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Abstract
The Virtual Element Method (VEM) is a very effective framework to design numerical approximations
with high global regularity to the solutions of elliptic partial differential equations. In this paper, we
review the construction of such approximations for an elliptic problem of order 𝑝1 using conforming,
finite dimensional subspaces of 𝐻 𝑝2 (Ω), where 𝑝1 and 𝑝2 are two integer numbers such that 𝑝2 ≥ 𝑝1 ≥ 1
andΩ ∈ R2 is the computational domain. An abstract convergence result is presented in a suitably defined
energy norm. The space formulation and major aspects such as the choice and unisolvence of the degrees
of freedom are discussed, also providing specific examples corresponding to various practical cases of
high global regularity. Finally, the construction of the “enhanced” formulation of the virtual element
spaces is also discussed in details with a proof that the dimension of the “regular” and “enhanced” spaces
is the same and that the virtual element functions in both spaces can be described by the same choice of
the degrees of freedom.

Keywords: polyharmonic problem, virtual element method, polytopal mesh, high-order methods,
high-regular methods

AMS subject classification: 65N12; 65N15

1. Introduction

The conforming finite element method is based on the construction of a finite dimensional approxima-
tion spaces that are typically only 𝐶0-continuous [39] on the meshes covering the computational domain.
The construction of sych approximation spaces with higher regularity is normally deemed a difficult task
because it requires a set of basis functions with such global regularity. Examples in this direction can
be found all along the history of finite elements from the oldest works in the sixties of the last century,
e.g., [12, 26, 40] to to the most recent attempts in [44, 45, 63, 64]. Despite its intrinsic difficulty, designing
approximations with global 𝐶1- or higher regularity is still a major research topic. Such kind of approx-
imations have indeed a natural application in the numerical treatment of problems involving high-order
differential operators.
The Virtual ElementMethod (VEM) [16] does not require the explicit knowledge of the basis functions

spanning the approximation spaces in its formulation and implementation. The crucial idea behind the
VEM is that the elemental approximation spaces, which are globally “glued” in a highly regular conforming
way, are defined elementwise as the solutions of a partial differential equation. The functions that belong to
such approximation spaces are dubbed as “virtual” as they are never really computed, with the noteworthy
exception of a subspace of polynomials that are indeed used in the formulation of the method. The virtual
element functions are uniquely characterized by a set of values, the degrees of freedom, that are actually
solved for in the method.
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The virtual element ’paradigm” thus provides a major breakthrough in obtaining highly regular
Galerkin methods as it allows the construction of numerical approximation of any order of accuracy and
global conforming regularity that work on unstructured two-dimensional and three-dimensional meshes
with very general polytopal elements.
Roughly speaking, the VEM is a Galerkin-type projection method that generalize the finite ele-

ment method, which was originally designed for simplicial and quadrilateral/hexahedral meshes, to
polytopal meshes. Other important families of methods that are suited to polytopal meshes are the polyg-
onal/polyhedral finite element method [59] the mimetic finite difference method[21] the discontinuous
Galerkin method on polygonal/polyhedral grids[7, 34]; the hybrid discontinuous Galerkin method[41];
and the hybrid high–order method [42].
The conformingVEMwas first developed for second-order elliptic problems in primal formulation [16,

19], and then in mixed formulation [18, 32] and nonconforming formulation [15]. Despite its relative
youthness (the first paper was published in 2013), the VEM has been very successful in a wide range of
scientific and engineering applications. A non-exhaustive list of applications includes, for example, the
works of References [2, 5, 6, 8, 13, 14, 27, 28, 35, 37, 50, 56–58, 62]. Virtual element spaces forming de
Rham complexes for the Stokes, Navier-Stokes and Maxwell equations were proposed in [17, 22, 23]. A
VEM for Helmholtz problems based on non-conforming approximation spaces of Trefftz functions, i.e.,
functions that belong to the kernel of the Helmholtz operator, is found [51]
The first works using a 𝐶1-regular conforming VEM addressed the classical plate bending prob-

lems [33, 38], second-order elliptic problems [24, 25], and the nonlinear Cahn-Hilliard equation [3].
More recently, highly regular virtual element spaces were considered for the von Kármán equation mod-
elling the deformation of very thin plates [49], geostrophic equations [53] and fourth-order subdiffusion
equations [48], two-dimensional plate vibration problem of Kirchhoff plates [52], the transmission eigen-
value problems [54] the fourth-order plate buckling eigenvalue problem [55]. In [10], we proposed the
highly-regular conforming VEM for the two-dimensional polyharmonic problem (−Δ) 𝑝1𝑢 = 𝑓 , 𝑝1 ≥ 1.
The VEM is based on an approximation space that locally contains polynomials of degree 𝑟 ≥ 2𝑝1−1 and
has a global 𝐻 𝑝1 regularity. In [9], we extended this formulation to a virtual element space that can have
arbitrary regularity 𝑝2 ≥ 𝑝1 ≥ 1 and contains polynomials of degree 𝑟 ≥ 𝑝2. This VEM is a generaliza-
tion of the VEMs for second- and fourth-order problems since the approximation space for 𝑝2 = 𝑝1 = 1
coincides with the conforming virtual element spaces for the Poisson equation of Reference [16] and the
approximation space for 𝑝2 = 𝑝1 = 2 coincides with the conforming virtual element spaces for the and
the biharmonic equation of Reference [33]. VEMs for three-dimensional problems are also available for
the fourth-order linear elliptic equation [20] (see also [31]), and highly-regular conforming VEM in any
dimension has been proposed in [46].

In this paper, we review the detailed construction of the virtual element spaces with arbitrary order
of accuracy and regularity for the numerical approximation of two-dimensional problems involving
the polyharmonic operator of degree 𝑝1. Such a construction follows the standard guidelines of the
VEM, which we briefly summarize here. As the VEM is a conforming Galerkin variational method, its
formulation requires the definition of a suitable finite dimensional approximation space, which is obtained
by combining in a conforming way local (elemental) finite dimensioal spaces. The local virtual element
spaces are defined in every mesh element by all the solutions of a specific polyharmonic problem of degree
𝑝2 ≥ 𝑝1. The loading terms of the partial differential equations defining the elememtal virtual element
spaces can be all the polynomials of degree (up to) 𝑟 − 2𝑝1, where the integer number 𝑟 ≥ 𝑝2 is the order
of the virtual element space. The traces of the virtual element functions and all its normal derivatives of
order 𝑗 from one to 𝑝2 − 1 on the elemental edges are univariate polynomials of degree at least 𝑟 − 𝑗 (in
some cases the polynomial degree can be a little higher than 𝑟 − 𝑗). From the definition, it also follows
the fundamental property that the polynomials of degree up to 𝑟 inside all elements are a linear subspace
of the virtual element space of degree 𝑟. Then, the elemental spaces are “glued” together to form a global
space with 𝐻 𝑝2 -regularity. A very careful choice of the degrees of freedom, which as usual are nodal
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values associated with the mesh vertices or polynomial moments associated with edges and elements,
makes the elliptic projection onto the polynomials of degree 𝑟 computable. An 𝐿2-orthogonal projection
onto the polynomials of degree 𝑟 − 𝑝1 in every mesh element is also computable in the “modified” (or
“enhanced”) formulation of the virtual element method. In this work, we also present a detailed discussion
of the enhanced formulation and its major properties. The enhanced formulation is obtained by extending
the similar contruction for the Poisson equation presenting in the pioneering paper [1] to our case. These
polynomial projection operators are finally used to construct the discrete approximation of the bilinear
form and the right-hand side that are used in the virtual element approximation. An abstract convergence
result holds, that can be proved by assuming only a few fundamental properties of the virtual element
formulation.

The remaining part of the manuscript is organized as follows. In Section 2 we introduce the con-
tinuous polyharmonic problem and its weak formulation. In Section 3 we introduce the virtual element
discretization and recall the main abstract convergence result. In Section 4 we present the formulation of
the conforming virtual element approximation with higher-order regularity. Finally, in Section 5 we draw
our conclusions.

2. The continuous problem

LetΩ ⊂ R2 be an open, bounded, convex domain with polygonal boundary Γ. For any integer 𝑝1 ≥ 1,
we consider the polyharmonic problem

(−Δ) 𝑝1𝑢 = 𝑓 in Ω, (1a)

𝜕
𝑗
𝑛𝑢 = 0 for 𝑗 = 0, . . . , 𝑝1 − 1 on Γ, (1b)

where 𝜕𝑛𝑢 = n · ∇𝑢 is the normal derivative of 𝑢 and 𝜕 𝑗
𝑛𝑢 is the normal derivative applied 𝑗 times to 𝑢

with the useful convention that 𝜕0𝑛𝑢 = 𝑢 for 𝑗 = 0. Let

𝑉 := 𝐻
𝑝1
0 (Ω) =

{
𝑣 ∈ 𝐻 𝑝1 (Ω) : 𝜕 𝑗

𝑛𝑣 = 0 on Γ, 𝑗 = 0, . . . , 𝑝1 − 1
}
.

Denoting the duality pairing between 𝑉 and its dual 𝑉 ′ by 〈·, ·〉, the variational formulation of the
polyharmonic problem (1) reads as

Find 𝑢 ∈ 𝑉 such that: 𝑎𝑝1 (𝑢, 𝑣) = 〈 𝑓 , 𝑣〉 ∀𝑣 ∈ 𝑉, (2)

where, for any nonnegative integer ℓ, the bilinear form 𝑎𝑝1 (·, ·) : 𝑉 ×𝑉 → R is given by

𝑎𝑝1 (𝑢, 𝑣) :=


∫
Ω

∇Δℓ𝑢 · ∇Δℓ𝑣 𝑑x for 𝑝1 = 2ℓ + 1, ℓ ≥ 0,∫
Ω

Δℓ𝑢 Δℓ𝑣 𝑑x for 𝑝1 = 2ℓ, ℓ ≥ 1.
(3)

If 𝑓 ∈ 𝐿2 (Ω) we have

〈 𝑓 , 𝑣〉 := ( 𝑓 , 𝑣) =
∫
Ω

𝑓 𝑣 𝑑x, (4)

where (·, ·) denotes the 𝐿2-inner product. The bilinear form 𝑎𝑝1 (·, ·) is coercive and continuous with
respect to ||𝑢 ||𝑉 := (𝑎𝑝1 (𝑢, 𝑢))1/2, which is a norm on 𝐻

𝑝1
0 (Ω). The coercivity and continuity constants

are respectively denoted by 𝛼 and 𝑀 , and their value depends on the regularity of Ω and its boundary
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Γ. Coercivity and continuity implies existence and uniqueness of the solution to (2) from an application
of the Lax-Milgram theorem [30, Theorem 2.7.7]. About the regularity of the solution to (2), it is worth
mentioning the result in [43, Corollary 2.21]. Accordingly, if the domain boundary 𝜕Ω is 𝐶𝑘 -regular for
𝑘 ≥ 2𝑝1 and 𝑓 ∈ 𝐻𝑘−2𝑝1 (Ω), then 𝑢 ∈ 𝐻𝑘 (Ω) ∩𝐻

𝑝1
0 (Ω) and it holds that ||𝑢 ||𝑘 ≤ 𝐶 || 𝑓 ||𝑘−2𝑝1 . As pointed

out in [9], the regularity of 𝑢 for domains with irregular boundaries is still an open issue. However, we
know that a similar result holds for the biharmonic problem, i.e., 𝑝1 = 2, if Ω is a bounded, convex,
polygonal domain see [29].

3. The discrete problem and an abstract convergence result

Let 𝑟 and 𝑝2 be two integer numbers such that 𝑟 ≥ 𝑝2 ≥ 𝑝1 ≥ 1. The virtual element approximation
to the variational problem (2) reads as

Find 𝑢ℎ ∈ 𝑉
𝑝2 , 𝑝1
ℎ,𝑟

such that: 𝑎ℎ (𝑢ℎ , 𝑣ℎ) =
〈
𝑓ℎ , 𝑣ℎ

〉
∀𝑣ℎ ∈ 𝑉

𝑝2 , 𝑝1
ℎ,𝑟

, (5)

where the virtual element space 𝑉 𝑝2 , 𝑝1
ℎ,𝑟

is a finite-dimensional conforming subspace of 𝑉 ; 𝑎ℎ (·, ·) :
𝑉

𝑝2 , 𝑝1
ℎ,𝑟

× 𝑉
𝑝2 , 𝑝1
ℎ,𝑟

→ R is the virtual element bilinear form that approximates the bilinear form (3);〈
𝑓ℎ , ·

〉
: 𝑉 𝑝2 , 𝑝1

ℎ,𝑟
→ R is the continuous linear functional that approximates (4) through an element 𝑓ℎ of

the dual space (𝑉 𝑝2 , 𝑝1
ℎ,𝑟

)∗ of 𝑉 𝑝2 , 𝑝1
ℎ,𝑟

. The formal definition and properties of 𝑉 𝑝2 , 𝑝1
ℎ,𝑟

, 𝑎ℎ (·, ·) and 𝑓ℎ are
discussed in the next section.

3.1. Mesh notation, mesh regularity and some basic definitions
The virtual element method is formulated on the mesh family

{
Ωℎ

}
ℎ
, where each mesh Ωℎ is a

partition of the computational domain Ω into nonoverlapping polygonal elements P and is labeled by
the mesh size parameter ℎ that is defined below. A polygonal element P is a compact subset of R2
with boundary 𝜕P, area |P|, center xP, and diameter ℎP = supx,y∈P |x − y|. The mesh elements of Ωℎ

form a finite cover of Ω such that Ω = ∪P∈Ωℎ
P and the mesh size labeling each mesh Ωℎ is defined by

ℎ = maxP∈Ωℎ
ℎP. A mesh edge 𝑒 has center x𝑒 and length ℎ𝑒 and we denote the set of mesh edges by Eℎ .

A mesh vertex v has position vector xv and we denote the set of mesh vertices by Vℎ . Moreover, in the
definition of the degrees of freedom of the next section, we associate every vertex v with a characteristic
lenght ℎv. This characteristic lenght ℎv can be the average of the diameters of the polygons sharing v.

For any integer number ℓ ≥ 0, we let Pℓ (P) and Pℓ (𝑒) denote the space of polynomials defined on P
and 𝑒, respectively, and Pℓ (Ωℎ) denotes the space of piecewise polynomials of degree ℓ on the mesh Ωℎ .
Accordingly, if 𝑞 ∈ Pℓ (Ωℎ) then it holds that 𝑞 |P ∈ Pℓ (P) for all P ∈ Ωℎ . Finally, we define the (broken)
seminorm of a function 𝑣 ∈ ∏

P∈Ωℎ
𝐻 𝑝1 (P) by

||𝑣 ||2ℎ =
∑︁

P∈Ωℎ

𝑎P
𝑝1 (𝑣, 𝑣).

Throughout the paper, we use the multi-index notation, so that a = (a1, a2) is a two-dimensional index
defined by the two integer numbers a1, a2 ≥ 0. Moreover, 𝐷a𝑤 = 𝜕 |a |𝑤/𝜕𝑥a1𝜕𝑦a2 denotes the partial
derivative of order |a | = a1 + a2 > 0 of a given bivariate function 𝑤(𝑥, 𝑦), and we use the conventional
notation that 𝐷 (0,0)𝑤 = 𝑤 for a = (0, 0). We denote the partial derivatives of 𝑤 versus 𝑥 and 𝑦 by the
shortcuts 𝜕𝑥𝑤, 𝜕𝑦𝑤, 𝜕𝑥𝑥𝑤, 𝜕𝑥𝑦𝑤, 𝜕𝑦𝑦𝑤, etc. We denote the normal and tangential derivatives with respect
to a given edge and their mixed combination by 𝜕𝑛𝑤, 𝜕𝑡𝑤, 𝜕𝑡𝑡𝑤, 𝜕𝑛𝑡𝑤, 𝜕𝑛𝑛𝑤, etc, and use the shorter
notation 𝜕 𝑗

𝑡 𝑤 and 𝜕
𝑗
𝑛𝑤 for the tangential and normal derivatives of 𝑤 of order 𝑗 .
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3.2. Abstract convergence theorem
For the mathematical formulation of the virtual element approximation (5), we require the two follow-

ing assumptions on the virtual element space 𝑉 𝑝2 , 𝑝1
ℎ,𝑟

and the bilinear form 𝑎ℎ (·, ·):

(H1). For all ℎ > 0, the global virtual element space𝑉 𝑝2 , 𝑝1
ℎ,𝑟

is a conforming, finite-dimensional subspace
of 𝑉 = 𝐻

𝑝1
0 (Ω) ∩ 𝐻 𝑝2 (Ω) such that for all elements P of all mesh partitions Ωℎ it holds that

- 𝑉
𝑝2 , 𝑝1
ℎ,𝑟

(P), the local (elemental) virtual element space that is defined as the restriction of 𝑉 𝑝2 , 𝑝1
ℎ,𝑟

to the element P is a finite-dimensional subspace of 𝐻 𝑝2 (P);

- P𝑟 (P), the space of polynomials of degree up to 𝑟 defined on P is a subspace of 𝑉 𝑝2 , 𝑝1
ℎ,𝑟

(P).

(H2). The bilinear form 𝑎ℎ (·, ·) : 𝑉 𝑝2 , 𝑝1
ℎ,𝑟

×𝑉
𝑝2 , 𝑝1
ℎ,𝑟

→ R admits the elementwise decomposition

𝑎ℎ (𝑢ℎ , 𝑣ℎ) =
∑︁

P∈Ωℎ

𝑎P
ℎ (𝑢ℎ , 𝑣ℎ) ∀𝑢ℎ , 𝑣ℎ ∈ 𝑉

𝑝2 , 𝑝1
ℎ,𝑟

,

where for all element P the local bilinear form 𝑎P
ℎ
(·, ·) is symmetric and such that

(𝑟-Consistency): for every polynomial 𝑞 ∈ P𝑟 (P) and every virtual element function 𝑣ℎ ∈
𝑉

𝑝2 , 𝑝1
ℎ,𝑟

(P) it holds that

𝑎P
ℎ (𝑣ℎ , 𝑞) = 𝑎P

𝑝1 (𝑣ℎ , 𝑞); (6)

(Stability): there exist two positive constants 𝛼∗, 𝛼∗ independent of ℎ and P such that for every
𝑣ℎ ∈ 𝑉

𝑝2 , 𝑝1
ℎ,𝑟

(P) it holds that

𝛼∗𝑎
P
𝑝1 (𝑣ℎ , 𝑣ℎ) ≤ 𝑎P

ℎ (𝑣ℎ , 𝑣ℎ) ≤ 𝛼∗𝑎P
𝑝1 (𝑣ℎ , 𝑣ℎ). (7)

The stability constant 𝛼∗ and 𝛼∗ may depend on the polynomial approximation degree 𝑟 , see,
e.g., [11] for the case 𝑝1 = 1.

Assumption (H2) implies that the symmetric bilinear form 𝑎ℎ (·, ·) is coercive and continuous, so that the
existence and uniqueness of the solution 𝑢ℎ follows from an application of the Lax-Milgram theorem [30,
Theorem 2.7.7]. Under these assumptions we can prove this abstract convergence result.

Theorem 3.1. Let 𝑢 ∈ 𝑉 be the solution to the variational problem (1) and 𝑢ℎ ∈ 𝑉
𝑝2 , 𝑝1
ℎ,𝑟

, 𝑟 ≥ 𝑝2 ≥ 𝑝1 ≥ 1,
the solution to the virtual element approximation (5) under assumptions (H1)-(H2). Then, there exists a
constant 𝐶 independent of ℎ such that

||𝑢 − 𝑢ℎ ||𝑉 ≤ 𝐶

(
||𝑢 − 𝑢𝐼 ||𝑉 + ||𝑢 − 𝑢𝜋 ||ℎ + || 𝑓ℎ − 𝑓 || (𝑉 𝑝2 , 𝑝1

ℎ,𝑟
)∗
)
, (8)

for every virtual element approximation 𝑢𝐼 in 𝑉
𝑝2 , 𝑝1
ℎ,𝑟

and any piecewise polynomial approximation
𝑢𝜋 ∈ P𝑟 (Ωℎ) of 𝑢. The constant 𝐶 is proportional to

(
𝑀/𝛼

) (
𝛼∗/𝛼∗

)
.

The proof of this theorem was first published in [10] for the case with 𝑝2 = 𝑝1 and then extended to the
case for 𝑝2 ≥ 𝑝1 in [9].
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4. The virtual element spaces of higher-order continuity

In this section, we present the formulation of the virtual eleemnt method of Eq. (5). To this end, we first
introduce the local virtual element spaces, the degrees of freedom, and the global virtual element space,
which is obtained by “gluing” in a conforming way the local spaces. Then, we discuss the computability
of the elliptic projection operator, and the enhancement of the local spaces, which allows us to compute
the orthogonal projection operators onto the subspace of polynomials of degree up to 𝑝1 − 1. Finally, we
discuss the construction of the bilinear form 𝑎ℎ (·, ·) and the load term

〈
𝑓ℎ , ·

〉
.

4.1. Local space definitions
Let P be a mesh element. For 𝑝2 ≤ 𝑟 ≤ 2𝑝2 − 2, we consider the local virtual element space defined

as

𝑉
𝑝2 , 𝑝1
ℎ,𝑟

(P) =
{
𝑣ℎ ∈ 𝐻 𝑝2 (P) : Δ𝑝2𝑣ℎ ∈ P𝑟−2𝑝1 (P), 𝜕

𝑗
𝑛𝑣ℎ ∈ P𝛼𝑗 (𝑝2 ,𝑟 ) (𝑒),

𝑗 = 0, . . . , 𝑝2 − 1 ∀𝑒 ∈ 𝜕P
}
, (9)

where 𝛼 𝑗 (𝑝2, 𝑟) = max{2(𝑝2− 𝑗)−1, 𝑟− 𝑗}. For 𝑟 ≥ 2𝑝2−1 it holds that 𝛼 𝑗 = 𝑟− 𝑗 for all 𝑗 = 0, . . . , 𝑝2−1
and the definition of the local virtual element space on the element P takes the simpler form

𝑉
𝑝2 , 𝑝1
ℎ,𝑟

(P) =
{
𝑣ℎ ∈ 𝐻 𝑝2 (P) : Δ𝑝2𝑣ℎ ∈ P𝑟−2𝑝1 (P), 𝜕

𝑗
𝑛𝑣ℎ ∈ P𝑟− 𝑗 (𝑒),

𝑗 = 0, . . . , 𝑝2 − 1 ∀𝑒 ∈ 𝜕P
}
. (10)

In both definitions (9) and (10) we use the conventional notation that P𝑟 (P) = {0} if 𝑟 < 0.

Remark 4.1. The space of polynomialsP𝑟 (P) is a subspace of𝑉 𝑝2 , 𝑝1
ℎ,𝑟

(P) for both definitions (9) and (10).

Remark 4.2. Let #
(
P
)

denote the cardinality of a (finite dimensional) space P and 𝑁 E
P and 𝑁V

P the
number of edges and vertices of element P. The dimension of the local virtual element space (9) is given
by

dim𝑉
𝑝2 , 𝑝1
ℎ,𝑟

(P) = #
(
P𝑟−2𝑝1 (P)

)
+

∑︁
𝑒∈𝜕P

𝑝2−1∑︁
𝑗=0
#
(
P𝛼𝑗 (𝑝2 ,𝑟 ) (𝑒)

)
− 𝑁V

P
(𝑝2 + 1)𝑝2

2

=
(𝑟 − 2𝑝1 + 1) (𝑟 − 2𝑝1 + 2)

2
+ 𝑁 E

P

𝑝2−1∑︁
𝑗=0

(
𝛼 𝑗 (𝑝2, 𝑟) + 1

)
− 𝑁V

P
(𝑝2 + 1)𝑝2

2
. (11)

The dimension of the local virtual element space (10) is given by

dim𝑉
𝑝2 , 𝑝1
ℎ,𝑟

(P) = #
(
P𝑟−2𝑝1 (P)

)
+

∑︁
𝑒∈𝜕P

𝑝2−1∑︁
𝑗=0
#
(
P𝑟− 𝑗 (𝑒)

)
− 𝑁V

P
(𝑝2 + 1)𝑝2

2

=
(𝑟 − 2𝑝1 + 1) (𝑟 − 2𝑝1 + 2)

2
+ 𝑁 E

P
𝑝2

(
2𝑟 + 3 − 𝑝2

)
2
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− 𝑁V
P

(𝑝2 + 1)𝑝2
2

. (12)

In both equations (11) and (12), the last term of the right-hand side, i.e., 𝑁V
P 𝑝2 (𝑝2+1)/2, is subtracted

to take into account the 𝐶 𝑝2−1-regularity of 𝑣ℎ at the elemental vertices.

4.2. Local degrees of freedom
Let 𝛽 𝑗 = 𝛼 𝑗 −min{2(𝑝2 − 𝑗) − 1, 𝑟 − 𝑗} − 1. For 𝑟 = 2𝑝2 − 1 − 𝑘 with 𝑘 = 1, . . . , 𝑝2 − 1, the virtual

element functions in the elemental space (9) are uniquely identified by the following degrees of freedom

(D1) ℎ |a |
v 𝐷a𝑣ℎ (v), |a | ≤ 𝑝2 − 1 for any vertex v of 𝜕P;

(D2) ℎ−1+ 𝑗𝑒

∫
𝑒

𝑞𝜕
𝑗
𝑛𝑣ℎ 𝑑𝑠 for any 𝑞 ∈ P𝛽 𝑗

(𝑒) and edge 𝑒 of 𝜕P, 𝑗 = 𝑘 + 1, . . . , 𝑝2 − 1;

(D3) ℎ−2P

∫
P
𝑞𝑣ℎ 𝑑x for any 𝑞 ∈ P𝑟−2𝑝1 (P).

For 𝑟 ≥ 2𝑝2 − 1, we note that 𝛽 𝑗 = 𝑟 − (2𝑝2 − 𝑗) and we consider the polynomial edge moments in (D2)
for 𝑗 = 0, . . . , 𝑝2 − 1.

Remark 4.3. The 𝐿2-projection operator Π
0,P
𝑟−2𝑝1 onto the polynomial space P𝑟−2𝑝1 (P) is computable

from the degrees of freedom (D3).

A virtual element function in 𝑣ℎ ∈ 𝑉
𝑝2 , 𝑝1
ℎ,𝑟

(P) has the regularity property that (𝑣ℎ) |𝜕P ∈ 𝐶 𝑝2−1 (𝜕P).
This regularity is reflected by the choice of the degrees of freedom, and is, indeed, provided by the vertex
degrees of freedom of (D1). Furthermore, the traces of 𝑣ℎ ( 𝑗 = 0) and the 𝑗-th normal derivatives (up
to order 𝑗 = 𝑝2 − 1) on every edge 𝑒 ∈ 𝜕P are univariate polynomials of degree at least 𝑟 − 𝑗 . The
information provided by (D1) makes it possible to build polynomial traces of degree higher than 𝑟 − 𝑗

if 𝑟 is equal to 𝑝2 (or not “too bigger” than 𝑝2 as shown in the following examples). In such a case, we
can compute the edge traces (𝑣ℎ) |𝑒 and (𝜕

𝑗
𝑛𝑣ℎ) |𝑒 by solving the interpolation problem that uses the vertex

values of 𝑣ℎ and its partial derivatives.
In the next three examples, we discuss the trace interpolation problem for 𝑟 ≥ 𝑝2 and 𝑗 = 0, 𝑗 = 1,

𝑗 ≥ 2. This process is also shown in Table 2 and Fig. 1

Example 4.4 ( 𝑗 = 0). We derive the higher-order tangential derivatives of 𝑣ℎ by repetitively applying the
differential operator t · ∇ =

(
𝑡𝑥𝜕𝑥 + 𝑡𝑦𝜕𝑦

)
to the univariate polynomial trace of 𝑣ℎ , i.e., 𝜕ℓ𝑡 𝑣ℎ along every

elemental edge (recall that 𝜕0𝑡 𝑣ℎ = 𝑣ℎ for ℓ = 0). For example, for ℓ = 1, 2, 3, 4, the tangential derivatives
𝜕ℓ𝑡 𝑣ℎ are given by

𝜕𝑡𝑣ℎ (v𝑖) = 𝑡𝑥𝜕𝑥 (𝑣ℎ) (v𝑖) + 𝑡𝑦𝜕𝑦 (𝑣ℎ) (v𝑖),

𝜕2𝑡 𝑣ℎ (v𝑖) =
(
𝑡𝑥𝜕𝑥 + 𝑡𝑦𝜕𝑦

) (
𝜕𝑡𝑣ℎ

)
(v𝑖)

= 𝑡𝑥𝜕𝑥
(
𝜕𝑡𝑣ℎ

)
(v𝑖) + 𝑡𝑦𝜕𝑦

(
𝜕𝑡𝑣ℎ

)
(v𝑖)

= 𝑡𝑥𝑡𝑥𝜕𝑥𝑥𝑣ℎ (v𝑖) + 2𝑡𝑥𝑡𝑦𝜕𝑥𝑦𝑣ℎ (v𝑖) + 𝑡𝑦𝑡𝑦𝜕𝑦𝑦𝑣ℎ (v𝑖),

𝜕3𝑡 𝑣ℎ (v𝑖) =
(
𝑡𝑥𝜕𝑥 + 𝑡𝑦𝜕𝑦

) (
𝜕2𝑡 𝑣ℎ

)
(v𝑖)

= 𝑡𝑥𝜕𝑥
(
𝜕2𝑡 𝑣ℎ

)
(v𝑖) + 𝑡𝑦𝜕𝑦

(
𝜕2𝑡 𝑣ℎ

)
(v𝑖)

7



= 𝑡𝑥𝑡𝑥𝑡𝑥𝜕𝑥𝑥𝑥𝑣ℎ (v𝑖) + 3𝑡𝑥𝑡𝑥𝑡𝑦𝜕𝑥𝑥𝑦𝑣ℎ (v𝑖) + 3𝑡𝑥𝑡𝑦𝑡𝑦𝜕𝑥𝑦𝑦𝑣ℎ (v𝑖)

+ 𝑡𝑦𝑡𝑦𝑡𝑦𝜕𝑦𝑦𝑦𝑣ℎ (v𝑖),

𝜕4𝑡 𝑣ℎ (v𝑖) =
(
𝑡𝑥𝜕𝑥 + 𝑡𝑦𝜕𝑦

) (
𝜕3𝑡 𝑣ℎ

)
(v𝑖)

= 𝑡𝑥𝜕𝑥
(
𝜕3𝑡 𝑣ℎ

)
(v𝑖) + 𝑡𝑦𝜕𝑦

(
𝜕3𝑡 𝑣ℎ

)
(v𝑖)

= 𝑡𝑥𝑡𝑥𝑡𝑥𝑡𝑥𝜕𝑥𝑥𝑥𝑥𝑣ℎ (v𝑖) + 4𝑡𝑥𝑡𝑥𝑡𝑥𝑡𝑦𝜕𝑥𝑥𝑥𝑦𝑣ℎ (v𝑖) + 6𝑡𝑥𝑡𝑥𝑡𝑦𝑡𝑦𝜕𝑥𝑥𝑦𝑦𝑣ℎ (v𝑖)

+ 4𝑡𝑥𝑡𝑦𝑡𝑦𝑡𝑦𝜕𝑥𝑦𝑦𝑦𝑣ℎ (v𝑖) + 𝑡𝑦𝑡𝑦𝑡𝑦𝑡𝑦𝜕𝑦𝑦𝑦𝑦𝑣ℎ (v𝑖).

It is easy to recognize the pattern of the combinatorial coefficients in these expansions. According to the
third column ( 𝑗 = 0) of Table 1, the degrees of freedom (D1) at vertex v𝑖 for a given regularity index
𝑝2 yield 𝑝2 pieces of information, 𝑣ℎ (v𝑖), 𝜕𝑡𝑣ℎ (v𝑖), 𝜕2𝑡 𝑣ℎ (v𝑖), . . . 𝜕 𝑝2−1

𝑡 𝑣ℎ (v𝑖). Since each edge has two
vertices, we have 2𝑝2 pieces of information and we can interpolate the edge trace of 𝑣ℎ as a univariate
polynomial of degree 2𝑝2 − 1. Such polynomial degree is clearly bigger than 𝑟 if we choose 𝑟 such that
𝑝2 ≤ 𝑟 < 2𝑝2 − 1. This fact is not in conflict with the property that the virtual element space contains the
subspace of polynomials of degree 𝑟 .

The polynomial degrees of the edge trace of 𝑣ℎ that we can interpolate from the degrees of freedom
(D1)-(D2) are illustrated in Table 2 by the rows for 𝑗 = 0 and different values of 𝑝2. In this table, the
values of 𝑟 such that 𝑟 = 2𝑝2−1 are reported in bold, and the ones for 𝑟 < 2𝑝2−1 are those preceeding the
bold ones on the same row. For these values of 𝑟 the trace of 𝑣ℎ can be interpolated from the information
provided by (D1). However, if we increase the polynomial degree 𝑟 so that 𝑟 > 2𝑝2 − 1, the degrees
of freedom (D1) are no longer enough to solve the interpolation problem. In such a case, we need the
additional degrees of freedom of (D2), i.e., the moments of 𝑣ℎ against a (basis of) polynomials of degree
𝑟 − (2𝑝2 − 1) defined on 𝑒.

Example 4.5 ( 𝑗 = 1). As for the case 𝑗 = 0, we derive the higher-order tangential derivatives of 𝜕𝑛𝑣ℎ =

𝑛𝑥𝜕𝑥𝑣ℎ + 𝑛𝑦𝜕𝑦𝑣ℎ by repetitively applying the differential operator t · ∇ =
(
𝑡𝑥𝜕𝑥 + 𝑡𝑦𝜕𝑦

)
to the univariate

polynomial trace of 𝜕𝑛𝑣ℎ , i.e, 𝜕ℓ𝑡 𝜕𝑛𝑣ℎ along every elemental edge (recall that 𝜕0𝑡 𝜕𝑛𝑣ℎ = 𝜕𝑛𝑣ℎ for ℓ = 0).
For example, for ℓ = 1, 2, 3 we find that

𝜕𝑡𝜕𝑛𝑣ℎ (v𝑖) =
(
𝑡𝑥𝜕𝑥 + 𝑡𝑦𝜕𝑦

) (
𝜕𝑛𝑣ℎ

)
(v𝑖)

= 𝑡𝑥𝜕𝑥
(
𝜕𝑛𝑣ℎ

)
(v𝑖) + 𝑡𝑦𝜕𝑦

(
𝜕𝑛𝑣ℎ

)
(v𝑖)

= 𝑡𝑥𝑛𝑥𝜕𝑥𝑥𝑣ℎ (v𝑖) + (𝑡𝑥𝑛𝑦 + 𝑡𝑦𝑛𝑥)𝜕𝑥𝑦𝑣ℎ (v𝑖) + 𝑡𝑦𝑡𝑦𝜕𝑦𝑦𝑣ℎ (v𝑖),

𝜕2𝑡 𝜕𝑛𝑣ℎ (v𝑖) =
(
𝑡𝑥𝜕𝑥 + 𝑡𝑦𝜕𝑦

) (
𝜕𝑡𝜕𝑛𝑣ℎ

)
(v𝑖)

= 𝑡𝑥𝜕𝑥
(
𝜕𝑡𝜕𝑛𝑣ℎ

)
(v𝑖) + 𝑡𝑦𝜕𝑦

(
𝜕𝑡𝜕𝑛𝑣ℎ

)
(v𝑖)

= 𝑡𝑥𝑡𝑥𝑛𝑥𝜕𝑥𝑥𝑥𝑣ℎ (v𝑖) +
(
𝑡𝑥
(
𝑡𝑥𝑛𝑦 + 𝑡𝑦𝑛𝑥

)
+ 𝑡𝑦

(
𝑡𝑥𝑛𝑦 + 𝑡𝑦𝑛𝑥

) )
𝜕𝑥𝑥𝑦𝑣ℎ (v𝑖)

+ 𝑡𝑥𝑡𝑦
(
𝑛𝑥 + 𝑛𝑦

)
𝜕𝑥𝑦𝑦𝑣ℎ (v𝑖) + 𝑡𝑦𝑡𝑦𝑛𝑦𝜕𝑦𝑦𝑦𝑣ℎ (v𝑖),

𝜕3𝑡 𝜕𝑛𝑣ℎ (v𝑖) =
(
𝑡𝑥𝜕𝑥 + 𝑡𝑦𝜕𝑦

) (
𝜕2𝑡 𝜕𝑛𝑣ℎ

)
(v𝑖)

=
(
𝑡𝑥𝜕𝑥 + 𝑡𝑦𝜕𝑦

) (
𝜕2𝑛𝑣ℎ

)
(v𝑖)

= 𝑡𝑥𝜕𝑥
(
𝜕2𝑡 𝜕𝑛𝑣ℎ (v𝑖)

)
(v𝑖) + 𝑡𝑦𝜕𝑦

(
𝜕2𝑡 𝜕𝑛𝑣ℎ (v𝑖)

)
(v𝑖),

= . . .
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According to the fourth column ( 𝑗 = 1) of Table 1, the degrees of freedom (D1) at vertex v𝑖 for a given 𝑝2
yield 𝑝2 − 1 pieces of information, 𝜕𝑛𝑣ℎ (v𝑖), 𝜕𝑡𝜕𝑛𝑣ℎ (v𝑖), 𝜕2𝑡 𝜕𝑛𝑣ℎ (v𝑖), . . . 𝜕 𝑝2−2

𝑡 𝜕𝑛𝑣ℎ (v𝑖). Since each edge
has two vertices, we have 2(𝑝2−1) pieces of information that we can interpolate as a polynomial of degree
2𝑝2 − 3. Such polynomial degree is clearly bigger than 𝑟 − 1 if we choose 𝑟 such that 𝑝2 ≤ 𝑟 < 2(𝑝2 − 1).

The polynomial degrees of the edge trace of 𝜕𝑛𝑣ℎ that we can interpolate from the degrees of freedom
(D1)-(D2) are illustrated in Table 2 by the rows for 𝑗 = 1 and different values of 𝑝2. In this table, the
values of 𝑟 such that 𝑟 − 1 = 2(𝑝2 − 1) − 1 are reported in bold, and the ones for 𝑟 − 1 < 2(𝑝2 − 1) − 1
are those preceeding the bold ones on the same row. For these values of 𝑟 the trace of 𝜕𝑛𝑣ℎ can be
interpolated from the information provided by (D1). However, if we increase the polynomial degree 𝑟 so
that 𝑟 − 1 > 2(𝑝2 − 1) − 1, the degrees of freedom (D1) are no longer enough to solve the interpolation
problem. In such a case, we need the additional degrees of freedom of (D2), i.e., the moments of 𝜕𝑛𝑣ℎ
against a (basis of) polynomials of degree 𝑟 − 2(𝑝2 − 1) defined on 𝑒.

Example 4.6 ( 𝑗 ≥ 2). As for the cases 𝑗 = 0 and 𝑗 = 1, we derive the higher-order tangential derivatives
of 𝜕 𝑗

𝑛𝑣ℎ by repetitively applying the differential operator t · ∇ =
(
𝑡𝑥𝜕𝑥 + 𝑡𝑦𝜕𝑦

)
to the univariate polynomial

trace of 𝜕 𝑗
𝑛𝑣ℎ , i.e., 𝜕ℓ𝑡 𝜕

𝑗
𝑛𝑣ℎ along every elemental edge. For example, for 𝑗 = 2, since 𝜕2𝑛𝑣ℎ = 𝑛𝑥𝑛𝑥𝜕𝑥𝑥𝑣ℎ +

2𝑛𝑥𝑛𝑦𝜕𝑥𝑦𝑣ℎ + 𝑡𝑦𝑡𝑦𝜕𝑦𝑦𝑣ℎ , we find that

𝜕𝑡𝜕
2
𝑛𝑣ℎ (v𝑖) =

(
𝑡𝑥𝜕𝑥 + 𝑡𝑦𝜕𝑦

) (
𝜕2𝑛𝑣ℎ

)
(v𝑖)

= 𝑡𝑥𝜕𝑥
(
𝜕2𝑛𝑣ℎ

)
(v𝑖) + 𝑡𝑦𝜕𝑦

(
𝜕2𝑛𝑣ℎ

)
(v𝑖)

= 𝑡𝑥𝑛𝑥𝑛𝑥𝜕𝑥𝑥𝑥𝑣ℎ + (2𝑡𝑥𝑡𝑥𝑛𝑥 + 𝑡𝑦𝑛𝑥𝑛𝑥)𝜕𝑥𝑥𝑦𝑣ℎ

+ (𝑡𝑥𝑛𝑦𝑛𝑦 + 2𝑡𝑦𝑛𝑥𝑛𝑦)𝜕𝑥𝑦𝑦𝑣ℎ + 𝑡𝑦𝑛𝑦𝑛𝑦𝜕𝑦𝑦𝑦𝑣ℎ .

For 𝑗 ≥ 0, each edge vertex v𝑖 , 𝑖 = 1, 2, provides the values of 𝜕 𝑗
𝑛𝑣ℎ and its first 𝑝2 − 𝑗 − 1 tangential

derivatives. Hence, there are 2(𝑝2− 𝑗) pieces of information available on each edge and we can interpolate
the edge trace of 𝜕 𝑗

𝑛𝑣ℎ as a univariate polynomial of degree 2(𝑝2 − 𝑗) − 1. Such polynomial degree is
clearly bigger than 𝑟 − 𝑗 if we choose 𝑟 such that 𝑝2 ≤ 𝑟 < 2𝑝2 − 𝑗 − 1.

The polynomial degrees of the edge trace of 𝜕 𝑗
𝑛𝑣ℎ that we can interpolate from the degrees of freedom

(D1)-(D2) are illustrated in Table 2 by the rows for 𝑗 ≥ 0 and different values of 𝑝2. In this table, the
values of 𝑟 such that 𝑟 = 2𝑝2 − 𝑗 − 1 are reported in bold, and the ones for 𝑟 < 2𝑝2 − 𝑗 − 1 are those
preceeding the bold ones on the same row. For these values of 𝑟 the trace of 𝜕 𝑗

𝑛𝑣ℎ can be interpolated from
the information provided by (D1). However, if we increase the polynomial degree 𝑟 so that 𝑟 > 2𝑝2− 𝑗 −1,
the degrees of freedom (D1) are no longer enough to solve the interpolation problem. In such a case, we
need the additional degrees of freedom of (D2), i.e., the moments of 𝜕 𝑗

𝑛𝑣ℎ against a (basis of) polynomials
of degree 𝑟 − (2𝑝2 − 𝑗 − 1) defined on 𝑒. It is worth noting that for increasing values of 𝑟 , we need to
supplement this information starting from the higher-order normal derivatives (see Fig. 1).

Lemma 4.7. The degrees of freedom (D1)-(D3) are unisolvent in the virtual element space 𝑉 𝑝2 , 𝑝1
ℎ,𝑟

(P).

Proof. Let P be a polygonal element. First, a counting argument shows that the number of degrees of
freedom (D1)-(D3) is equal to the dimension of𝑉 𝑝2 , 𝑝1

ℎ,𝑟
(P) (see Remark 4.2). Then, we prove that a virtual

element function 𝑣ℎ is necessarily zero if all its degrees of freedom (D1)-(D3) are zero. In particular,
assuming that the degrees of freedom (D1) and (D2) are zero implies that the polynomial traces of 𝑣ℎ
and its normal derivatives of order up to 𝑝2 − 1 are identically zero on all edges of 𝜕P, and so are their
tangential derivatives of any order. Likewise, assuming that the degrees of freedom (D3) are zero implies
that the elemental moments of 𝑣ℎ against the polynomials of degree up to 𝑟 − 2𝑝1 (for 𝑟 ≥ 2𝑝1) are zero.
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𝑝2 − 1 Degrees of freedom (D1) 𝑗 = 0 𝑗 = 1 𝑗 = 2 𝑗 = 3 𝑗 = 4

0 𝑣ℎ (v𝑖) 𝑣ℎ −− −− −− −−

1 𝜕𝑥𝑣ℎ (v𝑖), 𝜕𝑦𝑣ℎ (v𝑖) 𝜕𝑡𝑣ℎ 𝜕𝑛𝑣ℎ −− −− −−

2
𝜕𝑥𝑥𝑣ℎ (v𝑖), 𝜕𝑥𝑦𝑣ℎ (v𝑖),

𝜕𝑦𝑦𝑣ℎ (v𝑖)
𝜕2𝑡 𝑣ℎ 𝜕𝑡𝜕𝑛𝑣ℎ 𝜕2𝑛𝑣ℎ −− −−

3
𝜕𝑥𝑥𝑥𝑣ℎ (v𝑖), 𝜕𝑥𝑥𝑦𝑣ℎ (v𝑖),
𝜕𝑥𝑦𝑦𝑣ℎ (v𝑖), 𝜕𝑦𝑦𝑦𝑣ℎ (v𝑖)

𝜕3𝑡 𝑣ℎ 𝜕2𝑡 𝜕𝑛𝑣ℎ 𝜕𝑡𝜕
2
𝑛𝑣ℎ 𝜕3𝑛𝑣ℎ −−

4
𝜕𝑥𝑥𝑥𝑥𝑣ℎ (v𝑖), 𝜕𝑥𝑥𝑥𝑦𝑣ℎ (v𝑖),
𝜕𝑥𝑥𝑦𝑦𝑣ℎ (v𝑖), 𝜕𝑥𝑦𝑦𝑦𝑣ℎ (v𝑖),

𝜕𝑦𝑦𝑦𝑦𝑣ℎ (v𝑖)
𝜕4𝑡 𝑣ℎ 𝜕3𝑡 𝜕𝑛𝑣ℎ 𝜕2𝑡 𝜕

2
𝑛𝑣ℎ 𝜕𝑡𝜕

3
𝑛𝑣ℎ 𝜕4𝑛𝑣ℎ

Table 1: Vertex degrees of freedom for the trace interpolation process on the elemental edges. The first column shows the value
of max{ |a | } = 𝑝2 − 1 that we use to define the degrees of freedom (D1) . The second column shows the degrees of freedom at
vertex v𝑖 corresponding to 𝑝2 − 1 in the first column. The remaining columns shows the quantities that we can compute using the
degrees of freedom listed in the second column. Recalling that |a | ≤ 𝑝2 − 1 and 0 ≤ 𝑗 ≤ 𝑝2 − 1, on the columns for 𝑗 = 0, . . . , 4
we read the pieces of information that are available for the interpolation of 𝜕 𝑗

𝑛𝑣ℎ (with 𝜕0𝑛𝑣ℎ = 𝑣ℎ for 𝑗 = 0). For example, if
𝑝2 = 3, we can use only the objects of the first three table rows (i.e., |a | = 0, 1, 2), and each column for 𝑗 = 0, 1, 2 lists the pieces
of information that are available to construct the polynomial trace of 𝑣ℎ , 𝜕𝑛𝑣ℎ and 𝜕2𝑛𝑣ℎ on each edge. In such a case, the vertex
degrees of freedom allows us to interpolate the trace of 𝑣ℎ as a polynomial of degree 5, the trace of 𝜕𝑛𝑣ℎ as a polynomial of degree
3, and the trace of 𝜕2𝑛𝑣ℎ as a polynomial of degree 1. These trace interpolations are consistent with 𝑟 = 𝑝2 and a global virtual
element space with 𝐶𝑝2−1-regularity on Ω.

Consider separately the case of odd and even values of 𝑝2. If 𝑝2 = 2ℓ + 1 with ℓ ≥ 0, a repeated
application of the integration by parts formula yields∫

P

��∇Δℓ𝑣ℎ
��2 𝑑x = −

∫
P

(
Δ𝑝2𝑣ℎ

)
𝑣ℎ 𝑑x +

∫
𝜕P

(
𝜕𝑛Δ

ℓ𝑣ℎ
)
Δℓ𝑣ℎ 𝑑𝑠

+
ℓ∑︁
𝑖=1

(∫
𝜕P

(
𝜕𝑛Δ

𝑝2−𝑖𝑣ℎ
)
Δ𝑖−1𝑣ℎ 𝑑𝑠 −

∫
𝜕P

(
Δ𝑝2−𝑖𝑣ℎ

)
𝜕𝑛Δ

𝑖−1𝑣ℎ 𝑑𝑠

)
. (13)

Similarly, if 𝑝2 = 2ℓ with ℓ ≥ 1, we find that∫
P

��Δℓ𝑣ℎ
��2 𝑑x =

∫
P

(
Δ𝑝2𝑣ℎ

)
𝑣ℎ 𝑑x

−
ℓ∑︁
𝑖=1

(∫
𝜕P

(
𝜕𝑛Δ

𝑝2−𝑖𝑣ℎ
)
Δ𝑖−1𝑣ℎ 𝑑𝑠 −

∫
𝜕P

(
Δ𝑝2−𝑖𝑣ℎ

)
𝜕𝑛Δ

𝑖−1𝑣ℎ 𝑑𝑠

)
. (14)

Since Δ𝑝2𝑣ℎ is a polynomial of degree 𝑟 −2𝑝1 according to the definition of the virtual element space,
the volume integral in the right-hand sides of (13) and (14) is an elemental moment of 𝑣ℎ . This integral
must be zero since we assumed that the degrees of freedom (D3) of 𝑣ℎ are zero.
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𝑟 − 𝑗

p2 = 1 2(p2 − j) − 1 r = 1 r = 2 r = 3 r = 4 r = 5 r = 6 r = 7 . . .
𝑗 = 0 1 1 2 3 4 5 6 7 . . .

p2 = 2 2(p2 − j) − 1 r = 1 r = 2 r = 3 r = 4 r = 5 r = 6 r = 7 . . .
𝑗 = 0 3 − 2 3 4 5 6 7 . . .
𝑗 = 1 1 − 1 2 3 4 5 6 . . .

p2 = 3 2(p2 − j) − 1 r = 1 r = 2 r = 3 r = 4 r = 5 r = 6 r = 7 . . .
𝑗 = 0 5 − − 3 4 5 6 7 . . .
𝑗 = 1 3 − − 2 3 4 5 6 . . .
𝑗 = 2 1 − − 1 2 3 4 5 . . .

p2 = 4 2(p2 − j) − 1 r = 1 r = 2 r = 3 r = 4 r = 5 r = 6 r = 7 . . .
𝑗 = 0 7 − − − 4 5 6 7 . . .
𝑗 = 1 5 − − − 3 4 5 6 . . .
𝑗 = 2 3 − − − 2 3 4 5 . . .
𝑗 = 3 1 − − − 1 2 3 4 . . .

Table 2: Polynomial orders of the edge traces of 𝑣ℎ and its normal derivatives 𝜕
𝑗
𝑛𝑣ℎ for 𝑝2 = 1, 2, 3, 4 and 𝑟 = 𝑝2, . . . 7 (we recall

that 𝑟 ≥ 𝑝2). The first column on the left reports the value of 𝑝2 and 𝑗 = 0, . . . , 𝑝2 − 1; the second column reports the value of
2(𝑝2 − 𝑗) − 1, which is a threshold value, and the remaining columns the possible values of 𝑟 − 𝑗 (remember that on each edge
𝜕
𝑗
𝑛𝑣ℎ ∈ P𝛼 𝑗

with 𝛼𝑗 = max{2(𝑝2 − 𝑗) − 1, 𝑟 − 𝑗 }). The values of the polynomial degree 𝑟 − 1 such that 𝑟 − 𝑗 = 2(𝑝2 − 𝑗) − 1
(or, equivalently, that 𝑟 = 2𝑝2 − 𝑗 − 1) are reported in bold font. The polynomial traces with degree equal or higher than this bold
value, which are above it in every column ad correspond to the smaller order 𝑗 of derivation, can be interpolated using only the
vertex degrees of freedom (D1) . To interpolate the remaining edge traces we need the additional information provided by (D2) .

Toprove that the edge integrals in (13) and (14) are zero, wefirst note that such integrals contain the edge
trace of Δ`𝑣ℎ for ` = 0, . . . , 𝑝2 − 1 and its normal and tangential derivatives. Since Δ𝑣ℎ |𝑒 = 𝜕2𝑡 𝑣ℎ + 𝜕2𝑛𝑣ℎ ,
it holds that

Δ`𝑣ℎ =
(
𝜕2𝑡 + 𝜕2𝑛

)`
𝑣ℎ =

∑̀︁
a=0

𝐶`,a 𝜕
2(`−a)
𝑡 𝜕2a𝑛 𝑣ℎ , (15)

where 𝐶`,a denote the a-th combinatorial coefficient of the `-th power expansion. Therefore, all the edge
integrals either contain the normal derivatives 𝜕ℓ𝑛𝑣ℎ for some integer ℓ = 0, . . . , 𝑝2 − 1, or the tangential
derivatives of these quantities. As noted at the beginning of this proof, all these quantities are zero since
we assumed that the degrees of freedom (D1)-(D2) of 𝑣ℎ are zero.
Finally, we note that a function 𝑣ℎ ∈ 𝑉

𝑝2 , 𝑝1
ℎ,𝑟

(P) with all zero degrees of freedom also belongs to
𝐻

𝑝2
0 (P) = {𝑣 ∈ 𝐻 𝑝2 (P) : 𝜕 𝑗𝑣 |𝜕P = 0∀ 𝑗 = 0, . . . , 𝑝2 − 1}. Since both left-hand sides of (13) and (14) are
a norm on 𝐻 𝑝2

0 (P), it follows that 𝑣ℎ = 0.

4.3. Global virtual element spaces
Building upon the local virtual element spaces, the global conforming virtual element space 𝑉 𝑝2 , 𝑝1

ℎ,𝑟
is

defined on Ω as

𝑉
𝑝2 , 𝑝1
ℎ,𝑟

=

{
𝑣ℎ ∈ 𝐻

𝑝1
0 (Ω) ∩ 𝐻 𝑝2 (Ω) : 𝑣ℎ |P ∈ 𝑉

𝑝2 , 𝑝1
ℎ,𝑟

(P) ∀P ∈ Ωℎ

}
, (16)
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𝑝2 = 1, 𝑟 = 1 𝑝2 = 1, 𝑟 = 2 𝑝2 = 1, 𝑟 = 3 𝑝2 = 1, 𝑟 = 4

𝑝2 = 2, 𝑟 = 2 𝑝2 = 2, 𝑟 = 3 𝑝2 = 2, 𝑟 = 4 𝑝2 = 2, 𝑟 = 5

𝑝2 = 3, 𝑟 = 3 𝑝2 = 3, 𝑟 = 4 𝑝2 = 3, 𝑟 = 5 𝑝2 = 3, 𝑟 = 6

𝑝2 = 4, 𝑟 = 4 𝑝2 = 4, 𝑟 = 5 𝑝2 = 4, 𝑟 = 6 𝑝2 = 4, 𝑟 = 7

Figure 1: Edge degrees of freedom of the virtual element space 𝑉 𝑝2 , 𝑝1
ℎ,𝑟

with regularity index 𝑝2 = 1 (Laplace operator), 𝑝2 = 2
(bi-harmonic operator), 𝑝2 = 3 (tri-harmonic operator), 𝑝2 = 4, and polynomial degree 𝑟 such that 𝑝2 ≤ 𝑟 ≤ 𝑝2 + 4. The (green)
dots at the vertices represent the vertex values and each (red) vertex circle represents an order of derivation. The (black) dots on
the edge represent the polynomial moments of the trace 𝑣ℎ |𝑒; the arrows represent the polynomial moments of 𝜕𝑛𝑣ℎ |𝑒; the double
arrows represent the polynomial moments of 𝜕2𝑛𝑣ℎ |𝑒 .

where 𝑉 𝑝2 , 𝑝1
ℎ,𝑟

(P) is the local space defined in (9) if 𝑝2 ≤ 𝑟 ≤ 2𝑝2 − 2 and the local space defined in (10)
if 𝑟 ≥ 2𝑝2 − 1.

Remark 4.8. Let 𝑁P , 𝑁 E and 𝑁V denote the number of element, edges and vertices ofΩℎ . The dimension
of the global virtual element space built upon (9) is given by

dim𝑉
𝑝2 , 𝑝1
ℎ,𝑟

= 𝑁P (𝑟 − 2𝑝1 + 1) (𝑟 − 2𝑝1 + 2)
2

+ 𝑁 E
𝑝2−1∑︁
𝑗=0

(
𝛼 𝑗 (𝑝2, 𝑟) + 1

)
− 𝑁V (𝑝2 + 1)𝑝2

2
.

The dimension of the global virtual element space built upon (10) is given by

dim𝑉
𝑝2 , 𝑝1
ℎ,𝑟

= 𝑁P (𝑟 − 2𝑝1 + 1) (𝑟 − 2𝑝1 + 2)
2

+ 𝑁 E (𝑝2 − 1)
(
2(𝑟 + 1) − (𝑝2 − 1)

)
2

− 𝑁V (𝑝2 + 1)𝑝2
2

.

The set of global degrees of freedom are inherited from the local degrees of freedom of section 4.2.
Therefore, we consider

(D1) ℎ |a |
v 𝐷a𝑣ℎ (v), |a | ≤ 𝑝2 − 1 for every vertex v ofVℎ;

(D2) ℎ−1+ 𝑗𝑒

∫
𝑒

𝑞𝜕
𝑗
𝑛𝑣ℎ 𝑑𝑠 for any 𝑞 ∈ P𝛽 𝑗

(𝑒) and every edge 𝑒 of Eℎ , 𝑗 = 𝑘 + 1, . . . , 𝑝2 − 1;

(D3) ℎ−2P

∫
P
𝑞𝑣ℎ 𝑑x for any 𝑞 ∈ P𝑟−2𝑝1 (P) and every element P of Ωℎ ,
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where, again, 𝛽 𝑗 = 𝛼 𝑗 − min{2(𝑝2 − 𝑗) − 1, 𝑟 − 𝑗} − 1 and 𝛼 𝑗 (𝑝2, 𝑟) = max{2(𝑝2 − 𝑗) − 1, 𝑟 − 𝑗},
𝑗 = 0, . . . , 𝑝2 − 1. For 𝑟 ≥ 2𝑝2 − 1, these degrees of freedom become

(D1) ℎ |a |
v 𝐷a𝑣ℎ (v), |a | ≤ 𝑝2 − 1 for every interior vertex v ofVℎ;

(D2) ℎ−1+ 𝑗𝑒

∫
𝑒

𝑞𝜕
𝑗
𝑛𝑣ℎ 𝑑𝑠 for any 𝑞 ∈ P𝑟−2𝑝2+ 𝑗 (𝑒) 𝑗 = 0, . . . , 𝑝2 − 1 and every interior edge 𝑒 of Eℎ;

(D3) ℎ−2P

∫
P
𝑞𝑣ℎ 𝑑x for any 𝑞 ∈ P𝑟−2𝑝1 (P) and every element P of Ωℎ .

We remark that the associated global space is made of 𝐻 𝑝2 (Ω) functions. Indeed, the restriction of a
virtual element function 𝑣ℎ to each element P belongs to 𝐻 𝑝2 (P) and glues with 𝐶 𝑝2−1-regularity across
the internal mesh faces.
Finally, the unisolvence of these degrees of freedom is an immediate consequence of the unisolvence

of the elementwise degrees of freedom in any elemental space 𝑉 𝑝2 , 𝑝1
ℎ,𝑟

(P), cf. Lemma 4.7.

4.4. Elliptic projection operator
The elliptic projection operator Π𝑝1 ,P

𝑟 : 𝑉 𝑝2 , 𝑝1
ℎ,𝑟

(P) → P𝑟 (P) is such that for all 𝑣ℎ ∈ 𝑉
𝑝2 , 𝑝1
ℎ,𝑟

(P), the
projection Π𝑝1 ,P

𝑟 𝑣ℎ is the solution of the finite dimensional variational problem

𝑎P
𝑝1 (Π

𝑝1 ,P
𝑟 𝑣ℎ − 𝑣ℎ , 𝑞) = 0 ∀𝑞 ∈ P𝑟 (P), (17)∫

𝜕P

(
Π

𝑝1 ,P
𝑟 𝑣ℎ − 𝑣ℎ

)
𝑞 𝑑𝑠 = 0 ∀𝑞 ∈ P𝑝1−1 (P). (18)

Condition (18) allows us to fix the nontrivial kernel of 𝑎P
𝑝1 (·, ·), which is the subspace of polynomials of

degree (up to) 𝑝1 − 1.

Remark 4.9. Instead of (18), we can consider the alternative condition [10]

Π̂P𝐷aΠ
𝑝1 ,P
𝑟 𝑣ℎ = Π̂P𝐷a𝑣ℎ with |a | ≤ 𝑝1 − 1,

by using the vertex average projection Π̂P : 𝐶 (P) → P0 (P), which is such that

Π̂P𝜓 =
1
𝑁P

∑︁
v∈𝜕P

𝜓(v), (19)

for all continuous function 𝜓.

Lemma 4.10. The elliptic projection operatorΠ𝑝1 ,P
𝑟 is polynomial preserving in the sense thatΠ𝑝1 ,P

𝑟 𝑞 = 𝑞

for every 𝑞 ∈ P𝑟 (P).

Proof. Let P𝑟 (P) \P𝑝1−1 (P) denote the linear space of polynomials of degrees 𝑠 such that 𝑝1 ≤ 𝑠 ≤ 𝑟 ,
and consider the decomposition

P𝑟 (P) = P𝑟 (P) \P𝑝1−1 (P) ⊕ P𝑝1−1 (P). (20)
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We expand the polynomial 𝑞 ∈ P𝑟 (P) and its projection Π𝑝1 ,P
𝑟 𝑞 as follows

𝑞 =
∑︁
ℓ′

𝑐ℓ′ (𝑞)`ℓ′ +
∑︁
ℓ′

�̃�ℓ′ (𝑞) ˜̀ℓ′ , (21)

Π
𝑝1 ,P
𝑟 𝑞 =

∑︁
ℓ′

𝑐ℓ′ (Π𝑝1 ,P
𝑟 𝑞)`ℓ′ +

∑︁
ℓ′

�̃�(Π𝑝1 ,P
𝑟 𝑞) ˜̀ℓ′ , (22)

where {`ℓ′} is a basis ofP𝑟 (P) \P𝑝1−1 (P), {˜̀ℓ′} is a basis ofP𝑝1−1 (P), and 𝑐ℓ′ (𝑞), �̃�ℓ′ (𝑞), 𝑐ℓ′ (Π
𝑝1 ,P
𝑟 𝑞),

and �̃�(Π𝑝1 ,P
𝑟 𝑞) are the coefficients of such expansions. The range of the summation index ℓ′, which

is not expicitly indicated in (21) and (22), is consistent with the dimensions of P𝑟 (P) \ P𝑝1−1 (P) and
P𝑝1−1 (P). We assume that the polynomials `ℓ′ are orthogonal with respect to the semi-inner product
𝑎P
𝑝1 (·, ·), which is the restriction of 𝑎

P
𝑝1 (·, ·) to a polygonal element P, so that 𝑎P

𝑝1 (`ℓ′ , `ℓ) = |P| 𝛿ℓ′,ℓ .
Since the polynomials ˜̀ℓ′ belong to the kernel of 𝑎P

𝑝1 (·, ·), we substitute the expansions (21) and (22)
in (17) (with 𝑣ℎ = 𝑞 and 𝑞 = `ℓ) and we find that

0 = 𝑎P
𝑝1 (Π

𝑝1 ,P
𝑟 𝑞 − 𝑞, `ℓ) =

∑︁
ℓ′

(
𝑐ℓ′ (Π𝑝1 ,P

𝑟 𝑞) − 𝑐ℓ′ (𝑞)
)
𝑎P
𝑝1 (`ℓ , `ℓ′)

= |P|
∑︁
ℓ′

(
𝑐ℓ′ (Π𝑝1 ,P

𝑟 𝑞) − 𝑐ℓ′ (𝑞)
)
𝛿ℓ,ℓ′ = |P|

(
𝑐ℓ (Π𝑝1 ,P

𝑟 𝑞) − 𝑐ℓ (𝑞)
)
,

which holds for all possible integers ℓ. This relation implies that

Π
𝑝1 ,P
𝑟 𝑞 − 𝑞 =

∑︁
ℓ′

(
�̃�ℓ′ (Π𝑝1 ,P

𝑟 𝑞) − �̃�ℓ′ (𝑞)
) ˜̀ℓ′ ∈ P𝑝1−1 (P). (23)

Then, we assume that the polynomials ˜̀ℓ′ are orthogonal with respect to the inner product (𝑣, 𝑢)𝜕P =∫
𝜕P 𝑣𝑢 𝑑𝑠, so that (˜̀ℓ′ , ˜̀ℓ)𝜕P = |𝜕P| 𝛿ℓ′,ℓ , where |𝜕P| is the perymeter of 𝜕P. We substitute (23) in (18)
(with 𝑣ℎ = 𝑞 and 𝑞 = ˜̀ℓ) and we find that

0 =
∫
𝜕P

(
Π

𝑝1 ,P
𝑟 𝑞 − 𝑞

) ˜̀ℓ 𝑑𝑠 = ∑︁
ℓ′

(
�̃�ℓ′ (Π𝑝1 ,P

𝑟 𝑞) − �̃�ℓ′ (𝑞)
) ∫

𝜕P
˜̀ℓ′ ˜̀ℓ 𝑑𝑠

= |𝜕P|
∑︁
ℓ′

(
�̃�ℓ′ (Π𝑝1 ,P

𝑟 𝑞) − �̃�ℓ′ (𝑞)
)
𝛿ℓ′,ℓ = |𝜕P|

(
�̃�ℓ (Π𝑝1 ,P

𝑟 𝑞) − �̃�ℓ (𝑞)
)
.

which holds for all possible integers ℓ. This implies that Π𝑝1 ,P
𝑟 𝑞 − 𝑞 = 0, which is the assertion of the

lemma.

Lemma 4.11. The polynomial projection Π
𝑝1 ,P
𝑟 𝑣ℎ is computable using only the degrees of freedom (D1)-

(D3) of 𝑣ℎ ∈ 𝑉
𝑝2 , 𝑝1
ℎ,𝑟

(P).

Proof. To prove the assertion of the lemma, we only need to prove that 𝑎P
𝑝1 (𝑣ℎ , 𝑞) and (𝑣, 𝑢)𝜕P =

∫
𝜕P 𝑣ℎ𝑞 𝑑𝑠

are computable for all 𝑣ℎ ∈ 𝑉
𝑝2 , 𝑝1
ℎ,𝑟

(P) and scalar polynomial 𝑞 ∈ P𝑟 (P). To this end, we integrate by
parts 𝑎P

𝑝1 (𝑣ℎ , 𝑞). For an odd 𝑝1, i.e., 𝑝1 = 2ℓ + 1, we find that

𝑎P
𝑝1 (𝑣ℎ , 𝑞) = −

∫
P

(
Δ𝑝1𝑣ℎ) 𝑞 𝑑x +

∫
𝜕P

(
𝜕𝑛Δ

ℓ𝑣ℎ
)
Δℓ𝑞 𝑑𝑠
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+
ℓ∑︁
𝑖=1

(∫
𝜕P

(
𝜕𝑛Δ

𝑝1−𝑖𝑣ℎ
)
Δ𝑖−1𝑞 𝑑𝑠 −

∫
𝜕P

(
Δ𝑝1−𝑖𝑣ℎ

)
𝜕𝑛Δ

𝑖−1𝑞 𝑑𝑠

)
. (24)

For an even 𝑝1, i.e., 𝑝1 = 2ℓ, we find that

𝑎P
𝑝1 (𝑣ℎ , 𝑞) =

∫
P

(
Δ𝑝1𝑣ℎ

)
𝑞 𝑑x

−
ℓ∑︁
𝑖=1

(∫
𝜕P

(
𝜕𝑛Δ

𝑝1−𝑖𝑣ℎ
)
Δ𝑖−1𝑞 𝑑𝑠 −

∫
𝜕P

(
Δ𝑝1−𝑖𝑣ℎ

)
𝜕𝑛Δ

𝑖−1𝑞 𝑑𝑠

)
. (25)

The first integral of the right-hand side of both formulas (24) and (25) is computable from the degrees
of freedom (D3). In turn, all the edge integrals are computable since we can expand the trace of Δ`𝑣ℎ

in terms of 𝜕2(`−a)𝑡 𝜕
2`
𝑛 𝑣ℎ and use the same argument of the proof of Lemma 4.7. Since the edge traces

of 𝑣ℎ and its normal derivatives (and all their tangential derivatives) are computable from the degrees of
freedom of (D1)-(D2) through a polynomial interpolation, we deduce that all the edge integrals for both
odd and even 𝑝1 and the boundary integral (𝑣, 𝑢)𝜕P are computable.

4.5. Enhancement
As noted in Remark 4.3, the 𝐿2-projection operator Π0,P

𝑟−2𝑝1 : 𝑉
𝑝2 , 𝑝1
ℎ,𝑟

(P) → P𝑟 (P) is computable from
the degrees of freedom (D3). Instead, to compute the orthogonal projection onto the polynomial subspace
P𝑟−𝑝1 (P), we need to modify the space definition as follows thus obtaining the so called “enhanced”
virtual element space. Our construction follows the guidelines in [1]. First, we consider the mesh element
P and the “extended” virtual element space for 𝑟 ≥ 2𝑝2 − 1 (recall that 𝑝2 ≥ 𝑝1) defined as

𝑉
𝑝2 , 𝑝1
ℎ,𝑟

(P) :=
{
𝑣ℎ ∈ 𝐻 𝑝2 (P) : Δ𝑝2𝑣ℎ ∈ P𝑟−𝑝1 (P), 𝜕

𝑗
𝑛𝑣ℎ ∈ P𝑟− 𝑗 (𝑒),

𝑗 = 0, . . . , 𝑝2 − 1 ∀𝑒 ∈ 𝜕P
}
. (26)

Then, we define the enhanced virtual element space as

𝑊
𝑝2 , 𝑝1
ℎ,𝑟

(P) :=
{
𝑣ℎ ∈ 𝑉

𝑝2 , 𝑝1
ℎ,𝑟

(P) :
∫

P
𝑣ℎ𝑞 𝑑x =

∫
P
Π

𝑝1 ,P
𝑟−𝑝1𝑣ℎ𝑞 𝑑x

∀𝑞 ∈ P𝑟−𝑝1 \P𝑟−2𝑝1 (P)
}
. (27)

The polynomial spaceP𝑟 (P) is a subspace of𝑊 𝑝2 , 𝑝1
ℎ,𝑟

(P) and, thus, of𝑉 𝑝2 , 𝑝1
ℎ,𝑟

(P), and the elliptic projection
Π

𝑝1 ,P
𝑟−𝑝1 : 𝑉

𝑝2 , 𝑝1
ℎ,𝑟

(P) → P𝑟−𝑝1 (P) that is defined in (17)-(18) is still computable and only depends on the
degrees of freedom (D1), (D2) and (D3). This assertion can easily be proved by repeating the argument
of Lemma 4.10.

The virtual element functions of the space 𝑉 𝑝2 , 𝑝1
ℎ,𝑟

(P) are uniquely characterized by the set of degrees
of freedom (D1), (D2), (D3) and the set of additional degrees of freedom (D̃3)

(D̃3) ℎ−2P

∫
P
𝑞𝑣ℎ 𝑑x for any 𝑞 ∈ P𝑟−𝑝1 (P) \P𝑟−2𝑝1 (P).

We state the unisolvence of these degrees of freedom in the following lemma. The proof is equal to the
proof of Lemma 4.7 (consider the degrees of freedom ((D3), (D̃3)) instead of (D3)) and is omitted.
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Lemma 4.12. The degrees of freedom (D1), (D2), (D3), (D̃3) are unisolvent in the virtual element space
𝑉

𝑝2 , 𝑝1
ℎ,𝑟

(P).

Remark 4.13. According to Lemma 4.12, the dimension of 𝑉 𝑝2 , 𝑝1
ℎ,𝑟

(P) must be equal to the cardinality of
the set of the degrees of freedom (D1), (D2), (D3), (D̃3). This statement can also be proved by a counting
argument.

Next, we want to prove that the degrees of freedom (D1), (D2) and (D3) are unisolvent in the enhanced
space 𝑊 𝑝2 , 𝑝1

ℎ,𝑟
(P). To this end, we first need to establish a technical result. Consider the set of linear,

bounded functionals _ (D1)
ℓ1

, _
(D2)
ℓ2

, _
(D3)
ℓ3
: 𝑉 𝑝2 , 𝑝1

ℎ,𝑟
(P) → R, which respectively return the degrees of freedom

(D1), (D2) and (D3) when applied to a virtual element function 𝑣ℎ ∈ 𝑉
𝑝2 , 𝑝1
ℎ,𝑟

(P). The indices ℓ1, ℓ2, and
ℓ3 run from 1 to #(D1), #(D2) and #(D3), respectively, where #(D) denotes the cardinality of the discrete
set D. Renumbering ℓ2 and ℓ3 may require the introduction of suitable sets of basis functions for the
polynomial spaces P𝑟− 𝑗 (𝑒) and P𝑟−2𝑝1 (P) in (D2) and (D3), respectively. We left this aspect undefined
as this technicality is not crucial in this presentation, although important in the practical implementations
of the method. We introduce the additional set of linear functionals _ (D̃3)

ℓ
that are such that

_
(D̃3)

ℓ̃3
(𝑣ℎ) = ℎ−2P

∫
P
𝑞
ℓ̃3

(
Π

𝑝1 ,P
𝑟−𝑝1 − Π0,P𝑟−𝑝1

)
𝑣ℎ 𝑑x ℓ̃3 = 1, . . . , #𝐷3

where
{
𝑞
ℓ̃3

}
ℓ̃3
is a basis of P𝑟−𝑝1 (P) \P𝑟−2𝑝1 (P), and the index ℓ̃3 runs from 1 to #(D̃3), the number of

degrees of freedom of (D̃3).

Then, we collect these different types of functionals in the functional set

Λ =
(
_ℓ

)
=

(
_

(D1)
ℓ1

, _
(D2)
ℓ2

, _
(D3)
ℓ3

, _
(D̃3)

ℓ̃3

)
. (28)

We assume that the integer index ℓ is consistent with a suitable renumbering of such degrees of freedom;
so that ℓ runs form 1 to 𝑚′ = 𝑚 + #(D̃3) = dim𝑉

𝑝2 , 𝑝1
ℎ,𝑟

(P) and 𝑚 = #(D1) + #(D2) + #(D3). These
functionals satisfy the property stated in the following lemma.

Lemma 4.14. The linear functionals Λ are linearly independent.

Proof. Let 𝑣ℎ ∈ 𝑉
𝑝2 , 𝑝1
ℎ,𝑟

(P) such that _ℓ (𝑣ℎ) = 0 for all ℓ = 1, . . . , 𝑚′. Now, the degrees of freedom (D1),
(D2) and (D3) of 𝑣ℎ are (obviously) zero as they are the values of the functionals _ (D1)

ℓ1
(𝑣ℎ), _ (D2)

ℓ2
(𝑣ℎ) and

_
(D3)
ℓ3

(𝑣ℎ). Moreover, it holds thatΠ𝑝1 ,P
𝑟 𝑣ℎ = 0, and, hence, Π𝑝1 ,P

𝑟−𝑝1𝑣ℎ = 0, as these projections only depend
on the degrees of freedom (D1), (D2) and (D3), cf. Lemma 4.10. Then, we observe that the definition of
the orthogonal projection Π0,P𝑟−𝑝1𝑣ℎ and the facts that _

(D̃3)

ℓ̃3
(𝑣ℎ) = 0 and Π𝑝1 ,P

𝑟−𝑝1𝑣ℎ = 0 imply that∫
P
𝑞𝑣ℎ 𝑑x =

∫
P
𝑞Π0,P𝑟−𝑝1𝑣ℎ 𝑑x =

∫
P
𝑞Π

𝑝1 ,P
𝑟−𝑝1𝑣ℎ 𝑑x = 0 (29)

for all 𝑞 ∈ P𝑟−𝑝1 (P) \ P𝑟−2𝑝1 (P). Therefore, the degrees of freedom (D̃3) of 𝑣ℎ are equal to zero and
finally 𝑣ℎ = 0 because the degrees of freedom (D1), (D2), (D3) and (D̃3) are unisolvent in 𝑉 𝑝2 , 𝑝1

ℎ,𝑟
(P).

This argument proves that the intersection of the kernels of all the linear functionals _ℓ contains only
the virtual element function that is identically zero over P, so that these linear functionals are necessarily
linearly independent.
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Using the linear functionals Λ, we reformulate the definition of space 𝑊 𝑝2 , 𝑝1
ℎ,𝑟

(P) in the following
equivalent way:

𝑊
𝑝2 , 𝑝1
ℎ,𝑟

(P) :=
{
𝑣ℎ ∈ 𝑉

𝑝2 , 𝑝1
ℎ,𝑟

(P) : _ (D̃3)

ℓ̃3
(𝑣ℎ) = 0 ∀ℓ̃3 = 𝑚 + 1, . . . , 𝑚′

}
. (30)

In other words,𝑊 𝑝2 , 𝑝1
ℎ,𝑟

(P) belongs to the intersection of the kernels of all the additional linear functionals
_ℓ with ℓ = 𝑚 + 1, . . . , 𝑚′. The space 𝑊 𝑝2 , 𝑝1

ℎ,𝑟
(P) has the two important properties that are stated in the

following lemma.

Lemma 4.15. The virtual element space 𝑊
𝑝2 , 𝑝1
ℎ,𝑟

(P) has the same dimension of the “regular” space
𝑉

𝑝2 , 𝑝1
ℎ,𝑟

(P) and the set of degrees of freedom (D1), (D2) and (D3) are unisolvent in 𝑊
𝑝2 , 𝑝1
ℎ,𝑟

(P).

Proof. In view of Lemma 4.14 the linear functionals in Λ are linearly independent and the cardinality of
Λ, i.e., 𝑚′ = #(Λ), is equal to the dimension of 𝑉 𝑝2 , 𝑝1

ℎ,𝑟
(P). Therefore,

(
P,P𝑟 (P),Λ

)
is a finite element in

the sense of Ciarlet, cf. [39]. So, there exists a set of 𝑚′ dual basis functions 𝜓ℓ such that

_ℓ (𝜓ℓ′) = 𝛿ℓ,ℓ′ ℓ, ℓ′ = 1, . . . , 𝑚′.

Now, it holds that _ (D̃3)

ℓ̃3
(𝜓ℓ′) = _ℓ (𝜓ℓ′) = 0 for ℓ′ = 1, . . . , 𝑚, ℓ = 𝑚 + 1, . . . , 𝑚′ (and the corresponding

values of the index ℓ̃3). This fact has the following consequences. The first𝑚 linearly independent functions
𝜓ℓ′ , ℓ′ = 1, . . . , 𝑚, belong to𝑊 𝑝2 , 𝑝1

ℎ,𝑟
(P), cf. formulation (30), since _ (D̃3)

ℓ̃3
(𝜓ℓ′) = _ℓ (𝜓ℓ′) = 0 for ℓ = 𝑚 +

1, . . . , 𝑚′ (and corresponding indices ℓ̃3). This implies that dim𝑊
𝑝2 , 𝑝1
ℎ,𝑟

(P) ≥ 𝑚. Furthermore, according
to the space definition (30) all virtual element functions 𝑤ℎ ∈ 𝑊

𝑝2 , 𝑝1
ℎ,𝑟

(P) are such that _ (D̃3)

ℓ̃3
(𝑤ℎ) =

_ℓ (𝑤ℎ) = 0 for ℓ = 𝑚 + 1, . . . , 𝑚′. Therefore, such functions can be written as a linear combination
of only the first 𝑚 basis functions 𝜓ℓ′ , ℓ′ = 1, . . . , 𝑚, are thus identified by the values of the linear
functionals _ (D1)

ℓ1
𝑣ℎ , _ (D2)

ℓ2
𝑣ℎ and _ (D3)

ℓ3
𝑣ℎ . Consequently, all virtual element functions of 𝑊 𝑝2 , 𝑝1

ℎ,𝑟
(P) are

uniquely identified by the degrees of freedom (D1), (D2), (D3) and, consequently, dim𝑊
𝑝2 , 𝑝1
ℎ,𝑟

(P) = 𝑚.

In view of Lemma 4.15, the orthogonal projection operator Π0,P𝑟−𝑝1 : 𝑊
𝑝2 , 𝑝1
ℎ,𝑟

(P) → P𝑟−𝑝1 (P) is
computable from the degrees of freedom (D1), (D2) and (D3).
Finally, we collect the local virtual element spaces into a global conforming virtual element space

𝑊
𝑝2 , 𝑝1
ℎ,𝑟

defined on Ω as

𝑊
𝑝2 , 𝑝1
ℎ,𝑟

=

{
𝑤ℎ ∈ 𝐻

𝑝1
0 (Ω) ∩ 𝐻 𝑝2 (Ω) : 𝑤ℎ |P ∈ 𝑊

𝑝2 , 𝑝1
ℎ,𝑟

(P) ∀P ∈ Ωℎ

}
, (31)

where𝑊 𝑝2 , 𝑝1
ℎ,𝑟

(P) is the local space defined above.

4.6. The virtual element bilinear form 𝑎ℎ (·, ·)
We discuss the definition of the bilinear form 𝑎ℎ (·, ·) that approximates the bilinear form 𝑎(·, ·) in

the virtual element discretization (5). This construction is the same for the “regular” virtual element
spaces (9) and (10) and the “enhanced” space (27). In this section we use the symbol 𝑉 𝑝2 , 𝑝1

ℎ,𝑟
(P) to

denote both choices of the spaces. However, such construction holds also for the enhanced virtual element
space (31). The symmetric bilinear form 𝑎ℎ : 𝑉 𝑝2 , 𝑝1

ℎ,𝑟
×𝑉

𝑝2 , 𝑝1
ℎ,𝑟

→ R, is written as the sum of local terms

𝑎ℎ (𝑢ℎ , 𝑣ℎ) =
∑︁

P∈Ωℎ

𝑎P
ℎ (𝑢ℎ , 𝑣ℎ), (32)
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where each local term 𝑎P
ℎ
: 𝑉 𝑝2 , 𝑝1

ℎ,𝑟
(P) ×𝑉

𝑝2 , 𝑝1
ℎ,𝑟

(P) → R is a symmetric bilinear form. We set

𝑎P
ℎ (𝑢ℎ , 𝑣ℎ) = 𝑎P

𝑝1 (Π
𝑝1 ,P
𝑟 𝑢ℎ ,Π

𝑝1 ,P
𝑟 𝑣ℎ) + 𝑆P (𝑢ℎ − Π

𝑝1 ,P
𝑟 𝑢ℎ , 𝑣ℎ − Π

𝑝1 ,P
𝑟 𝑣ℎ), (33)

where 𝑆P : 𝑉 𝑝2 , 𝑝1
ℎ,𝑟

(P) ×𝑉
𝑝2 , 𝑝1
ℎ,𝑟

(P) → R provides the stabilization term. The stabilization form 𝑆P (·, ·) is
a symmetric, positive definite bilinear form for which there exist two positive constants 𝜎∗ and 𝜎∗ such
that

𝜎∗𝑎
P
𝑝1 (𝑣ℎ , 𝑣ℎ) ≤ 𝑆P (𝑣ℎ , 𝑣ℎ) ≤ 𝜎∗𝑎P

𝑝1 (𝑣ℎ , 𝑣ℎ) ∀𝑣ℎ ∈ 𝑉
𝑝2 , 𝑝1
ℎ,𝑟

(P) with Π𝑝1 ,P
𝑟 𝑣ℎ = 0. (34)

The constants 𝜎∗, 𝜎∗ are independent of ℎ (and P). A possible proof of the validity of (34) for the so
called “dofi-dofi” stabilization in the context of arbitrarily regular conforming VEM can be found in [46]
(for the case 𝑝1 = 2 see also [36, 61]). This construction has the 𝑟-consistency and stability properties
stated in (6) and (7),

4.7. The virtual element approximation of the load term
To approximate the right-hand side term of (5) we first assume the elemental decomposition〈

𝑓ℎ , 𝑣ℎ
〉
=

∑︁
P∈Ωℎ

∫
P
𝑓ℎ𝑣ℎ 𝑑x. (35)

In Eq. (35), the elemental term 𝑓ℎ |P is defined as

𝑓ℎ |P =


Π
0,P
𝑟−2𝑝1 𝑓 , (𝑎) if 𝑝2 + 2𝑝1 − 1 ≤ 𝑟,

Π
0,P
𝑟−𝑝1 𝑓 , (𝑏) if 𝑝2 ≤ 𝑟 ≤ 𝑝2 + 2𝑝1 − 2.

(36)

We discuss the two definitions of 𝑓ℎ given above separately.

Remark 4.16. The right-hand side of (35) is fully computable by using only the degrees of freedom (D3)
if 𝑟 ≥ 2𝑝1 and we choose 𝑓ℎ as the piecewise polynomial approximation of 𝑓 on Ωℎ in accordance with
(𝑎). In such a case, we do not need to resort to the enhanced virtual element space defined in (27).

Now, consider decomposition (35) and definition (𝑎). Since 𝑝2 ≥ 𝑝1, it holds that 𝑟 − 2𝑝1 ≥ 𝑝2 − 1
(equivalently, 𝑟 ≥ 3𝑝1 − 1). Thus, using the definition of the 𝐿2-orthogonal projection, from (35), we find
that 〈

𝑓ℎ , 𝑣ℎ
〉
=

∑︁
P∈Ωℎ

∫
P
Π
0,P
𝑟−2𝑝1 𝑓 𝑣ℎ 𝑑x =

∑︁
P∈Ωℎ

∫
P
Π
0,P
𝑟−2𝑝1 𝑓Π

0,P
𝑝1−1𝑣ℎ 𝑑x. (37)

Applying standard approximation results to (37) and recalling that 𝑣ℎ ∈ 𝑉
𝑝2 , 𝑝1
ℎ,𝑟

⊂ 𝐻
𝑝1
0 (Ω) ∩𝐻 𝑝2 (Ω) yield

the following estimate 〈
𝑓 − 𝑓ℎ , 𝑣ℎ

〉
≤ 𝐶ℎ𝑟−𝑝1+1 |𝑣ℎ |𝑝1 | 𝑓 |𝑟−2𝑝1+1,

for some positive constant 𝐶 that is independent of ℎ. In particular, for 𝑝1 = 𝑝2 ≥ 2 it is enough to choose
𝑟 ≥ 2𝑝2 +1 (the case 𝑝1 = 𝑝2 = 2 and 𝑟 ≥ 5 has been originally treated in [33]). Note that for fixed values
of 𝑝1, larger values of the regularity parameter 𝑝2 ensure higher convergence rate for the approximation
of the right-hand side. This is a specific attractive feature of arbitrarily regular conforming VEM (which
can not be exploited, e.g., in the nonconforming setting).
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Now, consider decomposition (35) and definition (𝑏). Similarly to the previous case, using the
definition of the 𝐿2-orthogonal projection yields〈

𝑓ℎ , 𝑣ℎ
〉
=

∑︁
P∈Ωℎ

∫
P
Π0,P𝑟−𝑝1 𝑓 𝑣ℎ 𝑑x =

∑︁
P∈Ωℎ

∫
P
Π0,P𝑟−𝑝1 𝑓 Π

0,P
0 𝑣ℎ 𝑑x. (38)

Applying again standard approximation results to (38) we we find that〈
𝑓 − 𝑓ℎ , 𝑣ℎ

〉
≤ 𝐶ℎ𝑟−𝑝1+2 |𝑣ℎ |𝑝1 | 𝑓 |𝑟−𝑝1+1.

For arbitrary values of 𝑝1 and 𝑝2, the use of the enhancement approach might be avoided using arguments
similar to those employed in [47].

4.8. Error analysis
In this section, we briefly recall a convergence result in the energy norm [10] (see also [4, 46]) for

the approximation of (1a)-(1b). In particular, employing Theorem 3.1 together with standard results of
approximation (see, e.g., Reference [19, 46, 60]) and the approximation properties of the right-hand side
contained in Section 4.7.

Theorem 4.17. Let 𝑢 ∈ 𝐻
𝑝1
0 (Ω) ∩ 𝐻𝑟+1 (Ω) be the solution of the polyharmonic problem (1a)-(1b) and

let 𝑢ℎ ∈ 𝑉
𝑝2 , 𝑝1
ℎ,𝑟

be the solution of the discrete problem (5). Assume that 𝑓 is sufficiently regular. Then,
there exists a positive constant 𝐶 independent of ℎ such that

||𝑢 − 𝑢ℎ ||𝑉 ≤ 𝐶ℎ𝑟−(𝑝1−1) . (39)

Remark 4.18. Convergence estimates in lower order norms can be established provided that classical
duality arguments can be used and that the polynomial approximation order 𝑟 is sufficient large[4, 10, 38].

5. Conclusion

We reviewed the construction of highly regular virtual element spaces for the conforming approxima-
tions in two spatial dimensions of elliptic problems of order 𝑝1 ≥ 1. The resulting finite dimensional
virtual spaces are subspaces of 𝐻 𝑝2 (Ω), 𝑝2 ≥ 𝑝1. We presented an abstract convergence result in a
suitably defined energy norm. Moreover, after discussing the construction of the approximation spaces
and major aspects such as the choice and unisolvence of the degrees of freedom, we provided specific
examples of highly regular virtual spaces, corresponding to various practical cases. Finally, a detailed
discussion of the properties of the “enhanced” formulation of the virtual element spaces is provided.
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