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ABSTRACT. We consider Bayesian estimation of Value-at-Risk (VaR) using parametric Product Par-
tition Models (PPM). VaR is a standard tool to measure and control the market risk of an asset or a
portfolio, and it is also required for regulatory purposes. We use PPM to provide robustly Bayesian
estimators of VaR, remaining in a Normal setting, even in presence of outlying points. We consider two
different scenarios: a product partition structure on the vector of means and a product partition structure
on the vector of variances. In both frameworks we obtain a closed-form expression for VaR. The results
are illustrated with an application to a set of shares from the Ttalian stock market, The methodology and
the obtained results are described in details in Bormetti et al. (2009).

1 BACKGROUND AND PRELIMINARIES

Following the increase in financial uncertainty, there has been intensive research from finan-
cial institutions, regulators and academics to develop models for market risk evaluation. A
common and easily understood measure of risk is VaR.

VaR is referred to the probability of extreme losses due to adverse market movements.
In particular, for a given significance level o (typically 1% or 5%), VaR is defined as the
maximum potential loss over a fixed time horizon of individual assets or portfolios of assets
as well, For normally independent and identically distributed (ii.d.) returns (with mean and
variance o2), a closed-form expression for VaR normalised to the spot price is given by

A
W —u+0ov2 erfc™! (20),

0

where A is VaR, W, is the spot price and erfc! is the inverse of the complementary error
function. In the following, with VaR we shall refer to the normalized VaR, AWy, if not
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otherwise specified. If this quantity is expressed in percentage term we name it percentage
VaR, indicated with VaR(%).

For low liquidity markets and short time horizons, the normal i.i.d. assumption fails to be
effective and has to be relaxed. Possible solutions are to resort to heavy tailed distributions or
to abandon the hypothesis of identically distributed returns. We follow the latter approach and
we use a Bayesian methodology based on parametric PPMs. We assume all the returns being
normally distributed with a partition structure on the parameters of interest. ‘We assign a prior
distribution on the space of all possible partitions and we identify clusters of returns sharing
the same mean and variance values. Returns belonging to different clusters are characterised
by different values cither of the mean or the variance. The hypothesis of identical distribution
holds within but non between clusters.

2  OUR MODEL

Let y= (¥1,--- )5+ yr) denote the vector of returns of a generic asset at different time
points . The returns aré independent, and jointly distributed with probability density function
f parameterised by the vector (8,y). The elements of @ depend on the time point 7, 8 =

(81,...,0r), whereas y1s a parameter that is common to all observations. In the following
we consider the model

y|{63“’)~(y|63‘u)= with yfi'n‘l‘i(yf]ehq’) t:1:-“:T‘ (1)

Given the model in (1), let So = {t:t=1,... ,T} be the set of time periods. A partition
of the set Sg, p = {S1,-++15ds-++ ,Sjp|} With cardinality |p|, is defined by the property that

S;NSy =0 ford# d' and Uy Sy = So. The generic element of p is Sz = {#: 6= 05},

where 8% = (B’{,. o TP%) is the vector of the unique values of 8= (81,..-,0r). All B, whose

subscripts ¢ belong to the same set §g € p are (stochastically) equal, in this sense they are
regarded as a single cluster.
We assign to each partition p the following prior distribution

Ip| Il
P(p=1{S1--Spl}) :Kflc{sd) :Kf[cx (IS4l - 1)1, @
=1 =1

where C(S4) is a cohesion function, ¢ is a positive parameter, |Sq| denotes the cardinality of
the set S; and K is the normalising constant. Equation (2) is referred to as the product dis-
tribution for partitions. A moderate value of ¢, e.g. ¢ = 1, favours the formation of partitions
with a reduced number of large subsets.

We present and compare two different PPMs; in the first one we impose a partition Struc
ture on the vector of means, and in the second one we consider partitions on the vector of
variances. In the following the PPM applied to the vector of means will be shortly referred (0
as the u-PPM approach, while o2-PPM will refer to the PPM for the vector of variances. In
u-PPM the vector @ is the vector of means while in &2-PPM it corresponds to the vector of
variances. In the former model ¥ is the variance and in the latter it corresponds to the e




For compafaﬁve reason, we also consider the 62-CP model proposed by Loschi et al. (2003)
where PPM are used to identify change points in the volatility time series.
We consider the following hierarchical structure

3tl(p, (6%, 8%),6) " Nl (8, W) ,

RCACAORSFICIOR
p ~ product distribution, with C(Sg) = ¢ X (|Sa| —1)!,

v~ gy),

where f and g denote generic density functions and the product distribution is defined in

equation (2).
: To obtain a sample from the posterior distribution of the parameter of interested we apply
specific Gibbs sampling algorithm, see Bormetti er al. (2009) for the details.

3 BAYESIAN ESTIMATION OF VAR

We now present how the posterior distribution of VaR and consequently its Bayesian estimate
can be obtained by using the output of the Gibbs algorithms. First we focus our attention on

the PPM on the vector of means. Let indicate with p"(‘g} = (u’{ @1 “Tpi (9)) and O'%E] respec-

tively the vector of means and the variance sampled at the £-th iteration of the algorithm. At
each iteration we obtain a peculiar clustering structure. All returns share the same value of
0%2), but each cluster is characterized by a different value 4 - In order to provide a single
VaR estimate for each iteration of the chain we propose to average the different entries of ﬂ’&)
and we consider the following equation

A Pl |Sa) -

If we impose a clustering structure over the vector of variances, VaR can be computed in an
analogous way but the arithmetic average is performed over different values of 6} © that is

A Pl |Sag] 2
_uf'ﬂ ——mp+ Y, ~g Ol V2erte (20). )
b P

In this case all returns share the same value of #(¢) but each cluster is characterised by a
different value of o @ The resulting VaR estimate is obtained as the ergodic mean of the

quantities A in (3) or (4) for u-PPM or 02-PPM respectively, by means of
A_Lsi o
Wo L = Wo

VaR under the 62-CP model is computed in a similar way.
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4 REAL DATA ANALYSIS

We test 0ur models over the MIB30 index and its three components with the highest excess
of kurtosis, where standard approaches based on Normal distributions usually fail. In partic-
ular we apply ouf analysis to the Ttalian assets Lottomatica (LTOMD), Mediobanca (MB.MD)
apd Snam Rete Gas (SRG.MI). We consider time series of daily returns from April 2004 to
March 7008. All time series ar¢ made of 1000 daily returns freely downloadable from the site
hﬁp://itﬁnance.yahoo.com.

In the examples pelow we Tun 10000 MC sweeps With 10% burnin. The parameters are
fixed as follows: €= 1,m=0 (for short time horizom, typica‘ﬂy from one day until one week,
the value of the e ig usually neglected,); %= 10%, M= 0.0101 and Vo= n 01. This choice
for the nverted Gamma parameters reflects what 1s known from the past gxperience about the
yolatility behaviour for equity assets. For the o>-CP model that W€ use as yardstick model
we set the priors parameters following Loschi ef al. (2003). In particulat we consider the
conjugate Normal—lnveﬁed-Gamma model, with the probability p thata change occurs at any
instant in the sequence equal to 0.1.

In table 1 We report Payesian estimates of percentag® vaR for &= 1% and 0. = 5% and

erior credible interval.

the 68% pOst

Table 1. Daily estimated VaR (%) values at 59 and 1% signific

The estimates of Vak obtained with o2-PPM and 62-CP ar¢ in good agreement ever if
the two approaches are quite different in spirit. The formeT approach is a natural extension
of the p-PPM 10 the vector of variances while the latter one is gpecific for change point
identification- The PPM 0D the vector of means in general underestimates VaR with respectto -

the values given by the PPMs applied 0 {he variances. This fact can be empirically justif

of order ten greatel than that due to the mean j- Figure 1 depicts posteri :
for VaR estimates 2t level 00 = 1%. In the first Tow We present the results hased on e
PPM apptoach, while the second corresponds 10 G2-PPM. The posteriol istribution 0
presents 2 higher variability under the ¢2-PPM approach than under the p-P M
The posterior expectation of the number of clusters 1S low for both the p-PP and o
approaches and, moreover, the partitions e characterised by a very lar
<mall ones. The results are presented in table 2.

The arithmetic average in equations (3) and 4)is therefore dominated py the YE==
of K3 (0) and ©5 0 that correspond t0 the largest cluster, while outlying clu$ v

corrections 10 VaR.




Number of Clusters Largest Cluster Weight

p-PPM  o°-PPM p-PPM  G*-PPM
MIB30.MI 3.11 3.39 0.986 0.990
LITOMI 502 4.52 0.963 0.944
MB.MI 411 72 0.968 0.970
SRGMI 344 3.59 0.984 0.978

Table 2. Posterior mean of the number of clusters and relative weight of the largest cluster for u-PPM
and 6-PPM.
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Figure 1. VaR posterior distribution for & = 1%, for g-PPM (first row) and 62-PPM (second row).

We now compare our results with those obtained with standard parametric approaches
based on ML estimators for the mean and variance. In particular we consider the results
obtained with a Normal model and with the generalised Student-t (GST) distribution, see
Bormetti ef al. (2007). In the GST we set the tail index v > 2, in order to keep the variance
finite, see last column of table 3. In the following we consider the GST as the benchmark for
our analysis since it presents a good agreement with historical simulations. Numerical details
are reported in tables 1 and 3. At o= 1% the results obtained with 62-PPM and 62-CP are the
ones in best agreement with the GST distribution, while Normal and g-PPM underestimate
VaR. The situation is different if we consider 0. = 5%. In this case u-PPM is the only one in
agreement with the GST distribution, while 62-PPM and 62-CP overestimate VaR.




-
=
3

VaR(%) a=5% a=1%
Normal Studentt Normal Student-f v

003 U077 9 F007 5 55t 009 | 4 16043
MIB30MI 1385507 1'27}:8'8% L9STh 222708 41673
LTOMI  2.50% 13 2.15%000 3.5 050 4.05705|3-2620:30

0.06 0.05 +-0.09 +0.12 +0.35
MBMI  2.077055 1.89%00 2957057 3.37 0 12|3-93 038

0.05 0.04 0.08 +0.11 +0.44
SRGMI  1.6270%2 1484002 2.32707) 2.652015|3.97 as
Table 3. Daily ML estimated VaR(%) values at 5% and 1% significance level with 68% bootstrap

intervals. In the last column we report central value and 68% bootstrap interval for the tail index v of
the GST.

5 CONCLUDING REMARKS

In this paper we have presented a novel Bayesian methodology for VaR computation based
on parametric PPMs. The main advantages of our approach are that it allows us to remain
in the Normal setting, to identify anomalous observations and to obtain a closed-form ex-
pression for the VaR measure. This expression generalizes the standard parametric formula
that is used in the literature under the normality assumption. By means of PPMs we induce
a clustering structure over the vector of means (u-PPM) and we find the best agreement with
ML approaches for significance level of order 5%. For lower values of o we obtained the best
result by applying the PPMs to the vector of variances (G2-PPM).
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