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Effective algebraic integration in bounded genus

Jorge Vitório Pereira and Roberto Svaldi

Abstract

We introduce and study birational invariants for foliations on projective surfaces built
from the adjoint linear series of positive powers of the canonical bundle of the foliation.
We apply the results to investigate the effective algebraic integration of foliations on the
projective plane. In particular, we describe the Zariski closure of the set Σd,g of foliations
on P2 of degree d admitting rational first integrals with fibers having geometric genus
bounded by g.

1. Introduction

1.1 Effective algebraic integration

It seems fair to say that the simplest class of algebraic ordinary differential equations consists of
the class of equations having all their solutions algebraic. In general, given an explicit differential
equation, it is a difficult problem to decide whether or not it belongs to this distinguished class.
Perhaps the first positive result on the subject is Schwarz’s list of parameters for which Gauss’
hypergeometric equation has an algebraic solution [Sch73].

Motivated by this remarkable result, a lot of activity on the study of algebraic solutions
of linear differential equations took place in the nineteenth century, leading to a fairly good
understanding of the problem for homogeneous linear differential equations. Among the works
dealing with this question, one can find contributions by Fuchs, Gordan, Jordan, Halphen, and
Klein, just to name a few. At that time, the community seemed to believe that it would be
possible to decide whether or not all solutions of a given linear differential equation are algebraic.
For instance, Klein concludes [Kle56, Chapter V, Section 3] with the remark that “Thus is the
problem, which we formulated at the beginning of this paragraph [present all linear homogeneous
differential equations of the second order with rational coefficients: y′′+py′+qy = 0 which possess
altogether algebraic solutions], fully solved.”

By the end of the nineteenth century, mathematicians like Painlevé, Autonne, and Poincaré
[Poi91, Poi97] started to study the next case, that is, polynomial differential equations of first
order and of first degree. In modern language, they studied foliations on the projective plane
with special emphasis on the existence of methods/algorithms to decide whether or not all leaves
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are algebraic. We will call this general line of inquiry effective algebraic integration. The results
obtained at that time relied on strong assumptions on the nature of the singularities of the
foliations and were not considered definitive, as one can learn from the introduction1 of [Poi97].
For a modern account of some of these classical results, see [GZ97] and [Per03, Chapter 7].

The results of the nineteenth century on the effective integration of linear differential equations
were revisited in the course of the twentieth century. It was then made clear that a full solution
for the problem was not available; rather, the problem was reduced to a similar one for rank one
linear differential equations over curves. More precisely, in order to be able to decide whether or
not a homogeneous linear differential equation P

(
x, y, y′, y′′, y′′′, . . . , y(n)

)
= 0 has all its solutions

algebraic, it suffices to be able to solve the following problem: given an element u belonging to an
algebraic extension of the field C(x), decide whether u is the logarithmic derivative of an element
v also belonging to an algebraic extension of C(x). Some authors expressed doubts about the
possibility of solving this problem. For instance, in [Har71, Chapter V, Section 19(i), p. 51], one
can find the view of Hardy2 on the subject.

Despite the skepticism of Hardy and others (cf. [Ris70]), in the late 1960s, Risch (ibid) showed
that this problem, in turn, can be reduced to the following one: given an explicit divisor on an
explicit algebraic curve C, decide whether or not the divisor is of finite order in the Jacobian
of C. Risch proved that this problem can be solved by restricting the data modulo two distinct
primes and using the resulting bounds in positive characteristic to devise an explicit bound in
characteristic zero. For a detailed account of the case of second-order homogeneous differential
equations; see [BD79]. The interested reader can find more about the history of effective algebraic
integration of linear differential equations in [vdPS03, Section 4.3.1, p. 124], [Gra08, Chapter III],
and the references therein.

The corresponding problem for (non-linear) differential equations of the first order and of the
first degree is still wide open and received considerably less attention. After the problem was
dormant for a good while, the interest towards it has been revived by experts in foliation theory
who considered the problem of bounding the degree of algebraic leaves of foliations on P2; see
for instance [CL91, Car94, CC97, EK03] and references therein. The influence of arithmetic on
the subject was rediscovered by Lins Neto [Lin02], who determined algebraic families (pencils)
of foliations on the projective plane with fixed number and analytical type of singularities and
with algebraic leaves of arbitrarily large degree.

1.2 Degenerations of planar foliations admitting a rational first integral

This work investigates the problem of effective algebraic integration for foliations on projective
surfaces. In order to focus the discussion and clarify the framework in which we are going to
carry it, we introduce the following conjecture.

Conjecture 1.1. The Zariski closure in PH0
(
P2, TP2(d− 1)

)
of the set of foliations of degree d

on P2 which admit a rational integral consists of transversely projective foliations.

1“Je me suis occupé de nouveau de la même question dans ces derniers temps, dans l’ espoir que je parviendrais
à généraliser les résultats obtenus. Cet espoir a été déçu. J’ai obtenu cependant quelques résultats partiels, que je
prends la liberté de publier, estimant qu’on pourra s’en servir plus tard pour obtenir, par un nouvel effort, une
solution plus satisfaisante du problème.”
2“But no method has been devised as yet by which we can always determine in a finite number of steps whether
a given elliptic integral is pseudo-elliptic, and integrate it if it is, and there is reason to suppose that no such
method can be given.”
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This conjecture is inspired by a remark made by Painlevé3 [Pai97, Douzième Leçon, Conclu-
sions, pp. 216bis–217] in his Stockholm lectures. Knowledge of a transversely projective structure
for a given foliation, in view of their recent description [CP14, LPT16], would allow one to re-
duce the problem to either the determination of periods of differential forms—when, after passing
to a ramified covering, the foliation is defined by a closed rational 1-form—or to the algebraic
integrability of Riccati equations.

The main results of this paper provide evidence in favor of this conjecture and are obtained
using birational techniques. More precisely, we use basic results on adjoint linear series, the
birational classification of foliated surfaces according to their Kodaira dimension [McQ08, Bru04,
Men00], to obtain a variant of the classification which we now proceed to explain.

1.3 Adjoint dimension of foliations

The works of the Italian school of algebraic geometry in the beginning of the twentieth century
showed how much of the geometry of a smooth projective surface X can be determined by the
order of growth of the function

n 7→ h0
(
X,KX

⊗n) .
Whenever this function grows slower than a quadratic polynomial, one has a rather precise
description of the surface (the so-called Enriques–Kodaira classification). A similar classification
is also available in dimension three thanks to the works of the modern school of birational
geometry, and there is also a similar picture in arbitrary dimensions conditional on the so-called
abundance conjecture.

In the case of foliations on surfaces, McQuillan, Brunella, and Mendes obtained a very precise
classification, analogous to the Enriques–Kodaira classification, in terms of the Kodaira dimen-
sion of the foliation. As in the case of surfaces, the Kodaira dimension kod(F) of a foliation
F measures the growth of the function h0

(
X,KF

⊗n), where KF is the bundle of holomorphic
1-forms along the leaves of the foliation.

As the terminology suggests, the canonical bundle together with its dual is the most ob-
vious naturally determined line bundle on a variety. Combined with the fact that the integers
h0
(
X,KX

⊗n) (n > 0) are birational invariants for smooth projective varieties, its study is rather
natural if one wants to understand varieties birationally. For foliations of arbitrary dimension or
codimension, besides the canonical bundle, one also has another naturally attached line bundle:
the determinant of the conormal bundle. If F is a foliation on a projective surface X with canoni-
cal singularities, then it turns out that for arbitrary n,m > 0, the integers h0

(
X,KF

⊗n⊗N∗F
⊗m)

are birational invariants. Most of the results obtained in this paper stem from this simple ob-
servation. We define the adjoint dimension of a foliation according to the order of growth of the
function h0

(
X,KF

⊗n ⊗N∗F
⊗m); see Section 3.

Building on the classification of foliations on surfaces according to their Kodaira dimension, in
Section 6 we present a classification in function of the adjoint dimension. The results we obtain are
summarized in Table 1. The outcome of the classification provides a framework well-suited to deal
with families of foliations (Section 7), mainly due to the fact that it is more flexible with respect
to the type of singularities which are allowed (Section 4). The classification in terms of the adjoint

3“J’ajoute qu’on ne peut espérer résoudre d’un coup qui consiste à limiter n. L’énoncé vers lequel il faut tendre
doit avoir la forme suivante: ‘On sait reconnâıtre si l’intégrale dune équation F (y′, y, x) = 0 donnée est algébrique
ou ramener l’équation aux quadratures.’ Dans ce dernier cas, la question reviendrait à reconnâıtre si une certaine
intégrale abélienne (de première ou de troisième espèce) n’a que deux ou une périodes.”
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dimension also reflects distinct cases of the problem of effective algebraic integration (Section 8).

adj kod Description

−∞ −∞ Rational fibration
0 Finite quotient of Riccati foliation generated by global vector field
1 Riccati foliation

0 0 Finite quotient of linear foliation on a torus

1 0 Finite quotient of E × C → C, g(C) > 2
1 Finite quotient of E × C → E, g(C) > 2
1 Turbulent foliation
1 Non-isotrivial elliptic fibration

2 −∞ Irreducible quotient of H×H→ H
1 Finite quotient of C1 × C2 → C1, g(Ci) > 2
2 General type

Table 1. Classification of foliations according to their adjoint and Kodaira dimensions

1.4 Plan of the paper and statement of the main results

The bulk of the paper starts by reviewing the classification of foliations with respect to their
Kodaira dimension, in Section 2. Then we introduce new birational invariants for foliations on
surfaces, notably the effective threshold and the adjoint dimension, in Section 3. Section 4 is
devoted to the study of a variation of the concept of canonical singularities, the so-called ε-
canonical singularities. We prove in Corollary 4.10 that for ε > 0, this concept is stable for small
perturbations of the singularity of the foliation. This fact will be particularly important in the
study of families of foliations carried out in Section 7.

Section 5 is devoted to the proof of the boundedness of non-isotrivial fibrations of bounded
genus in families; see Theorem 5.4. In the particular case of P2, the result reads as follows.

Theorem A. Let F be a foliation on P2. Assume that F is birationally equivalent to a non-
isotrivial fibration of genus g > 2. Then the degree of the general leaf of F is bounded by(

4(42(2g − 2))!
)2

(4g − 4) deg(F) .

Theorem A refines the main result of [Per02], which establishes the existence of a bound for
the degree of the general leaf depending on its genus and on the first k > 0 for which the linear
system

∣∣KF⊗k∣∣ defines a rational map with two-dimensional image. The existence of a universal k
working for every non-isotrivial fibration of genus g was not known then and is still not known at
the present time; hence, the existence of a bound depending only on the degree of the foliation
and on the genus was unclear. In comparison to [Per02], the proof of the result above has two
new ingredients. The first is a bound on the multiplicities of irreducible components of fibers
of relatively minimal non-isotrivial fibrations of genus g > 2; cf. Proposition 5.3. The second
new ingredient is the use of standard results on adjoint linear series (recalled in Section 5.1) in
order to obtain effective (n,m) ∈ N2 such that the rational map defined by

∣∣KF⊗n ⊗ KX
⊗m∣∣

has a two-dimensional image. By imposing further assumptions on the nature of the singularities
of a foliation on P2, we obtain significantly better bounds (sub-linear on g), refining a classical
result of Poincaré; cf. Theorem 5.6.
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In Section 6, we carry out the classification of foliations on surfaces according to the adjoint
dimension; see Table 1. The proof strongly relies on the classification of foliations according to the
Kodaira dimension, but we do need to carefully deal with its subtlest point: the classification of
non-abundant foliations. A nice corollary of the classification is a cohomological characterization
of rational fibrations, which is a weak analogue of Castelnuovo’s criterion for the rationality of
surfaces; cf. [Bea96, Theorem V.1].

Theorem B. Let F be a foliation with at worst canonical singularities on a smooth projective
surface X. The foliation F is a rational fibration if and only if h0

(
X,KF

⊗n ⊗ N∗F
⊗m) = 0 for

every n > 1 and every m > 0.

Section 7 investigates families of foliations. There, it is shown that the set of effective thresh-
olds in a family does not accumulate at zero (Theorem 7.6). More importantly, it prepares the
ground for the proof of the most compelling evidence we have so far in favor of Conjecture 1.1.

Theorem C. The Zariski closure in PH0
(
P2, TP2(d−1)

)
of the set of degree d foliations admitting

a rational first integral with general fiber of genus at most g is formed by transversely projective
foliations.

This theorem’s proof is presented in Section 8 and relies on Theorem A, on the birational
classification of foliations, and on basic properties of families of foliations.

2. Kodaira dimension of foliations

We start things off by reviewing the birational classification of foliations on surfaces follow-
ing [McQ08] and [Bru04]. No new results are presented in this section. We have only included
proofs of a few key properties of the Zariski decomposition of the canonical bundle of a foliation
which will be used further on.

2.1 Singularities of foliations

Definition 2.1. Let F be a foliation on X, and let π : Y → X be a birational morphism. Denote
the pull-back of F under π by G. If E is an exceptional divisor of π, then the discrepancy of F
along E is

a(F , E) = ordE(KG − π∗KF ) .

Definition 2.2. Let F be a foliation on X. A point x ∈ X is canonical for F if and only
if a(F , E) > 0 for every divisor E over x. A point x ∈ X is log canonical for F if and only
a(F , E) > −1 for every divisor E over x.

Example 2.3. Consider the pencil of foliations on X = P2 defined by the vector fields sx ∂
∂x +ty ∂

∂y ,

where (s : t) ∈ P1. If s · t · (s − t) 6= 0, then F(s:t) is a foliation with trivial canonical bundle
and three singularities at the points (0 : 0 : 1), (0 : 1 : 0), and (1 : 0 : 0). For (s : t) /∈ P1(Q),
the three singularities are canonical. For (s : t) ∈ P1(Q) − {(0 : 1), (1 : 0), (1 : 1)}, two of the
singularities are log canonical but not canonical, while the third singularity is canonical. Finally,
when s ·t ·(s−t) = 0, the vector field will have one of the coordinate axes as a line of singularities.
The corresponding foliation will have canonical bundle OP2(−1) and only one singularity, which
is log canonical but not canonical.

Any foliation on a projective surface is birationally equivalent to a foliation having at worst
canonical singularities thanks to the following, which is essentially due to Seidenberg.
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Theorem 2.4. Let F be a foliation on a smooth projective surface X. Then there exists a finite
composition of blow-ups π : Y → X such that all the singularities of π∗F are canonical.

2.2 Kodaira dimension

Definition 2.5. Let F be a foliation with at worst canonical singularities on a smooth projective
surface X. The Kodaira dimension kod(F) of F is by definition

kod(F) := kod(KF ) = max
m∈N
{dimφm(X)} ,

where φm is the rational map from X to P
(
H0
(
X,KF

⊗m)∗) induced by the linear system∣∣H0
(
X,KF

⊗m)∣∣, and we adopt the convention that dimφm(X) = −∞ when h0
(
X,KF

⊗m) = 0
(and it is not possible to define the associated map).

The numerical Kodaira dimension ν(F) of F is defined to be the numerical dimension of KF ,
that is,

– ν(F) = −∞ if KF is not pseudoeffective, while

– if KF is pseudoeffective with Zariski decomposition KF = P + N , then ν(F) = 0 if P is
numerically zero, ν(F) = 1 if P 6= 0 but P 2 = 0, and ν(F) = 2 if P 2 > 0.

The classification of foliations with negative numerical Kodaira dimension stated in the next
result is due to Miyaoka.

Theorem 2.6. Let F be a foliation on a projective surface X. If KF is not pseudoeffective,
then F is birationally equivalent to a P1-bundle over a curve.

2.3 Relatively minimal models

Definition 2.7. Let F be a foliation with canonical singularities on a smooth projective sur-
face X. An irreducible curve C ⊂ X is called F-exceptional if KX ·C = −1 (that is, C ' P1 and
C2 = −1) and the contraction of C gives rise to a foliation with canonical singularities.

Definition 2.8. Let F be a foliation with canonical singularities on a smooth projective sur-
face X. A relatively minimal model for F is the datum of a foliation G with canonical singularities
and without G-exceptional curves on a smooth projective surface Y which is birationally equiva-
lent to F . We say that G is a minimal model if for any birational map π : Z 99K Y and any folia-
tion H on Z with canonical singularities such that π∗H = G, the map π is a birational morphism.

The definitions above and the next result are essentially due to Brunella [Bru99]. The only
minor difference is that in the original definition of F-exceptional curve, Brunella considered
only reduced singularities instead of canonical singularities. Nonetheless, his proof also works in
this slightly more general situation.

Theorem 2.9. Let F be a foliation with at worst canonical singularities on a smooth surface X.
There exists a birational morphism π : X → Y such that π∗F is a relatively minimal model
for F . Moreover, π∗F is a minimal model for F unless F is birationally equivalent to a rational
fibration, a Riccati foliation, or Brunella’s special foliation H.

The reader will find the explicit construction of the foliation H from the theorem in [Bru99].

Remark 2.10. Theorem 2.9 highlights one of the differences between the birational classification
of projective surfaces and that of foliations on surfaces: while surfaces of non-negative Kodaira
dimension always have a unique minimal model, there are foliations of Kodaira dimension zero
and one which do not have unique minimal models.

459



J.V. Pereira and R. Svaldi

2.4 Zariski decomposition and nef models

If L is a pseudoeffective line bundle on a smooth projective surface, then L is Q-linearly equivalent
to PL + NL, where PL is a nef Q-divisor and NL is a contractible effective Q-divisor satisfying
PL ·NL = 0. This is the so-called Zariski decomposition of L. We will denote by i(F) the index
of KF , that is, the minimum of the set {n ∈ N |nN has integral coefficients}.

Theorem 2.11 ([Bru04, Chapter 8, Theorem 1]). Let F be a relatively minimal foliation on
a smooth projective surface X. If KF is pseudoeffective and P +N is its Zariski decomposition,
then the support of N is a disjoint union of Hirzebruch–Jung strings.

A Hirzebruch–Jung string is a chain of smooth rational curves of self-intersection at most −2.
At one end of the chain, the handle of the Hirzebruch–Jung string, the foliation has only one
singularity. Every other curve in the chain contains two singularities of the foliation. There is only
one singularity of F on the Hirzebruch–Jung string which does not coincide with a singularity
of its support. There exists a unique leaf of F not contained in the Hirzebruch–Jung string that
passes through this singularity. Such a curve is called the tail of the Hirzebruch–Jung string.

handle
tail

contraction

morphism
tail

Definition 2.12. Let F be a relatively minimal foliation with pseudoeffective KF on a smooth
projective surface X. The order of a maximal Hirzebruch–Jung string contained in the support
of N is the determinant of the negative of the intersection matrix of its support.

The following proposition shows that the order and the index are closely related.

Proposition 2.13. We use the notation of Definition 2.12. The following assertions hold true:

(i) The order of a maximal Hirzebruch–Jung string J contained in the support of N coincides
with the smallest o ∈ N such that the coefficients of N corresponding to curves in J belong
to (1/o)N.

(ii) The contraction of a Hirzebruch–Jung string of order o is locally isomorphic to the quotient
of a smooth foliation on

(
C2, 0

)
by the cyclic group generated by an automorphism of the

form (x, y) 7→ (ξo ·x, ξao ·y), where ξo is a primitive root of unity of order o and a is a natural
number relatively prime to o.

Proof. The statement is local, so we may very well assume that the support of N is connected.
Let us write N =

∑k
i=1 aiEi, where the Ei are the irreducible components of N . We denote by

E1 the handle of the Hirzebruch–Jung string, while the other curves are numbered following the
order in which they appear in the chain.

Let A = (Ei · Ej)i,j be the intersection matrix of the Hirzebruch–Jung string, and let o =
det(−A) be the order of the Hirzebruch–Jung string. To determine the coefficients a1, . . . , ak,
we have to solve the linear system (−A) · (a1, a2, . . . , ak)T = (1, 0, . . . , 0)T. Therefore, the coeffi-
cients ai certainly lie in (1/o)N. To see that o is the minimal number with this property, it suffices
to notice that ak = 1/o; cf. [McQ08, proof of Proposition III.1.4]. This proves item (i). Item (ii)
is [McQ08, Reinterpretation III.2.bis.3.a]

In the lemma below, we collect some properties of tails of Hirzebruch–Jung strings for later
use.
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Lemma 2.14. Let F be a relatively minimal foliation with pseudoeffective canonical bundle on
a smooth projective surface X. Let T be an irreducible invariant curve not contained in the
support of N , and let o1, . . . , ok be the orders of Hirzebruch–Jung strings intersecting T . Then
the following assertions hold true:

(i) The intersection of the positive part of the Zariski decomposition of KF with T is given by
the formula

P · T = KF · T −
k∑

i=1

1

oi
.

(ii) If F admits a holomorphic first integral f : U → C defined on an F-invariant neighborhood
of T which vanishes along T , then the vanishing order along T is a multiple of the least
common multiple of o1, . . . , ok.

Proof. Item (i) is [McQ08, Remark III.1.3.a]. To verify item (ii), let us work locally on a neigh-
borhood V of a Hirzebruch–Jung string intersecting T . Let π : V → W be the contraction of
the Hirzebruch–Jung string we are considering and o be its order. Perhaps after restricting V to
a smaller neighborhood, we can assume that W is the quotient of a neighborhood Ṽ of the origin
in C2 by a cyclic group generated by ϕ(x, y) = (ξo · x, ξao · y), according to Proposition 2.13. We
can also assume that the pull-back G of π∗(F|V ) to Ṽ is the foliation defined by the level sets of

the coordinate function y. The pull-back of π∗(f|V ) to Ṽ is a holomorphic function g constant
along the leaves of G. The ϕ-invariance of g implies that g(x, y) = h(yo) for some one-variable
holomorphic function h. Item (ii) follows.

Definition 2.15. Let F be a relatively minimal foliation on a smooth surface X with pseudoef-
fective canonical divisor. The nef model of F is the foliation obtained by contracting the negative
part of the Zariski decomposition of KF .

2.5 Canonical models

Definition 2.16. A foliation F on a normal projective surface X is called a canonical model
if KF is nef and KF · C = 0 implies C2 > 0 for every irreducible curve C ⊂ X.

Theorem 2.17 ([McQ08, Theorem 3.3.2]). Let F be relatively minimal foliation with KF pseu-
doeffective on a smooth surface X. Then there exists a morphism π : X → Y from X to a normal
projective surface Y such that G = π∗F is a canonical model. The singular points of Y and the
corresponding exceptional fibers of π are of one of the following forms:

(i) The singular point is a cyclic quotient singularity, and the exceptional divisor over it is
a chain of rational curves of self-intersection at most −2,

· · ·

The foliation around the singular point is the quotient of a smooth foliation, or the quotient
of a canonical foliation singularity on a (germ of a) smooth surface;

(ii) The singular point is a dihedral quotient singularity, and the exceptional divisor over it has
the following dual graph:

· · ·

The foliation around the singularity is again the quotient of a smooth foliation or of a canon-
ical singularity on a (germ of a) smooth surface.
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(iii) The singular point is an elliptic Gorenstein singularity, and the exceptional divisor is a cycle
of smooth rational curves each of self-intersection at most −2

or a unique nodal rational curve of negative self-intersection. The foliation around the
singular point is isomorphic to a cusp of a Hilbert modular foliation (cf. [McQ08, Theo-
rem IV.2.2]). Moreover, the canonical bundle of the foliation on the canonical model is never
Q-Cartier.

When compared with the theory for projective surfaces, item (iii) of Theorem 2.17 is quite
surprising. The fact that the canonical bundle is never Q-Cartier is a clear obstruction to the base
point freeness of

∣∣KF⊗n∣∣ and to the finite generation of the canonical algebra of the foliation. It
turns out that this is the only obstruction; cf. [McQ08, Corollary IV.2.3].

2.6 Kodaira dimension zero

Theorem 2.18 ([McQ08, Fact IV.3.3]). Let F be a relatively minimal foliation on a smooth
projective surface X with ν(F) = 0. Let π : X → Z be the contraction of the negative part
of KF ; that is, π∗F is a nef model for F . Then there exist a smooth projective surface Y and
a quasi-étale cyclic covering p : Y → Z of degree i(F) such that p∗π∗F is a foliation with trivial
canonical bundle. In particular, kod(F) = 0.

The resulting surface Y belongs to the following list:

(1) Product of a hyperbolic curve and an elliptic curve

(2) Abelian surface

(3) Projective bundle over an elliptic curve

(4) Rational surface

Consequently, the Kawamata log terminal (klt) surface Z has Kodaira dimension 1, 0, or −∞
according to whether Y fits in case (1), (2), or (3)/(4). One can also determine the possibilities
for the index of F . This is done in [Per02]. There, it is shown that

i(F) ∈ {1, 2, 3, 4, 5, 6, 8, 10, 12} (2.1)

when F has Kodaira dimension zero.

2.7 Kodaira dimension one

The classification of foliations of Kodaira dimension one is essentially due to Mendes; see [Men00,
Theorem 3.3.1].

Theorem 2.19. Let F be a relatively minimal foliation on a smooth projective surface X.
Assume that kod(F) = 1, and let f : X → C be the Iitaka fibration of KF . If F coincides with
the foliation defined by f , then f is a non-isotrivial elliptic fibration. Otherwise, F is completely
transverse to a general fiber F of f , and we have the following possibilities:

(i) The genus of F is zero, and F is a Riccati foliation.

(ii) The genus of F is one, and F is a turbulent foliation.

(iii) The genus of F is at least two, and F is an isotrivial fibration of genus at least two.
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2.8 Non-abundant foliations

The most striking difference between the birational classification of projective surfaces and the
classification of rank one foliations in dimension two is the existence of foliations having canonical
bundle with numerical dimension one and negative Kodaira dimension. This phenomenon is
restricted to a rather special class of foliations, as pointed out by the next result.

Theorem 2.20. Let F be a relatively minimal foliation on a smooth projective surface X. If the
numerical dimension of F does not coincide with the Kodaira dimension of F , then

(i) ν(F) = 1,

(ii) kod(F) = −∞,

(iii) X is the minimal desingularization of the Baily–Borel compactification of an irreducible
quotient of H×H, and

(iv) F is induced by one of the two natural fibrations on H×H.

Arguably, this result constitutes the hardest part of the classification of foliations. The known
proofs of this result rely heavily on Brunella’s plurisubharmonic variation of the Poincaré metric
and were obtained by Brunella and McQuillan in a collaborative effort.

In Section 6, we will carry out a classification of foliations in terms of another birational
invariant. This new classification relies heavily on the original classification of surface foliations
according to their Kodaira dimension; nonetheless, it does not need the full power of it. In
particular, all that we need to know about non-abundant foliations is contained in the following
lemma.

Lemma 2.21. Let F be a relatively minimal foliation with ν(F) = 1 and kod(F) = −∞. Then
h1(X,OX) = 0 and P ·N∗F = P ·KX > 0, where P is the positive part of the Zariski decomposition
of KF .

Proof. If h1(X,OX) = h0(X,Ω1
X) 6= 0, then the restriction of a holomorphic 1-form to the leaves

of F either vanishes identically or gives rise to a non-zero section of KF . Thus if kod(F) = −∞,
we obtain that F factors through the Albanese map of X and is a fibration. Hence kod(F) > 0,
contrary to our assumptions. Thus h1(X,OX) = 0.

Since h1(X,OX) = 0, we obtain that χ(OX) > 1. Let L = OX(mP ), where m is a sufficiently
divisible positive integer. By the Riemann–Roch theorem,

χ(L) = χ(OX) + 1
2

(
m2P 2 −mP ·KX

)
.

If P ·KX < 0, then χ(L) > 0. Thus h0(X,L) + h2(X,L) > 0. But if m is sufficiently large, then
KX ⊗ L∗ is not pseudoeffective, and consequently h2(X,L) = h0(X,KX ⊗ L∗) = 0. It follows
that h0

(
X,KF

⊗m) = h0(X,L) > 0, contradicting kod(F) = −∞.

3. Effective threshold and adjoint dimension

In this section, we define the effective threshold and the adjoint dimension of a foliation on
a smooth projective surface and prove their birational invariance.

3.1 Effective threshold

Definition 3.1. Let F be a foliation with canonical singularities on a smooth projective sur-
face X. If the canonical bundle of F is pseudoeffective, then we define the effective threshold
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eff(F) of F as the largest ε ∈ R>0 ∪ {∞} such that KF + εN∗F is pseudoeffective. If KF is not
pseudoeffective, then we set eff(F) = −∞.

Example 3.2. Let F be a very general foliation on P2 of degree d. It is well known that F
has reduced, and in particular canonical, singularities. Recall that the degree of F is defined
as the number of tangencies between F and a general line. In this case, KF = OP2(d − 1) and
N∗F = OP2(−d − 2). If d = 0, then KF is not pseudoeffective. If instead d > 1, then KF is
pseudoeffective and

eff(F) =
d− 1

d+ 2
.

The reader should notice that eff(F) < 1 for every foliation on P2.

This is by no means a coincidence since KX = KF + N∗F and foliations on a surface X
of negative Kodaira dimension will always have eff(F) < 1 as KX is not pseudoeffective. If
instead X has non-negative Kodaira dimension, then KX is pseudoeffective, and consequently
eff(F) > 1 for every foliation on X.

Similarly, one sees that eff(F) = ∞ if and only if both KF and N∗F are pseudoeffective.
Foliations with pseudoeffective conormal bundle have recently been classified by Touzet [Tou16].
They fit into one of the following descriptions:

(1) After a finite étale cover, F is defined by a closed holomorphic 1-form.

(2) There exists a morphism from X to a quotient of a polydisc Dm by an irreducible lattice,
and F is the pull-back of one of the m tautological foliations on the polydisc. In particular,
F is transversely hyperbolic.

Notice that the dimension of the ambient manifold is not necessarily equal to the dimension of
the polydisc.

Remark 3.3. Using the identity KX = KF +N∗F , we can write

KF + εN∗F = (1− ε)
(
KF +

ε

1− ε
KX

)
when ε 6= 1.

When eff(F) is small, we will often work with KF + εKX as that is more convenient.

3.2 Adjoint dimension

Definition 3.4. Let F be a foliation with canonical singularities on a projective surface X.
Consider the pluricanonical maps

ϕm,n : X 99K PH0
(
X,KF

⊗m ⊗N∗F
⊗n)∗

for m > 1 and n > 1. The adjoint dimension of F , denoted by adj(F), is the maximal dimension
of the image of these maps. If h0

(
X,KF

⊗m ⊗ N∗F
⊗n) = 0 for every m,n > 1, then we set

adj(F) = −∞.

Definition 3.5. Let F be a foliation with canonical singularities on a projective surface X.
The numerical adjoint dimension adjnum(F) of F is equal to −∞ if eff(F) 6 0 and equal to the
maximal numerical dimension of KF + εN∗F for ε ∈ (0, eff(F)) otherwise.

Of course, adj(F) 6 adjnum(F).

464



Effective algebraic integration in bounded genus

3.3 Birational invariance

The significance of the concepts of effective threshold and of (numerical) adjoint dimension for the
purpose of the birational classification of foliations on surfaces is assured by the next proposition.

Proposition 3.6. Let (X,F) and (Y,G) be two birationally equivalent foliations. If F and G
have at worst canonical singularities, then eff(F) = eff(G), adj(F) = adj(G), and adjnum(F) =
adjnum(G). Furthermore, h0

(
X,KF

⊗n ⊗N∗F
⊗m) = h0

(
Y,KG

⊗n ⊗N∗G
⊗m) for every n,m > 0.

Proof. Since we can choose a foliation (Z,H) on a smooth projective surface Z dominating both
(X,F) and (Y,G), there is no loss of generality in assuming the existence of a birational morphism
π : (X,F)→ (Y,G). In fact, we can (and will) even assume that π is the blow-up of a point p ∈ Y .
Let E be the exceptional divisor.

We will first prove that eff(F) = eff(G). First, notice that KG + εN∗G = π∗(KF + εN∗F ).
Therefore, if KF + εN∗F is pseudoeffective, then the same holds true for KG + εN∗G . This shows
that eff(G) > eff(F). To prove the converse inequality, we will need to use that G has canonical
singularities. Since π is the blow-up of a point by assumption, we have that KF − π∗KG = aE
for some a ∈ {0, 1}. Since KX − π∗KY = E, we also have that N∗F − π∗N∗G = (1 − a)E, and
consequently

KF + εN∗F = π∗(KG + εN∗G) + (a+ ε(1− a))E . (3.1)

Therefore, if KG + εN∗G is pseudoeffective, then the same holds true for KF + εN∗F . We conclude
that eff(G) 6 eff(F), and the equality between the effective thresholds follow.

Let us now prove that adjnum(F) = adjnum(G). We have just seen that eff(F) = eff(G). Then,
adjnum(F) = −∞ if and only if adjnum(G) = −∞, by definition. Let us consider ε ∈ (0, eff(F)),
and let

KF + εN∗F = PF ,ε +NF ,ε ,

KG + εN∗G = PG,ε +NG,ε

be the Zariski decompositions of the divisors under scrutiny. By [Pro03, Theorem 2.2] and (3.1),
it follows that for any ε ∈ (0, eff(F)), we have that PF ,ε = π∗PG,ε and NF ,ε = π∗NG,ε+a+ε(1−a).
Since by definition adjnum(F) = max{ν(PF ,ε) | ε ∈ (0, eff(F))} (and analogously for adjnum(G)),
we have verified the desired equality.

To conclude the proof of the proposition, it suffices to verify that h0
(
X,KF

⊗n ⊗ N∗F
⊗m) =

h0
(
Y,KG

⊗n⊗N∗G
⊗m) for every n,m > 0. Once these equalities are proved, the equality adj(F) =

adj(G) follows. Let us fix n,m > 0. From the isomorphism KF
⊗n⊗N∗F

⊗m = π∗
(
KG
⊗n⊗N∗G

⊗m)⊗
OX((na+m(1− a))E), we deduce the short exact sequence

0→ π∗
(
KG
⊗n ⊗N∗G

⊗m)→ KF
⊗n ⊗N∗F

⊗m → OE((na+m(1− a))E)→ 0 .

Since h0(E,OE((na+ (1− a))E) = 0, we obtain the sought identity.

3.4 Convention

For an arbitrary foliation F on a smooth projective surface X, we define the adjoint dimension,
the numerical adjoint dimension, and the effective threshold as the corresponding quantity for
any foliation G with canonical singularities that is birationally equivalent to F .
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4. Singularities

4.1 Adjoint discrepancy and ε-canonical singularities

Definition 4.1. Let F be a foliation on X, and let π : Y → X be a birational morphism. Denote
by G the pull-back of F under π. If E is an exceptional divisor of π, then the adjoint discrepancy
of F along E is the function

a(F , E) : [0,∞) −→ R ,
t 7−→ ordE

(
KG + tN∗G −

(
π∗KF + tπ∗N∗F

))
.

Definition 4.2. Let F be a foliation on X and ε > 0 a real number. A point x ∈ X is ε-canonical
if and only if the adjoint discrepancy of F along any divisor E over x satisfies a(F , E)(t) > 0
for every t > ε. The foliation F is said to have ε-canonical singularities if every point x ∈ X is
ε-canonical. The smallest ε for which x ∈ X is ε-canonical will be called the canonical threshold
of F at x.

Proposition 4.3. Let (X,F) and (Y,G) be two foliations on smooth projective surfaces. Assume
that F and G are birationally equivalent. If both F and G have ε-canonical singularities, then
for any pair of integers n,m satisfying m/n > ε, we have that

h0
(
X,KF

⊗n ⊗N∗F
⊗m) = h0

(
Y,KG

⊗n ⊗N∗G
⊗m) .

In particular, if eff(F) > ε, then eff(F) = eff(G).

Proof. The proof is completely analogous to the proof of Proposition 3.6.

Remark 4.4. We point out that ε′-canonical singularities are ε-canonical for every ε > ε′. In
particular, canonical singularities are ε-canonical singularities for every ε > 0. Also note that the
canonical threshold of a log canonical singularity is at most 1

2 ; that is, log canonical singularities
are ε-canonical for every ε > 1

2 . This is a straightforward consequence of the simple fact that for
every divisor E exceptional over X extracted on a smooth birational surface π : Y → X, we have
that ordE(KY − π∗KX) ∈ Z>0.

Notation 4.5. If p, q > 1 are relatively prime integers, then we will write

p

q
= [u0, u1, . . . , un] = u0 +

1

u1 +
1

· · ·+
1

un

for the continued fraction presentation of their quotient.

If p, q > 1 are relatively prime positive integers, then vector fields of the form v = px ∂/∂x+
qy ∂/∂y are tangent to the fibers of rational map (x, y) 7→ yp/xq. As a simple computation
shows, see for instance [MM80, Appendix 1, Theorem 3], the minimal reduction of singularities
of v coincides with the minimal resolution of indeterminacies of the rational map above by blow-
ups on closed points. In particular, there exists a unique irreducible component of the exceptional
divisor which is not invariant by the resulting foliation.

Definition 4.6. Let p, q > 1 be relatively prime positive integers, and consider the germ of
foliation on X =

(
C2, 0

)
defined by v = px ∂/∂x + qy ∂/∂y. Let π : Y → X be the minimal

reduction of singularities of F , let G be the transformed foliation π∗F , and let E be the irreducible
component of the exceptional divisor which is not G invariant. We will denote the order of
KY − π∗KX along E by ϕ(p, q) .
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Lemma 4.7. We use the notation of Definition 4.6. If we write p/q = [u0, u1, . . . , un], then the
following assertions hold true:

(i) The morphism π is the composition of exactly
∑n

i=0 ui blow-ups.

(ii) The order of KY − π∗KX along E satisfies ϕ(p, q) >
∑n

i=0 ui.

Proof. The key observation is that the reduction of singularities of v follows step-by-step Euclid’s
algorithm for the computation of gcd(p, q). Assume p > q, and write p/q as a continued fraction
[u0, u1, . . . , un]. The proof will be by induction on the number N =

∑n
i=1 ui.

If p = q = 1, then clearly N = 1, and the result is obvious in this case. Assume p > q, and
consider the blow-up s : Z → X of the origin with exceptional divisor E0. Over the exceptional
divisor, we will find two singularities with eigenvalues (p − q, q) and (p, q − p). Since we are
assuming p > q, the pair (p, q−p) corresponds to a canonical singularity, while the pair (p− q, q)
corresponds to a non-canonical singularity. Observe that

p− q
q

= [u0 − 1, u1, . . . , un] .

Assuming that the result is true for N − 1, the first part of the statement follows.

To verify item (ii), notice that KZ = s∗KX +E0. If r : Y → Z is the minimal desingularization
of s∗F , then by induction hypothesis, ordE(KY − r∗KZ) > N − 1. Since π = s ◦ r, we can write

ordE(KY − π∗KX) = ordE(KY − r∗(KZ − E0))

= ordE(KY − r∗KZ) + ordE(r∗E0) > N .

The lemma then follows by induction.

Remark 4.8. The inequality in part (ii) of Lemma 4.7 becomes an equality only for singularities
with eigenvalues of the form (1, q). If p and q are both strictly greater than one, at some inter-
mediate step, we will be forced to blow up at the intersection of two exceptional divisors and one
will get a greater order at the end. For instance, if p/q = [u0, u1], then the order of KY − π∗KX

along the last exceptional divisor is ϕ(p, q) = (u1 + 1)u0 − 1.

As a consequence of the above description, we are able to characterize ε-canonical singularities
for small values of ε > 0.

Proposition 4.9. Let F be a germ of foliation on
(
C2, 0

)
. If the canonical threshold of F at 0

is strictly less than 1/4, then 0 is a log canonical singularity.

Proof. Let v be a generator of TF . First, assume that the linear part of v is zero. If π : Y →
(
C2, 0

)
is the blow-up of the origin, G = π∗F , and E is the exceptional divisor, then KG = π∗KF − aE,
where a > 1. On the other hand, N∗G = π∗N∗F + (a+ 1)E. Therefore, if ε < 1

2 , then the origin is
not ε-canonical.

Now, assume that the linear part of v is non-zero but nilpotent. We will use the description
of the resolution process of this kind of singularities presented in [Bru04, Chapter 1, proof of
Theorem 1]. If we blow up the origin, then we obtain only one singularity over the exceptional
divisor, which is invariant by the transformed foliation. This new singularity can have zero
linear part or non-zero but nilpotent linear part. Let us analyze the two possibilities. Start with
the case where the linear part is zero, and let π : Y →

(
C2, 0

)
be the composition of the two

obvious blow-ups. As before, we will set G = π∗F and will let E1 and E2 be the two irreducible
components of the exceptional divisor of π, with E2 corresponding to the last blow-up. Notice
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that KG = π∗KF −aE2 for some a > 1 and N∗G = π∗N∗F +E1 + (a+ 2)E2. Hence if ε < 1/3, then
0 is not an ε-canonical singularity. Let us now deal with the second possibility. If the blow-up of
a nilpotent singularity with non-zero linear part leads to another nilpotent singularity with non-
zero linear part, then one further blow-up gives rise to a singularity with trivial linear part. Now,
let π : Y →

(
C2, 0

)
be the composition of the three obvious blow-ups, and let E1, E2, E3 be the

irreducible components of the exceptional divisor numbered according to the order of appearance.
If we set G = π∗F , then KG = π∗KF−aE3 for some a > 1 and N∗G = π∗N∗F+E1+2E2+(a+3)E3.
Thus if ε < 1/4, then 0 is not an ε-canonical singularity.

Therefore, if ε < 1/4, then the linear part of v is non-nilpotent, and we can apply [McQ08,
Fact I.1.8] to conclude that 0 is a log canonical singularity of F .

Corollary 4.10. Let F be a germ of foliation on
(
C2, 0

)
defined by a germ of vector field v.

If 0 < ε < 1/4, then 0 is an ε-canonical singularity of F if and only if the linear part of v is
non-nilpotent and one of the following holds:

(i) The singularity of v is canonical.

(ii) The singularity of v is not canonical, v is analytically conjugated to px ∂/∂x + qy ∂/∂y
with p and q relatively prime positive integers, and ϕ(p, q) > (1− ε)/ε.

Proof. Proposition 4.9 implies that the linear part of v is non-nilpotent. If 0 is not a canonical
singularity, then by [McQ08, Fact I.1.9], we know that v is analytically conjugated to px ∂/∂x+
qy ∂/∂y for suitable relatively prime positive integers p and q. If π : Y → X =

(
C2, 0

)
is the

minimal reduction of singularities of F and E denotes the last exceptional divisor, then for
G = π∗F , we have that KG = π∗KF −E. Therefore, the adjoint discrepancy of F along E is (cf.
Remark 3.3)

a(F , E)(t) = (1− t) ordE

(
KG +

t

1− t
KY − π∗

(
KF +

t

1− t
KX

))
= (1− t)

(
−1 +

t

1− t
ϕ(p, q)

)
.

Since the adjoint discrepancy is clearly non-negative along all the other divisors in the minimal
resolution, it follows that 0 is an ε-canonical singularity if and only if ϕ(p, q) > (1− ε)/ε.

4.2 Example: Log canonical foliations on the projective plane

For a foliation F on the projective plane with log canonical singularities, one can easily verify
the following assertions:

(1) If d = deg(F) > 4, then eff(F) = (d− 1)/(d+ 2).

(2) If d = deg(F) = 3, then eff(F) = 2/5 unless F has radial singularities.

(3) If d = deg(F) = 2, then eff(F) = 1/4 unless F has radial singularities or dicritical singu-
larities of type (1, 2).

One could try to pursue a case-by-case analysis in order to provide an explicit lower bound
for the positive effective thresholds of foliations of degree two and three with log canonical
singularities. We will show later in Section 7 that the positive effective thresholds of foliations
varying in an algebraic family do not accumulate at zero. Unfortunately, our proof is not effective,
and, a priori, the bound might depend on the family.
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5. Non-isotrivial fibrations

5.1 Producing sections

Our original motivation to introduce and study the adjoint dimension of foliations lies in our
poor understanding of the linear systems

∣∣KF⊗n∣∣. When F is a foliation of general type, we
are not aware of lower bounds on n such that

∣∣KF⊗n∣∣ is not empty. For the linear systems∣∣KF⊗n ⊗KX
⊗m∣∣, the situation is considerably better. We can apply the current knowledge on

adjoint linear systems to obtain effective bounds on n and m such that
∣∣KF⊗m⊗KX

⊗n∣∣ defines
a rational map with two-dimensional image.

Proposition 5.1. Let F be a foliation with canonical singularities on a smooth projective
surface. If kod(F) = 2, then the linear system |KX + 4 i(F)KF | defines a rational map with
two-dimensional image.

Proof. This is an immediate consequence of [Rei88, Corollary 2].

Proposition 5.1 is certainly not optimal. The real question underlying the whole issue here
is whether or not one can provide universal bounds which do not depend on the index of the
foliation. The reader will find a more precise formulation of this question in Problem 6.8.

5.2 Bound for the index of hyperbolic fibrations

In order to use the results above to provide explicit bounds for the degree of leaves of non-isotrivial
hyperbolic fibrations, we need to obtain bounds for the index of the foliation.

Lemma 5.2. Let F be a relatively minimal foliation on a smooth projective surface X. Assume
that KF is defined by a fibration f : X → C and that the general fiber of f has genus at least
two. If T is an irreducible curve invariant by F which intersects the support of the negative part
of KF and is not contained in it (that is, T is a tail ), then one of the following holds:

(i) We have that P ·T = 0, and T intersects exactly two connected components of the support
of N , both of them of order 2.

(ii) P · T > 1/42.

Proof. It follows from Lemma 2.14 that

P · T = KF · T −
k∑

i=1

1

oi
= −χ(T ) + s+ k −

k∑
i=1

1

oi
, (5.1)

where s is the number of singularities of F on T which are not contained in the support of N
[Bru04, Chapter 2, Proposition 3].

Assume that P · T = 0. If s = 0, then we have the following possibilities for k and o =
(o1, . . . , ok): k = 3 and o = (2, 4, 4); or k = 3 and o = (3, 3, 3); or k = 3 and o = (2, 3, 6); or k = 4
and o = (2, 2, 2, 2). In all cases, the whole fiber F containing T is the union of k Hirzebruch–Jung
strings joined by a single common tail T and χ(F ) = χorb(T̃ ) = 0. Since χ(F ) < 0 by assumption,
we get that P · T > 0, contradicting our assumption. The only remaining possibility is s = 1,
k = 2, and o = (2, 2). Item (i) follows.

If P · T > 0, then it is an elementary and well-known fact that the lower bound for (5.1) is
equal to 1/42 and is attained by s = 0, k = 3, and o = (2, 3, 7).
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Proposition 5.3. Let F be a relatively minimal foliation on a smooth projective surface X.
Assume that F is defined by a fibration f : X → C and that the general fiber of f has genus
g > 2. Then

i(F) 6 (42(2g − 2))! .

Proof. Let F =
∑
miCi be a fiber of f , and let KF = P+N be the Zariski decomposition of KF .

If Ci is a tail, then according to Lemma 5.2, either the Hirzebruch–Jung strings intersecting
it have order two, or P · Ci > 1/42. In the latter case, we get that mi 6 42(2g − 2) since
P · F = KF · F = −χ(F ) = 2g − 2. Moreover, Lemma 2.14(ii) implies that the least common
multiple of the orders of the Hirzebruch–Jung strings intersecting Ci divides mi 6 42(2g − 2).
The proposition is then proved.

5.3 Boundedness of fibers of non-isotrivial fibrations of a given genus

Theorem A of the introduction will follow rather easily from the more general result below.

Theorem 5.4. Let F be a foliation with canonical singularities on a smooth projective surface X.
Suppose that F is a fibration with general fiber F of genus g. If kod(F) = 2, then for every nef
divisor H, we have that

F ·H 6M(KX + 4 i(F)KF ) ·H ,

where M = M(g) satisfies the inequality

M 6 2(4 i(F) + 1)(2g − 2) 6
(
4
(
42(2g − 2)

)
! + 1

)
(4g − 4) .

Proof. When F is induced by a fibration and kod(F) = 2, the fibration is non-isotrivial, and the
genus of the general fiber is at least 2; see [Ser92, Theorem 2.1] and the discussion before that
theorem.

For simplicity, we will write L = KX +(4 i(F))KF . Let F denote a general leaf of F . If m > 1
is an integer, then mL|F = m(4 i(F) + 1)KF . On the one hand, the Riemann–Roch theorem
implies that

h0(F,OF (mL|F )) = m(4 i(F) + 1)(2g − 2)− g + 1 .

On the other hand, since according to Proposition 5.1, the linear system |L| defines a rational
map with two-dimensional image, h0(X,OX(mL)) >

(
m+2
2

)
.

If we take m = 2(4 i(F) + 1)(2g(F )− 2), then

h0(X,OX(mL− F )) > h0(X,OX(mL))− h0(F,OF (m(4 i(F) + 1)KF )

>

(
m+ 2

2

)
−m(4 i(F) + 1)(2g − 2) + g − 1 = g .

In particular, |mL − F | is non-empty. As H is an arbitrary nef divisor on X, we have that
(mL− F ) ·H > 0, which concludes the first part of the proof. The inequality in the last part of
the statement is then just a consequence of Proposition 5.3.

5.4 Proof of Theorem A

Let F be a foliation on P2 birationally equivalent to a non-isotrivial fibration of genus g > 2.
Notice that its canonical bundle is isomorphic to OP2(deg(F)−1). Let π : X → P2 be a birational
morphism such that all the singularities of G = π∗F are canonical and also such that on this
model, the foliation is induced by an actual fibration; that is, there exists a morphism g : X → P1

with G = ker dg.
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If we take H = π∗OP2(1), then the degree of an algebraic leaf L of F is given by

deg(L) = H · π∗L = H · L̂ ,

where L̂ is the strict transform of L. We can thus apply Theorem 5.4 and Proposition 5.3 to
deduce that

deg(L) 6
(
4
(
42(2g − 2)

)
! + 1

)
(4g − 4)(KX + 4 i(G)KG) ·H

=
(
4
(
42(2g − 2)

)
! + 1

)
(4g − 4)(KP2 + 4 i(G)KF ) · π∗H

=
(
4
(
42(2g − 2)

)
! + 1

)
(4g − 4)(−3 + 4

(
42(2g − 2)

)
!(deg(F)− 1))

6
(
4
(
42(2g − 2)

)
!
)2

(4g − 4) deg(F) .

This concludes the proof of Theorem A.

5.5 Log canonical foliations on P2 of high degree

The bounds appearing in Theorem 5.4 are ridiculously large and far from optimal. Proposition 5.5
below combined with the results presented in Section 7 (notably Theorem 7.6) indicates that the
dependence of M on g in Theorem 5.4 should be at worst linear on g. The results of [McQ17] also
indicate the existence of such linear bounds which are not universal but depend on the family of
foliations in question.

Proposition 5.5. Let F be a foliation with canonical singularities on a projective surface X. As-
sume that F is a fibration with general fiber F of geometric genus g > 2 and that H0

(
X,KF

⊗a⊗
N∗F
⊗b) admits three algebraically independent sections for some a > 0 and b > 0. Then for every

nef divisor H, we have that

F ·H 6 2a(2g − 2)(aKF + bN∗F ) ·H .

Proof. For simplicity, we will write L = aKF + bN∗F . Let F denote a general leaf of F . If m > 1
is an integer, then mL|F = amKF . On the one hand, by the Riemann–Roch theorem,

h0
(
F,OF (mL)|F

)
= ma(2g − 2)− g + 1 .

On the other hand, our assumption on H0(X,OX(L)) implies that h0(X,OX(mL)) >
(
m+2
2

)
. If

we take m = 2a(2g − 2), then

h0(X,OX(mL))− h0
(
F,OF (mL|F )

)
>

(
2a(2g − 2) + 2

2

)
− 2a2(2g − 2)2 + (g − 1)

= 6a(g − 1) + g > 0 .

In particular, |2a(2g − 2)L− F | is non-empty.

If H is an arbitrary nef divisor on X, then (2a(2g − 2)L − F ) ·H > 0, which concludes the
proof.

In the case of foliations of the projective plane with log canonical singularities and of degree
greater than or equal to five, we can actually obtain bounds that are better than linear using a
simple variation of the argument used to prove Proposition 5.5.

Theorem 5.6. Let F be a foliation on P2 of degree d > 5. Assume that F has log canonical
singularities and admits a rational first integral with general fiber of geometric genus g > 2. If F
is a general leaf of F , then

deg(F ) 6

⌈
4(2g − 2)

(d− 4)2

⌉
(d− 4) .
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Proof. Since the singularities of F are ε-canonical for ε = 1
2 (see Remark 4.4), the dimension

of the vector spaces H0
(
P2,KF

⊗2m ⊗N∗F
⊗m) for m > 0 is unaltered after we replace F with a

model with at worst canonical singularities.

Let F be a general fiber of the rational first integral of F , and consider the real-valued
function

f(m) =

(
m(d− 4) + 2

2

)
− 2m(2g − 2) + g − 1 .

Its values on positive integers correspond to the difference h0
(
P2,KF

⊗2m⊗N∗F
⊗m)−h0(F̃ ,K⊗2m

F̃

)
,

where F̃ is the normalization of F . Since f
(
4(2g − 2)/(d − 4)2

)
= (dg + 8g − 12)/(d − 4),

which is clearly positive, and moreover the derivative of f satisfies f ′
(
4(2g − 2)/(d − 4)2

)
=

(3/2)d+ 4g − 10 > 0, it follows that if m is the smallest integer greater than 4(2g − 2)/(d− 4)2,
then there exists a section of KF

⊗2m ⊗N∗F
⊗m ' OP2(m(d− 4)) vanishing identically on F . The

theorem follows.

As already mentioned in the introduction, Theorem 5.6 refines a classical result of Poincaré;
see [Poi91, Des noeuds dicritiques, p. 169, and Des noeuds monocritiques, p. 176] and [Per03,
Chapter 7, Corollary 14].

6. Classification via the adjoint dimension

In this section, we apply the results recalled in Section 2 to obtain a classification of foliations
on surfaces according to their adjoint dimension.

6.1 KX-negative extremal rays

Recall that for a smooth projective surface X, the KX -negative extremal rays are spanned by
numerical classes of rational curves of self-intersection −1, 0, or 1. The first case corresponds
to the exceptional divisor of the blow-up of a smooth point, the second to a smooth fiber of
a P1-bundle, while the last one is just the class of a line in P2.

Lemma 6.1. Let F be a relatively minimal foliation with pseudoeffective KF on a smooth
projective surface X, and let KF = P + N be the Zariski decomposition of KF . Assume that
there exists a KX -negative extremal curve C ⊂ X with P · C = 0. Then the Kodaira dimension
of F is either 0 or 1. Moreover, if kod(F) = 1, then the image of C in the canonical model
π : X → Z of F is proportional to π∗KF .

Proof. If C is an extremal ray with C2 > 1, then the Hodge index theorem implies that P is
numerically zero. Theorem 2.18 implies that kod(F) = 0.

If instead C2 = 0, then P is numerically equivalent to a non-negative multiple of C, and we
deduce that either ν(F) = 0 or ν(F) = 1. The case ν(F) = 0 follows as before. If ν(F) = 1, since
P is numerically equivalent to an effective divisor, we can apply Theorem 2.20 and Lemma 2.21
to deduce that kod(F) = 1.

From now on, assume that C2 = −1, and let π : X → Y be the contraction of F into its
canonical model. If C is not contracted by π, then write π∗π∗C = C +

∑
aiEi, where ai > 0 and

the Ei are π-exceptional divisors. Thus, π∗P · π∗C = P · π∗π∗C = P ·C since P is the pull-back
of a nef divisor from Y and hence π-exceptional curves intersect P trivially. As we are assuming
that P · C = 0, we deduce from Hodge index theorem that either P is numerically trivial, or
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π∗C
2 = 0 and π∗P is numerically equivalent to a positive multiple of π∗C. Hence ν(F) ∈ {0, 1}.

As before, we obtain that in both cases ν(F) = kod(F).

Now, suppose that C is contracted by π. In this case, C is F-invariant according to Theo-
rem 2.17. Since C2 = −1 and F is relatively minimal, we have that Z(F , C) > 3. Notice that
KF · C = −2 + Z(F , C) and, as we are assuming that P · C = 0, according to Lemma 2.14
we also have that KF · C =

∑k
i=1 1/oi, where the oi are the orders of the Hirzebruch–Jung

strings intersecting C. Then we must have that k = 2 and o1 = o2 = 2; or k = 3 and
(o1, o2, o3) ∈ {(2, 3, 6), (3, 3, 3)}; or k = 4 and (o1, o2, o3, o4) = (2, 2, 2, 2). If we contract the
Hirzebruch–Jung strings intersecting C, we obtain that the direct image of C has non-negative
self-intersection; cf. [McQ08, Remark III.2.2]. Thus C cannot be contracted by π, contrary to
our assumption.

6.2 Kodaira dimension zero

Lemma 6.2. Let F be a relatively minimal foliation with pseudoeffective KF on a smooth
projective surface X. If π : X → Z is the contraction of the negative part of KF (that is,
π∗F is a nef model of F) and we write KX + ∆ = π∗KZ , then i(F)N −∆ is effective.

Proof. If E1, . . . , Ek are the exceptional divisors of π, then ∆ is defined by the relations

∆ · Ei = −KX · Ei = 2 + E2
i .

Notice that 2 +E2
i 6 0 for every i, while 2 +E2

i > (E1 + · · ·+Ek) ·Ei for every i, and the latter
inequality is strict when Ei is either a handle or a tail in a Hirzebruch–Jung string. Therefore,
by [KM98, Corollary 4.2], the coefficients of ∆ lie in [0, 1). Since N is effective, the lemma
follows.

Proposition 6.3. Let F be a relatively minimal foliation of Kodaira dimension zero on a smooth
projective surface X. If π : X → Z is the contraction of the negative part of the Zariski decompo-
sition of KF and (X,∆) is the pair satisfying KX + ∆ = π∗KZ , then the adjoint dimension and
the numerical adjoint dimension of F coincide with the Kodaira dimension of (X,∆). Moreover,
if adj(F) > 0, then eff(F) > 1/(i(F) + 1) > 1/13.

Proof. Let KF = P +N be the Zariski decomposition of KF . Since we are assuming that F has
Kodaira dimension zero, we have that P ∼Q 0. Let π : X → Z be the contraction of the support
of N , and notice that we can write

KF + εKX = επ∗KZ + (N − ε∆) .

Assume that ε is rational and satisfies ε < 1/ i(F). Lemma 6.2 implies that (N − ε∆) is effec-
tive. Hence for any k sufficiently divisible, h0(X, k(επ∗KZ + (N − ε∆))) > h0(X, kεπ∗KZ) =
h0(Z, kεKZ). Since every irreducible component E of the support of (N − ε∆) is π-exceptional,
we also have the opposite inequality. This shows that the Kodaira dimension of Z is equal to the
adjoint dimension of F .

To verify that the adjoint dimension and the numerical adjoint dimension of F coincide,
first observe that every irreducible component E of N − ε∆ satisfies π∗KZ · E = 0. Therefore,
the numerical dimension of KF + εKX coincides with the numerical dimension of KZ . As the
numerical dimension ofKZ and the Kodaira dimension of (X,∆) coincide, the proposition follows.

Finally, the last part of the statement follows from the fact that for a relatively minimal
foliation F of Kodaira dimension zero, i(F) 6 12; see (2.1).
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6.3 Kodaira dimension one

Proposition 6.4. Let F be a relatively minimal foliation of Kodaira dimension one on a smooth
projective surface X. Let g be the genus of a general fiber of the Iitaka fibration of F . If g = 0,
then adj(F) = adjnum(F) = −∞. Otherwise,

adj(F) = adjnum(F) = min{g, 2} and eff(F) >
1

4 i(F) + 1
.

Proof. Let f : X → B be the Iitaka fibration of F . First, assume that g = 0. Then for a general
fiber F of f , we have that KF ·F = 0 and KX ·F = −2. Hence KF + εKX is not pseudoeffective
for every ε > 0. It follows that adj(F) = adjnum(F) = −∞.

Now, assume that g > 1. Let KF = P + N be the Zariski decomposition of KF , and let
π : X → Z be the contraction of the negative part of KF . Denote the direct image of F by G. We
claim that 4 i(F)KG + KZ is nef. Suppose that it is not, and let D be an effective divisor such
that (4 i(F)KG +KZ) ·D < 0. By the cone theorem, we can numerically decompose D as a sum∑
aiCi +R, where R is a pseudoeffective divisor and satisfies KZ ·R > 0, the Ci are KZ-negative

extremal rays satisfying 0 < −KZ · Ci 6 4, and ai ∈ R>0. Therefore, there exists a KZ-negative
extremal ray C such that (4 i(F)KG+KZ) ·C < 0. If KG ·C = 0, then Lemma 6.1 implies that C
is numerically proportional to KG . In fact, denoting by C̃ the strict transform of C on X, we
have that P · C̃ = πKG · C̃ = 0. Consequently, C is proportional to a general fiber of f ◦ π−1 and
must intersect KZ non-negatively. Thus, KG · C > 0. Since i(F )KG is Cartier, we deduce that
4 i(F)KG · C > 4. It follows that also in this case, (4 i(F)KG + KZ) · C > 0. We conclude that
4 i(F)KG +KZ is nef. Consequently, we obtain that

KF +
1

4 i(F)
KX = π∗

(
KG +

1

4 i(F)
KZ

)
+

(
N − 1

4 i(F)
∆

)
, (6.1)

where ∆ is defined by KX + ∆ = π∗KZ . Since the singularities of Z are klt, it follows that
N −

(
1/4 i(F)

)
∆ is effective and that KF +

(
1/4 i(F)

)
KX is pseudoeffective. Thus, eff(F) >

1/(4 i(F) + 1).

It remains to determine the adjoint dimension of F . For that, notice that (6.1) is the Zariski
decomposition of KF +

(
1/4 i(F)

)
KX . When g = 1, since KX is trivial when restricted to

the general fiber of f , it follows that the positive part π∗
(
KG +

(
1/4 i(F)

)
KZ

)
is numerically

proportional to a general fiber and also that there exists an a effective Q-divisor D on B such
that π∗

(
KG +

(
1/4 i(F)

)
KZ

)
= f∗B. Hence, adjnum(F) = adj(F) = 1.

To prove the claim for g > 2, it suffices to verify that π∗ (KG + εKZ)2 > 0 for ε sufficiently
small. If this were not the case, then KG ·KZ = 0 and KZ ·KZ = 0. The Hodge index theorem
would imply that π∗KZ is proportional to a general fiber f . But this is not possible since π∗KZ ·
F = 2g − 2 > 0 for any fiber F of f .

6.4 Kodaira dimension two and non-abundant foliations

Lemma 6.5. Let F be a relatively minimal foliation with canonical singularities which is not
a fibration by rational curves. Let KF = P +N be the Zariski decomposition of KF . If kod(F) /∈
{0, 1}, then P +

(
1/3 i(F)

)
KX is nef.

Proof. In order to deduce a contradiction, let C be a curve such that (P + 1/3 i(F)KX) ·C < 0.
As in the proof of Proposition 6.3, we can assume that C is a KX -negative extremal curve and
therefore KX · C ∈ {−3,−2,−1}. By Lemma 6.1, we have that P · C > 0. Hence,

−KX · Ci > 3 i(F)(P · Ci) > 3
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gives the sought contradiction.

Proposition 6.6. Let F be a relatively minimal foliation with canonical singularities and pseu-
doeffective canonical bundle. If kod(F) /∈ {0, 1}, then adjnum(F) = adj(F) = 2.

Proof. Let KF = P + N be the Zariski decomposition of KF . Since kod(F) 6= 0, we have that
ν(F) > 1. Lemma 6.5 implies that P + εKX is nef for 0 < ε sufficiently small.

Assume to the contrary that F is not of adjoint general type. Then (P + εKX)2 must vanish
identically. In fact, if (P + εKX)2 does not vanish identically, then for 0 < ε sufficiently small,
(P + εKX)2 > 0 by the nefness of P + εKX . This implies that P + εKX is big for 0 < ε
sufficiently small, and the same holds true for KF+εKX , as N > 0, giving a contradiction. From
this observation, it follows that P 2 = P ·KX = KX

2 = 0. Lemma 2.21 implies that kod(F) > 0.
But this is not possible by the assumptions in the statement of the proposition. Hence, we reach
the desired contradiction, and the result follows.

6.5 Characterization of rational fibrations (Proof of Theorem B)

One immediate consequence of the classification of foliations according to their adjoint dimension
is the characterization of rational fibrations stated in the introduction as Theorem B.

Theorem 6.7. Let F be a foliation with canonical singularities on a smooth projective surface X.
Then F is a rational fibration if and only if h0(X,KF

⊗m⊗N∗F
⊗n) = 0 for every m > 0 and every

n > 0.

Proof. If adj(F) > 0, then h0
(
X,KF

⊗m⊗N∗F
⊗n) 6= 0 for some m,n > 0, by definition. If instead

adj(F) = −∞ and F is not a fibration by rational curves, then by Theorem 2.6, the bundle
KF must pseudoeffective and kod(F) = −∞. Moreover, we can assume that F is relatively
minimal by Proposition 3.6. But then Proposition 6.6 gives a contradiction, as it implies that
adj(F) = 2.

For foliations on smooth surfaces of Kodaira dimension zero or one, h0(X,KF
⊗n) > 0 for

some n between 1 and 12; see [Per05] and [CLP16, Section 4]. It is a simple matter to obtain
the effective non-vanishing of h0

(
X,KF

⊗n ⊗N∗F
⊗m) for foliations F of adjoint general type as

functions of their index i(F). This is what we did in the proof of Proposition 5.1 when κ(F) = 2.
The real question here is whether one can do this regardless of the index of the foliation.

Problem 6.8. Find universal bounds on (n,m) ∈ Z>0×Z>0 in order to ensure the non-vanishing
of h0

(
X,KF

⊗m ⊗N∗F
⊗n) for foliations of adjoint general type.

For bounded families of foliations, the results of Section 7 imply the existence of bounds
depending on the family.

7. Variation in moduli

7.1 Families of foliations

We start by spelling out the definition of a family of foliated surfaces.

Definition 7.1. Let π : X → T be a family of smooth projective surfaces; that is, X and
T are irreducible complex manifolds, and π is a proper submersion with projective surfaces as
fibers. A family of foliations parametrized by T is a foliation F of dimension one on X which is
everywhere tangent to the fibers of π. If X , T , π, and F are all algebraic, then we say that F
is an algebraic family of foliations.
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To simplify the notation, we will denote the (schematic) fiber of π over a point t ∈ T by Xt

and F|Xt
by Ft.

Notice that in Definition 7.1, we do not impose any conditions on the nature of the singularities
of F , contrary to what is done in [Bru01], where the singularities are supposed to be reduced.
Also, when the dimension of T is at least two, it may happen that some fibers of π are contained
in the singular set of F .

Remark 7.2. Although no assumption is made on the nature of the singularities, the singular
set of F has codimension at least two as the singular set of any foliation on a smooth manifold.
Then there exists a non-empty Zariski-open subset U ⊂ T such that sing(Ft) = sing(F ) ∩Xt

for every t ∈ U . In particular, KFt = (KF )|Xt
for every t ∈ U . Note also that for every t ∈ U ,

we have the equality detN∗F |Xt
= N∗Ft

.

It is useful to think of an algebraic family of foliations parametrized by T as a foliation defined
over the function field C(T ). Algebraic properties of a very general member Ft of the family—
like the existence of invariant algebraic curves, rational first integrals, transversely projective
structures—are displayed already when one considers the foliation as defined over C(T ). Also, the
Kodaira dimension (respectively, adjoint dimension) of the foliation defined over C(T ) coincides
with the Kodaira dimension (respectively, adjoint dimension) of a very general member of the
family.

7.2 Partial reduction of singularities for families

When the singularities of a family of foliations F on smooth surfaces are reduced, Brunella [Bru01]
showed that the Kodaira dimension of the foliations is constant in the family. Later, Cascini and
Floris proved that for families of foliations with reduced singularities and for m sufficiently
large, the mth plurigenus h0(Xt,mKF t) is constant. They also presented examples of families of
foliations with reduced singularities which have non-constant mth plurigenera for small values
of m; see [CF18, Section 3.4].

When we do not restrict to families of foliations with reduced singularities, one of the sources
of difficulties in applying birational techniques similar to those of [CF18] to understand the
behavior of the plurigenera comes from the fact that canonical singularities are not stable in the
Zariski topology: the set of foliations with at worst canonical singularities can fail to be Zariski
open, as the family of foliations on C2 parametrized by C and defined by xdy − tydx shows. In
this family, the singularity at the origin is canonical if and only if t /∈ Q+. Thus, a very general
foliation in the family has canonical singularities, but the set of foliations with non-canonical
singularities is Zariski dense. This unpleasant situation can be avoided if, instead, one considers
ε-canonical singularities for ε > 0.

Lemma 7.3. Let F be an algebraic family of foliations parametrized by an algebraic variety T .
If 0 < ε < 1/4, then the subset of T corresponding to foliations with isolated and ε-canonical
singularities is a Zariski-open subset of T .

Proof. This is a simple consequence of Corollary 4.10. If a singularity is not ε-canonical with
0 < ε < 1/4, then either its linear part is nilpotent, or the singularity is formally equivalent to
one of the finitely many singularities of the form px ∂/∂x+qy ∂/∂y with p and q relatively prime
positive integers satisfying ϕ(p, q) < ε/(1− ε) (see Definition 4.6 for the meaning of ϕ). Since
both conditions are clearly closed, the lemma follows.
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Proposition 7.4. Given an algebraic family of foliation F parametrized by an algebraic va-
riety T and a real number ε > 0, there exist a non-empty Zariski-open subset U ⊂ T and
a family of foliations G on Y → U obtained from F|U by a finite composition of blow-ups over
(multi-)sections such that for every closed point t ∈ U , the foliation Gt has at worst ε-canonical
singularities.

Proof. First, replace T with a Zariski-open subset in such a way that the singular scheme of
F becomes flat over T . In particular, every irreducible component of the singular set of F is
a multi-section of the projection to T .

We will say that an irreducible component Σ of the singular set of F is reduced when, for
a very general t ∈ T , the points in Σt are reduced singularities for Ft.

If we interpret F as a foliation FC(T )
over C(T ), the Zariski closure of the function field of T ,

then the reduced and non-reduced singularities of FC(T )
correspond to irreducible components

of sing(F ) having, respectively, reduced and non-reduced singularities at the very general point.

The proof of Seidenberg’s theorem presented in [MM80, Appendix 1] and [Bru04] works for
arbitrary algebraically closed fields of characteristic zero. It consists in showing that the iterated
blow-ups of non-reduced points will eventually lead to foliations with only reduced singularities.
First, one aims to obtain foliations with all singularities having non-trivial linear part. To achieve
this, one controls the multiplicity of the singularities of the foliation by means of the Van den
Essen formula [vdE79, Section 2, Theorem 1-2, pp. 52–53] (see also [MM80, Appendix 1, (2.1)
and (2.2)]) for arbitrary algebraically closed fields of characteristic zero. Then to go from non-
trivial linear part to non-nilpotent linear part, one carries out explicit algebraic computations;
for details, see [MM80, Appendix 1, Theorem 2]. Finally, to go from the non-nilpotent linear
part to the quotient of eigenvalues not belonging to Q>0, one relies on the Euclidean division
algorithm [MM80, Appendix 1, Theorem 3].

Therefore, blowing up non-reduced multi-sections, restricting T to suitable Zariski-open sub-
sets, and repeating if necessary, will lead to the sought family of foliations over a Zariski-open
subset of T with all irreducible components of its singular set reducible. We apply Lemma 7.3
to conclude.

7.3 Families of foliations of negative adjoint dimension

Foliations of negative adjoint dimension also behave better in families compared to foliations of
negative Kodaira dimension.

Lemma 7.5. Let (π : X → T,F ) be an algebraic family of foliations. If for a very general closed
point t0 ∈ T , the foliation Ft0 is reduced and has negative adjoint dimension, then there exists
a non-empty Zariski-open subset U ⊂ T such that for every closed point t ∈ U , the foliation Ft

has negative adjoint dimension.

Proof. First, assume that for a very general point t ∈ T , the foliation Ft has Kodaira dimen-
sion one. Since the adjoint dimension is negative, Ft must be a Riccati foliation. It follows
from [CLP16, Proposition 4.3] that for some n 6 42, the linear system |K⊗nFt

| is non-empty
and defines the reference rational fibration. Moreover, the general fiber of the reference fibra-
tion intersects KFt trivially. After replacing T with a Zariski-open subset, we can assume that
sing(Ft) = sing(F ) ∩Xt; see Remark 7.2. We can also assume that π∗K

⊗n
F is locally free. Con-

sider the rational map defined by pluricanonical sections

X 99K P
((
π∗K

⊗n
F

)∗)
.
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We can further restrict T in order to get an actual morphism. Let P : X → B ⊂ P
((
π∗K

⊗n
F

)∗)
be

such a morphism. We do not claim that P has irreducible fibers, but since Ft is a Riccati foliation
of Kodaira dimension one for a very general t, it follows that very general fibers of P are smooth
curves with rational connected components, completely transverse to Ft and intersecting KF

trivially. Hence, using for instance Ehresmann’s fibration theorem, we can conclude that the
same holds true for fibers of F over a Zariski-open subset V of B. Let U ⊂ T be a Zariski-open
subset contained in the image of V under the natural projection B → T . We can apply [Bru04,
Proposition 4.1] to deduce that for every t ∈ U , the foliation Ft is a Riccati foliation and as such
has negative adjoint dimension.

Now, assume that for a very general point t ∈ T , the foliation Ft has Kodaira dimension
zero. We will make use of the Lefschetz principle to deal with this case. Since the family F is
defined by finitely many equations, we can consider a finitely generated extension K of Q over
which everything in sight is defined. Embed K into C and apply Theorem 2.18. We deduce that
after restricting T to a Zariski-open subset U and base changing the family F through an étale
covering V → U , we obtain that the resulting family X ′ → U is birationally equivalent to a
finite quotient of a smooth family of foliations G on Z → V defined by global holomorphic vector
fields. Since we are assuming that for a very general t ∈ T , the foliation has negative adjoint
dimension, it follows that the very general fiber of Z → V is a surface of negative Kodaira
dimension and the corresponding foliation is a Riccati foliation. It follows that for every t ∈ U ,
the foliation Ft has negative adjoint dimension.

Finally, let us assume that for a very general t ∈ T , the foliation Ft is a rational fibration.
Let U ⊂ T be a Zariski-open subset over which every irreducible component of the singular
scheme of F is flat. As we are assuming that Ft is a foliation with reduced singularities tangent
to a rational fibration for a very general t ∈ T , it follows that for a very general t ∈ U , the
singularities of Ft have an invertible linear part and quotient of eigenvalues in Q<0. The flatness
of the singular scheme of F over U guarantees that the singularities of Ft have an invertible
linear part for every t ∈ U . The continuity of the quotient of eigenvalues ensures that they are
constant functions of t ∈ U . Thus, for every t ∈ U , the foliations Ft have reduced singularities.
It follows from [Bru01, Lemma 1] that Ft is a rational fibration for every t ∈ U .

7.4 Boundedness of the effective threshold in families

We now have all the ingredients to prove the result mentioned at the end of Section 4.2.

Theorem 7.6. Let (π : X → T,F ) be an algebraic family of foliations. Then there exists a
δ > 0 such that for every t ∈ T , the following holds true: adj(Ft) = −∞ or eff(Ft) > δ. In other
words, if eff(Ft) < δ, then adj(Ft) = −∞.

Proof. The proof is by Noetherian induction. Therefore, it suffices to show that the result is valid
over a Zariski-open subset of T . In particular, after replacing T with a Zariski-open subset, we
can assume that sing(Ft) = sing(F )∩Xt for every t ∈ T . Proposition 7.4 guarantees that there
is no loss of generality in assuming that Ft has canonical singularities for a very general t ∈ T .

If adj(Ft) > 0 for a very general t ∈ T , then there exist m,n > 0 such that h0
(
Xt,KF t

⊗m⊗
N∗F t

⊗n) > 0 for a very general t ∈ T . Choose ε > 0 small enough and apply Proposition 7.4 to
obtain a Zariski-open U ⊂ T such that Ft has at worst ε-canonical singularities for every t ∈ U .
Remark 7.2 guarantees that KF t

⊗m ⊗N∗F
⊗n
t is the restriction of a line bundle on X to π−1(t).

By semi-continuity, it follows that eff(Ft) > n/m for every t ∈ U .

If instead adj(Ft) = −∞ for a very general t ∈ T , then Lemma 7.5 implies that the same
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holds true for every t in a Zariski-open subset of T . In any case, we have just proved that the
result is true for the restriction of F to a non-empty Zariski-open subset U of T .

The proof continues by passing to irreducible components of T \ U . To be more precise,
let S be a resolution of singularities of one such irreducible component, and let Y → S be the
base change of X → T to S → T \ U ⊂ T . If v ∈ H0

(
X , TX /T ⊗ KF

)
is a twisted vector

field defining F , then it induces an element w ∈ H0
(
Y , TY /S ⊗ (KF )Y

)
. If w is identically

zero, then the points of S do not correspond to foliations and we do nothing. Otherwise, we
divide w by the divisorial components of its singular set in order to obtain the defining twisted
vector field of a family of foliations over S. Since we are back to our original problem, but with
a lower-dimensional base, we are done by Noetherian induction.

8. Foliations with rational first integrals

8.1 Transversely affine and transversely projective foliations

A foliation on a projective surface X is called transversely affine if for any rational 1-form ω0

defining F , there exists a rational 1-form ω1 such that

dω0 = ω0 ∧ ω1 and dω1 = 0 .

Similarly, a foliation F on X is called transversely projective if for any rational 1-form ω0

defining F , there exist rational 1-forms ω1 and ω2 such that

dω0 = ω0 ∧ ω1 , dω1 = 2ω0 ∧ ω2 , and dω2 = ω1 ∧ ω2 .

For a thorough discussion about transversely affine and transversely projective foliations
of codimension one on projective manifolds, the reader should consult [CP14] and [LPT16],
respectively.

8.2 Statement of the main result

This section is devoted to the proof of the following result.

Theorem 8.1. Let (π : X → T,F ) be an algebraic family of foliations and g > 0 be an integer.
Let Σg ⊂ T be the Zariski closure of the set of parameters corresponding to foliations birationally
equivalent to a fibration of geometric genus at most g. Then for every t ∈ Σg, the foliation Ft is
transversely projective.

If one considers the universal family of degree d foliations on P2, then one promptly realizes
that Theorem C is nothing but a particular case of this more general statement.

8.3 Example

Before dealing with the proof of Theorem 8.1, let us analyze the Zariski closure of the set of
foliations admitting a rational first integral in a family derived from the Gauss hypergeometric
equation.

Whenever c /∈ Z, the Gauss hypergeometric equation

z(1− z)w′′ + (c− (a+ b+ 1)z)w′ − abw = 0

admits as general solution in a neighborhood of the origin the function

ϕ(z) = C1F (a, b, c; z) + C2z
1−cF (a− c+ 1, b− c+ 1, 2− c; z) ,
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where C1 and C2 are arbitrary constants to be determined by boundary conditions and

F (a, b, c; z) = 1 +
∑ (a)n(b)n

(c)n
zn , (p)n := p(p+ 1)(p+ 2) · · · (p+ n− 1) .

The change of variable y(z) = −d logw(z) associates a Riccati equation/foliation with any
second-order differential equation. In this new coordinate, the family of foliations induced by
the Gauss hypergeometric equation can be written as

ω = z(1− z)dy − z(1− z)y2 + (c− (a+ b+ 1)z)y + abdz .

If ϕ(z) is an arbitrary solution of the Gauss hypergeometric equation, then y = −d logϕ(z)
is a solution of the corresponding Riccati equation. If we choose c ∈ Q − Z, a ∈ Z<0, and
b = c− 1 + β, where β ∈ Z<0, then it is clear from the explicit form of the solutions that all the
leaves of the foliation corresponding to this choice of parameters are algebraic. It follows that
the set of foliations in this family admitting a rational integral is Zariski dense.

On the one hand, for a very generic choice of parameters, the monodromy group of the
Gauss hypergeometric equation is Zariski dense in Aut(P1); see for instance [Yos97, Chapter 4,
Section 5]. On the other hand, in the case of transversely affine Riccati foliations, the monodromy
group is not Zariski dense (it must be a solvable subgroup of Aut(P1). Therefore, for a very generic
choice of parameters, the foliation defined by ω is transversely projective but not transversely
affine.

To conclude, we point out that for the choice of parameters made above, the foliations are
birationally equivalent to fibrations by rational curves. Hence, one cannot hope to replace trans-
versely projective with transversely affine in the statement of Theorem 8.1.

8.4 Non-isotrivial fibrations

We now start the proof of Theorem 8.1. We first treat the case of foliations birationally equivalent
to non-isotrivial fibrations.

Proposition 8.2. Let g > 1 be a natural number, and let (π : X → T,F ) be an algebraic
family of foliations. The Zariski closure in T of the set of parameters corresponding to folia-
tions birationally equivalent to non-isotrivial fibrations of genus at most g consists of foliations
admitting rational first integrals.

Proof. According to [CP06, Proposition 2.1], it suffices to prove that the fibers of the non-
isotrivial fibrations in the family belong to a bounded family of curves.

For g = 1, the boundedness is clear since the fibers of a non-isotrivial elliptic fibration Ft

are contained in zero sets of sections of KF
⊗12
t ; see for instance [CLP16, Proposition 4.2]. The

boundedness of fibers of non-isotrivial fibrations of genus g > 2 is guaranteed by Theorem A.

8.5 Isotrivial fibrations of adjoint general type

For isotrivial fibrations of adjoint general type, the situation is better when compared to non-
isotrivial fibrations as there is no need to bound the genus in order to obtain the boundedness
of the leaves.

Proposition 8.3. Let (π : X → T,F ) be an algebraic family of foliations. The Zariski closure
in T of the set of parameters corresponding to foliations of adjoint general type birationally
equivalent to isotrivial fibrations consists of foliations admitting rational first integrals.
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Proof. If F is an isotrivial fibration of adjoint general type on a projective surface X, then F has
Kodaira dimension one and the Iitaka fibration of KF is an isotrivial fibration of genus g > 2.
According to [CLP16, Proposition 4.10], there are at least two linearly independent sections σ1
and σ2 of KF

⊗k for some k 6 42. Consider the rational map f = (σ1 : σ2) : X 99K P1 defined
by them. The foliation G defined by f coincides with the foliation defined by the Iitaka fibration
of KF . Its normal bundle is of the form NG = f∗TP1 ⊗OX(−∆) = KF

⊗2k ⊗OX(−∆), where ∆
is an effective divisor. Since the leaves of F are contained in fibers of the Iitaka fibration of KG ,
we repeat the argument to obtain the existence of a k′ 6 42 such that the leaves of F are
contained in the zero set of sections of KX

⊗k′ ⊗KF⊗2k
′k⊗OX(−k′∆). This suffices to prove the

boundedness of the leaves of foliations in a family having adjoint general type and birationally
equivalent to isotrivial fibrations.

8.6 First integrals and transverse structures

Proposition 8.4. Let F be a foliation on a projective surface X. If adj(F) < 2, then F is a
transversely projective foliation. Moreover, if adj(F) ∈ {0, 1}, then F is a transversely affine
foliation.

Proof. This is a straightforward consequence of the classification. If F has adjoint dimension
zero, then it is birationally equivalent to a finite quotient of a foliation defined by a closed
rational 1-form. Since the property of being transversely affine is invariant by dominant rational
maps, F is transversely affine. If F has adjoint dimension one, then either F is a fibration (and
therefore clearly transversely affine), or F is a turbulent foliation, which is well known to be
transversely affine (see for instance [Per03, Proposition 22]). Finally, if F has negative adjoint
dimension, then it is a fibration, a Riccati foliation, or a finite quotient of a Riccati foliation. In
any case, F is a transversely projective foliation.

Proposition 8.5. Let (π : X → T,F ) be an algebraic family of foliations. If for a very general
closed point t0 ∈ T , the foliation Ft0 is a transversely projective foliation, then for every closed
point t ∈ T , the foliation Ft is a transversely projective foliation. Similarly, if for a very general
closed point t0 ∈ T , the foliation Ft0 is a transversely affine foliation, then for every closed point
t ∈ T , the foliation Ft is a transversely affine foliation.

Proof. We can interpret the family of foliation as a single foliation defined over the function
field C(T ). By assumption, this foliation is transversely projective. Hence, there exists a triplet
(ω0, ω1, ω2) of rational differential 1-forms with coefficients in C(T ), the algebraic closure of C(T ),
satisfying the equations

dω0 = ω0 ∧ ω1 , dω1 = 2ω0 ∧ ω2 , and dω2 = ω1 ∧ ω2

and such that ω0 is a differential 1-form defined over C(T ) which defines F . According to [Cas02,
Lemma 3.2], we can assume that ω1 and ω2 are also defined over C(T ) (there is no need to pass
to the algebraic closure). Therefore, over C, we have the equations

dω0 ∧ dπ = ω0 ∧ ω1 ∧ dπ , dω1 ∧ dπ = 2ω0 ∧ ω2 ∧ dπ , and dω2 ∧ dπ = ω1 ∧ ω2 ∧ dπ .

If t ∈ T is such that π−1(t) is contained neither in the polar set of (ωi)∞ for i = 0, 1, 2 nor in the
zero set of ω0, then the restriction of the triplet (ω0, ω1, ω2) to the fiber over t defines a (singular)
projective structure for the foliation Ft on Xt = π−1(t).

Let us fix t0 ∈ T such that X0 = π−1(t0) is contained in the polar set of ωi (i = 0, 1, 2)
or in the zero set of ω0, and let f ∈ π∗OT,t0 be a rational function on X0 corresponding to

481



J.V. Pereira and R. Svaldi

a generator of the maximal ideal of OT,t0 . Notice that we can replace the triplet (ω0, ω1, ω2) by(
fkω0, ω1, f

−kω2

)
. Thus, there is no loss of generality in assuming that π−1(t0) is not contained

in (ω0)∞ ∪ (ω0)0.

For i = 0, 1, 2, let ai be the order of ωi along X0, and set αi = ResX0 f
−aiωi ∧ (df/f). As

mentioned above, we will assume that a0 = 0 and, therefore, that α0 is just the restriction of ω0

to the fiber X0.

If a1 is negative, then, comparing the orders along X0 of dω0 ∧ df and of ω0 ∧ ω1 ∧ df , we
deduce that α0 ∧ α1 = 0, and we can write α0 = gα1 for some rational function g ∈ C(X0). Let
G ∈ C(X ) be a rational function on X extending g. According to [CLLPT07, (14)], we can
replace the triplet (ω0, ω1, ω2) with the triplet(

ω0, ω1 − f−a1Gω0, ω2 + f−a1Gω1 + f−2a1G2ω0 − f−a1dG
)
.

This increases a1. After a finite number of changes, we may assume that a0 = 0 and a1 > 0.

Finally, if a2 is negative and a1 > 0, then α0 is closed and it is clear that Ft0 is transversely
projective. If instead a2 < 0 and a0 = a1 = 0, then comparing the orders along X0 of dω1 ∧ df
and ω0∧ω2∧df , we deduce that α0∧α2 = 0. Thus, we can write α2 = hα0 for a suitable rational
function h ∈ C(X0). From the equation dω2 ∧ df = ω1 ∧ ω2 ∧ df , we deduce that dα2 = α1 ∧ α2.
Combining these two identities, we obtain

d(hα0) = α1 ∧ (hα0) =⇒ dα0 =

(
α1 −

dh

h

)
∧ α0 .

Finally, comparing this identity with dα0 = α0 ∧ α1 (first equation), we obtain that dα0 =
−1

2 (dh/h) ∧ α0. Thus, Ft0 is also transversely projective in this case.

8.7 Proof of Theorem 8.1 (and of Theorem C)

Let (π : X → T,F ) be an algebraic family of foliations and g > 0 be an integer. We want
to prove that the Zariski closure of Σg ⊂ T (subset parametrizing foliations with rational first
integral of genus at most g) corresponds to transversely projective foliations.

If a very general member of the family, say Ft, is not of adjoint general type, then Propo-
sition 8.4 implies that Ft is transversely projective. We can apply Proposition 8.5 to conclude
that every foliation in the family is also transversely projective. If, instead, a very general mem-
ber is of adjoint general type, then we will argue as in the proof of Theorem 7.6 to obtain a
non-empty Zariski-open subset of T such that every foliation parametrized by this subset is of
adjoint general type.

Proposition 7.4 allows us to assume the existence of a non-empty Zariski-open subset U0 ⊂ T
such that for a very general t ∈ U0, the foliation Ft has canonical singularities. Since C is un-
countable, we also know that there exist n,m > 0 and an open subset U1 ⊂ T such that for every
t ∈ U1, the linear system

∣∣KF t
⊗m⊗N∗F t

⊗n∣∣ defines a rational map with two-dimensional image.
Notice that there may exist foliations in U0 ∩ U1 which are not of adjoint general type because
of the presence of non-canonical singularities. To remedy this, we take ε > 0 sufficiently small in
order to obtain from Lemma 7.3 a non-empty Zariski-open U2 ⊂ T such that Ft has ε-canonical
singularities for every t ∈ U2. Every foliation parametrized by the non-empty Zariski-open set
U = U0 ∩ U1 ∩ U2 is of adjoint general type.

Propositions 8.2 and 8.3 imply that the Zariski closure in T of Σg∩U corresponds to foliations
with rational first integrals. The theorem follows by Noetherian induction.
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Bru01 , Invariance par déformations de la dimension de Kodaira d’un feuilletage sur une
surface, in Essays on Geometry and Related Topics, Vols. 1, 2, Monogr. Enseign. Math.,
vol. 38 (Enseignement Math., Geneva, 2001), 113–132.

Bru04 , Birational geometry of foliations, Publ. Mat. IMPA (Inst. Nac. Mat. Pura Apl., Rio
de Janeiro, 2004).
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