

+π̂22(t))c̄t + π̂21(t)q̄t + h2(t)] ,

y∗(t) = σc�c

�c − 2(Kc(t) + π22(t))
,

where K p, Kc,p,c are defined in (3.1) andπ, π̂ and h are respectively the solutions
to the systems (3.5), (3.6).

Finally, we derive the corresponding equilibrium dynamics for the state

d Xt =
{( 2

kp
(K p(t) + π11(t))

2
kp

π12(t)
2
kc

π21(t)
2
kc

(Kc(t) + π22(t))

)
(Xt − X̄t )

+
(

2
kp

(p(t) + π̂11(t))
2

kp
π̂12(t)

2
kc

π̂21(t)
2
kc

(c(t) + π̂22(t))

)
X̄t +

(
2

kp
h1(t)

2
kc

h2(t)

)}
dt

+
(

σp�p
�p−2(K p(t)+π11(t))

0

)
dWt +

(
0

σc�c
�c−2(Kc(t)+π22(t))

)
d Bt , t ∈ [0, T ],

which is a linear mean-field SDE, hence admitting a unique solution.

5 Numerics

We consider the following parameters setting T = 1, kp = kc = 5, σp = σc = 10,
q0 = c0 = 100, s0 = 50, ρp = γρc = 0.5 and γ = 1.2, δ = 5, p0 = 2s0 + γ δ,
and p1 = γ − 1. With this parametrisation, the players are symmetric in the sense
that they have the same absolute effect on the price and they share the same costs of
average production rate or consumption rate. Moreover, if they shared the same risk
aversion parameters (ηp = ηc) and the same costs of volatility control (�p = �c),
then the strategies of the producer (u∗, z∗) and of the consumer (v∗, y∗) would be
identical. The initial conditions have been chosen to be close to a long-run stationary
equilibrium that we observe when we take large T , which allows avoiding potential
transitory effects.

In the next sub-sections, we illustrate first the effect of the risk aversion parameters
on the forward agreement indifference price when every other parameter is fixed.
Second, we show how different combinations of risk aversions and volatility control
costs can lead to the same forward agreement indifference price and volume.
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Fig. 1 (a) and (b) �p = �c = 5, (c) and (d) �p = �c = 0.7

5.1 The Effect of Risk Aversion

Figure 1 presents the unitary forward agreement indifference price f λ∗,∗ := F∗
λ∗/λ∗

and the volume that the players agreed upon when the costs of volatility control are
high (Fig. 1a and b) and when they are low (Fig. 1c and d). We find that f λ∗,∗ is higher
(resp. lower) than the expected spot price when the producer is more (resp. less) risk-
averse than the consumer, which is consistent with both the economic intuition and
the hedging pressure theory, once recalled that in our model players act as speculators
on the forward market. In hedging pressure theory (see [14, 15]), the risk premium is
determined by the relations between risk aversions of producers, consumers, storers
and speculators. It extends Keynes’s normal backwardation theory which claims that
in commodity markets, the forward price should be lower than the expected spot price
because the producer would be ready to pay a premium to avoid being exposed to
price risk on his production. In our case, the most risk-averse speculator obtains the
appropriate premium to enter into the agreement. This property holds whatever the
level of volatility control costs. We see on Fig. 1 that the producer is requiring a
positive premium to accept the risk coming from his financial position. Regarding the
exchanged volume, we observe that it can be both nonincreasing or nondecreasing in
the risk aversion parameters of the players, depending on the costs of volatility control.
When the volatility manipulation costs are high for both players, there is a low trading
volume even when both players have a high risk aversion. On the other side, when the
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Fig. 2 Level lines of (a) the forward agreement price F∗
λ∗ , (b) the traded quantity λ∗, (c) the per unit

agreement price f λ∗,∗ = F∗
λ∗/λ∗, (d) the value of the producer’s equilibrium payoff J∗

p (λ∗, F∗
λ∗ )

volatility manipulation costs are low, there is a low trading volume when only one of
the player has a high risk aversion but the trading volume is huge when both players
have a high risk aversion. This could be explained by the fact that in the latter case the
players can act on their volatilities (almost costlessly) to stabilize the spot price and
hence they would be willing to trade more.

5.2 Joint Effect of Risk Aversion andVolatility Control Cost

We freeze now the risk aversion parameter and the cost for controlling the volatility
of the consumer at ηc = 0.01 and �c = 5, and observe the agreement price, the traded
volume, the per unit agreement indifference price and the equilibrium payoff at the
agreement of the producer. Results are provided in Fig. 2, when the producer’s risk
aversion parameter ηp and his volatility manipulation cost �p vary. The vertical and
horizontal lines in each graph are set to the values of �c and ηc.

We observe a sort of “substitution effect” between ηp and �p in the sense that for a
producer with a given combination of risk aversion and volatility control cost, we can
find another producer trading at the same agreement price with a higher risk aversion
and a low volatility control cost (Fig. 2a). We observe that this phenomenon occurs
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also for the traded quantity (Fig. 2b). This substitutionmakes sense in ourmodel where
volatility represents a cost for the producer that can be mitigated either by requiring a
payment to bear this volatility or by paying the cost to reduce it.We note that for a fixed
value of ηp, the lower the value of �p, the larger the forward agreement price and the
traded volume. The Fig. 2c gives the resulting unitary agreement forward price. The
volatility control cost has little effect on the per unit forward price compared to the risk
aversion parameter. This figure is a way of showing that when the volatility control
costs are high, the producer has little alternative than asking for a premium to enter in
forward agreement, and thus, the price is basically determined by his risk-aversion.

To conclude, we note that the producer’s equilibrium payoff is independent of the
value of ηp (Fig. 2d) because, by definition of the agreement forward price, it is always
equal to J ∗

p (0, 0), which is independent of ηp.
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A: Proof of Theorem 4.2 (Verification Theorem)

For anyα p ∈ A (resp. for anyαc ∈ A), themap [0, T ] 
 t �→ E[S p,α p

t ]
(
resp. E[Sc,αc

t ]
)

is well-defined (it does not explode in finite time), because of the condition (4.12) and
the linear structure of the SDEs for the state variables (4.1).

Assumptions i) and ii) yields that: for any α p ∈ Ap,

E[w p
0 (q0, q̄0)] = E[S p,α p

0 ] ii)≥ E[S p,α p

T ] = E

[
W p,α p

T +
∫ T

0
f p(s, qα p

s ,E[qα p

s ], α p
s ,E[α p

s ]; cβc
)ds

]

i)= E

[
gp(q

α p

T ,E[qα p

T ]; cβc
) +

∫ T

0
f p(s, qα p

s ,E[qα p

s ], α p
s ,E[α p

s ]; cβc
)ds

]
= J̃λ

p (α p; cβc
)

= J̃λ
p (α p; βc).

Then, the arbitrariness ofα p ∈ A implies thatE[w p
0 (q0, q̄0)] ≥ supα p∈A J̃λ

p (α p; cβc
) =

V λ
p (βc).
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Performing the same computations with α p,� instead of α p, by condition iii), we
get: E[w p

0 (q0, q̄0)] = J̃λ
p (α p,�;βc). Then, we have showed that α p,� = Bp(β

c) is the
best response to βc. The fact that αc,� = Bc(β

p) is the best response to β p is proved
analogously.

Now, take α̃ p ∈ A to be another best response to βc. We have

E[S P ,̃α p

0 ] = E[w p
0 (q0, q̄0)] = V λ

p (βc) = J̃λ
p (̃α p, βc) = E[S P ,̃α p

T ].

Then, we conclude that the map [0, T ] 
 t �→ E[S P ,̃α p

t ] is constant, since it is
nonincreasing and it takes the same value at its extremal points. This reasoning, with
a few modifications, can be replicated for α̃c, hence concluding the proof.

B: Computations of the Best ResponseMaps

As we have done in Sect. 4.3 (Sub-step 1.2), we develop here only the computa-
tions for the best response of the producer. The best response of the consumer is
obtained following very similar computations. In this section we show that, setting
w

p
t (q, q̄) = K p(t)(q − q̄)2 + p(t)q̄2 + 2Y p

t q + Rp(t), with (K p,p, Y p, Rp) ∈
L∞([0, T ],R−)2 × S2

F
(� × [0, T ],R) × L∞([0, T ],R), once S p,α p

is defined as in
the Verification Theorem in Theorem 4.2, we have

d

dt
E[S p,α p

t ] = E

[
(K ′

p(t) + Q p)(qt − E[qt ])2 + (′
p(t) + Q p + Q̃ p)E[qt ]2

+ 2(Y p
t

′ + M p,c
t )qt + R′

p(t) + T p,c
t + χ

p
t (α

p
t )
]
,

where, for all t ∈ [0, T ], we have set
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

χ
p
t (α p(t)) := (α

p
t )�Sp(t)α

p
t

+2[Up(t)(qt − E[qt ]) + Vp(t)qt + ξ
p

t + ξ̄
p

t + Op(t)]�α
p
t

Sp(t) := Np + e2K p(t)e�
2

Up(t) := K p(t)e1
Vp(t) := p(t)e1
Op(t) := Hp + e1E[Y p

t ] + e2E[Z p,W
t ]

ξ
p

t := Hp + e1Y p
t + e2Z p,W

t

ξ̄
p

t := Hp + e1E[Y p
t ] + e2E[Z p,W

t ].

(B.1)

First of all, we notice

dE[S p,α p

t ]
dt

= E

[
d

dt
E[w p

t (qα p

t ,E[qα p

t ])] + fP (t, qα p

t ,E[qα p

t ], α p
t ,E[α p

t ]; cβc
)

]
.

(B.2)
The dynamics of the state variable controlled by the producer is rewritten as

dq̄α p

t = e�
1 ᾱ

p
t dt, (B.3)
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d(qα p

t − q̄α p

t ) = e�
1 (α

p
t − ᾱ

p
t )dt + e�

2 α
p
t dWt , (B.4)

From now on, we write qt for qα p

t to simplify the notation. Applying Itô’s formula to
w

p
t (qt ,E[qt ]), we get

dw
p
t (qt ,E[qt ])

= K ′
p(t)(qt − q̄t )

2dt + K p(t)[2(qt − q̄t )d(qt − q̄t ) + (e�
2 α

p
t )2dt] + ′

p(t)(q̄t )
2dt

+ 2p(t)q̄t dq̄t + 2qt dY p
t + 2Y p

t dqt + Z p,W
t e�

2 α
p
t dt + R′

p(t)dt

= K ′
p(t)(qt − q̄t )

2dt + K p(t){2(qt − q̄t )[e�
1 (α

p
t − ᾱ

p
t )dt + e�

2 α
p
t dWt ] + (e�

2 α
p
t )2dt}

+ ′
p(t)(q̄t )

2dt + 2p(t)q̄t e
�
1 ᾱ

p
t dt + 2qt (Y

p
t

′
dt + Z p,W

t dWt + Z B
p d Bt )

+ 2Y p
t (e�

1 α
p
t dt + e�

2 α
p
t dWt ) + Z p,W

t e�
2 α

p
t dt + R′

p(t)dt

= [K ′
p(t)(qt − q̄t )

2 + 2K p(t)(qt − q̄t )e
�
1 (α

p
t − ᾱ

p
t ) + K p(t)(e

�
2 α

p
t )2 + ′

p(t)(q̄t )
2

+ 2p(t)q̄t e
�
1 ᾱ

p
t + 2Y p

t
′
qt + 2Y p

t e�
1 α

p
t + 2Z p,W

t e�
2 α

p
t + R′

p(t)]dt

+ 2[K p(t)(qt − q̄t )e
�
2 α

p
t + Z p,W

t + Y p
t e�

2 α
p
t ]dWt + 2Z p,B

t d Bt

Then, taking its expected value, we obtain

d

dt
E[w p

t (qt , q̄t )]

= E[dw
p
t (qt ,E[qt ])]

dt
= E

[
K ′

p(t)(qt − q̄t )
2 + 2K p(t)(qt − q̄t )e

�
1 (α

p
t − ᾱ

p
t )

+ K p(t)(e
�
2 α

p
t )2 + ′

p(t)(q̄t )
2 + 2p(t)q̄t e

�
1 ᾱ

p
t + 2Y p

t
′
qt + 2Y p

t e�
1 α

p
t

+ R′
p(t) + 2Z p,W

t e�
2 α

p
t

]

= E

[
K ′

p(t)(qt − q̄t )
2 + 2K p(t)(qt − q̄t )e

�
1 α

p
t + K p(t)(e

�
2 α

p
t )2 + ′

p(t)(q̄t )
2

+ 2p(t)q̄t e
�
1 α

p
t + 2Y p

t
′
qt + 2Y p

t e�
1 α

p
t + R′

p(t) + 2Z p,W
t e�

2 α
p
t

]

= E

[
K ′

p(t)(qt − q̄t )
2 + ′

p(t)(q̄t )
2 + 2Y p

t
′
qt + R′

p(t) + K p(t)(e
�
2 α

p
t )2

+
[
2(K p(t)(qt − q̄t ) + p(t)q̄t + Y p

t )e1 + 2Z p,W
t e2

]�
α

p
t

]
,

(B.5)

pt where we have used the following semplifications: E[2p(t)e�
1 ᾱ

p
t q̄t ] =

E[2p(t)q̄t e�
1 α

p
t ] and E[2K p(t)e�

1 ᾱ
p
t (qt − q̄t )] = 2K p(t)e�

1 ᾱ
p
t E[qt − q̄t ] = 0.

Moreover, since

E[ f p(t, qt , q̄t , α
p
t , ᾱ

p
t ; cβc

)] = E[Q p(qt − q̄t )
2 + (Q p + Q̃ p)q̄

2
t

+2M p,c
t qt + (α

p
t )�Npα

p
t + 2H�

p α
p
t + T p,c

t ], (B.6)
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by adding up (B.5) and (B.6), we get

dE[S p,α p

t ]
dt

= E

[
d

dt
E[w p

t (qt , q̄t )] + f p(qt , q̄t , α
p
t , ᾱ

p
t ; cβc

)

]

= E

[
(K ′

p(t) + Q p)(qt − q̄t )
2 + (′

p(t) + Q p + Q̃ p)(q̄t )
2 + 2(Y p

t
′ + M p(c)t )qt

+ R′
p(t) + T p(c)t + χ

p
t (α

p
t )
]
,

(B.7)
where we have set

χ
p
t (α

p
t ) : = K p(t)(e

�
2 α

p
t )2 +

{
2[K p(t)(qt − q̄t ) + p(t)q̄t + Y p

t ]e1 + 2Z p,W
t e2

}�
α

p
t

+ (α
p
t )�Npα

p
t + 2H�

p α
p
t

=
{
2[K p(t)(qt − q̄t ) + p(t)q̄t + Y p

t ]�p + 2Z p,W
t e2 + 2Hp

}�
α

p
t

+ (α
p
t )�(Np + e2K p(t)e

�
2 )α

p
t

= 2[Up(t)(qt − E[qt ]) + Vp(t)qt + ξ
p

t + ξ̄
p

t + Op(t)]�α
p
t

+ (α
p
t )�Sp(t)α

p
t ,

with ⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Sp(t) := Np + e2K p(t)e�
2

Up(t) := K p(t)e1
Vp(t) := p(t)e1
Op(t) := Hp + e1E[Y p

t ] + e2E[Z p,W
t ]

ξ
p

t := Hp + e1Y p
t + e2Z p,W

t

ξ̄
p

t := Hp + e1E[Y p
t ] + e2E[Z p,W

t ].

C: Computations of the Equilibrium Payoffs

In this section we perform some computations to get a more explicit formula for the
objective functionals at the equilibrium in Theorem 3.1. In particular, we find explicit
expressions for Rp(0) and Rc(0). In all the following computations we are using
the optimal strategies but we are suppressing the stars in the notation for the sake
readability (e.g. we write ut instead of u∗

t and so on). For the same reason we are
suppressing the dependency on time when clear from the context.

Proposition C.1 It holds that

R(λ)
p (0) =

∫ T

0

[
2

kp
E[(Y p

u )2] − ηpλ
2γ 2ρ2

cV[cu] + 2
(
π11(u)zu + �pσp

2

)2
�p − 2K p(u)

]
du − λγρcc̄T ,
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R(λ)
c (0) =

∫ T

0

[
2

kc
E[(Y c

u )2] − ηcλ
2ρ2

pV[qu] + 2
(
π22(u)yu + �cσc

2

)2
�c − 2Kc(u)

]
du − λρpq̄T ,

where

dc̄t = 2

kc

[(
c + π̂22

)
c̄t + π̂21q̄t + h2

]
,

q̄t = 2

kp

[
π̂12c̄t + (p + π̂11

)
q̄t + h1

]
,

dE[c2t ] = 4

kc

[
(Kc + π22)

(
E[c2t ] − c̄2t

)+ π21
(
E[ct qt ] − c̄t q̄t

)

+ [c + π̂22
]
c̄2t + π̂21c̄t q̄t + h2c̄t

]
dt + y2t dt,

dE[q2
t ] = 4

kp

[ (
K p + π11

) (
E[q2

t ] − q̄2
t

)+ π12
(
E[ct qt ] − c̄t q̄t

)

+ (p + π̂11
)
q̄2

t + π̂12c̄t q̄t + h1q̄t

]
dt + z2t dt,

dE[ct qt ] = 2

kp

[(
K p + π11

)(
E[ct qt ] − c̄t q̄t

)+ π12
(
E[c2t ] − c̄2t

)

+ (p + π̂11
)
c̄t q̄t + π̂12c̄2t + h1c̄t

]
dt

+ 2

kc

[(
Kc + π22

)(
E[ct qt ] − c̄t q̄t

)+ π21
(
E[q2

t ] − q̄2
t

)

+ (c + π̂22
)
c̄t q̄t + π̂21q̄2

t + h2q̄t

]
dt,

dE[(Y p
t )2] = −2

{1
2

s0Ȳ p
t + 1

2
γρcE[Y p

t ct ] + ρpγρcηpλ
2(
E[Y p

t ct ] − Ȳ p
t c̄t
)

+ 2

kp

[
K pE

[
(Y p

t )2 − (Ȳ p
t )2

]+ p(Ȳ
p

t )2
] }

dt

+ (π2
11z2t + π2

12y2t
)
dt,

dE[(Y c
t )2] = −2

{ p0 + p1s0 − γ (s0 + δ)

2
Ȳ c

t

+ ρp(γ − p1)

2
E[Y c

t qt ] + ρpγρcηcλ
2(
E[Y c

t qt ] − Ȳ c
t q̄t
)

+ 2

kc

[
KcE

[
(Y c

t )2 − (Ȳ c
t )2
]+ c(Ȳ

c
t )2
] }

dt + (π2
21z2t + π2

22y2t
)
dt,

with

Ȳ p
t = π̂11q̄t + π̂12c̄t + h1, Ȳ c

t = π̂21q̄t + π̂22c̄t + h2,

E[Y p
t ct ] = π11

(
E[ct qt ] − c̄t q̄t

)+ π12
(
E[c2t ] − c̄2t

)+ π̂11c̄t q̄t + π̂12c̄2t + h1c̄t ,

E[Y c
t qt ] = π21

(
E[q2

t ] − q̄2
t

)+ π22
(
E[qt ct ] − c̄t q̄t

)+ π̂21q̄2
t + π̂22c̄t q̄t + h2q̄t ,
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and terminal conditions

(Y p
T )2 = λ2ρ2

p

4
, (Y c

T )2 = λ2γ 2ρ2
c

4
.

Proof For the terms q̄t = E[qt ] and c̄t = E[cT ] we have

dq̄t = ūt dt = 2

kp

[(
p + π̂11

)
q̄t + π̂12c̄t + h1

]
dt,

dc̄t = v̄t dt = 2

kc

[(
c + π̂22

)
c̄t + π̂21q̄t + h2

]
dt,

so we have a 2-dimensional ODE giving c̄T and q̄T .
For the terms V[qt ] and V[ct ], we have

V[ct ] = E[c2t ] − c̄2t , dE[c2t ] = (
2E[ctvt ] + (yt )

2)dt,

V[qt ] = E[q2
t ] − q̄2

t , dE[q2
t ] = (

2E[qt ut ] + (zt )
2)dt,

because zt and yt are deterministic. Further,

E[ctvt ] = 2

kc

[
(Kc + π22)

(
E[c2t ] − c̄2t

)+ π21
(
E[ct qt ] − c̄t q̄t

)

+ (c + π̂22
)
c̄2t + π̂21c̄t q̄t + h2c̄t

]
,

dE[c2t ] = 4

kc

[
(Kc + π22)

(
E[c2t ] − c̄2t

)+ π21
(
E[ct qt ] − c̄t q̄t

)

+ [c + π̂22
]
c̄2t + π̂21c̄t q̄t + h2c̄t

]
dt + y2t dt,

E[qt ut ] = 2

kp

[ (
K p + π11

) (
E[q2

t ] − q̄2
t

)+ π12
(
E[ct qt ] − c̄t q̄t

)

+ (p + π̂11
)
q̄2

t + π̂12c̄t q̄t + h1q̄t

]
,

dE[q2
t ] = 4

kp

[ (
K p + π11

) (
E[q2

t ] − q̄2
t

)+ π12
(
E[ct qt ] − c̄t q̄t

)

+ (p + π̂11
)
q̄2

t + π̂12c̄t q̄t + h1q̄t

]
dt + z2t dt,

and we have for E[ct qt ], that dE[ct qt ] = E
(
ct ut + qtvt

)
dt , so that

dE[ct qt ] = 2

kp

[(
K p + π11

)(
E[ct qt ] − c̄t q̄t

)+ π12
(
E[c2t ] − c̄2t

)

+ (p + π̂11
)
c̄t q̄t + π̂12c̄2t + h1c̄t

]

+ 2

kc

[(
Kc + π22

)(
E[ct qt ] − c̄t q̄t

)+ π21
(
E[q2

t ] − q̄2
t

)
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+ (c + π̂22
)
c̄t q̄t + π̂21q̄2

t + h2q̄t

]
.

For the term V[Y p
t ], we have V[Y p

t ] + E[Y p
t ]2 = E[(Y p

t )2], where

Y p
t = π11(qt − q̄t ) + π12(ct − c̄t ) + π̂11q̄t + π̂12c̄t + h1(t), Ȳ p

t = π̂11q̄t + π̂12c̄t + h1,

E[Y p
t ct ] = π11

(
E[ct qt ] − c̄t q̄t

)+ π12
(
E[c2t ] − c̄2t

)+ π̂11c̄t q̄t + π̂12c̄2t + h1c̄t ,

dE[(Y p
t )2] = −2

{1
2

s0Ȳ p
t + 1

2
γρcE[Y p

t ct ] + ρpγρcηpλ
2(
E[Y p

t ct ] − Ȳ p
t c̄t
)

+ 2

kp

[
K pE

[
(Y p

t )2 − (Ȳ p
t )2

]+ p(Ȳ
p

t )2
] }

dt + (π2
11z2t + π2

12y2t
)
dt,

(Y p
T )2 = 1

4
λ2ρ2

p,

where we have exploited the representation of Y p in Equation (4.23). Analogously,
exploiting the representation of Y c in Equation (4.24), we get

Y c
t = π21(qt − q̄t ) + π22(ct − c̄t ) + π̂21q̄t + π̂22c̄t + h2(t), Ȳ c

t = π̂21q̄t + π̂22c̄t + h2,

+ 2

kc

[
KcE

[
(Y c

t )2 − (Ȳ c
t )2
]+ c(Ȳ

c
t )2
] }

dt,

E[Y c
t qt ] = π21

(
E[q2

t ] − q̄2
t

)+ π22
(
E[qt ct ] − c̄t q̄t

)+ π̂21q̄2
t + π̂22c̄t q̄t + h2q̄t ,

dE[(Y c
t )2] = −2

{ p0 + p1s0 − γ (s0 + δ)

2
Ȳ c

t + ρp(γ − p1)

2
E[Y c

t qt ]
+ ρpγρcηcλ

2(
E[Y c

t qt ] − Ȳ c
t q̄t
)

+ 2

kc

[
KcE

[
(Y c

t )2 − (Ȳ c
t )2
]+ c(Ȳ

c
t )2
] }

dt + (π2
21z2t + π2

22y2t
)
dt,

(Y p
T )2 = 1

4
λ2γ 2ρ2

c ,

Summing up, we have obtained a backward ODE for E[(Y p
t )2] and E[(Y c

t )2]. Finally,
we have

Z p,W
t = π11zt , V[Z p,W

t ] = 0, E[Z p,W
t ] = π11zt

and

Zc,B
t = π22yt , V[Zc,B

t ] = 0, E[Zc,B
t ] = π22yt .

Recalling that

R(λ)
p (t) = −λγρcE[cT ] +

∫ T

t

[
− ηpλ

2γ 2ρ2
cV[cu] + 2

kp

(
V[Y p

u ] + E[Y p
u ]2
)

+ 2

�p − 2K p(u)

(
V[Z p,W

u ] +
(
E[Z p,W

u ] + �pσp

2

)2
)]

du,
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and analogously

R(λ)
c (t) = −λρpE[qT ] +

∫ T

t

[
− ηcλ

2ρ2
pV[qu] + 2

kc

(
V[Y c

u ] + E[Y c
u ]2
)

+ 2

�c − 2Kc(u)

(
V[Zc,B

u ] +
(
E[Zc,B

u ] + �cσc

2

)2
)]

du,

the results follow. �
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