Valeria Fedeli¹, Anna Maria Marotta¹
¹Università degli Studi di Milano, Dipartimento di Scienze della Terra "A. Desio"

How to represent faults in FE models?

Potential slip nodes

Potential slip nodes
where rutpure conditions
are satisfied

Nucleation and propagation in two directions, along a line that connects neighboring and protential nodes

Coupling factor applied to compute velocities on one side having velocities on the other side

$C_F = 0.6$

If the fault cuts the elements

When the fault cuts the grid, a mesh refinement is necessary.

Left: a discontinuity made of many segments, each of which cuts one or more elements.
Right: refined mesh.

The velocities in the yellow elements are calculated by multiplying the velocities in the blue elements by the coupling factor

Test with a small time step

MOVIES

Test with a large time step

We place a **brick** with different viscosity at the bottom of a viscoplastic system and push the sides. The system immediatley breaks generating two **shear bands**. The algorithm generates a linear fault that approximates the geometry of the shear bands and refines the grid.

