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A novel dynamic rockfall susceptibility 
model including precipitation, temperature 
and snowmelt predictors: a case study in Aosta 
Valley (northern Italy)

Abstract The overarching goal of the study was the development 
of a potentially dynamic rockfall susceptibility model by includ-
ing climate predictors. The work is based on previously defined 
critical thresholds relating three climate indices — effective water 
inputs (EWI), wet-dry cycles (WD) and freeze–thaw cycles (FT) 
— and rockfall occurrence. The pilot area is located in the Aosta Valley  
region (Italian Western Alps). The susceptibility model settings 
were optimized through a stepwise procedure, carried out by means 
of generalized additive models (GAM). Predictors included topo-
graphic, climatic and additional snow-related variables. As climatic 
predictors, the mean annual threshold exceedance frequency was 
calculated for each index. All models were developed including an 
automatic penalization of statistically non-significant variables (i.e. 
shrinkage). The initial susceptibility model was set without consid-
ering potential inventory bias. Secondly, a “visibility mask” was pro-
duced to limit the modelling domain according to the rockfall event 
census procedures. Thirdly, GAMs functional relationships were 
analysed to verify the physical plausibility of predictors. Finally, to 
reduce concurvity, a principal component analysis (PCA) including 
climatic and snow-related predictors was carried out. Key findings 
were as follows: (i) ignoring inventory bias led to excellent model 
performance but to physically implausible outputs; (ii) the selec-
tion of non-rockfall points inside a “visibility mask” is effective in 
managing inventory bias influence on outputs; (iii) the inclusion 
of climate predictors resulted in an improvement of the physical 
interpretability of the associated models and susceptibility maps, 
being EWI, WD and the maximum cumulated snow melting the 
most important physically plausible climate predictors; (iv) the 
PCA strategy can efficiently reduce model concurvity.

Keywords Alps · Threshold exceedance frequency · Climate 
variables · Inventory bias · Generalized additive models · Principal 
component analysis

Introduction
Due to the high energy and mobility, rockfalls are a major cause 
of fatalities (Hoek 2000; Frattini et al. 2008) and deeply affect 
human society and infrastructures in mountainous environments 
(Ravanel and Deline 2010; Duvillard et al. 2015; Scavia et al. 2020). 
In the lower portion of slopes or along valley bottoms, rockfalls 
may damage buildings, roads, rail routes and other properties. At 
higher altitudes, these events mainly affect tourists and damage 
infrastructures such as cable cars, ski runs, trekking and climb-
ing paths (Corò et al. 2015). In the densely frequented European 

Alps, public authorities are aware of the increasing rockfall-related 
risks (Magnin et al. 2017), also in consideration of the effects of the 
twenty-first century global warming (Gobiet et al. 2014; Stoffel et al. 
2014). For this reason, deciphering the role of climatic factors in 
rockfall predisposition and triggering is a fundamental research 
challenge that needs to be addressed to elaborate adaptation strat-
egies (Crozier 2010; Stoffel et al. 2014; Gariano and Guzzetti 2016; 
Nigrelli et al. 2018; Paranunzio et al. 2019). According to some 
authors (Gariano and Guzzetti 2016; Reichenbach et al. 2018), this 
should be the main thread guiding studies on landslide susceptibil-
ity, hazard and risk. Susceptibility is defined as the as the likelihood 
of a mass movement (in this case a rockfall) occurring in an area 
based on its characteristics (Brabb 1984).

As found out in the review of Reichenbach et al. (2018), until 
2016, the inclusion of climate-related variables in susceptibility 
models was quite rare, with only 2.8% of them including a precip-
itation-related predictor and only 0.3% including other climatic 
predictors. This may be linked to how susceptibility is generally 
perceived; indeed, the traditionally used geo-environmental pre-
dictors (among all, those derived from the DEM) are considered 
static and, consequently, susceptibility is inherently deemed as 
stationary (Lombardo et al. 2020). In addition, it is often assumed 
that climatic processes are related to the temporal occurrence of 
landslides and not to their spatial distribution (Pereira et al. 2012), 
which is the aim of susceptibility analyses. However, the validity 
of the assumption that climate processes would not affect land-
slide spatial occurrence is suitable only over small areas, where the 
conditions are homogeneous, and not for large or complex areas, 
where different microclimatic conditions may occur (Catani et al. 
2013). Once recognized that climate-related processes affecting 
slope instability are dynamic in time and space, synthetic process-
related non-stationary variables, adaptable to reveal climate (and 
more specifically climate change) impacts, are necessary (Camera 
et al. 2021).

In the most recent years, researchers started addressing this gap 
focusing mainly on the introduction of rainfall-related variables in 
shallow landslide susceptibility models. As synthetized in Camera 
et al. (2021), three common approaches can be found in literature. 
The first approach consists in the inclusion of precipitation in sus-
ceptibility models in the form of average-related metrics (e.g. mean 
annual rainfall, mean monthly rainfall and rainy days frequency). 
The second approach involves the development of models based 
on specific rainfall events summarized as multiple-day maximum 
cumulated precipitation variables. The third approach combines 
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stationary susceptibility models with either precipitation thresh-
olds exceedance or an additional temporal statistical model includ-
ing antecedent cumulated rainfall and soil saturation degree. Only 
few researchers attempted to further synthetize rainfall-related 
variables and formally introduce them in a single modelling 
phase. As an example, Catani et al. (2013) developed seven vari-
ables expressing the return period of a rainstorm characterized by 
a given total rainfall amount and duration. More recently, Camera 
et al. (2021) introduced the annual number of rainfall events with 
intensity–duration characteristics above a defined threshold and 
the average number of snowmelt events occurring in a hydrological 
year. The role of temperature on stability — and more in general 
its effects on the hydro-mechanical behaviour of rock masses — is 
mainly explored through physically based models (e.g. Gunzburger 
et al. 2005; Grämiger et al. 2018; Morcioni et al. 2022). For data-
driven models targeting landslide susceptibility, the only example 
including temperature explicitly is the study of Loche et al. (2022). 
The authors focused on the seismic region of Wenchuan, affected 
by an earthquake in 2008, and found that land surface temperature 
can explain post-seismic landslide patterns. However, research gaps 
remain about the inclusion in landslide susceptibility models of cli-
matic predictors other than rainfall and the development of models 
for events other than shallow landslides (e.g. rockfalls).

Another open question in landslide susceptibility analysis 
relates to the physical and geomorphic plausibility of the optimized 
statistical model (Steger et al. 2016, 2021; Camera et al. 2021; Bajni 
et al. 2022) — i.e. to the coherence of predictor effects on landslide 
susceptibility values (model outputs) with respect to the available 
knowledge and observations about the physical processes trig-
gering landslides. Physical and geomorphic plausibility is strictly 
linked to the characteristics of the landslide inventory available and 
of possible related bias and inaccuracy (Steger et al. 2021; Jacobs 
et al. 2020; Bajni et al. 2022). To overcome inventory limitations, 
some recent works focused on incorporating strategies in the mod-
elling procedure to limit bias effects. A possible strategy consists in 
the adoption of generalized linear mixed models (GLMM), in which 
the bias-describing predictors are specified as a random intercept, 
in order to isolate the model variations related to the bias from 
the fixed effects of the other variables (Steger et al. 2016, 2017). 
Other works are based on the development of a specific sampling 
strategy for non-landslide points, limiting the modelling domain 
to monitored areas (Knevels et al. 2020; Bornaetxea et al. 2018). 
Moreover, the consistency and coherency of predictors behaviour 
in the model with their physical role on landslide occurrence is 
fundamental when dealing with climatic processes (Camera et al. 
2021). Indeed, focusing only on quantitative model performance 
and predictors importance rather than on predictors physical 
behaviour and inventory-related issues may lead to severe errors 
in the risk management process (Carrara et al. 1991; Reichenbach 
et al. 2018; Steger et al. 2021; Bajni et al; 2022). Due to the evidence 
that models with very similar performances may produce very dif-
ferent susceptibility maps (Sterlacchini et al. 2011; Triglia et al. 2013; 
Goetz et al. 2015), a process-driven understanding of data-driven 
model outcomes is crucial in the selection of the best, most suitable 
model in a multitude of possible, equal-performing ones.

Finally, it is a common practice to carry out a multicollinear-
ity analysis among predictors before using them as independent 
variables in a statistically based environmental models, both when 

dealing with logistic regression and complex machine learning 
models (Camera et al. 2017; Chen et al. 2017; Nohani et al. 2019; Roy 
et al. 2019; Yi et al. 2020; Arabameri et al. 2020; Alqadhi et al. 2021). 
In the case of climatic predictors, multicollinearity and multi-
concurvity issues between each other and with morphometric 
predictors have to be expected. A possible way to overcome these 
issues may derive from dimensionality reduction techniques (e.g. 
principal component analysis, factor analysis, feature extraction), in 
order to obtain a set of uncorrelated predictors for environmental 
modelling and analysis (e.g. Sabokbar et al. 2014; Messenzehl et al. 
2018; Mancini et al. 2019; Li et al. 2021; Zhu et al. 2022).

The overarching goal of the study was to test the influence of 
climate-related spatially distributed predictors on rockfall suscepti-
bility in an Alpine environment. The study focused on the Mountain 
Communities of Mont Cervin and Mont Emilius (central part of 
Aosta Valley, Western Italian Alps), where a large historical rockfall 
inventory and an extensive, multi-variable meteorological dataset 
are available. In a previous study (Bajni et al. 2021), the authors 
identified specific climatic processes relevant for rockfall occur-
rence in the area and summarized them in three indices, namely 
effective water inputs (including rainfall and snowmelt; EWI), wet-
dry episodes (WD) and freeze–thaw cycles (FT). Starting from a 
weather station-based dataset, the authors calculated the statistical 
distribution of the three climate indices for the period 1990–2018 
and defined, for each of them, empirical thresholds related to rock-
fall occurrence. Thresholds were designed on the concept of non-
ordinary climatic conditions, defined as the  75th–90th percentile of 
the statistical distribution exceeded by at least 50% of the rockfall 
population analysed. The present study represents the prosecution 
of the work of Bajni et al. (2021) and has the following specific 
objectives: (i) to introduce potentially dynamic climatic predic-
tors in a rockfall susceptibility model; (ii) to develop a sampling 
strategy able to deal with data collection and inventory bias issues 
within the model; (iii) to determine an effective procedure to model 
rockfall susceptibility able to guarantee the physical plausibility of 
the relationships between modelled predictor and susceptibility 
response by exploiting the interpretability and flexibility of gen-
eralized additive models (GAM) and iv) to limit potential multi-
collinearity effects between predictors exploring advantages and 
limitations of substituting the outputs of a principal components 
analysis to the original climatic predictors set.

Study area
The Aosta Valley region is located in the North-western Italian Alps 
and represents one of the main alpine valley systems (Fig. 1a, b). The 
territory extends through the Europe-verging structural domains 
of the Western Alps (Fig. 1c), crossing the complex pile of conti-
nental nappes and minor ophiolitic leaves, characterized by ductile 
deformation and a differential subduction-related metamorphism, 
ranging from the blueschist to the eclogitic facies, and locally ultra-
high pressure conditions (Frey et al. 1999; Bistacchi et al. 2001). 
From top to bottom, the pile consists of the Adria-derived Aus-
troalpine system, the ophiolitic Piemonte zone and the Europe-
derived continental nappes (Argand 1911; Dal Piaz 2001; Bistacchi 
et al. 2001; Giusti et al. 2004; Ballèvre et al. 2015; Ellero and Loprieno 
2017; Tartarotti et al. 2019). Following the Alpine orogenesis, this 
complex overlapping structure was subject to neo-tectonic brittle 
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dislocation processes, attributable to the Aosta-Ranzola fault sys-
tem (Ballèvre et al.1986; Bistacchi et al. 2001).

The Aosta Valley topography plays an important role in defining 
the regional climate. Mountain ranges (bordering the North and 
South of the region) are characterized by average rainfall amounts 
above 1400 mm/y and winter snowy precipitation; their presence 
also hamper the access of Mediterranean and Atlantic humid air 
masses inducing a high degree of aridity in the central main E-W 
oriented valley axis (Orusa and Borgogno Mondino 2021). Accord-
ing to Rubel et al. (2017), despite the limited extension of the region, 

different climate regime coexists in the area, from alpine tundra to 
warm temperate until arid-semiarid.

The actual study area (Figs. 1c and 2a) is located in the central 
portion of the region and consists of the Mountain Communities 
of Mont Cervin and Mont Emilius, covering an area of 670  km2 
and an altitude range between 400 and 4500 m a.s.l. The Mont 
Cervin Mountain community is characterized by a main N-S ori-
ented valley (named Valtournenche), which connects the Matter-
horn hiking area and the highly frequented town of Cervinia (a 
popular ski area) in the North, to the main regional E-W oriented 
valley where the highway connecting Italy to France lies. The Mont 
Emilius Mountain Community extends from the southern mas-
sifs (where the Ski Area of Pila is located) to the northern mid-
altitude slopes overlooking the main regional E-W oriented valley 
axis, from Chatillon to Aosta. The study area is characterized by 
the presence of different lithologies belonging prevalently to the 
ophiolitic Piemonte Zone and Austroalpine outliers. In the south-
ern part of the study area, metaophiolite-related lithologies of the 
Zermatt-Saas zone (mainly serpentinites, gabbros, anphibolites, 
prasinites) are abundant together with eclogitic terms belonging 
to the Mont Emilius Austroalpine outlier (mainly micashists). In 
the northern part of the Mont Emilius Mountain Community, the 
meta-ophiolite lithologies of the Combin Zone (mainly calceschists, 
marbles, quarzites) are prevalent, together with the Mont Mary Aus-
troalpine upper outlier (mainly ortogneisses and metagranitoids in 
green schist facies). The Valtournenche valley bottom is prevalently 
composed by Zermatt-Saas and Combin zone lithologies, whereas 
the northern valley head is characterized exclusively by the Dent 
Blanche and Mont Cervin Austroalpine upper outliers (mainly 
ortogneisses and metagranitoids in green schist facies too).

Data
The rockfall inventory (Fig. 2a) used for this study was derived 
from Bajni et al. (2021). For the reference period (1990–2018), it 
consists of 243 rockfall records extracted from the publicly avail-
able Landslide Regional Database (http:// catas todis sesti. parto ut. it), 
for which the source areas were thoroughly checked and validated 
through a geo-morphic analysis (details in Bajni et al 2021). Rock-
falls were identified as detachment scarp representative points and 
are associated with a unique ID. Almost 70% of the records (168 
out of 243) come with the exact date of occurrence, whereas the 
remaining 30% (75 records) have only the month and year or only 
the year of occurrence.

Regarding morphometric data, the digital terrain model (DTM) 
made available by Aosta Valley region (https:// geopo rtale. regio ne. 
vda. it/ mappe/ infor mazio nigeo scien tific he) was used as base. It has a  
2 m × 2 m horizontal resolution but for this study, it was resampled at  
10 m × 10 m, using ESRI  ArcGIS® 10.2.2 Spatial Analyst tools. To derive 
geological information, the regional geological–geomorphological 
map at the 1:10,000 scale was used. The map is publicly consultable 
on the Aosta Valley geoportal WebGIS (http:// geolo giavda. parto ut. 
it/ carta Geolo gicaR egion ale?l= it), while the associated shapefiles 
were made available upon request by the Regional Geological Office. 
The map reports different information levels, including the main 
geo-structural domains with a very detailed description based on 
lithologic characteristics and metamorphic imprint. Also, the map 
reports quaternary deposit types, including “large boulder deposits”, 

Fig. 1  a Location of the Aosta Valley region in Italy and b in the 
Alps (image from https:// pixab ay. com/ illus trati ons/ italy- alps- alpine- 
region- map- 18048 93/). c Geo-structural map of Aosta Valley (modi-
fied from Bigi et al. 1990; Ellero and Loprieno 2017) and study area 
(red-bordered). AR fault, Aosta Ranzola Fault System

http://catastodissesti.partout.it
https://geoportale.regione.vda.it/mappe/informazionigeoscientifiche
https://geoportale.regione.vda.it/mappe/informazionigeoscientifiche
http://geologiavda.partout.it/cartaGeologicaRegionale?l=it
http://geologiavda.partout.it/cartaGeologicaRegionale?l=it
https://pixabay.com/illustrations/italy-alps-alpine-region-map-1804893/
https://pixabay.com/illustrations/italy-alps-alpine-region-map-1804893/
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and linear geological–geomorphological features, including some 
landslide “detachment scarps” (not dated).

The Centro Funzionale Regione Autonoma Valle d’Aosta made 
available for this study a raster dataset (not published) of precipita-
tion (mm) and temperature (°C) for the whole Aosta Valley region, for 
the period 2003–2020. The dataset has an hourly temporal resolution 
and a spatial resolution of 0.00129° (about 122 m). Each map is derived 
from the spatial interpolation of either precipitation data recorded 
at rain gauges (with no distinction between solid and liquid, thus 
including snow melting inputs for heated rain gauges) or temperature 
data acquired through thermometers installed at meteorological sta-
tions located on the regional territory. Stations location and data are 
accessible at https:// presi di2. regio ne. vda. it/ str_ datav iew. In particular, 
precipitation values were interpolated adopting the GRISO Rainfall 
generator (Pignone and Rebora 2014). An example of the available 
gridded datasets is provided in Fig. 2b. In addition, the Agenzia 
Regionale per la Protezione dell’Ambiente (ARPA Valle d’Aosta) and 
the Centro Funzionale Regione Autonoma Valle d’Aosta developed 
a raster Snow Water Equivalent (SWE) dataset for the whole Aosta 
Valley region for the period 2001 to 2020 (Filippa et al. 2019). The 
dataset can be viewed on the ARPA website (https:// www. arpa. vda. 
it/ it/ effet ti- sul- terri torio- dei- cambi amenti- clima tici/ neve/ swe) and 
was made available upon specific request. It is limited to the winter 
months (November–May) of each hydrological year, it has a temporal 
resolution of eight days and a spatial resolution of 500 m. Each map 
represents, on a cell basis, the actual volume of water stored as snow 
expressed in terms of equivalent water height [m] as a result of the 
combination of the snow cover area (SCA, derived from satellite data), 

interpolated snow height data (derived from station data, additional 
manual measures and topographic variables), and estimated snow 
density data (from manual measures). Due to the interpolation of 
the snow height factor, the dataset does not guarantee the conserva-
tion of mass between consecutive SWE maps (Camera et al. 2021).  
An example of the non-processed SWE datasets is provided in Fig. 2c.

Methodology
The methodology followed three main phases (Fig. 3) and sum-
marized as follows:

 (i) Phase zero is the propaedeutic previous work of Bajni et al. 
(2021), where the authors identified three climatic indi-
ces relevant for rockfall occurrence in the study area and 
defined empirical critical thresholds for each of them based 
on the concept of non-ordinary climatic conditions. The 
three climatic indices were as follows: (1) EWI, defined as the 
cumulated amount of effective water inputs (i.e. rainfall plus 
snowmelt); (2) WD, defined as wet-dry episodes, where a wet 
episode coincides with an hourly rainfall amount ≥ 0.2 mm 
and a dry episode occurs when in 24 consecutive hours no 
precipitation is detected; (3) FT, defined as freeze–thaw 
cycles, where a cycle is defined as a temperature transition 
across 0 °C.

 (ii) The first phase concerned the formulation of synthetic, 
spatially distributed climatic predictors to be included in a 
rockfall susceptibility statistical model. To this purpose, the 
three climate-related indices and associated empirical criti-

Fig. 2  a Available rockfall events locations in the selected study area (from Bajni et al. 2021). b Schematic visualization of the available hourly 
grid-based precipitation and temperature datasets (Pignone and Rebora 2014). c Schematic representation of the available grid-based SWE 
(snow water equivalent) dataset (Filippa et al. 2019)

https://presidi2.regione.vda.it/str_dataview
https://www.arpa.vda.it/it/effetti-sul-territorio-dei-cambiamenti-climatici/neve/swe
https://www.arpa.vda.it/it/effetti-sul-territorio-dei-cambiamenti-climatici/neve/swe
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cal thresholds relevant for rockfall occurrence as defined in 
Bajni et al. (2021) were converted into mean annual thresh-
old exceedance frequencies, with a specific calculation for 
each climate index. Differently from the previous work of 
Bajni et al. (2021) in which meteorological data from the 
regional weather stations network were used, in this study, 
the raster dataset of precipitation and temperature (“Data” 
section) for the period 2003 to 2020 was preferred and 
assumed representative of the 30-year period climate nor-
mal ranging from 1991 to 2020 (WMO 1989, 2007). Moreo-
ver, two additional snow dynamics related predictors were 
available for the same study area from the previous work of 
Camera et al. (2021) and thus introduced in the model.

 (iii) The second phase concerned the implementation of a 
rockfall susceptibility model through generalized addi-
tive models (GAM) including climate predictors. Attention 
focused on the investigation of the climate predictors role, 
their significance and technical usability in defining rock-
fall occurrence. In this regard, different issues regarding 
inventory bias, physical plausibility of climatic predictors 
and concurvity were addressed by stepwise modifications 
and improvements of the model setup (Fig. 3), starting from 
a so-called blind model (i.e. a susceptibility model created 
without awareness of the rockfall inventory characteristics 
and of the physically driven processes potentially influenc-
ing susceptibility).

Calculation of climatic threshold exceedance frequency

To develop the climate-related predictors, an approach similar to 
Camera et al. (2021) was implemented. For each index, starting 
from a time series of either precipitation or temperature, the mean 
annual threshold exceedance frequency (TEFa) was calculated as:

where n is the number of events above the defined threshold and 
Ndays represents the number of days with recorded data in the 
meteorological time series under analysis. The beginning of a rain-
fall event was set when a non-zero rainfall occurred (i.e. a minimum 
of 0.2 mm), while its end was imposed after 24 h without precipita-
tion. Considering the different physical meaning and calculation 
procedure of each climatic index, the number of events above the 
critical threshold n was derived accordingly. The calculation was 
carried out in the  Matlab® environment, with the development of a 
specific code for each index.

The TEFa for the EWI index was calculated based on an inten-
sity–duration threshold normalized on rainy days, using the avail-
able hourly precipitation dataset aggregated at a daily timestep. 
From the aggregated daily precipitation time series, the 1-, 3-, 7-, 15-, 
30- and 60-day antecedent cumulated precipitation was calculated. 
Then, for each day, it was verified if any of the 1- to 60-day cumu-
lated precipitation exceeded the threshold defined for the index 
(Bajni et al. 2021). Finally, each day was attributed a value of either 
“1” or “0” for threshold exceedance and non-exceedance, respec-
tively. To ensure the independence between consecutive exceed-
ance events, at least 24 h of non-exceedance (i.e. “0” values) must 
be recorded between successive “1” values; otherwise, they were 
counted as a single exceedance event. Following, the parameter n 
in Eq. 1 for the EWI index was obtained for each pixel by summing 
all the threshold exceedance events (i.e. the values equal to one in 
the data series) in the period from 2003 to 2020.

The TEFa for the WD index was calculated on the grid-based 
hourly precipitation dataset. The threshold selected for the calcu-
lation was the “global threshold” (i.e. the one derived from non-
ordinary conditions established from a statistical distribution 
derived using data from all the available weather stations) defined 
in Bajni et al. (2021). For each timestep (i.e. 1 h) in the time series, 

(1)TEFa =
n

Ndays
∗ 365

Fig. 3  Synthetic workflow and procedural steps adopted
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the numbers of WD episodes recorded in the antecedent 30-, 60-, 
90, 120-, 180- and 365-day durations were calculated. Secondly, it 
was verified if, for the considered time step, the number of epi-
sodes recorded in the antecedent selected time frames (i.e. 30 to 
365 days) exceeded the threshold defined for the WD index (Bajni 
et al. 2021) for at least one of the considered durations. Finally, each 
time step was attributed a value of either “1” or “0” for threshold 
exceedance or non-exceedance, respectively. As for the EWI index, 
the parameter n in Eq. (1) was obtained summing the exceedances 
in the period from 2003 to 2020.

The TEFa for the FT index was calculated on the grid-based 
hourly temperature dataset. For coherency with the other indi-
ces, the calculation was based on an intensity–duration like 
threshold (i.e. intensity intended as the number of freeze–thaw 
cycles occurring in predefined duration time periods) normal-
ized on FTN (freeze–thaw normal, Bajni et al. 2021). For every 
hour, the numbers of FT episodes recorded in antecedent 1-, 
3-, 7-, 15-, 30-, 60-, 90-, 120-, 180- and 365-day periods were cal-
culated. Differently from the other indices, to ensure the inde-
pendency of the threshold exceedance events, each duration was 
treated separately and then aggregated as detailed below.

For the 1-day duration, the procedure was as follows. The 
numbers of cycles accumulated in the 24 h preceding the consid-
ered timestep were calculated and each timestep was attributed 
a value of either “1” or “0” if the number of cycles exceeded or 
not the threshold defined for the index. Subsequently, a thresh-
old exceedance event was counted only if the “1” values were 
temporally distant at least 24 h (i.e. 1 day). For 3-day to 365-day 
durations, a “cascade” incremental procedure was implemented. 
This means that for a given duration (e.g. 3 days), a freeze–thaw 
cycle can contribute only to one exceedance for that duration 
time-period (e.g. ± 72 h from the time it has been recorded) 
and if the threshold at a specific time is exceeded for multi-
ple durations (e.g. 1-day and 3-day duration), it still counts “1”. 
Finally, the parameter n in Eq. (1) for the FT index was obtained 
summing all the independently counted threshold exceedance 
events. Additional details on the calculation procedure are given 
in the Supplementary material.

Snow melting predictors

Two summary predictors related to snow melting dynamics were 
introduced in the susceptibility model, namely SWEep (the aver-
age number of melting events occurring over 16-day periods in 
a hydrological year) and SWEmax (the maximum amount of 
melting recorded over 32-day periods in the whole data series). 
These predictors were developed by Camera et al. (2021) in the 
same study area for a shallow landslide susceptibility model, 
starting from the SWE-gridded dataset presented in the “Data” 
section. Firstly, the SWE pixel values were aggregated in sub-
basins, to overcome the issue related to the SWE dataset’s lack of 
mass conservation to the single cell. Following, the consistency 
between the snow dynamics reproduced by the raster dataset 
and the continuous data recorded at meteorological stations 
spread over the study area was verified by means of correlations 
(for additional details, see Camera et al. 2021).

Other geo‑environmental predictors

Traditional DEM-derived predictors (van Westen et al. 2008; 
Reichenbach et al. 2018) were included in the rockfall susceptibil-
ity model. They were elevation, slope, aspect — included as north-
ness = cos(aspect) and eastness = sin(aspect) — profile curvature, 
plan curvature and SAGA Topographic Wetness Index (SWI). 
They were derived at a 10 m × 10 m horizontal resolution, using the 
RSAGA  package (Brenning et al. 2018). Geology was introduced as 
a categorical predictor with four classes, based on the reclassifica-
tion of the geological map (1:10,000 scale) available for the study 
area (refer to “Data” section). The distinction adopted followed a 
combined lithological and metamorphic criterion, as the widely 
variable metamorphic imprint characterizing the study area may 
differentiate the intact rock strength and rock mass properties. The 
classes were as follows: (i) Zermatt-Saas ophiolites in the eclogitic 
facies, (ii) Austroalpine upper outliers in the blueshist facies, (iii) 
Combin ophiolites in the blueshist facies, (iv) Austroalpine lower 
outliers in the eclogitic facies. The class adopted as reference for 
modelling purposes was the most abundant in the study area (i.e. 
the Zermatt Saas ophiolites).

Rockfall susceptibility model setup and assessment

The 243 rockfall records available for the period 1990–2018 were 
used as the rockfall “presence” input of the binary response variable  
for the susceptibility modelling phase. The availability of the  
date of occurrence (or period of occurrence) within the rockfall 
inventory was a crucial characteristic for the calculation of EWI,  
FT and WD climate indices (in Bajni et al. 2021) and therefore for 
the inclusion of climate-related predictors in the susceptibility 
model in this study. Rockfall absence locations were selected by 
random extraction inside an “eligible” area, which is a subset of 
the modelling domain and varies according to the modelling step. 
The modelling domain was obtained from the study area excluding 
urban areas, glaciers, water bodies and quaternary deposits (i.e. 
areas where rockfalls cannot occur) as mapped in the geological-
geomorphological map at the 1:10,000 scale. In step 1 (blind model),  
the “eligible area” was derived excluding from the modelling 
domain areas within a 100-m buffer from rockfall representa-
tive initiation points because considered probable rockfall source 
areas. From the geological–geomorphological map available for 
the modelling domain, 59 rockfall scarps were mapped. The anal-
ysis of the linear extension of these features returned mean and 
median values of 138 m and 108 m, respectively. Based on these 
data, the selected buffer dimension is considered representative of 
the rockfall source areas in the modelling domain. From step 2, the 
“eligible area” was further reduced through a visibility approach 
(details in the “Four steps to increase the physical plausibility of the  
statistical model” section). A 1:1 ratio between rockfall source areas 
“presence” and rockfall source areas “absence” points was adopted, 
as the percentage of the “eligible area” on the modelling domain 
was 97.6%. Hong et al. (2019) found this ratio optimal when the 
sampling area for absence data (i.e. “eligible” area) is quite large  
(i.e. the 99% of the modelling domain).

The rockfall susceptibility modelling was performed using 
generalized additive models (GAMs) through the R package mgcv 
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(Wood 2017). Variable selection was performed through the shrink-
age option, which allows penalization of statistically non-significant 
predictors to the zero function and thereby selected them out of the 
model (Wood 2017). Predictors’ behaviour was analysed through 
component smoothing functions (CSFs, i.e. the set of functions 
relating each predictor values to susceptibility values; Wood 2017) 
and odds ratios for geology categories. Both a non-spatial (nsCV) 
and a spatial (sCV) repeated k-fold cross-validation were carried 
out to estimate the area under the receiver operating characteristic 
(AUROC) curve. The nsCV involves a random selection of points 
to be attributed to the different folds, while the sCV involves the 
selection of points for the different folds based on k-means clus-
tering of coordinates (Brenning 2012b). The nsCV suggests how 
well the model work within the study area (or areas with similar 
ranges of predictor values), while the sCV indicates the potential 
for model transferability outside the study area (i.e. to areas where 
predictor values could be outside of the training area range). Both 
cross-validation types were set up with k = 5 folds and r = 100 repeti-
tions, to obtain results independent from a specific partitioning. The 
cross-validation was implemented using the R package sperrorest 
(Brenning 2012a). Predictors’ smoothing functions from each cross-
validation run were compared with the corresponding smoothing 
function obtained on the entire dataset, to assess coherency and 
robustness of their behaviour. To assess the importance of predic-
tors, the penalization frequency coming from the application of the 
shrinkage option was considered. It was calculated as the percentage 
of CV runs in which the effective degrees of freedom, edf, resulted 
lower than 1 (a 0.7 threshold was selected). Penalization frequency 
was then combined with the mean decrease in deviance explained 
(mDD%), calculated as in Knevels et al. (2020). Moreover, concurvity 
between the smoothers — i.e. the generalization of multicollinearity 
to non-parametric functions — was calculated.

Four steps to increase the physical plausibility  
of the statistical model

A four-step modelling procedure is proposed, based on stepwise 
modifications of the model setup to effectively deal with the effects 
of inventory collection procedures and potential deriving bias, 
predictors behaviour physical plausibility and predictors multi- 
collinearity (concurvity). For all steps, the modelling algorithm and 
the model evaluation procedure remained fixed as described in 
the previous “Rockfall susceptibility model setup and assessment”  
section. Moreover, all steps included the development of a  
preliminary topographic model (i.e. a susceptibility model based  
exclusively on the DEM-derived predictors) before proceeding 
with the actual inclusion of climate and snow-related predictors. 
In this way, statistically non-significant (i.e. penalized) topographic 
predictors were excluded from the model, to reduce variables to 
a parsimonious set. All the developed models along with their  
characteristics are presented in Table 1.

The first step of the modelling procedure consisted in a “Blind” 
model, i.e. a model that disregards a possible bias of the inventory 
and the physical plausibility of the relationships between predic-
tor and susceptibility outcome. Only statistically non-significant 
(penalized) predictors were excluded. In detail, three “Blind” mod-
els with different predictors sets were produced, namely blind-
TOPO, blind-CLIMATE and blind-GEO.

Step 2 was aimed at reducing the effects of the inventory bias on 
the model output reducing the “eligible area” for absence point selec-
tion by developing a visibility mask. As shown in Fig. 4, rockfalls are 
overrepresented close to road and infrastructure in comparison to 
remote areas of the study domain, most probably due to data col-
lection procedures. Therefore, it was assumed that rockfall event 
reporting is dependent on the reachability of the sites. Principal 

Table 1  Model name, domain and predictors set used in the developed models

Model name Modelling Domain DEM-derived predictors Climatic predictors Geology Step

Blind-TOPO Eligible area Elevation, slope, northness, 
eastness, SWI, profile 
curvature, plan curvature

- - 1

Blind-CLIMATE Eligible area Non-penalized predictors from 
blind-TOPO

EWI, WD, FT
SWEep, SWEmax

- 1

Blind-GEO Eligible area Non-penalized predictors from 
blind-TOPO

EWI, WD, FT
SWEep, SWEmax

Reclassified 
geology

1

Visibility-TOPO Eligible area + visibility mask Elevation, slope, northness, 
eastness, SWI, profile 
curvature, plan curvature

- - 2

Visibility-
CLIMATE

Eligible area + visibility mask Non-penalized predictors from 
visibility-TOPO

EWI, WD, FT
SWEep, SWEmax

- 2

Visibility-PP Eligible area + visibility mask Non-penalized predictors from 
visibility-TOPO

Non-penalized + physically 
plausible predictors from 
visibility-CLIMATE

- 3

Visibility-PCA Eligible area + visibility mask Non-penalized predictors from 
visibility-TOPO

PC1, PC2,…, PCn - 4
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and secondary roads shapefiles were obtained from the Open Street 
Map dataset (https:// www. opens treet map. org/# map= 13/ 45. 7400/7. 
4477), while the other points of interest were obtained from the pub-
licly available PTP (Piano Territoriale Paesistico) of the Aosta Val-
ley region (https:// geopo rtale. regio ne. vda. it/ downl oad/ ptp/). Main 
roads are located in the principal valleys bottom and it was assumed 
that these roads are involved in a frequent and ordinary monitor-
ing activity. Among secondary roads, only asphalted ones and those 
leading to point of interests (e.g. ski areas, dams and hydroelectric 
power plants, meteorological stations and geo-cultural sites) were 
retained. It was assumed that these roads represented less frequently 
beaten tracks and thus, the monitoring activity is discontinuous but 
still effective. At this point, the distance between each rockfall and 
the closest road (either principal or retained secondary) was cal-
culated together with the associated statistical distribution, repre-
sented in the form of a boxplot. The upper whisker of the boxplot 
(i.e. the largest value of the distribution that is no greater than the 

third quartile plus 1.5 times the interquartile range) was selected 
as the maximum “outer radius” parameter required by the visibil-
ity tool of ESRI  ArcGIS® 10.2.2, here adopted to extract a visibility 
mask in which, reasonably, the monitoring designated personnel 
may record rockfalls visible along the driving routes (similarly 
to Bornaextea et al. 2018; Knevels et al. 2020). In addition to the 
obtained visibility mask, a buffer (buffer distance equal to the “Outer 
radius” selected for roads) centred in the Carrel hut (southern slope 
of Matterhorn) assumed frequently visited for technical-scientific 
purposes (presence of a micro-seismic monitoring system described 
in Amitrano et al. 2010; Occhiena et al. 2012) was added to the sam-
pling scheme. The model was trained in the “eligible” areas, but the 
predictions are extended to the whole modelling domain. As for step 
1, a preliminary parsimonious topographic model was developed 
(visibility-TOPO model) before proceeding with models including 
climate and snow-related predictors (visibility-CLIMATE model). 
For parsimonious, in general, it is meant a model with a limited 
number of variables explaining most of the variance; in this case, 
specifically, it means without non-significant penalized predictors.

Step 3 was aimed at optimizing the selection of predictors con-
sidering their physical behaviour by analysing their CSFs. Beside 
the quantitative performance, to keep a predictor within the model, 
it was considered essential that its effect on susceptibility had to be 
coherent with the known physical processes relating them to rock-
fall initiation. Therefore, an increasing susceptibility is expected for 
increasing threshold exceedance frequencies of EWI, WD and FT 
predictors. For snow-related predictors, an increasing susceptibility 
level is expected for high values of SWEep and high negative val-
ues of SWEmax (meaning high snowmelt). To obtain the physically 
plausible model (visibility-PP model), climate and snow predictors 
showing CSFs with non-plausible behaviours within the visibility-
CLIMATE model were excluded.

Step 4 was aimed at reducing the concurvity among climatic 
predictors and producing a parsimonious model. According to 
Wood (2017), each smooth term in a model can be decomposed 
into two parts, one that lies in the space of one or more other terms 
in the model, and another part that is completely within the term’s 
own space. Concurvity varies from 0, indicating no shared space 
with other terms, and 1, indicating a total lack of identifiability. 
Concurvity is generally considered problematic for values above 
0.8 (e.g. Camera et al. 2021). A principal component analysis was 
carried out, including the climatic and snow-melting predictors, 
to produce a set of new uncorrelated orthogonal principal compo-
nents (Abdi and Williams 2010). The calculation of the principal 
component was carried out on a pixel basis. Then, a PCA-based 
model (i.e. PCA-visibility) was produced by introducing in the 
model, as predictors, the first principal components explaining at 
least 70% of the total variance.

Finally, models were compared and discussed in terms of perfor-
mance, climatic predictors’ behaviour and role, and susceptibility 
spatial distribution. The output susceptibility maps were reclas-
sified into five susceptibility classes (0.0–0.3 “very low”, 0.3–0.5 
“low”, 0.5–0.7 “medium”, 0.7–0.9 “high”, 0.9–1.0 “very high”). 
Moreover, three susceptibility difference maps among steps were 
prepared to further discuss and analyse the different susceptibility 
spatial patterns.

Fig. 4  Map showing principal and secondary roads and main infra-
structures in the study area, together with the assumed scheme of 
the monitoring activities for new landslides (rockfalls) source area 
recognition and report

https://www.openstreetmap.org/#map=13/45.7400/7.4477
https://www.openstreetmap.org/#map=13/45.7400/7.4477
https://geoportale.regione.vda.it/download/ptp/
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Results

Synthetic climatic predictors
The developed climate and snowmelt-related predictors are pre-
sented in Fig. 5.

Figure 5a shows the spatial distribution of the EWI predictor, 
which is characterized by the highest values concentrated along the 
Valtournenche N-S axis, along the NW border of the study area and 
in its southern part. Figure 5b shows the spatial pattern associated 
to the WD predictor, which is characterized by the highest values 
in correspondence of the head of the Valtournenche Valley and by 
the lowest values in correspondence of the main E-W valley axis. 
The map also identifies a belt of high values in the mid -southern 
slope of Mount Emilus Mountain Community and along the NW 
border of the study area. Figure 5c shows the spatial pattern of the 
FT predictor, characterized by a substantial correlation with alti-
tude. However, it was possible to observe some bands at mid-high 
altitudes where the threshold exceedance frequency showed very 
high values, close to the maxima; these zones may capture patterns 

attributable to temperature inversion phenomena and the seasonal 
shifting of the zero isotherm.

The maps regarding the snowmelt predictors produced by 
Camera et al. (2021), namely SWEmax and SWEep, are presented 
in Fig. 5d and e, respectively. Note that for SWEmax, since snowmelt 
is a depletion of the SWE storage, negative values indicate snowmelt 
occurrence while positive values indicate snow accumulation.

The “blind” model — step 1

Variable penalization resulted in the exclusion of the predictors 
northness, plan curvature and SWI (all characterized by a horizon-
tal CSF) from the blind-TOPO model. Therefore, these predictors 
were excluded from the successive blind-CLIMATE and blind-GEO 
models. Eastness was also frequently penalized in the CV runs but 
was retained because its CSF on the entire dataset was not com-
pletely horizontal. Penalization frequency and mDD% of each pre-
dictor in the blind models are collected in Table 2.

Fig. 5  Climatic predictors maps: a EWI, effective water inputs. The dotted line represents the border between Mont Emilius Mountain Com-
munity (ME) and Mont Cervin Mountain Community (MC). b WD, wet and dry cycles and c FT, freeze thaw cycles. Snow melting predictors 
(Camera et al. 2021): d SWEmax, i.e. the maximum amount of melting recorded over 32-day periods in the whole data series and e SWEep, 
i.e. the average number of melting events occurring over 16-day periods in a hydrological year. ME, Mont Emilius Mountain Community; MC, 
Mont Cervin Mountain Community
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In the blind-CLIMATE model (Fig. 6), the variable elevation 
remained the dominant predictor, followed by slope, EWI and 
profile curvature as the most important non-penalized variables 
(Table 2). The CSF for elevation, describing an almost linear and 
indirect relationship between elevation and rockfall occurrence, 
indicated the highest rockfall likelihood in correspondence of the 
lowest altitudes (approximately < 1800 m a.s.l.). This may be inter-
preted as a possible symptom of rockfall overrepresentation close 
to roads and principal infrastructures, thus attributable to a data 
collection effect. The CSF for slope and profile curvature, indicating 

that the modelled rockfall likelihood was highest for high inclined 
(approximately > 50°) and convex slopes, were geomorphologically 
reasonable and the curve shapes were consistently maintained 
through the different nsCV and sCV runs. Eastness is character-
ized by a slightly increasing CSF, indicating east-facing slope as 
mildly more susceptible than the west-facing ones. Regarding the 
CSF related to the climatic predictors (Fig. 6), the only predictor 
with a curve describing a physically plausible behaviour (and con-
sistently maintained through the nsCV and sCV runs) was SWE-
max, indicating that the modelled landslide likelihood was highest 
in correspondence of areas with the highest cumulated snowmelt. 
The bell shapes of the CSF of EWI, WD and SWEep are considered 
physically incoherent (Fig. 6). The FT predictor was frequently 
penalized in the CV runs, probably due to high concurvity effects 
with elevation.

Accounting for the influence of geology (model blind-GEO), CSF 
values, predictors importance and CSF shape remained consistent. 
However, none of the odds ratios calculated had statistical signifi-
cance (i.e. p-value > 0.05), which, in addition to a very low mDD% 
of 0.9%, denotes that the implemented geological predictor has 
very little influence on rockfalls in the study area. A possible cause 
of this model outcome may be the bias in the inventory, potentially 
leading to an underrepresentation of rockfalls in specific litholo-
gies (e.g. the Austroalpine upper outliers, ouctropping almost exclu-
sively at high altitudes in the north-western part of the study area).

The visibility mask and physically plausible models — step 2  
and step 3

The boxplot associated to the statistical distribution of the dis-
tance between each rockfall and the closest road (either principal 
or retained secondary) is shown in Fig. 7a. The upper whisker of the 
boxplot selected as the “outer radius” parameter resulted equal to 
871 m. The distance of the buffer centred in the Carrel hut location, 
in addition to the visibility mask produced from roads, was of 761 m 
and comprehended a total of 9 rockfalls. The final visibility mask, 
i.e. the effective modelling domain adopted from step 2 on, is shown 
in Fig. 7b. Out of the rockfall population of 243 events, 42 events 
(i.e. approximately the 17% of the inventory) remained outside the 
visibility mask and thus were excluded from the model training. 
The rockfalls excluded were used as a holdout independent test 
set to additionally estimate model performance besides the cross-
validation (“Rockfall susceptibility model setup and assessment” 
section). The remaining 201 rockfalls were associated to an equal 
number of non-rockfalls points, randomly selected inside the vis-
ibility mask with a 1:1 ratio. It is important to outline that it was not 
possible to include geology from step 2 on: by further limiting the 
study area with the aim of bias reduction, two geological categories 
out of four remained without or with few sampling points, leading 
to the non-convergence of the model during the cross-validation 
process. This is a known issue, especially for categorical variables, 
which hampers the possibility to transfer the trained model from 
the training to a test area (Guzzetti et al. 2006).

The topography-based model resulting from the application 
of the visibility approach (i.e. visibility-TOPO model) resulted in 
the penalization and consequent exclusion of the predictors east-
ness, plan curvature and SWI. To produce parsimonious models, 
these predictors were excluded from the visibility-CLIMATE and 

Table 2  Predictors’ penalization frequency and mDD% for the “Blind” 
models

Model ID Predictors Penalization 
frequency 
(edf < 0.7) [%]

mDD%

nsCV sCV

Blind‑TOPO Elevation 0.0 0.0 76.6

Slope 3.4 7.2 7.2

Profile curvature 0.2 0.0 5.9

Plan curvature 97.6 91.2 4.6

Northness 99.0 89.0 4.6

Eastness 79.4 81.0 0.7

SWI 86.6 80.0 0.4

Blind‑CLIMATE Elevation 0.0 0.0 40.3

Slope 1.2 7.6 9.6

Profile curvature 0.2 0.0 8.5

Eastness 86.0 88.4 8.2

EWIind 0.4 7.8 8.6

WD 36.2 40.8 6.1

FT 88.2 89.2 6.1

SWEep 2.8 7.6 6.1

SWEmax 32.6 37.2 6.4

Blind‑GEO Elevation 0.0 0.0 38.5

Slope 0.6 4.2 10.3

Profile curvature 0.0 0.0 9.1

Eastness 91.4 85.4 8.1

EWIind 2.2 7.4 8.5

WD 10.2 20.4 5.9

FT 85.4 84.8 5.9

SWEep 4.0 13.8 6.8

SWEmax 76.8 93.8 5.9

Geology - - 0.9
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visibility-PP models. The penalization frequency, mDD% and con-
curvity values of the models produced in step 2 and step 3 are sum-
marized in Table 3.

As a confirmation of the robustness of the topographic pre-
dictors role across models, their CSF shapes (Fig. 8), penalization 
frequency and deviance explained remain almost unvaried and 

Fig. 6  Blind-CLIMATE model predictors component smoothing function (CSF), effective degrees if freedom (edf) and mean decrease in devi-
ance explained (mDD%) for non-spatial CV (a, b) and spatial CV (c, d)
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consistent in the three models (visibility-TOPO, visibility-CLIMATE 
and visibility-PP). The CSF of elevation shows a wavy trend with 
three peaks at low (approximately 500 m a.s.l.), medium (approxi-
mately 1500 m a.s.l.) and high (approximately 3000 m a.s.l.) alti-
tudes. This confirms that the elevation-associated CSF in the blind 
models should be imputed to the bias in the inventory. However, 
even in the step 2 associated models, the low-altitude peak of the 
function is the highest, which may indicate either that the bias 
effect was not totally removed through the visibility approach or 
that this trend actually reflects the real spatial distribution of pro-
ductive rock walls in the study area. The CSFs for slope and profile 
curvature indicate that the modelled rockfall likelihood is high-
est for high inclined (approximately > 50°) and convex slopes. The 
CSF of northness is represented by a linear, gently inclined func-
tion (in some models very close to penalization) indicating that 
the modelled rockfall likelihood is only slightly higher for south 
facing slopes than for north facing slopes. Due to solar radiation, 
the slopes facing south are the most exposed to diurnal cycles of 
temperature and should experience the highest rates of wet and 
dry cycles and snowmelt in winter. The FT predictor resulted to be 
penalized on both the entire dataset and in most of the CV runs.

In the visibility-CLIMATE model, EWI appears as the most 
important climatic predictor with an mDD% > 10%, followed by 
SWEmax with an mDD% of 5%. Both of these climatic predictors 
show a physically plausible behaviour (Fig. 8). The CSF related 
to EWI shows a nonlinear behaviour. At low values (between 14 
and 15 threshold exceedances per year), the CSF presents a near-
sigmoidal shape, probably due to the high dispersion of the data. 
For threshold exceedance frequencies higher than 15, the behav-
iour became nearly linear and increasing. Overall, an increasing 
trend is clearly visible, despite the initial part of the curve showing 
CSF coefficients below 0.5 (i.e. indicating a negative contribution 
to rockfall susceptibility). The CSF of SWEmax is a monotonous, 
almost linear function, coherent with the variable physical mean-
ing. Conversely, WD and FT are penalized (CSFs represented by 
a horizontal line), while SWEep shows a physically implausible 

behaviour (i.e. a double bell shape with two peaks); thus, it was 
excluded from the visibility-PP model. In the visibility-PP model 
(Fig. 8), despite the elimination of the physically implausible pre-
dictor SWEep, the CSF shapes, penalization frequency and devi-
ance explained of EWI and SWEmax remain consistent and almost 
unvaried respect to the above-discussed visibility-CLIMATE 
model. As such, the FT predictor is penalized on both the entire 
dataset and in most of the CV runs. In the visibility-PP model, 
differently from the previous visibility-CLIMATE model, the WD 
predictor is not penalized; it shows a physically plausible CSF, rep-
resented by a monotonous, almost linear function, coherent with 
the variable physical meaning (Fig. 8).

Despite the statistically and physically based selection of predic-
tors in the visibility-PP model, concurvity between them (Table 3) 
resulted quite high, being a possible cause of unstable estimates 
(Wood 2017). An evident concurvity issue is recorded between ele-
vation and the FT predictor. It was not unexpected, as temperature 
variations are strictly coupled with altitudinal variations. For EWI, 
WD and SWEmax, concurvity values are medium–high.

Visibility‑PCA model — step 4

A further reduction of concurvity, at least among climatic predictors, 
was obtained by means of a principal component analysis (PCA) 
between the five climatic predictors. Two principal components PC1 
and PC2, together explaining 74.1% of predictors variance (44.5% and 
29.6%, respectively), were selected as predictors for the susceptibility 
models. The first principal component PC1 explained the climatic 
predictors FT, EWI and WD with a direct relationship (Fig. 9), mean-
ing that high and positive PC1 values corresponded to high thresh-
old exceedance frequencies. The second principal component PC2 
explained the snow-related predictors SWEmax and SWEep with a 
direct relationship. This means that high positive values of PC2 cor-
responded to a high number of snowmelt events (i.e. high values of 
SWEep), but low values of cumulated snowmelt (i.e. SWEmax).

Fig. 7  a Boxplot representing the distribution of the rockfalls distances form principal and secondary roads. b Visibility masks and selected 
non-rockfall points



Landslides

For the visibility-PCA model, the importance and CSFs of morpho-
metric predictors (elevation, slope, profile curvature and northness) 
are consistently similar to the previously discussed models (“The 
visibility mask and physically plausible models — step 2 and step 3” 
section). Regarding the principal components, they show the expected 
behaviour (Fig. 10). The CSF of PC1 shows a near-sigmoidal shape 
for values below zero, probably inherited from the EWI index, while 
it shows an almost linear increasing behaviour for positive values. 
The CSF function for PC2 should be a semi-linear monotonic increas-
ing function to explain in a physically plausible way SWEep, while 
should be a semi-linear monotonic decreasing function to explain 
in a physically plausible way SWEmax. Considering that SWEmax is 

almost parallel to PC2 axis, the effect of this predictor on the defini-
tion of PC2-related CSF is expected to be stronger than SWEep. As 
expected, the CSF of PC2 shows a linear monotonic decreasing func-
tion, physically coherent with SWEmax, which has the strongest signal 
on the component definition. These relationships were consistently 
maintained across the majority of the nsCV and sCV runs.

Predictors importance and penalization frequency are reported 
in Table 4. In comparison to models from step 2 and step 3 (Table 3), 
concurvity between principal components is much lower than coc-
ncurvity between climatic predictors. Also, calculating principal 
components allowed to reduce the concurvity of elevation with 
other predictors below 0.8.

Table 3  Predictors’ penalization frequency, mDD% and concurvity for the “Visibility” models

Model Predictor Penalization Frequency 
(edf < 0.7) [%]

mDD% Physical plausi-
bility

Concurv-
ity

nsCV sCV

Visibility-TOPO Elevation 0.0 0.0 42.0 Yes 0.24

Slope 0.0 0.0 16.7 Yes 0.38

Profile curvature 12.4 26.6 15.0 Yes 0.26

Plan curvature 99.6 100.0 3.7 ‑ 0.39

Northness 0.0 0.0 9.3 Yes 0.25

Eastness 94.4 89.2 6.8 ‑ 0.23

SWI 97.6 97.6 6.4 ‑ 0.35

Visibility-CLIMATE Elevation 0.0 0.0 28.7 Yes 0.90

Slope 0.0 13.0 13.8 Yes 0.26

Profile curvature 0.0 0.0 12.4 Yes 0.18

Northness 57.8 78.8 10.3 Yes 0.48

EWI 9.6 21.0 10.2 Yes 0.74

WD 92.8 71.6 6.6 ‑ 0.83

FT 99.2 95.0 6.4 ‑ 0.87

SWEep 18.6 20.6 6.4 No 0.75

SWEmax 9.0 11.4 5.1 Yes 0.76

Visibility-PP Elevation 0.0 0.0 33.7 Yes 0.88

Slope 0.0 0.0 16.7 Yes 0.22

Profile curvature 0.0 0.0 14.3 Yes 0.15

Northness 71.4 79.0 9.6 Yes 0.41

EWI 8.4 21.0 10.0 Yes 0.70

WD 67.0 58.2 4.8 Yes 0.77

FT 97.8 95.2 4.3 ‑ 0.85

SWEmax 10.0 20.0 6.5 Yes 0.52
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Fig. 8  Visibility-PP model predictors component smoothing function (CSF), effective degrees if freedom (edf) and mean decrease in deviance 
explained (mDD%) for non-spatial CV (a, b) and spatial CV (c, d). CSF shapes are valid for also for visibility-TOPO (elevation, slope, profcurv, 
northness) and visibility-CLIMATE (elevation, slope, profcurv, northness, EWI, FT, SWEmax)
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Model perfomance

The variability of AUROC estimates from nsCV and sCV for all 
the tested model is presented in Fig. 11. The AUROCs indicated a 
similar and “excellent” (according to Hosmer et al. 2013 guidelines) 
discrimination capability for all the three “Blind” models, with a 
median AUROC scores on the test set between 0.8 and 0.9, both 
for the nsCV and the sCV. The lower performance of the blind-
GEO model in comparison to the blind-climate model in the sCV 
confirms that the geological predictor reduced the discrimination 
capacity and spatial transferability of the model. Similar quanti-
tative performances between training and test runs may induce 
to trust the “Blind” models. However, it has been demonstrated 
that this type of models may rely upon a physically non-plausible 
behaviour of predictors and on the influence of data collection 
procedures (i.e. altitude and, indirectly, vicinity to roads and 
infrastructures).

The results related to the nsCV showed “good” discrimination 
capability (Hosmer et al. 2013) for the three visibility-related mod-
els and the PCA-based model, with mean AUROCs between 0.75 
and 0.80. All the models containing climate and snow-related pre-
dictors showed a slightly higher performance than the visibility-
TOPO model. In terms of sCV, the discrimination capability of 
these models became only “acceptable” (Hosmer et al. 2013), with 
mean AUROCs between 0.6 and 0.7 for all models; the best per-
forming model was the visibility-PCA model. Using the 42 rock-
falls excluded from the visibility mask as an independent holdout 

test set, the AUROC was 0.82 and 0.81 for the visibility-PP and the 
visibility-PCA model, respectively.

Model comparison

A comparison of the spatial prediction patterns between the blind-
CLIMATE, the visibility-PP and visibility-PCA derived susceptibil-
ity maps is provided in Fig. 12. These model outputs are shown with 
the intent to compare the spatial pattern of three potential “final” 
susceptibility maps (final maps intended as including all available 
predictor types, namely topographic and climatic predictors). The 
spatial pattern of the blind-CLIMATE model (Fig. 12a) reflects the 
behaviour of elevation as the bias-describing predictor. In detail, 
the susceptibility values are highest at the valley bottoms, close 
to roads and infrastructures, and show a gradual decrease with 
increasing elevation. This indicates that the susceptibility spatial 
pattern reflects the rockfall events collection procedures, rather 
than the environmental processes causing them. The susceptibil-
ity spatial pattern resulting from the visibility-PP model (Fig. 12b) 
benefits from the procedure adopted to reduce the inventory bias 
effects. A gradual decrease of susceptibility with elevation is not 
observed anymore, and the high susceptibility values still visible 
at low medium elevation can be interpreted as an actual presence 
of active slopes. Moreover, the map indicates medium to high sus-
ceptibility values in correspondence of high peaks and rock walls 
located in the northern and western part of the study area (head 
of the Valtournenche Valley, above 2000 m a.s.l.). In addition, the 
model records medium–high susceptibility values in lateral valleys 
located along the southern slope of the main E-W valley axis. The 
PCA-based model (Fig. 12c) reflects the same patterns observed in 
the visibility-PP susceptibility map.

Figure 13 has the double intent of pointing out the contribution 
of climate-related predictors in comparison to a model including 
only “common” topographic predictors (Fig. 13a) and of highlight-
ing similarities and dissimilarities of “final” maps obtained with 
the step-wise model advancements (Fig. 13b, c). In detail, Map VAR-1 
(Fig. 13a) reports the difference between the models visibility-PP 
and visibility-TOPO, thus highlighting the role of climatic pre-
dictors in the susceptibility spatial pattern. Positive values (i.e. 
higher susceptibility for visibility-PP than visibility-TOPO) can be 
noticed in almost the entire Valtournenche valley, which is char-
acterized by the highest number of exceedances of both EWI and 
WD thresholds. Positive values are also present in some portions 
of the northern slopes facing the E-W main valley axis, which are 
characterized by the highest cumulated snowmelt (high negative 
values of SWEmax).

Map VAR-2 (Fig. 13b) reports the difference between the models 
visibility-PP and visibility-PCA; thus, it is linked to the different 
form in which climatic and snow-related predictors are included 
in the models. On the one hand, the variability in the spatial pat-
terns can be explained by the absence of the SWEep (implausi-
ble behaviour) and FT (penalized) predictors in the visibility-PP 
model, which conversely contributed to the definition of the prin-
cipal components in the visibility-PCA model. On the other hand, 
principal components explained about the 74% of the total vari-
ability associated to the climatic and snow-melting predictors, thus 
potentially missing a minor part of the associated signal.

Fig. 9  Diagram of the principal components PC1 (x-axis) and PC2 
(y‐axis). Blue vectors represent the climatic predictors; their length 
describes variable importance in defining principal components (the 
longer the more important) and their direction defines whether the 
relationship with the components is positive or negative. For repre-
sentation purposes, the components and variables scores were nor-
malized between − 1 and 1: the inner red circle represents a relation-
ship of ± 0.8 and the outer black circle a relationship of ± 1
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Fig. 10  Visibility-PCA model predictors component smoothing function (CSF), effective degrees if freedom (edf) and mean decrease in devi-
ance explained (mDD%) for non-spatial CV (a, b) and spatial CV (c, d)
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Map VAR-3 (Fig. 13c) reports the difference between the models 
visibility-PP and blind-CLIMATE; thus, it stresses the role of the 
inventory bias in defining the susceptibility spatial pattern. The 
highest negative susceptibility variations (< − 0.6), individuating 
areas where the susceptibility was higher for the blind-CLIMATE 
model than for the visibility-PP model, are located almost exclu-
sively along the valley bottoms. As the bias-describing behaviour 
of altitude is smoothed through the visibility approach, negative 
variations characterize the valley bottoms, whereas positive vari-
ations occupy slopes located at high altitudes and in remote sec-
ondary valleys.

Discussion and future perspectives
The work was aimed at translating the non-ordinary climatic pro-
cesses and the correspondent empirical thresholds developed in the 
work of Bajni et al. (2021) in synthetic climatic variables to be used 
as predictors in a statistically based rockfall susceptibility model.

Although recently several authors (e.g. Gassner et al. 2015; 
Nhu et al. 2020; Bordoni et al. 2021) suggested various methods to 
include climatic predictors in susceptibility models, most of them 
were considered not optimal for the present study. The suggested 
methods include either the use of variables expressing average 
behaviours (e.g. mean annual and monthly rainfall, Broeckx et al. 
2018), or responses to specific events (e.g. cumulated rainfall 
in specific periods of time, Knevels et al. 2020). More complex 
approaches dealt with the coupling of spatial susceptibility models 
with contingency matrices expressing rainfall thresholds exceed-
ances (Segoni et al. 2015, 2018) or with temporal probability maps 
including antecedent cumulated rainfall and soil saturation degree 
(Bordoni et al. 2021) or by introducing synthetic variables express-
ing the return period of different rainstorms (e.g. Catani et al. 
2013). The major limitation of the applicability of these methods 
to the present study consists in the need of a prior knowledge of 
critical amounts and durations or operational thresholds defined 
by Civil Protection offices, missing for this study. It was then cho-
sen to apply an approach based on the exceedance frequency of 
ID type thresholds as in Dikshit et al. (2020) and Camera et al. 
(2021). Following the definition of non-ordinary conditions given 
in Bajni et al. (2021), the work is aimed at identifying climate pro-
cesses either as triggering or preparatory conditions, based on 
the associated duration, or even as a combination of these two 
aspects at different temporal scales. It consisted in calculating 

Table 4  Predictors’ penalization frequency, mDD% and concurvity 
for the PCA-based model

Model ID Predictor Penalization 
frequency 
(edf < 0.7) [%]

mDD% Concurvity

nsCV sCV

Visibility-
PCA

Elevation 0.0 0.0 31.1 0.75

Slope 0.0 0.0 18.8 0.19

Profile 
curvature

0.0 0.0 16.3 0.13

Northness 90.8 79.8 13.9 0.30

PC1 0.2 6.0 11.8 0.73

PC2 4.2 17.2 8.1 0.40

Fig. 11  Boxplots showing the AUROC estimate (both on train and test sets) variability observed during the non-spatial and spatial cross-
validation phases for all the tested models
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the mean annual threshold exceedance frequency for each one 
of the recognized climatic processes influencing rockfall occur-
rence and using these metrics as predictors for the susceptibility 
modelling phase. Different thresholds were tested for each index 
in Bajni et al. (2021); in particular, the threshold selected for the 
calculation of the mean annual exceedance frequency was the one 
normalized to RDN (rainy day normal, Bajni et al. 2021), as this 
normalization parameter is considered more suitable than MAP 
(mean annual precipitation) to capture future climatic variations 
of the rainfall regime in the Alpine region, expected to be charac-
terized by an increasing frequency of extreme precipitation events 
(Rajczak et al. 2013; Gobiet et al. 2014; Ban et al. 2020).

Temperature variations, also in the form of freeze–thaw cycles, 
were never included in a rockfall susceptibility assessment.  
Messenzehl et al. (2017), who modelled rockfall susceptibility with 
Random Forest in the Swiss Alps, identified the regional permafrost 
distribution as the most important variable controlling the spa-
tial rockfall activity and imputed the observed rockfall clustering 
at a specific altitudinal window (> 2500 m a.s.l.). This permafrost 
activity could be reasonably assimilated to a highly effective action 
of freeze–thaw cycles. However, they did not include freeze–thaw 

cycles directly as a variable in the model. In addition, even if  
wet and dry cycles are undoubtedly recognized as a weakening 
process in rock masses, they are usually mainly investigated at the 
laboratory scale (e.g. Van der Hoven et al. 2003; Torres-Suarez et al.  
2014; Zhou et al. 2017; Yang et al. 2018, 2019).

The majority of the landslide susceptibility studies available 
in literature assess the susceptibility model quality based only on 
quantitative performance. Any problem concerning the positional 
accuracy and spatial representativeness of the inventory is often 
disregarded (Reichenbach et al. 2018; Steger et al. 2017; 2021). Steger 
et al. (2021) suggested to discern susceptibility effects and data col-
lection effects, as the distribution of inventoried landslides depends 
on the methodological approach adopted for data collection. 
Although Aosta Valley had implemented an efficient procedure to 
integrate landslide public reports, remote sensing data and Forest 
Corps constant monitoring, a bias towards an overrepresentation 
of damage-related events and an underrepresentation of remote 
areas is almost unavoidable. This is a long-lasting known problem 
in inventories obtained from public administrations (Guzzetti et al. 
1999), which is nonetheless inherent to the objectives behind their 
compilation (Civil Protection purposes), not necessarily coinciding 

Fig. 12  Reclassified rockfall susceptibility maps obtained from models: a blind-CLIMATE, b visibility-PP and c visibility-PCA

Fig. 13  Difference maps for a VAR-1, visibility-PP―visibility-TOPO; b VAR-2, visibility-PP―visibility-PCA; c VAR-3, visibility-PP―blind-CLIMATE
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with capturing all the possible environmental combinations leading 
to instability. In the case of rockfalls, this bias may be exacerbated 
as the occurrence of this type of instabilities in remote sub-vertical 
inaccessible rock walls is common. The “Blind” models developed 
as the first step of the modelling procedure suggested an excel-
lent rockfall discrimination capability in terms of performance 
(0.8 ≤ AUROC ≤ 0.9). However, if performance scores are analysed 
together with predictors behaviour and susceptibility spatial 
patterns, they confirmed the existence of a bias in the inventory. 
Associated models showed implausible relationships (CSF curves) 
between rockfall susceptibility and predictors’ values (e.g. elevation, 
EWI, WD and SWEep), if compared with the current knowledge 
on the physical processes leading to instability, and unlikely sus-
ceptibility spatial patterns. Similar results were obtained in other 
works where inventory bias issues were noticed (e.g. Steger et al. 
2017, 2021; Bajni et al. 2022). These findings also make questionable 
the frequent use of distance from roads and distance from river 
predictors in landslide susceptibility modelling (Reichenbach et al. 
2018), as they might act as bias-reinforcements.

The “visibility” mask approach proposed by Knevels et al. (2020) 
and Bornaetxea et al. (2018) and adopted in this study proved to be 
valuable for reducing model inconsistencies related to the inventory 
bias. It needs to be noted that in the visibility-related configurations, 
the susceptibility values predicted outside the visibility mask corre-
spond to areas not covered by sampling (training) points. Thus, the 
results over these areas may suffer from extrapolation, especially for 
those areas presenting predictors values beyond those of the train-
ing points. A complementary approach, which has the advantage to 
avoid extrapolation, is the recent work of Cignetti et al. (2021). In this 
study, the authors modelled rockfall susceptibility along the regional 
road network of Aosta Valley, inside a buffer of 250 m from roads. 
An additional step forward was taken by Alvioli et al. (2021), who 
recognized rockfall potential source areas and modelled expected 
consequent trajectories along the Italian railway network. Suscep-
tibility resulted from a reclassification of trajectory counts in each 
cell of the modelling domain. These two studies are examples of a 
risk-oriented susceptibility, which has the aim to point out human 
infrastructures and settlements potentially subject to rockfall-related 
damage. However, this strategy does not match with the aim of the 
present study, dealing with the inclusion of non-stationary predictors 
in the susceptibility model. Indeed, considering the actual spatial pat-
tern of damaging, landslides represent a support for the present-time 
risk managing activities, but it is less suitable for a long-term plan-
ning considering the need of new sustainable development strategies 
in the context of climate change.

The present study confirmed that neglecting the modelled pre-
dictors’ behaviour physical plausibility, which is particularly crucial 
when dealing with process-driven predictors (Camera et al. 2021; 
Bajni et al. 2022), may lead to misleading susceptibility maps and 
process interpretation, even if including them would improve the 
quantitative performance of the model. In the optimized model 
(visibility-PP), EWI resulted as the most important, non-penalized, 
physically plausible climate-related predictor, consistently with the 
majority of works dealing with models including cumulated precip-
itation-related variables (e.g. Catani et al. 2013; Capecchi et al. 2015; 
Kim et al. 2015; Knevels et al. 2020; Camera et al. 2021). Also, the sig-
moidal shape, at low values, of its CSF was already observed in other 
works for variables accounting for cumulated rainfall (e.g. Tanyaş 

et al. 2022). In presence of concurvity, the penalization of certain 
predictors may imply that other covariates have similar and stronger 
mathematical relationships with the response variable, and not that 
the penalized terms are not related to the investigated phenomena 
(Laceby et al. 2016). An example is the relationship between elevation 
and FT. At high altitudes (> 2500 m a.s.l.), the elevation CSF shows a 
raising tail, which causes an increase in susceptibility over the high 
mountain peaks (especially in the northern part of the study area), 
whereas the FT predictor is penalized. This increasing susceptibil-
ity is coherent with the findings of Messenzehl et al. (2017), who 
found an intense rockfall activity at altitudes above 2900 m a.s.l. 
and imputing it to permafrost degradation causing, similarly to FT 
cycles, water seepage and hydrostatic pressure variations.

Finally, it is a common practice to carry out a multicollinearity 
(concurvity in the case of GAMs) diagnosis of predictors before the 
development of predictive models using both logistic regression 
and complex machine learning algorithms (Camera et al. 2017; Chen 
et al. 2017; Nohani et al. 2019; Roy et al. 2019; Yi et al. 2020; Arabameri 
et al. 2020; Alqadhi et al. 2021). The presence of concurvity is, how-
ever, physically reasonable, as climate processes are interconnected. 
As an example, EWI and WD are both related to the precipitation 
regime. Also, wet and dry episodes frequency is linked to the thermal 
regime, which may control the occurrence and duration of storms. 
Nonetheless, the application of the shrinkage option for variable 
selection should allow to penalize the portion of the smoothing func-
tion involved in multi-concurvity issues (Figueiras et al. 2005; Laceby 
et al. 2016; Bagalwa et al. 2021). This is possibly the main reason for 
the high penalization frequency of FT predictors in most of the mod-
els. As an alternative strategy, this study proposed to reduce climate 
variables to principal components (PC) and use them as predictors. 
Messenzehl et al. (2017; 2018) applied a similar strategy, to model 
rockfall activity in the Swiss Alps. The results are encouraging since 
the PC allowed both a reduction of concurvity and an improvement 
of model parsimony. In addition, the PC maintained a physically 
explainable behaviour. However, it needs to be noted that climatic 
predictors are inherently non-stationary; thus, concurvity between 
them (and with the other static predictors) could vary in the future, 
as a response to threshold exceedance pattern modifications. Also, 
although PC roles in the model remained physically explainable, it 
is difficult to discern the influence of each single climate process in 
defining the component behaviour and importance.

The sCV results pointed out a low spatial transferability of the 
models including climatic predictors, and a consistent drop of 
about 0.10 of the mean AUROC estimate if compared with the nsCV 
counterpart. Although a spatial CV is usually considered the best 
choice when dealing with spatial data (Brenning et al. 2012b), it may 
have some issues when dealing with climatic data, especially in the 
presence of mountain-related microclimatic variations, which is the 
case of the study area examined in this work. Spatial partitioning 
may induce extrapolations by restricting the ranges or combina-
tions of predictor variables available for model training, thus pos-
sibly leading to large prediction errors (Roberts et al. 2017), not 
accountable on the algorithm capabilities but on the training points 
selection strategy. For these reasons, a preliminary evaluation of the 
climatic homogeneity of the area is crucial, and an independent 
holdout test set, in a neighbouring region with a similar altitudinal 
and geographical extent, could be a better option to test the model 
spatial transferability.
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Future studies should focus on the calculation of the rockfall-
related climate indices for future periods, under different forcing 
conditions (i.e. share socio-economic pathways; Meinshausen et al. 
2020). Rockfall susceptibility projections, possibly useful for land 
management and planning in the mid- to long-term period, could 
therefore be derived. A slight modification of the model structure, 
with an event-based interpretation of the predictors, could result in 
an instrument useful for early-warning purposes (given the avail-
ability of reliable, high-resolution weather forecasts for the area). In 
both cases, using cloud-based solutions (e.g. Google Earth Engine) 
to refine the model and process data could make possible to simu-
late rockfall susceptibility over any area and any scenario, assum-
ing similar geomorphological settings (Alpine terrains). Examples 
of tools developed for susceptibility modelling are just starting to 
appear in literature (Titti et al. 2022; Wu et al. 2022).

Conclusions
This study focused on developing and testing spatially distributed 
climatic predictors for rockfall susceptibility modelling. In detail, 
this study main outputs include:

• An analysis of the effects of not considering the rockfall data 
collection strategy on the model outputs;

• A strategy to deal with the inventory bias (towards roads, infra-
structures and urban areas);

• A process-oriented critical analysis of GAM-associated compo-
nent smoothing functions to assess the physical significance of 
climatic predictors;

• An assessment of the importance and roles of the climatic pre-
dictors in modelling rockfall susceptibility in the area;

• A procedure to deal with the effects of concurvity on the model 
outputs (by means of a principal component analysis).

• The susceptibility maps associated with the visibility-PP and 
visibility-PCA models resulted as valuable tools for an informed 
land management and local action or monitoring planning.

The selection of non-rockfall points inside a defined “visibility 
mask” was a valuable approach to handle the inventory bias and reduce 
its influence on model outputs. Also, it was fundamental to reveal the 
actual behaviour of predictors and assess their physical plausibility. The 
most important physically plausible climate-related predictors were the 
effective water input (EWI), the maximum snowmelt calculated over 
a 16-day period from snow water equivalent data (SWEmax) and the 
wet-dry cycles (WD), which together accounted for a total mDD% of 
about 20%. The predictor related to the number of snowmelt events in 
a hydrological year (SWEep) was always represented by a physically 
distorted CSF, while the predictor summarizing freeze–thaw cycles (FT) 
was almost always penalized as its behaviour was masked by elevation. 
When the climate and snow-related predictors were inserted in the sus-
ceptibility model as principal components, concurvity was efficiently 
reduced. Nonetheless, despite the PCA-related model embody the qual-
ity of parsimony, it may suffer from a less immediate interpretability 
and updatability with climate change projections.

A process-related, potentially non-stationary configuration of the 
susceptibility models was offered. This is fundamental to implement 
dynamic susceptibility, hazard and risk analyses, which are necessary 
in light of the climate changes affecting mountain environments. The 

availability of a large historical rockfall inventory and an extensive, 
multi-variable meteorological dataset were crucial inputs for the 
analysis. For this reason, the efforts that some administrations (e.g. 
Aosta Valley region) are putting in developing not only spatial- but 
also temporal-detailed inventories are extremely useful, not only 
for a scientific interest but also to provide benefits to the mountain 
communities through an informed future environmental planning.
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