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Abstract 10 

Real-time analysis during slurry field application can potentially ensure higher efficiency in crop fertilisation and 11 

reduce related environmental problems. Near Infrared Spectroscopy (NIRS) can predict quickly and adequately 12 

the nutrient content of the slurry but the devices are still costly. In this study, a low-cost portable device has 13 

been tested to predict total solids, total Kjeldahl nitrogen, total ammonia nitrogen, and phosphorus contents in 14 

cattle and pig slurries and digestate. Multivariate calibration models were developed for different biomass types 15 

(multi-biomass) by comparing support vector machine (SVM) and partial least square (PLS) regressions. The 16 

developed SVM and PLS models showed satisfactory and similar results, with performance to deviation ratio 17 

(RPD) values ranging between 2.22 and 2.80. The use of the handheld device with the obtained models also 18 

meets the requirements of a certification protocol for commercial NIR sensors and therefore can ensure a better 19 

slurry management at farm level. 20 
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 23 
1. INTRODUCTION 24 

In the practice of using manure as crop fertiliser, knowing its nutrient content through real-time analysis during 25 

slurry spreading, could reduce potential environmental problems. Thereby also ensuring higher efficiency in crop 26 

fertilisation (Burton and Turner 2003; Xing et al., 2008). 27 

Standard laboratory methods for livestock slurry analysis are expensive and time consuming making the precise 28 

nutrient field application difficult to realise (Saeys et al., 2005; Feng et al., 2022). Near-Infrared Spectroscopy 29 

(NIRS) provides an alternative technique to the standard analysis for quickly determining the composition of 30 
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livestock slurry samples (Albrecht et al., 2009). NIRS measures the spectral absorption band of electromagnetic 31 

radiation in the range 750-2500 nm, which can be related to the analytical properties of the sample through 32 

chemometrics and predictive models can be developed (Peltre et al., 2011). The most commonly used method 33 

is the partial least squares (PLS) regression. It is a linear multivariate calibration method, efficient on spectral 34 

data and easy to implement (Pasquini, 2018), but it reaches its limits when the signal is disturbed (e.g. variation 35 

in particle size or temperature), the concentrations are close to the detection threshold or the correlations are 36 

non-linear (Croguennoc et al., 2019). Recently, support vector machine (SVM) regression resulted to be an 37 

alternative to PLS for non-destructive C, N, P, and K determination in poultry litter samples within an excellent 38 

or acceptable range of predictability (Bedin et al., 2021). The SVM is flexible and powerful computational 39 

algorithm for solving machine learning problems, initially created for the development of classification models 40 

but quickly adapted to solve regression problems in application with real data, performing a minimization of the 41 

effects caused by outliers (Mammone et al., 2009). 42 

Laboratory benchtop NIR instruments, both with dispersive and Fourier Transform (FT) technology, usually 43 

operating in the range 1000-2500 nm, provide good results for dry matter (DM), total carbon (TC) and, to a lesser 44 

extent, for ash, total nitrogen (TKN) and organic nitrogen (ON) (Cabassi et al., 2015). In recent years, scientific 45 

and technological developments have led to portable NIR spectrometers based on diode arrays, CCD (charge-46 

coupled device) detectors, MEMS (micro electro-mechanical systems) interferometers equipped with InGaAs 47 

(Indium Gallium Arsenide) detectors which offer significant advantage in terms of price and size (Cabassi et al., 48 

2015; Pasquini 2018; Bec et al. 2020). Nevertheless, handheld NIR spectrometers usually operate between 960 49 

and 1800 nm and have narrower spectral range and lower resolution compared to benchtop NIR instruments, 50 

precluding their practical use for slurry nutrient content estimation. The 1800-2498 nm region has been 51 

identified as essential for determining dairy manure nutrients, especially for the Ammonium-N which constitutes 52 

a large fraction of total N (Reeves and Van Kessel, 2000). The N-H bonds such as the N-H stretching vibration at 53 

2050 to 2060 nm and the N-H deformation second overtone at 2168 nm to 2180 nm mainly contribute to NIRS 54 

predictions of N-related constituents (Chen et al., 2013).  55 

The objective of this study was to develop and validate a multivariate and multi-biomass calibration method 56 

based on a low-cost handheld FT-NIR spectrometer (NeoSpectra - Si-Ware, Egypt), operating over the 1350-2558 57 

nm wavelength range, which is not easy to implement on this type of spectrometers. Furthermore, the PLS 58 

regression models that are commonly adopted for directly determining nutrients in livestock slurries and 59 

digestates, were compared with the SVM which are machine learning algorithms still rarely applied in this area. 60 

Moreover, an evaluation of its performance through a commercial certification protocol was carried out with a 61 

perspective of future implementation at farm level.  62 

 63 
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2. MATERIALS AND METHODS 64 

2.1 Sampling and reference analysis 65 

A total of 53 samples, including 16 cattle slurry, 21 pig slurry and 16 digestate were collected from 36 farms in 66 

Lombardy (Italy). Samples of 10 L were taken from slurry reception pits on dairy and pig farms, while digestate 67 

was collected directly from digesters. The farms characteristics are reported in Table S1. 68 

After collection, samples were refrigerated and delivered to the laboratory on the day of sampling. A fraction of 69 

each sample was stored at +4°C and reference analyses were performed within 24 hours. The samples were 70 

analysed for total solids (TS), total Kjeldahl nitrogen (TKN), total ammoniacal nitrogen (TAN), phosphorus (P) and 71 

potassium (K) using standard methods (APHA, 2012). The remaining portion was frozen at – 20 °C until NIR 72 

measurements were started. 73 

 74 

2.2 NIR spectra acquisition 75 

Slurry and digestate samples were scanned using a NeoSpectra portable spectrometer (Si-Ware, Cairo, Egypt). 76 

The NeoSpectra Micro Development Kit consists of three tungsten halogen lamps, a monolithic micro-electro-77 

mechanical system (MEMS) Michelson interferometer and a single InGaAs photodetector. The NeoSpectra Micro 78 

is connected to a Raspberry Pi that acts as a host and allows connection via a universal serial bus (USB) to a 79 

laptop. The software (Windows and Linux) allows setting the following parameters: scan time, run mode (single 80 

or continuous) and data interpolation in each spectrum collected. The wavelength range is from 1350 to 2558 81 

nm and the resolution was set to 16 nm (measured at 1550 nm). 82 

Prior to the first measurement, a background measurement was collected using a Spectralon (99% reflectance). 83 

Scanning time was set at 2 s. Frozen slurry samples were thawed at room temperature and carefully stirred 84 

manually. Each sample was scanned from the bottom of a Petri dish, filled with 40 ml, in reflectance mode. Forty 85 

spectra were collected for each sample (10 scans for each quarter rotation of the Petri dish) and the average 86 

spectrum was used for data analysis.  87 

Different spectral pre-processing techniques were tested (Savitzky-Golay smoothing, Standard Normal Variate, 88 

Savitzky-Golay first and second derivative) to remove any irrelevant information which can negatively affect the 89 

regression models. Considering the inhomogeneous physical structure of the samples, the Savitzky and Golay 90 

first derivative with a second-degree polynomial order and 10 smoothing side points was the most suitable pre-91 

treatment able to enhance the resolution, minimise the offsets and the global intensity effects typically arising 92 

from unwanted light scattering (Oliveri et al., 2019).  93 

 94 

2.3 Multivariate calibration models 95 
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PLS and SVM regressions were performed to obtain multi-biomass (cattle slurry, pig slurry, digestate) calibration 96 

models using the statistical software JMP Pro 16.2 (SAS Institute, Cary, USA) with the spectral tools developed 97 

by Worley (2021). The data set was randomly split into two subsets: the calibration set consisting of about two 98 

thirds of the samples (35) and the validation set with the remaining third of samples (18).  99 

Regarding PLS, for each chemical constituent, an individual model was developed using the number of PLS factors 100 

that determined the lowest error in cross-validation, considering the results of the predicted residual error sum 101 

square (PRESS). To test the robustness of the PLS models, the PLS regression was k-fold cross-validated (k = 7). 102 

SVM regression was applied using the linear kernel function, taking into account the linear relationship between 103 

absorbance and concentration exhibited by most biological and agricultural materials (Pasquini, 2018). The 104 

model parameters were tuned according to the JMP default setting and the procedure was repeated 20 times. 105 

For each chemical constituent the best performing regression model was identified based on the highest 106 

coefficient of determination (R2) and the lowest root average squared error (RASE). 107 

The performance of the PLS and SVM regression models for TS, TKN, TAN, P and K were compared. For each 108 

model, the coefficient of determination (R2
cal and R2

val), the root mean square error of calibration (RMSEC) and 109 

prediction (RMSEP) were obtained. Goodness and accuracy of the models were tested using the ratio of 110 

performance to deviation (RPD), calculated as the ratio of the standard deviation (SD) of the reference values to 111 

the RMSE (Williams and Sobering, 1996). Based on the RPD values, six quality-classes of calibration model were 112 

identified (Cabassi et al., 2015): three suitable for predicting slurry properties (Excellent, Successful and Useful, 113 

with RPD > 4, between 3 and 4, and between 2.2 and 3, respectively); two suitable for screening purposes, for 114 

distinguishing among low-high values or selecting samples for costly conventional analysis (Moderately useful 115 

and Screening, with RPD between 1.7 and 2.2, and between 1.5 and 1.7, respectively); one class (Poor, RPD ≤ 116 

1.5) not acceptable for practical use. 117 

 118 

2.4 Potential practical application 119 

Any commercial NIR sensor installable on slurry tankers can be certified to prove its accuracy in predicting TS, 120 

TKN, TAN, P, and K content in cattle manures, pig manures, and digestates. This certification sealed by the 121 

German Agricultural Society (DLG) assures that at least 60% of the measured samples differ less than 25% from 122 

the reference lab value and no measured sample exceeds the 35% of relative deviation (Horf et al., 2022). The 123 

performance of NeoSpectra was evaluated using the validation set for both PLS and SVM models, distinguishing 124 

its predictive capacity on TS, TKN, TAN, P for each type of slurry but also for all the slurries together.  125 

 126 

3. RESULTS AND DISCUSSION 127 
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 128 

3.1 Descriptive statistics 129 

Descriptive statistics for the chemical constituents of all samples and each biomass separately are reported in 130 

Fig. 1. The datasets show good variability for the parameters analysed and are representative of livestock slurries 131 

produced in Lombardy (Martinez-Suller, et al., 2008; Cabassi et al., 2015; Finzi et al., 2015). 132 

Table 1 shows the Pearson correlation coefficient among the 5 parameters.  TKN and TAN were highly and 133 

positively correlated with TS in cattle and pig slurries as reported in literature (Piccinini and Bortone 1991; 134 

Martinez-Suller et al., 2008). The correlation of TAN with TS content was lower compared to TKN, as expected 135 

considering that ammonium N is in the liquid phase of manures (Williams et al., 1996; Martinez-Suller et al., 136 

2008). In agreement with the findings of other researchers (Scotford et al., 1998; Moral et al., 2005) P content 137 

was well correlated with TS content both in cattle and pig slurries. A positive significant correlation was found 138 

also between K and TS content, in accordance with Martinez-Suller et al. (2008). This has been confirmed also 139 

for digestate where the TS content resulted moderately correlate with the K content. Contrarily the correlations 140 

among TS, TKN, TAN and P were not significant for digestates. This result can be explained by the difference in 141 

the composition of the substances used to feed the digesters.  142 

 143 

3.2 Spectra acquisition 144 

The average NIR raw spectra of the cattle and pig slurry and digestate samples are shown in Fig. 2. The main 145 

broad peak at around 1450 nm for the three biomass sets results from the absorption by the O-H bonds of the 146 

water. Cattle slurry and digestate samples, although having a higher total solids content than the pig slurry 147 

samples (respectively 7.72 ± 1.48 % and 5.19 ± 1.15 % vs. 2.81 ± 1.83 %) show higher water peaks. As reported 148 

by Saeys et al. (2005) it is likely that when more solid particles are present more light is scattered and reflected 149 

back to the detector resulting in lower overall absorption.  150 

 151 

3.3 Predictive models 152 

The results obtained for the multi-biomass (cattle slurry, pig slurry, digestate) PLS and SVM models are 153 

summarised in Tables 2 and 3 respectively. The average RMSE and R2 results of PLS and SVM models are similar 154 

with a slight advantage for the latter as highlighted by the model classification. Based on the RPD values, all SVM 155 

prediction models can be classified as useful for slurry properties prediction, whereas PLS prediction models for 156 

TKN and TAN, having RPD values equal respectively to 2.0 and 2.1, can be classified only as moderately useful for 157 

screening purposes. However, the PLS models needs a low number of factors, generally lower than 6, suggesting 158 

that the models are not complex. For the variable TS both prediction models showed R2
C and R2

V respectively 159 
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greater than 0.80 and 0.70 and RPD values greater than 2.2 making the Neospectra portable spectrometer useful 160 

for TS estimation of livestock slurries. Because the O-H vibration of water has high absorption intensity in the 161 

NIR region, due to the inverse correlation between TS and moisture, good predictions on total solids content of 162 

livestock manure are usually expected by NIR spectroscopy (Chen et al., 2013). Our results are comparable with 163 

other studies. Mouazen et al., (2005), using a FT-spectrometer (1000-2500 nm) and PLS regression on fresh swine 164 

manure obtained R2 in cross-validation of 0.79 and RPD values equal to 2.19. Better results (R2
V = 0.91 and RPD 165 

= 3.22) were obtained on fresh swine manure by Saeys et al. (2005) using an on-site NIR instrument (Zeiss Corona 166 

45 visNIR 1.7) but in the region 426-1683 nm. 167 

NIR spectroscopy prediction of N-related constituents are mainly contributed to by N-H bonds (N-H stretch first 168 

overtone at 1500-1530 nm, N-H stretching vibration at 2050-2060 nm, N-H deformation second overtone at 169 

2168-2180 nm) (Chen et al., 2013). Model statistics for TKN and TAN parameters are similar to those obtained 170 

by other researchers. For example, Saeys et al. (2005) on fresh swine manure obtained R2
V and RPD values 171 

respectively of 0.86 and 2.63 for total-N and of 0.76 and 2.00 for ammonia-N using a Zeiss Corona 45 vis-NIR 1.7 172 

in the region 426-1683 nm. R2
CV and RPD for TN in the range 0.80 to 0.92 and 3.32 to 4.87 respectively for various 173 

types of manure samples including beef cattle manures, swine solid manures, swine slurry samples, etc. were 174 

obtained by Ye et al. (2005) but using a benchtop instrument (FOSS-NIRSystem model 6500 spectrometer). 175 

Some studies (Dagnew et al., 2004; Saeys et al., 2004) obtained unreliable predictions on P content in swine 176 

manure with R2
V and RPD respectively lower than 0.80 and 2.00. The main reason for the inability to predict P 177 

content was attributed to the lack of a direct relationship between P and C-H-O-N bonds (Reeves, 2001). 178 

Nevertheless, other studies on swine manure (Saeys et al., 2005; Mouazen et al., 2005) achieved a good 179 

prediction of P content with R2
CV and RPD respectively ranging between 0.81 and 0.85 and between 2.33 and 180 

2.66. The successful predictions of P in livestock manure could be related to the good relationship existing 181 

between P and TS in these matrices, as observed by different researchers (Marino et al., 2008; Martinez-Suller 182 

et al., 2008). Considering that TS can be accurately predicted by NIR spectroscopy due to the presence of O-H 183 

and C-H bonds, the prediction of P content in livestock manure would be indirect (Chen, et al., 2013). Our results 184 

with R2
V of 0.78 and RPDV greater than two seem to support this theory. 185 

For the variable K, only a SVM calibration model was obtained (R2
C=0.59 and RPD=1.92). Theoretically, no 186 

absorption bands for metal species are present in the NIR region (Chen et al., 2013) and only a limited number 187 

of studies with animal manure compost (Huang et al., 2008) have obtained satisfactory results. 188 

Scatter plots of NIR predicted vs. measured values of TS, TKN, TAN, and P using PLS and SVM models are 189 

presented in Fig. 3. The solid black line in the graphs highlights an individual correspondence between predicted 190 
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and measured values: the closer to this line, the more sample points, the more accurate the model. SVM 191 

performs slightly better than the PLS (Fig. 3). The reason could be that SVM is less prone to overfitting and less 192 

affected by outliers compared to other algorithms. Overall, results suggest that the SVM method may be an 193 

alternative for NIR calibration and TS, TKN, TAN and P quantification in cattle and pig slurry and digestate. 194 

 195 

3.4 Potential practical application 196 

As can be seen in Table 4, Neospectra meets the requirements for DLG certification showing a promising 197 

predictive accuracy, although not in all conditions tested, in view of its potential use on slurry tankers. In the 198 

simulation carried out, different performance were achieved based on the analytical parameter, the type of 199 

slurry and the predictive model used, SVM or PLS. NeoSpectra fulfilled the requirements for DLG approval in the 200 

accuracy of measurements of TS in cattle slurry using SVM model and in cattle slurry and digestate using PLS 201 

model; TKN in all conditions tested; TAN in all slurries together and in pig slurry using SVM model, while using 202 

PLS model all conditions except for cattle slurry; P in cattle slurry and digestate with both models. Considering 203 

all the slurries together, the SVM and PLS models are equivalent, confirming the comparable performance 204 

reported in Tables 2 and 3. Examining the single effluents, NeoSpectra shows better performance in predicting 205 

TS and TAN for digestate using the PLS model, while for pig slurry and cattle slurry no differences emerge 206 

between PLS and SVM models. These results demonstrate that NeoSpectra is eligible for DLG certification, 207 

meeting the criteria for the entry level of certification. The achievement of this threshold should be considered 208 

positively as commercial NIR sensors that have obtained DLG certification still present a high variability in the 209 

performance they can guarantee (Horf et al., 2022). Finally, it is important to point out that the scanning of 210 

samples in lab performs comparably with the on-field real-time analyses of slurry, because both measurement 211 

systems are based on scans in reflectance; in addition, during the field distribution the machines normally scan 212 

a flow of slurry, making available several scans that compensate a possible lower stability of the measurement. 213 

 214 

4. CONCLUSIONS 215 

The use of a single calibration model to predict TS, TKN, TAN and P content of multiple biomasses (cattle slurry, 216 

pig slurry, and digestate) has shown satisfactory performance. This approach simplifies the use of a handheld 217 

NIR spectrometer (Neospectra) and reduces the costs of both using and updating the models. The combination 218 

of the handheld low cost NIR spectrometer with PLS and SVM resulted useful for prediction of TS, TKN, TAN and 219 

P in cattle and pig slurries and digestate. This potentially enables real-time prediction of slurry and digestate 220 

composition at farm level and making the precise nutrient application in field possible. The test of Neospectra's 221 



8 
 

potential to fulfil the requirements for certification of commercial NIR sensors showed a slightly better 222 

performance of PLS than SVM model, but only for digestate.  223 

 224 
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 321 

 322 

Figure Captions 323 

Fig. 1. Mean and standard deviation of reference analysis for all samples and each biomass separately. 324 

Fig. 2. Average NIR raw spectra of the cattle and pig slurry and digestate samples. 325 

Fig. 3. Plot of reference versus predicted values from the calibration ( ) and external validation ( ) PLS and 326 

SVM models for TS, TKN, TAN, and P. Empty circles indicate calibration samples and full triangles indicate 327 

validation samples. 328 

 329 
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Fig. 2 335 
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Fig. 3 341 
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 342 

 343 

Table 1. Correlations among the chemical-physical parameters for cattle slurry, pig slurry and digestate. The values in 344 

parenthesis indicate p-values (bold text, significant at p < 0.05) 345 

 Cattle Slurry Pig slurry Digestate 
 TS TKN TAN P K TS TKN TAN P K TS TKN TAN P K 

TS                 

TKN  
0.90 

(0.001)    
 0.83 

(0.001)     0.27     

TAN  
0.70 

(0.003) 
0.92 

(0.001) 
  

 0.67 
(0.001) 

0.95 
(0.001)    -0.28 

0.71 
(0.002)    

P  
0.77 

(0.001) 
0.84 

(0.001) 
0.80 

(0.001) 
 

 0.94 
(0.001) 

0.72 
(0.001) 

0.60 
(0.004)   -0.42 0.44 

0.61 
(0.01)   

K  
0.71 

(0.002) 
0.81 

(0.002) 
0.77 

(0.001) 
0.62 

(0.01) 
 0.56 

(0.009) 
0.78 

(0.001) 
0.84 

(0.001) 0.49  
0.58 

(0.02) 0.05 -0.35 -0.47  

 346 

 347 

Table 2. Summary statistics for PLS models 348 

 

Chemical 

parameter 

 

Pre-

processing[a] 

Calibration performance[b]  

Model 

classification[d] 

Validation performance[c] 
Model 

classification[d] NF R2
C RMSEC RPDC R2

V RMSEV RPDV 

TS (%) 

SNV, 

SG1(2,10) 

5 0.86 0.85 2.81 U 0.72 1.39 2.16 U 

TKN (g/kg) 6 0.80 0.34 2.44 U 0.65 0.41 2.02 MU 

TAN (g/kg) 4 0.62 0.31 2.03 MU 0.65 0,34 2.06 MU 

P (g/kg) 4 0.75 0.11 2.27 U 0.78 0.10 2.80 U 

K (g/kg) - - - - -     

[a]Spectral data were pre-processed by mean standard normal variate (SNV) and Savitzky-Golay first (SG1) derivative algorithm (Savitzky 349 
and Golay, 1964) using 2nd order polynomial and 10 smoothing side points (software default settings). [b]NF, number of factors; R2C, 350 
coefficient of determination of calibration; RMSEC, root mean square error of calibration; RPDC, ratio of prediction to deviation for the 351 
calibration. [c]R2V, coefficient of determination of validation; RMSEV, root mean square error of validation; RPDV, ratio of prediction to 352 
deviation for the validation. [d] U=useful; MU=moderately useful. 353 

 354 

 355 

 356 
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 357 

Table 3. Summary statistics for the SVM models 358 

 

Chemical 

parameter 

 

Pre-

processing[a] 

Calibration performance[b]  

Model 

classification[d] 

Validation performance[c] 
Model 

classification[d] RASEC R2
C RMSEC RPDC R2

V RMSEV RPDV 

TS (%) 

SNV, 

SG1(2,10) 

0.88 0.86 0.87 2.74 U 0.74 1.37 2.19 U 

TKN (g/kg) 0.39 0.77 0.34 2.44 U 0.71 0.35 2.37 U 

TAN (g/kg) 0.34 0.70 0.26 2.42 U 0.69 0.27 2.59 U 

P (g/kg) 0.12 0.79 0.12 2.08 MU 0.78 0.10 2.80 U 

K (g/kg) 0.43 0.59 0.36 1.92 MU - - - - 

[a]Spectral data were pre-processed by mean standard normal variate (SNV) and Savitzky-Golay first (SG1) derivative algorithm (Savitzky 359 
and Golay, 1964) using 2nd order polynomial and 10 smoothing side points (software default settings). [b]RASEC, root average squared 360 
error of calibration; R2C, coefficient of determination of calibration; RMSEC, root mean square error of calibration; RPDC, ratio of prediction 361 
to deviation for the calibration. [c]RASEV, root average squared error of validation; R2V, coefficient of determination of validation; RMSEV, 362 
root mean square error of validation; RPDV, ratio of prediction to deviation for the validation [d]U=useful; MU=moderately useful. 363 

 364 

 365 

Table 4. Predictive accuracy of NeoSpectra for TS, TKN, TAN and P with PLS and SVM models, based on DLG certification 366 

thresholds.  367 

 SVM PLS 

 TS (%) TKN (g/kg) TAN (g/kg) P (g/kg) TS (%) TKN (g/kg) TAN (g/kg) P (g/kg) 

All - * * - - * * - 

Cattle slurry * * - * * * - * 

Digestate - * - * * * * * 

Pig slurry - * * - - * * - 

*: passed as 60% of the tested sample concentrations differ less than 25% from the reference and no sample concentration higher than 368 

35% relative deviation; -: not passed. 369 


