
Citation: Benfenati, A. upU-Net

Approaches for Background

Emission Removal in Fluorescence

Microscopy. J. Imaging 2022, 8, 142.

https://doi.org/10.3390/

jimaging8050142

Academic Editors: Ashutosh Sharma

and Paul R. Barber

Received: 22 April 2022

Accepted: 18 May 2022

Published: 20 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Imaging

Article

upU-Net Approaches for Background Emission Removal in
Fluorescence Microscopy
Alessandro Benfenati 1,2

1 Environmental and Science Policy Department, Università degli Studi di Milano, Via Celoria 2,
20133 Milan, Italy; alessandro.benfenati@unimi.it

2 Gruppo Nazionale Calcolo Scientifico, Istituto Nazionale di Alta Matematica, P.le Aldo Moro 5,
00185 Rome, Italy

Abstract: The physical process underlying microscopy imaging suffers from several issues: some
of them include the blurring effect due to the Point Spread Function, the presence of Gaussian or
Poisson noise, or even a mixture of these two types of perturbation. Among them, auto–fluorescence
presents other artifacts in the registered image, and such fluorescence may be an important obstacle
in correctly recognizing objects and organisms in the image. For example, particle tracking may
suffer from the presence of this kind of perturbation. The objective of this work is to employ Deep
Learning techniques, in the form of U-Nets like architectures, for background emission removal. Such
fluorescence is modeled by Perlin noise, which reveals to be a suitable candidate for simulating such
a phenomenon. The proposed architecture succeeds in removing the fluorescence, and at the same
time, it acts as a denoiser for both Gaussian and Poisson noise. The performance of this approach
is furthermore assessed on actual microscopy images and by employing the restored images for
particle recognition.

Keywords: neural network; Perlin noise; U-Nets; particle estimation; deep learning; microscopy
imaging

1. Introduction

The mathematical model underlying the physical process of registering fluorescence
microscopy images relies on a linear model

gn = N (Hx? + b) (1)

where x? represents the clean image, H is the blurring linear operator which represents the
Point Spread Function (PSF) that introduces perturbation in the recorded image, such as
unsharp edges or motion artifacts. The scalar quantity b is constant background emission,
and gn represents the registered image by the microscope. Equation (1) refers to the
discretization of a Fredholm integral of the first kind: the interested reader may find all the
technical details in the seminal work [1]. In Equation (1)N (·) represents the noise affecting
the image: in case of additive noise Equation (1) reads as

gn = Hx? + b + η (2)

where η is a Gaussian variable of zero mean and variance equal to σ2. In this case the
noise is statistically independent of the data. A further noise affecting microscopy images
is Poisson noise, which models the errors done in counting processes: indeed, the image
acquisition process consists in counting the photons hitting the Charge-Coupled Device
(CCD) of the camera. Such kind of noise is signal–dependent: low values on Hx? + b
induce a high level of noise, while Poisson noise is not highly disruptive when the values
of the recorded image are large. Typical microscopy images are affected by both noises:
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the Gaussian statistics models the so–called read noise, which is the perturbation due to
the electrical components of the camera, whilst the Poisson noise (called also photon noise)
models the error on the photon–counting process. The details of the physical process and
the subsequent mathematical treatment can be found in [1,2].

A classical approach for the restoration of microscopy images described by Equa-
tion (2) relies on a variational framework [1]: an estimation of x? is obtained by solving an
optimization problem involving the sum of two functionals. The first term is the fit–to–data
or data fidelity, which measures the discrepancy between the registered data and the recov-
ered image. The choice for this functionality depends on the noise affecting the data: in
presence of Gaussian noise the most suitable one is the Least Square functional [3], whilst
in presence of Poisson noise the (generalized) KullBack–Leibler function [4,5] is widely
employed. The second term occurring in the minimization is the so-called regularization
term, which has the role of considering some characteristics of the desired image and
controlling the influence of the noise in the reconstruction. Several options are available for
such function: `2 norm for diffuse components [6], `1 for promoting sparse solution [7,8],
Total Variation functional [9–11] (or its smooth counterpart [12]) for edge preserving. One
may consider a composite regularization function, such as the Elastic–Net [13], or even
non-convex options are available [3,14]. The sum of the data fidelity and the regularization
function is balanced by the so-called regularization term, whose estimation is still an open
problem [15,16]. Some mathematical manipulation of the regularization function [17,18] or
the entire functional [19] may lead to remarkable results. Modern techniques aim to couple
classical variational approaches with Deep Learning techniques [20–22].

In some cases the term b is not constant, and it actually models various degrading
contributions: undesired emission from auto–fluorescent objects (i.e., molecules, beads),
fluorophores that spontaneously emit light but that are not the actual target of interest,
the reflection of the light used to investigate the sample ([23, Figure 2]), diffraction due
to the medium surrounding the objects of interest. Merging all the above observations
on the influence of the statistical noise on the recorded image, one can hence write then
Equation (2) as

gn = P(Hx? + b) + η (3)

where P(·) models the Poisson noise, η is a Gaussian random variable of zero mean and
variance σ2 and b is no more a scalar but an array of suitable dimension that models the
background emission. In some applications, such as particle position estimation [24–26],
the presence of this artifact may worsen the performance of the algorithms employed for
this task. Moreover, in order to test such algorithms, one must have at their disposal a large
number of microscopy images with ground truth data to properly assess the performance
of the developed strategy. One way to achieve this is to generate synthetic data: the
blurring operator H can be modeled by a Gaussian PSF or by an Airy Disk [27–29], while
the statistical noise (both Gaussian and Poisson types [30]) may be simulated by established
software procedures.

The auto-fluorescence noise can be simulated in various ways. In [31] the authors
employ a combination of vector and scalar-based PSF, polarization detection strategy,
spectral crosstalk, and other physical phenomena. Montecarlo methods have been widely
used in the literature [32–34], both for the reliable approximation of the light scattering and
for the simple numerical implementation. The authors in [35] develop a quasi–analytical
model for improving the brute force approach based on Monte Carlo methods. Intermittent
fluorophores activation was considered in [36], where the spatial distribution of such
fluorophores is sparse. The author of [37] analyses the theoretical framework of emission
and scattering phenomenon in fluorescence microscopy.

In this work, the simulation of the background emission is based on the employment
of Perlin noise [38]. This procedure is widely used on CGI (Computer–Generated Imagery),
it has been employed to simulate clouds in satellite images [39–41] and recently has found
several applications for the generation of synthetic microscopy images. In [42,43] Perlin
noise at different frequencies is added to the ground truth images for the simulation of the
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background straining. The authors in [44] use a combination of Perlin noise and Gaussian
functions for inserting diffuse spots of fluorescence in the background of synthetic images.
Due to its flexibility and ability to simulate realistic texture in biological images, Perlin
noise is employed for simulating both background emission and cell textures [45–48],
and in [49] a combination of Voronoi diagrams and Perlin noise is used to generate realistic
cytoplasm boundaries. In Figure 1, a comparison between an actual image (Figure 1a)
and a synthetic one is provided (Figure 1b): the Perlin noise indeed provides a concrete
model for the background emission. Recent works [50,51] develop a BGnet architecture
to efficiently remove the structured background: the authors employ the Perlin noise for
two main reasons: firstly, because it resembles the structured background that can be
encountered under real–world experimental conditions and, secondly, because its structure
can be controlled by properly setting its spatial frequency among the octaves.

To the best of the author’s knowledge, there is no developed variational approach
for background emission removal: in this work, a completely data–driven procedure is
developed for the background emission removal. The proposed strategy relies on Deep
Learning techniques, namely on U-net architectures.

(a) (b)

Figure 1. (a): an actual fluorescence microscopy image, of dimension 512× 512. (b): a synthetic
image, where the background fluorescence is simulated via Perlin noise. Both images are displayed
with values in [0, 255].

U-net architectures consist of two main structures: the first one has a contracting
behavior, and it aims to analyze the input data at different levels. It corresponds to the
encoder (or analysis path) of traditional autoencoders (AEs), and in the original work [52]
this path was developed for searching for meaningful information for segmentation task.
It presents several levels, and each level lowers the dimension of the input: for example,
a contracting path with 5 layers may reduce a 256× 256 image to a 128× 128 at the first
level, then to 64× 64 at the second and the last later will output an 8× 8 image. Usually,
each stop of the contracting path halves the dimension of the input.

The second part of a U-net consists of the expansion path, or synthesis path, which
corresponds to the decoder of an AE. The original aim of this part is to learn localized
information for pixel–classification. The layers of this path will increase the size of the
output, reaching at its final layer the original dimension. Moreover, each level of the
contracting path is connected with the relative layer in the expansion path: this allows us
to propagate information through the network. The symmetric u–shape gives the name to
this type of network. The interested reader may find complete reviews on U-Nets and their
application in medical imaging in [53,54].

Such architectures have been introduced to biomedical imaging in the seminal work [52]
and revealed to possess remarkable performances in segmentation tasks [55–57] but also
in generating synthetic images when coupled with Generative Adversarial Networks
(GANs) [58]. To the best of the author’s knowledge, the approach of applying U-net like
architectures for removing background emission in microscopy imaging is novel: the main
idea is to provide as an input to the neural network a corrupted image, namely gn from
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Equation (3), and require as output an image cleansed by the background emission, namely
P(Hx?) + η. Due to the typical behavior of U-net-like architecture and autoencoders, one
expects smoothed images as outputs: this is the reason why the neural network is trained
with noisy images as output and not with completely clean images.

The rest of the paper is organized as follows. Section 2 depicts the architecture
employed for addressing the task of background emission removal and Section 3 provides
the details of the synthetic data generation. In Section 4 numerical experiments are carried
on to assess the performance of the proposed procedure on images that are blurred by a
Gaussian PSF and which are affected by Gaussian, Poisson, and Perlin noise. Moreover, this
procedure is tested on actual microscopy images and an application to a practical problem,
namely the particle’s position estimation, is shown. Section 5 draws the conclusions and
presents the future perspectives of this work. The code used in this work is available on
https://github.com/AleBenfe/upU-net_Perlin (accessed on 13 May 2022).

2. upU-net Architecture

The proposed architecture is a slight modification of classical U-Nets and it is depicted
in Figure 2. The main difference is that it is not employed for the classification task,
but for Perlin noise removal: Figure 3 shows the original image and the desired output
image, where the background emission is not present anymore, while the statistical noise
is conserved.

Legend:

Input
layer

Convolution
layer

Batch Normalization
layer

Transpose Convolution
layer

ReLU
layer

Transpose Convolution
layer.

Figure 2. The Proposed upU-net architecture. The contracting path consists in several blocks, 5 in
the example provided in the Figure. Each block is composed by convolution layer (dark red), batch
normalization layer (dark blue) and a Rectified Linear Unit (ReLU) layer (green). The expansive
path’s blocks have just two parts: up-convolution layer (light red) and a ReLu layer. All the features
of the last block are merged via a 1d1 convolution layer, followed by a further ReLu. The red lines are
connecting the outputs of each block from the contracting path with the block of the expansive path
of higher dimension: this seems to induce a smoother behavior of the net.

https://github.com/AleBenfe/upU-net_Perlin
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(a) (b)

Figure 3. (a): the acquired image, affected by several artifact due to the blurring operator, Gaussian
and Poisson noise and background emission, modeled by Perlin noise. (b): the desired output. Both
images are displayed with values in [0, 255]. The aim of the proposed upU-net is to remove only the
Perlin noise: the experimental results will show that the typical behavior of such AE–like architecture
will remove also the statistical noise. See Section 3 for the details about the generation of such image.

The upU-net presents a contracting and expanding path: each block of the former
consists of three different layers:

• A convolution 2D layer, with stride 2 (in both dimensions) and padding 1 (in both
dimensions). The boundary conditions are set to symmetric, excluding the image edge.

• A batch normalization layer.
• A ReLU layer.

The dimension of each convolution layer is 3× 3× 22+l , where l is the block level: for
example, for a net with 5 blocks, the activation of the convolution layer of the last block is
then 3× 3× 128.

The synthesis path of the upU-net architecture presents the symmetric blocks, each
one consists in

• An up–convolution layer. The scope of this type of layer is to increase the size of the
input, and the last one will provide data of the same size as the input.

• A ReLU layer.

The actual task of up-convolution layers is to increase the size of the input by per-
forming an interpolation: training the neural network means that such interpolation is not
a–priori selected (e.g., linear or cubic), but the weights and the bias are learned, tailoring
the network to the particular data in consideration. ReLU layers are employed to assure
non–negative data through the network: this is a physical requirement, since images (RGB
or gray–level ones) have non-negative pixel values. The last two layers consist in a 1× 1
convolution layer, in order to collapse all the filters in the 2D image, and in a final ReLU
layer to ensure again non-negative values on the final output.

The major novelty presented in this approach is that the connections between the
corresponding blocks of the two paths do not follow the classical scheme. Indeed, the block
at level l in the contracting path is connected to the (l + 1)-th block of the expansive path,
and not to the related l-th one, and this connection is made via other up–convolution
layers (see Figure 2). In this way, the propagation of information is smoother, and the
reconstruction will suffer less from the presence of statistical noise, since the up–convolution
layers act as smoothing filters.

Figure 4 presents a visual inspection of some activations of the net trained in Section 4.1
for each block of the contracting path for the image in Figure 3a: we see that the first blocks
aim to discern the areas in which the emission background has more influence, and at the
same time can roughly recognize the position of the isolated particles and recognize the
presence of statistical noise. In particular, Figure 4a recognizes the areas in the image where
the emission background is not present, at the same time Figure 4c shows this activation can
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find the areas in which such emission is stronger. Figure 4b seems to find the position of the
particle, still in a very approximate way; Figure 4d shows that the neural network, at this
stage, can find the zones in which the statistical noise is predominant: indeed, the higher
activation corresponds to the dark areas in the original image, where Poisson noise is
present at a higher level due to low photon count.

(a) (b) (c) (d)

Figure 4. (a–d): 4 out of 8 activation of the 1st block in the contracting path. The images are
displayed in different color scale, since the ranges of the activation values differ by a large amount
between filters.

This behavior is maintained also in deeper blocks, as confirmed by the inspection of
some of the activations of the second block in Figure 5. The net tries to separate the zones
in which the emission background is present, while searching for the position of particles,
if any, and recognizing the presence of statistical noise.

(a) (b) (c) (d) (e) (f)

Figure 5. (a–f): 6 out of 16 activation of the 2nd block in the contracting path. The color scale is not
the same among the images, due to different value ranges among the filters.

3. Data Generation

The synthetic images employed in the numerical test of Section 4 are generated
as follows.

The position of p particles of radius r is randomly drawn, from an uniform distribution,
in a continuous volume if dimension Dx × Dy × Dz. The procedure checks that there is
no intersection between the particles, given the position and the radius. The volume is
then discretized, by choosing the resolution of the final image: denote with n× n× nz
the number of voxels on each dimension, then each voxel will cover a volume equal to
dx × dy× dz, being dx = Dx/n, dy = Dy/n, dz = Dz/nz, . The horizontal frames are
assumed to be square. Each voxel within a distance less than r is set to 229.5. This particular
value comes from the choice of setting the value of the beads equal to 90% of the maximum
value registered: since the aim is to simulate tiff images, such value is 255. One horizontal
slice is then considered a registered image: this choice has been made for avoiding to have
circular profiles with the same radius. Indeed, since the particles have been randomly
positioned in a 3D space all the beads’ centers will have different z coordinates: this
means that considering just one slice of the 3D volume allows to intersect the particles at
different heights, thus in a single frame the profiles will have a radius that ranges from
0 (no intersection at all) to 2 µm (maximum intersection at the equator). The steps for
particles’ simulation are depicted in Figure 6.

A Perlin noise [38] pattern is then added to the image: the generation of this perturba-
tion is pursued by following the improved procedure described in [59,60]. Each instance of
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the noise is generated by using 8 octaves, an initial frequency of 1, an initial amplitude of 1,
and persistence of 0.5. At each octave added after the first, the frequency is doubled and
the amplitude is multiplied by the persistence.

A Gaussian PSF with variance σ2 is employed to blur the image, for simulating the
physical process of image acquisition in fluorescence confocal microscopy.

The last steps regard the statistical noise perturbation:

• Gaussian noise is added following the procedure depicted in [61]: a multivalued
random Gaussian variable η is generated, then a noise level σn is chosen. Being g the
noise–free image, the perturbed one is then

gn = g + σn
η

‖η‖F
‖g‖F (4)

where ‖ · ‖F denotes the Frobenius norm. In this way, one has that ‖g− gn‖F = σn.
• Poisson noise is added, using built-in functions of the software used (see Section 4 for

details).

(a) (b) (c)

Figure 6. Visual inspection for the synthetic data generation. (a): the particles’ position is randomly
chosen in a continuous space, and the green shaded volume represents the volume taken into
consideration. Notice that a particle may not be completely included in the volume, see the bottom
part of the panel (a). (b): once the resolution is chosen, the particles volume is discretized and only
the voxels inside the volume are considered. One slice of the whole volume is considered: such
slice is perturbed with Perlin noise, then the action of a PSF induces a blur effect and eventually
Gaussian and Poisson noise are added. (c): the final simulated image, displayed with values in
[0, 255]. The dashed red lines represent the profile of the particles.

4. Results

This section is devoted to assessing the performance of the proposed approach. All
the experiments were done on a Linux machine (Ubuntu 20.04) with an Intel(R) Core(TM)
i5–8250U CPU (1.60 GHz), 16 GiB RAM (Intel, Santa Clara, CA, USA) and under MATLAB
R2022a environment (MathWorks, Natick, MA, USA), employing the Parallel and the Deep
Learning toolboxes [62,63]. The code is available at https://github.com/AleBenfe/upU-
net_Perlin (accessed on 13 May 2022). The first run of experiments is devoted to testing the
proposed architecture on small-size images and a comparison with a more classic U-net
architecture is pursued. The third part of this section is aimed to test the net on a different
dataset to the one it was trained on, and Sections 4.4 and 4.5 are devoted to employing the
reconstruction obtained by the network for particle estimation problems. Finally, the last
part shows the achieved results on real images.

4.1. Assessing the Performance of upU-net

The first experiment is carried out on small–sized images: this has been done for
providing the proof of concept of the reliable performances of the proposed method.
The architecture employed in this experiment has the following structure:

https://github.com/AleBenfe/upU-net_Perlin
https://github.com/AleBenfe/upU-net_Perlin
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• 5 blocks in the contracting part, each one containing a 2D convolution layer, a batch
normalization, and a ReLU layer (see Figure 2). The number of filters in the first block
is 8, then it is doubled in each subsequent block.

• 5 blocks in the expansive path, consisting of an up–convolution layer and a ReLU layer.
The number of filters starts from 128 and then it is halved, mimicking the structure of
the contracting path.

• 5 up-convolution layers that connect the relative blocks in the two paths.
• A final 1D convolution layer for merging all the filtered data, coupled with the last

ReLU layer.

The dataset for this experiment contains 500 images: 90% of them are used for the
training, 5% for the validation, and the remaining 5% as the test set. All the images are
blurred by a Gaussian PSF with σ = 2 and they are affected by Gaussian noise with
σn = 0.03 and by Poisson noise. The training is done by giving an input to the noisy image
net (see Figure 3a) and requiring as output Perlin-free images (see Figure 3b). The loss
function employed for the training is the least square function. The chosen solver is the
ADAM algorithm [64] with default settings, with an initial learning rate of 0.01, a drop
factor of 0.2 every 25 epochs with a piecewise constant strategy, a minibatch size of 50 items,
and 200 maximum epochs. Moreover, the loss function consists of a regression function
and it is augmented with an `2 regularization term, balanced by a parameter equal to 0.1.

The dataset for this experiment has been generated under the following setting. A vol-
ume of 76× 76× 5µm has been considered, and a random number of particles between 10
and 15 is randomly chosen. The particles’ radius is set to 2µm, and the single horizontal
frame has 128 × 128 pixels. Each slice is perturbed with Perlin noise, then a Gaussian
PSF with variance equal to 2 is used to induce a blur effect on the image. Subsequentely,
Gaussian noise at level 3% is added to the image and the MATLAB’s function imnoise
is employed for adding Poisson noise (a scaling of 10−12 on the input and a subsequent
re-scaling by 1012 is pursued in order to obtain reliable results: the interested reader should
check the function documentation for more technical detail about this scaling [65]).

Figure 7 presents the results of the first run of tests on some items of the test dataset:
the first row presents the noisy images, the second row the ground truth and the last one
shows the reconstruction obtained by the proposed architecture.

All the reconstructed images present a smoother background with respect to the
ground truths: this is not surprising, as one expects exactly this kind of behavior when
using an autoencoder–like structure, such as the proposed one. It is quite clear that the
background emission is completely removed from all the images. Moreover, the blurring
effect is still present in the recovered images, since the upU-net is trained on blurred ones.

The first image (Figure 7a) seems to present just one particle: the ground truth in
Figure 7f reveals that there are two more particles in the diffuse, yellow area. The upU-net
is capable to recognize the presence not only of the most visible bead, but also of the two
hidden particles, even if their shape is not completely circular.

The second image (Figure 7b) presents three main issues: one hidden particle in the
diffuse area (as in the previous case), one faint particle on the right boundary of the image,
and one bead close to the bottom yellow cloud. As one can see in Figure 7l, the upU-Net
scheme can recognize the presence of both the hidden and the faint particle, and at the
same time it does not confuse the bead at the bottom with the emission background.

Figure 7c does not present particular problems: indeed all the particles are well
recognized, but it is evident that a small artifact may arise, even if it is rare. Figure 7n
shows again as upU-net is capable to recognize particles close to intense emission, whilst
Figure 7o shows that faint particles merged inside low-intensity background emission can
be easily recognized.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 7. (a–e): Perturbed images. (f–j): relative ground truths. (k–o): recovered images via the
proposed approach. In each of the 5 example cases, the particles are well recognized, even the faint
ones. Small artifacts arise (see (l,m) due to the presence of background emission of high intensity. All
the images are displayed with values in [0, 255].

4.2. Comparison with Classical U-net

This section is devoted to assessing the difference in performance between the pro-
posed approach and a more classical U-net architecture.

A U-net architecture with 3 layers of depth is firstly generated by using the unet
MATLAB command: a slight modification of the output of this function is pursued, such
modification consists in inserting a batch normalization layer between the ReLU layer
and the successive convolution one. This addition is required otherwise the network,
in its original form, is not able to learn any parameters and outputs only zeros images.
The encoder’s structure consists of 3 blocks, each one containing

• a convolution layer
• a ReLU layer
• a batch normalization layer
• a convolution layer
• a ReLU layer
• a batch normalization layer
• a max-pooling layer

The deepest level of the contracting part presents a dropout layer with a probability of
dropout of 0.5, before the pooling. The decoder’s part consists in

• an upconvolution layer
• a ReLU layer
• a concatenation layer, for connecting with the relative encoding part
• a convolution layer
• a ReLU layer
• a batch normalization layer
• a convolution layer
• a ReLU layer
• a batch normalization layer
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The bridge structure of the U-net has the same structure as an encoder’s block, i.e., 2×
(a convolution layer + ReLU + batch normalization), without the max pooling operation.
The initial number of 3× 3 filters is 8.

Such network is trained on the 128× 128 image dataset, the choice of 3 levels of depth
is done to have the same number of learnable parameters, with respect to the upU-net used
in Section 4.1: approximately 295,500 the former, approximately 121,300 the latter. The first
difference between the proposed approach and the U-net is the training time: the upU-net
required around 15 min whilst the U-net required around 55 min, despite having a low
number of learnables. In terms of achieved results, the U-net introduces artifacts in some of
the recovered images, as evident in Figure 8.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 8. (a–d): Synthetic images. (e–h): ground truths. (i–l): recovered images via the U-net. This
network is able to recover some of the images, but unfortunately it introduces some undesired
artifacts. All the images are displayed with values in [0, 255].

The higher computational time required for training (despite its lower number of
parameters to be learned) and the rising of such artifacts in the recovered images show that
the proposed upU-net is a valid competitor of classical U-net approaches.

4.3. upU-net for Different Radius Particles

In this section, another upU-net is trained for recovering images of size 256× 256: the
training parameters are the same as the net studied in Section 4.1, whilst the structure of
the net consists of 4 blocks instead of 5. The training dataset has the same structure as the
one used in Section 4.1, the sole difference is the dimension of the images. The training
time was around 40 min.

Another dataset is then created, where the number of particles ranges from 0 to 15 and
where their radius lies in the interval [0.5, 4] µm. Figure 9 presents the visual inspection of
the achieved results: even if the net has been trained in images generated by volumes with
particles of the same radius, it can reconstruct beads of different radii. This is due to the fact
that each image of the training dataset is generated by considering a frame intersecting the
volume at a fixed height, hence the registered profiles have a different radius (see Figure 6
for a detailed visual inspection).
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 9. (a–d): Synthetic images with beads with radius in [0.5, 4] µm. (e–h): ground truths.
(i–l): recovered images. he upU-net is able to reconstruct images with particles with different radius
with respect with its training. All the images are displayed with values in [0, 255].

4.4. upU-net for Particle Estimation Task

This last run of experiments refers to the estimation of the particle position when the
background emission heavily affects this task.

Beside the upU-Nets presented in Sections 4.1 and 4.3, a further one is trained for
recovering 512 × 512–size images. The training parameters are the same used for the
previous nets, the sole change regards the number of epochs, fixed to 60: this leads to a
training time of about one hour. Moreover, further 100 synthetic images with dimensions of
128, 256, 512 are generated, slightly different from the ones used for training and validation.
In this new dataset the Perlin noise has a large influence on the final registered data. The task
of recognizing the particles’ center is pursued by employing the algorithm depicted in [66],
slightly modified and tailored for handling 2D images. Figure 10 shows the potentiality of
the proposed procedure: particles embedded in large portions with background emissions
with high intensities are easily recognized. The employed procedure, moreover, allow us to
estimate both the center and the radius in the frame. Due to some distortion provoked by
the reconstruction of the upU-net, the exact position is not completely recovered: anyway,
there is a clear reckoning of the presence of particles even in difficult imaging situations.

The procedure depicted in [66] allows also to assess the performance of the upU-net
approach. Two measurements are employed for each image: the True Positive Ratio (TPR)

TPR =
#{Ep ∩ P}

#{P} (5)

where Ep is the set of estimated particles and P is the set of actual particles present in
the image. TPR measures the fraction of the recognized particles that are actually in the
frame in examination. Given a set A, #A stands for the number of elements of the set A.
The second measurement is the number of false particles

ϕ =
1
N

N

∑
i=1

#{Fi} (6)
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where Fi is the set representing the false particles recognized in the i-th frame. The quantity
in Equation (6) represents then the average number of recognized particles that are not
actually present in the dataset, and N is the number of images in the dataset. Table 1 show
the performance of the nets.

Table 1. Performance assessment of the proposed procedure in view of particle estimation task. TPR
is the true positive ration depicted in (5), while ϕ is the average number of particles erroneously
recognized (see (6)).

Image Size TPR ϕ

128× 128 90.87% 0.1
256× 256 90.19% 0.19
512× 512 92.29% 0.69

The average TPR on all datasets (100 images each) is greater than 90%, whilst the
average number of particles erroneously recognized is less than one in each test case: this
means that the total number of particles is slightly underestimated, and it is very rare that
the artifacts are recognized as beads in the image.

(a) (b) (c)

Figure 10. Particle Estimation task. (a): original image. (b): recovered image by upU-net. (c): su-
perposition of the true particles’ center (blue dots), of the estimated center (red dots) and of the
estimated profile (red lines). The values range in the interval [0, 255]. In this situation one has several
particles that are easily recognizable, a faint one (in the top right corner) and a last bead inside a
diffuse emission area (top left corner.)

4.5. Volume Reconstruction

A further experiment considers the reconstruction of the particles’ position in 3D space.
A volume of 76× 76× 6 is discretized in an array of 512× 512× 22 voxels, and several
particles are randomly put in such volume. Each registered frame is processed by the
appropriate upU-net, the procedure can be summarized in two steps:

1. Apply to each frame the up–UNet, in order to remove the noise artifacts.
2. Apply the procedure in [66] to the restored array.

Figure 11 provides a three–dimensional visual inspection of the same procedure
applied to one reconstruction of the particle distribution in space, with a superposition of
some of the layers of the 3D image.
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Figure 11. Three–dimension reconstruction of particles distribution. Six layers (out of 22) are
superimposed to the sphere representing the particles.

4.6. Real Dataset

This section is devoted to presenting the performances of the proposed architec-
ture on real images. The microscopy images refer to a 3D volume with dimension
Dx = Dy = 64 µm, Dz = 4.1 µm which has been discretized in a 3D array of
512 × 512 × 10 voxels. The radius of the beads is 1.5 µm and they are suspended
in a ∼70–30% glycerol/water mixture (viscosity of approximately 0.017 Pa s). The mi-
croscope used to acquire this data is aZeiss LSM 700 with a 100 × NA 1.4 oil immersion
objective (Zeiss Plan–APOCHROMAT) (ZEISS, Oberkochen, Germany). The volume has
been scanned 50 times, and the acquisition time for each frame is 0.5 s. A visual inspection
of the obtained results is in Figure 12: the background fluorescence emission has been suc-
cessfully removed, the beads’ profiles are evident in the recovered images. This experiment
provides empirical proof that Perlin noise does simulate in a reliable way the fluorescence
emission, even if its connection with the actual physical phenomenon is faint.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 12. (a–d): registered images displayed in [0, 255]. (e–h): recovered images via the upU-net
architecture displayed in [0, 255]. The fluorescence has been successfully removed and the particle
position is evident from the restored images.

5. Conclusions

This work presents the novel application of a U-net–like architecture for removing
background emissions from fluorescence confocal microscopy images. The background
emission is simulated by Perlin noise, which has a high degree of similarity with the actual
emission. Moreover, the images were perturbed with Gaussian and Poisson noise, after hav-
ing been blurred via a Gaussian PSF. Such realistic images, with different dimensions, were
then used for the training and the test of the upU-net architecture: the visual inspection
of the results of both experiments presents a remarkable performance, showing that the
proposed approach efficiently removes the background emission and at the same time it
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exploits the typical behavior of autoencoders, i.e., the recovered images present a more
smooth appearance and the both Gaussian and Poisson noise are removed. A comparison
with classical U-net approaches shows that the proposed strategy overcomes the classical
one, due to its robustness, its performance, and its lower computational time for reaching
convergence. The proposed procedure is then coupled with a particle estimation algorithm:
the numerical experience showed that the performance of reckoning the beads in a mi-
croscopy image is greater than 90% and moreover there is a really low probability that
artifacts are mistaken for actual particles. Finally, the procedure is applied to real images.
This last experiment provides two main pieces of evidence: Perlin noise is a valid candidate
for simulating the background fluorescence noise and that the upU-net can remove such
kind of perturbation also on real microscopy images.

This work may pave the way for several new approaches. On one hand, the Perlin
noise can be investigated more for the simulation of the fluorescence and the background
emission, by encompassing some physical properties in the generation of the noise, such
as the presence of the particles. Moreover, instead of considering a simple 2D frame, 3D
data can be easily generated, employing the same procedure for the simulation of 3D Perlin
noise (see Section 4.5) and convolution techniques for 3D PSFs. A further investigation
of the theoretical aspect regarding the reasons why this particular architecture provides
such good results will be the object of future work. The neural network architecture can
be furthermore employed in more general imaging problems: for example, the encoder
part can be employed as the regularization term [67] in a variational framework, or the
recovered images ease a segmentation task [68].
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