
26

Efficient and Near-optimal Algorithms for Sampling Small

Connected Subgraphs

MARCO BRESSAN, Università degli Studi di Milano, Italy

We study the following problem: Given an integer k ≥ 3 and a simple graph G, sample a connected induced

k-vertex subgraph ofG uniformly at random. This is a fundamental graph mining primitive with applications

in social network analysis, bioinformatics, and more. Surprisingly, no efficient algorithm is known for uni-

form sampling; the only somewhat efficient algorithms available yield samples that are only approximately

uniform, with running times that are unclear or suboptimal. In this work, we provide: (i) a near-optimal mix-

ing time bound for a well-known random walk technique, (ii) the first efficient algorithm for truly uniform

graphlet sampling, and (iii) the first sublinear-time algorithm for ε-uniform graphlet sampling.

CCS Concepts: • Theory of computation → Streaming, sublinear and near linear time algorithms;

Random walks and Markov chains; • Mathematics of computing→ Graph algorithms;

Additional Key Words and Phrases: Subgraph sampling, random walks, sublinear algorithms

ACM Reference format:

Marco Bressan. 2023. Efficient and Near-optimal Algorithms for Sampling Small Connected Subgraphs. ACM

Trans. Algor. 19, 3, Article 26 (June 2023), 40 pages.

https://doi.org/10.1145/3596495

1 INTRODUCTION

A k-graphlet of a graph G is a connected and induced k-vertex subgraph of G. Starting with trian-
gles and wedges, and the discovery of triadic closure in social graphs [19], graphlets have become
a central subject of study in social network analysis [9, 39], clustering [28, 37], and bioinformat-
ics [3, 16, 34]; and they have found application in the development of graph kernels [36], graph
embeddings [38], and graph neural networks [33]. The underlying idea is that, in many cases, the
distribution of k-graphlets (the relative number of cliques, stars, paths, and so on) holds fundamen-
tal information about the nature of a complex network [31]. Understandably, these findings have
sparked research on several basic graphlet mining problems such as finding, counting, listing, and
sampling graphlets.

A preliminary version of these results appeared in the Proceedings of the ACM Symposium on Theory of Computing

(STOC’21) [10].

Part of this work was done while the author was at the Sapienza University of Rome. The author was partially supported

by Google under the Focused Award “Algorithms and Learning for AI” (ALL4AI), by the Bertinoro International Center for

Informatics (BICI), by the European Research Council under the Starting Grant DMAP 680153, and by the Department of

Computer Science of the Sapienza University of Rome under the grant “Dipartimenti di Eccellenza 2018-2022”.

Author’s address: M. Bressan, Dipartimento di Informatica, Università degli Studi di Milano, via Celoria 18, 20133, Milan,

Italy; email: marco.bressan@unimi.it.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1549-6325/2023/06-ART26 $15.00

https://doi.org/10.1145/3596495

ACM Transactions on Algorithms, Vol. 19, No. 3, Article 26. Publication date: June 2023.

https://orcid.org/0000-0001-5211-2264
https://doi.org/10.1145/3596495
mailto:permissions@acm.org
https://doi.org/10.1145/3596495
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3596495&domain=pdf&date_stamp=2023-06-24

26:2 M. Bressan

In this work we consider the two following problems. The uniform graphlet sampling problem

asks, givenG andk , to return ak-graphlet uniformly at random from the setVk of allk-graphlets of
G. The ε-uniform graphlet sampling problem asks, givenG,k , and ε > 0, to return a k-graphlet from
any distribution whose total variation distance from the uniform distribution overVk is at most ε .
Clearly, an efficient algorithm for one of these problems yields an efficient algorithm for estimating
the k-graphlet distribution. For this reason, uniform and ε-uniform graphlet sampling have been
investigated for almost a decade, both in theory and in practice [1, 7, 12–15, 17, 24, 29, 32, 35, 41].

Unfortunately, although sampling a random k-vertex subgraph of G = (V ,E) uniformly at ran-
dom is trivial, sampling a graphlet is considerably more challenging, due to the fact that a graphlet
is connected. Let n = |V | and m = |E |. For uniform graphlet sampling, to date, no algorithm is
known that runs in less than Θ(n +m) time per sample. The only somewhat efficient algorithms
known are for ε-uniform graphlet sampling, and they can be divided into direct sampling algo-
rithms (that do not have a preprocessing phase) and two-phase sampling algorithms (which have
a preprocessing phase and a sampling phase). We now discuss those algorithms briefly. Here and

in what follows, we assume that n +m � k , so a running time of 2O (k) (n +m) or kO (k) (n +m) is
better than a running time of, say,O ((n+m)2). This reflects the fact that, today, real-world graphs
can easily have billions of edges, but k rarely exceeds 5 or 10.

For direct sampling algorithms, the state-of-the-art is the so-called k-graphlet walk. To begin,
consider the graph Gk = (Vk ,Ek) whose vertices are the k-graphlets of G and where there is an
edge between two graphlets if their intersection is a (k − 1)-graphlet. The k-graphlet walk is the
lazy random walk over Gk . It is not hard to show that, if G is connected, then this walk is ergodic
and so converges to a stationary distribution. Thus, to obtain ε-uniform graphlets, one can run
the walk until it comes ε-close to its stationary distribution and then use rejection sampling. This
technique is extensively used, thanks to its simplicity and elegance [1, 7, 17, 24, 29, 35, 41]; the
drawback is that its running time depends on tε (Gk), the ε-mixing time of the walk, which can
range anywhere from Θ(1) to Θ(nk−1) [12, 13]. Indeed, the analysis of tε (Gk) is nontrivial, and
between the best lower and upper bounds there is still a multiplicative gap of Δk−1 [1], where Δ is
the maximum outdegree of G.

For two-phase algorithms, the state-of-the-art is an extension of the color coding technique
of [4], proposed in [13]. The preprocessing phase assigns each vertex of G with a uniform ran-
dom color in {1, . . . ,k } and then computes via dynamic programming the number of colorful
trees rooted at every vertex of the graph (a subgraph is colorful if its vertices have distinct col-
ors). The sampling phase uses the table counts to sample colorful graphlets uniformly at random.

The resulting algorithm uses preprocessing time 2O (k) (n + m) and space 2O (k)n, and expected

sampling time kO (k)Δ; by increasing the space to 2O (k) (n +m), one can reduce the expected sam-

pling time to kO (k) . It is not hard to show that, by increasing the preprocessing time and space to

2O (k) (n+m) log 1
ε
, one can take ε-uniform graphlet samples in expected timekO (k) (log 1

ε
)2 per sam-

ple. Unfortunately, all these algorithms do not yield uniform graphlets, unless one runs them from
scratch for every sample. Moreover, the dynamic programming part looks like an overkill even
for ε-approximate sampling.1 This leaves open the search for simpler or faster graphlet sampling
algorithms.

In conclusion, (i) we do not have tight bounds for the k-graphlet walk, (ii) we do not have
an efficient algorithm for uniform graphlet sampling, and (iii) we do not know if the existing
algorithms for ε-uniform graphlet sampling are optimal. The goal of our work is to fill these gaps.

1The dynamic program actually computes, for every v ∈ V (G), every h = 1, . . . , k , every rooted tree T on h vertices, and

every subset C ⊆ {1, . . . , k } of h colors, the number of occurrences of T in G rooted at v whose vertices span precisely

the set of colors C .

ACM Transactions on Algorithms, Vol. 19, No. 3, Article 26. Publication date: June 2023.

Efficient and Near-optimal Algorithms for Sampling Small Connected Subgraphs 26:3

2 RESULTS

We give three contributions. First, we settle the mixing time of the k-graphlet walk up to multi-

plicative kO (k) log2 n factors. Second, we present the first efficient algorithm for uniform graphlet

sampling, with a preprocessing linear in n +m and an expected sampling time kO (k) log Δ. Third,
we give the first ε-uniform graphlet sampling algorithm with sampling time independent ofG, and
preprocessing time O (n logn), which is sublinear in m as long as m = ω (n logn). The rest of this
section overviews these results; later sections give the proofs. We adopt two standard graph access
models. The first one is the adjacency-list model, where in time O (1) one can learn the degree or
the ith neighbor of a vertex. The second one is the model of [20, 26], where one can also check for
the existence of an edge in time O (1). When we say that our algorithms return a k-graphlet of G,
we mean they return the actual connected subgraph of G and not just its vertex set.

2.1 Near-optimal Mixing Time Bounds for the k-graphlet Walk

For a generic graph G let tε (G) denote the ε-mixing time of the random walk over G (see Section 4
for a formal definition). Moreover, let t (G) = t 1

4
(G); it is well known that tε (G) = O (t (G) ·

log 1
ε

), hence bounds on t (G) yield bounds on tε (G) for all 0 < ε ≤ 1
4 . Now, let ρ (G) = Δ

δ
be the

ratio between the largest and the smallest degree of G, and recall from above the graph Gk that
represents the adjacencies between the k-graphlets of G. We prove:

Theorem 1. For all graphs G and all k ≥ 2,

t (Gk) ≤ t (G) · kO (k)ρ (G)k−1 logn. (1)

Moreover, for any function ρ (n) ∈ Ω(1) ∩O (n) there exists a family of arbitrarily large graphs G on

n vertices that satisfy ρ (G) = Θ(ρ (n)) and

t (Gk) ≥ t (G) · k−O (k)ρ (G)k−1/ logn. (2)

Essentially, Theorem 1 says that the lazy walk on Gk behaves like the lazy walk on G slowed
down by a factor ρ (G)k−1. This should be compared with the upper and lower bound of [1], which

are, respectively, t (G) Õ (ρ (G)2(k−1)) and t (G) Ω(ρ (G)k−1δ−1). Ignoring kO (k) poly logn factors, we
improve those bounds by ρ (G)k−1 and δ , respectively.

From Theorem 1, we obtain the best bounds known for ε-uniform graphlet sampling based on
random walks:

Theorem 2. There exists a random-walk based algorithm that in the graph access model of [20,

26] yields the following guarantees: for all G, all k ≥ 2, and all ε > 0, it returns an ε-uniform k-

graphlet from G in expected time kO (k)t (G) ρ (G)k−2 log n
ε

. In the adjacency-list graph access model,

the algorithm runs in time kO (k)t (G) ρ (G)k−2Δ log n
ε

or O (n +m) + kO (k)t (G) ρ (G)k−2 log n
ε

log Δ.

Note that, although t (Gk) grows with ρ (G)k−1, the bound above grows with ρ (G)k−2. The reason
is that, as noted in [29, 41], sampling k-graphlets is equivalent to sampling the edges of Gk−1. So,
we can run the walk over Gk−1 rather than over Gk , which yields a mixing time proportional to
ρ (G)k−2 rather than ρ (G)k−1. As a sanity check, when k = 2 our algorithm matches the natural
bound O (t (G)) achieved by the simple random walk over G.

Regarding the techniques, our proofs are very different from those of [1]. There, the authors
showed a mapping between the cuts of Gk and those ofG; this allowed them to bound the conduc-
tance of Gk by a function of the conductance ofG and then bound tε (Gk) via Cheeger’s inequality.
However, since Cheeger’s inequality can be loose by a quadratic factor, their upper bound on

tε (Gk) grows with ρ (G)2(k−1) instead of ρ (G)k−1 (see above). To avoid this blow-up, we establish a
connection between the relaxation times of Gi and Gi+1, for all i = 1, . . . ,k − 1, and thus between

ACM Transactions on Algorithms, Vol. 19, No. 3, Article 26. Publication date: June 2023.

26:4 M. Bressan

G1 = G and Gk . To this end, we prove a technical result on the relaxation time of the lazy walk
on the line graph of G (the graph encoding the adjacencies between the edges of G). We state this
result here, as it may be of independent interest:

Lemma 3. Any graph G satisfies τ (L(G)) ≤ 20 ρ (G) τ (G), where L(G) is the line graph of G and

τ (·) denotes the relaxation time of the lazy random walk.

2.2 Uniform Graphlet Sampling

We describe the first efficient algorithm for uniform graphlet sampling:

Theorem 4. There exists a two-phase graphlet sampling algorithm, Ugs (uniform graphlet

sampler), that in the adjacency-list graph access model yields the following guarantees:

(1) the preprocessing phase runs in time O (n k2 logk +m) and space O (n +m)
(2) the sampling phase returns k-graphlets independently and uniformly at random in kO (k) log Δ

expected time per sample.

The technique behind Ugs is radically different from random walks and color coding. The key idea
is to “regularize” G, that is, to sort G so each vertex v has maximum degree in the subgraph G (v)
induced by v and all vertices after it (this can be done by just repeatedly removing the maximum-
degree vertex fromG). As we show, this makes eachG (v) behave like a regular graph, which makes
it efficient to perform rejection sampling of randomly grown spanning trees. It is worth noting that
several attempts have been made to sample graphlets uniformly by growing random subsets and
applying rejection sampling (see, for instance, [25, 32]). All those algorithms, however, have one
crucial limitation: In the worst case, the rejection probability approaches 1− Δ−k+1, in which case
roughly Δk−1 rejection trials are needed to draw a single graphlet. It is somewhat surprising that
the fact that just sorting G solves the problem has gone unnoticed until now.

Ugs can also be used as a graphlet counting algorithm:

Theorem 5. Choose any ε0, ε1,δ ∈ (0, 1). There exists an algorithm that in the adjacency-list graph

access model runs in time

O (m) + kO (k)

(
n

ε2
0

log
n

δ
+

1

ε2
1

log
1

δ

)
log Δ, (3)

and, with probability 1−δ , returns for every distinct (up to isomorphism) connected k-vertex graph H
an additive (ε0NH+ε1Nk)-approximation ofNH , whereNH is the number of graphlets ofG isomorphic

to H , and Nk = |Vk | is the total number of k-graphlets in G.

2.3 Epsilon-uniform Graphlet Sampling

We present:

Theorem 6. There exists a two-phase graphlet sampling algorithm, Apx-Ugs, that in the graph

access model of [20, 26] has the following guarantees for all ε > 0:

(1) the preprocessing phase takes time O ((1
ε

)
2

(k−1) k6 n logn) and space O (n)
(2) with high probability over the preprocessing phase, the sampling phase returns k-graphlets in-

dependently and ε-uniformly at random in kO (k) (1
ε

)8+ 4
(k−1) log 1

ε
expected time per sample.

The remarkable fact about Apx-Ugs is that its preprocessing time grows as n logn, and is therefore
independent of the edge set ofG. This should be contrasted with the color-coding algorithm, whose
preprocessing time grows as n+m. Moreover, our preprocessing time is polynomial in both 1

ε
and

k , while that of color coding is exponential in k . For what concerns the expected sampling time,

ACM Transactions on Algorithms, Vol. 19, No. 3, Article 26. Publication date: June 2023.

Efficient and Near-optimal Algorithms for Sampling Small Connected Subgraphs 26:5

Table 1. Our Upper Bounds (Shaded) Compared to Existing Work

preprocessing time preprocessing space time per sample output

[12] – – 2O (k) (n +m) + kO (k) uniform

Ugs O (nk2 logk +m) O (n +m) kO (k) log Δ uniform

[29] O (n) O (n) kO (k)
(
Δ log n

ε

)k−3
ε-uniform

[12] 2O (k) (n +m) log 1
ε + k

O (k) 1
ε2 log 1

ε 2O (k)n log 1
ε kO (k)Δ

(
log 1

ε

)2
ε-uniform

[12] 2O (k) (n +m) log 1
ε + k

O (k) 1
ε2 log 1

ε 2O (k) (n +m) log 1
ε kO (k)

(
log 1

ε

)2
ε-uniform

Apx-Ugs O
((

1
ε

) 2
(k−1) k6n logn

)
O (n) kO (k)

(
1
ε

)8+ 4
(k−1) log 1

ε ε-uniform

Rwgs – – kO (k)t (G)
(

Δ
δ

)k−2
log n

ε ε-uniform

like the one of color coding, ours is independent of G, but it pays an extra poly 1
ε

factor. However,
we did not make hard attempts to optimize those factors, and they might be improved.

While Ugs is rather simple, Apx-Ugs is considerably more involved. The high-level idea is, un-
surprisingly, to “approximate” Ugs in both phases. However, this turns out to be a delicate issue,
which requires a careful combination of graph sketching, cut size estimation, and coupling argu-
ments. The reason is that Ugs relies crucially on a particular topological order of G, whose exact
computation takes time Ω(m), and which is not clear how to approximate in time o(m). In fact, it
is not even clear what definition of “approximate order” is the right one for our purposes; in the
end, the definition we use turns out to be nontrivial.

To conclude, we observe that Apx-Ugs is nearly optimal in the graph access model of [26] in
the sense that any algorithm must pay a running time close to that of the preprocessing phase of
Apx-Ugs even just to return a single ε-uniform graphlet:

Theorem 7. For any k ≥ 2 and any ε ∈ [0, 1], any ε-uniform k-graphlet sampling algorithm has

worst-case expected running time Ω(n/k) in the graph access model of [26].

Proof. LetG contain a k-path plus n−k isolated vertices. In the worst case any algorithm must
examine Ω(n/k) vertices in expectation before finding the only k-graphlet of G. �

Table 1 summarizes our upper bounds and the state-of-the-art.

3 RELATED WORK

The k-graphlet walk algorithm was introduced by [7] without formal running time bounds. The
first bounds on tε (Gk) were given by [12], while the first bounds tying tε (Gk) to tε (G) were
given by [1]. Recently, [29] developed a graphlet sampling random walk with running time

kO (k) (Δ log n
ε

)k−3. Their approach is similar to ours, as they build the k-graphlet walk recursively
from the (k − 1)-graphlet walk. However, they assume one can sample edges uniformly at random
fromG in time O (1), which requires a O (n)-time preprocessing, or an additional factor of tε (G) to
sample edges via random walks. Moreover, their running bound grows like Δk , while ours grows
as (Δ

δ
)k .

The color coding extension for estimating graphlet counts was introduced in [12, 13].
This extension does not allow to ε-uniform graphlet sampling directly; however, it can be

obtained by making several independent runs, for a total preprocessing time of 2O (k) (n +
m) log 1

ε
+ kO (k) 1

ε2 log 1
ε
, a preprocessing space of 2O (k)m log 1

ε
, and an expected sampling time

of kO (k) (log 1
ε

)2. See Appendix C for a complete proof. As said, one can also obtain uniform

samples by running the entire algorithm of [12] from scratch, in 2O (k)O (n +m) time per sample.

ACM Transactions on Algorithms, Vol. 19, No. 3, Article 26. Publication date: June 2023.

26:6 M. Bressan

Rejection sampling is at the heart of several graphlet sampling algorithms, such as path sam-
pling [25] and lifting [32]. These algorithms start by drawing a random vertex from G and then
repeatedly selecting random edges in the cut. This technique alone seems destined to fail: In the
worst case, the rejection probability must be as large as 	 1−Δ−k+1, resulting in a vacuousO (Δk−1)
running time bound. The main idea behind our algorithms is to make such a rejection sampling
efficient by sorting G so to virtually “bucket” the graphlets, so within every single bucket the
sampling probabilities are roughly balanced.

There is also intense work on sampling and counting copies of a specific pattern H in sublinear
time, including edges, triangles, cliques, and other patterns [5, 8, 20–23]. However, “sublinear”

there is meant in the maximum possible number of copies of H , which can be as large as Θ(m
k

2).
It is also unclear how those techniques can be applied to uniform graphlet sampling.

Several algorithms for counting subgraphs efficiently rely on ordering the input graph, in partic-
ular according to the degeneracy (or “smallest-last”) ordering [6, 11, 18, 30]. The ordering exploited
by our uniform sampling algorithms, which is obtained by a “largest-last” rule, may appear strictly
related. However, it is not hard to see that the two orderings are not the reverse of each other. More-
over, while the goal of smallest-last orderings is to make the out-degree of every individual vertex
as small as possible, the goal of our ordering is to make the degree of each vertex dominate that
of those vertices that come afterwards in the ordering.

4 PRELIMINARIES AND NOTATION

We assume the word RAM model of computation. For any graph G = (V ,E), we assume V =
{1, . . . ,n}. We denote the degree of v ∈ V by dv . We consider two graph access models. The
adjacency-list graph access model supports the following O (1)-time queries:

• degree query: given v ∈ V , return dv

• neighbor query: given v ∈ V and i ∈ N, return the ith neighbor of v in G, or −1 if dv < i .

The graph access model of [20, 26] adds the following O (1)-time query:

• pair query (or edge testing query): given u,v ∈ V , tell if {u,v} ∈ E.
For anyU ⊆ V andU ′ ⊆ V \U , the cut betweenU andU ′ is Cut(U ,U ′) = E∩{{u,v} : u ∈ U ,v ∈ U ′}.
The line graph L(G) = (V ′,E ′) of a graph G = (V ,E) is defined by V ′ = {ve : e ∈ E}, and
{ve ,ve ′ } ∈ E ′ if and only if |e ∩ e ′ | = 1. For u,v ∈ V (G), we write u ∼ v for {u,v} ∈ E (G).

A k-graphlet д = (V (д),E (д)) is a k-vertex subgraph ofG that is connected and induced. With a
slight abuse of notation, we may use д in place ofV (д), and д ∩д′ in place ofG[V (д) ∩V (д′)]. We
denote by Vk the set of all k-graphlets of G. The k-graphlet graph of G is Gk = (Vk ,Ek), where
{д,д′} ∈ Ek if and only if д ∩ д′ ∈ Vk−1. We note that some works define д and д′ to be adjacent
if |V (д) ∩V (д′) | = k − 1, but our proofs do not work in that case (and so the mixing time of those
walks may not respect our bounds).

In this article, “X holds with high probability for Y = Θ(Z)” means that for any fixed a > 0, we
can make P(X) > 1 − n−a by choosing Y ∈ Θ(Z) sufficiently large. Similarly, “X has probability
poly(x)” means that for any fixed a > 0, we can make P(X) < xa by adjusting the constants in our
algorithms.

5 NEAR-OPTIMAL MIXING TIME BOUNDS FOR THE K-GRAPHLET WALK

In this section, we prove the results of Section 2.1. Towards this end, we need to recall some
additional preliminary results on Markov Chains, random walks, and mixing.

ACM Transactions on Algorithms, Vol. 19, No. 3, Article 26. Publication date: June 2023.

Efficient and Near-optimal Algorithms for Sampling Small Connected Subgraphs 26:7

5.1 Preliminaries

We denote by X = {Xt }t ≥0 a generic Markov chain over a finite state space V . We denote by
P the transition matrix of the chain and πt the distribution of Xt . We always assume that the
chain is ergodic and denote by π = limt→∞ πt its unique limit distribution. We also let πmin =

minx ∈V π (x) be the smallest stationary probability of any state. The ε-mixing time ofX is tε (X) =
min{t0 : ∀X0 ∈ V : ∀t ≥ t0 : tvd(πt ,π) ≤ ε }. When we write t (X), we mean t 1

4
(X). Here,

tvd(σ ,π) = maxA⊆V {σ (A) − π (A)} is the variation distance between the distributions σ and π ; if
tvd(σ ,π) ≤ ε and π is uniform, then we say σ is ε-uniform.

A graph with non-negative edge weights is denoted by G = (V,E,w) where w : E → R+0 . For
every u ∈ V , we let w (u) =

∑
e ∈E:u ∈e w (e). Any such G induces a lazy random walk as follows:

Let P0 be the matrix given by P0 (u,v) = w (u,v)
w (u) . Now, let P = 1

2 (P0 + I) where I is the identity

matrix. This can be seen as adding a loop of weight w (u) at each vertex of the graph. Note that P0

and P are both stochastic. The lazy random walk over G is Markov chain with state spaceV and
transition matrix P . By standard Markov chain theory, if G is connected, then the lazy random

walk is ergodic and converges to the limit distribution π given by π (u) = w (u)∑
v∈V w (v) . It is well-

known that the chain is time-reversible with respect to π , that is, π (x)P (x ,y) = π (y)P (y,x) for all
x ,y ∈ V ; and that every time-reversible chain on a finite state spaceV can be seen as a random
walk over a graphG = (V,E,w) wherew (x ,y) = π (x)P (x ,y). Thus, we will often write G in place
ofX , in which caseX is understood to be the lazy chain over G. The quantityQ (x ,y) = π (x)P (x ,y)
is called transition rate between x and y.

The volume of U ⊆ V is vol(U) =
∑

u ∈U w (u). The cut of U ⊆ V is Cut(U) = {e = {u,u ′} ∈
E : u ∈ U ,u ′ ∈ V \ U }, and its weight is c (U) =

∑
e ∈Cut(U) w (e). The conductance of U ⊆ V is

Φ(U) = c (U)/ vol(U). The conductance of G is Φ(G) = min{Φ(U) : U ⊂ V, vol(U) ≤ 1
2 vol(V)}.

5.1.1 Spectral Gaps and Relaxation Times.

Definition 8. Let P be the transition matrix of X , and let λ∗ = max{|λ | : λ is an eigenvalue
of P , λ � 1}. The spectral gap of X is γ = 1 − λ∗. The relaxation time of X is τ (X) = 1

γ
.

Classic mixing time theory (see, e.g., [27]) gives the following relationships:

1

4Φ
≤ τ (X), tε (X) ≤ 2

Φ2
log

1

επmin
, (4)

(τ (X) − 1) log
1

2ε
≤ tε (X) ≤ τ (X) log

1

επmin
. (5)

One can show that the last inequality implies τ (X) ≤ c t (X) for some (small) constant c ≥ 1.

5.1.2 Dirichlet Forms. For any function f : V → R let Varπ f = Eπ (f − Eπ f)2.

Definition 9 (Dirichlet form; see [27], Section 13.2.1). Let f : V → R be any function. Then the
Dirichlet form associated to P ,π , f is:

EP,π (f) =
1

2

∑
x,y∈V

(
f (x) − f (y)

)2
Q (x ,y). (6)

The Dirichlet form characterizes the spectral gap as follows:

Lemma 10 (see [27], Lemma 13.12). The spectral gap satisfies:

γ = min
f ∈RV

Varπ (f)�0

EP,π (f)

Varπ (f)
. (7)

Next, we recall some results relating the spectral gaps of different chains.

ACM Transactions on Algorithms, Vol. 19, No. 3, Article 26. Publication date: June 2023.

26:8 M. Bressan

5.1.3 Direct Comparison.

Lemma 11 ([27], Lemma 13.18). Let P and P̃ be reversible transition matrices with stationary dis-

tributions π and π̃ , respectively. If EP̃, π̃ (f) ≤ α EP,π (f) for all functions f , then

γ̃ ≤
(
max
x ∈V

π (x)

π̃ (x)

)
αγ . (8)

Lemma 12 ([2], Lemma 3.29). Consider a graph G = (V,E) possibly with loops. Let w and w ′ be

two weightings of E and let γ and γ ′ be the spectral gaps of the corresponding random walks. Then:

γ ′ ≥ γ · mine ∈E (w (e)/w ′(e))

maxv ∈V (w (v)/w ′(v))
. (9)

5.1.4 Collapsed Chains. (See [2], Section 2.7.3).

Definition 13. Let A ⊂ V and let AC = V \ A (note that AC � ∅). The collapsed chain X ∗ has
state space A ∪ {a} where a is a new state representing AC , and transition matrix given by:

P∗ (u,v) = P (u,v) u,v ∈ A (10)

P∗ (u,a) =
∑

v ∈AC

P (u,v) u ∈ A (11)

P∗ (a,v) =
1

π (AC)

∑
u ∈AC

π (u)P (u,v) v ∈ A (12)

P∗ (a,a) =
1

π (AC)

∑
u ∈AC

∑
v ∈AC

π (u)P (u,v). (13)

Lemma 14 ([2], Corollary 3.27). The collapsed chain X ∗ satisfies γ (X ∗) ≥ γ (X).

5.1.5 Induced Chains.

Definition 15 ([27], Section 13.4). Let ∅ � A ⊆ V and τ+A = min{t ≥ 1 : Xt ∈ A}. The induced
chain on A is the chain with state space A and transition probabilities:

PA (x ,y) = P (Xτ +
A
= y |X0 = x) ∀x ,y ∈ A. (14)

Lemma 16 ([27], Theorem 13.20). Let ∅ � A ⊆ V , and let γA be the spectral gap for the chain

induced on A. Then γA ≥ γ .

5.2 Proof of the Upper Bound of Theorem 1

This section proves the upper bound of Theorem 1. Consider the random walk over Gk . It is easy

to see that πmin ≥ k−O (k)n−k = n−O (k) . Since by Equation (5) we have t (Gk) ≤ τ (Gk) ln 4
πmin

, this

implies t (Gk) ≤ O (τ (Gk)k logn). Now consider the following inequality:

τ (Gk) ≤ poly(k)ρ (G)τ (Gk−1). (15)

Applying Equation (15) to τ (Gk),τ (Gk−1), . . . ,τ (G2), and, since G1 = G and τ (G) = O (t (G)), we
obtain:

t (Gk) ≤ kO (k)ρ (G)k−1t (G) logn, (16)

which is precisely the upper bound of Theorem 1. Thus, we only need to prove Equation (15).
The main obstacle in proving that inequality is in relating the spectral gaps of two very different
walks—one over G and one over Gk . We overcome this obstacle by proving the following result:

ACM Transactions on Algorithms, Vol. 19, No. 3, Article 26. Publication date: June 2023.

Efficient and Near-optimal Algorithms for Sampling Small Connected Subgraphs 26:9

Lemma 17. τ (Gk) ≤ poly(k)τ (L(Gk−1)).

Together with the following restatement of Lemma 3 (with G in place of G to avoid ambiguities),
this result yields precisely Equation (15).

Lemma 3. Any graph G satisfies τ (L(G)) ≤ 20 ρ (G) τ (G), where L(G) is the line graph of G and

τ (·) denotes the relaxation time of the lazy random walk.

Thus, we shall prove Lemma 17 and 3, in this order.

5.2.1 Proof of Lemma 17. From L(Gk−1), we construct a weighted graph LN such that τ (LN) ≤
τ (L(Gk−1)), and then we prove that τ (Gk) ≤ poly(k)τ (LN). Combining these inequalities gives
the claim.

For any д ∈ V (Gk) let H (д) = {xuv ∈ V (L(Gk−1)) : д = u ∪ v}. Note that {H (д)}д∈V (Gk) is a
partition ofV (L(Gk−1)) into equivalence classes; each class H (д) contains every vertex of L(Gk−1)
that represents a pair of (k − 1)-graphlets whose union yields д. Now, let V (Gk) = {д1, . . . ,дN },
and let L0 = L(Gk−1). For each i = 1, . . . ,N , we define Li by taking Li−1 and identifying H (дi).
Formally, we let Li = (V (Li),E (Li),wi), whereV (Li) = V (Li−1) \H (дi) ∪ {ai } with ai being a new
state representing H (дi), and:

wi (x ,x ′) = wi−1 (x ,y) x � ai ,x
′ � ai (17)

wi (x ,ai) =
∑

x ′ ∈ai

wi−1 (x ,x ′) x � ai (18)

wi (ai ,ai) =
∑
x ∈ai

∑
x ′ ∈ai

wi−1 (x ,x ′). (19)

Now, we prove two claims from which the thesis immediately follows.

Claim 1. τ (Gk) ≤ poly(k)τ (LN).

Proof. We show that the walk on LN is the lazy walk on Gk up to a reweighting of the edges by
multiplicative factors in [1, poly(k)]. By Lemma 12, this implies the thesis. In particular, we show
that, if Gk is taken in its lazy version (with loops accounting for half of the vertex weight), then (1)
V (LN) = V (Gk), (2) E (LN) = E (Gk), (3) 1 ≤ wN

wGk

≤ poly(k). We denote the generic state ai ∈ LN

simply as д, meaning that ai represents H (д).

(1)V (LN) = V (Gk). Letд ∈ V (LN). By construction,д = u∪v for some {u,v} ∈ E (Gk−1). Hence,
д has k vertices and is connected, so it is a k-graphlet, and д ∈ V (Gk). Conversely, let д ∈ V (Gk)
and let T be a spanning tree of д (which must exist, since д is connected by definition). Let a,b be
two distinct leaves of T and let д′ = д \ {a} and д′′ = д \ {b}. Then д′,д′′ are connected and have
k − 1 vertices, so they are in V (Gk−1). Moreover |д′ ∩ д′′ | = k − 2, so {д′,д′′} ∈ E (Gk−1). Thus,
{д′,д′′} ∈ L(Gk−1) and consequently д ∈ V (LN). Therefore, V (LN) = V (Gk−1).

(2) E (LN) = E (Gk). First, both LN and the lazy version of Gk have a loop at each vertex (LN

inherits from L0 a positive self-transition probability at each vertex). Now, let {д′,д′′} ∈ E (LN) be
a non-loop edge. By construction of LN , we have д′ = u ∪ v and д′′ = u ∪ z, with {u,v}, {u, z} ∈
E (Gk−1) and u,v, z ∈ V (Gk−1) distinct. This implies д′ ∩д′′ = u and so {д′,д′′} ∈ E (Gk). It follows
that E (LN) ⊆ E (Gk). Now, let {д′,д′′} ∈ E (Gk) be a non-loop edge. Let u = д′ ∩ д′′; note that
by hypothesis u is connected and |u | = k − 1, so u ∈ V (Gk−1). Now, let {a′} = д′ \ д′′ and let b ′

be any neighbor of a in u. Choose any spanning tree T ′ of u rooted at b ′, and let c ′ � b ′ be any
leaf of T ′ (such a leaf exists, since |д | ≥ 3 and thus |u | ≥ 2). We define v = д′ \ {c ′}. Note that by
construction (1) v is connected and has size k − 1, (2) u ∩ v is connected and has size k − 2, and

ACM Transactions on Algorithms, Vol. 19, No. 3, Article 26. Publication date: June 2023.

26:10 M. Bressan

(3) u ∪ v = д′. Therefore, v ∈ V (Gk−1) and {u,v} ∈ E (Gk−1). A symmetric construction using д′′

and u yields z such that z ∈ V (Gk−1) and {u, z} ∈ E (Gk−1) and u ∪ z = д′′. Now, by construction,
{u, z} and {u,v} give two adjacent states xuv ,xuz ∈ V (L0). But u ∪ v = д′ and u ∪ z = д′′, so
xuv ∈ H (д) and xuz ∈ H (д′′). This implies that {д′,д′′} ∈ E (LN). So, E (Gk) ⊆ E (LN) and we
conclude that E (Gk) = E (LN).

(3) 1 ≤ wN

wGk

≤ poly(k). First, let us consider non-loop edges. Let {a,a′} ∈ E (LN) with a � a′,

and let д,д′ be the corresponding elements of Gk ; note that д � д′. Observe that wN (a,a′) =
| Cut(H (д),H (д′)) |, where the cut is taken in L0 = L(Gk−1). Clearly, | Cut(H (д),H (д′)) | ≥ 1 and

wGk
(д,д′) = 1, therefore, 1 ≤ wN (a,a′)

wGk
(д,д′) . For the other side, note that there are at most

(
k
2

)
distinct

pairs of (k − 1)-graphlets u,v ∈ Gk−1 such that u ∪ v = д. Thus, H (д) ≤
(
k
2

)
. The same holds for

д′. Therefore, | Cut(H (д),H (д′)) | ≤
(
k
2

)2
. It follows that wN (a,a′)

wGk
(д,д′) ≤

(
k
2

)2
.

A similar argument holds for the loops. First, recall that wGk
(д) = dд by the lazy weighting.

Consider then any non-loop edge {д,д′} ∈ Gk . Note that {д,д′} determines u = д ∩ д′ ∈ V (Gk−1)
univocally. Moreover, there exist some v, z ∈ Gk−1 such that u ∪ v = д and u ∪ z = д′ and that
{xuv ,xuz } is an edge in L0; and note that there are at most k distinct v and at most k distinct z
satisfying these properties. Therefore, every {д,д′} can be mapped to a set of between 1 to k2 edges
in L0, such that every edge in the set is in the cut between H (д) and H (д′). Furthermore, note that
different д′ are mapped to disjoint sets, since any edge {xuv ,xuz } identifies univocally д = u ∪ v
and д′ = u ∪ z. It follows that the cut of H (д) is at least dд and at most k2dд . Since the cut has at

least one edge, and H (д) has at most
(
k
2

)2
internal edges, then the total weight of H (д) is between

1 and poly(k) times the cut. This is alsowN (a), the weight of the state a representing д in LN . The
claim follows by noting that by construction wN (a) ≤ wN (a,a) ≤ 2wN (a). �

Claim 2. τ (LN) ≤ τ (L(Gk−1)).

Proof. The walk on Li is the walk Li−1 collapsed respect to AC = H (дi) (see Definition 13).
Therefore, by Lemma 14 the spectral gaps of the two walks satisfy γ (Li) ≥ γ (Li−1), and the relax-
ation times satisfy τ (Li) ≤ τ (Li−1). Thus, τ (LN) ≤ τ (L0) = τ (L(Gk−1)). �

By combining Claims 1 and 2, we obtain τ (Gk) ≤ poly(k)τ (LN) ≤ poly(k)τ (L(Gk−1)), proving
Lemma 5.2.1.

5.2.2 Proof of Lemma 3. We build an auxiliary weighted graph S′, as follows: Let S be
the 1-subdivision of G (the graph obtained by replacing each {u,v} ∈ E (G) with the path
{u,xuv }, {xuv ,v} where xuv is a new vertex representing {u,v}). We make S lazy by adding loops
and assigning the following weights:

wS (u,u) = du u ∈ V (G) (20)

wS (u,xuv) = 1 {u,v} ∈ E (G) (21)

wS (xuv ,xuv) = 2 {u,v} ∈ E (G). (22)

The graph S′ is the same as S but with the following weights:

wS′ (u,u) = d2
u u ∈ V (G) (23)

wS′ (u,xuv) = du {u,v} ∈ E (G) (24)

wS′ (xuv ,xuv) = du + dv {u,v} ∈ E (G). (25)

The reader may refer to Figure 1 (below).
Now, we prove two claims that, combined, yield the thesis.

ACM Transactions on Algorithms, Vol. 19, No. 3, Article 26. Publication date: June 2023.

Efficient and Near-optimal Algorithms for Sampling Small Connected Subgraphs 26:11

Fig. 1. Left: a pair of (k − 1)-graphlets u,v forming an edge in Gk−1. Middle: how {u,v} appears in S, the

1-subdivision of G. Right: the reweighting given by S′.

Claim 3. τ (S′) ≤ 4ρ (G)τ (G).

Proof. Let Δ,δ be the maximum and minimum degrees of G. First, note that

min
{x,y }∈E (S)

wS (x ,y)

wS′ (x ,y)
≥ 1

Δ
and max

x ∈V (S)

wS (x)

wS′ (x)
≤ 1

δ
. (26)

By Lemma 12, this implies that γ (S′) ≥ ρ (G)−1 γ (S), or equivalently τ (S′) ≤ ρ (G) τ (S). Thus,
we need only to show that τ (S) ≤ 4τ (G), or equivalently, γ (G) ≤ 4γ (S). We do so by comparing
the numerators and denominators of Equation (7) in Lemma 11 for S and G.

Consider the walk on S and let πS be its stationary distribution. Let fS be the choice of f that

attains the minimum in Equation (7) under π = πS . We will show that there exists fG ∈ RV (G)

such that:

EPG,πG (fG)

VarπG (fG)
≤ 4
EPS,πS (fS)

VarπS (fS)
. (27)

By Lemma 11, this implies our claim, since the left-hand side of Equation (27) bounds γ (G) from
above and the right-hand side equals 4γ (S). Now, first, note that πS (u) = 2

3πG (u) for all u ∈ V (G)

(the weight of u is the same in G and S, but the total sum of weights in S is 3
2 that of G). Similar

calculations show that for all {u,v} ∈ E (G), we have πS (xuv) = 4
3du

πG (u), where du is the degree

of u in G. Third, observe that, since fS attains the minimum in Equation (7), then fS (xuv) =
fS (u)+fS (v)

2 for all {u,v} ∈ E (G). Finally, let fG be the restriction of fS to V (G).
First, we compare the numerator of Equation (27) for S and for G. To begin, note that:

EPS,πS (fS) =
∑

{u,v }∈E (G)

(
(fS (u) − fS (xuv))2 QS (u,xuv) + (fS (v) − fS (xuv))2 QS (u,xuv)

)
. (28)

Observe that QS (u,xuv) = QS (v,xuv) = πS (u) 1
2du

, and as noted above, fS (xuv) =
fS (u)+fS (v)

2 ,

thus (fS (u) − fS (xuv)) = (fS (v) − fS (xuv)) = 1
2 (fS (u) − fS (v)). Recalling that πS (u) = 2

3πG (u),

EPS,πS (fS) =
1

2

∑
{u,v }∈E (G)

(fS (u) − fS (v))2 πS (u)
1

2du
(29)

=
1

3

∑
{u,v }∈E (G)

(fS (u) − fS (v))2 πG (u)
1

2du
. (30)

However, since by construction fG (u) = fS (u) and since QG (u,v) = πG (u) 1
2du

:

EPG,πG (fG) =
∑

{u,v }∈E (G)

(
fG (u) − fG (v)

)2 QG (u,v) (31)

=
∑

{u,v }∈E (G)

(fS (u) − fS (v))2 πG (u)
1

2du
. (32)

ACM Transactions on Algorithms, Vol. 19, No. 3, Article 26. Publication date: June 2023.

26:12 M. Bressan

Fig. 2. Left: the graph S′ described above. Right: the reweighted line graph L′ obtained by weighting every

loop {xuv ,xuv } of L(G) with (du + dv + 2) instead of (du + dv − 2). The random walk over L′ is exactly the

random walk over S′ observed only on the set of states {xuv : {u,v} ∈ E (G)}.

Comparing Equations (30) and (32) shows that EPG,πG (fG) = 3EPS,πS (fS).
Next, we compare the denominator of Equation (27) for S and for G. First, we have:

VarπS (fS) =
∑

u ∈V (G)

πS (u) fS (u)2 +
∑

{u,v }∈E (G)

πS (xuv) fS (xuv)2. (33)

Since πS (u) = 2
3πG (u) and fS (u) = fG (u), the first term equals 2

3 VarπG (fG). Now, we show that

the second term is bounded by 2
3 VarπG (fG). Recalling again that fS (xuv) =

fS (u)+fS (v)
2 :

∑
{u,v }∈E (G)

πS (xuv) fS (xuv)2 =
∑

{u,v }∈E (G)

πS (xuv)

(
fS (u) + fS (v)

2

)2

(34)

≤
∑

{u,v }∈E (G)

πS (xuv)
1

2

(
fS (u)2 + fS (v)2

)
(35)

=
∑

u ∈V (G)

∑
v :{u,v }∈E (G)

1

2

4

3du
πG (u) fS (u)2 (36)

=
2

3

∑
u ∈V (G)

πG (u) fS (u)2, (37)

where Equation (35) holds by convexity, and Equation (36) holds since every u ∈ V (G) is
charged with 1

2πS (xuv) fS (u)2 by every {u,v} ∈ E (G) and since πS (xuv) = 4
3du

πG (u). Therefore,

VarπS (fS) ≤ 4
3 VarπG (fG), so VarπG (fG) ≥ 3

4 VarπS (fS).
By combining our two bounds, we obtain:

EPG,πG (fG)

VarπG (fG)
≤

3EPS,πS (fS)
3
4 VarπS (fS)

= 4
EPS,πS (fS)

VarπS (fS)
, (38)

which shows that γ (G) ≤ 4γ (S), completing the proof. �

Claim 4. τ (L(G)) ≤ 5τ (S′).

Proof. Let X = {Xt }t ≥0 be the walk on S′, and let Y = X [A] be the chain induced by X on the
subset of states A = {xuv : {u,v} ∈ E} (Definition 15). Since by Lemma 16 τ (Y) ≤ τ (S′), we need
only to prove that τ (L(G)) ≤ 5τ (Y). To this end, we show that Y is the random walk on the graph
L′ obtained by weighting L(G) as follows (see Figure 2):

wL′ (xuv ,xuz) = 1 v � z (39)

wL′ (xuv ,xuv) = du + dv + 2. (40)

To prove the claim, we compute the transition probabilities of Y from xuv . First, if Yt = xuv ,
then we can assume Xs = xuv for some s = s (t). From xuv , the possible transitions are Yt+1 = xuv

ACM Transactions on Algorithms, Vol. 19, No. 3, Article 26. Publication date: June 2023.

Efficient and Near-optimal Algorithms for Sampling Small Connected Subgraphs 26:13

Fig. 3. Above: the graph G for k = 3, δ = 6, Δ = 3; clique vertices in gray. Below: G collapsed in a weighted

path P .

and Yt+1 = xuz for some z � v . The transition Yt+1 = xuv happens if and only if one of these three
disjoint events occurs:

(1) Xs+1 = xuv ,
(2) Xs+1 = . . . = Xs ′−1 = u and Xs ′ = xuv for some s ′ ≥ s + 2,
(3) the same as (2) but with v in place of u.

The probability of event (1) is 1
2 by construction of the loop weights. The probability of event (2) is

the product of P(Xs+1 = u |Xs = xuv) = du

2(du+dv) and P(Xs ′ = xuv |Xs ′−1 = u) = 1
du

, sinceX leaves

u with probability 1, in which case it moves to xuv with probability 1
du

. Thus, the probability of

event (2) is 1
2(du+dv) , and by symmetry the same is for event (3). Therefore:

P(Yt+1 = xuv |Yt = xuv) =
1

2
+

1

du + dv
=
du + dv + 2

2(du + dv)
. (41)

The transition Yt+1 = xuz is the same as event (2) above, only with Xs ′ = xuz instead of Xs ′ = xuv .
But conditioned on Xs ′−1 = u the two events have the same probability, therefore:

P(Yt+1 = xuz |Yt = xuv) =
1

2(du + dv)
. (42)

Thus, the probabilities are proportional to 1 and du + dv + 2, as wL′ says.
We can now conclude the proof of the claim. If du + dv = 2, then |E (G) | = 1, so L(G) is the

singleton graph and τ (L(G)) = 0, and τ (L(G)) ≤ 5τ (S′) holds trivially. Suppose instead du +dv ≥
3. Then du+dv+2

du+dv−2 ≤
3+2
3−2 = 5. Therefore, wS ≤ wL′ ≤ 5wS′ , and Lemma 12 yields τ (L(G)) ≤

5τ (S′). The proof is complete. �

By combining claims 3 and 4, we obtain τ (L(G)) ≤ 5τ (S′) ≤ 20ρ (G)τ (G), proving Lemma 3.

5.3 Proof of the Lower Bounds of Theorem 1

We ignore factors depending only on k , which are easily proven to be in kO (k) . Consider a graph
G formed by two disjoint cliques of order Δ, connected by a “fat path” (the Cartesian product of
a path and a clique) of length 2(k − 1) and width δ (see Figure 3). The total number of vertices is
n = 2Δ + 2(k − 1)δ) = Θ(Δ), and we choose Δ and δ so ρ (G) = Δ

δ
∈ Θ(ρ (n)).

We start by bounding t (Gk) from below with a conductance argument. LetCu be the left clique
ofG, and for i = 1, . . . ,k − 1, let Li be the vertices ofG at distance i fromCu . LetU be the set of all

ACM Transactions on Algorithms, Vol. 19, No. 3, Article 26. Publication date: June 2023.

26:14 M. Bressan

k-graphlets ofG containing at least k
2 +1 vertices fromCu∪L1∪. . .∪Lk−1, andU = Vk \U . Consider

the cut between U and U in Gk . Observe that vol(U) ≤ vol(U), which implies Φ(Gk) ≤ c (U)
vol(U) .

Now,U contains at least
(

Δ
k

)
= Ω(Δk) graphlets, each of which has Ω(Δ) neighbors in Gk . Hence,

vol(U) = Ω(Δk+1). However, consider any {д,д′} ∈ Cut(U ,U). We claim that д ∪ д′ is spanned by
a tree on k + 1 vertices that does not intersect the cliques of G. Indeed, suppose by contradiction
that д∩Cu � ∅. Since д∪д′ has diameter at most k , we deduce that д′ \ (Cu ∪L1∪ . . .∪Lk) has size

at most 1. This contradicts the fact that д′ ∈ U , which would require |д′ \ (Cu ∪L1∪ . . .∪Lk) | ≥ k
2 ,

which is strictly larger than 1, since k ≥ 3. A symmetric argument proves that д ∪ д′ does not
intersect the right clique of G. Hence, д ∪ д′ is spanned by a tree on k + 1 vertices of the fat path,
and the number of such trees isO (δk+1). Therefore, c (U) = O (δk+1). By Equation (4), we conclude
that:

τ (Gk) ≥ 1

4Φ(Gk)
= Ω

(
ρ (n)k+1

)
. (43)

Now, we show that ρ (n)2 = Ω(τ (G)). Let P be the weighted path graph obtained from G by
identifying the vertices in each clique and the vertices in every layer of the path (see the figure
again). Let X = {Xi }i≥0 be the random walk over G, and for all i ≥ 0 let Yi be the vertex of V (P)
corresponding to Xi . Note that Y = {Yi }i≥0 is the random walk over P , and that it is coupled
to X . Now observe that, for any i ≥ 1, if Yi is at total variation distance ε from the stationary
distribution πY of Y , then Xi is at total variation distance ε from the stationary distribution πX

of X . Therefore, t (G) = O (t (P)), which implies τ (G) = O (t (P)). In turn, P is a path of constant
length whose edge weights are in the range [δ 2,Δ2]. By Lemma 12, this implies that t (P) is within
O (ρ (n)2) times the mixing time of the walk on the unweighted version of P , which is constant.
Therefore, τ (G) = O (ρ (n)2), i.e., ρ (n)2 = Ω(τ (G)).

Combining Equation (43) with the fact that ρ (n)2 = Ω(τ (G)) and that t (Gk) = Ω(τ (Gk)) yields
the lower bound of Theorem 1.

5.4 Proof of Theorem 2

First we prove two ancillary facts, and then Theorem 2. Throughout the proofs, we assume the
model of [20, 26], so we can check for the existence of any edge in G in time O (1). The last
part of Theorem 2 follows easily: One can check for the existence of an edge in time O (Δ)
without any preprocessing or in time O (log Δ) after sorting the adjacency lists of G in time
O (n +m).

Lemma 18. For every д ∈ V (Gk) let T (д) = {{u,v} ∈ E (Gk−1) : u ∪ v = д}. Then |T (д) | ≤
(
k
2

)
,

and given д, we can compute |T (д) | in time O (poly(k)).

Proof. Every {u,v} ∈ T (д) satisfies: (i) u = д \ {x } and v = д \ {y} for some x ,y ∈ д, and (ii) u,

v , and u ∩v are connected. Thus, given д, we can just enumerate all
(

k
2

)
pairs of vertices in д and

count which ones have u, v , and u ∩v connected. This gives the bound on |T (д) |, too. �

Lemma 19. Any single step of the lazy walk over Gk can be simulated in poly(k) expected time.

Proof. To decide whether to follow the loop, we just toss a fair coin. Let us now see how to
transition to a neighboring graphlet uniformly at random. Let д ∈ V (Gk) be the current vertex of
the walk and let N (д) be the set of neighbors of д in Gk . For everyy ∈ V (д), consider the following
cut in G:

C (д,y) = Cut(y,V (G) \V (д)). (44)

ACM Transactions on Algorithms, Vol. 19, No. 3, Article 26. Publication date: June 2023.

Efficient and Near-optimal Algorithms for Sampling Small Connected Subgraphs 26:15

Clearly, for every edge {y,y ′} ∈ C (д,y), the graphlet д∪y ′ \x is adjacent to д in Gk , provided that
д \ x is connected. Moreover, |C (д,y) | can be computed in timeO (k), as the difference between dy

and the number of neighbors of y in G.
Now, for everyx ∈ V (д) let c (x) =

∑
y∈V (д)\x |C (д,y) | ifд\x is connected, and c (x) = 0 otherwise.

Finally, let c =
∑

x ∈V (д) c (x). We draw д′ at random as follows: First, we draw x ∈ V (д) at random
with probability c (x)/c . Then, we draw y ∈ V (д) \ x at random with probability |C (д,y) |/c (x).
Finally, we select an edge {y,y ′} uniformly at random in C (д,y). To do this, we just sample y ′

uniformly at random from the neighbors of y in G until hittingV (G) \V (д). This requires at most
k trials in expectation, since y has at most k − 1 neighbors in V (д) and has at least one neighbor
in V (G) \V (д), otherwise |C (д,y) |/c (x) = 0 and we would not have chosen y.

Now consider any д′ ∼ д. Note that д′ is identified by the pair (x ,y ′) where {x } = V (д) \V (д′)
and {y ′} = V (д′) \V (д). The probability that the random process above generates д′ is:

c (x)

c
·

∑
y∈V (д)\x

y′∼y

|C (д,y) |
c (x)

· 1

|C (д,y) | =
1

c
��{y ∈ V (д) \ x : y ′ ∼ y}�� , (45)

that is, equal for all д′ up to a multiplicative factor between 1 and k . However, once we have drawn
(x ,y ′), we can compute |{y ∈ V (д) \ x : y ′ ∼ y}| in time poly(k) and apply rejection sampling
to make the output distribution uniform. The expected number of rejection trials is in poly(k) as
well and so is the expected running time of the entire process. �

We can now prove Theorem 2. Consider Gk−1. By construction, {u,v} ∈ E (Gk−1) if and only
if д = u ∪ v ∈ V (Gk−1). Recall from Lemma 18 the set T (д) and that |T (д) | ≤ k2. Hence, if we
draw from a O (ε

k2)-uniform distribution over E (Gk−1) and accept the sampled edge {u,v} with

probability 1
T (д) where д = u ∪v , then the distribution of accepted graphlets will be ε-uniform. Let

then X = {Xt }t ≥0 be the lazy random walk over Gk−1, and for all t ≥ 0 let Yt = Xt ∪Xt+1. Then, Yt

is O (ε
k2)-uniform over E (Gk−1) if Xt is O (ε

k2)-uniform distribution overV (Gk−1). This holds since
the distributions πt of Xt and σt of Yt satisfy σt = Mπt , where M is a stochastic matrix. Since for
stochastic matrices ‖M ‖1 ≤ 1, we have ‖σt − σ ‖1 ≤ ‖M (πt − π)‖1 ≤ ‖M ‖1‖πt − π ‖1 where π and
σ are the stationary distributions of Yt and Xt . Thus, we just need to run the walk over Gk−1 for
tεk

(Gk−1) steps where εk = Θ(ε
k2). From the proof of Theorem 1, one can immediately see that

tεk
(Gk−1) = kO (k)O (tε (G) ρ (G)k−2 log n

ε
). (The 1

k2 factor in εk is absorbed by kO (k)). Finally, by
Lemma 19, each step takes O (poly(k)) time in expectation. This completes the proof.

6 UNIFORM GRAPHLET SAMPLING

This section presents our uniform graphlet sampling algorithm, Ugs. The key idea of the algorithm
is to make rejection sampling efficient. To understand how, let us first describe why rejection
sampling is usually not efficient. Suppose we have a generic random process that draws graphlets
from Vk . For each graphlet д ∈ Vk let p (д) be the probability that the process yields д, and let
p∗ = minд∈Vk

p (д). In rejection sampling, when we draw д, we randomly accept it with probability

p∗p (д)−1. In this way, the probability that д is returned, which equals the probability that д is both
sampled and accepted, isp (д) p∗p (д)−1 = p∗, which is independent ofд. This makes the distribution
of returned graphlets uniform regardless ofp. The key problem is thatp∗may be very small—which
happens, for instance, if the random process samples graphlets by growing a random spanning

tree around a high-degree vertex of G. In this case, we can have p∗ = O (Δ−(k−1)), so we may need
Ω(Δk−1) trials before accepting a graphlet. Unfortunately, all known graphlet sampling algorithms
based on rejection sampling suffer from this “curse of rejection,” and indeed they may need time
Ω(Δk−1) for sampling just one uniform graphlet in the worst case.

ACM Transactions on Algorithms, Vol. 19, No. 3, Article 26. Publication date: June 2023.

26:16 M. Bressan

The main idea of Ugs is to circumvent the obstacle by sortingG. By doing this, we will implicitly
partition Vk into n buckets B (1), . . . ,B (n), one for each vertex of G, in such a way that for each
v ∈ V (G) we will know |B (v) | with good accuracy. This will constitute our preprocessing phase. In
the sampling phase, we will pick v with probability proportional to our estimate of |B (v) |, and we
will sample almost-uniformly from B (v). To this end, we note that sampling from B (v) amounts
to sampling a k-graphlet from the subgraph G (v) of G induced by v and all vertices after v in
the order. This can be done efficiently, since, as we will see, for our purposes G (v) behaves like
a regular graph. Moreover, we will be able to compute efficiently all the probabilities involved in
this process. This will allow us to reject the sampled subgraph efficiently and with the correct
probability, guaranteeing a truly uniform distribution.

6.1 A Toy Example: Regular Graphs

Let us build the intuition with a toy example. Suppose that G is d-regular. For simplicity, suppose
that G is connected, too. To begin, we let p (v) = 1

n
for all v ∈ V (G) and choose v according to

p, i.e., uniformly at random. Note that p (v) is roughly proportional to the number of k-graphlets

containingv , which is easily seen to be between k−O (k)dk−1 and kO (k)dk−1 for allv . Once we have
chosenv , we sample a graphlet containingv by running the following random growing process: Set
S1 = {v}, and for i = 2, . . . ,k , build Si from Si−1 by choosing a random edge in the cut between Si−1

and the rest ofG and adding to Si−1 the other endpoint of the edge. Denote by pv (д) the probability
that д is obtained when the random growing process starts atv , and by p (д) =

∑
v ∈д p (v)pv (д) the

probability that д is obtained. It is easy to show that for any д ∈ Vk we have:

1

n
k−O (k)d−(k−1) ≤ p (д) ≤ 1

n
kO (k)d−(k−1) . (46)

Now, we design the rejection step. First, observe that by setting p∗ = 1
n
k−Ckd−(k−1) with C large

enough, for all д ∈ Vk , we will have p (д) ≥ p∗ and therefore p∗p (д)−1 ≤ 1. Moreover, in time

kO (k) we can easily compute p (д) for any given д (this is shown below). In summary, once we have
sampled д we can efficiently compute pacc (д) = p∗p (д)−1 ≤ 1. Then, we accept д with probability
pacc (д). The probability that д is sampled and accepted is p (д)pacc (д) = p∗, which is independent
of д. Therefore, the distribution of the returned k-graphlets is uniform overVk . Moreover, by the

inequalities above we have pacc (д) ≥ k−O (k) , hence we will terminate after kO (k) rejection trials in
expectation. Thus, whenG is d-regular we have an efficient uniform graphlet sampling algorithm.

6.2 The Preprocessing Phase

Let G be an arbitrary graph. Our goal is to “regularize” G, in a certain sense, so we can apply the
scheme of the toy example above. Let us start by introducing some notation. Given an order ≺
over V , we denote by G (v) = G[{u � v}] the subgraph of G induced by v and all vertices after it
in the order, and for all u ∈ G (v), we denote by d (u |G (v)) the degree of u in G (v). Before moving
to the algorithm, we introduce a definition that is central to the rest of the work.

Definition 20. ≺ is an α-degree-dominating order (α-DD order) ofG if for allv and all u � v
we have d (v |G (v)) ≥ α d (u |G (v)).

Our algorithm starts by computing a 1-dominating order for G, which guarantees that v has
the largest degree in G (v). Such an order can be easily computed in time O (n +m) by repeatedly
removing from G the vertex of maximum degree [30]. (Later on, we will need to compute approx-
imate α-DD orders for α < 1 in time roughly O (n logn), which is not as easy.) After computing
our 1-DD order ≺, in time O (n +m) we also sort the adjacency lists of G accordingly, via bucket
sort. This will be used to find efficiently the edges of G (v) via binary search.

ACM Transactions on Algorithms, Vol. 19, No. 3, Article 26. Publication date: June 2023.

Efficient and Near-optimal Algorithms for Sampling Small Connected Subgraphs 26:17

Next, we (virtually) partition graphlets into buckets.

Definition 21. The bucket B (v) is the set of graphlets whose smallest vertex according to ≺ is v .

Clearly, the buckets B (v) form a partition ofVk . Similarly to dk−1 in the toy example above, here
d (v |G (v))k−1 gives a rough estimate of the number of graphlets in B (v). Indeed, if B (v) � ∅, then
we can easily show that:

k−O (k) |B (v) | ≤ d (v |G (v))k−1 ≤ kO (k) |B (v) |. (47)

It is easy to see that the d (v |G (v)) are known after computing ≺. Hence, we will use d (v |G (v))k−1

as a proxy for |B (v) |. In time O (n), we compute:

Z =
∑

v ∈V :B (v)�∅
d (v |G (v))k−1 (48)

p (v) = I {B (v) � ∅} · d (v |G (v))k−1

Z
, ∀v ∈ V (G). (49)

This defines a distribution p over the buckets that we will use in the sampling phase. Note that, to
compute Z and p, we must detect whether B (v) = ∅ for each v . To this end, we use a BFS from
v that explores G (v) and stops as soon as k vertices are found. We can show that this takes time
O (k2 logk) by listing edges from the end of the adjacency lists. This makes our overall preprocess-
ing time grow to O (nk2 logk +m), as claimed in Theorem 4. This concludes our preprocessing
phase. See Algorithm 1 for the pseudocode.

ALGORITHM 1: DD(G)

1: compute ≺ using a bucketing algorithm � O (n +m)
2: sort the adjacency lists of G according to ≺ � O (n +m)
3: compute d (v |G (v)) for all v ∈ V (G) � O (n +m)
4: for each v ∈ V do

5: check if B (v) � ∅ with a BFS � O (k2 logk)
6: let bv = I {B (v) � ∅} · d (v |G (v))k−1

7: return ≺ and {bv }v ∈V

Lemma 22. DD(G) can be implemented to run in time O (nk2 logk +m). The output order ≺ is a

1-DD order forG and thus satisfies d (v |G (v)) ≥ d (u |G (v)) for allu � v . The output estimates bv > 0

satisfy bv

|B (v) | ∈ [k−O (k),kO (k)].

Proof. Consider the first two lines of DD(G). Computing ≺ takes time O (n +m) by a standard
bucketing technique [30]. Sorting the adjacency lists of G according to ≺ takes time O (n +m) via
bucket sort. With one final O (n +m)-time pass, we compute, for each v , the position iv of v in its
own sorted adjacency list, from which we compute d (v |G (v)) = dv −iv in constant time for eachv .

Now consider the main loop. Clearly, B (v) � ∅ if and only if k vertices are reachable from v
in G (v). Thus, we perform a BFS in G (v), starting from v , and stopping as soon as k pushes have
been made on the queue (counting v as well). To keep track of which vertices have been pushed,
we can use a dictionary; as we need to hold at most k entries, every insertion and lookup will take
time O (logk). After popping a generic vertex u from the queue, we proceed as follows: We take
every neighbor z of u in reverse order (that is, according to �). If z � v and z has not been pushed,
then we push it. As soon as we encounter z ≺ u, we stop and pop a new vertex from the queue.
Suppose that, after popping u, we examine � of its neighbors. Then, at least � + 1 vertices must

ACM Transactions on Algorithms, Vol. 19, No. 3, Article 26. Publication date: June 2023.

26:18 M. Bressan

have been pushed so far, since u itself was pushed, and every neighbor examined was certainly
pushed (before or when examined). Thus, for every vertex u, we examine at most k − 1 neighbors
(since we stop the whole algorithm as soon as k vertices are pushed). Since we push at most k
vertices in total, we also pop at most k vertices in total. Therefore, we examine a total of O (k2)
vertices. Thus, we spend a total time O (k2 logk). Summarizing, we obtain a total time bound of
O (n +m) +O (nk2 logk) = O (nk2 logk +m).

The claim on bv follows by Lemma 45, since in G (v) vertex v has maximum degree
d (v |G (v)). �

6.3 The Sampling Phase

The sampling phase starts by drawing a vertex v from the distribution p. Using the alias
method [40], each such random draw takes time O (1) after a O (n)-time-and-space preprocess-
ing (which we do in the preprocessing phase). Once we have drawn v , we draw a graphlet from
B (v) using what we call the random growing process at v . This is the same process used in the toy
example above, but restricted to the subgraph G (v).

Definition 23. The random growing process at v is defined as follows: S1 = {v}, and for each
i = 1, . . . ,k − 1, Si+1 = Si ∪ {ui ,u

′
i }, where {ui ,u

′
i } is uniform random over Cut(Si ,G (v) \ Si).

Now, we make two key observations. First, the random growing process at v returns a roughly
uniform random graphlet of B (v) and can be implemented efficiently, thanks to the sorted adja-
cency lists ofG. Second, the probability that the random growing process returns a specific graphlet
д can be computed efficiently, thanks again to the sorted adjacency lists. These two facts are proven
below; before, however, we need a technical result about the size of the cuts in G (v).

Lemma 24. LetV (G) be sorted according to a 1-DD order. Consider any sequence of sets S1, . . . , Sk−1

such that S1 = {v}, that G (v)[Si] is connected for all i , and that Si = Si−1 ∪ {si } for some si ∈ G (v).
Then for all i = 1, . . . ,k − 1:

i−1 ≤ | Cut(Si ,G (v) \ Si) |
d (v |G (v))

≤ i . (50)

Proof. Let ci = | Cut(Si ,G (v) \ Si) | for short. For the lower bound, note that ci ≥ 1 for all
i = 1, . . . ,k − 1, since G[Sk] is connected. Moreover c1 = d (v |G (v)), since S1 = {v}. Now, if c1 ≤ i ,
then c1

i
≤ 1 and therefore ci ≥ c1

i
. If instead c1 ≥ i , since the degree of v in Si is at most i − 1, then

the cut of Si still contains at least c1 − |Si | + 1 ≥ c1 − (i − 1) edges. Therefore:

ci ≥ c1 − (i − 1) ≥ c1 − (i − 1)
c1

i
=
c1

i
=

1

i
· d (v |G (v).) (51)

For the upper bound, note that:

ci ≤
∑
u ∈Si

d (u |G (v)) ≤
∑
u ∈Si

d (v |G (v)) = i · d (v |G (v),) (52)

where we used the fact that v is the maximum-degree vertex of G (v). �

Algorithms Rand-Grow(G,v) and Prob(G, S) give the pseudocode of the random growing
process and of the algorithm for computing the probability that the process returns a particu-
lar graphlet. Lemma 25 shows that Rand-Grow(G,v) can be implemented efficiently and that it
returns a graphlet that is roughly uniform. Lemma 26 shows that Prob(G, S) is correct and efficient.

Lemma 25. Suppose G is sorted according to a 1-DD order and choose any v such that B (v) � ∅.
Then Rand-Grow(G,v) runs in timeO (k3 log Δ). Moreover, for any д = G[S] ∈ B (v), the probability

p (S) that Rand-Grow(G,v) returns S is between 1
(k−1)!d (v |G (v))−(k−1) and (k −1)!3d (v |G (v))−(k−1) .

ACM Transactions on Algorithms, Vol. 19, No. 3, Article 26. Publication date: June 2023.

Efficient and Near-optimal Algorithms for Sampling Small Connected Subgraphs 26:19

ALGORITHM 2: Rand-Grow(G,v)

1: S1 = {v}
2: for i = 1, . . . ,k − 1 do

3: for u ∈ Si do

4: ci (u) = d (u |G (v))−(degree of u in G[Si])

5: draw u with probability
ci (u)∑

z∈Si
ci (z)

6: draw u ′ u.a.r. from the neighbors of u in G (v) \ Si

7: Si+1 = Si ∪ {u ′}
8: return Sk

ALGORITHM 3: Prob(G, S = {v,u2, . . . ,uk })
1: p = 0
2: for each permutation σ = (σ2, . . . ,σk) of u2, . . . ,uk do

3: pσ = 1
4: for each i = 1, . . . ,k − 1 do

5: Si = {v,σ2, . . . ,σi }
6: ni = number of neighbors of σi+1 in Si

7: ci (u) = d (u |G (v))−(degree of u in G[Si])
8: pσ = pσ · ni

ci

9: p = p + pσ

10: return p

Proof. Running time. Consider one iteration of the main loop. For every u ∈ Si , computing
ci (u) takes time O (k log Δ). Indeed, using neighbor queries and binary search, in time O (log Δ),
we locate the position of v in the adjacency list of u, which subtracted from du yields d (u |G (v)).
Similarly, in time O (k log Δ), we can compute the number of neighbors of u in Si . Summed over
all u ∈ Si this consumes time O (k2 log Δ) in total. Drawing u takes time O (k). Finally, drawing u ′

takes O (k) as well. To see this, note that if u had no neighbors in Si , then we could just draw a
vertex uniformly at random from the last d (u |G (v)) elements of the adjacency list of u. However,
u has neighbors in Si . But, we still know the (at most k) disjoint sublists of the adjacency lists
containing the neighbors in the cut. Thus, we can draw a uniform integer j ∈ [ci (u)] and select
the jth neighbor of u in G (v) \ Si in time O (k). This proves that one iteration of the main loop of
Rand-Grow takes time O (k2 log Δ). Thus, Rand-Grow runs in time O (k3 log Δ).

Probability. Consider any S such that д = G[S] ∈ B (v). Thus, S is a k-vertex subset such that
v ∈ S and thatG[S] is connected. We compute an upper bound and a lower bound on the probability
p (S) that the algorithm returns S .

Clearly, there are at most (k − 1)! sequences of vertices that Rand-Grow(G,v) can choose to
produce S . Fix any such sequence,v,u2, . . . ,uk , and let Si = {v, . . . ,ui }. Let ci (u) = | Cut(u,G (v) \
Si) |, and let ci =

∑
u ∈Si

ci (u) = | Cut(Si ,G (v) \ Si |. By construction, Si+1 is obtained by adding to
Si the endpoint ui+1 of an edge chosen uniformly at random in Cut(Si ,G (v) \ Si). Thus, for any
u ′ ∈ G (v) \ Si , we have:

P(ui+1 = u
′) =

d (u ′|Si ∪ u ′)
ci

≤ i2

d (v |G (v))
, (53)

where in the inequality we used the facts that d (u ′|Si ∪ u ′) ≤ i is the number of neighbors of u ′ in

Si , and that ci ≥ d (v |G (v))
i

by Lemma 24. Thus, the probability that Rand-Grow(G,v) draws the

ACM Transactions on Algorithms, Vol. 19, No. 3, Article 26. Publication date: June 2023.

26:20 M. Bressan

particular sequence v,u2, . . . ,uk is at most
∏k−1

i=1
i2

d (v |G (v)) = (k − 1)!2d (v |G (v))−(k−1) . Since there

are at most (k − 1)! sequences, p (S) ≤ (k − 1)!3d (v |G (v))−(k−1) .
However, since G[S] is connected, then there is at least one sequence v,u2, . . . ,uk such that

ci ≥ 1 for all i = 1, . . . ,k − 1, which therefore satisfies:

P(ui+1 = u
′) =

d (u ′|Si ∪ u ′)
ci

≥ 1

i d (v |G (v))
, (54)

where we used the facts that d (u ′|Si ∪ u ′) ≥ 1, since u ′ is a neighbor of some u ∈ Si , and that
ci ≤ i · d (v |G (v)), by Lemma 24. So, the probability that Rand-Grow(G,v) draws this particular

sequence is at least
∏k−1

i=1
1

id (v |G (v)) =
1

(k−1)!d (v |G (v))−(k−1) , which is a lower bound on p (S). �

Lemma 26. Prob(G, S = {v,u2, . . . ,uk }) runs in time poly(k)O (k! log Δ) and outputs the proba-

bility p (S) that Rand-Grow(G,v) returns S .

Proof. The proof is essentially the same of Lemma 25. �

We can now complete the sampling phase by performing a rejection step. After drawing v with
probability p (v), we draw a random graphlet д from B (v) by invoking Rand-Grow(G,v), and
we compute pv (д) by invoking Prob(G,д). By construction, the overall probability that we have
drawn д is p (д) = p (v) · pv (д). By the definition of p (v) and by Lemma 25:

k−O (k) 1

Z
≤ p (v) · pv (д) ≤ kO (k) 1

Z
. (55)

We therefore set the acceptance probability to:

pacc (д) =
k−Ck

p (v) · pv (д) · Z . (56)

This makes the probability that д is sampled and accepted equal to:

p (д) · pacc (д) = p (v) · pv (д) · k−Ck

p (v) · pv (д) · Z =
k−Ck

Z
, (57)

which is independent of д and thus constant overVk . ForC large enough, Equations (55) and (56)

imply pacc ∈ [k−O (k), 1]. Therefore, pacc (д) is a valid probability, and moreover, we will accept a

graphlet after kO (k) trials in expectation. As by Lemmas 25 and 26 the running time of a single

trial is poly(k) log Δ, the total expected time per sample is kO (k) log Δ, as claimed in Theorem 4.
To wrap up, Algorithm 4 gives the main body of Ugs.

ALGORITHM 4: Ugs(G)

1: (≺, {bv }v ∈V) = DD(G)
2: let Z =

∑
v ∈V bv

3: let p (v) = bv

Z
for each v ∈ V

4: let βk (G) = 1
k ! Z

5:

6: function sample()
7: while true do

8: draw v from the distribution p
9: S = Rand-Grow(G,v)

10: p (S) = Prob(G, S)

11: with probability
βk (G)

p (v) p (S) return S

ACM Transactions on Algorithms, Vol. 19, No. 3, Article 26. Publication date: June 2023.

Efficient and Near-optimal Algorithms for Sampling Small Connected Subgraphs 26:21

7 EPSILON-UNIFORM GRAPHLET SAMPLING

This section describes our ε-uniform graphlet sampling algorithm, Apx-Ugs. At a high level, Apx-
Ugs is an adaptation of Ugs. To begin, we observe that Ugs relies on the following key ingre-
dients. First, the vertices of G are sorted according to a 1-DD order ≺, which ensures that each
subgraph G (v) behaves like a regular graph for what concerns sampling (Lemma 25). Second, the
edges of G are sorted according to ≺ as well, which makes it possible to compute the size of the
cuts | Cut(u,G (v) \ Si) | in time proportional to log Δ (Lemmas 25 and 26). Unfortunately, both in-
gredients require a Θ(m)-time preprocessing. To reduce the preprocessing time to O (n logn), we
introduce:

(1) A preprocessing routine that computes w.h.p. an approximate α-DD order, together with
good bucket size estimates. By “approximate,” we also mean that some buckets might be
erroneously deemed empty, but we guarantee that those buckets contain a fraction ≤ ε of
all graphlets.

(2) A sampling routine that emulates the one of Ugs, but replaces the exact cut sizes with ad-
ditive approximations. These approximations are good enough that, with good probability,
Apx-Ugs behaves as Ugs, including the rejection step.

Achieving these guarantees is not just a matter of sampling and concentration bounds. For instance,
to obtain an α-DD order, we cannot just sub-sample the edges of G and compute the 1-DD order
on the resulting subgraph: The sorting process would introduce correlations, destroying concen-
tration. Similarly, we cannot just compute a multiplicative estimate of | Cut(u,G (v) \Si) |: Without
sorted lists, this would require Ω(Δ) queries, as we might have du = Δ and | Cut(u,G (v) \ Si) | = 1.
Similar obstacles arise in estimating pv (д).

7.1 Approximating a Degree-dominating Order

We introduce our notion of approximate degree-dominating order. In what follows, bbb = (bv)v ∈V
is a vector of bucket size estimates.

Definition 27. A pair (≺,bbb) where bbb = (bv)v ∈V is an (α , β)-DD order for G if:

(1)
∑

v :bv >0 |B (v) | ≥ (1 − β)
∑

v |B (v) |,
(2) bv > 0 =⇒ k−O (k)β ≤ bv

|B (v) | ≤ kO (k) 1
β
,

(3) bv > 0 =⇒ d (v |G (v)) ≥ α dv ≥ α d (u |G (v)) for all u � v,
(4) v ≺ u =⇒ dv ≥ 3kα du .

Let us elaborate on this. The first property says that the buckets that are deemed nonempty hold a
fraction 1−β of all graphlets. The second property says that every bucket that is deemed nonempty
comes with a good estimate of its size. The third property says that ≺ is an α-DD order if restricted
to the buckets that are deemed nonempty and gives an additional guarantee on dv . The fourth
property will be used later on. The idea is that, if we look only at buckets that are deemed nonempty,
then we will have guarantees similar to a 1-DD order; but bear in mind that here the edges of G
will not be sorted, and this will complicate things significantly.

The algorithm below, Apx-DD(G, β), computes efficiently an (α , β)-DD order with α = β
1

k−1
1

6k3 .
This will be enough for our purposes. In the remainder, we prove Lemmas 28 and 29, which give
the guarantees of Apx-DD(G, β). For technical reasons, instead of α the proofs and the algorithm

use η = αk = ε
1

k−1
1

6k2 . The intuition of the algorithm is the following: We start at round t = 0
with ≺0 being the order ofV (G) by nonincreasing degree; this corresponds to the optimistic guess
that d (v |G (v)) = dv for all v . Then, we take every v ∈ V (G) in the order of ≺0, and we check if
d (v |G (v)) is indeed close of dv . To this end, we sample 1

η2 logn random neighbors of v for some

ACM Transactions on Algorithms, Vol. 19, No. 3, Article 26. Publication date: June 2023.

26:22 M. Bressan

appropriate η and check how many are after v in ≺t . If that fraction is at least η, then we let
bv = (dv)k−1 and set ≺t+1=≺t . Otherwise, we let bv = 0 and update ≺t+1 from ≺t by pushing v to
its “correct” position. This is enough for vertices of sufficiently high degree, but not for those of
small degree. Indeed, for those vertices B (v) might be empty even though d (v |G (v)) is close to dv ,
just because d (v |G (v)) is small in an absolute sense. Hence, for vertices of small degree, we check
whether B (v) � ∅ explicitly.

A crucial point of the algorithm is that it does not maintain ≺t explicitly; this would cost too
much. Instead, the algorithm maintains a set of counters {su : u ∈ V (G)} and then computes and
returns an ordering ≺ such thatu ≺ v if and only if (su > sv)∨ ((su = sv)∧ (u > v)) for all distinct
u,v ∈ V (G). The analysis, however, considers ≺ as evolving with t , as described intuitively above.

ALGORITHM 5: Apx-DD(G, β)

1: let η = β
1

k−1
1

6k2 and h = Θ(η−2 logn)
2: init sv = dv for all v ∈ V
3: for each v in V in nonincreasing order of degree do

4: sample h neighbors x1, . . . ,xh of v u.a.r.

5: let X =
∑h

j=1 I {x j � v}
6: if X ≥ 2ηh then

7: let bv = (dv)k−1

8: else

9: let bv = 0 and sv = 3η dv

10: compute ≺ such that u ≺ v ⇐⇒ (su > sv) ∨ ((su = sv) ∧ (u > v))
11: for each v : dv ≤ k/η do

12: if B (v) � ∅ then

13: compute d (v |G (v)) and let bv = d (v |G (v))k−1

14: else

15: let bv = 0

16: return ≺ and {bv }v ∈V

Lemma 28. With high probability Apx-DD(G, β) returns an (α , β)-DD order for G with α =

β
1

k−1
1

6k3 .

Lemma 29. Apx-DD(G, β) can be implemented to run in time O (β−
2

k−1k6 n logn).

To carry out the proofs, we need some notation and a few observations about Apx-DD(G, β).
We denote by:

• t = 1, . . . ,n the generic round of the first loop
• tv the round where v is processed
• st (v) the value of sv at the beginning of round t ; note that st (v) ≥ st+1 (v), that stv

(v) = dv ,
and that sn+1 (v) = stv+1 (v) ∈ {dv , 3ηdv }
• ≺t the order defined by u �t v if and only if (st (u) < st (v)) ∨ ((st (u) = st (v)) ∧ (u < v))
• Gt (v) = G[{z : z �t v}] the subgraph induced by v and the vertices after it at time t
• d (u |Gt (v)) the degree of u in Gt (v); obviously, d (u |Gt (v)) ≤ du for all t
• X j = I {x j � v} and X =

∑h
j=1 X j , in a generic round (hence, ≺=≺t for some t)

We denote the returned order by ≺n (formally it would be ≺n+1, but clearly this equals ≺n), and by
Gn (·) the subgraphs induced in G under such an order. By bv , we always mean the value of bv at
return time, unless otherwise specified.

ACM Transactions on Algorithms, Vol. 19, No. 3, Article 26. Publication date: June 2023.

Efficient and Near-optimal Algorithms for Sampling Small Connected Subgraphs 26:23

Observation 30. For any t , if u �t v then st (u) ≤ st (v).

Proof. By definitionu �t v if and only if (st (u) < st (v))∨ ((st (u) = st (v))∧ (u < v)). Therefore,
in particular, st (u) ≤ st (v). �

Observation 31. If u ≺tu
v , then Gn (v) ⊆ Gtu

(u) and d (u |Gn (v)) ≤ d (u |Gtu
(u)).

Proof. By definition, Gn (v) ⊆ Gtu
(u) means {z : z �n v} ⊆ {z : z �tu

u}, which is equivalent
to {z : z ≺tu

u} ⊆ {z : z ≺n v}. Consider then any z : z ≺tu
u. This implies z ≺tu

v (since u ≺tu
v)

and tz < tu (since tz > tu would imply z �tu
u). But z cannot be moved past v in any round t ′ > t .

Thus, z ≺n v . Therefore, {z : z ≺tu
u} ⊆ {z : z ≺n v}, as desired. The second claim follows by the

monotonicity of d (u |·). �

Observation 32. For all v and all t ≥ tv , we have d (v |Gtv
(v)) ≥ d (v |Gt (v)), with equality if

bv > 0.

Proof. Consider any z : z ≺tv
v . Note that tz < tv , hence z � Gtv

(v) by definition of Gtv
(v).

Moreover, z will never be moved past v in any round t ≥ tv , so z � Gt (v) as well. Therefore,
Gtv

(v) ⊇ Gt (v) for all t ≥ tv . Now the claim follows by monotonicity of d (v |·), and by noting that
if bv > 0, then v is not moved at round tv and thus Gt (v) = Gtv

(v) for all t ≥ tv . �

Observation 33. In any round, conditioned on past events, w.h.p. |X − EX ��� ≤ ηh.

Proof. Consider round tv . Conditioned on past events, the X j are independent binary random
variables. Therefore, by Hoeffding’s inequality:

P(|X − EX | > hη) < 2e−2hη2

= e−Θ(log n) = n−Θ(1), (58)

where h = Θ(η−2 logn) and thus the Θ(1) at the exponent can be chosen arbitrarily large. �

Observation 34. With high probability, d (v |Gt (v)) ≤ sn+1 (v) for every v anytime in any round

t .

Proof. If sn+1 (v) = dv , then clearly sn+1 (v) ≥ d (v |Gt (v)). Suppose instead that sn+1 (v) = 3ηdv .
By Observation 32, d (v |Gt (v)) ≤ d (v |Gtv

(v)). So, we only need to show that with high probability

d (v |Gtv
(v)) ≤ 3ηdv . Consider the random variable X =

∑h
j=1 X j at round tv , and note that EX j =

d (v |Gtv (v))
dv

for all j. Therefore, if d (v |Gtv
(v)) > 3ηdv , then EX > 3ηh. Now, the algorithm updates

sv only if X < 2ηh. This implies the event X < EX − ηh, which by Observation 33 fails with high
probability. Thus, with high probability d (v |Gtv

(v)) ≤ 3ηdv . �

Observation 35. If round tv of the first loop sets bv > 0, then w.h.p. d (v |Gtv
(v)) ≥ ηdv , else

w.h.p. d (v |Gtv
(v)) ≤ 3ηdv . If the second loop sets bv > 0, then d (v |Gtv

(v)) ≥ η

k
dv deterministically.

Proof. The first claim has the same proof of Observation 34: If d (v |Gtv
(v)) < ηdv , then EX <

ηh, so bv > 0 implies X ≥ 2ηh and thus X > EX + ηh. Similarly, if d (v |Gtv
(v)) > 3ηdv , then

EX > 3ηh, so letting bv = 0 implies X < 2ηh, which means X < EX − ηh. Both events fail with
high probability by Observation 33. For the second claim, note that the second loop sets bv > 0

only if dv ≤ k
η

, which implies
η

k
dv ≤ 1, and if B (v) � ∅, which implies d (v |Gn (v)) ≥ 1. Thus,

d (v |Gn (v)) ≥ η

k
dv . Observation 32 gives d (v |Gtv

(v)) ≥ d (v |Gn (v)), concluding the proof. �

Observation 36. With high probability, for all v , for all u �n v , we have d (u |Gn (v)) ≤ sn+1 (v).

ACM Transactions on Algorithms, Vol. 19, No. 3, Article 26. Publication date: June 2023.

26:24 M. Bressan

Proof. Consider the beginning of round tu . Suppose that v ≺tu
u, which implies tv < tu . Then:

sn+1 (v) = stv+1 (v) (59)

= stu
(v) since tv < tu (60)

≥ stu
(u) Observation 30, using u �tu

v (61)

= du by construction (62)

≥ d (u |Gn (v).) (63)

Suppose instead u ≺tu
v . Then, with high probability:

sn+1 (v) ≥ sn+1 (u) Observation 30, using u �n v (64)

≥ d (u |Gtu
(u)) Observation 34, with t = tu (65)

≥ d (u |Gn (v)) Observation 31. (66)

In any case, d (u |Gn (v)) ≤ sn+1 (v). �

Proof of Lemma 28. For technical reasons, we prove the four properties of (≺,bbb) (see Defini-
tion 27) in a different order. Moreover, we substitute α =

η

k
. This yields the four properties:

(1) if v ≺ u, then dv ≥ 3η du

(2) if bv > 0, then d (v |G (v)) ≥ η

k
dv ≥ η

k
· d (u |G (v)) for all u � v

(3) if bv > 0, then k−O (k)β ≤ bv

|B (v) | ≤
kO (k)

β

(1)
∑

v :bv >0 |B (v) | ≥ (1 − β)
∑

v ∈V |B (v) |.

Proof of (1). Simply note that dv ≥ sn+1 (v) ≥ sn+1 (u) ≥ 3ηdu , where the middle inequality holds
by Observation 30, since u �n v .

Proof of (2). Consider any u �n v with bv > 0. Then, with high probability:

d (v |Gn (v)) = d (v |Gtv
(v)) Observation 32, using bv > 0 and t = n (67)

≥ η

k
dv Observation 35, using bv > 0 (68)

=
η

k
sn+1 (v) by the algorithm, since bv > 0 (69)

≥ η

k
d (u |Gn (v)) Observation 36, since u �n v . (70)

Proof of (3). First, we show that if bv > 0, then w.h.p. |B (v) | ≥ 1. If v is processed by the second

loop, then bv > 0 if and only if |B (v) | ≥ 1. Otherwise, we know dv >
k
η

, and w.h.p.:

d (v |Gn (v)) = d (v |Gtv
(v)) Observation 32, using bv > 0 (71)

≥ ηdv Observation 35, using bv > 0 (72)

> k as dv >
k

η
. (73)

So, w.h.p.d (v |Gn (v)) > k , in which caseGn (v) contains a k-star centered inv , implying |B (v) | ≥ 1.
Thus, we continue under the assumption |B (v) | ≥ 1. To ease the notation, define d∗v =

d (v |Gn (v)) and Δ∗v = maxu ∈G (v) d (u |Gn (v)). Lemma 45 applied to Gn (v) yields:

k−O (k) (d∗v)k−1 ≤ |B (v) | ≤ kO (k) (Δ∗v)k−1. (74)

ACM Transactions on Algorithms, Vol. 19, No. 3, Article 26. Publication date: June 2023.

Efficient and Near-optimal Algorithms for Sampling Small Connected Subgraphs 26:25

We now show that w.h.p.:

βk−O (k) (Δ∗v)k−1 ≤ bv ≤
1

β
kO (k) (d∗v)k−1, (75)

which implies our claim. For the upper bound, note that by construction bv ≤ (dv)k−1 and that, by

point (2) of this lemma, w.h.p. dv ≤ k
η
d∗v . Substituting η, we obtain:

bv ≤ (dv)k−1 ≤ (d∗v)k−1

(
k

η

)k−1

=
1

β
kO (k) (d∗v)k−1. (76)

For the lower bound, note that, since bv > 0, then bv ≥ (d∗v)k−1. Indeed, if bv > 0, then either

bv = (dv)k−1 ≥ (d∗v)k−1 from the first loop, or bv = (d∗v)k−1 from the second loop (since the value
d (v |G (v)) in the second loop equals d (v |Gn (v)), that is, d∗v). Now, point (2) of this lemma gives

d∗v ≥
η

k
· d (u |Gn (v)) for all u �n v . Thus, Δ∗v = maxu ∈G (v) d (u |Gn (v)) ≤ k

η
d∗v . Therefore:

(Δ∗v)k−1 ≤
(
k

η
d∗v

)k−1

= βkO (k) (d∗v)k−1 ≤ βkO (k)bv . (77)

Proof of (4). We prove the equivalent claim:∑
v :bv=0

|B (v) | ≤ β
∑
v ∈V
|B (v) |. (78)

Consider any v with bv = 0 and |B (v) | > 0. These are the only vertices contributing to the left-

hand summation. First, we note that dv >
k
η

. Indeed, if |B (v) | > 0 and dv ≤ k
η

, then the second

loop of Apx-DD processes v and sets bv = (d (v |Gn (v)))k−1, which is positive, since |B (v) | > 0

impliesd (v |G (v)) > 0. Thus, we can assume thatbv = 0, |B (v) | ≥ 1,dv >
k
η

, andv is not processed

in the second loop. Since dv >
k
η
> k − 1, then G contains at least

(
dv

k−1

)
≥ 1 stars centered in

v . Each such star contributes 1 to
∑

v ∈V |B (v) |. Since
(dv)k−1

(k−1)k−1 ≤
(

dv

k−1

)
, whenever

(
dv

k−1

)
≥ 1, we

obtain: ∑
v :bv=0

(dv)k−1

(k − 1)k−1
≤

∑
v :bv=0

(
dv

k − 1

)
≤ k

∑
v :bv=0

|B (v) | ≤ k
∑

v

|B (v) |, (79)

where the factor k arises from each star being counted up to k times by the left-hand side (once
for each vertex in the star).

However, by Observation 34 and Observation 36, w.h.p. d (v |Gn (v)) ≤ sn+1 (v) and d (u |Gn (v)) ≤
sn+1 (v) for all u �n v . Hence, the maximum degree of Gv is w.h.p. at most sn+1 (v). But sn+1 (v) =
3ηdv , since bv = 0 is set in the first loop. Thus, the maximum degree of Gv is at most 3η(dv). By
Lemma 45, then, ∑

v :bv=0

|B (v) | ≤
∑

v :bv=0

(k − 1)!(3η dv)k−1. (80)

By coupling Equations (79) and (80) and substituting η = β
1

k−1
1

6k2 , we obtain:∑
v :bv=0 |B (v) |∑

v |B (v) | ≤
∑

v :bv=0 (k − 1)!(3η dv)k−1

1
k

∑
v :bv=0

(dv)k−1

(k−1)k−1

by (79) and (80) (81)

=
(k − 1)!(3η)k−1 ∑

v :bv=0 (dv)k−1

1
k (k−1)k−1

∑
v :bv=0 (dv)k−1

(82)

ACM Transactions on Algorithms, Vol. 19, No. 3, Article 26. Publication date: June 2023.

26:26 M. Bressan

< (3η)k−1k (k − 1)2(k−1) (83)

=

(
3β

1
k−1

1

6k2

)k−1

k (k − 1)2(k−1) (84)

= β
k (k − 1)2(k−1)

2k−1k2(k−1)
, (85)

which for all k ≥ 2 is bounded from above by β . The proof is complete. �

Proof of Lemma 29. The initialization of Apx-DD is dominated by sorting V in order of de-
gree, which takes time O (n) via bucket sort. In the first loop, at each iteration, we draw O (h) =
O (η−2 logn) samples, each of which takes timeO (1) via neighbor queries. Evaluating x j � v takes
time O (1), and computing X takes time O (h) = O (η−2 logn). Updating sv takes time O (1). Thus,
each iteration of the first loop takes time O (η−2 logn). Computing ≺ takes O (n logn) as every
comparison takes time O (1).

Consider now the second loop; we claim that each iteration takes time O (η−2k2 logk). To see
this, let us describe the BFS in more detail. We start by pushing v in the queue, and we maintain
the invariant that the queue holds only vertices ofG (v). To this end, when we pop a generic vertex
u, we examine every edge {u, z} ∈ E (G) and push z only if z � v and z was not pushed before.
Note that checking whether z � v takes time O (1). Now, we bound the number of neighbors z
of u that are examined. First, this number is obviously at most du . Recall that 3ηdu ≤ sn+1 (u) by
construction of the algorithm. Moreover, sinceu ∈ Gn (v), thenu �n+1 v , which by Observation 30

implies sn+1 (u) ≤ sn+1 (v) ≤ dv ≤ k
η

. Therefore, du ≤ k
3η2 . Hence, the number of neighbors z of

u that are examined is at most k
3η2 . Since we push at most k vertices before stopping, the total

number of vertices/edges examined by each BFS is inO (η−2k2). To store the set of pushed vertices,
we use a dictionary with logarithmic insertion and lookup time. Hence, each BFS will take time

O (η−2k2 logk). Finally, computing d (v |G (v)) also takes time dv ≤ k
3η2 . Thus, each iteration of the

second loop runs in time O (η−2k2 logk).
As each loop makes at most n iterations, the total running time of Apx-DD(G, β) is:

O (n logn) +O (nη−2 logn) +O (nη−2k2 logk) = O (η−2k2n logn). (86)

Replacing η = O (β
1

k−1k−2) shows that the running time is in O (β−
2

k−1k6n logn), as claimed. �

We can conclude the preprocessing phase of Apx-Ugs. We set β = ε
2 , and run (≺,bbb) = Apx-DD

(G, β). Then, for all v , we let p (v) = bv∑
u bu

; we also set a few other variables. The running time is

dominated by Apx-DD(G, β), which by Lemma 29 takes time O (ε−
2

k−1k6n logn). This proves the
preprocessing time bound of Theorem 6 and completes the description of the preprocessing phase.

7.2 The Sampling Phase: A Coupling of Algorithms

Recall that, by Lemma 28, with high probability the preprocessing phase yields an (α , ε
2)-DD or-

der (≺,bbb) for G, with α = Θ(ε
1

k−1k−3). From now on, we assume this holds. Then, by Defini-
tion 27, ∪v :bv >0B (v) contains a fraction 1 − ε

2 of all graphlets. Hence, our goal becomes sampling
ε
2 -uniformly from ∪v :bv >0B (v). By the triangle inequality, this will give an ε-uniform distribution
over Vk . To achieve ε

2 -uniformity over ∪v :bv >0B (v), we modify Ugs step-by-step. To begin, we
consider what would happen if we sorted G according to ≺ and ran the sampling phase of Ugs
using the bucket size estimatesbbb. We show that, by mildly reducing the acceptance probability, we
could make the output graphlet distribution uniform over ∪v :bv >0B (v). The resulting algorithm,

ACM Transactions on Algorithms, Vol. 19, No. 3, Article 26. Publication date: June 2023.

Efficient and Near-optimal Algorithms for Sampling Small Connected Subgraphs 26:27

Ugs-Compare(G, ε), is given below. Note that Ugs-Compare(G, ε) is just for analysis purposes; we
use it as a comparison term to establish the ε-uniformity of our algorithm.

ALGORITHM 6: Ugs-Compare(G, ε)

1: let C1 = a large enough universal constant
2: let β = ε

2
3: (≺,bbb) = Apx-DD(G,α , β)

4: let Z =
∑

v ∈V bv , and for each v ∈ V let p (v) = bv

Z

5: sort the adjacency lists of G according to ≺
6:

7: function Sample()
8: while true do

9: draw v from the distribution p
10: S = Rand-Grow(G,v)
11: pv (S) = Prob(G, S)

12: with probability 1
p (v) pv (S)

β

Z
k−C1k return S

Lemma 37. In Ugs-Compare(G, ε), suppose Apx-DD(G,α , β) succeeds (Lemma 28), and let

pacc (v, S) = 1
p (v) p (S)

β

Z
k−C1k be the expression computed by Sample() at line 12. Then pacc (v, S) ∈

[ε2k−O (k), 1], and moreover, the distribution of the graphlets returned by Sample() is uniform over

∪v :bv >0B (v).

Proof. Rewrite:

pacc (v, S) =
1

p (v) p (S)

β

Z
k−C1k =

1
bv

Z
p (S)

β

Z
k−C1k =

βk−C1k

bv p (S)
. (87)

If Apx-DD(G,α , β) succeeds, then (≺,bbb) is an (α , β)-order with α = β
1

k−1
1

6k3 ; we will show that,

if this is the case, then the last expression in Equation (87) is in [ε2k−O (k), 1]. This implies that
pacc (v, S) is a well-defined probability; the uniformity of the returned graphlets then follows im-
mediately from the fact that the sampling routine is the one of Ugs.

Upper bound. We bound bv p (S) from below. First, since v was chosen, then pv > 0 and thus
bv > 0, in which case by construction Apx-DD(G,α , β) sets:

bv = min (dv ,d (v |G (v)))k−1 ≥ d (v |G (v))k−1. (88)

Now, we adapt the lower bound on p (S) of Lemma 25 by modifying Equation (54). By Definition 27,
bv > 0 implies |B (v) | > 0, so the hypotheses of Lemma 25 are satisfied. Since G[S] is connected,
then at least one sequence v,u2, . . . ,uk exists such that ci ≥ 1 for all i = 1, . . . ,k − 1, and p (S)
is at least the probability that Rand-Grow follows that sequence. By Lemma 28, all u � v satisfy
d (u |G (v)) ≤ 1

α
·d (v |G (v)); this holds foru = v as well, since α ≤ 1. It follows that ci ≤ i

α
d (v |G (v))

for all i = 1, . . . ,k − 1. Hence, for all i = 1, . . . ,k − 1, Equation (54) becomes:

P(ui+1 = u
′) ≥ α

i d (v |G (v))
. (89)

Thus, the probability that the algorithm follows v,u2, . . . ,uk is at least

p (S) ≥
k−1∏
i=1

α

i d (v |G (v))
=

αk−1

(k − 1)!d (v |G (v))k−1
. (90)

ACM Transactions on Algorithms, Vol. 19, No. 3, Article 26. Publication date: June 2023.

26:28 M. Bressan

Combining Equations (88) and (90), we conclude that for some absolute constant C2:

bv · p (S) ≥ d (v |G (v))k−1 · αk−1

(k − 1)!d (v |G (v))k−1
≥ αk−1

(k − 1)!
, (91)

and therefore

βk−C1k

bv p (S)
≤ βk−C1k

α k−1

(k−1)!

≤ βk−(C1−C2)k

αk−1
. (92)

Since α = β
1

k−1
1

6k3 , we have:

βk−(C1−C2)k

αk−1
=

βk−(C1−C2)k (6k3)k−1

β
≤ k−(C1−C3)k (93)

for some constant C3. Choosing C1 ≥ C3, the acceptance probability is in [0, 1].

Lower bound. We bound bv p (S) from above. On the one hand, note that the upper bound on
p (S) of Lemma 25 applies even for an (α , β)-order. Indeed, that bound is based on the lower bound
of Lemma 24 whose proof uses only d (v |G (v)) but not d (u |G (v)) for any u � v . Thus,

p (S) ≤ kC4k

d (v |G (v))k−1
(94)

for some constant C4. On the other hand, bv ≤ dk−1
v by construction of Apx-DD. Moreover, since

bv > 0, by Definition 27, we have dv ≤ 1
α
d (v |G (v)). Therefore,

bv ≤
1

αk−1
d (v |G (v))k−1. (95)

We conclude that:

bv · p (S) ≤ 1

αk−1
d (v |G (v))k−1 kC4k

d (v |G (v))k−1
=

kC4k

αk−1
. (96)

Since α = β
1

k−1
1

6k3 , we have:

bv · p (S) ≤ kC4k (6k3)k−1

β
≤ kC5k

β
(97)

for some constant C5. Hence,

βk−C1k

bv p (S)
≥ βk−C1k β

kC5k
= β2c−(C5+C1)k . (98)

Replacing β = ε
2 shows that the acceptance probability is at least ε2k−O (k) , as claimed. �

Ugs-Compare is now our baseline. Our goal is building an algorithm whose output distribution
is ε

2 -close to that of Ugs-Compare, without using the sorted adjacency lists. To this end, we will
carefully re-design the routines of Ugs and use several coupling arguments. In what follows, we
assume that V (G) is sorted by ≺, and we fix some v ∈ V (G) with bv > 0.

ACM Transactions on Algorithms, Vol. 19, No. 3, Article 26. Publication date: June 2023.

Efficient and Near-optimal Algorithms for Sampling Small Connected Subgraphs 26:29

ALGORITHM 7: EstimateCuts(G,v,U ,α , β,δ)

1: let � = 1
kδ α 2 , h = Θ(�2 log k

β
)

2: let ĉ (U) = 0
3: for each u ∈ U do

4: sample h neighbors x1, . . . ,xh of u i.i.d. u.a.r.

5: let X =
∑h

j=1 I {x j � v ∧ x j � U }
6: if X ≥ � then let ĉ (u) = du

h
X else let ĉ (u) = 0

7: return {̂c (u)}u ∈S

7.2.1 Approximating the Cuts. First, we show how to estimate efficiently the size of the cuts
encountered by the random growing process. We will use these estimates to approximate the ran-
dom growing process itself, as well as the computation of pv (д). The quality of our estimates and
the cost of computing them are both based on the properties of (α , β)-DD orders.

Lemma 38. EstimateCuts(G,v,U ,α , β) runs in time O (|U |2 1
kδ 2α 4 log 1

β
).

Proof. At each iteration EstimateCuts(G,v,U ,α , β) draws h = O (1
k2δ 2α 4) log k

β
samples,

which is inO (1
kδ 2α 4 log 1

β
) as log k

β
= O (k log 1

β
). For each sample, computing I {x j � v ∧ x j � U }

takes time O (|U |) via edge queries. Summing over all iterations gives a bound of O (|U |) ·
O (1

kδ 2α 4 log 1
β

) ·O (|U |) = O (|U |2 1
kδ 2α 4 log 1

β
). �

Lemma 39. Let G[U] be a connected subgraph of G (v) on i < k vertices containing v . With proba-

bility 1 − poly
β

k
, the output of EstimateCuts(G,v,U ,α , β,δ) satisfies:��̂c (u) − c (u)�� ≤ δ d (v |G (v)) ∀u ∈ U , (99)

where c (u) = | Cut(u,G (v) \ U) |. In this case, then |̂c (U) − c (U) | ≤ |U |δkc (U) too, where ĉ (U) =∑
u ∈U ĉ (u) and c (U) =

∑
u ∈U c (u) = | Cut(U ,G (v) \U) |.

Proof. Fix any u ∈ U and consider the iteration where the edges of u are sampled. For each

j ∈ [h] let Xu, j = I
{
x j � v ∧ x j � U

}
. Clearly, E[Xu, j] =

hc (u)
du

. Let Xu =
∑h

j=1 Xu, j ; this is the

value of X tested by the algorithm at u’s round. To begin, we note that:

E

[
du

h
Xu

]
=
du

h
E

⎡⎢⎢⎢⎢⎢⎣
h∑

j=1

Xu, j

⎤⎥⎥⎥⎥⎥⎦ = c (u). (100)

Define γ (u) = du

h
Xu . Clearly,

P(|γ (u) − c (u) | > δd (v |G (v))) = P

(
|Xu − EXu | > h δ

d (v |G (v))

du

)
. (101)

Note that the algorithm can set ĉ (u) = γ (u) or ĉ (u) = 0. First, we show that γ (u) is concentrated
around c (u). Then, we deal with the value of ĉ (u) set by the algorithm.

Clearly, X is the sum of h i.i.d. indicator random variables. By Hoeffding’s inequality, for any

δ > 0, we have P(|Xu − EXu | > t) < 2e−2 t
2

h . With t = δ d (v |G (v)) h
du

, we obtain:

P

(
|Xu − EXu | > h δ

d (v |G (v))

du

)
< 2 exp ��−2h δ 2

(
d (v |G (v))

du

)2�� . (102)

ACM Transactions on Algorithms, Vol. 19, No. 3, Article 26. Publication date: June 2023.

26:30 M. Bressan

Now, as bv > 0 and u � v , by Definition 27, we have d (v |G (v)) ≥ αdv and dv ≥ 3kαdu . Hence,

du <
1

3kα 2d (v |G (v)), so
d (v |G (v))

du
> 3kα2. Therefore:

h δ 2

(
d (v |G (v))

du

)2

≥ 9h δ 2k2α4. (103)

However, note that h = Θ(1
δ 2k2α 4 log k

β
). Thus, P

(
|γ (u) − c (u) | > δ d (v |G (v))

)
≤ poly

β

k
.

Now, the algorithm fails if it either sets ĉ (u) = γ (u) and |γ (u) − c (u) | > δ d (v |G (v)) or if it sets
ĉ (u) = 0 and |0 − c (u) | > δ d (v |G (v)). The probability of the first event is at most the probability

that |γ (u)−c (u) | > δ d (v |G (v)), which is poly
β

k
as shown above. So, we must bound the probability

that ĉ (u) = 0 and |0−c (u) | > δd (v |G (v)); this second condition is just c (u) > δ d (v |G (v)). Recalling

that EXu = h
c (u)
du

and that d (v |G (v))
du

≥ 3kα2 and δ =
β

4k2 , we obtain:

EXu = h
c (u)

du
> h

δ d (v |G (v))

du
≥ 3khα2δ . (104)

Note that hα2δ = h
� ∈ Ω(

√
h log k

β
). Also note that � = o(h

�). This implies:

EXu − � = Ω ���
√
h log

k

β
��� . (105)

Now, ĉ (u) = 0 by construction of the algorithm implies Xu < �, which can be rewritten as Xu <

EXu − t with t = EXu − � = Ω(
√
h log k

β
). SinceXu is the sum of h i.i.d. indicator random variables,

Hoeffding’s inequality gives:

P (Xu − EXu < t) < e−
2t

2

h = exp
����−

Ω
(√

h log k
β

)2

h

���� = exp

(
−Ω

(
k

β

))
. (106)

Hence, this event has probability at most poly
β

k
, too. We conclude that ��̂c (u) − c (u)�� ≤ δ d (v |G (v))

with probability at least 1−poly
β

k
. By a union bound over u ∈ S , this proves the claim for the ĉ (u).

For ĉ (U), note that:

|̂c (U) − c (U) | =
������
∑
u ∈U

ĉ (u) −
∑
u ∈U

c (u)
������ ≤

∑
u ∈U

��̂c (u) − c (u)�� ≤ |U | δ d (v |G (v)). (107)

By Lemma 24 d (v |G (v)) ≤ kc (U), concluding the proof. �

7.2.2 Approximating the Random Growing Process. Using EstimateCuts we now run an ap-
proximate random growing process as follows: Start with S1 = {v}, and at each step i = 1, . . . ,k−1,
run EstimateCuts with U = Si . This gives estimates of | Cut(u,G (v) \ Si) | for all u ∈ Si . Using
these estimates, sample a random edge near-uniformly from Cut(Si ,G (v) \ Si). The result is the
following routine whose output distribution is close to Rand-Grow:

Lemma 40. Let p be the output distribution of Rand-Grow(G,v) and q the output distribution of

Apx-Rand-Grow(G,v,α , β,γ). Then, tvd(p,q) ≤ γ + poly
β

k
.

Proof. We establish a coupling between the two algorithms. For i = 1, both algorithms set
S1 = {v}. Now suppose that both algorithms agree on S1, . . . , Si and they are about to choose Si+1.
We show that with probability 1 − γ

Ck
they agree on the next edge drawn, and therefore on Si+1.

ACM Transactions on Algorithms, Vol. 19, No. 3, Article 26. Publication date: June 2023.

Efficient and Near-optimal Algorithms for Sampling Small Connected Subgraphs 26:31

ALGORITHM 8: Apx-Rand-Grow(G,v,α , β,γ)

1: S1 = {v}
2: for i = 1, . . . ,k − 1 do

3: (ĉi (u))u ∈Si
= EstimateCuts(G,v, Si ,α , β,O (γk−4))

4: ĉi =
∑

u ∈Si
ĉi (u)

5: draw u with probability
ĉi (u)

ĉi
(if all ĉi (u) = 0 then fail)

6: repeat

7: draw u ′ u.a.r. from the adjacency list of u
8: until u ′ ∈ G (v) \ Si

9: let Si+1 = Si ∪ {u ′}
10: return Sk

Here, C is a constant that we can make arbitrarily large by appropriately choosing the constants
used along the algorithm and in EstimateCuts.

Foru ∈ Si let ci (u) = | Cut(u,G (v)\Si) |, and let ci =
∑

u ∈Si
ci (u). For eachu ∈ Si , letpi (u) = ci (u)

ci

and qi (u) = ĉi (u)
ĉ (Si)

. So, pi (u) is the probability that Rand-Grow draws u at line 5, and qi (u) the

probability that Apx-Rand-Grow draws u at line 5.
Now, if Apx-Rand-Grow and Rand-Grow both choose u, then we can couple them so they

choose the same edge. This holds since both algorithms draw u ′ uniformly from all neighbors of
u in G (v) \ Si . So, the probability that the two algorithms choose a different edge is at most the
probability that they choose u differently, that is, by tvd(qi ,pi) = 1

2 ‖qi − pi ‖1. Therefore:

tvd(qi ,pi) =
1

2

∑
u ∈Si

|qi (u) − pi (u) | =
∑
u ∈T

(qi (u) − pi (u)) =
∑
u ∈T

(
ĉi (u)

ĉ (Si)
− ci (u)

ci

)
, (108)

where T = {u ∈ Si : qi (u) > pi (u)}. Now, by Lemma 39, with probability 1 − poly
γ

k
, we have

|̂c (ui) − c (ui) | ≤ δ d (c |G (v)) for all u ∈ Si , and |̂c (Si) − ci | ≤ k2δci . In this case,

ĉi (u)

ĉ (Si)
− ci (u)

ci
≤ ci (u) + δ d (c |G (v))

ci (1 − k2δ)
− ci (u)

ci
(109)

=
ci (u) + δ d (c |G (v)) − ci (u) (1 − k2δ)

ci (1 − k2δ)
(110)

=
δ d (c |G (v)) + k2δci (u)

ci (1 − k2δ)
. (111)

Clearly, ci (u) ≤ ci , and by Lemma 24, d (c |G (v)) ≤ kci . Therefore:

δ d (c |G (v)) + k2δci (u)

ci (1 − k2δ)
≤ δ k ci + k

2δci

ci (1 − k2δ)
(112)

=
δ k + k2δ

1 − k2δ
(113)

≤ k · 2δ k2

1 − k2δ
(114)

=
2δ k3

1 − k2δ
. (115)

For any δ = O (
γ

k4), this is in O (
γ

k2). Taking the sum over u ∈ T , we obtain tvd(qi ,pi) = O (
γ

k
).

ACM Transactions on Algorithms, Vol. 19, No. 3, Article 26. Publication date: June 2023.

26:32 M. Bressan

Thus, the two algorithms will disagree on Si+1 with probability at most poly
β

k
+ O (

γ

k
). By a

union bound on all i , the algorithms disagree on Sk with probability poly
β

k
+O (γ). The O (γ) part

can made smaller than γ by choosing δ = O (
γ

k4) small enough. �

Lemma 41. Apx-Rand-Grow(G,v,α , β,γ) has expected running time O (k9

γ 2α 4 log 1
β

).

Proof. At each iteration, since |Si | < k , by Lemma 38, obtaining the cut estimates takes time

O (k
δ 2α 4 log 1

β
). As δ = O (

γ

k4), this gives a bound of O (kk8

γ 2α 4 log 1
β

) = O (k9

γ 2α 4 log 1
β

). We show that

this dominates the expected time of the trials at lines 6–8 as well.
Let T be the random variable giving the number of times lines 6–8 are executed. Let Eu be the

event that u ∈ Si is chosen at line 5. Clearly, Eu implies ĉi (u) > 0. Thus, P(Eu) ≤ P(ĉi (u) > 0).

Moreover, conditioned on Eu , the algorithm returns after du

ci (u) trials in expectation. Therefore:

ET =
∑
u ∈Si

P(Eu) E[T | Eu] ≤
∑
u ∈Si

P(ĉi (u) > 0)
du

ci (u)
. (116)

Now recall EstimateCuts. By construction, ĉi (u) > 0 implies Xu ≥ �, where EXu =
ci (u)

du
h. By

Markov’s inequality:

P(ĉi (u) > 0) = P(X ≥ �) ≤ EX
�
=
ci (u)

du

h

�
=
ci (u)

du
� log

k

β
. (117)

Therefore:

ET ≤
∑
u ∈Si

ci (u)

du
� log

k

β
· du

ci (u)
≤ k� log

k

β
=

1

δα2
log

k

β
=

k

δα2
log

1

β
. (118)

Finally, note that each single trial takes time O (k) via edge queries. The resulting time bound is in

O (k2

δ α 2 log 1
β

), which is dominated by the sampling running time (see above). �

7.2.3 Approximating the Acceptance Probability. Next, we compute an acceptance probability.
For anyд ∈ B (v), let qv (д) be the probability that Apx-Rand-Grow returnsд. If we could compute
qv (д), then we would be done. However, computingqv (д) requires computing the exact sizes of the
cuts, which takes time Ω(Δ) in the worst case. Fortunately, we can show that a good approximation
of pv (д), the probability that Rand-Grow returns д, is sufficient. By the properties of (α , β)-DD
orders, we can compute such an approximation efficiently.

ALGORITHM 9: Apx-Prob(G, S = {v,u2, . . . ,uk },α , β, ρ)

1: p̂ = 0
2: for each permutation σ = (σ2, . . . ,σk) of u2, . . . ,uk do

3: p̂σ = 1
4: for each i = 1, . . . ,k − 1 do

5: Si = {v,σ2, . . . ,σi }
6: ni = | Cut(Si ,σi+1) |
7: (ĉi (u))u ∈Si

= EstimateCuts(G,v, Si ,α ,
β

kO (k) ,O (
ρ

k2))

8: ĉi =
∑

u ∈Si
ĉi (u)

9: p̂σ = p̂σ · ni

ĉi

10: p̂ = p̂ + p̂σ

11: return p̂

ACM Transactions on Algorithms, Vol. 19, No. 3, Article 26. Publication date: June 2023.

Efficient and Near-optimal Algorithms for Sampling Small Connected Subgraphs 26:33

Lemma 42. For any д = G[S] ∈ B (v) and ρ > 0, Apx-Prob(G, S,α , β, ρ) runs in time kO (k) 1
ρ2α 4

log 1
β

and with probability 1 − poly
β

k
returns a multiplicative (1± ρ)-approximation p̂v (д) of pv (д).

Proof sketch. The running time analysis is straightforward. For the correctness, let Σ be the
set of all permutations σ = (σ1, . . . ,σk) of v,u2, . . . ,uk such that σ1 = v . For each σ ∈ Σ, let Sσ

i be
the first i vertices in S as given by σ . Note that Apx-Prob returns:

p̂ =
∑
σ ∈Σ

p̂σ =
∑
σ ∈Σ

k−1∏
i=1

n(Sσ
i)

ĉ (Sσ
i)
, (119)

where n(Sσ
i) is the size of the cut between Sσ

i and σi+1, and ĉ (Sσ
i) is the value of ĉi used by Apx-

Prob. Instead, Prob(G, S) returns:

p =
∑
σ ∈Σ

pσ =
∑
σ ∈Σ

k−1∏
i=1

n(Sσ
i)

c (Sσ
i)
. (120)

Therefore,

p̂

p
=

∑
σ ∈Σ

∏k−1
i=1 c (Sσ

i)∑
σ ∈Σ

∏k−1
i=1 ĉ (Sσ

i)
. (121)

Look at a single term σ . Note that ĉ (Sσ
i) is estimated as in EstimateCuts(G,v,U ,α , β,δ), but

with k times as many samples. Therefore, the guarantees of Lemma 39 apply, but the deviation
probability shrinks by a factor 2−k . Since there are at most 2k different subsets Sσ

i , by a union

bound, with probability 1−poly
β

k
, we have ĉ (Sσ

i) ∈ c (Sσ
i) · (1±δ k2)c (Sσ

i) for all Sσ
i simultaneously,

where we used |S | ≤ k . Thus,∏k−1
i=1 c (Sσ

i)∏k−1
i=1 ĉ (Sσ

i)
=

k−1∏
i=1

c (Sσ
i)

ĉ (Sσ
i)
∈

(
1

(1 ± δ k2)

)k−1

. (122)

For δ = O (
ρ

k3) small enough, the right-hand side is in (1±ρ). This gives
p̂

p
∈ (1±ρ), as claimed. �

7.2.4 Coupling the Algorithms. We conclude the sampling phase of Apx-Ugs. After drawing
v , we invoke Apx-Rand-Grow(G,v,α , β,γ) and Apx-Prob(G, S,α , β, ρ) with γ = ρ = ε3k−C2k ,
where S is the set of vertices returned by Apx-Rand-Grow. Hence, we have a random graphlet
д = G[S] together with a probability estimate p̂v (д). We then accept д with probability inversely
proportional to p̂v (д). For reference, see the code below.

The next two lemmas show that Apx-Ugs satisfies the claims of Theorem 6.

Lemma 43. Suppose that the preprocessing of Apx-Ugs(G, ε) succeeds (Lemma 28). Then, each in-

vocation of Sample() returns a graphlet independently and ε-uniformly at random from G.

Proof. By Lemma 28, Apx-DD(G,α , β) with high probability returns an (α , β)-DD order for G.
The rest of the proof is conditioned on this event. We will couple the sampling phases of Apx-
Ugs(G, ε) and Ugs-Compare(G, ε). Note that the the preprocessing phases of the two algorithms
are identical (save for the fact that Ugs-Compare also sorts the adjacency lists). In particular, they
use the same order ≺ overV (G), which induces the same bucketing {B (v)}v ∈V , as well as the same
bucket size estimates {bv }v ∈V , and therefore also the same distribution p over V .

Let H = {v ∈ V : bv > 0}. Let UV and UH be the uniform distributions, respectively, over
∪v ∈V B (v) and ∪v ∈HB (v), and let q be the output distribution of Apx-Ugs::Sample. Our claim is
that tvd(q,UV) ≤ ε . By the triangle inequality, tvd(q,UV) ≤ tvd(UH ,UV) + tvd(q,UH), and by

ACM Transactions on Algorithms, Vol. 19, No. 3, Article 26. Publication date: June 2023.

26:34 M. Bressan

Definition 27, the buckets indexed by H hold a fraction at least 1 − β = 1 − ε
2 of all graphlets,

hence, tvd(UH ,UV) ≤ ε
2 . Therefore, to prove that tvd(q,UV) ≤ ε , we need only to prove that

tvd(q,UH) ≤ ε
2 , which we do in the remainder.

ALGORITHM 10: Apx-Ugs(G, ε)

1: let C1,C2 = large enough universal constants
2: let β = ε

2 and let (≺,bbb) = Apx-DD(G,α , β)

3: let Z =
∑

v ∈V bv , and for each v ∈ V let p (v) = bv

Z

4: sort V (G) according to ≺
5:

6: function Sample()
7: while true do

8: draw v from the distribution p
9: S = Apx-Rand-Grow(G,v,α , β, ε3k−C2k)

10: p̂ (S) = Apx-Prob(G, S,α , β, ε3k−C2k)

11: with probability min (1, 1
p (v) p̂ (S)

β

Z
k−C1k) return S

First, by Lemma 37,UH is precisely the output distribution of Ugs-Compare::Sample. Thus, we
will couple Ugs-Compare::Sample and Apx-Ugs::Sample; under this coupling they will return the
same graphlet with probability at least 1 − ε

2 , establishing that tvd(q,UH) ≤ ε
2 .

To begin, since the Ugs-Compare::Sample and Apx-Ugs::Sample use the same distribution p
over the buckets, we can couple them so they choose the same bucket B (v). Now, let SP denote
the random set of vertices drawn by Ugs-Compare::Sample at line 10, and by SQ the one drawn
by Apx-Ugs::Sample at line 9. As the two algorithms invoke, respectively, Rand-Grow(G,v) and
Apx-Rand-Grow(G,v,α , ε

2 , ε
3k−C2k), Lemma 40 yields:

tvd(SP , SQ) ≤ ε3k−C2k + poly
ε

k
. (123)

Hence, we can couple the two algorithms so P(SQ � SP) ≤ ε3k−C2k .
Now, let XP be the indicator random variable of the event that Ugs-Compare::Sample ac-

cepts SP (line 12 of Ugs-Compare), and XQ the indicator random variable of the event that Apx-
Ugs::Sample accepts SQ (line 11 of Apx-Ugs). The outcome of Ugs-Compare::Sample is the pair
(SP ,XP), and that of Apx-Ugs::Sample is the pair (SQ ,XQ). Let DP and DQ be the distributions
of, respectively, (SP ,XP) and (SQ ,XQ). Note that DP (·|XP = 1) and DQ (·|XQ = 1) are the distri-
butions of the graphlets returned by, respectively, Ugs-Compare::Sample and Apx-Ugs::Sample.
Thus, our goal is to show:

tvd(DP (·|XP = 1),DQ (·|XQ = 1)) ≤ ε

2
. (124)

Let X∨ = max(XP ,XQ) be the indicator random variable of the event that at least one algorithm

accepts its graphlet. Clearly, P(X∨ = 1) ≥ P(XP = 1), and by Lemma 37, P (XP = 1) ≥ ε2k−O (k) . By
the triangle inequality:

tvd(DP (·|XP = 1),DQ (·|XQ = 1)) ≤ tvd(DP (·|XP = 1),DP (·|X∨ = 1)) (125)

+tvd(DP (·|X∨ = 1),DQ (·|X∨ = 1))

+tvd(DQ (·|XQ = 1),DQ (·|X∨ = 1).)

ACM Transactions on Algorithms, Vol. 19, No. 3, Article 26. Publication date: June 2023.

Efficient and Near-optimal Algorithms for Sampling Small Connected Subgraphs 26:35

Let us start by bounding the middle term. We have:

tvd(DP (·|X∨ = 1),DQ (·|X∨ = 1)) ≤ P(SQ � SP |X∨ = 1) by the coupling (126)

≤
P(SQ � SP)

P(X∨ = 1)
(127)

≤
P(SQ � SP)

P(XP = 1)
X∨ = max(XP ,XQ) (128)

≤
P(SQ � SP)

ε2k−O (k)
Lemma 37 (129)

≤ ε3k−C2k

ε2k−O (k)
see above (130)

= εk−(C2+C3)k (131)

for some C3 independent of C2.
We bound similarly the sum of the other two terms. For the first term note that:

tvd(DP (·|XP = 1),DP (·|X∨ = 1)) ≤ P(XP = 0 |X∨ = 1). (132)

This is true since DP (·|XP = 1) is just DP (·|X∨ = 1) conditioned on XP = 1, an event that has
probability 1 − P(XP = 0 |X∨ = 1). Symmetrically, for the last term

tvd(DQ (·|XQ = 1),DQ (·|X∨ = 1)) ≤ P(XQ = 0 |X∨ = 1). (133)

Thus:

tvd(DP (·|XP = 1),DP (·|X∨ = 1)) + tvd(DQ (·|XQ = 1),DQ (·|X∨ = 1)) (134)

≤ P(XP = 0 |X∨ = 1) + P(XQ = 0 |X∨ = 1). (135)

Now,

P(XP = 0 |X∨ = 1) + P(XQ = 0 |X∨ = 1) = P(XP � XQ |X∨ = 1) (136)

≤
P(XP � XQ)

P(X∨ = 1)
(137)

≤
P(XP � XQ)

ε2k−O (k)
see above. (138)

For the numerator,

P(XQ � XP) ≤ P(SQ � SP) + P(XQ � XP | SQ = SP) (139)

≤ ε3k−C2k + P(XQ � XP | SQ = SP) see above. (140)

As said, P(SQ � SP) ≤ ε1. As XQ and XP are binary, our coupling yields:

P(XQ � XP | SQ = SP) = ���P(XP = 1 | SQ = SP) − P(XQ = 1 | SQ = SP)��� (141)

≤
����� P(XP = 1 | SQ = SP)

P(XQ = 1 | SQ = SP)
− 1

����� . (142)

Now, let S be any realization of SQ and SP . By construction of the algorithms, P(XP = 1 | SP = S) =
ν , and P(XQ = 1 | SQ = S) = min(1, ν̂), where:

ν =
1

p (v) p (S)

β

Z
k−C1k , ν̂ =

1

p (v) p̂ (S)

β

Z
k−C1k . (143)

ACM Transactions on Algorithms, Vol. 19, No. 3, Article 26. Publication date: June 2023.

26:36 M. Bressan

Therefore:

P(XQ � XP | SQ = SP) ≤
����� ν

min(1, ν̂)
− 1

����� ≤ ����νν̂ − 1
���� = �����p̂ (S)

p (S)
− 1

����� , (144)

where the second inequality holds since, if ν̂ > 1, then����� ν

min(1, ν̂)
− 1

����� = ����ν1 − 1
���� < ����νν̂ − 1

���� . (145)

Now, by Lemma 42, with probability 1 − poly ε
k

, we have p̂ (S) ∈ (1 ± ε3k−C2k)p (S). So, if this

event holds, then we have P(XQ � XP | SQ = SP) ≤ ε3k−C2k . If it fails, then we still have the trivial
bound P(XQ � XP | SQ = SP) ≤ 1. By the law of total probability,

P(XQ � XP | SQ = SP) ≤
(
1 − poly

ε

k

)
ε3k−C2k + poly

ε

k
= O (ε3k−C2k). (146)

Applying these two bounds to the right-hand side of Equation (139), we obtain:

P(XQ � XP) = O (ε3k−C2k). (147)

Going back to Equation (138), we obtain:

P(XP = 0 |X∨ = 1) + P(XQ = 0 |X∨ = 1) = O

(
ε3k−C2k

ε2k−O (k)

)
= O (ε). (148)

By taking this bound together with Equation (131), we conclude that:

tvd(DP (·|XP = 1),DQ (·|XQ = 1)) = O (ε), (149)

which we can bring below ε
2 by adjusting the constants. This concludes the proof. �

Lemma 44. Suppose that the preprocessing of Apx-Ugs(G, ε) succeeds (Lemma 28). Then, each in-

vocation of Sample() has expected running time kO (k)ε−8− 4
k−1 log 1

ε
.

Proof. First, we bound the expected number of rounds of Apx-Ugs::Apx-Rand-Grow. Recall
XP andXQ from the proof of Lemma 43. Note that P(XQ = 1) ≥ P(XP = 1)−P(XQ � XP). Moreover,

the proof of Lemma 43 showed P(XQ � XP) = O (ε3k−C2k). Therefore, P(XQ = 1) ≥ P(XP =

1) − O (ε3k−C2k). However, by Lemma 37, P(XP = 1) ≥ k−C3ε2 for some constant C3. Therefore,
P(XQ = 1) ≥ ε2k−C3k − ε3k−C2k = k−O (k)ε2. So, the expected number of rounds performed by

Apx-Ugs::Apx-Rand-Grow is bounded by kO (k)ε−2.
Now, we bound the expected time spent in each round. By Lemma 41, and as γ = ε3k−C2k and

α = β
1

k−1
1

6k3 and β = ε
2 , Apx-Rand-Grow(G,v,α , β,γ) has expected running time at most:

O

(
k9

γ 2α4
log

1

γ

)
= kO (k)ε−6− 4

k−1 log
1

ε
. (150)

Note that the bound holds at each round, regardless of past events. Using Lemma 42, one can show
the same bound holds for the running time Apx-Prob(G, S,α , β, ρ), where ρ = ε3k−C2k .

Therefore, the total expected running time satisfies:

E[T] ≤ kO (k)ε−2 · kO (k)ε−6− 4
k−1 log

1

ε
= kO (k)ε−8− 4

k−1 log
1

ε
, (151)

which concludes the proof. �

ACM Transactions on Algorithms, Vol. 19, No. 3, Article 26. Publication date: June 2023.

Efficient and Near-optimal Algorithms for Sampling Small Connected Subgraphs 26:37

8 CONCLUSIONS

We have shown that, starting from just sorting a graph in linear time, one can overcome the usual
inefficiency of rejection sampling of graphlets. This idea yields the first efficient uniform and
ε-uniform graphlet sampling algorithms, with preprocessing times O (|G |) and O (|V (G) |
log |V (G) |). These are the first algorithms with strong theoretical guarantees for these problems
in a long line of research that spans the past decade. Due to their simplicity, we believe that our
algorithms are amenable to being ported in parallel, distributed, or dynamic settings; these are
all directions for future research. We also leave open the problem of determining whether Ω(|G |)
operations are necessary for uniform graphlet sampling when |G | = ω (|V (G) |); a positive answer
would imply the optimality of our uniform sampling algorithm.

APPENDICES

A ANCILLARY RESULTS

Lemma 45. Let G = (V ,E) be any graph, and for any v ∈ V let Nv be the number of k-graphlets

of G containing v . If Nv > 0, then:

Nv ≥
(dv)k−1

(k − 1)k−1
= (dv)k−1k−O (k) . (152)

Moreover, if du ≤ Δ for all u ∈ G, then:

Nv ≤ (k − 1)!(Δ)k−1 = (Δ)k−1kO (k) . (153)

Proof. For the lower bound, if dv ≤ k − 1, then
(dv)k−1

(k−1)k−1 ≤ 1, so if Nv ≥ 1, then Nv ≥ (dv)k−1

(k−1)k−1 . If

instead dv > k−1, then Nv ≥
(

dv

k−1

)
, since any set of vertices formed byv and k−1 of its neighbors

is connected. However Nv ≥
(

dv

k−1

)
≥ (dv)k−1

(k−1)k−1 , since
(

a
b

)
≥ ab

bb
for all a ≥ 1 and all b ∈ [a].

For the upper bound, note that we can construct a connected subgraph on k vertices containing
v by starting with S1 = {v} and at every step i = 1, . . . ,k − 1 choosing a neighbor of Si in G \ Si .
Since each u ∈ G has degree at most Δ, then Si has at most iΔ neighbors. Thus, the total number

of choices is at most
∏k−1

i=1 iΔ = (k − 1)!(Δ)k−1. �

B PROOF OF THEOREM 5

We start by running the preprocessing phase of Ugs. Let Nk =
∑

v ∈V |B (v) | be the total number

of k-graphlet occurrences in G. We compute an estimate N̂k of Nk such that |N̂ − Nk | ≤ ε0N with

probability at least 1 − δ
2 . To this end, for each v ∈ V such that B (v) � ∅, we estimate |B (v) | up to

a multiplicative error (1± ε0) with probability 1− δ
2n

, as detailed below. By a union bound, setting

N̂k to the sum of all those estimates will satisfy the bound above.
To estimate |B (v) |, we run the sampling routine of Ugs over bucket B (v). However, after S is

sampled, instead of rejecting it randomly, we return the probability p (S) computed by Prob(G,S).
By Lemma 26, p (S) is exactly the probability that S is sampled. Thus, if X is the random variable
denoting the output value of this modified routine, then we have:

E[X] =
∑

S ∈B (v)

p (S) · 1

p (S)
= |B (v) |. (154)

It remains to apply concentration bounds. To this end, note that X ≤ kO (k)
E[X] by Lemma 25.

Thus, X ∈ [0,kO (k)
E[X]]. Therefore, by averaging over � independent samples of X , we obtain:

ACM Transactions on Algorithms, Vol. 19, No. 3, Article 26. Publication date: June 2023.

26:38 M. Bressan

P ��
������1�

�∑
i=1

Xi − E[X]

������ > ε0E[X]�� < 2 exp

(
− (ε0E[X])2�

(kO (k)E[X])2

)
= 2 exp

(
−

ε2
0�

kO (k)

)
. (155)

Therefore, our guarantees are achieved by setting � = kO (k)ε−2
0 ln 2n

δ
. Since we have at most n

nonempty buckets, to estimate N̂k we use a total of kO (k)nε−2
0 ln 2n

δ
samples.

Next, we estimate the graphlet frequencies via the sampling routine of Ugs. For every distinct
(up to isomorphism) k-vertex simple connected graph H , let NH be the number of distinct k-

graphlet occurrences of H in G. Clearly,
∑

H NH = Nk . Let fH =
NH

Nk
be the relative frequency of

H . Now, we take poly(k) 4
ε2

1

ln 1
δ

independent uniform samples. By standard concentration bounds,

we obtain an estimate f̂H of fH such that | f̂H − fH | ≤ ε1

2 with probability at least 1 − δ
− poly(k)
1 .

Since there are 2poly(k) distinct k-vertex (connected) graphs, by a union bound, we obtain such an

estimate f̂H for all H simultaneously with probability 1 − δ
2 .

Now, for all H , we set N̂H = N̂k f̂H . By a union bound, with probability at least 1 − δ , we have
simultaneously for all H :

N̂H − NH = N̂k f̂H − NH (156)

≤ Nk (1 + ε0)
(
fH +

ε1

2

)
− NH (157)

= (1 + ε0)NH + Nk (1 + ε0)
ε1

2
− NH (158)

≤ ε0NH + ε1Nk , (159)

on the one hand, and similarly, N̂H−NH ≥ −ε0NH−ε1Nk on the other hand. Therefore, |N̂H−Nk | ≤
ε0NH + ε1Nk with probability at least 1 − δ for all H simultaneously, as desired.

The running time is given by (i) the preprocessing phase, which takes time O (k2 + m);
(ii) kO (k)nε−2

0 ln 2n
δ
+ poly(k) 4

ε2
1

ln 1
δ

samples, each one taking time kO (k) log Δ as per Theorem 4.

This gives a total running time of:

O (k2n +m) +

(
kO (k)nε−2

0 ln
2n

δ
+ poly(k)

4

ε2
1

ln
1

δ

)
kO (k) log Δ, (160)

which is in O (m) + kO (k) (nε−2
0 ln n

δ
+ ε−2

1 ln 1
δ

) log Δ. The proof is complete.

C EPSILON-UNIFORM SAMPLING VIA COLOR CODING

We show how to use the color coding algorithm of [12] in a black-box fashion to perform ε-uniform

sampling from G. The overhead in the running time and space is 2O (k)O (log 1
ε

), and the overhead

in the sampling time is 2O (k)O ((log 1
ε

)2).

First, we perform � = O (ek log 1
ε

) independent runs of the preprocessing phase of the algorithm

of [12], storing all their output count tables. This gives a time-and-spaceO (ek log 1
ε

) overhead with

respect to [12]. In each run, any graphlet д has probability kk

k ! ≥ e−k of becoming colorful. Thus,

with O (ek log 1
ε

) independent runs, д is colorful with probability 1 − poly ε in at least one run and
appears in the respective count table. As shown in [12], for each run i = 1, . . . , � one can estimate,

within a multiplicative (1 ± ε) factor, the number of colorful graphlets Ni , using O (kO (k)

ε2) samples.

In time O (kO (k)

ε2 log 1
ε

), we can do so for all runs with probability 1 − poly ε . This concludes the
preprocessing phase.

For sampling, we choose a random run i ∈ [�] with probability proportional to the estimate
of Ni . Then, we draw a graphlet from that run uniformly at random using the sampling phase of

ACM Transactions on Algorithms, Vol. 19, No. 3, Article 26. Publication date: June 2023.

Efficient and Near-optimal Algorithms for Sampling Small Connected Subgraphs 26:39

[12]. This yields a graphlet uniformly at random from the union of all colorful graphlets in all runs.
Thus, the probability that a specific graphlet д is sampled is proportional to the number of runs
�(д) where д is colorful, which we can compute by looking at the colors assigned to д by every
run in time � = O (ek log 1

ε
). Then, we accept д with probability 1

�(д) ≥
1
� . Therefore, we need at

most � = O (ek log 1
ε

) trials in expectation before a graphlet is accepted. This gives an overhead of

O (ek log 1
ε

)2 in the sampling phase. This construction can be derandomized using an (n,k)-family

of perfect hash functions of size � = 2O (k) logn (see [4]). This derandomization would increase
the time and space of the preprocessing by a factor logn, but we would still need to estimate the
number of graphlets in each run, so the final distribution would still be non-uniform.

REFERENCES

[1] Matteo Agostini, Marco Bressan, and Shahrzad Haddadan. 2019. Mixing time bounds for graphlet random walks.

Inform. Process. Lett. 152 (2019), 105851. DOI:https://doi.org/10.1016/j.ipl.2019.105851

[2] David Aldous and James Fill. 1995. Reversible Markov Chains and Random Walks on Graphs. Retrieved from https://

www.stat.berkeley.edu/ aldous/RWG/book.pdf.

[3] N. Alon, P. Dao, I. Hajirasouliha, F. Hormozdiari, and S. C. Sahinalp. 2008. Biomolecular network motif counting and

discovery by color coding. Bioinformatics 24, 13 (July 2008), i241–249. DOI:https://doi.org/10.1093/bioinformatics/

btn163

[4] Noga Alon, Raphael Yuster, and Uri Zwick. 1995. Color-coding. J. ACM 42, 4 (1995), 844–856. DOI:https://doi.org/10.

1145/210332.210337

[5] Sepehr Assadi, Michael Kapralov, and Sanjeev Khanna. 2018. A simple sublinear-time algorithm for counting arbitrary

subgraphs via edge sampling. In Proceedings of the ITCS. 6:1–6:20. DOI:https://doi.org/10.4230/LIPIcs.ITCS.2019.6

[6] Suman K. Bera, Lior Gishboliner, Yevgeny Levanzov, C. Seshadhri, and Asaf Shapira. 2022. Counting subgraphs in

degenerate graphs. J. ACM 69, 3 (2022), 23:1–23:21. DOI:https://doi.org/10.1145/3520240

[7] Mansurul A. Bhuiyan, Mahmudur Rahman, Mahmuda Rahman, and Mohammad Al Hasan. 2012. GUISE: Uniform

sampling of graphlets for large graph analysis. In Proceedings of the IEEE ICDM. 91–100. DOI:https://doi.org/10.1109/

ICDM.2012.87

[8] Amartya Shankha Biswas, Talya Eden, and Ronitt Rubinfeld. 2021. Towards a decomposition-optimal algorithm

for counting and sampling arbitrary motifs in sublinear time. In Proceedings of the APPROX/RANDOM. 55:1–55:19.

DOI:https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.55

[9] Anthony Bonato, David F. Gleich, Myunghwan Kim, Dieter Mitsche, Paweł Prałat, Yanhua Tian, and Stephen J. Young.

2014. Dimensionality of social networks using motifs and eigenvalues. PloS One 9, 9 (2014), e106052. DOI:https://doi.

org/10.1371/journal.pone.0106052

[10] Marco Bressan. 2021. Efficient and near-optimal algorithms for sampling connected subgraphs. In Proceedings of the

ACM STOC. 1132–1143. DOI:https://doi.org/10.1145/3406325.3451042

[11] Marco Bressan. 2021. Faster algorithms for counting subgraphs in sparse graphs. Algorithmica (2021). DOI:https://doi.

org/10.1007/s00453-021-00811-0

[12] Marco Bressan, Flavio Chierichetti, Ravi Kumar, Stefano Leucci, and Alessandro Panconesi. 2017. Counting graphlets:

Space vs time. In Proceedings of the ACM WSDM. 557–566. DOI:https://doi.org/10.1145/3018661.3018732

[13] Marco Bressan, Flavio Chierichetti, Ravi Kumar, Stefano Leucci, and Alessandro Panconesi. 2018. Motif counting

beyond five nodes. ACM Trans. Knowl. Discov. Data 12, 4 (Apr. 2018). DOI:https://doi.org/10.1145/3186586

[14] Marco Bressan, Stefano Leucci, and Alessandro Panconesi. 2019. Motivo: Fast motif counting via succinct color cod-

ing and adaptive sampling. Proc. VLDB Endow. 12, 11 (July 2019), 1651–1663. DOI:https://doi.org/10.14778/3342263.

3342640

[15] Marco Bressan, Stefano Leucci, and Alessandro Panconesi. 2021. Faster motif counting via succinct color coding and

adaptive sampling. ACM Trans. Knowl. Discov. Data 15, 6 (May 2021). DOI:https://doi.org/10.1145/3447397

[16] Jin Chen, Wynne Hsu, Mong Li Lee, and See-Kiong Ng. 2006. NeMoFinder: Dissecting genome-wide protein-protein

interactions with meso-scale network motifs. In Proceedings of the ACM KDD. 106–115. DOI:https://doi.org/10.1145/

1150402.1150418

[17] Xiaowei Chen, Yongkun Li, Pinghui Wang, and John C. S. Lui. 2016. A general framework for estimating graphlet sta-

tistics via random walk. Proc. VLDB Endow. 10, 3 (Nov. 2016), 253–264. DOI:https://doi.org/10.14778/3021924.3021940

[18] Norishige Chiba and Takao Nishizeki. 1985. Arboricity and subgraph listing algorithms. SIAM J. Comput. 14, 1 (1985),

210–223. DOI:https://doi.org/10.1137/0214017

ACM Transactions on Algorithms, Vol. 19, No. 3, Article 26. Publication date: June 2023.

https://doi.org/10.1016/j.ipl.2019.105851
https://www.stat.berkeley.edu/~aldous/RWG/book.pdf
https://doi.org/10.1093/bioinformatics/btn163
https://doi.org/10.1145/210332.210337
https://doi.org/10.4230/LIPIcs.ITCS.2019.6
https://doi.org/10.1145/3520240
https://doi.org/10.1109/ICDM.2012.87
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.55
https://doi.org/10.1371/journal.pone.0106052
https://doi.org/10.1145/3406325.3451042
https://doi.org/10.1007/s00453-021-00811-0
https://doi.org/10.1145/3018661.3018732
https://doi.org/10.1145/3186586
https://doi.org/10.14778/3342263.3342640
https://doi.org/10.1145/3447397
https://doi.org/10.1145/1150402.1150418
https://doi.org/10.14778/3021924.3021940
https://doi.org/10.1137/0214017

26:40 M. Bressan

[19] David Easley and Jon Kleinberg. 2010. Networks, Crowds, and Markets: Reasoning About a Highly Connected World.

Cambridge University Press. DOI:https://doi.org/10.1017/CBO9780511761942

[20] Talya Eden, Amit Levi, Dana Ron, and C. Seshadhri. 2017. Approximately counting triangles in sublinear time. SIAM

J. Comput. 46, 5 (2017), 1603–1646. DOI:https://doi.org/10.1137/15M1054389

[21] Talya Eden, Saleet Mossel, and Ronitt Rubinfeld. 2021. Sampling multiple edges efficiently. In Proceedings of the AP-

PROX/RANDOM. 51:1–51:15. DOI:https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.51

[22] Talya Eden, Dana Ron, and C. Seshadhri. 2020. On approximating the number of k-cliques in sublinear time. SIAM J.

Comput. 49, 4 (2020), 747–771. DOI:https://doi.org/10.1137/18M1176701

[23] Talya Eden and Will Rosenbaum. 2018. On sampling edges almost uniformly. In Proceedings of the SOSA. 7:1–7:9.

DOI:https://doi.org/10.4230/OASIcs.SOSA.2018.7

[24] Guyue Han and Harish Sethu. 2016. Waddling random walk: Fast and accurate mining of motif statistics in large

graphs. In Proceedings of the IEEE ICDM. 181–190. DOI:https://doi.org/10.1109/ICDM.2016.0029

[25] Madhav Jha, C. Seshadhri, and Ali Pinar. 2015. Path sampling: A fast and provable method for estimating 4-vertex

subgraph counts. In Proceedings of the WWW. 495–505. DOI:https://doi.org/10.1145/2736277.2741101

[26] Tali Kaufman, Michael Krivelevich, and Dana Ron. 2004. Tight bounds for testing bipartiteness in general graphs.

SIAM J. Comput. 33, 6 (2004), 1441–1483. DOI:https://doi.org/10.1137/S0097539703436424

[27] David A. Levin, Yuval Peres, and Elizabeth L. Wilmer. 2009. Markov Chains and Mixing Times. American Mathematical

Society.

[28] Pan Li, Hoang Dau, Gregory Puleo, and Olgica Milenkovic. 2017. Motif clustering and overlapping clustering for social

network analysis. In Proceedings of the IEEE INFOCOM. DOI:https://doi.org/10.1109/INFOCOM.2017.8056956

[29] Ryuta Matsuno and Aristides Gionis. 2020. Improved mixing time for k-subgraph sampling. In Proceedings of the SIAM

SDM. 568–576. DOI:https://doi.org/10.1137/1.9781611976236.64

[30] David W. Matula and Leland L. Beck. 1983. Smallest-last ordering and clustering and graph coloring algorithms. J.

ACM 30, 3 (July 1983), 417–427. DOI:https://doi.org/10.1145/2402.322385

[31] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon. 2002. Network motifs: Simple building blocks

of complex networks. Science 298, 5594 (2002), 824–827. DOI:https://doi.org/10.1126/science.298.5594.824

[32] Kirill Paramonov, Dmitry Shemetov, and James Sharpnack. 2019. Estimating graphlet statistics via lifting. In Proceed-

ings of the ACM KDD. 587–595. DOI:https://doi.org/10.1145/3292500.3330995

[33] Hao Peng, Jianxin Li, Qiran Gong, Yuanxin Ning, Senzhang Wang, and Lifang He. 2020. Motif-matching based

subgraph-level attentional convolutional network for graph classification. Proc AAAI 34, 04 (Apr. 2020), 5387–5394.

DOI:https://doi.org/10.1609/aaai.v34i04.5987

[34] Nataša Pržulj. 2007. Biological network comparison using graphlet degree distribution. Bioinformatics 23, 2 (2007),

e177–e183. DOI:https://doi.org/10.1093/bioinformatics/btl301

[35] Tanay Kumar Saha and Mohammad Al Hasan. 2015. Finding network motifs using MCMC sampling. In Proceedings

of the CompleNet. 13–24. DOI:https://doi.org/10.1007/978-3-319-16112-9_2

[36] Nino Shervashidze, SVN Vishwanathan, Tobias Petri, Kurt Mehlhorn, and Karsten Borgwardt. 2009. Efficient graphlet

kernels for large graph comparison. In Proceedings of the AISTATS. 488–495. Retrieved from https://proceedings.mlr.

press/v5/shervashidze09a.html.

[37] Charalampos E. Tsourakakis, Jakub Pachocki, and Michael Mitzenmacher. 2017. Scalable motif-aware graph clustering.

In Proceedings of the WWW. 1451–1460. DOI:https://doi.org/10.1145/3038912.3052653

[38] Kun Tu, Jian Li, Don Towsley, Dave Braines, and Liam D. Turner. 2019. Gl2vec: Learning feature representation us-

ing graphlets for directed networks. In Proceedings of the IEEE/ACM ASONAM. 216–221. DOI:https://doi.org/10.1145/

3341161.3342908

[39] Johan Ugander, Lars Backstrom, and Jon Kleinberg. 2013. Subgraph frequencies: Mapping the empirical and extremal

geography of large graph collections. In Proceedings of the WWW. 1307–1318. DOI:https://doi.org/10.1145/2488388.

2488502

[40] M. D. Vose. 1991. A linear algorithm for generating random numbers with a given distribution. IEEE Trans. Softw. Eng.

17, 9 (1991), 972–975. DOI:https://doi.org/10.1109/32.92917

[41] Pinghui Wang, John C. S. Lui, Bruno Ribeiro, Don Towsley, Junzhou Zhao, and Xiaohong Guan. 2014. Efficiently

estimating motif statistics of large networks. ACM Trans. Knowl. Discov. Data 9, 2 (2014). DOI:https://doi.org/10.1145/

2629564

Received 10 October 2021; revised 3 May 2023; accepted 3 May 2023

ACM Transactions on Algorithms, Vol. 19, No. 3, Article 26. Publication date: June 2023.

https://doi.org/10.1017/CBO9780511761942
https://doi.org/10.1137/15M1054389
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.51
https://doi.org/10.1137/18M1176701
https://doi.org/10.4230/OASIcs.SOSA.2018.7
https://doi.org/10.1109/ICDM.2016.0029
https://doi.org/10.1145/2736277.2741101
https://doi.org/10.1137/S0097539703436424
https://doi.org/10.1109/INFOCOM.2017.8056956
https://doi.org/10.1137/1.9781611976236.64
https://doi.org/10.1145/2402.322385
https://doi.org/10.1126/science.298.5594.824
https://doi.org/10.1145/3292500.3330995
https://doi.org/10.1609/aaai.v34i04.5987
https://doi.org/10.1093/bioinformatics/btl301
https://doi.org/10.1007/978-3-319-16112-9_2
https://proceedings.mlr.press/v5/shervashidze09a.html
https://doi.org/10.1145/3038912.3052653
https://doi.org/10.1145/3341161.3342908
https://doi.org/10.1145/2488388.2488502
https://doi.org/10.1109/32.92917
https://doi.org/10.1145/2629564

