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We provide a first-principles derivation of the Langevin equation with shear flow and its corre-
sponding fluctuation-dissipation theorems. Shear flow of simple fluids has been widely investigated
by numerical simulations. Most studies postulate a Markovian Langevin equation with a simple
shear drag term à la Stokes. However, this choice has never been justified from first principles. We
start from a particle-bath system described by a classical Caldeira-Leggett Hamiltonian modified by
adding a term proportional to the strain-rate tensor according to Hoover’s DOLLS method, and we
derive a generalized Langevin equation for the sheared system. We then compute, analytically, the
noise time-correlation functions in different regimes. Based on the intensity of the shear-rate, we
can distinguish between close-to-equilibrium and far-from-equilibrium states. According to the re-
sults presented here, the standard, simple and Markovian form of the Langevin equation with shear
flow postulated in the literature is valid only in the limit of extremely weak shear rates compared
to the effective vibrational temperature of the bath. For even marginally higher shear rates, the
(generalized) Langevin equation is strongly non-Markovian and non-trivial fluctuation-dissipation
theorems are derived.

I. INTRODUCTION

The theory of Brownian motion is a milestone of
nonequilibrium statistical mechanics as it provides a sim-
ple and valid approximation to the dynamics of nonequi-
librium systems. The motion of a Brownian particle in-
teracting with a heat-bath of solvent molecules and un-
der the effect of external force fields can be described
either by a Langevin [1, 2] or by a Smoluchowski (Fokker-
Planck) equation [3, 4]. In the Langevin’s approach,
the interaction of a particle with the solvent (hidden)
molecules produces both friction and randomness: the
rapid changes in the particle’s velocity are dissipated by
viscosity. The Langevin equation is at the basis of diffu-
sion equations and fluctuation-dissipation theorems. In
fact, as noise and friction have the same physical origin
in the interaction with heat-bath’s molecules, there is a
mathematical relation that links the noise fluctuations
to the friction. Traditionally, this relation follows the
second fluctuation-dissipation theorem (FDT) and gives
a proportionality between the noise’s fluctuations ampli-
tude and the friction kernel [5, 6]

〈F (t)F (s)〉 ∝ kBTK(t− s). (1)

Usually, when dealing with Langevin equations, some
hypothesis on the average of the noise and on the expres-
sion of the friction kernel are assumed. In most of the
applications the noise function is assumed to be ”white”,
that is, it has zero mean and a time-correlation function
proportional to a Dirac delta. Langevin equations with
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white noise and constant friction coefficient are used to
describe Markov processes.

The Brownian motion has been widely studied in the
case of particles in solvents which are not perturbed by
any external driving force [6, 7]. However, many studies
extended its applications to nonequilibrium and driven
solvents [8, 9] such as fluid flows. Among fluid flows,
shear flow is one of the most common examples for its the-
oretical and practical applications such as in aerospace
engineering [10, 11], atmospheric physics [12, 13], col-
loidal systems [3, 14, 15] or plasma physics [16, 17]. It is
important also in the study of soft matter systems to de-
termine the microstructure of colloidal dispersions under
flow conditions [4, 18–21] and to understand and describe
diffusion of solutes in channel flows [22].

The Langevin formalism is widely used in numerical
simulations to study the physical properties of nonequi-
librium glassy materials [23–25]. Usually, when perform-
ing simulations, a Langevin equation with shear is pos-
tulated [26–28], both in its original underdamped form
[29]

mv̇ = −ζp + F(t)− V ′[r] + γ̇ζyx̂ (2)

and in the overdamped limit [24, 30]

ζ
(
v(t)− γ̇yx̂

)
= −V ′[r] + F(t) (3)

where r is the particle’s position, ζ is the friction coeffi-
cient, y is the particle’s position component along the y
axis, and γ̇ is the strain-rate or shear-rate.

However, in spite of its wide use, a first-principles
mathematical derivation of the Langevin equation with
shear flow, including the form of the shear-rate depen-
dent friction kernel, has apparently not been provided
yet. Among previous attempts, we shall mention the im-
portant work of Ref. [29], where the Langevin equation

ar
X

iv
:2

30
2.

03
98

2v
1 

 [
co

nd
-m

at
.s

of
t]

  8
 F

eb
 2

02
3

mailto:sara.pelargonio@studenti.unimi.it
mailto:alessio.zaccone@unimi.it


2

with shear flow was derived from first principles using the
Mori-Zwanzig projection operator method. However, no
explicit form of the friction memory kernel was obtained.
Without the knowledge of the memory kernel, it is impos-
sible to study the stochastic properties of the noise and
to derive meaningful fluctuation-dissipation relations.

Shear-flow systems have been studied as examples of
driven systems to investigate the validity of fluctuation-
dissipation relations out of equilibrium [23, 31, 32]. It
was found that the first fluctuation-dissipation theorem
(FDT) is different from the equilibrium case [32–35] but,
on the other hand, according to some recent studies
[36, 37], the second FDT should be valid even far from
equilibrium. For this reason, the second FDT allows one
to study some properties of a system even in more general
cases such as far from equilibrium.

Some studies [38, 39] proved that, in the case of driven
environments, an extension of the second FDT is needed.
For this reason, it would be relevant to derive a second
FDT for systems under shear flow from first principles. It
is known, in fact, that most of the times the Markovian-
ity is just an approximation of a real non-Markovian be-
haviour, and it is still not clear whether, and, eventually,
how, external force fields may affect the stochastic nature
of a sheared system. Therefore, it would be relevant to
provide a derivation of an extended FDT for shear-flow
systems, without imposing any a priori assumption on
the nature of the stochastic noise.

We therefore provide a rigorous derivation of a
Langevin equation and its related second FDT with shear
flow from first principles. We proceed by following the
particle-bath Hamiltonian approach as it was at first pro-
posed by Zwanzig [6] to derive a Langevin equation for
simple Brownian motion. This method has already been
used in other cases of externally time-dependent driven
systems [2] but it has never been applied to the case of
fluids under external shear forces, which is paradigmatic
for a whole class of nonequilibrium dissipative systems.

II. THEORY

A. DOLLS tensor method

Historically, the first method developed for performing
calculations on viscous flows was Hoover’s DOLLS tensor
method [40]. It is based on the idea that any mechanical
flow can be described by specifying the space and time
dependence of the strain rate tensor ∇u, which describes
the rate at which any internal coordinate q changes with
time according to

q̇ = q · ∇u. (4)

If standard conservation principles are valid, then the
corresponding change in momentum is:

ṗ = −∇u · p (5)

A microscopic Hamiltonian which contains the usual
changes in coordinates and momenta from potential and
kinetic energy terms as well as changes due to an ap-
plied macroscopic mechanical deformation described by
the DOLLS tensor qp : ∇u reads as:

H = Φ(q) +K(p) + qp : ∇u. (6)

The corresponding equations of motion can be inte-
grated numerically and used to perform numerical simu-
lations on fluid flow systems [41].

Later, an alternative computational approach, called
SLLOD, was developed in [42–44]. It is based on differ-
ent microscopic equations of motion that still describe the
same macroscopic flow and are consistent with thermo-
dynamics principles. However, unlike the DOLLS tensor
equations, the SLLOD equations of motion cannot be de-
rived from any Hamiltonian. The SLLOD equations of
motion read as follows:

q̇ =
p

m
+ q · ∇u

ṗ = F− p · ∇u.
(7)

It has been demonstrated [42] that these equations give
the same dissipation as the DOLLS equations. Many
studies [43, 45–48] compared the results obtained by
DOLLS and SLLOD algorithms pointing out that, in
some instances, they may lead to different results, such as
the direction of the rotation of particles under shear, or
slightly different predicted values for the normal stress.
Even though the SLLOD method is usually preferred, the
DOLLS tensor Hamiltonian is still widely adopted as the
only Hamiltonian describing a microscopic flow, and for
this reason it will taken as the starting point of the model
adopted here.

B. The model

We consider a homogeneous planar Couette flow, cfr.
Fig. 1, described by the strain-rate tensor

∇u =

(
∂ux

∂x
∂uy

∂x
∂ux

∂y
∂uy

∂y

)
=

(
0 0
γ̇ 0

)
(8)

where γ̇ is the shear rate that, for simplicity, is assumed
to be constant. The strain-rate tensor determines a
change in velocity equal to

v = ∇u · x = γ̇yx̂. (9)

We study the classical version of the Caldeira-Leggett
coupling [49] between a tagged particle and a bath of har-
monic oscillators, as already proposed by Zwanzig, and
add a new term that describes the microscopic deforma-
tion that determines the fluid flow. As discussed above,
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FIG. 1: Schematic of a planar Couette simple shear flow used
in the derivations.

this term can be taken to be proportional to the strain-
rate tensor and to the DOLLS tensor. We therefore take
the Hamiltonian of the system of interest, namely the
colloidal particle, and of its environment, that are the
bath’s degrees of freedom, to be

HP =
P 2

2M
+ V (Q) + QP : ∇u

HB =
∑
i

[p2i
2

+
1

2
ω2
i

(
qi −

ci
ω2
i

Q
)2

+ qipi : ∇u
] (10)

where (P,Q) are the tagged particle’s coordinates, while
(pi,qi) are the heat bath’s degrees of freedom. They
are modelled as harmonic oscillators with oscillation fre-
quency ωi and interact bilinearly with the tagged parti-
cle. The tagged particle is assumed to perturb its envi-
ronment weakly, so the coupling is assumed to be small.
The coupling’s strength is determined by the constant
ci, known as the strength of coupling between the tagged
particle and the i-th bath oscillator. By using the DOLLS
strain-rate tensor Eq. (8), the Hamiltonians become

HP =
P 2

2M
+ V (Q) + γ̇QyPxx̂ŷ

HB =
∑
i

[p2i
2

+
1

2
ω2
i

(
qi −

ci
ω2
i

Q
)2

+ γ̇qiypixx̂ŷ
]
.

(11)

Apart from the terms in γ̇, which are new and stem
from the DOLLS model for the strain rate applied to
the system, the above Hamiltonian coincides with the
standard (classical) Caldeira-Leggett Hamiltonian used
throughout the literature [2, 6, 49–52].

The second term in the bracket in the definition of
HB is manifestly breaking translation invariance. It
should be noted that a suitably renormalized potential

Ṽ (Q) ≡ V (Q) − 1
2

∑
i
c2i
ω2

i
Q2, provides a “counter-term”

that makes the Hamiltonian translation-invariant, as em-
phasized by various authors [49–51, 53]. Since in our

study the potential V (Q) is left unspecified, we can im-
plicitly assume that our V (Q) in Eq. (11) contains
such counter-term so that the Hamiltonian is translation-
invariant.

Furthermore, it is assumed that the external defor-
mation field acts both on the tagged particle and on
the heat bath’s particles and all the results presented in
the next sections are derived from this hypothesis. It
is not the only possible case, as one could expect the
tagged particle to flow also because of the interactions
with the heat-bath’s degrees of freedom, with only the
latter being subjected to the deformation. We shall
demonstrate later on that this hypothesis leads to a
slightly different form of the Langevin equation with
shear.

C. Derivation

The Hamiltonian Eq. (11) leads to the following sys-
tem of equations of motion

Q̇x =
Px
M

+ γ̇Qy(t)

Q̇y =
Py
M

Ṗx = −V ′[Q]x +
∑
i

ci

(
qix −

ciQx
ω2
i

)
Ṗy = −V ′[Q]y − γ̇Py(t) +

∑
i

ci

(
qiy −

ciQy
ω2
i

)
q̇ix = pix + γ̇qiy

q̇iy = piy

ṗix = −ω2qix + ciQx

ṗiy = −ω2qiy − γ̇pix + ciQy.

(12)

We first consider the ODE system for the bath’s co-
ordinates. It can be solved by considering the vectors’
components separately. In matrix form, it reads

ẏ = Ay + C (13)

where

y =

qxqypx
py

 A =

 0 γ̇ 1 0
0 0 0 1
−ω2 0 0 0

0 −ω2 −γ̇ 0

 C =

 0
0
Qx
Qy


(14)

and is solved by diagonalizing A, changing variables to
A’s eigenvectors basis, solving the decoupled system us-
ing Duhamel’s formula, and then performing the inverse
change of variables. It leads to
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qix(t) =
ci

4ωi

∫ t

0

dt′Qy(t′)
(
e−λ2(t−t′) + eλ2(t−t′)

)
+

ci
4ωi

√
γ̇ − ωi√
ωi

∫ t

0

dt′Qx(t′)
(
e−λ2(t−t′) − eλ2(t−t′)

)
− ci

4ωi

∫ t

0

dt′Qy(t′)
(
eλ4(t−t′) + e−λ4(t−t′)

)
− ci

4ωi

√
γ̇ + ωi√
−ωi

∫ t

0

dt′Qx(t′)
(
e−λ4(t−t′) − eλ4(t−t′)

)
+

√
γ̇ − ωi

4ω2
i

√
ωi
pix(0)

(
e−λ2t − eλ2t

)
+
piy(0)

4ωi

(
e−λ2t + eλ2t

)
−
ωi
√
−ωi(γ̇ + ωi)

4ω2
i

pix(0)eλ4t

− piy(0)

4ωi

(
e−λ4t + eλ4t

)
− γ̇ + ωi

4ωi
√
−ωi(γ̇ + ωi)

pix(0)e−λ4t +

√
−ωi(γ̇ + ωi)

4ωi
qiy(0)

(
eλ2t − e−λ2t

)
+

√
ωi(γ̇ − ωi)

4ωi
qiy(0)

(
e−λ4t − eλ4t

)
+
qix(0)

4

(
e−λ4t + eλ4t

)
+
qix(0)

4

(
e−λ2t + eλ2t

)

(15)

and

qiy(t) =
ci

4
√
ωi(γ̇ − ωi)

∫ t

0

dt′Qy(t′)
(
eλ2(t−t′) − e−λ2(t−t′)

)
− ci

4ωi

∫ t

0

dt′Qx(t′)
(
eλ2(t−t′) + e−λ2(t−t′)

)
+

ci

4
√
−ω(γ̇ + ωi)

∫ t

0

dt′Qy(t′)
(
eλ4(t−t′) − e−λ4(t−t′)

)
+

ci
4ωi

∫ t

0

dt′Qx(t′)
(
eλ4(t−t′) + e−λ4(t−t′)

)
+
pix(0)

4ωi

(
eλ2t + e−λ2t

)
− pix(0)

4ωi

(
eλ4t + e−λ4t

)
+

piy(0)

4
√
ωi(γ̇ − ωi)

(
eλ2t − e−λ2t

)
+

piy(0)

4
√
−ωi(γ̇ + ωi)

(
eλ4t − e−λ4t

)
+

ωi

4
√
ωi(γ̇ − ωi)

qix(0)
(
eλ2t − e−λ2t

)
− ωi

4
√
−ωi(γ̇ + ωi)

qix(0)
(
eλ4t − e−λ4t

)
+
qiy(0)

4

(
eλ2t + e−λ2t

)
+
qiy(0)

4

(
eλ4t + e−λ4t

)

(16)

where

λ2 =
√
ωi(γ̇ − ωi)

λ4 =
√
−ωi(γ̇ + ωi)

(17)

are A’s eigenvalues along with λ1 = −λ2 and λ3 = −λ4.

Upon evaluating the integrals by parts and plugging these
solutions into the equations for Px(t) and Py(t) in Eq.
(12), we find the following generalized Langevin equation
(GLE) with shear flow:

Ṗ = −V ′[Q]− γ̇Px(t) + F(t)−
∫ t

0

dt′Ktot(t− t′)Q̇(t′) (18)

Terms explicitly depending on Q or one of its Cartesian components, are not allowed into the equation of motion
because they depend on the position of the particle, and therefore have to vanish for a system with translational
invariance, as noted already by Andersen [54] and by Ray and Rahman [55].

Furthermore, the memory kernel is the sum of four
terms: Ktot = K1 + K2 + K3 + K4 which are given by

the following expressions:
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K1 =

 0 −
∑
i

c2i

4ωi

√
ωi(γ̇−ωi)

(
eλ2(t−t′) − e−λ2(t−t′)

)
∑
i

c2i

4ωi

√
ωi(γ̇−ωi)

(
eλ2(t−t′) − e−λ2(t−t′)

)
0


K2 =

∑i
c2i
4ω2

i

(
eλ2(t−t′) + e−λ2(t−t′)

)
0

0 −
∑
i

c2i
4ωi(γ̇−ωi)

(
eλ2(t−t′) + e−λ2(t−t′)

)
K3 =

 0
∑
i

c2i

4ωi

√
−ωi(γ̇+ωi)

(
eλ4(t−t′) + e−λ4(t−t′)

)
−
∑
i

c2i

4ωi

√
−ωi(γ̇+ωi)

(
eλ4(t−t′) − e−λ4(t−t′)

)
0


K4 =

∑i
c2i
4ω2

i

(
eλ4(t−t′) + e−λ4(t−t′)

)
0

0
∑
i

c2i
4ωi(γ̇+ωi)

(
eλ4(t−t′) + e−λ4(t−t′)

)

(19)

and the noise function is

F(t) =

(
Fx(t)
Fy(t)

)
(20)

with

Fx(t) =
∑
i

{
ci
√
γ̇ − ωi

4ωi
√
ωi

pix(0)
(
e−λ2t − eλ2t

)
+
[
− c

2
i

ω2
i

Qx(0) +
ci
4
qix(0) +

ci
4ωi

py(0)
](
eλ2t + e−λ2t

)
+
[
− c2i

4ω2
i

Qx(0) +
ci
4
qix(0)− ci

4ωi
piy(0)

](
eλ4t + e−λ4t

)
− ci

4ω2
i

√
−ωi(γ̇ + ωi)pix(0)eλ4t

+

[
c2i

4ωi
√
ωi(γ̇ − ωi)

Qy(0)−
ci
√
ωi(γ̇ − ωi)

4ωi
qiy(0)

](
eλ2t − e−λ2t

)
+

[
− c2i

4ωi
√
−ωi(γ̇ + ωi)

Qy(0) +
ci
√
−ωi(γ̇ + ωi)

ωi
qiy(0)

](
eλ4t − e−λ4t

)
− ci

γ̇ + ωi

4ωi
√
−ωi(γ̇ + ωi)

pix(0)e−λ4t

}

(21)

Fy(t) =
∑
i

{(
− c2iQy(0)

4ωi(γ̇ − ωi)
+
ci
4
qiy(0)− ci

4ωi
pix

)(
eλ2t

′
+ e−λ2t

′
)

+

(
c2iQx(0)

4ωi
√
−ωi(γ̇ + ωi)

− ciωi√
−ωi(γ̇ + ωi)

qix(0) +
cipiy(0)

4
√
−ωi(γ̇ + ωi)

)(
eλ4t

′
− e−λ4t

′
)

+

(
− c2iQx(0)

4ωi
√
ωi(γ̇ − ωi)

+
ciωi√

ωi(γ̇ − ωi)
qix(0) +

cipiy(0)

4
√
ωi(γ̇ − ωi)

)(
eλ2t

′
− e−λ2t

′
)

+

(
− c2iQy(0)

4ωi(γ̇ + ωi)
+
ci
4
qiy(0) +

ci
4ωi

pix

)(
eλ4t

′
+ e−λ4t

′
)}

(22)

We then compute the noise time-correlation function assuming the heat bath’s initial conditions to be drawn
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from a Boltzmann distribution [6]

〈F(t)F(t′)〉 =

∫ +∞

−∞
dq(0)dp(0)F(t)F(t′)e−HB/kBT .

(23)
Depending on when the external shear deformation be-

gins to act on the system, there are two different physical
situations. We can consider a system that is in mechani-
cal equilibrium at t = 0 with the external shear perturba-
tion acting from t > 0 or a system that is already sheared,
and not in equilibrium, at t = 0. That is, we can com-
pute two different time-correlation functions, leading to
two different fluctuation-dissipation relations, by taking
the Boltzmann’s weight HB to be

HB =
∑
i

[p2i
2

+
1

2
ω2
i

(
qi −

ci
ω2
i

Q
)2]

(24)

or

HB =
∑
i

[p2i
2

+
1

2
ω2
i

(
qi −

ci
ω2
i

Q
)2

+ γ̇qiypixx̂ŷ
]
, (25)

respectively.
We compute the time-correlation function of the noise

for both of the cases discussed above. As the noise
function has two different expressions for every com-
ponent, the integration is carried out on qx(0), px(0)
and qy(0), py(0) separately. For the equilibrium ini-
tial conditions, the Boltzmann weight does not mix
q(0)’s and p(0)’s x and y components as there is no
the shear term that couples them, so they can be
regarded as independent random variables. That is,
given two functions depending on one component only
f(qx(0), px(0)), g(qy(0), py(0)) the average of their prod-
uct is equal to the product of the single averages:

〈f(qx(0), px(0))g(qy(0), py(0))〉
= 〈f(qx(0), px(0))〉〈g(qy(0), py(0))〉. (26)

Consequently, every integral of the form∫
f(qx(0), px(0))g(qy(0), py(0))e−HB/kBT

× dqx(0)dpx(0)dqy(0)dpy(0) (27)

can be evaluated as a product of integrals carried out on
single Cartesian components:∫ (

f(qx(0), px(0))g(qy(0), py(0))
)
e−HB/kBT dqx(0)

× dpx(0)dqy(0)dpy(0)

=

∫
f(qx(0), px(0))e−HB/kBT dqx(0)dpx(0)∫
g(qy(0), py(0))e−HB/kBT dqy(0)dpy(0). (28)

In the case of nonequilibrium initial conditions, the
positions and momenta of the heat bath’s oscillators are
correlated random variables as the shear term couples
px(0) and qy(0) so in that case we have integrals of the
form:

〈f(qx(0), px(0))g(qy(0), py(0))〉 =∫
f(qx(0), px(0))g(qy(0), py(0))e−HB/kBT

× dqx(0)dpx(0)dqy(0)dpy(0). (29)

III. RESULTS

We begin by solving the heat bath’s equations of mo-
tion. They form a system of coupled ordinary differential
equations. In order to be solved, the system needs to be
diagonalized first.

By looking at the eigenvalues, in Eq. (17), one of them
is always imaginary while the other one can be either
real or imaginary depending on the shear rate’s intensity
compared to the harmonic oscillators’ frequencies. If the
shear rate is lower than the oscillators’ frequency, the
system’s solution will be a linear combination of trigono-
metric functions, that is, the heat bath’s degrees of free-
dom will oscillate with an oscillation frequency modified
by the shear-rate. However, if the shear-rate is higher
than the oscillators’ frequency, the shear will affect the
overall behaviour.

Consequently, we present the results we obtained by
distinguishing two different cases or limits: γ̇ < ωi ∀i
and γ̇ > ωi ∀i. As in natural units the vibrational
frequency equals the vibrational temperature, it is also
possible to relate the shear rate’s intensity to the average
vibrational temperature of the heat-bath’s molecules.

This allows one to visualize the obtained results draw-
ing a qualitative phase diagram presented in Fig. 2. We
first present the results graphically and then we explain
them in detail in the next sections.
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FIG. 2: Qualitative phase diagram of the obtained results for
the different forms of the Langevin equation with shear. The
solid line indicates the schematic dependence of the vibra-
tional temperature (frequency) of the thermal bath as a func-
tion of the applied shear rate across three different regimes
discussed in the text: to the left, γ̇ � ωi, in the middle
γ̇ < ωi, and to the right γ̇ > ωi.

A. Generalized Langevin equation with shear

1. Close to equilibrium: γ̇ � ωi and γ̇ < ωi

If γ � ωi all the terms like γ̇ + ωi or γ̇ − ωi can be
approximated to' ωi. In this case the Langevin equation
reduces to

Ṗ = −V ′[Q] + F(t)−
∫ t

0

K(t− t′)Q̇(t′)dt′ − γ̇Pxŷ

(30)

where

K(t− t′) ≡ ν(t− t′) =
∑
i

c2i
ω2
i

cos(ωi(t− t′)). (31)

This equation is very similar to Eq. (2) widely used in
the literature [6]. In particular, the memory kernel is
exactly the same as the one derived by Zwanzig for the
GLE without shear [6].

There are, however, some remarkable differences which
will be analyzed in the following sections. As a sanity
check, it is important to notice that if γ̇ is set equal
to zero, then the equation for the Brownian particle in
a solvent with no external drag forces is recovered. In
particular, the memory function ν(t− t′) is precisely the
same, as all the dependence on γ̇ is encoded in the drag
term γ̇Pxŷ. However, the drag term is different because
the friction does not appear as a factor. Also, this drag
force is oriented along the ŷ-axis direction and not along
the x̂-axis direction.

If the shear rate is less than the heat bath’s frequencies
but not entirely negligible, we expect the fluid’s particles
to oscillate around their equilibrium positions with a fre-
quency modified by the shear rate. As we are in the limit
of small shear rate, we can perform a Taylor expansion
around γ̇ = 0. If only terms up to first order are kept,
the Langevin equation reads as

Ṗ = −V ′[Q]−
∫ t

0

ν(t− t′)Q̇(t′)dt′

− γ̇
∫ t

0

K1(t− t′)Q̇(t′)dt′ − γ̇
∫ t

0

K2(t− t′)Q̇(t′)dt′

+ F(t)− γ̇Px(t)ŷ + o(γ̇)

(32)

where K1(t − t′) and K2(t − t′) are friction matrices,
which have the following form

K1(t− t′) =

 0
∑
i
c2i
2ω2

i
cos [ωi(t− t′)] (t− t′)

−
∑
i
c2i
2ω2

i
cos [ωi(t− t′)] (t− t′) 0

 (33)

K2(t− t′) =

 0 −
∑
i
c2i
2ω3

i
sin [ωi(t− t′)]∑

i
c2i
2ω3

i
sin [ωi(t− t′)] 0

 (34)

and ν(t − t′) is the memory function in the absence of
shear, introduced above.

At first order, the shear rate does not affect the oscilla-
tion frequencies but introduces some additional friction

terms which are, in general, non-Markovian as they can-
not be easily reduced to be proportional to a Dirac’s delta
function.
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If also second order terms are kept, the GLE becomes

Ṗ = −V ′[Q]−
∫ t

0

K(t− t′)Q̇(t′)dt′ − γ̇
∫ t

0

K1(t− t′)Q̇(t′)dt′ − γ̇
∫ t

0

K2(t− t′)Q̇(t′)dt′

− γ̇2
∫ t

0

K3(t− t′)Q̇(t′)dt′ + F(t)− γ̇Px(t)ŷ + o(γ̇2)

(35)

where the friction matrices read as:

K1(t− t′) =

 0
∑
i
c2i
2ω2

i
cos
[(
ωi − γ̇2

8ωi

)
(t− t′)

]
(t− t′)

−
∑
i
c2i
2ω2

i
cos
[(
ωi − γ̇2

8ωi

)
(t− t′)

]
(t− t′) 0

 (36)

K2(t− t′) =

 0 −
∑
i
c2i
2ω3

i
sin
[(
ωi − γ̇2

8ωi

)
(t− t′)

]
∑
i
c2i
2ω3

i
sin
[(
ωi − γ̇2

8ωi

)
(t− t′)

]
0

 (37)

K3(t− t′) =

(
0 0

0
∑
i
c2i
ω4

i
cos
[(
ωi − γ̇2

8ωi

)
(t− t′)

]
+

c2i
2ω3

i
(t− t′) sin

[(
ωi − γ̇2

8ωi

)
(t− t′)

])
(38)

and

K(t− t′) =∑
i

c2i
ω2
i

cos
((
ωi −

γ̇2

8ωi

)
(t− t′)

)
cos
( γ̇

2
(t− t′)

)
+ o(γ̇2).

(39)

By looking both at the friction matrices and at the
memory function, we see that the shear rate introduces a
second order correction in the heat bath’s oscillation fre-
quencies. Moreover, the memory function Eq. (39) differs
from the first-order one Eq. (31) both for the oscillation
frequency and for the new expression as, in this case,
there’s a product with a function depending on γ̇. As

cos
( γ̇

2
(t− t′)

)
' 1− 1

2

( γ̇
2

(t− t′)
)2

+ o(γ̇2) (40)

the memory function K(t− t′) can also be rewritten as

K(t− t′) =∑
i

c2i
ω2
i

[(
1− γ̇2

8

)
(t− t′)2 cos

((
ωi −

γ̇2

8ωi

)
(t− t′)

)]
.

(41)

If all the terms proportional to powers of γ̇ are grouped
in the same friction matrix, Eq. (35) can be also written
as a more compact expression as shown in the Appendix
A. However, the former expression makes the interpre-
tation of the corresponding FDT clearer, as we shall see
in Sec. III.B, since making the memory function explicit
allows us to give a more physical interpretation to the
FDT.

As in the previous case, by setting γ̇ = 0 the Langevin
equation for the Brownian particle with no shear is recov-
ered because all the additional terms proportional to γ̇
vanish and the heat bath’s oscillation frequencies become
identically equal to ωi.

2. Far from equilibrium: γ̇ � ωi ∀i

We present the GLE obtained by considering the same
system far from equilibrium. That is, we assume the
external shear perturbation to be higher than the thermal
agitation. If we take γ̇ � ωi ∀i = 1, ..., N then γ̇±ωi '
γ̇ and Eq.(18) becomes
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Ṗ = −V ′[Q]−
∫ t

0

K1(t− t′)Q̇(t′)dt′

−
∫ t

0

K2(t− t′)Q̇(t′)dt′ − γ̇Px(t)ŷ

(42)

where the friction matrices now read as

K1(t−t′) =

 0
∑
i

c2i
2ωi
√
γ̇ωi

[
sin(
√
γ̇ωi(t− t′))− sinh(

√
γ̇ωi(t− t′))

]
∑
i

c2i
2ωi
√
γ̇ωi

[
− sin(

√
γ̇ωi(t− t′)) + sinh(

√
γ̇ωi(t− t′))

]
0


(43)

K2(t−t′) =

∑i
c2i
ω2

i

[
− cosh(

√
γ̇ωi(t− t′)) + cos(

√
γ̇ωi(t− t′))

]
0

0
∑
i
c2i
ωiγ̇

[
− cosh(

√
γ̇ωi(t− t′)) + cos(

√
γ̇ωi(t− t′))

] .

(44)

As in the previous case, we find a GLE with different
memory functions. In this case, the memory functions
reflect the effect of the external driving force: on the one
hand there’s an exponential growth (due to the cosh) and

on the other hand an oscillation around the equilibrium
positions with a modified frequency. As before, it is pos-
sible to write the Langevin equation by grouping all the
friction matrices like

Ṗ = −V ′[Q]−
∫ t

0

K(t− t′)Q̇(t′)dt′ − γ̇Px(t)ŷ (45)

where

K1(t−t′) =

 ∑
i
c2i
ω2

i

[
cosh(

√
γ̇ωi(t− t′)) + cos(

√
γ̇ωi(t− t′))

] ∑
i

c2i
2ωi
√
γ̇ωi

[
sin(
√
γ̇ωi(t− t′))− sinh(

√
γ̇ωi(t− t′))

]
∑
i

c2i
2ωi
√
γ̇ωi

[
− sin(

√
γ̇ωi(t− t′)) + sinh(

√
γ̇ωi(t− t′))

] ∑
i

c2i
2γ̇ωi

[
cosh(

√
γ̇ωi(t− t′)) + cos(

√
γ̇ωi(t− t′))

]  .

(46)

Also in this case we see how the external shear force
affects the dynamics at every level of description, since
the new oscillation frequency depends on γ̇ as

√
γ̇.

B. Fluctuation-dissipation theorems

Starting from the noise’s expression Eq. (21) and
Eq. (22), we compute a FDT both for equilibrium and
nonequilibrium heat bath’s initial conditions. In doing
so, different cases are analyzed. We still distinguish be-
tween high and low shear rate, but also between equilib-
rium and nonequilibrium initial conditions. That is, we
compute a FDT for small shear rates both for a system
already perturbed at t = 0 and for an unperturbed one
in equilibrium at t = 0, respectively. We then present
some physical considerations about the behavior for high
shear rates and obtain an analytical result in the long
time limit.

1. Equilibrium initial conditions

If the system is assumed to be in equilibrium at t = 0
and the external drag force acts from t > 0 on, when
computing 〈F(t)F(t′)〉 the Boltzmann weight is given by
the heat bath’s Hamiltonian with no shear Eq. (24). If
only first order terms are kept, we find

〈F(t)F(t′)〉 = kBTν(t− t′) + o(γ̇) (47)

where the memory function ν(t− t′) is given by Eq. (31).
This is precisely the same fluctuation-dissipation relation
for a Brownian particle in a quiescent system (i.e. in
the absence of external shear) derived e.g. in [6]. This
is also reassuring as a sanity check. Therefore, all the
considerations already done about this expression are still
valid. If also second order terms are considered, then the
fluctuation-dissipation theorem (cfr. Appendix B.1 for
the full details) becomes
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〈F(t)F(t′)〉 = kBTν(t− t′) + γ̇2kBTH(t, t′, ωi)

+ γ̇2kBTν(t− t′)ŷ + o(γ̇2) (48)

where

H(t, t′, ωi) =
∑
i

c2i
8ω3

i

[
sin(ωi(t+ t′))(t− t′)

− sin(ωi(t− t′))(t+ t′)
]
. (49)

This expression Eq.(48) is made of a term proportional
to the memory function ν(t−t′) Eq.(39) plus two second-
order corrections. One term is proportional to a function
H(t, t′, ωi) depending both on t− t′ and on t+ t′, that is,
not only on time differences but also on the entire time
evolution of the system. The other term is proportional
to γ̇2 and to the friction function ν(t − t′), so it stands
for the standard energy dissipation as it occurs in sheared
fluids [56].

Therefore, up to linear order in γ̇, this result is con-
sistent with the hypotheses that are usually assumed in
numerical simulations [27]. However, at second order in
γ̇ this is no longer true. The dissipative term quadratic
in γ̇ is consistent with the physical picture of the system,
as there is a term representing transverse energy dissipa-
tion as one expects for a Couette flow as different fluid
layers move parallel with a velocity directed along the x
axis so that energy dissipation occurs along the y axis.

2. Nonequilibrium initial conditions

We now assume the system to be already perturbed at
t = 0. Heat-bath’s initial conditions are then Boltzmann-
distributed with a weight given by Eq. (11). At first order
we find

〈F(t)F(t′)〉 = kBTν(t− t′) + γ̇G̃(t, t′, ωi) + o(γ̇) (50)

where

G̃(t, t′, ωi) =

(
Gx(t, t′, ωi)
Gy(t, t′, ωi)

)
=

∑i

[
c2i
2ω2

i
sin(ωi(t+ t′))(t+ t′) +

c2i
2ω2

i
(t− t′) cos(ωi(t− t′))

]
∑
i

[
c2i
2ω3

i
cos(ωi(t+ t′)) +

c2i
2ω3

i
cos(ωi(t− t′))

]  (51)

The main difference respect to Eq. (47) is that here there
are some corrections at first order in γ̇ already. Although
these corrections break parity symmetry, it is important
to remark that parity is broken already in the initial
state, as it is indicated by the Hamiltonian Eq. (11). As
in Eq. (47), one of the additional terms is proportional

to a function G̃(t, t′, ωi) that depends on the entire time-
evolution of the system. If also second order terms in γ̇
are kept, the FDT reads as (cfr. Appendix B.2 for the

full details)

〈F(t)F(t′)〉 = kBTν(t− t′) + γ̇G̃(t, t′, ωi)

+ γ̇2kBT H̃(t, t′, ωi) + γ̇2kBTν(t− t′)ŷ + o(γ̇2) (52)

where

H̃(t, t′, ωi) =

(
H̃x(t, t′, ωi)

H̃y(t, t′, ωi)

)

=

∑i

[
c2i
8ω4

i
cos
((
ωi − γ̇2

8ω2
i

)
(t− t′)) cos

(
γ̇
2 (t+ t′)

)
+ cos

((
ωi − γ̇2

8ω2
i

)
(t+ t′)

)
cos
(
γ̇
2 (t− t′)

)]
∑
i

3c2i
2ω4

i
cos((ωi − γ̇2

8ωi
)(t+ t′)) cos( γ̇2 (t+ t′))

 (53)

As before, the function H̃(t, t′, ωi) depends also on the
time-evolution of the system. It is important to notice
that also here there is a term that represents viscous fluid
energy dissipation [56].

C. Far from equilibrium (γ̇ � ωi) and turbulence

We also calculated a FDT in the case of strong external
shear perturbation. In this case, the oscillation frequen-
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cies are replaced by
√
γ̇ωi. We focused on the correspond-

ing long-time limit. The final expression is lengthy and it
features a linear combination of products between hyper-
bolic functions and trigonometric functions. For this rea-
son, it is not possible to determine, analytically, whether
the t → ∞ limit converges or not. For high shear rates,
the flow is expected to become turbulent, so the model
used here is expected to fail. Therefore, it is necessary to
determine when the transition from laminar to turbulent
flow happens and to relate this to the shear rate’s inten-
sity. This can be done by writing the Reynolds number
as a function of the shear rate. It is known, in fact, that
a flow is laminar as long as the Reynolds number is lower
than a threshold, which depends on the characteristics of
the device, and becomes turbulent above the threshold.
The Reynolds number is defined as a ratio of the inertial
forces to the viscous forces

Re =
ρud

µ
(54)

where ρ is the fluid’s density, µ is the fluid’s kinematic
viscosity, d is the diameter of the considered fluid’s sec-
tion and u is the flow’s velocity. Since for e.g. a Couette
flow the flow velocity is known and proportional to the
shear rate, the Reynolds number can also be written as

Re(γ̇) =
ργ̇yd

µ
. (55)

As a laminar flow occurs when Re < 2300, this thresh-
old gives an upper bound on the shear rate’s intensity
up to which the above model is applicable. It depends
also on the particular fluid the model is applied to, as
in Eq.(55) also some parameters depend crucially on the
fluid’s physico-chemical characteristics.

IV. DISCUSSION

A. Generalized Langevin equation with shear

The first task we addressed was the derivation of a gen-
eralized Langevin equation (GLE) with shear flow from
first principles. We found an equation that is, in gen-
eral, different from the one used in literature. However,
we notice that in the limit of extremely low shear-rate it
has a form that is very similar to the latter one, except
for the drag term. This is because the drag term is di-
rected along the ŷ axis, and is not multiplied by a friction
coefficient. The friction coefficient is implicit in Px(t)’s
analytic expression as it can be obtained by integrating
the same equations that give the memory functions. In-
stead, the fact that the drag term is directed along ŷ,
and not along x̂, is a feature of the DOLLS dynamics.
It would be possible to obtain the same equation used
in the literature by rotating the reference system, but

it would affect the physical picture of the other results,
such as the transverse energy dissipation.

We performed a perturbative expansion in series of γ̇
centered in γ̇ = 0 as it points out the effect of the external
shear force by treating it as a perturbation. It shows that
the additional memory functions appear as perturbative
corrections to the already known equation, as they are
proportional to power of γ̇. In the GLE Eq.(35) there is
also a term (not shown) that apparently breaks trans-
lational invariance as it is proportional to the tagged
particle’s position Q(t). It appears as a second order
correction so, in first approximation, it can be ignored.

It is remarkable that if γ̇ is set equal to zero, the same
Langevin equation for a Brownian particle with no ex-
ternal perturbation is recovered [6]. We also investigated
how the GLE changes when the external shear force is
higher compared to the bath’s thermal agitation. We
found an equation which has the same form as the one
with small shear Eq.(35) but with different friction ma-
trices. In fact, as we assumed γ̇ > ωi ∀i, one of the eigen-
values is real so the memory functions are not all trigono-
metric functions but there are also hyperbolic functions
that express the exponential expansion of the system de-
termined by the high external driving force. We can con-
clude that we derived a GLE which can be used either
close to and far from equilibrium and that, in the special
case of a system very close to equilibrium, is similar to
the known Langevin equation with shear used in the lit-
erature. How to more closely derive the latter is shown
in the following subsection.

Relation to the Langevin equation with shear used in
numerical simulation studies

In the previous sections it was stated that the results
presented above were based on a system where both the
colloidal particle and the heat-bath’s degrees of freedom
were subjected to the external force field. This led to a
generalized Langevin equation which is, in general, dif-
ferent from the one that can be found in literature. It is
therefore relevant to investigate whether the same equa-
tion can be obtained assuming different hypothesis. If
the external force field is assumed to act only on the heat
bath’s degrees of freedom and not directly on the tagged
particle, different equations of motion are found because
the tagged particle’s Hamiltonian won’t have the addi-
tional DOLLS term. In this case, the dynamics of the
tagged particle is simply the Caldeira-Leggett one:

Q̇ =
P

M

Ṗ = −V ′[Q] +
∑
i

ci

(
qi −

ciQ

ω2
i

)
.

(56)

By proceeding in the same way as before and plug-
ging heat bath’s solutions Eq.(15) and Eq.(16) into these
equations of motion, a different Langevin equation with
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shear is found. In this case, indeed, the somewhat un-
physical drag term γ̇Pxŷ is now absent, which is clear
since the tagged particle does not experience any direct
perturbation due to the externally applied field.

Furthermore, the previous Langevin equation was ob-
tained by integrating by parts all the integral terms ap-
pearing in Eq.(15) and Eq.(16). However, if the integra-
tion of the heat bath’s x component Eq.(15) is carried
over the Qx integrals only while all the integral terms ap-
pearing in the y component Eq.(16) are integrated as be-
fore, the following Langevin equation with shear is found:

Ṗ =− V ′[Q] + F(t)−
∫ t

0

ν(t− t′)Q̇(t′)dt′

+ γ̇

∫ t

0

η(t− t′)Qy(t′)dt′x̂

+ γ̇

∫ t

0

µ(t− t′)Q̇x(t′)dt′ŷ

(57)

where η(t− t′) and µ(t− t′) are new memory functions:

η(t− t′) =
∑
i

[
c2i
ωi

(t− t′) sin(ωi(t− t′))

]
(58)

µ(t− t′) =
∑
i

[
c2i

2ω2
i

(t− t′) cos(ωi(t− t′))

− c2i
4ω3

i

sin(ωi(t− t′))

]
.

(59)

This equation has the right drag term, which is pro-
portional to the y component of the tagged particle’s po-
sition and is directed along the longitudinal x axis, but
it still has an additional term (the last one on the r.h.s.
of Eq. (60)) that does not appear in Eq. (2). How-
ever, this term becomes negligible if the high frequency
limit is taken, as the terms in Eq. (59) are proportional
to negative higher-order (> 1) powers of the oscillation
frequencies ωi. In this limit, we thus get:

Ṗ =− V ′[Q] + F(t)−
∫ t

0

ν(t− t′)Q̇(t′)dt′

+ γ̇

[∫ t

0

dt′η(t− t′)Qy(t′)dt′

]
x̂.

(60)

Consequently, this equation recovers the generic form
of the Langevin equation that can be found in the lit-
erature under the above stated assumptions. The main
difference is that, in this case, there is a strongly non-
Markovian behavior as the drag term (proportional to γ̇)
cannot be easily reduced to be proportional to a Dirac
delta function. In other words, we found a generalized
Langevin equation with shear flow which is the non-
Markovian equivalent of that used in the literature [24].

This Langevin equation has a noise function that is
slightly different from the one in the previous Langevin
equation (Eq.(32)), but this does not affect the FDT.
In fact, the differences are proportional to the tagged
particle’s initial position and, as it was stated before, the
dependence on them has been suppressed because, with
no loss of generality, the tagged particle can be assumed
to be initially at the origin of the reference framework.
For this reason, the FDT reads as

〈F(t)F(t′)〉 = kBTν(t− t′) + γ̇2kBTH(t, t′, ωi)

+ γ̇2kBTν(t− t′)ŷ + o(γ̇2) (61)

in the case of equilibrium initial conditions and

〈F(t)F(t′)〉 = kBTν(t− t′) + γ̇G̃(t, t′, ωi)

+ γ̇2kBT H̃(t, t′, ωi) + γ̇2kBTν(t− t′)ŷ + o(γ̇2) (62)

with nonequilibrium initial conditions (see Eq.(48) and
Eq.(52) for more details).

There is some arbitrariness in the procedure described
above, as the terms to be integrated out in the dynamics
have been chosen in an ad hoc way. This particular choice
implies ignoring the dynamics of microscopic degrees of
freedom along the y-axis direction (while not along the x-
axis direction), which could be tentatively justified based
on the physics of the system since the external shearing
force is directed along the x axis. This axis thus repre-
sents the “special” direction along which the dynamics
is being tracked and cannot be integrated out together
with the other degrees of freedom.

B. Fluctuation-dissipation theorems

From the explicit noise expression we computed the
associated fluctuation-dissipation theorem (FDT). The
first issue that has been encountered was the choice of
the initial distribution. In fact, depending on the form of
the Boltzmann weight, different physical situations are
described and because of this sort of arbitrariness we de-
cided to analyze two different paradigmatic cases.

It is important to point out that, depending on the
choice of initial distribution, different results are found,
which is expected for out-of-equilibrium systems. In the
following discussion we will assume independence from
the tagged particle’s initial conditions. In fact, it can
be assumed, with no loss of generality, that the tagged
particle is at the origin of the coordinate frame at t = 0.

At first we analyzed a situation of “start-up” shear,
that is, we assumed the external driving force to not
act at t = 0 but only at t > 0. As for the general-
ized Langevin equation with shear, under these assump-
tions we found a FDT that recovers the classical one
with no shear for low shear-rates. By performing a per-
turbative expansion around γ̇ = 0, in the same way as
we did for the GLE, and assuming a marginally higher
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shear-rate, we found a different FDT with two additional
terms. They are both second-order corrections as they
are proportional to γ̇2. The first term contains a func-
tion H(t, t′, ωi) that depends on the entire time evolution
of the system, while the second correction term is pro-
portional also to a memory function and represents the
ordinary energy-dissipation in a viscous fluid [56]. More-
over, the memory function differs from the one that ap-
pears in [6] for the zero-shear case. As Eq. (48) shows
a violation of the ordinary FDT (as shown already with
different methods in Refs. [23, 35, 57–59]), one could ask
whether it represents a fluctuation-dissipation relation or
not, but as there is a term compatible with the energy
dissipation in fluids, it is meaningful to say that Eq. (48)
still relates the noise’s fluctuations with the energy dis-
sipation. Moreover, if γ̇ is set equal to zero, the ordinary
zero-shear FDT is correctly recovered. When assuming
the system not to be already perturbed at t = 0, a dif-
ferent FDT is found. As shown by Eq.(52), there are
some corrections at first order in γ̇ already, which thus
break parity and time-reversal symmetry (which already
occurs in the initial nonequilibrium state). The other
first-order correction is proportional to a vector function
that depends on the entire time evolution of the system.
On the other hand, second order corrections are similar
to those in Eq. (48) except for H that has a different ex-
pression. Consequently, if nonequilibrium conditions are
assumed, the corresponding fluctuation-dissipation rela-
tion violates the usual FDT already at first order in γ̇
(cfr., with different methods, Refs. [23, 35, 57–59]).

C. Markovianity

The Langevin dynamics with shear is usually assumed,
throughout the literature, to be a Markov process. If
γ̇ � ωi, second order corrections appearing in the FDT
expression Eq.(48) can be ignored and therefore the or-
dinary FDT for the Brownian particle [6] is recovered.
However, already in the limit γ̇ < ωi, the FDT contains
some corrections proportional to functions depending on
the entire time-evolution of the system. This indicates
that, in general, this process is not Markovian since, by
definition, in a Markov process the dynamics at a fixed
time t is determined only by the dynamics of the sys-
tem in a previous time instant and not by the entire
time-evolution. If the Taylor expansion is truncated at
first order, we recover the same FDT as in Zwanzig’s
derviation[6]. Consequently, by taking the continuum
limit

∑
i

→
∫
dωg(ω). (63)

with

g(ω) ' ω2 (64)

as for bosonic particles, we find

〈F(t)F(t′)〉 ' kBTδ(t− t′) (65)

so that the process is Markovian. If also second-order
terms in γ̇ are kept, it is no longer Markovian because of
the function H(t, t′, ωi). Since H(t, t′, ωi) is proportional
to 1

ω3 , the integral

∫ ∞
0

dωg(ω)H(t, t′, ω) (66)

diverges close to ω = 0 unless the frequencies distribu-
tion (i.e. the density of states) g(ω) has a different de-
pendence on ω.

When nonequilibrium initial conditions are chosen, the
process is strongly non-Markovian at first order in γ̇ al-
ready. As in the previous case, when the continuum limit
is performed, the integrals diverge in ω = 0, so the den-
sity of states g(ω) should have a different dependence on
ω other than quadratic, to prevent the divergence. It
is important to underline that the coupling between the
tagged particle and the heat bath’s degrees of freedom
has been assumed to be constant with frequency. The
divergence of these integrals may also be avoided by re-
quiring the coupling to be a suitable function of ω.

In the case of high external shear force, the process
is expected to be generally non-Markovian because, as
explained in the previous sections, the FDT has a lin-
ear combination of products of hyperbolic functions and
trigonometric functions and this cannot be reduced to a
Dirac delta function. Therefore, we expect that it won’t
be possible to recover a Markovian FDT for the Langevin
equation with shear flow apart from the very special limit
of nearly-vanishing shear rate and equilibrium initial con-
ditions.

V. CONCLUSION

In the present work we have analytically derived the
Langevin equation with shear flow and its correspond-
ing fluctuation-dissipation theorems from first principles,
for the first time. We followed a particle-bath Hamil-
tonian approach using a Caldeira-Leggett model supple-
mented with a term that describes the externally-applied
mechanical deformation. The only microscopic Hamilto-
nian that describes a fluid flow is Hoover’s DOLLS tensor
Hamiltonian, which therefore has been chosen. For sim-
plicity, but without loss of generality, we examined the
easiest example of shear flow, that is planar Couette flow.
We conclude that, in general, the model we proposed re-
covers the most important features of the Langevin mod-
els with shear used in the literature, but with some im-
portant differences. In particular, the Markovian limit
is recovered only in the case of extremely low shear-rate
values compared to the bath’s thermal frequencies. We
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also demonstrated that it would be important to spec-
ify whether the initial state is in thermodynamic equi-
librium or not, as this can lead to a different form of
the fluctuation-dissipation relation. In a future perspec-
tive, it would be interesting to test the generalized non-
Markovian Langevin equation with shear flow, that we
derived here in its different limits, with numerical sim-
ulations. Moreover, this simple model may be used as
the starting point to develop a new theory of the effec-
tive vibrational temperature in nonequilibrium sheared
systems.

In future work, it could be useful to attempt a similar
derivation as in [29] using the Mori-Zwanzig projection
operator method to derive the GLE but crucially
including also the derivation of the memory kernel. This
could be done, e.g., by taking advantage of very recent
advances in the field of memory kernel-reconstruction
techniques for systems out of equilibrium [37, 60].

VI. APPENDIX

A. Compact form of Eq. (35)

We show how it is possible to write the generalized
Langevin equation (GLE) Eq.(35) in a compact form.
If we group all the friction functions and the memory
function we obtain

Ṗ = −V ′[Q]−
∫ t

0

K(t− t′)Q̇(t′)

+ F(t)− γ̇Px(t)ŷ + o(γ̇2) (67)

with a 2× 2 friction matrix

K(t− t′) =



∑
i

c2i
ω2
i

[
cos
((
ωi −

γ̇2

8ωi

)
(t− t′)

)
·

cos
( γ̇

2
(t− t′)

)]
∑
i

[ c2i
2ω2

i

(t− t′) cos
((
ωi −

γ̇

8ωi

)
(t− t′)

)
− c2i

2ω3
i

sin
((
ωi −

γ̇2

8ωi

)
(t− t′)

)]
∑
i

[
− c2i

2ω2
i

cos
((
ωi −

γ̇

8ωi

)
(t− t′)

)
(t− t′)

+
c2i

2ω3
i

sin
((
ωi −

γ̇2

8ωi

)
(t− t′)

)]
∑
i

[ c2i
ω2
i

cos
((
ωi +

γ̇2

8ωi

)
(t− t′)

)
cos
( γ̇

2
(t− t′)

)
+
c2i
ω4
i

cos

((
ωi −

γ̇2

8ωi

)
(t− t′)

)
+

c2i
2ω3

i

(t− t′) sin

((
ωi −

γ̇2

8ωi

)
(t− t′)

)]



. (68)

B. Fluctuation-dissipation theorems

In this section we present the details of the derivation
of the fluctuation dissipation theorem (FDT).

The main idea is to compute 〈Fx(t)Fx(t′)〉 and
〈Fy(t)Fy(t′)〉 separately, as they have different expres-
sions, and then collect the components into a vector ex-
pression.

1. Equilibrium initial conditions

If we take equilibrium initial conditions, then some
terms in 〈Fx(t)Fx(t′)〉 and 〈Fy(t)Fy(t′)〉 have their Boltz-

mann’s ensemble average equal to zero: they are the
mean of the Gaussian distribution given by e−HB/kBT .

This Gaussian distribution is centered in pi and
(
qi −

ci
Q
ω2

i

)
therefore:

〈px(0)〉 = 〈py(0)〉 = 0〈(ci
4
qx(0)− c2i

4ω2
i

Qx(0)
)〉

=
〈(ci

4
qy(0)− c2i

4ω2
i

Qy(0)
)〉

= 0

Only the products between the other terms will con-
tribute to the time-correlation function leading to

〈( c2i
4ωi
√
ωi(γ̇ − ωi)

Qy(0) −
ci
√
ωi(γ̇ − ωi)

4ωi
qy(0)

)2〉
=

c2i (kBTω
2
i (γ̇ − ωi)2 − c2iQy(0)2(γ̇ − 2ωi)

2)

16ω5
i (γ̇ − ωi)

(69)



15

〈(
− c2i

4ωi
√
ωi(γ̇ − ωi)

Qy(0) +
ci
√
ωi(γ̇ − ωi)

4ωi
qy(0)

)2〉
= −

c2i (kBTω
2
i (γ̇ + ωi)

2 + c2iQ
2
y(0)(γ̇ + 2ωi)

2)

16ω5
i (γ̇ + ωi)

(70)

〈( c2i
4ωi
√
ωi(γ̇ − ωi)

Qy(0)−
ci
√
ωi(γ̇ − ωi)

4ωi
qy(0)

)(
− c2i

4ωi
√
ωi(γ̇ − ωi)

Qy(0) +
ci
√
ωi(γ̇ − ωi)

4ωi
qy(0)

)〉
=

−
c2i (kBTω

2
i (γ̇2 − ω2

i ) + c2iQ
2
y(0)(γ̇2 − 4ω2

i )

16ω5
i

√
ωi(γ̇ − ωi)

√
−ωi(γ̇ + ωi)

(71)

〈[
− c

2
i

ω2
i

Qx(0) +
ci
4
qx(0) +

ci
4ωi

py(0)
]2〉

=
c2i

8ω2
i

kBT〈[
− c

2
i

ω2
i

Qx(0) +
ci
4
qx(0)− ci

4ωi
py(0)

]2〉
=

c2i
8ω2

i

kBT

〈p2x〉 = 〈p2y〉 = kBT.

(72)

in 〈Fx(t)Fx(t′)〉 and to

〈( −c2iQy(0)

4ωi(γ̇ + ωi)
+

ci
4
qy(0) − ci

4ωi
px

)2〉
=

−c2i (4c2iQy(0)2 + kBTω
2
i )

16ω4
i

+ γ̇
c2i kBT

16ω3
i

(73)

〈( c2iQy(0)

4ωi(γ̇ − ωi)
+

ci
4
qy(0) +

ci
4ωi

px

)2〉
=

−c2i (4c2iQy(0)2 + kBTω
2
i )

16ω4
i

− γ̇
c2i kBT

16ω3
i

(74)

〈( c2iQy(0)

4ωi(γ̇ − ωi)
+
ci
4
qy(0) +

ci
4ωi

px

)(
−c2iQy(0)

4ωi(γ̇ + ωi)
+
ci
4
qy(0)− ci

4ωi
px

)〉
=
c2i (4c

2
iQy(0)2 + kBTω

2
i )

16ω4
i

(75)

in 〈Fy(t)Fy(t′)〉.
If a Taylor expansion is performed and if all the terms

proportional to the tagged particle’s initial position are

neglected, as, with no loss of generality one could assume
the tagged particle to be in the origin at t = 0, then the
expressions to be evaluated are:
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〈Fx(t)Fx(t′)〉 =
∑
i

{[
− c2i

16ω2
i

kBT + γ̇
c2i

16ω3
i

kBT
](
eλ2t − e−λ2t

)(
eλ2t

′
− e−λ2t

′
)

[ c2i
16ω2

i

kBT + γ̇
c2i

16ω3
i

kBT
](
eλ4t − e−λ4t

′
)(
eλ4t

′
− e−λ4t

′
)

+
c2i

16ω2
i

kBT
(
eλ2t − e−λ2t

)
(eλ4t

′
− e−λ4t

′
)

+
c2i

16ω4
i

kBT
(
eλ4t − e−λ4t

)(
eλ2t − e−λ2t

)
+

c2i
8ω2

i

kBT
(
eλ4t + e−λ4t

)(
eλ4t

′
+ e−λ4t

′
)

+
c2i

8ω2
i

kBT
(
eλ2t + e−λ2t

)(
eλ2t

′
+ e−λ2t

′
)

+
[
− c2i

16ω2
i

+ γ̇
c2i

16ω3
i

](
e−λ2t − eλ2t

)(
e−λ2t

′
− eλ2t

′
)

− c2i
16ω2

i

kBT
(
e−λ2t + e−λ2t

)
e−λ4t

′
+
[
− c2i

16ω2
i

+ γ̇
c2i

16ω3
i

](
e−λ2t − eλ2t

)(
e−λ2t

′
− eλ2t

′
)

− c2i
16ω2

i

kBT
(
e−λ2t − eλ2t

)
e−λ4t

′
+

c2i
16ω2

i

kBT
(
e−λ2t − eλ2t

)
eλ4t

′

− c2i
16ω2

i

kBTe
−λ4t

(
e−λ2t

′
− eλ2t

′
)

+
c2i

16ω2
i

kBTe
λ4t
(
e−λ2t

′
− eλ2t

′
)

+
c2i (γ̇ + ωi)

16ω3
i

kBT
(
e−λ4(t−t′) + e−λ4(t−t′) − e−λ4(t+t

′) − eλ4(t+t
′)
)

(76)

and

〈Fy(t)Fy(t′)〉 =
∑
i

{
c2i

8ω2
i

(
eλ2t + e−λ2t

)(
eλ2t

′
+ e−λ2t

′
)

+
c2i

8ω4
i

(
eλ4t + e−λ4t

)(
eλ4t

′
+ e−λ4t

′
)

−
[ c2i

8ω2
i

+ γ̇
c2i

8ω3
i

](
eλ2t − e−λ2t

)(
eλ2t

′
− e−λ2t

′
)

+
[
− c2i

8ω2
i

+ γ̇
c2i

8ω3
i

](
eλ4t − e−λ4t

)(
eλ4t

′
− e−λ4t

′
)}

.

(77)

As we are in the low shear-rate regime, then the eigenvalues become

λ2 = i

(
ωi −

γ̇

2
− γ̇2

8ωi

)

λ4 = i

(
ωi +

γ̇

2
− γ̇2

8ωi

) (78)

and the exponential factors then read as:

eλ2t − e−λ2t = 2i sin

((
ωi −

γ̇

2
− γ̇2

8ωi

)
t

)

eλ4t − e−λ4t = 2i sin

((
ωi +

γ̇

2
− γ̇2

8ωi

)
t

)

eλ2t + e−λ2t = 2 cos

((
ωi −

γ̇

2
− γ̇2

8ωi

)
t

)

eλ4t + e−λ4t = 2 cos

((
ωi +

γ̇

2
− γ̇2

8ωi

)
t

)
.

(79)

By grouping the terms having the same coefficients, and performing some algebric manipulations using standard
trigonometric identities, then Eq. (48) is found.
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2. Nonequilibrium initial conditions

In this case the Boltzmann averages are:

〈( c2i
4ωi
√
ωi(γ̇ − ωi)

Qy(0) −
ci
√
ωi(γ̇ − ωi)

4ωi
qy(0)

)2〉
=

−c2i kBT
16ω2

i

+ γ̇
c2i kBT

16ω3
i

+ γ̇2
c2i

4ω4
i

kBT (80)

〈(
− c2i

4ωi
√
−ωi(γ̇ + ωi)

Qy(0) +
ci
√
−ωi(γ̇ + ωi)

4ωi
qy(0)

)2〉
=

−c2i kBT
16ω2

i

− γ̇
c2i kBT

16ω3
i

+ γ̇2
c2i

4ω4
i

kBT (81)

〈( c2i
4ωi
√
ωi(γ̇ − ωi)

Qy(0)−
ci
√
ωi(γ̇ − ωi)

4ωi
qy(0)

)(
− c2i

4ωi
√
ωi(γ̇ − ωi)

Qy(0) +
ci
√
ωi(γ̇ − ωi)

4ωi
qy(0)

)〉
=
c2i kBT

16ω2
i

+ γ̇2
7c2i

32ω4
i

kBT (82)

〈p2x(0)〉 = kBT +
4γ̇2

ω4
i

(83)

〈( c2i
4ωi
√
ωi(γ̇ + ωi)

Qy(0) −
ci
√
ωi(γ̇ + ωi)

4ωi
qy(0)

)
px(0)

〉
= γ̇

ci
2iω2

i

(84)

〈(
− c2i

4ωi
√
ωi(γ̇ − ωi)

Qy(0) +
ci
√
ωi(γ̇ + ωi)

4ωi
qy(0)

)
px(0)

〉
= −γ̇ ci

2iω2
i

(85)

and

〈( −c2iQy(0)

4ωi(γ̇ + ωi)
+

ci
4
qy(0) − ci

4ωi
px

)2〉
=

c2i
8ω2

i

+ γ̇
c2i

4ω3
i

kBT + γ̇2
c2i

2ω4
i

kBT (86)

〈( c2iQy(0)

4ωi(γ̇ − ωi
+

ci
4
qy(0) +

ci
4ωi

px

)2〉
=

c2i
8ω2

i

− γ̇
c2i

4ω3
i

kBT + γ̇2
c2i

2ω4
i

kBT (87)

〈( c2i
4ωi
√
−ωi(γ̇ + ωi)

− ciωiqx(0)

4
√
−ωi(γ̇ + ωi)

+
ci√

−ωi(γ̇ + ωi)
py(0)

)2〉
= − ci

8ω2
i

+ γ̇
ci

8ω3
i

− γ̇2
ci

8ω4
i

(88)

〈(
− c2i

4ωi
√
ωi(γ̇ − ωi)

+
ciωiqx(0)

4
√
ωi(γ̇ − ωi)

+
ci√

−ωi(γ̇ + ωi)
py(0)

)2〉
= − ci

8ω2
i

− γ̇
ci

8ω3
i

− γ̇2
ci

8ω4
i

(89)

the other products do not contribute as their average is proportional to the tagged particle’s initial conditions.
As in this case there are some additional terms with nonzero Boltzmann average, then it is possible to take the

FDT computed with equilibrium initial conditions and then just add the new terms.
We first take the x component and the terms in Eqs. (80)-(82) which give
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c2i
4ω2

i

kBT
[
sin
((

(ωi −
γ̇

2
− γ̇2

8ωi

)
t
)

sin
((
ωi −

γ̇

2
− γ̇2

8ωi

)
t′
)

+ sin
((

(ωi +
γ̇

2
− γ̇2

8ωi

)
t
)

sin
((
ωi +

γ̇

2
− γ̇2

8ωi

)
t′
)

− sin
((

(ωi −
γ̇

2
− γ̇2

8ωi

)
t
)

sin
((
ωi +

γ̇

2
− γ̇2

8ωi

)
t′
)
− sin

((
(ωi +

γ̇

2
− γ̇2

8ωi

)
t
)

sin
((
ωi −

γ̇

2
− γ̇2

8ωi

)
t′
)]

+ γ̇
c2i

4ω2
i

kBT
[
sin
((

(ωi +
γ̇

2
− γ̇2

8ωi

)
t
)

sin
((
ωi +

γ̇

2
− γ̇2

8ωi

)
t′
)
− sin

((
(ωi −

γ̇

2
− γ̇2

8ωi

)
t
)

sin
((
ωi −

γ̇

2
− γ̇2

8ωi

)
t′
)]
− γ̇2 c2i

4ω4
i

kBT
[
sin
((

(ωi −
γ̇

2
− γ̇2

8ωi

)
t
)

sin
((
ωi −

γ̇

2
− γ̇2

8ωi

)
t′
)

+ sin
((

(ωi +
γ̇

2
− γ̇2

8ωi

)
t
)

sin
((
ωi +

γ̇

2
− γ̇2

8ωi

)
t′
)

+
7

8
sin
((

(ωi −
γ̇

2
− γ̇2

8ωi

)
t
)

sin
((
ωi +

γ̇

2
− γ̇2

8ωi

)
t′
)

+
7

8
sin
((

(ωi +
γ̇

2
− γ̇2

8ωi

)
t
)

sin
((
ωi −

γ̇

2
− γ̇2

8ωi

)
t′
)]

(90)

Then we analyze the extra term coming from 〈p2x(0)〉 in Eq.(83)

γ̇2
c2i
ω2
i

kBT
[
sin
((
ωi −

γ̇

2
− γ̇2

8ωi

)
t
)

sin
((
ωi +

γ̇

2
− γ̇2

8ωi

)
t′
))

+ sin
((

(ωi +
γ̇

2
− γ̇2

8ωi

)
t
)

sin
((
ωi −

γ̇

2
− γ̇2

8ωi

)
t′
))

+ sin
((

(ωi −
γ̇

2
− γ̇2

8ωi

)
t
)

sin
((
ωi −

γ̇

2
− γ̇2

8ωi

)
t′
)

) + sin
((

(ωi +
γ̇

2
− γ̇2

8ωi

)
t
)

sin
((
ωi +

γ̇

2
− γ̇2

8ωi

)
t′
)] (91)

and from the mixed products in Eqs.(84)-(85) that give

c2i
ω2
i

kBT
[
sin
((

(ωi +
γ̇

2
− γ̇2

8ωi

)
t
)

sin
((
ωi +

γ̇

2
− γ̇2

8ωi

)
t′
)
− sin

((
(ωi −

γ̇

2
− γ̇2

8ωi

)
t
)

sin
((
ωi −

γ̇

2
− γ̇2

8ωi

)
t′
)]

+ γ̇
c2i

2ω3
i

kBT
[
sin
((

(ωi −
γ̇

2
− γ̇2

8ωi

)
t
)

sin
((
ωi −

γ̇

2
− γ̇2

8ωi

)
t′
)
− sin

((
(ωi +

γ̇

2
− γ̇2

8ωi

)
t
)

sin
((
ωi +

γ̇

2
− γ̇2

8ωi

)
t′
)]

+ γ̇2
c2i

8ω4
i

kBT
[
sin
((

(ωi −
γ̇

2
− γ̇2

8ωi

)
t
)

sin
((
ωi −

γ̇

2
− γ̇2

8ωi

)
t′
)
− sin

((
(ωi +

γ̇

2
− γ̇2

8ωi

)
t
)

sin
((
ωi +

γ̇

2
− γ̇2

8ωi

)
t′
)]
.

(92)

In 〈Fy(t)Fy(t′)〉 the additional terms come from Eqs.(86)-(87) :

γ̇
c2i
ω3
i

kBT
[
cos
((

(ωi −
γ̇

2
− γ̇2

8ωi

)
t
)

cos
((

(ωi −
γ̇

2
− γ̇2

8ωi

)
t′
)
− cos

((
(ωi +

γ̇

2
− γ̇2

8ωi

)
t
)

cos
((

(ωi +
γ̇

2
− γ̇2

8ωi

)
t′
)]

+ 2γ̇2
c2i
ω4
i

kBT
[
cos
((

(ωi −
γ̇

2
− γ̇2

8ωi

)
t
)

cos
((

(ωi −
γ̇
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2
− γ̇2

8ωi
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t
)

cos
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(ωi +
γ̇

2
− γ̇2
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and those from Eqs.(88)-(89) are

c2i
2ω2

i

kBT
[
sin
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8ωi

)
t
)
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2
− γ̇2

8ωi

)
t′
)

+ sin
((
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γ̇

2
− γ̇2

8ωi

)
t
)

sin
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2
− γ̇2

8ωi

)
t′
)

+ γ̇
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2ω3
i

kBT
[
sin
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2
− γ̇2
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)
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)
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)
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2
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)
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2ω4
i

kBT
[
sin
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2
− γ̇2

8ωi

)
t
)
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γ̇

2
− γ̇2
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)
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)
− sin

((
(ωi −
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2
− γ̇2
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)
t
)
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2
− γ̇2
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)
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.

(94)

By plugging these terms into Eq.(48) and by performing standard trigonometric manipulations then Eq.(52) is
found.
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