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Abstract: Protein-protein interactions (PPIs) regulate a plethora of cellular processes and NMR
spectroscopy has been a leading technique for characterizing them at the atomic resolution.
Technically, however, PPIs characterization has been challenging due to multiple samples required to
characterize the hot spots at the protein interface. In this paper, we review our recently developed
methods that greatly simplify PPI studies, which minimize the number of samples required to
fully characterize residues involved in the protein-protein binding interface. This original strategy
combines asymmetric labeling of two binding partners and the carbonyl-carbon label selective
(CCLS) pulse sequence element implemented into the heteronuclear single quantum correlation
(1H-15N HSQC) spectra. The CCLS scheme removes signals of the J-coupled 15N–13C resonances and
records simultaneously two individual amide fingerprints for each binding partner. We show the
application to the measurements of chemical shift correlations, residual dipolar couplings (RDCs),
and paramagnetic relaxation enhancements (PRE). These experiments open an avenue for further
modifications of existing experiments facilitating the NMR analysis of PPIs.

Keywords: protein-protein interactions (PPI); nuclear magnetic resonance (NMR); Carbonyl Carbon
Label Selective (CCLS); dual carbon label selective (DCLS); residual dipolar coupling (RDC);
paramagnetic relaxation enhancement (PRE)

1. Introduction

Biological processes rely primarily on protein-protein interactions (PPIs) to mediate a cellular
function [1]. Historically biochemical techniques (co-immunoprecipitation, yeast-two hybrid,
pull-down assays, etc.) measuring parameters intrinsic to the whole complex have been used to
characterize these PPIs [2,3]. Recently, advances in nuclear magnetic resonance (NMR) spectroscopy
have provided the means to characterize PPIs at an atomic resolution, which offers fine details
of individual macromolecules participating within the complex [4–6]. In addition to allowing the
characterization of these complexes at an atomic resolution, NMR is well-suited for studying dynamic,
transient (~100 µM KD), and low-populated states of complexes [7–9].
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The mapping of PPIs using several observables such as chemical shift perturbation (CSP),
residual dipolar couplings (RDC), intra-molecular and inter-molecular as well as solvent paramagnetic
relaxation enhancement (PRE) [10–12], cross-saturation (CS), and nuclear Overhauser effects (NOEs)
has been well-established [5]. These methods, nevertheless, fall short when studying large complexes
due to the inherent attenuation of transverse relaxation times (T2), which results in a reduction of both
signal intensity and resolution. Despite methods such as TROSY [13], deuteration [14,15], and selective
labeling [16,17] addressing these concerns, multiple samples are still required to distinguish one species
from another. Recently, several new NMR experiments based on simultaneous, interleaved detection
of up to three NMR active species with distinct isotopic labeling have provided the opportunity to
map the effect of PPIs on individual components within a macromolecular complex. While there
are outstanding reviews on protein-protein interactions [18–24], we focus on our recently developed
method that exploits the spin-echo filtering-based experiments with strategic protein labeling schemes
to characterize protein-protein complexes.

2. Results

2.1. Mapping Two Binding Partners Fingerprints Simultaneously

Traditional approaches to map PPIs at an atomic level involve repeat experiments with reverse
labeling patterns such that the interaction is probed from both binding partners. Prior to the
introduction of the spin-echo filtering experiment by Bax et al. [25], three-bond homonuclear 1H-1H
J couplings had been used to derive backbone and side-chain conformational restraints [26–31].
This new experiment relied on measuring the magnetization loss due to unresolved J coupling and
utilized an interleaved detection method where two spectra are recorded simultaneously but differ by
180◦ pulse positions on the 15N channel. The spin-echo filtered experiment introduced by Bax is the
building block for the Carbonyl Carbon Label Selective (CCLS) 1H-15N HSQC pulse sequence [32],
which requires specific isotopic labeling to simultaneously map the chemical shift perturbations from
two binding partners. The CCLS 1H-15N HSQC pulse sequence utilizes spin-echo filtering with a
short magnetization transfer period between 15N and 13C′ in order to detect 1H-15N correlations
adjacent to the NMR inactive (12C′) carbonyl groups (Figure 1A). Building on the constant time (CT)
HSQC, the CCLS 1H-15N HSQC necessitates the acquisition of two spectra, a reference spectrum,
and a suppression spectrum in an interleaved manner. The reference spectrum is acquired using
the pulse sequence reported in Figure 1A with the 180◦ pulse on 13C′ during the 15N CT evolution
period applied at position a as proposed by Vuister et al. [25], which allows for the removal of 13C′-15N
coupling. The suppression spectrum is acquired with the 180◦ 13C′ pulse at position b, leaving
13C-15N J coupling active, and converting the transverse in-phase magnetization of 15N spins linked
to 13C′ to antiphase magnetization. This antiphase magnetization contains components in both the
x-direction and y-direction. The π 1H and 13C pulses applied at the end of the 15N evolution convert
the y-component, 4HzNyC′z, to an unobservable multiple quantum coherence, 4HyNzC′y, while the
x-component, 4HyNzC’y, is de-phased by the G2 gradient (Figure 1A). As a result, signals from 1H-15N
groups coupled to 13C′ are suppressed while signals from 1H-15N groups coupled to 12C′ are unaffected.
The suppression spectrum can then be subtracted from the reference spectrum, which leaves the U-15N,
13C species observable (Figure 1B).

We tested the sensitivity of the CCLS method by comparing a reference CCLS-HSQC spectrum
and a conventional HNCO spectrum of the 20-kDa protein U-13C, 15N-Ubiquitin at 10 ◦C, 20 ◦C, 30 ◦C,
and 40 ◦C corresponding to average T2 values of 27 ms, 33 ms, 40 ms, and 47 ms, respectively [32].
The slower tumbling rates at lower temperatures lead to longer rotational correlation times (τC) and
faster relaxation results in broader linewidths. We found the reference CCLS-HSQC experiment was
more sensitive compared to the HNCO experiment for lower temperatures, which demonstrates
that the shorter time delay (TNC) allows for increased sensitivity for large proteins or protein-protein
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complexes. The sensitivity enhancement gained from optimal TNC values compensates for the decrease
in S/N observed upon subtraction of the suppression spectrum from the reference spectrum.

Furthermore, we applied this technique to resolve assignment ambiguities on the 41 kDa catalytic
subunit of cAMP-dependent protein kinase A (PKA-C) [33,34]. PKA-C is the prototypical Ser/Thr
kinase and, until relatively recently, had remained unexplored by NMR due to its size and presence of
conformational exchange effects on the µs-ms timescale [35–38]. Advances in pulse sequence design
and sample preparation have since made it possible to investigate this system using NMR [39–42].
We successfully implemented the CCLS-HSQC pulse sequence to assist in the assignment of multiple
catalytically relevant residues of PKA-C. Furthermore, recent work from our group demonstrates
the ability of this pulse sequence to simultaneously detect PKA-C in complex with an endogenous
inhibitor known as the heat-stable protein kinase A inhibitor (PKIα) [34,43], which gives the possibility
to detect the mutual effect of PKA-C and PKIα interaction (Figure 1C—unpublished data). Together,
these applications underscore the ability of CCLS to simultaneously detect PPIs and emphasizes the
performance of this pulse sequence with high molecular weight systems.
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Figure 1. CCLS pulse sequence. (A) Schematic of the CCLS-HSQC pulse sequence. It can be assumed,
unless otherwise indicated, that all rectangular pulses are applied along the x-axis. 90◦ and 180◦ flip
angles are represented by narrow bars and wide bars, respectively. The carrier frequency for 1H is
set on resonance with water at 4.77 ppm. The carrier frequency for 15N is set in the center of the
amide region at 121.8 ppm. The 13C offset is set to 174.8 for the C′ region. The reference spectrum
is recorded with the shaped pulse for 13C′ (open rectangle) at the position while the suppression
spectrum is recorded with this pulse in position b. A 3-9-19 Watergate pulse scheme is used in the
reverse INEPT transfer. GARP1 decoupling with a field strength of 1 kHz is used during the acquisition
of 15N. Delay durations: ∆ = 2.4 ms, δ = 0.11 ms, TNC′ = 16.5 ms. Phase cycling: ϕ1 = x, −x, ϕ2 = x,
x, −x, −x, ϕrec = x, −x. A second FID is acquired for each increment by changing the ϕ1 phase to
y, −y in order to accomplish States quadrature detection for the 15N indirect dimension. The ϕ1

and ϕrec phases are also incremented by 180◦ every other 15N increment for States-TPPI acquisition.
The gradients use the Wurst shaped z-axis gradients of 1 ms. Gradient strengths (G/cm): G1: 5, G2: 7,
G3: 17. The CCLS-HSQC pulse sequence is based on the fast HSQC experiment [44] to preserve water
magnetization. (B) Example spectra representing the reference spectrum, the suppression spectrum,
and the resulting subtraction spectrum followed by insets from the PKA-C/PKIα complex displaying
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the separation of resonances from each species. The blue and red species are present in the
reference CCLS-HSQC while the suppression spectrum contains only blue species. Subtraction of the
suppression from the reference spectrum results in a third spectrum containing only the red species.
(C) CCLS-HSQC experiment on the 50 kDa PKA-C/PKIα complex. The reference spectrum (left, purple)
displays resonances from both U-15N labeled PKA-C as well as U-15N, 13C labeled PKIα (S/N = 40).
The suppression spectrum (middle, blue) suppresses a signal from the 13C′ labeled PKIα, which shows
only peaks from 12C′ labeled PKA-C (S/N = 50). Upon subtraction of the suppression spectrum from
the reference spectrum, a sub-spectrum is obtained containing only peaks from the PKIα (right, red)
(S/N = 15). (All figures were cited with permission of Springer Nature).

2.2. Fingerprinting Three Binding Partners Using One Sample

Masterson et al. applied the CCLS pulse sequence element to deconvolute PPIs in a ternary
mixture simultaneously [45]. The dual carbon label selective (DCLS) 1H-15N HSQC experiment requires
three labeled binding partners with the first species U-15N labeled, the second 15N, 13C′ labeled, and the
third U-13C, 15N labeled. The deconvolution of these spectra follows the same spin-echo filtering
theory as CCLS with additional filtering of Cα coupled spins (Figure 2A). Cα suppression requires
a longer TNCα delay due to both inter-residue and intra-residue 1H-13Cα J coupling [46]. Increasing
the TNCα delay nullifies protein backbone conformation dependency of 1JNCα and 2JNCα since it
completely suppresses the signal from 1JNCα while inverting the residual signal intensities of 2JNCα.

This and the previously introduced pulse sequence rely on selective labeling of individual binding
partners. Asymmetric selective labeling schemes to study PPIs in a multiple component sample are
increasing in popularity [16,47–49] both for solution and solid-state NMR spectroscopy. For instance,
Anglister and coworkers have demonstrated the application of asymmetric deuteration in combination
with transferred nuclear Overhauser spectroscopy to study intermolecular nuclear Overhauser effects
(NOEs) of large, fast exchanging protein complexes [50–52]. With respect to CCLS and DCLS, selective
labeling of 13C′ can be accomplished in recombinant proteins using either 15N- and 13C′-labeled amino
acids or 1-13C pyruvate and 13C-labeled NaHCO3 as the sole carbon sources [53–57]. Selective 13Cα
labeling is achieved by using 2-13C glucose as the sole carbon source [54].

The DCLS experiment requires the acquisition of three interleaved experiments in parallel
(Figure 2B). A reference data set is collected observing all three species simultaneously, which is
followed by the first suppression data set where amide resonances adjacent to 13C′ are undetected.
This is identical to the CCLS suppression spectrum. Lastly, a second suppression data set is collected
where amide resonances coupled to 13Cα are not detected. Deconvolution of the spectra is obtained
by a linear combination of the data set. Subtraction of the second suppression spectrum from the
reference spectrum provides a sub-spectrum containing only resonances from the U-13C, 15N labeled
species. The subtraction of the first suppression spectrum from the second suppression spectrum
provides an additional sub-spectrum containing only resonances from the U-15N, 13C′ labeled species.
In this manner, sub-spectra are obtained from a single sample for each individual component of the
ternary mixture and all resonances can be resolved. As a proof of concept, Masterson et al. applied
this labeling scheme and pulse sequence to three non-interacting proteins, which includes maltose
binding protein (MBP), Kemptide, and ubiquitin. By applying DCLS, the authors obtained sub-spectra
corresponding to each individual component of the ternary mixture displaying the potential of this
approach to study protein-protein interactions with a single sample.
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Figure 2. DCLS Pulsepulse sequence. (A) Schematic of the DCLS-HSQC pulse sequence. It can be
assumed, unless otherwise indicated, that all pulses are applied along the x-axis. 90◦ and 180◦ flip
angles are represented by narrow bars and wide bars, respectively. The reference spectrum is recorded
with the shaped pulse for 13C (open rectangle) at position a while the 13C′ suppression spectrum is
recorded with this pulse in position b and the 13Cα suppression spectrum is recorded with the 13Cα

shaped pulse in position c. A 3-9-19 water-gate pulse scheme is used in the reverse INEPT transfer.
GARP1 decoupling with a field strength of 1 kHz is used during the acquisition of 15N. The carrier
frequency for 1H is set on the resonance with water at 4.7 ppm. The carrier frequency for 15N is set
in the center of the amide region at 120 ppm and the 13C offset is set to 56 ppm. Selective 13C′ (13Cα)
sine shaped pulses are centered at 174 (56 ppm) and a null 113 ppm away. Delay durations: ∆ = 2.4 ms,
δ = 0.11 ms, TNC′ = 16.4 ms, and TNCα = 24.5 ms. Phase cycling: ϕ1 = x, −x, ϕ2 = x, x, −x, −x,
ϕrec = x, −x. A second FID is acquired for each increment by changing the ϕ1 phase to y, −y in order
to accomplish states quadrature detection for the 15N indirect dimension. The ϕ1 and ϕrec phases are
also incremented by 180◦ every other 15N increment for States-TPPI acquisition. The gradients use the
Wurst shaped z-axis gradients of 1 ms. Gradient strengths (G/cm): G1: 5, G2: 7, G3: 17. (B) Example
spectra representing the reference spectrum, the two suppression spectra, and the resulting subtraction
spectra. The red, green, and blue species are present in the reference of DCLS-HSQC (a) while the
first suppression spectrum (b) contains resonances from the blue species and the second suppression
spectrum (c) contains resonances from the blue and green species. Subtracting spectrum c from a results
in only resonances from the red species and subtracting spectrum c from b yields only resonances from
the green species. This linear subtraction scheme results in spectra with each component in the mixture
isolated. (All figures were cited with permission of American Chemical Society).

2.3. Measuring Residual Dipolar Coupling (RDC) of Complexes Using One Sample

Residual dipolar coupling (RDC) allows orientation specific data to be derived through
dipole-dipole interactions. The orientation restraints provided by RDC have proven useful in protein
structure determination, nucleic acid structure, domain orientation, and more recently PPIs [58,59].
We implemented CCLS and DCLS to sensitivity-enhanced TROSY or anti-TROSY spin-state selection
to record the simultaneous measurement of RDCs [58,60–63] for the relative orientations of multiple
proteins within a single sample (Figure 3A,B). RDC measurements are susceptible to experimental
conditional variations, which alter alignment tensors, making direct correlations of orientational
constraints obtained from different samples more difficult. Our approach, together with specific
isotopic labeling, eliminates the need for multiple samples and, therefore, removes errors associated
with sample inconsistencies [58].

Similar to DCLS (Figure 3C), we applied this pulse sequence to a non-interacting mixture of U-2H,
15N MBP, 15N-Ser5, 13C′-Ala4 Kemptide, and, U-13C, 15N ubiquitin [64]. Following the same linear
subtraction scheme reported for DCLS, we were able to measure RDCs for each individual component
in a ternary mixture. Furthermore, these RDC values were in agreement with back calculated values
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determined from already solved crystal structures of MBP [65] and ubiquitin [66], which confirms that
the backbone conformational space of these proteins along with their relative alignment tensors were
sufficiently defined.
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Figure 3. CCLS/DCLS RDC. (A,B) Schematic of the gradient-selected TROSY-based pulse sequence for
binary (A) or ternary (B) mixtures of proteins. It can be assumed, unless otherwise indicated, that all
pulses are applied along the x-axis. 90◦ and 180◦ flip angles are represented by narrow bars and wide
bars respectfully. The reference spectrum is recorded with the shaped pulse for 13C (open rectangle)
at position a while the 13C′ suppression spectrum is recorded with this pulse in position b and the
13Cα suppression spectrum is recorded with the 13Cα shaped pulse in position c. The carrier frequency
for 1H is set on resonance with water at 4.77 ppm, the carrier frequency for 15N is set in the center of
the amide region at 121.8 ppm, and the 13C offset is set to 56 ppm. Selective 13C′ (13Cα) sine shaped
pulses are centered at 174.8 ppm (56 ppm). Delay durations: ∆ = 2.4 ms, δ1 = 1.5 s, TNC′ = 16.5 ms,
and TNCα = 23.5 ms. Phase cycling: ϕ1 = x, −x, ϕ2 = −x, ϕ3 = −y, ϕrec = x, −x. Gradient strengths
must be adjusted following the relationship G2 = G1·(γN/γH) where γN and γH are the gyromagnetic
ratios of 15N and 1H, respectively. A second FID is collected for each increment by changing the ϕ2 and
ϕ3 to x and y, respectively, and by inverting the sign of the G2 gradient in order to accomplish states
quadrature detection for the 15N indirect dimension. The ϕ1 and ϕrec phases are also incremented by
180◦ with every other 15N increment for states-TPPI acquisition. The gradients use the Wurst shaped
z-axis gradients of 1 ms. Gradient strengths (G/cm): G3: 3, G4: 13, G5: 4, G6: 5. To measure 1JHN

coupling and NH RDC (in aligned media), which is a second spectrum, featuring the anti-TROSY
component is acquired by changing the ϕ3 phase to y. (C) Example spectra representing the reference
spectrum, the suppression spectrum, and the resulting subtraction spectrum. The blue and red species
are present in the reference CCLS-HSQC while the suppression spectrum contains only blue species.
Subtraction of the suppression from the reference spectrum results in a third spectrum containing
only the red species. (D) Example spectra representing the reference spectrum, the two suppression
spectra, and the resulting subtraction spectra. The red, green, and blue species are present in the
reference DCLS-HSQC (a) while the first suppression spectrum (b) contains resonances from the blue
species and the second suppression spectrum (c) contains resonances from the blue and green species.
Subtracting spectrum c from results in only resonances from the red species and subtracting spectrum c
from b yields only resonances from the green species. This linear subtraction scheme results in spectra
with each component in the mixture isolated. (All figures were cited with permission of American
Chemical Society).
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2.4. Measuring Long-Range Distances and Transient Complexes Using CCLS for Paramagnetic Relaxation
Enhancements (PRE)

Paramagnetic relaxation enhancements (PRE) have been used extensively to obtain long-distance
restraints for structure calculation and to study PPIs for both stable and transient complexes [67–72].
In the standard PRE experiment that involves two interacting proteins, the intra-molecular or
inter-molecular effects of a paramagnetic center are detected for only one of the binding partners in
each independent NMR experiment (Figure 4Ai). To accurately probe these interactions, a minimum
of four samples with differing spin label positions as well as reversed labeling schemes are required.
Recently, we incorporated the CCLS pulse sequence in the traditional 1HN-Γ2 (1HN-Γ2-CCLS) [69]
that, together with an asymmetric labeling scheme, enables the detection of both intra-molecular
and inter-molecular paramagnetic relaxation enhancements (PREs) simultaneously using only one
sample [10] (Figure 4B). In this newly proposed strategy, one of the two binding partners must be U-15N
labeled and the second U-15N, 13C labeled (Figure 4Aii). We also tested the proposed pulse sequence
on the non-covalent, transient dimerization of ubiquitin. Specifically, we studied the complex formed
between U-15N, 13C wild-type ubiquitin and the U-15N-spin labeled the K48C mutant. We were able to
discriminate intra-molecular and inter-molecular interactions detecting the structural and dynamics
changes intrinsic to ubiquitin upon dimerization (Figure 4C). The Γ2 rates obtained with the new pulse
sequence were confirmed to be identical among standard experiments. This work demonstrates that
the Γ2-CCLS PRE experiment is suitable for identifying structural changes occurring in both binding
partners upon formation of transient and permanent interactions using a reduced number of samples.
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Figure 4. CCLS-PRE. (A) Schematic of the standard experiment for the detection of intra-molecular
and inter-molecular PRE. In this case, four different samples are needed. The first sample for the
intra-molecular PRE is prepared with an asymmetric labeling scheme using the first binding partner
uniformly 15N labeled with a conjugated spin label (SL) and the second is NMR silent (unlabeled).
A sample with a reversed labeling scheme is necessary to detect the intra-molecular PRE for the second
binding partner (top panel A). For the inter-molecular PRE, two additional samples are required:
one NMR silent with the conjugated SL and a second NMR active (e.g., 15N or 13C labeled) (lower
panel A). Simultaneous detection of inter-molecular and intra-molecular PRE using 1HN-Γ2-CCLS
experiment. One species is uniformly 15N labeled while the other is 13C and 15N labeled (b) allowing
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for the simultaneous detection of intra-molecular and inter-molecular PREs. As reported before,
reverse positioning of the SL is required for obtaining a complete characterization of the complex.
(B) The 1H-Γ2-CCLS pulse sequence for PRE Γ2 measurements. The narrow and wide bars represent
90◦ and 180◦ hard pulses, respectively. The three 13C 180◦ shaped pulses are 256 µs long Q3 pulse,
the first two and the last one shaped pulses are applied to 13C′ and 13Cα, respectively. The 13C′ 180◦

shaped pulse may be at either position a or b. When it is at position a, the 1JNC′ is decoupled and
reference spectra are acquired. When it is at position b, the 1JNC′ is present and 13C′-suppressed
spectra are acquired. The flipping angles and phases of the pulses in 3919 are 20.8◦x, 62.2◦x, 131.6◦x,
131.6◦−x, 62.2◦−x, and 20.8◦−x, respectively, and the interval between pulses is 188 µs (=1/d, d is
the distance in Hz between center and next null). T = 16.5 ms, ∆ = 2.6 ms, G1 = (1 ms, 25.0 G/cm),
G2 = (0.3 ms, 5.0 G/cm), G3 = (0.3 ms, 8.0 G/cm), G4 = (1 ms, 15.0 G/cm), and G5 = (1 ms, 10.0 G/cm).
The phase cycling scheme is ϕ1 = (x, −x), ϕ2 = (x, x, −x, −x), ϕ3 = 4(x), 4(−x), ϕrec = (x, −x, x, −x,
−x, x, −x, x). The quadrature detections in t1 dimension are acquired via States-TPPI of ϕ1. Constant
time mode is used to measure Γ2, which is Γ2 = Ln(S1/S2)/(τ2 − τ1), where S1 and S2 are signal
intensities of a peak measured with τ = τ1 and τ = τ2, respectively. 2 × 2 spectra are acquired in an
interleave mode via changing relaxation delay τ (minimum 2 ms) and changing the 13C′ 180◦ shaped
pulse from position a to b, respectively. (C) Intra-molecular and inter-molecular PRE measurements
of 15N-UbiK48C obtained with the 1H-Γ2-CCLS experiment. The 1HN-Γ2 rate plot calculated for K48C
mutant conjugate with MTSL in presence of UbiWT (upper panel C). The 1HN-Γ2 rate plot calculated for
WT ubiquitin in the presence of UbiK48C-MTSL (lower panel C). (All figures were cited with permission
of Springer Nature).

2.5. Improving Sensitivity with the G5 Pulse

Advances in NMR methodology (TROSY, deuteration, selective labeling) have allowed for studies
of protein-protein complexes approaching 1 MDa [73,74]. However, these studies lack the ability
to distinguish one species from another without the preparation of multiple samples. A recent
technological advance that can improve nearly any pulse sequence is the universal triply compensated
π pulses for high field spectrometers [75,76], which we have incorporated into the CCLS pulse sequence
(Figure 5). All inversion and refocusing pulses in the 1H and 15N channel were replaced with G5 pulses
except the 15N refocusing pulse in the middle of 3-9-19 water suppression. We were able to improve
the signal intensity from 6% to 23% compared to the regular CCLS version. These experiments were
performed on the Bruker 900 MHz AVIII spectrometer at 298 K and this enhancement will only be
more significant in GHz spectrometers.
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Figure 5. CCLS G5 pulse implementation. (A) CCLS 1H–15N HSQC reference spectrum of
15N, 13C UbiWT, and U-15N UbiK48C mutant. (B) Overlay spectra of the UbiWT alanine 46 peak
demonstrating a 23% signal intensity improvement with the G5 pulse. (C) Overlay spectra of the
UbiK48C alanine 46 peak demonstrating an 18% signal intensity improvement with the G5 pulse.
(D) Overlay spectra of the glycine 75 peak demonstrating a 6% improvement with the G5 pulse.
(All figures were cited with permission of Springer Nature).



Molecules 2018, 23, 1937 9 of 12

3. Conclusions and Perspectives

In this paper, we demonstrate that the CCLS/DCLS pulse sequences enable the study of PPIs
through simultaneous inter-leaved detection of all components in a single sample. As we have
illustrated, the CCLS and DCLS pulse sequence blocks can be applied to a multitude of well-established
experiments (RDC and PRE). Extrapolating from this integration into existing NMR experiments,
could NOESY be the next step? The possibility of observing multiple species in a single sample for
NOESY experimentation is viable since Anglister et al. [50] has reviewed different spectroscopy and its
application to 2D NOESY experiments. However, the pulse sequences are, therefore, limiting sensitivity,
which the CCLS/DCLS pulse blocks show promise toward combating. Therefore, reflecting upon the
versatility of the CCLS/DCLS pulse block and the associated advantages afforded, we envisage the
insertion into other existing NMR experiments to study a wide range of multicomponent systems.
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