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Quantum resource theories are a powerful framework for characterizing and quantifying relevant
quantum phenomena and identifying processes that optimize their use for different tasks. Here, we define a
resource measure for magic, the sought-after property in most fault-tolerant quantum computers. In contrast
to previous literature, our formulation is based on bosonic codes, well-studied tools in continuous-variable
quantum computation. Particularly, we use the Gottesman-Kitaev-Preskill code to represent multiqubit
states and consider the resource theory for the Wigner negativity. Our techniques are useful in finding
resource lower bounds for different applications as state conversion and gate synthesis. The analytical
expression of our magic measure allows us to extend current analysis limited to small dimensions, easily
addressing systems of up to 12 qubits.
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Identifying and quantifying which properties of quantum
mechanics, or resources, are responsible for the predicted
advantage of quantum computers over classical ones is the
object of intense theoretical and experimental effort. Within
the field of resource theories [1–10], the quantification of
magic for fault-tolerant quantum computation occupies a
prominent role. The leading architectures of fault-tolerant
quantum computers are based on stabilizer codes [11]. In this
approach, certain operations are easy to implement and
constitute a nonuniversal [12] set that is fault tolerant by
having a transversal implementation—such that these
operations do not propagate errors within a code block
[13]. This restricted set of easy or free operations called
stabilizer operations includes Clifford gates, preparation of
stabilizer states, and computational basis measurements.
Stabilizer operations alone cannot provide quantum compu-
tational advantage, as the calculations can be efficiently
classically simulated [14]. To unlock universal quantum
computation, one needs to include difficult or resourceful
operations—for example, through magic state injection—
which naturally leads to the so-called magic state model
[15]. However, the preparation of high-quality magic
states typically involves costly procedures such as magic
state distillation, which makes it desirable to optimize the
number of magic states used for a given quantum
computation—although alternative routes to magic state
distillation exist [16].

The need for optimizing nonstabilizer resources has
driven the area of resource theory of magic and, therefore,
the definition of several magic measures for both qudit—
d-dimensional—and qubit systems. Early works focused
on resource theories of magic for odd-dimensional qudits
[17], relying on a well-defined discrete Wigner function
and its negativity [8], and its extensions to infinite
dimensions [9,10]. The more defying case of multiqubit
systems—for which the definition of the discrete Wigner
function remains challenging [18–21]—has undergone
substantial progress in recent years with the development
of several magic measures. Among these, the relative
entropy of magic [8], the robustness of magic [22], the
dyadic negativity, the mixed state extent, and the gener-
alized robustness [23] have been defined for general
density matrices, while the stabilizer rank or extent
[24–26], the stabilizer nullity, and the dyadic monotone
[27] only account for the magic content of pure states. The
availability of these measures has been essential to find
(in few cases optimal) lower bounds in magic state
distillation schemes and in non-Clifford unitary synthesis
[22,23,27]. Moreover, magic monotones have inspired
classical simulators of quantum computing architectures
[23–26]. However, in general, it is impractical to compute
these measures for large numbers of qubits (≳5), and
several lower bounds in the literature apply to distinct
scenarios in which all easy operations are not always
considered free—for instance, the measures do not always
account for measurements and classical feed forward as
free operations. Therefore, it is desirable to provide new
measures that are practically computable for larger number
of qubits, combine different quantifiers of magic to find
tighter bounds applicable to general scenarios, and to
identify how quantum computations can be optimized.
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Here, we develop a new magic measure for multiqubit
pure states by borrowing tools and notions from continuous-
variable (CV) systems in the context of bosonic codes.
Moreover, we connect this independently developed magic
measure with the stabilizer(st) norm [22,28], and with the
stabilizer Rényi entropy [29], measured recently on a
quantum processor [30]. The CV framework provides a
way to upgrade the st norm status to a fully-fledged measure
and brings new insight on its properties and tools for its
computation. We exploit the encoding of discrete-variable
systems into the infinite-dimensional Hilbert space of CV
systems provided by bosonic codes, the main alternative to
conventional error-correction codes with growing theoretical
and experimental efforts [31–34]. In contrast to all previous
magic monotones, the CV mathematical formulation of our
monotone allows for transferring results from CV quantum
computation to magic quantification. Specifically, we map
qubit systems into an infinite-dimensional Hilbert space via
the Gottesman-Kitaev-Preskill (GKP) encoding [35] and
then derive an expression for their Wigner logarithmic
negativity (WLN) [9,10,36]. Using this expression, we
develop a new magic measure that we call GKP magic.
The Wigner function is well defined for CV systems and
allows us to evaluate the GKP magic for significantly larger
systems than previously known measures, easily reaching up
to 12-qubit systems. The GKP magic properties that we
prove enable the analysis of the magic resource cost in the
most general scenario, where probabilistic protocols are
allowed, and measurements, auxiliary qubits, and classical
feed forward are free operations. In this context, we find
analytical expressions of the GKP magic for relevant
building blocks of quantum algorithms yielding lower
bounds for the corresponding T count, a known indicator
of the difficulty to implement fault-tolerant quantum circuits.
Definition of the GKP magic measure.—We consider a

general n-qubit state in the Ẑ eigenbasis, represented by the
density operator

ρ̂ ¼
X
u;v∈Fn

2

ρu;vjuihvj; ð1Þ

with jui ¼ ju1;…; uni and jvi ¼ jv1;…; vni a tensor prod-
uct of the single-qubit states in the computational basis, Fn

2

the n-dimensional binary linear space, and ρu;v complex
coefficients. With the GKP encoding in square lattices, the
code words juii—with ui ∈ f0; 1g—correspond to the
infinite superpositions of position q̂ eigenstates

juii ¼
X∞

si¼−∞
jxi ¼

ffiffiffi
π

p ðui þ 2siÞiq̂: ð2Þ

Then, the Wigner function associated to the GKP-encoded
density operator of Eq. (1) is given by
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and it constitutes the foundation of the GKP magic measure.
The negativity of the Wigner function is a necessary

condition for achieving exponential speedup in continuous-
variable quantum computing architectures [37]. A measure
of this resource is the WLN, defined as [9,10]

Wðσ̂Þ ¼ log2

�Z
∞

−∞
dnqdnpjW σ̂ðq; pÞj

�
; ð4Þ

with dnq and dnp the n-dimensional volume differentials
corresponding to q and p, and σ̂ a bosonic Hermitian
operator.
First, we compute the negativity of the Wigner function

given in Eq. (3). Since the WLN of an ideal non-normalized
GKP codeword is infinite, we consider the periodicity of
the Wigner function and restrict the computation to the
lattice unit cell to obtain a finite value. We reduce the
integration domain in Eq. (4) to a hypercube in phase space,
with the domain C being qi ∈ ½0; 2 ffiffiffi

π
p Þ, pi ∈ ½0; 2 ffiffiffi

π
p Þ.

Therefore, we define the WLN of one unit cell as

WCðρ̂Þ ¼ log2

�Z
C
dnqdnpjWρ̂ðq; pÞj

�
: ð5Þ

The integral over the absolute values of theWigner function
can be evaluated and is obtained as

Z
C
dnqdnpjWρ̂ðq; pÞj ¼

1ffiffiffi
π

p n

X
i;j∈Fn

2

����X
k∈Fn

2

ð−1Þi·kρk;kþj

����; ð6Þ

with i · k ¼Pn
j¼1 ijkj mod 2 the standard binary inner

product, and kþ j the bitwise sum ðkþ jÞi ¼ ki þ ji mod 2
(see Supplemental Material [ 38, Sec. I]).
Quantifying the cell Wigner negativity of a n-qubit GKP

state in Eq. (6) allows us to define the GKP magic GðjψiÞ, a
newmagic monotone for pure states. This definition was first
motivated by noticing that the cell WLN of encoded GKP
states saturates to a constant value for encoded stabilizer
states, while it is maximal for the jTi and jHi magic states
[44,45]. We emphasize the generality of the previousWigner
function logarithmic negativity calculations by using ρ to
denote any mixed or pure state. For the sake of clarity, since
we only demonstrate the monotonic properties of the GKP
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magic for pure states ρ ¼ jψihψ j, we stress the difference by
denoting the quantum state as jψi from now on.
Crucially, we notice that GKP-encoded pure stabilizer

states contain an inherent amount of WLN in one lattice
cell. Therefore, we define our GKP magic measure by
subtracting the inherent cell negativity of ð2= ffiffiffi

π
p Þn to

enforce that GðjψSiÞ ¼ 0 for jψSi a pure stabilizer state.
We provide an explicit counterexample for mixed states in
[ 38, Sec. IV].
In the case of pure states jψi ¼Pi∈Fn

2
cijii, the GKP

magic measure is finally obtained as

GðjψiÞ≡ log2

�� ffiffiffi
π

p
2

�
n Z

C
dnqdnpjWjψihψ jðq; pÞjÞ

	

¼ log2

 X
i;j∈Fn

2

����X
k∈Fn

2

ð−1Þi·k
2n

c�kckþj

����
!
; ð7Þ

where we made use of Eq. (6).
The Wigner negativity in the argument of the logarithm is

equivalent to the st norm [ 38, Sec. III], initially regarded as a
one-way magic witness. In turn, this also implies that it is
equivalent to the stabilizer Rényi entropy [29] [ 38, Sec. III]
for α ¼ 1

2
. These equivalences upgrade the st norm to a fully

fledged magic measure.
Using the properties of the WLN enables us to demon-

strate the following properties for our GKP magic measure
G [ 38, Sec. II]: (i) Invariance under Clifford unitaries:
ÛC: GðÛCjψiÞ¼GðjψiÞ. (ii) Additivity: GðjψiA ⊗ jϕiBÞ ¼
GðjψiÞ þ GðjϕiÞ. (iii) Faithfulness: GðjψiSÞ ¼ 0 iff jψSi is a
stabilizer state. (iv) Invariance under composition with
stabilizer states: Gðjψi⊗jϕSiÞ¼GðjψiÞ. (v) Nonincreasing
under measurement in the computational basis. (vi)
Nonincreasing under Clifford operations conditioned on
the outcomes of computational-basis measurements.
Using our newly defined magic measure, we compute

the most magic states and unitaries [ 38, Sec. V].
Distillation and gate synthesis.—Magic monotones play

a central role in the leading approaches to fault-tolerant
quantum computation, and have been used to bound the
number of resourceful states for state conversion and gate
synthesis [22,27]. Additionally, fundamental bounds
have been found on the Gaussian conversion between
GKP-encoded Hadamard eigenstates jHi and the logical
GKP-state j0i in continuous-variable settings [45]. Using
our GKP magic measure, we can lower bound the number
of copies of a given resource state needed to implement a
desired target unitary or to produce certain states when
nonunitary and probabilistic protocols are allowed.
First, we address distillation protocols to extract a

particular target state. We consider a stabilizer protocol
[8]—a set of Clifford unitaries, composition with stabilizer
states, computational basis measurements, and Pauli
operations conditioned on measurement outcomes—that
converts k copies of jψi to m copies of the target state jϕi.

The GKP magic does not increase with such stabilizer
protocol, and therefore, we can bound the number of input
resource states by

k ≥ m
GðjϕiÞ
GðjψiÞ ; ð8Þ

where we have used the additive property of our measure,
Gðjψi⊗kÞ ¼ kGðjψiÞ. We notice that this property also
allows us to establish bounds even when catalyst states—
loanedmagic states returned at the end of the protocol—are
allowed.
Moreover, we analyze probabilistic stabilizer protocols

for distillation that convert k copies of an r-qubit state jψi
tom copies of the s-qubit target state jϕiwith probability p.
That is, we consider stabilizer protocols that can include
postselection upon specific measurement outcomes and
operations entailing partial traces that can create mixed
quantum states. Despite the GKP magic monotone being
only defined for pure states, its direct link with the WLN
allows us to consider lower bounds of required resource
states when intermediate mixed states are involved. The
system’s WLN restricted to the code’s unit cell is additive
and does not increase on average with such a probabilistic
stabilizer protocol [ 38, Sec. IV], so that

kWCðjψiÞ ≥ pmWCðjϕiÞ: ð9Þ

We can establish a lower bound on the average number of
copies E½n� of jψi needed to distill jϕi⊗m proportional to
the ratio of the monotones. Since one must run the
probabilistic protocol 1=p times to get a successful out-
come, we require

E½n� ¼ k
p
≥ m

WCðjϕiÞ
WCðjψiÞ

: ð10Þ

Finally, for input and output pure states, the WLN per cell
is directly related to the GKP magic as GðjΨiÞ ¼
WCðjΨiÞ − log2½N 0ðnÞ�, where we have subtracted the
corresponding intrinsic logarithmic negativity per cell of a
pure n-qubit stabilizer state jψSi, given by N 0ðnÞ ¼
ð2= ffiffiffi

π
p Þn. Hence, we can rewrite the bound as

E½n� ¼ k
p
≥ m

GðjϕiÞ þ log2½N 0ðsÞ�
GðjψiÞ þ log2½N 0ðrÞ�

: ð11Þ

This bound is strictly looser in the case of p¼1
[ 38, Sec. IV].
Besides characterizing distillation protocols, magic mea-

sures have been used to bound gate synthesis. A quantum
gate can be synthesized with purely unitary processes [46]
or, more generally, allowing auxiliary qubits, measurements
and classical feed forward [47–50]. In the field of fault-
tolerant quantum computation, gates of the third level of the
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Clifford hierarchy—C3 such that Cnþ1 ≡ fÛjÛ P̂ Û† ⊆
Cn; ∀ P̂ ∈ C1g [15] with the n-qubit Pauli group C1—
are the standard and most convenient non-Clifford elements
to enable universal quantum computing when Clifford gates
(elements in C2) are available [15]. Although any circuit can
have an equivalent teleportation gadget, C3 gates can be
implemented with the corresponding resource states and
conditional operators in the Clifford group so that the state
and gate costs coincide [15,51]. If the unitaries are addi-
tionally diagonal, then an explicit teleportation gadget can be
given that teleports the gate Û with the resource state
ÛðjþiÞ⊗n ≡ jUi, with jþi ¼ ðj0i þ j1iÞ= ffiffiffi

2
p

[22].
This property of the third level of the Clifford hierarchy

allows us to bound the jUi cost (or U count) of a target
unitary Ûtarget if both gates Û and Ûtarget belong to C3,

GðjUi⊗mÞ ≤ GðjUtargetiÞ ≤ GðjUi⊗mþ1Þ: ð12Þ
In particular, we estimate the number of T gates (or number
of jHi states) needed to implement different unitaries from
C3. We quantify the T count, i.e., the number of T gates
needed, since the fClifford; Tg constitutes a universal gate
set [52]. Equivalently, we can measure the jHi cost—the
number of required jHi ¼ ðj0i þ eiπ=4j1iÞ= ffiffiffi

2
p

states—
since the jHi magic state can be consumed to implement
the non-Clifford gate T [52]. We analyze the gates charac-
terized with the robustness of magic [22], which allowed for
improved gate synthesis and proved the optimality of several
circuits. The lower bound obtained with the GKP magic
coincides with the lower bound given by the robustness of
magic for these cases [ 38, Sec. V].
Moreover, we study the multiply controlled phase gates

M̂ϕ, which are from the third level of the Clifford

hierarchy [53] and have a diagonal representation in
computational basis

Mϕ ¼ diagð1;…; 1; eiϕÞ: ð13Þ

They include the multiply controlled gates Cn−1Z (ϕ ¼ π),
Cn−1S [ϕ ¼ ðπ=2Þ], and Cn−1T [ϕ ¼ ðπ=4Þ], where we use
the notation for an n − 1 times controlledG gate as Cn−1G.
We analytically derive the GKP magic value for any Mϕ

gate dimension [ 38, Sec. V]. Figure 1 shows that the GKP
magic for different M̂ϕ gates converges to a finite value as
the number of qubits increases. We analytically analyze this
asymptotic behavior [ 38, Sec. V]. Furthermore, we give
analytical expressions for the GKP magic for the state jHi,
the quantum adder, and the quantum Fourier transform
[ 38, Sec. V].
Since there exist Clifford operations Û and V̂ such that

Cn−1X ¼ ÛCn−1ZV̂, multiply controlled X and Z gates are
expected to contain the same amount of magic. We confirm
this numerically [ 38, Sec. V], and in particular, we compare
our obtained T count for the C3Z gate with known values to
implement a Toffoli gate C3X. The T count provided by our
measure coincides with the count of the optimal teleportation
gadget of the Toffoli gate [47], but it does not prove the
optimality of the Cn−1X gate gadget with 4ðn − 2Þ T gates.
Notice that the optimal unitary circuit for synthesizing the
Toffoli and Fredkin gates includes 7T gates [54], which does
not contradict the optimal bound for general synthesis, where
measurements and classical feed forward are allowed.
In general, we can quantify the GKP magic of any

unitary by using the Choi–Jamiołkowski isomorphism
[55,56], even those that are not diagonal unitaries from
the third level of the Clifford hierarchy. With this corre-
spondence, we map unitaries to quantum states suitable for
our measure defined in Eq. (7) [ 38, Sec. V]. The GKP
magic of general unitaries can be used to lower bound the
resources needed for their implementation as well. For
gates outsideC3, we do not expect tight bounds, as one may
need to use non-Clifford gates to correct measurements in
teleportation schemes or dispose of output states in prob-
abilistic protocols.
Using the Choi–Jamiołkowski isomorphism, we calcu-

late numerical values for gates analyzed in [54]. The largest
system size we consider involves 12 qubits and corresponds
to the C5X gate. The calculated values, as well as the most
magical two-qubit unitaries and the most magical three-
qubit states, can be found in the Supplemental material
[ 38, Sec. V].
GKP magic and other magic quantifiers.—It is interest-

ing to compare the GKP magic to other magic quantifiers
introducedpreviously in the literature.The sumnegativityof a
discreteWigner function is amagicmonotone for general odd
qudit systems [8]. However, the extension to qubit systems
remains challenging [18–21]. Even though the discrete
Wigner function resembles the Wigner representation of a

FIG. 1. The GKP magic GðjMϕiÞ, with jMϕi ¼ M̂ϕjþi⊗n,
where n is the number of qubits. The family of unitaries M̂ϕ

of Eq. (13) belong to diagonal gates of the third level of the
Clifford hierarchy, and the state jMϕi can be teleported to
generate the corresponding gate without additional cost. Here,
ϕ ¼ π corresponds to the Cn−1Z gate, ϕ ¼ ðπ=2Þ to a Cn−1S gate,
and ϕ ¼ ðπ=4Þ to a Cn−1T gate. The GKP magic converge to a
finite value for increasing numbers of qubits.
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GKP-encoded qubit restricted to a unit cell, the corresponding
magicmonotones—the sumnegativity and theGKPmagic—
differ for the single-qubit case [ 38, Sec. IV], where both are
valid measures.
In contrast to the stabilizer nullity and, similarly, to the

robustness of magic, our measure assigns a small value
close to stabilizer states. For instance, the GKPmagic of the
pure single-qubit state jψi ¼ ðj0i þ eiϕj1iÞ= ffiffiffi

2
p

tends to
zero for small angles ϕ → 0. This feature explains the GKP
magic of the multiply controlled phase gates converging to
a finite value, opposite to the stabilizer nullity for the CnZ
gate [27]. Through the GKP magic connection with the
stabilizer Rényi entropy [29] and st norm [22], we conclude
that it lower bounds the robustness [22] and the stabilizer
nullity [ 38, Sec. III].
Crucially, in contrast to most other magic measures, the

computation of our magic measure does not include opti-
mization, while it allows us to find analytical expressions for
n-qubit states. Also, note that the computation of GKPmagic
in Eq. (7) does not require any explicit CV phase space
calculations.
Numerically, our measure requires three sums that scale

with 23n additions of matrix elements. While, e.g., the
robustness of magic could be computed for systems sizes
of up to five qubits [22], or for product states with specific
symmetries [57], in this Letter, we calculate the GKP magic
for general states of up to n ¼ 12 qubits. The computation
for 12 qubits takes 962 s on one core on a laptop CPU (Intel
Core i7). We expect that larger system sizes are reachable,
with 12 qubits not being a hard limit. These running times
and the additivity of our measure open the possibility of
exploring previously unreachable system sizes.
Discussion and perspective views.—In summary, we

have introduced a new additive magic measure for multi-
qubit pure states, the GKP magic, derived using bosonic
codes—the GKP encoding—and considering the WLN in
CV systems. Moreover, we have established a connection
with the st norm and stabilizer Rényi entropy, with the
former initially introduced solely as a one-way magic
witness. Crucially, the CV framework allows us to prove
the properties of our measure by transferring properties of
the WLN. The convenient expression of the GKP magic in
Eq. (7) allows us to lower bound the resources needed for
general unitary synthesis and state conversion. In contrast to
existingmonotones, computing our measure does not require
numerical optimization, and we can outperform previous
results involving up to ≈5 qubits for general states, easily
reaching 12-qubit states. Therefore, the GKP magic can be
used to address general gate synthesis—where unitary
operations, measurements on auxiliary systems, and classical
feed forward are allowed—and lower bound unitaries and
states that were out of reach previously. We also confirm
existing optimal lower bounds for several unitary gates
studied previously, including the Toffoli gate. Moreover, we
have derived analytical expressions of our measure for

multiply controlled phase gates, the quantum adder, and
the quantum Fourier transform for an arbitrary number of
qubits. Similar to the st norm and the robustness of magic
case, we find lower bounds for any multiqubit state and the
general scenario of probabilistic stabilizer protocols using
the Wigner negativity per cell, well defined for mixed states.
Since the GKP encoding can be applied to qudits of any

dimension, it is natural to ask whether we can define a
generalized GKP magic and how it would be related to the
discrete Wigner function for odd prime dimensions. Another
interesting open question is whether the GKP magic
quantifies the hardness of classical simulation of Clifford
computation with additional resource states. Our work sheds
new light on magic measures by investigating bosonic codes
and CV state conversion. As such, it opens the question
regarding whether other properties of finite-dimensional
systems could be assessed by mapping them to infinite-
dimensional ones and, thereby, bridging and transferring
results from two independent areas of quantum information.
Finally, the core idea of connecting concepts of CV and
discrete-variable systems via bosonic codes can be inter-
preted as an operational blueprint for resource theories of
finite-dimensional systems, beyond quantum computation.
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