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Abstract: Little is known about the long-term durability of the induced immune response in subjects
with obesity, particularly in those with an abdominal distribution of adipose tissue. We evaluated
SARS-CoV-2-specific antibody responses after BNT162b2 vaccine booster dose, comparing individu-
als with and without abdominal obesity (AO), discerning between individuals previously infected or
not. IgG-TrimericS were measured in 511 subjects at baseline, on the 21st day after vaccine dose 1,
and at 1, 3, 6, and 9 months from dose 2, and at 1 and 3 months following the booster dose. To detect
SARS-CoV-2 infection, nucleocapsid antibodies were measured at baseline and at the end of the study.
Multivariable linear regression evaluated the three-month difference in the absolute variation in
IgG-TrimericS levels from booster dose, showing AO and SARS-CoV-2 infection status interactions
(p = 0.016). Regardless of possible confounding factors and IgG-TrimericS levels at the booster dose, AO is
associated with a higher absolute change in IgG-TrimericS in prior infected individuals
(p = 0.0125). In the same regression model, no interaction is highlighted using BMI (p = 0.418). The robust
response in the development of antibodies after booster dose, observed in people with AO and previous
infection, may support the recommendations to administer a booster dose in this population group.

Keywords: abdominal obesity; obesity; BMI; BNT162b2 mRNA vaccine; antibody response;
IgG-TrimericS; booster dose; COVID-19

Vaccines 2023, 11, 1796. https://doi.org/10.3390/vaccines11121796 https://www.mdpi.com/journal/vaccines

https://doi.org/10.3390/vaccines11121796
https://doi.org/10.3390/vaccines11121796
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/vaccines
https://www.mdpi.com
https://orcid.org/0000-0002-0852-9625
https://orcid.org/0000-0003-1743-6516
https://orcid.org/0000-0003-3144-9364
https://orcid.org/0000-0002-4245-8373
https://orcid.org/0000-0001-8858-4327
https://orcid.org/0000-0003-1316-7478
https://orcid.org/0000-0001-9358-011X
https://orcid.org/0000-0002-6670-1630
https://orcid.org/0000-0001-7928-7697
https://doi.org/10.3390/vaccines11121796
https://www.mdpi.com/journal/vaccines
https://www.mdpi.com/article/10.3390/vaccines11121796?type=check_update&version=3


Vaccines 2023, 11, 1796 2 of 14

1. Introduction

People with chronic medical conditions have an increased risk of severe acute res-
piratory syndrome coronavirus 2 (SARS-CoV-2) infection and of developing major com-
plications from coronavirus disease 2019 (COVID-19) [1]. Genetic and environmental
host factors, including age, biological sex, comorbidities, and adipose tissue distribution
converge to influence innate and adaptive immune responses to vaccines [2]. Individuals
with obesity have an increased risk of contracting and developing a more severe case of
COVID-19, especially those with a predominant accumulation of visceral adipose tissue
(VAT), making these individuals an at-risk population [3–5]. Excessive VAT accumulation
leads to low-grade systemic inflammation and predisposes individuals to an increased
susceptibility to infection, increased morbidity and mortality, and reduced development of
antibodies to vaccines due to a reduced immune response [6].

Moreover, abdominal adiposity is characterized by increased visceral and ectopic fat
deposition, adipocyte dysfunction, inflammatory and adipokine dysregulation and insulin
resistance as emerging risk factor for type 2 diabetes mellitus, hypertension, cardiovascular
diseases, and fatty liver, conditions that could lead to more severe forms of infections,
especially SARS-CoV-2 [5,7].

Approved messenger RNA (mRNA) vaccines against SARS-CoV-2 are highly effec-
tive at reducing infection and morbidity in the general population and have been highly
recommended for individuals affected by obesity [8]. It is hypothesised that the chronic
inflammatory state, immune dysregulation, and any related comorbidities, characteristic of
subjects with obesity, particularly at the visceral level, predispose to a low immunological
response to various vaccinations [5,9,10]. To date, the efficacy of vaccines does not seem
to differ significantly in individuals affected by obesity or not [8,11]. Therefore, encour-
agement to receive vaccination is strongly advisable for people suffering from obesity [8].
However, the impact of obesity and abdominal obesity (AO) on the durability of mRNA
vaccine-specific responses remains an open question [12,13].

We and others have previously reported a weaker immune response after two doses
of BNT162b2 (Pfizer–BioNTech) and a greater drop in antibody levels at three months after
dose 2 in infection-naïve subjects with AO compared with those without [14–16]. Therefore,
the observed reduction in antibody levels over time after vaccination and the increase in
positive cases has led to the need for additional booster vaccination [14,17–20].

The long-term duration of the immune response induced by the vaccination cycle
and booster dose is still little understood, especially in patients with AO. In addition,
uncertainties remain about the effect of vaccination on development of antibodies in
individuals with previous infection [21–25].

To this end, we assessed SARS-CoV-2-specific antibody responses after the booster
dose of the BNT162b2 mRNA vaccine in a cohort of health care workers. We compared
the antibody response of individuals with or without AO, discerning their infection status
(infection-naïve individuals and individuals infected pre or post vaccination cycle).

2. Material and Methods
2.1. Study Design and Population

In our study, the population was recruited in the prospective observational cohort
study VARCO-19, that began in January 2021 and ended in March 2022 at IRCCS Policlin-
ico San Donato, Italy. All participants gave written informed consent, and the protocol
received approval from the IRCCS Lazzaro Spallanzani Ethics Committee (protocol code
48/2021/spall/PU/403-2021).

We collected blood samples from health care workers who received up to three doses
of the BNT162b2 mRNA vaccine. The vaccination itself was not part of the study. A de-
scription of the enrolment process and inclusion criteria has previously been reported [14].

The study timeline is shown in Figure 1.
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2.2. Serological Testing

Serological testing was performed as previously described [14]. The Binding Antibody
Unit (BAU)/mL was used as the unit of measurement for serological tests because it
represents the unit of measurement imposed by the World Health Organisation (WHO) to
standardise the values of antibodies that are measured with different methods in different
laboratories around the world (≥33.8 BAU/mL is the minimum threshold of protection).
The conversion factor from Arbitrary Unit AU/ML to BAU/mL is 2.6. Levels of antibodies
were tested at eight time points: at baseline, 21 days following vaccine dose 1, and 1
(within 30–40 days), 3 (within 90–100 days), 6 (within 180–200 days), and 9 months (within
270–280 days) from vaccine dose 2. In addition, antibody levels were measured at 1
(within 30–40 days) and 3 months (within 90–100 days) from the booster dose. When the
antibody determination was above the test range upper limit, a 1:20 dilution was performed
using the specific buffer LIAISON® TrimericS IgG Diluent Accessory (DiaSorin, Saluggia,
Italy). Sporadic titres of >40,000 BAU/mL were obtained because of the limitation of the
linear range at a dilution of 1:20. Since this was infrequent, no further dilutions were
performed, and these samples were given a titre of 40,000 BAU/mL. At the beginning of
the study, a qualitative evaluation of anti-nucleocapsid IgG (anti-N IgG) was performed
to check whether SARS-CoV-2 infections had occurred prior to vaccination. To assess
whether a participant had been infected with SARS-CoV-2 during the VARCO-19 study, we
determined the anti-N IgG titre again three months after the booster dose.

2.3. Anthropometric Measures

Anthropometric measurements were evaluated at baseline. We determined waist
circumference using a flexible tape measure by setting it midway between the iliac crest
and the lower rib, to the nearest 1.0 cm. AO was defined as a waist circumference ≥ 102 cm
in men and ≥88 cm in women [26]. Body weight was measured to the nearest 0.1 kg using
a beam scale, and height was measured to the nearest 0.1 cm using a stadiometer. Body
mass index (BMI) was calculated as the weight (km) divided by height (m) squared.

2.4. Statistical Analyses

Antibody levels were expressed as the geometric mean (±standard deviation, SD).
Subjects were classified according to AO and BMI classes with or without a previous
diagnosis of SARS-CoV-2 infection (no prior infection, infection diagnosis before vaccine or
infection diagnosis after vaccine). Comparison of continuous values between groups was
performed using the non-parametric Kruskal–Wallis test. Multivariable linear regression
was used to account for possible confounding and to assess absolute variation: difference
at three months of titre levels from booster dose in individuals with AO and without (or
BMI-classes). The model was also adjusted for antibody levels from the booster dose,
gender, age, smoking, hypertension, and previous diagnosis of SARS-CoV-2 infection and
the interaction between previous infection and AO (or BMI classes). Least-squares (LS)
means (±standard error, SE) were reported. The null hypothesis was rejected at p < 0.05. All
statistical analyses were performed using SAS version 9.4 (SAS Institute, Cary, NC, USA).
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3. Results

The initial study population consisted of 1060 employees of the IRCCS Policlinico San
Donato, who received a BNT162b mRNA vaccine and from whom at least one blood sample
was collected for antibody testing. The subjects enrolled in the VARCO-19 study were
41.4 ± 12.9 years old, 93% were Caucasian, and 62% were female: 1060 subjects who under-
went vaccination (240 previously infected) provided samples 21 days following vaccine dose
1, after 1 month (within 30–40 days), and after 3 months (within 90–100 days) from dose
2; 977 (218 previously infected) provided samples at 6 months (within 180–200 days) after
dose 2; 778 (177 with prior infection) provided samples at 9 months (within 270–280 days)
after dose 2; 571 (126 with prior infection) provided samples at 1 month (within 30–40 days)
after booster dose; 511 (109 prior infected individuals) provided samples after 3 months
(within 90–100 days) following the booster dose (Figure 2).
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In total, 511 individuals provided blood samples at all time points and were included
in this analysis. Baseline characteristics of the patients are reported in Table 1.
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Table 1. Demographic and clinical traits at baseline of the entire study population stratified by the presence or absence of abdominal obesity and infection status.

With Abdominal Obesity (n = 149) Without Abdominal Obesity (n = 362)

Total
(n = 511)

Without Prior
SARS-CoV-2

Infection (n = 76)

With Prior
SARS-CoV-2

Infection
(n = 34)

SARS-CoV-2
Infection after

Vaccine
(n = 39)

p-Value
Without Prior
SARS-CoV-2

Infection (n = 186)

With Prior
SARS-CoV-2

Infection (n = 75)

SARS-CoV-2
Infection after

Vaccine
(n = 101)

p-Value

Age, years 44.03 ± 11.88 52.02 ± 10.64 47.26 ± 9.18 48.26 ± 8.28 0.0286 42.28 ± 12.02 41.73 ± 11.20 40.15 ± 11.70 0.3386

Ethnicity

Caucasian 492 (96.28) 72 (94.74) 31 (91.18) 36 (92.31) 181 (97.31) 71 (94.67) 101 (100.00)

Latin-American 13 (2.54) 3 (3.95) 3 (8.82) 3 (7.69) 0.7117 * 2 (1.08) 2 (2.67) 0 (0.00) 0.2074 *

African 2 (0.39) 0 (0.00) 0 (0.00) 0 (0.00) 2 (1.08) 0 (0.00) 0 (0.00)

Arabic 4 (0.78) 1 (1.32) 0 (0.00) 0 (0.00) 1 (0.54) 2 (2.67) 0 (0.00)

Gender

Male 166 (32.49) 30 (39.47) 8 (23.53) 14 (35.90) 0.2656 56 (30.11) 28 (37.33) 30 (29.70) 0.4271

Female 345 (67.51) 46 (60.53) 26 (76.47) 25 (64.10) 130 (69.89) 47 (62.67) 71 (70.30)

Smoking status

Smoker 98 (19.18) 11 (14.47) 4 (11.76) 10 (25.64) 0.2128 36 (19.35) 11 (16.67) 26 (25.74) 0.1794

Non-smoker 413 (80.82) 65 (85.53) 30 (88.24) 29 (74.36) 150 (80.65) 64 (85.33) 75 (74.26)

Comorbidities

Hypertension 59 (11.55) 25 (32.89) 7 (20.59) 6 (15.38) 0.0944 12 (6.45) 3 (4.00) 6 (5.94) 0.7435

Diabetes mellitus 4 (0.78) 0 (0.00) 2 (5.88) 0 (0.00) 0.0509 * 0 (0.00) 1 (1.33) 1 (0.99) 0.2357 *

Cardiovascular
diseases 17 (3.33) 6 (7.89) 0 (0.00) 1 (2.56) 0.2318 * 7 (3.76) 1 (1.33) 2 (1.98) 0.5268 *

Dyslipidaemia 32 (6.26) 9 (11.84) 4 (11.76) 5 (12.82) 1.000 * 7 (3.76) 3 (4.00) 4 (3.96) 1.000 *
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Table 1. Cont.

With Abdominal Obesity (n = 149) Without Abdominal Obesity (n = 362)

Total
(n = 511)

Without Prior
SARS-CoV-2

Infection (n = 76)

With Prior
SARS-CoV-2

Infection
(n = 34)

SARS-CoV-2
Infection after

Vaccine
(n = 39)

p-Value
Without Prior
SARS-CoV-2

Infection (n = 186)

With Prior
SARS-CoV-2

Infection (n = 75)

SARS-CoV-2
Infection after

Vaccine
(n = 101)

p-Value

Cancer 3 (0.59) 1 (1.32) 0 (0.00) 1 (2.56) 1.000 * 1 (0.54) 0 (0.00) 0 (0.00) 1.000 *

Anthropometric
measurements

Weight, kg 70.54 ± 15.12 84.08 ± 13.74 88.28 ± 16.96 80.86 ± 14.45 0.1026 64.38 ± 11.15 65.40 ± 12.29 65.53 ± 10.23 0.6481

Height, cm 167.63 ± 8.78 168.47 ± 10.54 166.14 ± 9.01 167.21 ± 8.61 0.4903 166.91 ± 8.39 168·21 ± 8.65 168.56 ± 8.10 0.2252

Waist, cm 85.78 ± 13.51 100.69 ± 8.76 103.26 ± 11.23 99.79 ± 9.47 0.2745 79.61 ± 9.20 76.63 ± 9.23 79.19 ± 9.22 0.9254

Waist male, cm 94.63 ± 11.85 107.25 ± 5.64 112.88 ± 9.79 107.93 ± 6.56 0.1104 89.26 ± 7.47 87.38 ± 7.93 87.75 ± 7.91 0.4994

Waist female, cm 81.52 ± 12.13 96.41 ± 7.74 100.31 ± 10.05 95.24 ± 7.64 0.0751 75.46 ± 6.31 75.02 ± 6.49 75.58 ± 7.13 0.8975

WHtR 0.51 ± 0.08 0.60 ± 0.05 0.62 ± 0.06 0.60 ± 0.05 0.0589 0.48 ± 0.05 0.47 ± 0.05 0.47 ± 0.05 0.5170

BMI, kg/m2 25.00 ± 4.45 29.53 ± 3.28 31.79 ± 4.39 28.81 ± 3.76 0.00019 23.02 ± 2.91 22.96 ± 2.87 23.02 ± 2.89 0.9869

BMI classes

Underweight 20 (3.91) 0 (0.00) 0 (0.00) 0 (0.00) 12 (6.45) 2 (2.67) 6 (5.94)

Normal weight 265 (51.86) 7 (9.21) 1 (2.94) 7 (17.95) 0.0951 * 129 (69.35) 51 (68.00) 70 (69.31) 0.8376 *

Overweight 156 (30.53) 34 (44.74) 13 (38.24) 20 (51.28) 43 (23.12) 22 (29.33) 24 (23.76)

Obesity 70 (13.70) 35 (46.05) 20(58.82) 12 (30.77) 2 (1.08) 0 (0.00) 1 (0.99)

* Fisher test. Abdominal obesity (waist circumference ≥102 cm for men, ≥88 cm for women); no abdominal obesity (waist circumference < 102 cm for men, <88 cm for women);
waist-to-height ratio (WHtR); Body Mass Index (BMI); underweight (BMI < 18.5 kg/m2); normal weight (BMI from 18.5 to <25 kg/m2); overweight (BMI from 25 to <30 kg/m2); obesity
(BMI ≥ 30 kg/m2). Antibody levels are expressed as BAU/mL (BAU, Binding Antibody Units) and are presented as the geometric mean [95% confidence interval]. Data are n (%),
mean (SD).
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We divided our sample according to two parameters: the presence of AO and the
infection status. According to the waist circumference cut-off, 149 subjects (29.1%) were
affected by AO and 362 (70.9%) exhibited normal adipose tissue distribution. According
to infection status, subjects were divided into three categories: (1) those who had never
been infected with SARS-CoV-2 (infection-naïve individuals, n = 262, 51.3%); (2) those who
had developed the infection before the vaccine cycle (prior infected individuals, n = 109,
21.3%); and (3) those who developed the infection during the vaccine cycle (post infected
individuals, n = 140, 27.4%). Figure 3 shows the IgG-TrimericS antibody response to mRNA
SARS-CoV-2 vaccination in individuals with or without AO according to infection status at
all time points.
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Figure 3. IgG-TrimericS antibody response to mRNA SARS-CoV-2 vaccination in subjects affected
or not by abdominal obesity according to infection status. Infection-naïve individuals (green),
individuals with prior infection (red), and individuals infected with SARS-CoV-2 after booster
dose (black). Abdominal obesity (waist circumference ≥ 102 cm for men, ≥88 cm for women); no
abdominal obesity (waist circumference < 102 cm for men, <88 cm for women).

3.1. Individuals Who Had Never Been Infected with SARS-CoV-2 (Infection-Naïve Individuals)

Among infection-naïve individuals, n = 262, 76 (29%) with and 186 (71%) without
AO, between the third and ninth month after vaccine dose 2, there was a decrease in
IgG-TrimericS levels in both subjects with AO and those without AO (0.22-fold [95% CI:
0.16–0.29] vs. 0.20-fold [95% CI: 0.17–0.23], respectively, Table 2, Figure 3). At one and
three months after the vaccine booster dose, in subjects with AO, IgG-TrimericS levels were
found to be lower than in individuals not suffering from AO without reaching statistical
significance. An antibody peak was shown at one month after the vaccine booster dose
(geometric mean BAU/mL ± standard deviation, 6470.55 ± 695.82 BAU/mL in individuals
with AO vs. 7561.64 ± 406.80 BAU/mL in individuals without AO, p = 0.173), and a decline
at the third month (2943.17 ± 335.19 BAU/mL in individuals with AO vs. 3346.92 ± 208.06
BAU/mL in individuals without AO, p = 0.413, Table 2, Figure 3).
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Table 2. IgG-TrimericS antibody levels of subjects who provided a blood sample at all time points stratified by the presence or absence of abdominal obesity and
SARS-CoV-2 infection status.

With Abdominal Obesity (n = 149) Without Abdominal Obesity (n = 362)

Antibody Levels Total
(n = 511)

Without Prior
SARS-CoV-2

Infection (n = 76)

With
SARS-CoV-2

Infection before
Vaccine
(n = 34)

SARS-CoV-2
Infection

after
Vaccine
(n = 39)

p-Value
Without

SARS-CoV-2
Infection (n = 186)

With
SARS-CoV-2

Infection
before Vaccine

(n = 75)

SARS-CoV-2
Infection

after
Vaccine
(n = 101)

p-Value

Baseline 9.67 ± 1.40
n = 90

4.81
n = 11

98.93 ± 74.44
n = 6

4.81
n = 8

<0.0001
*◦

5.59 ± 0.58
n = 32

71.81 ± 24.26
n = 13

6.11 ± 1.19
n = 20

<0.0001
*◦

21 days
after dose 1 680.84 ± 49.58 274.16 ± 36.40 7511.83 ± 1895.77 333.58 ± 61.94 <0.0001

*◦ 362.54 ± 26.99 7872.56 ± 931.04 410.72 ± 32.39 <0.0001
*◦

1 month
after dose 2 2837.32 ± 110.30 1773.18 ± 155.93 7420.51 ± 1296.00 2130.24 ± 231.39 <0.0001

*◦ 2399.17 ± 123.48 6562.31 ± 631.09 2386.67 ± 156.08 <0.0001
*◦

3 months
after dose 2 1035.22 ± 43.80 575.90 ± 53.28 2985.81 ± 550.26 672.12 ± 68.08 <0.0001

*◦ 892.48 ± 44.54 2868.23 ± 308.43 820.87 ± 60.84 <0.0001
*◦

6 months
after dose 2 463.96 ± 21.32 267.78 ± 14.63 1335.15 ± 267.46 296.44 ± 30.03 <0.0001

*◦ 391.60 ± 22.71 1431.65 ± 155.39 358.84 ± 29.21 <0.0001
*◦

9 months
after dose 2 243.18 ± 11.93 126.78 ± 14.62 746.25 ± 131.40 183.41 ± 32.79 <0.0001

*◦ 176.38 ± 10.74 847.73 ± 92.92 216.88 ± 17.25 <0.0001
*◦

1 month
after booster dose 6218.25 ± 237.47 6470.55 ± 695.82 6413.54 ± 832.40 6850.16 ± 947.21 0.8892 7561.64 ± 406.80 4521.62 ± 429.76 5084.36 ± 500.43 <0.0001

#*

3 months
after booster dose 4175.81 ± 181.19 2943.17 ± 335.19 4692.80 ± 854.60 8791.71 ±

1246.30
<0.0001

#◦ 3346.92 ± 208.06 3345.35 ± 314.00 6944.18 ± 682.39 <0.0001
#◦

Abdominal obesity (waist circumference ≥ 102 cm for men, ≥88 cm for women); no abdominal obesity (waist circumference < 102 cm for men, <88 cm for women). * (SARS-CoV-2
infection before vaccine vs. no prior SARS-CoV-2 infection) # (SARS-CoV-2 infection after vaccine vs. no prior SARS-CoV-2 infection) ◦ (SARS-CoV-2 infection before vaccine vs.
SARS-CoV-2 infection after vaccine).
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3.2. Individuals Who Had Developed the Infection before the Vaccine Cycle (Prior
Infected Individuals)

Among prior infected individuals, n = 109, 34 (31.2%) with and 75 (68.8%) without AO,
between month three and month nine following the second dose of vaccine, in both subjects
with AO and those without AO, the drop in IgG-TrimericS levels was significant (0.25-fold
[95% CI: 0.15–0.42] vs. 0.20-fold [95% CI: 0.30–0.33], respectively, Table 2, Figure 3).

One month following the administration of the vaccine booster dose, a higher peak
in IgG-TrimericS levels was reached in subjects affected by AO compared with those not
affected by AO (6470.55 ± 695.82 BAU/mL vs. 4521.62 ± 429.76 BAU/mL, p = 0.0521). In
the same two groups, between the first and third month after the booster dose, a similar
drop in IgG-TrimericS levels was recorded (0.73-fold [95% CI: 0.48–1.14] vs. 0.74-fold, [95%
CI: 0.57–0.96], p = 0.2352, Table 2, Figure 3).

3.3. Individuals Who Developed the Infection during the Vaccine Cycle

One hundred and forty individuals, 39 (27.9%) with and 101 (72.1%) without AO,
became positive for SARS-CoV-2 anti-nucleocapsid IgG antibodies testing at the end of the
observation period, indicating that they had contracted COVID-19 during the vaccine cycle.
The most observed symptoms were mild, ranging from asymptomatic to mild fever. Among
individuals who presented symptoms (n = 54), there were 38 (70.3%) individuals with AO
and 16 (29.7%) individuals without AO. Between the third and ninth month after vaccine
dose 2, there was a decrease in IgG-TrimericS levels in both subjects with AO and those
without AO (0.27-fold [95% CI: 0.18–0.41] vs. 0.26-fold [95% CI: 0.21–0.3], respectively),
similarly to infection-naïve individuals (Table 2, Figure 3). One month after the vaccine
booster dose, individuals affected by AO exhibited comparable levels of IgG-TrimericS
to those not affected by AO (6850.16 ± 947.21 BAU/mL vs. 5084.36 ± 500.43 BAU/mL,
p = 0.119). Moreover, during the period from the first to the third month following the
booster dose of the vaccine, individuals with AO achieved a higher peak of IgG-TrimericS
levels compared with those not suffering from AO, even without statistical significance
(8791.71 ± 1246.30 BAU/mL vs. 6944.18 ± 682.39 BAU/mL, p = 0.242, Table 2, Figure 3).

3.4. Multivariable Linear Regression Analysis

Multivariable linear regression, used to assess the difference at three months in the
absolute change in IgG-TrimericS levels from the booster dose, showed evidence of an
interaction between AO and SARS-CoV-2 infection (p = 0.016; Table 3). AO, in particular,
was associated with a greater absolute variation in IgG-TrimericS in previously infected
subjects regardless of sex, age, hypertension, or smoking, and IgG-TrimericS levels at the
booster dose (LS means 8432.09 ± 1191.67 vs. 5091.93 ± 918.62, p = 0.0125). In the same
regression model, no discernible interaction was identified when utilizing BMI classes
(p = 0.418).

Table 3. Differences in absolute changes in IgG-TrimericS antibody levels from the booster dose up to
three months assessed by univariate and multivariate linear regression (p-value).

p-Value

Univariate Multivariable According To
Abdominal Obesity

Multivariable According
to BMI Class

Sex 0.7120 0.5955 0.5656

Age 0.3000 0.4485 0.5412

IgG-TrimetricS antibody level at booster dose 0.0675 0.0855 0.0526

Prior SARS-CoV-2-infection <0.0001 <0.0001 <0.0001

Abdominal obesity 0.1053 0.1092 -
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Table 3. Cont.

p-Value

Univariate Multivariable According To
Abdominal Obesity

Multivariable According
to BMI Class

Interaction with prior SARS-CoV-2-infection *
Abdominal obesity 0.0163 -

BMI classes 0.0803 - 0.0821

Interaction with prior SARS-CoV-2-infection * BMI
classes - 0.4176

Smoking status 0.0925 0.3785 0.2968

Hypertension 0.0062 0.0020 0.0063

Diabetes mellitus 0.5878

Cardiovascular diseases 0.7262

Dyslipidemia 0.5087

Cancer 0.3900

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2); abdominal obesity (waist circumference ≥ 102 cm
for men, ≥88 cm for women); Body Mass Index (BMI).

4. Discussion

In this longitudinal, observational study, VARCO-19, we presented data on antibody
levels in a cohort of health care workers up to twelve months after a vaccination cycle with
BNT162b2 mRNA and at month three following a booster dose.

In line with other studies, our findings showed a peak in antibody levels one month
after the second vaccine dose, succeeded by a gradual decline until the administration of
the booster dose. This trend was observed in individuals with or without AO, regardless of
prior SARS-CoV-2 infection, whether before or during the vaccination cycle.

Previous studies have shown that humoral responses following dose 2 of the COVID-
19 vaccine decrease in all population groups approximately six months after the second
dose of a vaccine [18,27]. The decline in humoral responses does not depend on the type of
COVID-19 vaccine administered, but on host factors [14,15,28–31]. Overall, it has already
been shown that the humoral immune response to vaccination differs significantly between
individuals previously infected with SARS-CoV-2 and naïve individuals [32].

We found that in all infection-naïve individuals, IgG-TrimericS concentrations de-
creased steadily after nine months from the second dose and after three months from the
booster dose of a BNT162b2 m-RNA vaccine. Similarly to our previous study [14] and in
according with other studies [16,33], infection-naïve individuals with AO, at one and three
months after vaccine booster dose, have lower antibody levels than individuals without AO,
suggesting that the duration of vaccine-induced immunity may be reduced in people with
obesity. Watanabe et al. previously demonstrated an association between central obesity
and a reduced adaptive response to the BNT162b2 m-RNA vaccine [29]. Furthermore,
weight loss and/or improved metabolic health appears to reverse the effect. Adipose tissue,
in addition to serving as a lipid store and energy source, is an endocrine organ that secretes
fatty acids, metabolites, and adipokines, which have a crucial function in inflammation
and the immune response, negatively influenced by the production of proinflammatory
adipokines and cytokines [5,34–37]. In subjects affected by general obesity, and especially
by AO, chronic inflammation, developed due to dysfunctional adipose tissue, negatively
affects T-cell function, macrophage migration, and antibody response [38–40]. This is due
to an overaccumulation of adipose tissue, particularly at the abdominal level, which can
cause the secretion of adipokines and pro-inflammatory cytokines, which negatively impact
the immune response [34].



Vaccines 2023, 11, 1796 11 of 14

Thus, immune dysfunction may increase the risk of developing SARS-CoV-2 in-
fection and may decrease the response to the vaccine in naïve individuals with severe
obesity [39,41].

We showed that, one month after vaccine booster dose, prior infected individuals with
AO had higher concentrations of IgG-TrimericS than individuals without AO. This could
be due to a more severe infection that is more frequent in patients with obesity [42,43].

Previous research, in fact, has shown that the level of antibodies to COVID-19 is
associated with disease severity and that obesity correlates with a higher risk of contracting
a more severe form of COVID-19 [44,45]. Subjects affected by severe obesity who survive
COVID-19 generate robust and long-lasting SARS-CoV-2-specific T-cell immunity following
severe infection; this is more evident in patients with obesity [46,47]. Furthermore, Muena
et al. showed that immunization with CoronaVac or BNT162b2 vaccines, administered
up to 13.3 months after the onset of COVID-19 symptoms, can significantly improve long-
lasting neutralizing antibody responses induced by natural infection, suggesting that the
infection induces a robust immune system response [48]. Hybrid immunity, resulting
from the combination of prior SARS-CoV-2 infection and vaccination, appeared to confer
enhanced protection against SARS-CoV-2 infections [49,50]. A booster dose administered
after natural COVID-19 infection appears to provide a more consistent humoral immune
response in terms of magnitude and quality than vaccination in infection-naïve individuals,
fully consistent with clinical epidemiological observations [32]. This could explain the
hyper-antibody response to the vaccine in this population, as reflected in our results.

Our data show that 27.4% of our population contracted COVID-19 despite having
undergone the vaccination cycle and having high antibody levels. However, none of these
subjects showed severe symptoms, but only mild manifestations such as fatigue, cold, sore
throat, low-grade fever, and joint pain, suggesting that hybrid immunity could protect from
severe COVID-19 illness. These results are consistent with a previous study showing that
hybrid immunity and booster vaccination were associated with a lower risk of SARS-CoV-2
infection and fewer symptoms [51]. When ignoring the booster, any additional protection of
two-dose vaccination in infection-naïve individuals was no longer observed [51]. Therefore,
booster vaccination may reduce the risk of symptomatic SARS-CoV-2 infection in infection-
naïve individuals, although this benefit appears to wane over time [51].

One of the limitations of our study includes the enrolment of only health care workers,
who may not be representative of the general Italian population because they are much
more exposed to the risk of SARS-CoV-2 infection. Another limitation of our study is the
lack of measurement of virus-specific T cells. Anthropometric measurements were assessed
only once. Furthermore, we did not evaluate proinflammatory markers of infection and do
not know whether the vaccine BNT162b2 is protective against the Omicron XBB.15.

5. Conclusions

Abdominal obesity is a risk factor for severe COVID-19 complications. Currently, there
are no reports of significant differences in COVID-19 vaccine effectiveness between people
affected or not by obesity. Our results showed a robust response in the development of
antibodies against COVID-19 after a BNT162b2 booster dose in people with AO who have
been exposed to the virus. Our findings further support the recommendation that adults
with high-risk medical conditions, including obesity, and, in particular AO, be vaccinated
with booster doses, even if they have already come into contact with the virus.

Our results are based on a cohort of 511 patients; therefore, it may be interesting in
future studies to evaluate antibody development after vaccine booster doses in a larger
cohort more representative of the general population.
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