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The intestinal wall represents an interactive network regulated by the intestinal epithelium, extracellular matrix (ECM) and
mesenchymal compartment. Under healthy physiological conditions, the epithelium undergoes constant renewal and forms an
integral and selective barrier. Following damage, the healthy epithelium is restored via a series of signalling pathways that result in
remodelling of the scaffolding tissue through finely-regulated proteolysis of the ECM by proteases such as matrix
metalloproteinases (MMPs). However, chronic inflammation of the gastrointestinal tract, as occurs in Inflammatory Bowel Disease
(IBD), is associated with prolonged disruption of the epithelial barrier and persistent damage to the intestinal mucosa. Increased
barrier permeability exhibits distinctive signatures of inflammatory, immunological and ECM components, accompanied by
increased ECM proteolytic activity. This narrative review aims to bring together the current knowledge of the interplay between gut
barrier, immune and ECM features in health and disease, discussing the role of barrier permeability as a discriminant between
homoeostasis and IBD.
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FACTS

● Increased barrier permeability represents a feature
of inflammatory diseases affecting the intestine, such
as IBD.

● Chronic unresolved inflammatory events relate to
increased ECM remodelling, mainly due to matrix metallo-
proteinases (MMPs).

● MMPs-2, -7, -9, -12 and -13 favour pro-inflammatory
signalling pathways and increased barrier permeability.

● Activation of T helper cells 1 (Th1), Th2, Th17 and Th9 has
been observed concomitantly to increased barrier
permeability.

OPEN QUESTIONS

● Can a detailed knowledge of the anti-inflammatory immune
cells, cytokines and their signalling pathways be exploited to
develop treatments for IBD?

● Can a better understanding of the ratio between MMPs and
TIMPs in different conditions improve the development of
new clinical applications?

● Can beneficial microbial phyla reverse ECM remodelling and/
or dampen the proteolytic activity in IBD?

● Can intestinal in vitro 3D models be used in IBD research to
overcome the physiological and ethical limitations of animal
models?

INTRODUCTION
The intestinal wall is a complex structure that ensures the integrity
and functionality of the intestinal epithelium (Fig. 1). It does so by
exerting a dual function: avoiding tissue infiltration and colonisa-
tion by pathogens while enabling intestinal permeability, i.e. the
regulated passage of water, nutrients, and ions across the
epithelial barrier [1]. Intestinal permeability is modulated by tight
interactions among epithelial cells, crypt-associated signalling
pathways monitored by mesenchymal cells (MCs), and extensive
crosstalk between epithelial cells and components of the
extracellular matrix (ECM) [2, 3]. Under physiological conditions,
occasional damage to the epithelium triggers a series of
restorative signalling pathways. In this context, the tissue
mesenchyme orchestrates finely-regulated proteolysis of the
ECM by proteases, such as matrix metalloproteinases (MMPs),
which play a major role in remodelling the scaffolding tissue and
epithelial restoration [4]. Intestinal inflammatory conditions result
in dysregulated crosstalk between epithelial cells and ECM, which
is associated with increased proteolytic activity, as well as higher
intestinal permeability [5]. Inflammatory bowel disease (IBD) is a
group of non-infectious, chronic, and relapsing-remitting inflam-
matory conditions of the gastrointestinal tract, including Crohn’s
disease (CD) and Ulcerative Colitis (UC). Although their exact
aetiology remains unknown, genetic, environmental, microbial,
and immune factors are known to play a role in disease
development [6]. CD and UC share similar symptoms, such as
abdominal pain, fever, vomiting, diarrhoea, rectal bleeding, weight
loss and anaemia [7]. However, the affected tissue area and
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treatment regime differ between the two diseases. For example,
CD is characterised by transmural and discontinuous inflammation
across the whole intestine, whereas UC involves mucosal and
submucosal inflammation mainly restricted to the colon [8]
(Fig. 2). Table 1 outlines the main differences between UC and
CD in terms of histological and inflammatory signatures, focusing
on the role of ECM and MMPs.
In the present narrative review, we aim to summarise the

current knowledge on the compartmentalisation and function of
the intestinal wall, focusing the discussion on features of barrier
permeability related to the immune network and the ECM
environment, with a particular emphasis on MMPs.

THE INTESTINAL WALL: COMPARTMENTALISATION AND
FUNCTIONS
The intestinal epithelium
The intestinal epithelium is shaped into villi, epithelial projections
that increase the intestinal surface area, and epithelial invagina-
tions known as crypts of Lieberkühn, that act as gatekeepers for

epithelial regeneration and homoeostasis by harbouring intestinal
stem cells (ISCs) [9, 10]. This morphological architecture deter-
mines the absorptive and secretory functions of the intestinal
epithelium, whereas intestinal barrier selectivity is controlled by
transcellular and paracellular movements across the epithelial
layer. Transcellular movements are determined by size- and
charge-selective channels and transporters; paracellular move-
ments exploit the physical spaces between adjacent enterocytes
and are regulated by intercellular junctions, including tight
junctions (TJs), adherens junctions and desmosomes [11, 12]
(Fig. 3). Intestinal epithelial cells (IECs) are arranged to form a
biological barrier and are the first line of defence of the intestinal
wall. Most of the intestinal epithelium is made of absorptive
enterocytes within the villi, interspersed with enteroendocrine
cells, which are responsible for releasing hormones; goblet cells,
which secrete a protective hydrogel layer, the mucus, and its
related proteins, mucins; and tuft cells, involved in adaptive
immunity. Other types of epithelial cells localised within the
intestinal crypts are the Lgr5+ ISCs, which ensure epithelial repair
and self-renewal; Paneth cells, interspersed among ISCs, which

Fig. 1 Schematic of the intestinal wall architecture under physiological conditions (not to scale). A The epithelial barrier represents the first
line of mechanical separation between the lumen and the intestinal mucosa. A polarised layer of epithelial cells lies on the complex mix of
molecules of the ECM, which gives biophysical support and contributes to molecular signalling. The epithelial and ECM compartments
maintain a fine balance by interacting with the mesenchyme, which contributes to tissue remodelling and repair, and adaptation to bacterial
stimuli. B The interplay between intestinal stem cells (ISCs) and the mesenchymal compartment defines the environment of the crypt niche.
Paneth cells and mesenchymal cells (MCs) maintain a fine balance between promoting Wnt/β-catenin and inhibiting BMP pathways, allowing
constant epithelial renewal. Once ISCs differentiate into transit-amplifying (TA) cells, asymmetric activation of the Notch signalling pathways is
required for cell differentiation into absorptive or secretory lineages. When newly differentiated cells are generated, Hedgehog signalling is
activated, promoting BMP pathways, thus stopping further differentiation of epithelial cells [36]. C The ECM is a scaffolding structure of the
intestinal wall characterised by a pericellular matrix (PM) and an interstitial matrix (IM). PM is composed of fibrous proteins linked by
crosslinking enzymes, such as lysyl oxidases (LOX), whose role is to surround and support cells. A type of pericellular matrix specific to
epithelial and endothelial cells is the basement membrane, mainly characterised by laminins, collagen IV, perlecan and nidogen. IM is made of
fibrous proteins rich in glycosaminoglycan elements and non-fibrous proteins, whose distribution within cells allows them to crosstalk and
interact [21]. Created with BioRender.com.
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contribute to ISCs turnover and secrete antimicrobial peptides; +4
position cells, relatively quiescent stem cells with protective roles
towards Lgr5+ ISCs damage; and transit-amplifying (TA) cells that
inhabit the upper half of the crypt and are progenitor cell types
committed to differentiating into specialised cells of the villi
[12–16] (Fig. 1A).

The extracellular matrix
The ECM is a dynamic network of proteins, growth factors and
degrading enzymes that play a pivotal role in supporting and
protecting the tissue integrity and epithelial layer. ECM compo-
nents are mainly secreted by the mesenchymal cells with

contributions from epithelial, endothelial and immune cells [17,
18]. ECM proteins can be classified as fibrous and non-fibrous.
Fibrous proteins include type I-X and XIV collagens; and
glycoproteins, such as laminins, elastins, fibronectin, nidogens
and tenascin. Non-fibrous proteins comprise proteoglycans, such
as heparan sulfate proteoglycans (HSPGs) (e.g. perlecan, synde-
cans); keratan sulfate; chondroitin/dermatan sulfate (e.g. decorin,
biglycan); and glycosaminoglycans, such as hyaluronan [19, 20].
While fibrous proteins work as solid pillars to support the intestinal
architecture, non-fibrous proteins allow cell–cell interactions,
facilitated by the interplay between their core proteins and
cellular surface receptors, such as integrins and growth factor
receptors [21]. Specifically, collagens contribute to epithelial
tensile strength and elasticity; glycoproteins and proteoglycans
are responsible for epithelial-ECM and epithelial-mesenchymal
crosstalk, cell proliferation, adhesion, migration, differentiation
and survival; and glycosaminoglycans maintain ECM assembly and
hydration [5] (Fig. 1C).

ECM turnover
The continuous process of ECM turnover is crucial for maintaining
tissue homoeostasis and regulating mechanical changes, such as
shear and stretch, along the intestinal wall [22]. The turnover of
ECM proteins is enzymatically regulated by ECM proteases,
degrading enzymes belonging to the metzincin family, including
matrix metalloproteinases (MMPs), α-disintegrin and metallopro-
teinases (ADAMs) and α-disintegrin and metalloproteinases with
thrombospondin motifs (ADAMTSs) [23]. Among them, the most
relevant are MMPs, a family of 23 zinc-dependent endopeptidases
consisting of a propeptide, a catalytic metalloproteinase region,
and a hinge and hemopexin domain [24]. MMPs include
collagenases (MMP-1, -8, -13, -18), gelatinases (MMP-2, -9),
stromelysins (MMP-3, -10, -11), matrilysins (MMP-7, -26),
membrane-type enzymes (MT1-6-MMP), and macrophage elastase
(MMP-12) [25, 26].

Regulation of the activity of MMPs
Activation of MMPs is regulated by (i) the processing of their
inactive precursors, known as pro-MMPs; (ii) their specific location;
and (iii) their inhibition by endogenous or exogenous MMPs
inhibitors. Pro-MMPs retain a cysteine in the propeptide domain
linked to an atom of Zn+ in the catalytic domain. The cysteine-Zn+

complex has been established as a latency mechanism that
maintains the enzymes in an inactive state. However, cross-
activation within MMPs and other proteases can remove the

Fig. 2 Structural features of the intestinal wall layers. The
intestine has a highly specialised surface known as the intestinal
wall, whose dual function is to avoid tissue infiltration and
colonisation by pathogens, while allowing the absorption of
nutrients (small intestine), water (large intestine) and ions (both
small and large intestine). The intestinal wall is a complex structure
comprising four tissue layers: the mucosa directly in contact with
the lumen, followed by submucosa, muscularis propria and serosa
[133]. This compartmentalisation reflects the different distribution of
connective, neural and vascular components. Whilst serosa and
muscularis propria are mainly characterised by neural fibres,
connective tissue and smooth muscle cells; submucosa and mucosa
host, but are not limited to, lymphatic vessels, connective tissue and
epithelial cells [134]. Created with Adobe Illustrator.

Table 1. Pathological, inflammatory, and cellular and immunological differences between ulcerative colitis (UC) and Crohn’s disease (CD).

Crohn’s disease (CD) Ulcerative colitis (UC) Ref

Gastrointestinal (GI)
symptoms

Abdominal pain, fever, vomiting, diarrhoea, rectal bleeding, weight loss, anaemia [7]

Location Any region of the GI Terminal region of the colon [127]

Disease distribution Diffuse Continuous [127]

Epithelial architecture Preserved Crypt fission and distortion [10, 128]

Type of inflammation Transmural with abscesses, strictures, fistulae and granulomas Mucosal and submucosal [8]

Adaptive immune
phenotype

Th1, Th17 (IL-17, IL-23, IL-32) Th2 (IL-5, IL-13, IL-15, IL-33) [52, 70, 129]

ECM proteins Higher serum levels of laminina, collagen fragments (C3M,
C4M), sulphated glycosaminoglycansb, elastin fragments (NE-
EL) and biglycan (Pro-C5, C5M)

Higher serum levels of
fibronectina, hyaluronan and
collagen fragment (C1M)

[13, 86, 129]

Collagen fragments (Pro-C5M, C5M)

MMPs expression MMP-1, -2, -3, -7, -8, -9, -10, -12, -13, -14 [77, 130]
aBoth before and after 1 year of treatment with monoclonal antibodies.
bAfter 1 year of treatment with steroidal anti-inflammatory drugs.
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binding between the cysteine and the Zn+, resulting in a “cysteine
switch” and subsequent MMP activation [27, 28]. Once activated,
the activity of MMPs is largely controlled by tissue inhibitors of
metalloproteinases (TIMPs). Mammalian TIMPs are classified into
TIMP-1 to -4 [23, 29, 30]. While TIMP-2 is ubiquitously expressed
throughout the body, TIMP-1, -3, and -4 expression is inducible in
specific tissues [31]. Overall, TIMPs can bind the majority of the
MMPs with a limited selectivity [32]. TIMP-1 preferentially
regulates MMP-1, -2, and -9, while TIMP-2 controls MMP-2 and
some members of the MT-MMPs [24].

Roles of MMPs in ECM remodelling
The regular interaction between ECM proteins, proteases, and
protease inhibitors contributes to defining the protease:antipro-
tease ratio, which determines the rate of ECM remodelling
[23, 29, 30].
The role of MMPs in tissue homoeostasis is exemplified by

mouse embryonic fibroblasts from Mmp2 null mice. Forced
expression of the human MMP-2 gene in these cells was able to
activate the transforming growth factor beta (TGF-β) and the
connective tissue growth factors (CTGF) by releasing them from
their latency complexes [25]. Indeed, CTGF remains in an inactive

state by forming a complex with vascular endothelial growth
factor (VEGF). However, cleavage of this inhibitory complex by
MMP-2 results in the release of CTGF and ECM deposition [33].
Moreover, studies on human cell lines highlighted how ECM
remodelling driven by MMPs also influences the fate of MCs,
allowing differentiation into adipogenic, chondrogenic, osteo-
genic, and endothelial lineages. This is supported by several
studies that highlighted how increased expression of ECM fibres,
often remodelled by MMPs (e.g. MMP-2, -9, and -13), allowed
active differentiation (reviewed in [26]).

The mesenchymal compartment
Additional monitoring of the functionality of epithelial cells and
ECM is provided by MCs, an umbrella term including smooth
muscle cells, pericytes, interstitial cells of Cajal and submucosal
fibroblasts, which regulate gut motility, vascular and lymphatic
support, and lymphangiogenesis [34]. Fibroblasts and myofibro-
blasts are integral to intestinal structure and function and are
involved in controlling intestinal morphology and architecture,
tissue compartmentalisation, cell interactions, wound healing, and
immune cell turnover [35]. To allow epithelial renewal and ISCs
turnover, MCs, as well as epithelial cells, produce Wnt, Notch and
Hedgehog ligands, epidermal growth factor (EGF), inhibitors of the
bone morphogenic pathways (BMP) and prostaglandin E2 (PGE2)
[36, 37]. By contributing to balancing these signalling pathways,
MCs allow the differentiation of ISCs into transit-amplifying (TA)
cells first and absorptive and secretory epithelial lineages later.
This ensures epithelial renewal every 3–5 days under physiological
conditions and favours tissue repair following injury [36–38]
(Fig. 1B). Single-cell RNA sequencing (scRNA-seq) of human
colonic biopsies identified distinct clusters of fibroblasts involved
in crypt architecture by expressing genes essential for stem cell
functionality [39, 40]. Additional scRNA-seq studies confirmed the
regenerative features of MCs in healthy tissues and observed their
potential to promote inflammatory markers release, immune
migration and response to bacterial stimuli in newly diagnosed UC
patients [39].

INVESTIGATING BARRIER PERMEABILITY: FROM BALANCE
TO IBD
The integrity of the intestinal epithelium represents a pivotal factor
that discriminates between homoeostatic and pro-inflammatory
conditions. Barrier permeability and IBD are tightly associated;
however, whether the leakiness of the barrier is the cause or
consequence of the wider mucosal damage is not yet completely
understood. For example, asymptomatic IBD patients, as well as
their healthy first-degree relatives, exhibit increased gut perme-
ability—followed by the later onset of CD for the second group —
suggesting that early barrier leakiness might be a trigger for
disease development [41, 42].
While a limited number of brush transporters, expressed on the

apical membrane of intestinal epithelial cells, facilitate transcel-
lular movement through the epithelium, the primary factor
influencing barrier permeability is the paracellular movement
between adjacent cells [43, 44]. The paracellular transport is
governed by the apical junction complexes previously shown in
Fig. 3. Under physiological conditions, these complexes permit the
passage of molecules through the ‘pore’ and the ‘leak’ pathways,
which differ in the capacity and the size of the crossing molecules.
The pore pathway has a high capacity for low-molecular-weight
molecules, while the leak pathway allows the passage of high-
molecular-weight molecules at a lower capacity [45]. Distinct
mechanisms govern the two pathways. In the pore pathway,
claudins regulate the passage of molecules; in the leak pathway,
the movement is also governed by cytoskeletal forces, in addition
to the interactions between transmembrane proteins (e.g.,
claudins, occludins and JAMs). Although there is some controversy

Fig. 3 Junctional network involved in intestinal paracellular
transport. TJs are classified into transmembrane and cytoplasmatic
proteins. Transmembrane proteins include TAMP (TJ-associated
MARVEL proteins), such as occludins, tricellulin and marvelD3, and
claudins, that monitor the movement across the barrier establishing
its semipermeable properties; Junctional adhesion molecules (JAMs),
that sustain the TJs actively involved in paracellular pathways; and
angulins, that act as regulators. Cytoplasmatic proteins include the
zonula occludens (ZO) family protein, which anchors transmembrane
proteins to cytoskeletal components [46]. A similar role is dictated by
desmosomes and adherens junctions—belonging to the Cadherins
family—that provide interaction sites and mechanical strength. In
addition, gap junctions allow cell communication by releasing
proteins, such as Connexin. A comprehensive description of TJs
and their relation to inflammatory signalling pathways has been
previously reviewed by [135]. Created with BioRender.com.

A. Vilardi et al.

4

Cell Death Discovery          (2024) 10:258 



about the leak pathway, with several studies suggesting that it is a
mere consequence of transient injury to the epithelium, its
existence is somehow supported by the fact that no cellular death
or evident damage has been thus far associated with certainty to
the pathway (reviewed in [46]). Nonetheless, in case of persistent
damage to the epithelium, the regulation of the barrier perme-
ability is compromised, and a continuous flux of molecules moves
across the barrier, exposing the intestinal mucosa to a higher
amount of pro-inflammatory antigenic stimuli. This type of
uncontrolled transport, known as the ’unrestricted pathway’,
contributes to establishing barrier leakiness as a pathophysiolo-
gical hallmark of intestinal diseases, such as IBD [47].

The gut immune microenvironment: from homoeostasis
to IBD
The epithelial barrier functions as a bridge between luminal antigens
and the inner gut-associated lymphoid tissue (GALT), the largest
lymphoid organ in the body [48]. Several pathways enable the
intestinal epithelium to present luminal antigens to the immune
system, such as enterocyte-dependant transport of small molecules,
vesicle-mediated uptake by goblet cells, dendritic internalisation by
macrophages and enteroendocrine recognition [43]. An important
role is exerted by microfold (M) cells interspersed among the IECs. M
cells serve as priming centres for immune responses by promoting
antigen sampling to the underlying immune environment through
dendritic cells and macrophages [49]. Following interaction with
neighbouring Peyer’s patches (PP) and isolated lymphoid follicles,
antigens are screened by mesenteric lymph nodes (MLN), the final
checkpoint that discriminates between suppressive or stimulatory
immune responses [48].
A determinant of the GALT’s tolerogenic vs inflammatory

response is represented by the nature and the amount of crossing
antigens, which depend on the mechanisms of epithelial transport

and the status of the barrier. When pore and leak pathways function
regularly, the mucosal immune response is shifted towards
homoeostatic balance and suppressive functions. If transient
damage to the epithelium occurs, inflammation is triggered and
resolved; however, if the damage persists, the unrestricted pathway
takes place and initiates chronic inflammation (Fig. 4).
In health (Fig. 4, left panel), a significant role is played by the STAT

family of transcription factors, usually activated in epithelial and
immune cells through phosphorylation by Janus protein tyrosine
kinase (JAK) following cytokine stimulation [47]. In innate lymphoid
cells (ILCs), interferon-gamma (IFN-γ) activates STAT1 and STAT2 with
consequent transcription of interferon-stimulated genes (ISGs) [50].
Among them, guanylate binding protein-1 (GBP-1) prevents
epithelial apoptosis and regulates TJ integrity [51]. Other interleukins
(ILs), such as IL-1β, -6, -22 and -23, activate STAT3 signalling in ILCs,
resulting in the production of mucus and antimicrobial peptides [52].
Following triggering by commensal bacteria and/or metabolites
produced by the gut microbiota, mononuclear phagocytes (MNPs;
mostly monocytes, macrophages and dendritic cells) react to
promote oral tolerance, the mechanism of local and systemic
immune system unresponsiveness to orally-introduced antigens [53].
A well-known mechanism of tolerance is determined by MNPs
migration from the lamina propria, where they reside, into MLNs.
Here, these cells produce IL-10 and TGF-β to promote differentiation
of T regulatory (Treg) cells, such as CD4+, Tr1+ and Foxp3+, and
consequent inhibition of T effector (Teff) cells, thus maintaining
homoeostasis [18, 54]. Higher levels of IL-10 and TGF-β, as well as
dendritic-derived B-cell activating factor (BAFF) and proliferation-
inducing ligand (APRIL), also promote B regulatory (Breg) cells
differentiation into IgA-producing plasma cells [55]. The consequent
release of anti-inflammatory mediators, such as IL-10, -35 and TGF-β,
supports immune suppression and grants intestinal homoeostasis
[18, 56, 57].

Fig. 4 The immune environment of the intestinal wall from balance to disease. The structural status of the intestinal barrier affects the
tendency of immune cells to release cytokines (represented in blue) that stimulate transcription factors (pink boxes) and signalling pathways,
causing the activation of inflammatory stimuli and cellular components (purple boxes). These are not just a mere consequence but could also
represent a trigger of the inflammatory cascade hereby represented, which depicts the difficulty of untangling this process. When the
intestinal barrier is healthy and selectively permeable, tolerant signalling takes place. Transient or persistent gaps in the barrier promote either
resolutive or detrimental inflammation. Created with BioRender.com.
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On the other hand, transient epithelial barrier damage is
associated with the translocation of commensal and pathogenic
microbes, resulting in abnormal infiltration of immune cells and
increased cytokine release [58–60]. Pathogen-associated molecu-
lar patterns (PAMPs) found on the surface of microorganisms are
recognised by resident innate immune cells through surface
pattern recognition receptors (PRRs), including toll-like receptors
(TLRs) and NOD-like receptors (NLRs) [61]. As a result, chemokines
and cytokines are released, promoting neutrophil recruitment and
phagocytosis of invading pathogens [36, 62]. Apoptotic and
necrotic epithelial cells release debris, establishing the damaged-
associated molecular patterns (DAMPs), which constitute an
additional layer of pro-inflammatory signalling, known as “sterile”
inflammation [63] (Fig. 4, middle panel). Additionally, tumour
necrosis factor-alpha (TNF-α)-mediated activation of NF-kB and
the MAPK pathways stimulate cytokines production and adaptive
T cells maturation into T helper (Th)-1 (Th1), Th2 and Th17
[52, 59, 64]. The same lineages can also differentiate through IL-4,
-6, -10, -12 and TGF-β released by dendritic cells [55]. The
mechanisms that permit the resolution of such transient
inflammation episodes are still unclear. Animal models of transient
colitis have shown that trans-differentiation of Th17 into Treg
lineages underpins the resolution of gut inflammation [65].
However, these findings have not yet been validated in humans,
where the established resolutive pathways likely rely on the
interplay between neutrophil apoptosis, anti-inflammatory cyto-
kines produced by Treg cells (e.g. IL-10 and TGF-β) and
macrophage efferocytosis [66, 67].
Chronic inflammation, as occurs in IBD, has a complex aetiology

and engages a wide repertoire of immune responses, including
Th1, Th2 and Th17 [52]. Unsurprisingly, a profound alteration in
the intestinal cytokine repertoire is key to IBD establishment. In
case of persistent damage, prolonged activation of neutrophils
and macrophages leads to oxidative damage and the release of
inflammatory mediators. The higher release of chemokines
together with the increased expression of chemokine receptors
(e.g. CCR7) promotes chemokine signalling, resulting in the
migration and retention of dendritic cells into inflamed regions
[68] (Fig. 4, right panel). Upregulation of TNF-α, IL-1β, -6, -18, -23
and IFN-γ in MNPs, mesenchymal and epithelial cells is sustained
by NF-kB, JAK/STAT, c-Jun N-terminal kinase (JNK) and p38 kinase
signalling pathways [69]. In addition, the JNK pathway and the
Fas/FasL complex contribute to increased apoptotic events,
perniciously prolonging the damage to the intestinal mucosa
[69]. Several cytokines, namely IL-12, -18, -21 and -27, were
upregulated in tissue specimens from UC and CD patients,
independent of inflammation, as non-inflamed tissue from those
patients showed a similar increase in cytokine expression
compared to healthy controls [70]. Moreover, the cytokine
signatures have potential as biomarkers to differentiate the two
types of IBD as CD primarily expresses Th1- and Th17-associated
cytokines (IL-17, -23 and -32), whereas UC is an atypical Th2-with
low IL-4 and high IL-5, -13, -15 and -33 [70]. In addition, higher
expression of IL-9-producing cells, found in UC colon tissues and
models of mice-induced colitis, established a novel Th9 pheno-
type, highlighting the need for further studies to define the
complex immune network involved in IBD [71]. For a

comprehensive review of the role of inflammatory mediators,
including immune cells, gut microbiota, microRNA, inflammasome
and DAMPs, the reader is referred to [68].

ECM proteins and MMPs in disease
Following damage to the intestinal epithelium, ECM components
contribute to regulating the inflammatory response and repairing the
wounded area by sensing the damage and promoting immune cell
infiltration (Table 2). Chemokines drive neutrophil transmigration into
the wounded area by activating integrins, adhesion receptors on the
cell surface of neutrophils [72, 73]. As outlined in the previous
section, prolonged exposure to the intestinal cytokines in response to
unresolved barrier damage stimulates neutrophils, causing them to
undergo degranulation and release ECM degrading enzymes, such as
Cathepsin G, neutrophil elastase (NE) and MMPs, especially
collagenases and gelatinases [74]. The release of MMPs from
neutrophils initiates ECM degradation, facilitating cell migration
and releasing small ECM fragments that stimulate immune recruit-
ment and tissue remodelling in a positive feedback loop [75]. ECM
proteins, such as versican, fibronectin, HSPGs and hyaluronan,
deposit individually or in complexes with fibrin, platelets, coagulation
factors and microfibrils, forming a provisional matrix that recruits
immune mediators and facilitates wound healing [76, 77]. The
crosstalk between ECM components, inflammatory markers and TGF-
β also stimulates the differentiation of MCs [78, 79]. Fibroblasts,
defined as vimentin-positive and α-smooth muscle actin (α-SMA)
negative cells, differentiate into myofibroblasts, α-SMA, smooth
muscle myosin (SMM) and vimentin-positive, but desmin-negative
cells. Upon differentiation, myofibroblasts acquire contractile and
migratory properties [80]. Moreover, they secrete and activate MMPs
to degrade the provisional ECM and release de novo ECM
components [81]. The concomitant activation of crypt-associated
signalling pathways mobilises neighbouring epithelial cells to
temporarily restore the barrier, and, in the long term, allows the
proliferation and differentiation of the ISCs to restore the damaged
epithelium [37, 38, 82].
Several studies have confirmed that alterations of the epithelial-

mesenchymal-ECM interplay underpin the increase in intestinal
permeability, with a significant association with imbalanced ECM
proteolytic activity [83]. Following increased MMP expression, ECM
homoeostasis is impaired and can result in excessive deposition of
ECM, increased fragmentation, and irregular distribution towards
tissue margins [84]. Therefore, wound healing fails, leading to
sustained inflammation and fibrosis [85]. In IBD, increased activity
of MMPs has been observed in patients and both in in vitro and
in vivo models of the disease [86]. In IBD patients, higher levels of
several MMPs have been observed [87, 88]. Imbalances in MMPs
have been observed with colitis-associated colorectal cancer,
which affects around 2% of individuals facing IBD [89]. High levels
of MMPs relate to increased cellular extravasation, angiogenesis,
immune evasion, and apoptotic resistance via degradation of ECM,
blood vessels, cytokines, and apoptotic factors, which result in
tumour survival and metastasis (reviewed by [90]). The contribu-
tion of MMPs to disease pathophysiology has been demonstrated
in animal models. For example, mice deficient in MMPs are
resistant to dextran sulfate sodium (DSS) and 2,4,6-trinitrobenzene
sulfonic acid (TNBS) induced colitis [87, 88, 91].

Table 2. ECM proteins and metalloproteinases mediating the biological processes leading to IBD.

Processes leading to IBD ECM components involved Ref

ECM fragmentation MMP-2, MMP-8, MMP-9, MMP-12 [75, 131]

Recruitment and migration of immune cells Laminin, HSPGs, MMP-8, MMP-9 [7, 60, 61, 131]

Activation of inflammatory cytokines and kinases MMP-3, MMP-9, MMP-13 [75, 78, 131]

Wound healing HSPGs, Fibronectin, Hyaluronan, MMP-2, MMP-10 [15, 65, 76]

Barrier permeability MMP-2, MMP-7, MMP-9, MMP-12, MMP-13 [15, 75, 77, 125, 131, 132]
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MMP-2 and MMP-9. The activity of MMP-2 and MMP-9 has been
reported to cause higher ECM fragmentation and to reduce tissue
re-epithelialization [92]. MMP-9, along with MMP-8, fragments
collagen to form proline-glycine-proline (PGP) peptides, whose
structural similarity to IL-8 promotes the CXCL8-CXCR1/2 inflam-
matory pathway, facilitating chemotaxis [7, 19, 73]. In addition,
PGP peptides can also act as inducers of MMP-9 expression and
further promote neutrophil migration and differentiation, as
proved in DSS-colitis models [93, 94]. Enhanced expression of
MMP-9 has been implicated in the formation of complexes with
neutrophil gelatinase-associated lipocalin (NGAL), an ECM com-
ponent released from neutrophil granules [95]. NGAL/MMP-9
complexes have been found to increase in the serum of CD and
UC patients [96, 97]. It has been hypothesised that this complex
protects MMP-9 from degradation, resulting in enhanced proteo-
lytic activity [98, 99]. MMP-9 has also been associated with TIMP-3.
TIMP-3-KO mice display increased MMP-9 and ADAMs α-secretase
activity, leading to activation of the TNF-α converting enzyme
(TACE), which augments the production of circulating TNF-α and
prolongs the inflammatory features of IBD [29].
Increased activation of MMPs is linked to epithelial barrier

leakiness, as observed in UC patients, where higher levels of MMP-
9 and -2 were associated with lower lactulose to mannitol ratio in
urine, an indicator of higher barrier permeability [100] (Fig. 5).
Recently, Al-Sadi et al. have explained a different mechanism of
increased barrier permeability, where MMP-9 is implicated in the
activation of myosin light chain kinase (MLCK), an enzyme
responsible for the phosphorylation of myosin light chain (MLC),
a regulator of perijunctional actinomyosin contractility. In their
study, MMP-9 has been found to increase MLCK expression in a
p38-dependent fashion [86]. The association between MMP-9, p38
kinase and MCLK is likely mediated by the pro-inflammatory
transcription factor NF-kB, as silencing of the p38 kinase
prevented MMP-9 from activating NF-kB p65 and increasing

MLCK expression [91]. In addition, MMP-9 may affect the mucus
layer surrounding the intestinal epithelium, where MUC2 is the
most relevant component and acts as a marker of mucosal
robustness. MMP-9-deficient mice display higher production of
MUC2 at the mRNA and protein levels, which correlates with
increased differentiation of intestinal cells towards the secretory
lineages. On the other hand, in the goblet cell line HT-29-cl.16E,
MMP-9 overexpression decreased MUC2 and altered mucins,
suggesting a pivotal role for this protease in regulating goblet
cells’ activity [101].

MMP-7. Increased MMP-7 expression has also been linked to
barrier dysfunction. In particular, Xiao et al. demonstrated that
increased expression of MMP-7 was inversely related to claudin-7
expression in murine models and IBD patient tissues. In this study,
treatment of colonic epithelial cell lines with MMP-7 resulted in
the cleavage of Claudin-7 and increased barrier permeability
in vitro. Moreover, MMP-7 knockdown ameliorated inflammatory
markers, including IL-6, IL-1β, and TNF-α in DSS mice, as well as
Muc2 expression. Despite unaltered Cldn7 mRNA expression,
MMP-7 KO animals displayed significantly higher levels of
claudin-7, confirming that MMP-7 fragments Claudin-7 post-
translationally [102].

MMP-12 and MMP-13. Studies focusing on the macrophage-
secreted MMP-12 found that knockout mice presented reduced
susceptibility to acute and chronic DSS-induced colitis. Lack of
MMP-12 also led to reduced laminin fragmentation at the
basement membrane level, lower occludin and claudin expression,
and MLC phosphorylation by MLCK. Additionally, MMP-12 induced
macrophage migration in a Caco-2 and U937 macrophages in vitro
co-culture model [103].
MMP-13 has also been observed in IBD patients, where the

protease was increased in the inflamed tissue compared to

Fig. 5 Lactulose to mannitol ratio. The lactulose to mannitol ratio (LMR) is an indicator of barrier integrity. Lactulose is a slightly absorbed
disaccharide that undergoes elimination, while mannitol is a polyol highly absorbed in the intestinal mucosa. Higher levels of LMR suggest the
presence of a functional and integer intestinal barrier, however, when this ratio is lower, barrier disruption is expected [136]. Created with
BioRender.com.
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non-inflamed areas [104]. Recent findings showed how MMP-13,
activated by TNF-α release, disrupts TJs and reduces MUC2
expression. This finding was supported by evidence from MMP-13
Knockout mice challenged with DSS, where neither junctional nor
mucosal damage was observed [105].

Other intestinal proteases implicated in IBD. In addition to
metalloproteinases, a wide range of intestinal proteases, such as
serine- (Neutrophil elastases (NE), tryptases, cathepsin G), cysteine-
(Caspases), and luminal- (bacterial-derived) proteases, contribute
to increased proteolytic activity and consequent barrier leakiness
[12]. In UC patients, higher NE elastolytic activity has been
reported, consistent with what was observed in DSS and TNBS
mice models [6, 106, 107]. Exogenous administration of elafin, an
elastase inhibitor produced by epithelial cells, ameliorated disease
progression by decreasing NE expression, pro-inflammatory
cytokines and ZO-1 disruption, and reducing mucosal damage in
mice [107]. Motta et al. have also investigated an IBD detrimental
elastolytic activity linked to epithelial elastase 2A (ELA2A). In vitro
studies conducted on HT-29 and Caco-2 cell lines highlighted the
role of ELA2A in increasing epithelial permeability, which was
found to be prevented by elafin administration [6]. Among the
serine proteases, trypsin and cathepsin G have been linked to
increased activation of protease-activated receptors (PARs)
[108, 109]. An inverse ratio was observed between increased
PAR-1 and PAR-2 and decreased ZO-1, suggesting that active
degrading properties and increased paracellular permeability are
mediated by these enzymes [110, 111]. Studies conducted on
specimens from UC and CD patients highlighted the relevance of
bacterial-derived proteases in degrading the ECM. In both UC and
CD, 25% of the samples showed a significant increase in C.
perfringens, whose MMPs drove the degradation of collagen type
IV and led to increased intestinal permeability [112]. These
findings suggest that a large variety of degrading enzymes are
involved in controlling ECM proteolytic activity and barrier
integrity and that a deeper investigation of their functions is
warranted to further our understanding of IBD pathophysiology.

DISCUSSION
The interplay between epithelial cells, the underlying stromal
compartment and the ECM forms a dynamic network pivotal to
protecting, repairing, and renewing the intestinal mucosa. This
sophisticated interaction prevents the infiltration of damaging
pathogens, allows the passage of nutrients and other harmless
substances, and maintains a core balance between immune cells
and inflammatory mediators. In this context, matrix metallopro-
teinases appear to be a converging element of communication,
key to protecting intestinal homoeostasis. The proteolytic activity
of MMPs has been observed in several physiological processes
regulating the genesis, repair and remodelling of blood vessels
and tissues. However, under pathological conditions, dysregulated
MMP expression and activity enhance tissue degradation.
In IBD, MMP-2, -7, -9, -12 and -13 have been implicated in ECM

protein fragmentation, altered barrier contractility, degraded tight
junctions, and compromised mucus layer, leading to higher
intestinal permeability. These pathological features have been
observed in both in vitro and in vivo studies, as well as in patient
samples. Specific alterations in MMPs and immune factors
distinguish IBD from other intestinal pathologies and can also
be used to differentiate Crohn’s disease from Ulcerative Colitis
(Table 1) [8]. Higher MMP-9 serum levels have been related to
Crohn’s disease relapses [113], while elevated plasma levels of
MMP-2, -9 and -13 have been addressed as potential biomarkers
of colorectal cancer [114–116]. Research findings have shown that
Crohn’s disease is characterised by Th1 and Th17 inflammation,
whereas Ulcerative Colitis is characterised by an atypical Th2
response [70]. Sparano et al. showed that only MMP-11 is currently

used as part of a prognostic test (OncotypeDX) for breast cancer
[117]. However, in the context of IBD and colorectal cancer MMPs’
biomarker studies have not yet provided a useful tool for
diagnostic or therapeutic purposes. This highlights the complexity
of IBD and the need to dissect the crosstalk between MMPs, the
immune environment and barrier integrity [118]. Since the
enhanced activity of MMPs has been well documented in IBD
patients, several attempts have been made to inhibit MMPs, but
have demonstrated low efficacy [95, 119]. In the context of
transient inflammation, inhibition of MMPs is mediated by TIMPs.
However, in UC and CD, increased levels of MMPs can occur even
in cases with concomitant higher expression of TIMPs (e.g., in
fibrotic disease), suggesting that MMPs’ increased levels cannot be
counteracted by TIMPs’ activity [120]. Guedez et al. have
demonstrated the potential of TIMP-2 to inhibit tumour prolifera-
tion in lung cancer models. TIMP-2 deficiency favoured the
recruitment of cancer myeloid-derived suppressor cells (MDSC) by
promoting angiogenesis-associated tumour growth and immuno-
suppressive cytokines and chemokines [121]. In this context,
further studies should aim at investigating changes in the ratio
between MMPs and TIMPs in different clinical conditions.
Pharmacological inhibitors of MMPs have been employed in
numerous in vitro and in vivo studies that aimed at treating IBD
[122]. Batimastat and marimastat were designed to mimic collagen,
bind MMPs and avoid degradation of ECM proteins [90]. After
reaching clinical trials phase I and II/III, respectively, they showed
significant musculoskeletal syndrome; therefore, further investiga-
tions were ceased [123, 124]. The reasons why MMPs inhibitors
have not delivered promising results include the unclear under-
standing of MMPs pharmacokinetics and pharmacodynamics [125].
In addition, current drug discovery studies lack proper biochemical
targeting. For example, MMPs inhibitors addressing cancer
metastasis have broad-spectrum proteolytic activity and act at
disease stages where MMPs are poorly involved, leading to
uncontrolled proteolysis and unsuccessful outcomes [90].
The effect of other proteases on barrier function has also been

investigated. For example, the inhibition of neutrophil elastases
and serine proteases, which target the epithelium and its
underlying support structure, has demonstrated a restorative
effect on barrier permeability and intestinal inflammation [107]. It
would be interesting to investigate whether this protective
mechanism is a result of changes in ECM remodelling.

Future perspective
To date, impaired barrier permeability has been highlighted as the
initiating factor for pathogenic infiltration into the intestinal mucosa
and subsequent chronic inflammation due to exposure to PAMPs.
However, the unbalance between pro- and anti-inflammatory path-
ways also contributes to the failed resolution of acute inflammation,
and its consequent chronic inflammation [63]. Therefore, investigating
anti-inflammatory immune cells, cytokines and their signalling
pathways represents an alternative approach to developing treat-
ments towards IBD. Recent studies have also targeted pathogenic
bacterial-derived proteases, whose increased expression enhances
ECM proteolysis, worsening IBD inflammation and pathophysiology
[112]. In this context, it is natural to wonder if there is a crosstalk
between MMPs and bacterial-derived proteases, and whether they
might have an additive effect during IBD. Additionally, it would be
interesting to investigate microbial phyla known to be beneficial, to
understand whether they might reverse ECM remodelling and/or
influence the increased proteolytic activity observed in IBD.
An additional confounding factor that limits research advance-

ment is the model systems currently used in IBD research. The
animal and cell-based models used for such studies do not allow a
consistent and reliable recapitulation of the human disease. These
current limitations outline the need for targeted studies that take
a reductionist approach and allow better control of experimental
variables. Achieving these outcomes offers an opportunity for
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future studies, especially in the context of developing novel
in vitro models recapitulating the intestinal mucosa under healthy
and diseased conditions. This could reduce the use of animal
models in IBD research, which have physiological and ethical
limitations. In this context, 3D models can represent a flexible tool
to dissect the complexity of the intestinal epithelium in a
controlled environment. This might be achieved by the sub-
sequential addition of single variables (e.g., microbiome compo-
nents and environmental inflammatory triggers) followed by the
investigation of their individual effects. In addition, 3D models
could be generated by the co-culture of cells derived from patient
tissues, paving the way to precision medicine studies [126].
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