
Survey density forecast comparison in small samples

Laura Coroneo∗

University of York
Fabrizio Iacone

Università degli Studi di Milano
University of York

Fabio Profumo
University of York

20th December 2023

Abstract

We apply fixed-b and fixed-m asymptotics to tests of equal predictive accuracy
and of encompassing for survey density forecasts. We verify in an original Monte
Carlo design that fixed-smoothing asymptotics delivers correctly sized tests in this
framework, even when only a small number of out of sample observations is avail-
able. We use the proposed density forecast comparison tests with fixed-smoothing
asymptotics to assess the predictive ability of density forecasts from the European
Central Bank’s Survey of Professional Forecasters (ECB SPF). We find an im-
provement in the relative predictive ability of the ECB SPF since 2010, suggesting
a change in the forecasting practice after the financial crisis.

Keywords: survey density forecast comparison, ECB SPF, Diebold-Mariano test,
forecast encompassing, fixed-smoothing asymptotics

JEL Classification: C12, C22, E17

∗Corresponding author: Laura Coroneo, Department of Economics and Related Studies, University
of York, Heslington, York, YO10 5DD, UK. The support of the ESRC grant ES/J500215/1 is gratefully
acknowledged. We thank the editor George Kapetanios, the associate editor, an anonymous referee,
Liudas Giraitis, Alastair Hall, and participants to the Sheffield Advances in Econometrics Workshop,
the 42nd International Symposium on Forecasting (ISF 2022 - University of Oxford), the 10th Italian
Congress of Econometrics and Empirical Economics (ICEEE - University of Cagliari) and the 12th ECB
Conference on Forecasting Techniques (ECB) for useful comments.

1



1 Introduction

Expectations play a key role in economic decision-making and largely determine policy

outcomes. This is particularly true for monetary policy, as its effects heavily depend on

expectations. For this reason, central banks around the world regularly run surveys of

professional forecasters to gather information about private agents’ expectations.

Survey respondents are asked to report their point forecasts for a set of macroeco-

nomic fundamentals and, increasingly, to provide a density forecast that describes the

predicted probability distribution of the variables of interest. Compared to the more

popular point forecasts, density forecasts provide a wider understanding of the uncer-

tainty associated with the prediction, see Fair (1980) and Dawid (1984) for some early

references, and Tay and Wallis (2000) for a more recent detailed discussion.

Well-known examples of survey density forecasts include the Survey of Professional

Forecasters (SPF) currently managed by the Federal Reserve Bank of Philadelphia, the

Survey of External Forecasters managed by the Bank of England and the European

Central Bank’s Survey of Professional Forecasters (ECB SPF). A large amount of work

has been devoted to analysing the density forecasts provided by the US SPF, see among

others Diebold, Tay and Wallis (1999) and Clements (2014), and the Bank of England’s

Survey of External Forecasters, see among others Boero, Smith and Wallis (2008) and

Mitchell and Hall (2005). The literature dedicated to density forecasts provided by the

ECB SPF is more limited, see de Vincent-Humphreys, Dimitrova, Falck and Henkel

(2019) for a survey, possibly because the ECB SPF started only recently, in 1999.

A challenge in forecast comparison studies for survey data is that traditional inference

methods suffer from relevant small sample size distortions, which can lead to spurious

results, as well documented by Clark (1999) for the Diebold and Mariano (1995) equal

predictive accuracy test. This shortcoming is of course especially relevant when the

analysis is performed on subsamples, as for example when only using the post-great

financial crisis sample.
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In this paper, we apply fixed-b and fixed-m asymptotics to address the small sample

bias of density forecast comparison tests. We compare alternative density forecasts by

testing two null hypotheses. The first hypothesis is the null of equal predictive accuracy

of two forecasts, this is the Diebold and Mariano (1995) equal predictive ability test. The

second one is the null of forecast encompassing in Harvey et al. (1998), which involves

testing whether one forecast is encompassed by the other. To accommodate forecasts

reported as probabilities for intervals, or bins, as typical for survey forecasts, we use

two loss functions: the Quadratic Probability Score by Brier (1950) and the Ranked

Probability Score by Epstein (1969). With these loss functions, we show that both tests

can be performed in the framework of semiparametric inference on the mean of a process.

In the case of the test of equal predictive accuracy, this coincides with the framework in

Diebold and Mariano (1995), so we will loosely refer to it as the DM framework in the

remainder of the paper, even when we apply it to the forecast encompassing test.

The DM framework is particularly appealing as it is simple and the test statistic is

easy to compute. To overcome the small sample bias of the DM framework, we use an

alternative approach based on fixed-smoothing asymptotics. In particular, we consider

fixed-b asymptotics by Kiefer and Vogelsang (2005) and fixed-m asymptotics by Hualde

and Iacone (2017). This approach proved capable of eliminating size distortion in the

equal predictive accuracy test for comparing point forecasts, see Coroneo and Iacone

(2020). In an original Monte Carlo exercise, we first document that standard asymptotics

deliver unreliable density forecast comparison tests in small samples, and we then verify

that fixed-b and fixed-m asymptotics can be used with success to perform tests of equal

predictive accuracy and encompassing for density forecasts.

We apply the proposed density forecast comparison tests to assess the accuracy of the

ECB SPF density forecasts for three key macroeconomic variables (real GDP growth,

inflation and the unemployment rate). We are interested in establishing whether ECB

SPF density forecasts can beat and/or encompass simple benchmarks, such as a uniform,
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an unconditional Gaussian, a Gaussian random walk, a Gaussian random walk with

drift and a naive forecast taken from the previous round of ECB SPF forecasts. All

benchmark forecasts are produced in real-time, by using the same information available

to professional forecasters at each survey deadline.

Results indicate that ECB SPF density forecasts for unemployment and real GDP

growth outperformed and sometimes encompassed the benchmarks, especially at one-

year ahead and in the second subsample. On the other hand, survey forecasts for inflation

do not easily outperform nor encompass the benchmarks. For all the variables, however,

the application of fixed-smoothing asymptotics strengthens the evidence of an improve-

ment in relative predictive ability since 2010, suggesting a change in the forecasting

practice after the financial crisis. We also find that the ECB SPF easily outperforms

and encompasses the naive benchmark, indicating that professional forecasters update

their information set when making their predictions and that previous round forecasts

are uninformative.

This paper contributes to the literature on forecast evaluation by introducing fixed-

smoothing asymptotics to density forecast comparison tests. This type of asymptotics is

becoming popular for point forecast comparison, see Choi and Kiefer (2010), Harvey et

al. (2017), Li and Patton (2018), Coroneo and Iacone (2020), Coroneo et al. (2022), but,

to the best of our knowledge, their properties for density forecast comparison tests have

not been analysed. Our novel Monte Carlo exercise confirms the small sample bias of

standard density forecast comparison tests, and indicates that fixed-smoothing asymp-

totics successfully addresses this issue. We also contribute to the literature on forecast

encompassing by showing how the forecast encompassing test for density forecasts can

be implemented in the DM framework: Clements and Harvey (2010) introduce it for

dichotomic variables but we extend it to continuously distributed variables.

The remainder of the paper is organised as follows. In Section 2 we describe how to

perform tests of equal predictive accuracy and encompassing for survey density forecasts.
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In Section 3, we show how to apply fixed-smoothing asymptotics to these tests. We

investigate the properties of the tests in Section 4, where we present a Monte Carlo

exercise and provide recommendations for the bandwidths. In Section 5 we carry out

the empirical study, and in Section 6 we conclude.

2 Density forecast comparison

We compare two h-step ahead density forecasts made at time t − h for the variable of

interest yt using loss functions. The h-step ahead survey density forecast i specifies the

probability that the variable of interest yt falls in bin k given the information available

at time t− h, ft,i = [f 1
t,i, . . . , f

k
t,i, . . . , f

K
t,i ]

′, where fk
t,i = Pt−h,i(yt ∈ k) for k = 1, . . . , K.

The vector of realisations is yt = [y1t , . . . , y
k
t , . . . , y

K
t ]′, where the indicator variable

ykt = I(yt ∈ k) takes the value of 1 if the outcome at time t falls in bin k and zero

otherwise, so that K − 1 elements of yt are set to 0 and one takes value 1. The forecast

error is then et,i = yt − ft,i.

The cumulative distribution function of the density forecast is Ft,i = [F 1
t,i, . . . , F

k
t,i, . . . , F

K
t,i ]

′,

where F k
t,i =

∑k
l=1 f

l
t,i, and the cumulative outcome variable isYt = [Y 1

t , . . . , Y
k
t , . . . , Y

K
t ]′,

where Y k
t =

∑k
l=1 y

l
t. Finally, the cumulative forecast error is given by Et,i = Yt − Fi,t.

We consider two loss functions that naturally accommodate forecasts reported as

histograms: the Quadratic Probability Score by Brier (1950) and the Ranked Probability

Score by Epstein (1969). The Quadratic Probability Score (QPS) associated with each

forecast is given by

QPSt,i =
K∑
k=1

(ykt − fk
t,i)

2 = e′t,iet,i. (1)

This loss function penalizes equally any probability assigned to events that do not occur.

As a consequence, forecasts that assign a large probability in a neighbourhood of the

realised outcome are treated in the same way as forecasts that assign a small probability

to that same neighbourhood and put more probability on very distant outcomes. This
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may be appropriate in some situations; in many cases, however, it is desirable to consider

the forecast clustering more probability in the intervals near the realised outcome as more

precise. For this reason, we also consider the Ranked Probability Score (RPS) associated

with each forecast, given by

RPSt,i =
K∑
k=1

(Y k
t − F k

t,i)
2 = E′

t,iEt,i. (2)

This loss function has the advantage of considering the overall tendency of the forecast

probability density function, as it penalizes less severely density forecasts assigning rel-

atively larger probabilities to outcomes that are close to the true outcome. Therefore,

the RPS has the desirable property of being proper in the sense that encourages the

forecasters to reveal their true beliefs, see Gneiting and Raftery (2007).

Another appealing property of the QPS and the RPS is that they are always defined,

even when the realisation falls in a histogram bin to which the survey forecast has

assigned a zero probability. On the contrary, the more popular logarithmic score would

be undefined in this case.

We use two approaches to compare the performance of two density forecasts. The

first involves testing the null hypothesis of equal predictive accuracy of the two forecasts

according to the QPS or the RPS loss function. This can be implemented with the test

for equal predictive accuracy proposed by Diebold and Mariano (1995). The second

approach involves testing for whether one density forecast is encompassed by the other

one, in the sense that the predictive accuracy (according to the QPS or the RPS loss

function) of the encompassing density forecast cannot be improved by a linear combi-

nation with the encompassed forecast. This is the forecast encompassing test and, for

point forecasts, Harvey et al. (1998) show that, by redefining the loss differential, it is

possible to implement it using the DM framework.

In what follows, we first show how the DM framework can be used also to perform

the forecast encompassing test for density forecasts. We then discuss the limitations of
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standard asymptotics when applied to the DM framework, and apply fixed-smoothing

asymptotics to the DM framework for density forecast comparison.

2.1 Equal predictive accuracy

A test of equal predictive accuracy allows testing the null hypothesis that two alternative

forecasts have equal forecasting accuracy according to a user-chosen loss function, which

in the case of density forecasts can be the QPS or the RPS loss function.

Denote by Li the loss function for i = 1, 2, so that Li
t = QPSt,i if the QPS loss is

used or Li
t = RPSt,i if the RPS loss is used, and the loss differential by

dt = L1
t − L2

t , (3)

the null hypothesis of equal forecasting ability is

H0 : {E(dt) = 0}. (4)

2.2 Forecast encompassing

A forecast encompassing test involves testing whether one set of forecasts encompasses

another one, in the sense that the accuracy of one set of (encompassing) forecasts ft,1

cannot be improved through a linear combination with a second set of (encompassed)

forecasts ft,2. To this end, we consider the density forecast combination

ft,c(λ) = (1− λ)ft,1 + λft,2 (5)

where λ (0 ≤ λ ≤ 1) is a scalar and denotes the weight associated with forecasts ft,2.

In this context, ft,1 encompasses ft,2 if the optimal weight in the QPS (or RPS) sense is

equal to zero.
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In Appendix A, we show that if we define dt as

dt =


e′t,1(et,1 − et,2), for QPS,

E′
t,1(Et,1 − Et,2), for RPS,

(6)

then the null of density forecast encompassing can be expressed as

H0 : {E(dt) = 0}

and the density forecast encompassing test can be conducted against the one-sided al-

ternative E(dt) > 0 (i.e., λ > 0), given the assumption of a non-negative combination

weight.

2.3 Diebold-Mariano framework

In sections 2.1-2.2, we showed how both the equal predictive accuracy and the forecast

encompassing tests can be performed in the framework of inference on the mean of the

process dt also in the context of density forecast evaluation. The difference between the

two tests lies in how the process dt is defined. For the test for equal predictive accuracy,

dt is defined as in (3), while for the test for density forecast encompassing dt is defined

as in (6).

Denoting the sample average as d = 1
T

∑T
t=1 dt and the long run variance as σ2

T =

var(
√
T d), then the test statistic is

√
T d/σT . Under regularity conditions as for exam-

ple in Giacomini and White (2006) and under H0,

√
T

d

σT

→d N(0, 1). (7)

The test statistic in (7) is unfeasible as σT is unknown, but this may be replaced by

an estimate, say σ̂. If the latter is consistent, in the sense σ̂ − σT = op(1), the feasible
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statistic obtained in this way retains the standard normal limiting distribution.

One estimate that, under regularity conditions, fits this purpose, is the Weighted

Covariance Estimate (WCE)

σ̂2
WCE = γ̂0 + 2

T−1∑
j=1

k(j/M)γ̂j

where γ̂j is the sample autocovariance at lag j, k(.) is a kernel function and M is a

bandwidth parameter. A popular kernel is the triangular (Bartlett) kernel, yielding the

estimate

σ̂2
WCE−B = γ̂0 + 2

M∑
j=1

(
M − j

M

)
γ̂j.

Regularity conditions to ensure consistency include M → ∞ and M/T → 0 as T → ∞.

A second class of estimates of the long run variance is the Weighted Periodogram

Estimate (WPE)

σ̂2
WPE = 2π

T/2∑
j=1

KM(λj)I(λj) (8)

where KM(λj) is a symmetric kernel function, and I(λj) is the periodogram of dt com-

puted at the Fourier frequency λj. A popular kernel in this case is the Daniell kernel,

as this estimate of the long run variance has a very simple formula in the frequency

domain,

σ̂2
WPE−D = 2π

1

m

m∑
j=1

I(λj). (9)

where m is a user-chosen parameter that, with a slight abuse of notation, is referred to

as bandwidth too. When m → ∞ and m/T → 0 as T → ∞, the estimate is consistent.

Unfortunately, the DM framework is subject to severe size distortion in small and

medium-sized samples, as documented, for example, in Clark (1999). Obviously, finite

sample size distortion is not a problem affecting only the DM framework, it is common

to any test that makes inference on the mean (or on a regression parameter) using a

heteroskedasticity autocorrelation consistent estimate of the long run variance and main-
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taining the limit normality assumption for the standardised statistic, see for example

Newey and West (1994). In fact, in any finite sample, the ratio M/T is still non-zero,

and in a moderate size sample this ratio may be non-negligible. Thus, this size distortion

may be more severe in the context of forecast comparisons, as in many cases the sample

size is relatively small, when compared to other macro and financial applications.

3 Fixed-smoothing asymptotics

Neave (1970) shows that treating the ratioM/T as constant can provide a better measure

of the variance of the weighted covariance estimate of a spectral estimate. Kiefer and

Vogelsang (2002a,b, 2005) apply the same intuition to the problem of testing hypothesis

about the mean for a weakly dependent process, deriving the distribution of the feasible

test statistic when M/T → b ∈ (0, 1] as T → ∞. Under this assumption σ̂2 is not

consistent, and the test statistic has a non-standard limit distribution that depends both

on b and on the kernel choice. Because of the dependence on b of the limit distribution,

this approach is often referred to as “fixed-b”.

In the context of the DM framework, for the Bartlett kernel the results of Kiefer and

Vogelsang (2005) imply that, under H0 and regularity conditions, when M/T → b ∈

(0, 1] as T → ∞,
√
T

d

σ̂WCE−B

→d Φ
B(b) (10)

ΦB(b) is characterised in Kiefer and Vogelsang (2005) and a cubic equation is provided

for critical values.

In the frequency domain, fixed-b corresponds to keepingm constant when the Daniell

kernel is used. This naturally leads to considering asymptotics for fixed m. Under H0

and regularity conditions, Hualde and Iacone (2017) consider m constant as T → ∞, in

this case we have
√
T

d

σ̂WPE−D

→d t2m. (11)
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We refer to Appendix B for a sufficient assumption to establish the limits (10) and

(11). Fixed-b and fixed-m asymptotics can be heuristically understood as undersmooth-

ing in the context of estimating the spectral density at frequency zero. For this reason,

many references, for example Sun (2013), refers to them collectively as fixed-smoothing.

Monte Carlo simulations in Kiefer and Vogelsang (2005) suggest that critical values

obtained using fixed-b asymptotics result in better empirical size for tests. This was

later justified theoretically by Sun (2014), that shows that fixed-b asymptotics provides

a higher order refinement. Moreover, fixed-smoothing asymptotics gives a justification

(and suitable critical values) even for bandwidths that researchers would not consider

when using standard asymptotics: it is even possible to choose M = T when using the

weighted covariance Bartlett estimate, or to choose m = 1 when using the weighted

periodogram Daniell estimate. This allows a further correction in the empirical size, as

in Monte Carlo simulations larger bandwidths M (smaller m) are associated to better

empirical size. For example, Monte Carlo simulations in Coroneo and Iacone (2020)

indicate that it is possible to completely eliminate the size distortion documented by

Clark (1999).

4 Monte Carlo study of size and power

We analyse the empirical size and power of the tests of equal predictive accuracy and of

encompassing for density forecast by means of a Monte Carlo experiment. Since Kiefer

and Vogelsang (2005), simulation studies have by now covered a fairly wide range of

situations, including inference in regression models, in non-linear models, and others.

We refer to Lazarus, Lewis, Stock and Watson (2018) for a recent, comprehensive study.

In point forecasting, studies include Coroneo and Iacone (2020) on forecast evaluation

in small samples, Harvey, Leybourne and Whitehouse (2017) on forecast encompassing,

and Li and Patton (2018) on forecast evaluation in large samples.

We already noticed that simulation studies find that fixed-smoothing asymptotics
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yield better approximation of the empirical size, and that this improvement is stronger

the larger is the bandwidth M (the smaller is m). These works also find that the

finite sample power is decreasing with the bandwidth, therefore documenting the exis-

tence of a trade-off between correct size and power. Lazarus, Lewis, Stock and Watson

(2018), drawing on their extensive simulation study, recommend M = ⌊1.3T 1/2⌋ and

m = ⌊0.2T 2/3⌋.

In this section, we check whether the size improvements for the equal predictive

ability and forecast encompassing tests still hold in the case of density comparisons. We

use a rather small sample that replicates the dimension of the sample of our dataset. We

also examine the issue of bandwidth selection, and compare our results with Lazarus,

Lewis, Stock and Watson (2018) and Coroneo and Iacone (2020).

In our Monte Carlo study, for simplicity we only consider the QPS loss function.

We consider a sample of T observations, and we assume that the probability that the

variable of interest yt falls in bin k, for k = 1, 2, 3, is given by y′
t = (0, 1, 0). We also

assume that we have two density forecasts that assign the probability that yt falls in bin

k as follows

f ′1,t = (At, 1− At, 0);

f ′2,t = (0, 1−Bt, Bt);

where

At = at + at−1 + ...+ at−Q;

Bt = bt + bt−1 + ...+ bt−Q;

and at, ..., at−Q are realisations from a uniform distribution in [0, α/(Q+1)], bt, ..., bt−Q

are realisations from a uniform distribution in [0, β/(Q+1)], and at, ..., at−Q, bt, ..., bt−Q

are all independently distributed.
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The forecast errors are then given by

e′1,t = (−At, At, 0);

e′2,t = (0, Bt,−Bt).

In this setting, E(e′1,te1,t) = E(2A2
t ), E(e′2,te2,t) = E(2B2

t ). This means that the null

hypothesis of the equal predictive ability test, E(dt) = E(e′1,te1,t) − E(e′2,te2,t) = 0,

follows from setting α = β. For the forecast encompassing test, E(e′1,t(e1,t − e2,t)) =

2E(A2
t )−E(At)E(Bt), so to obtain the null hypothesis E(dt) = E(e′1,t(e1,t − e2,t)) = 0,

we set β = 8 4+3Q
12(Q+1)

α. We can investigate the power of the equal predictive ability test

setting β =
√

α2 − 3/2× c/
√
T as we increase the value of c.

In our experiment we set α = β = 1 for the equal predictive accuracy test and α = 3/8

for the forecast encompassing test, and Q up to 6, with sample size set at T = 40, 80,

and we repeat the experiment for 10,000 replications. Our sample size is much smaller

than the sample size of Lazarus, Lewis, Stock and Watson (2018), and it matches the

dimension of the sample available for our empirical study. Indeed, checking the empirical

performance in such small samples is one reason of interest in this experiment.

In Tables 1 and 2, we report the empirical size of the test with one-sided alternative

H1 : {E(dt) > 0} when 5% critical values from both standard asymptotics and fixed-

smoothing asymptotics are used. In columns WCE, the long run variance estimate is

computed using a Bartlett kernel with bandwidthsM = ⌊T 1/3⌋,M = ⌊T 1/2⌋ andM = T .

In columns WPE, we use the Daniell kernel with bandwidths m = ⌊T 1/4⌋, m = ⌊T 1/3⌋,

m = ⌊T 1/2⌋ and m = ⌊T 2/3⌋. Consistently with results from other simulation studies,

standard asymptotics are associated with size distortions. The performance deteriorates

as the dependence increases with Q, especially when the bandwidth m is too long (or,

to a lesser extent, when M is too short), reflecting the fact that the dependence causes a

curvature in the spectral density at larger frequencies, and thus a bias in the estimation of

the spectral density in zero. The second source of distortion is due to the approximation
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Table 1: Empirical size of the test of equal predictive ability

Panel A: standard asymptotics
WCE WPE

T Q ⌊T 1/3⌋ ⌊T 1/2⌋ T ⌊T 1/4⌋ ⌊T 1/3⌋ ⌊T 1/2⌋ ⌊T 2/3⌋

40

0 0.063 0.078 0.201 0.085 0.076 0.062 0.058
2 0.102 0.098 0.218 0.084 0.078 0.082 0.117
4 0.158 0.129 0.234 0.101 0.096 0.130 0.192
6 0.197 0.152 0.245 0.109 0.117 0.176 0.232

80

0 0.061 0.071 0.208 0.090 0.070 0.061 0.055
2 0.082 0.080 0.206 0.086 0.067 0.066 0.092
4 0.117 0.098 0.220 0.090 0.077 0.087 0.160
6 0.148 0.111 0.221 0.092 0.083 0.112 0.194

Panel B: fixed-smoothing asymptotics
WCE WPE

T Q ⌊T 1/3⌋ ⌊T 1/2⌋ T ⌊T 1/4⌋ ⌊T 1/3⌋ ⌊T 1/2⌋ ⌊T 2/3⌋

40

0 0.048 0.049 0.049 0.048 0.051 0.050 0.049
2 0.083 0.064 0.058 0.047 0.051 0.067 0.108
4 0.136 0.089 0.072 0.058 0.069 0.113 0.183
6 0.173 0.112 0.081 0.066 0.082 0.157 0.222

80

0 0.051 0.048 0.049 0.049 0.050 0.050 0.051
2 0.070 0.055 0.053 0.050 0.049 0.057 0.085
4 0.104 0.074 0.059 0.054 0.058 0.077 0.152
6 0.134 0.084 0.062 0.053 0.062 0.100 0.188

Note: empirical size of the equal predictive ability test with standard asymptotics (panel A) and fixed-
smoothing asymptotics (panel B). The theoretical size is 5%, for a one-sided alternative hypothesis. Q
indicates the dependence in the process. WCE refers to the test statistic with Weighted Covariance
Estimate with Bartlett kernel for the long run variance; WPE refers to the test statistic with Weighted
Periodogram Estimate with Daniell kernel for the long run variance.
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Table 2: Empirical size of the forecast encompassing test

Panel A: standard asymptotics
WCE WPE

T Q ⌊T 1/3⌋ ⌊T 1/2⌋ T ⌊T 1/4⌋ ⌊T 1/3⌋ ⌊T 1/2⌋ ⌊T 2/3⌋

40

0 0.049 0.061 0.187 0.072 0.060 0.047 0.044
2 0.073 0.069 0.188 0.058 0.053 0.054 0.090
4 0.122 0.091 0.203 0.072 0.067 0.096 0.159
6 0.162 0.118 0.211 0.079 0.084 0.142 0.199

80

0 0.048 0.057 0.198 0.079 0.059 0.049 0.045
2 0.064 0.059 0.186 0.069 0.051 0.047 0.071
4 0.094 0.075 0.200 0.072 0.055 0.064 0.136
6 0.124 0.086 0.194 0.069 0.059 0.090 0.167

Panel B: fixed-smoothing asymptotics
WCE WPE

T Q ⌊T 1/3⌋ ⌊T 1/2⌋ T ⌊T 1/4⌋ ⌊T 1/3⌋ ⌊T 1/2⌋ ⌊T 2/3⌋

40

0 0.035 0.036 0.040 0.040 0.038 0.037 0.039
2 0.055 0.038 0.039 0.029 0.030 0.041 0.079
4 0.100 0.060 0.049 0.038 0.042 0.080 0.149
6 0.140 0.079 0.054 0.041 0.056 0.123 0.191

80

0 0.037 0.038 0.040 0.041 0.040 0.039 0.040
2 0.050 0.039 0.039 0.035 0.033 0.038 0.065
4 0.079 0.052 0.044 0.037 0.038 0.054 0.129
6 0.110 0.061 0.046 0.035 0.041 0.077 0.161

Note: empirical size of the forecast encompassing test with standard asymptotics (panel A) and fixed-
smoothing asymptotics (panel B). The theoretical size is 5%, for a one-sided alternative hypothesis. Q
indicates the dependence in the process. WCE refers to the test statistic with Weighted Covariance
Estimate with Bartlett kernel for the long run variance; WPE refers to the test statistic with Weighted
Periodogram Estimate with Daniell kernel for the long run variance.

15



Figure 1: Finite sample power.
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Note: power performances of the equal predictive ability test in a samples of size T = 40 and T = 80,
for the theoretical size 5% and for a one-sided alternative hypothesis. The dashed lines refer to power
performances using size-adjusted critical values while solid lines use fixed-smoothing asymptotics. The
parameter c indicates the distance from the null hypothesis. WCE refers to the test statistic with
Weighted Covariance Estimate with Bartlett kernel for the long run variance; WPE refers to the test
statistic with Weighted Periodogram Estimate with Daniell kernel for the long run variance.

of the average periodogram as its probability limit, and this is more evident when m

is too short (m = ⌊T 1/4⌋), and when the bandwidth M is too long (M = T ). Using

fixed-smoothing asymptotics always improves the empirical size. As usual, the best

performance is for for M = T or the smallest m (as the size distortion due to the

curvature of the spectral density is least, in this case), but on balance we observe correctly

sized tests with WCE already with bandwidth M = ⌊T 1/2⌋, likewise, we observe correct

size with WPE already with bandwidth m = ⌊T 1/3⌋.

For the power study we only consider the equal predictive ability test. We set Q = 0

and increasing values of c up to 4. In this case, we only consider bandwidths that
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are associated to good empirical size properties, namely WCE with M = ⌊T 1/2⌋ and

M = T , and WPE withm = ⌊T 1/4⌋ andm = ⌊T 1/3⌋, in all cases only for fixed-smoothing

asymptotics. For the purpose of comparison only, we also plot the size adjusted power.

Power performances are reported in Figure 1. In all cases the empirical power is a very

good approximation of the size adjusted power, again offering support to the assumption

that fixed-smoothing asymptotic is a valuable instrument for inference. We also find

that, as a general rule, larger bandwidths M (smaller m) are associated to lower power,

consistently with other similar simulation studies. Overall we suggest M = ⌊T 1/2⌋

and m = ⌊T 1/3⌋. Given our sample size, these bandwidth rules seem in line with the

recommendation in Lazarus, Lewis, Stock and Watson (2018).

5 Application

We use the proposed density forecast evaluation tests with fixed-smoothing asymptotics

to evaluate the predictive ability of density forecasts from the European Central Bank’s

Survey of Professional Forecasters (ECB SPF) for HICP inflation, the unemployment

rate and real GDP growth against five simple benchmark density forecasts: a uniform,

an unconditional Gaussian, a Gaussian random walk, a Gaussian random walk with

drift, and naive benchmark that uses the previous survey value for the same forecast

horizon. Of course, one can use more sophisticated benchmarks, but here our objective

is to assess whether the ECB SPF survey forecasts can at least beat simple benchmarks.

5.1 The ECB Survey of Professional Forecasters

We use aggregate ECB SPF density forecasts at one and two years ahead for inflation

(year-on-year percentage change of the Harmonised Index of Consumer Prices, HICP),

real GDP growth (year-on-year percentage change of real GDP) and the unemployment

rate (as percentage of the labour force).
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Figure 2: ECB SPF density forecast for HICP one-year ahead, December 2016
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Note: histogram of the one-year ahead aggregate density forecast for HICP from the 2016.Q1 survey
round. Participants are asked to report a probability for the realisation in December 2016 to fall in
each bin.

The ECB SPF is administered quarterly to a panel of forecasters (about 80 institu-

tions with an average of 60 responses each round). Participants are experts affiliated

with financial or non-financial institutions based within the European Union, and form

an heterogeneous group to guarantee the representativeness and independence of the

expectations collected.

Participants are asked to provide a forecast for the current calendar year, the follow-

ing calendar year, the calendar year after that, a long term horizon, a rolling horizon one

year ahead of the latest available data and a rolling horizon two years ahead of the latest

available data. For more information on the ECB SPF see Garcia (2003) and Bowles,

Friz, Genre, Kenny, Meyler and Rautanen (2007).

To report their density forecasts, participants are given a set of specific ranges and are

asked to predict the probability that the target variable will fall in each specific range,

or bin, with the first and the last being open intervals. The number of ranges given in

every survey round can change but their width is fixed. The ECB SPF reports both the
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anonymised individual density forecasts and the aggregate density forecast, constructed

by summing up the individual probabilities reported in the SPF and dividing by the

number of respondents. For example, in Figure 2 we present the one year-ahead density

forecast for the December 2016 HICP produced in the 2016.Q1 survey round.

5.2 Benchmark Density Forecasts

We compare ECB SPF density forecasts against five simple benchmark density forecasts:

a uniform, an unconditional Gaussian, a Gaussian random walk, a Gaussian random walk

with drift, and a naive forecast based on the lagged ECB SPF density forecast that, as

such, incorporates all the information available at the previous survey round.

As forecasters operate using data as available at the time the forecasts are made, we

construct the benchmark density forecasts using only the real-time information available

to professional forecasters up to the deadline for responding to each survey round by

using the historical vintages from the Euro Area Real-Time Database available on the

European Central Bank Statistical Data Warehouse.

For the uniform benchmark, we use a uniform distribution with constant probability

between the maximum and minimum of the target variable historical values as available

at the survey deadline. For the unconditional Gaussian benchmark, we use a Gaussian

distribution with mean and variance obtained from the historical observations of the

target variable as available at each survey deadline. For the Gaussian random walk

benchmark, we use a normal distribution with conditional expectation equal to the last

observation available at the survey deadline and variance calculated using all historical

observations as available at each survey deadline. For the Gaussian random walk with

drift benchmark, we use a normal distribution with conditional mean estimated using

a random walk with drift and variance calculated using all historical observations as

available at each survey deadline. From these predictive distributions, we compute the

probability that the realization of the target variable falls inside each bin.
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For the naive benchmark, we simply use the last available ECB SPF density forecast

for the same horizon, i.e. fk,Naive
t = fk,SPF

t−1 . In the case of different bins available from

a survey round to the following, the forecasts are adjusted to accommodate the new

bin structure. If in the new survey round there are more bins than in the previous, the

probability of the last bin is equally split across the additional bins available; if there

are less bins in the current survey round than the previous round, the probabilities of

extreme bins are added up and placed in the only available bin. For additional discussion

about the changing bin structure see D’Amico et al. (2008) and Manzan (2021).

5.3 Empirical Results

We analyse the ECB SPF aggregate density forecasts at the rolling horizons of one

and two years for the unemployment rate, real GDP growth and HICP inflation for

the surveys between 2000.Q1 and 2019.Q4, corresponding to a total of 80 quarterly

observations. We also split the sample into two equally sized subsamples: 2000.Q1-

2009.Q4 and 2010.Q1-2019.Q4, of 40 observations each. As shown in Section 4, with

such small sample sizes the DM framework with standard asymptotics suffers from large

size distortions, but fixed-smoothing asymptotics can still provide reliable inference.

The first vintage of the Euro Area Real-Time Database is for January 2001, while our

sample starts in 2000.Q1. As a result, for the first year, we construct the benchmarks

in real-time using the first vintage available (January 2001), and we mimic the real-time

publication delays. Additionally, we construct all forecast errors using the first release

as the actual value.

Density forecast evaluation test results are reported in Table 3 for the full sample,

and in Tables 4 and 5 for the two subsamples. In Panel A, we report the equal predictive

accuracy test, and in Panel B we report the forecast encompassing test. A negative value

of the equal predictive accuracy test indicates that the benchmark is performing better

than the ECB SPF forecast, while a negative value for the forecast encompassing test
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Table 3: Forecast evaluation tests. Full sample Q1.2000 - Q4.2019, T = 80.

Panel A: Equal Predictive Ability Test
1 year ahead 2 years ahead

Variable LRV Uni UG GRW GRWD Naive Uni UG GRW GRWD Naive

UN
WCE 4.76* 5.01* 3.91* 3.74* 5.42* 1.75 2.12* 1.83 2.85* 3.74*
WPE 3.82* 4.07* 3.55* 3.33* 6.58* 1.44 1.79 1.67 2.48* 4.99*

GDP
WCE 2.43* 2.24* 2.08* 2.14* 2.70* -1.11 -1.39 1.72 2.03* 1.47
WPE 2.10* 2.04* 1.76 1.81 2.44* -0.90 -1.12 1.56 1.83 1.57

HICP
WCE 0.90 0.58 0.94 1.15 2.19* -0.23 0.46 1.96* 2.07* 1.14
WPE 0.89 0.50 0.87 1.06 1.74 -0.21 0.40 1.92* 1.89* 0.99

Panel B: Forecast Encompassing Test
1 year ahead 2 years ahead

Variable LRV Uni UG GRW GRWD Naive Uni UG GRW GRWD Naive

UN
WCE 0.34 0.38 -0.29 -0.46 -4.18 1.36 1.36 0.02 -0.94 -2.83
WPE 0.27 0.30 -0.27 -0.44 -4.24 1.09 1.09 0.02 -0.80 -3.53

GDP
WCE 0.77 0.57 0.06 0.10 -2.63 2.75* 2.69* 1.48 1.26 -0.52
WPE 0.64 0.50 0.05 0.09 -2.46 2.20* 2.16* 1.33 1.13 -0.60

HICP
WCE 3.48* 1.41 1.55 1.19 -1.47 3.74* 1.33 0.10 -0.02 -0.57
WPE 3.54* 1.27 1.40 1.07 -1.18 3.38* 1.17 0.10 -0.02 -0.50

Note: Equal predictive ability test statistics and the forecast encompassing test statistics for one-year
and two-year ahead ECB SPF density forecasts against the uniform, unconditional Gaussian, the Gaus-
sian random walk, the Gaussian random walk with drift, and the naive benchmark forecasts on the full
sample Q1.2000 - Q4.2019 (T = 80) using the RPS loss. A negative equal predictive ability test statistic
sign implies that benchmark performs better than the ECB SPF, and a negative value for the forecast
encompassing test indicates that the estimated unrestricted weight on the benchmark is negative. Long
run variances are estimated using WCE with Bartlett kernel and bandwidth M = ⌊T 1/2⌋ and WPE with
Daniell kernel and bandwidth m = ⌊T 1/3⌋. One-sided significance at the 5% level is indicated with
using standard asymptotics and with * using fixed-smoothing asymptotics.
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indicates that the unrestricted weight on the benchmark is negative, as it does not have

any additional information with respect to the ECB SPF forecast. One-sided rejections

at the 5% level from standard asymptotics critical values are indicated shading the

appropriate cell and rejections using fixed-smoothing asymptotics critical values are

reported using *. We only present results for the RPS loss, because as noted in Section 2,

it is a proper loss function in the sense that it encourages the forecasters to reveal their

true beliefs; results for the QPS metric are available in Appendix D. The long run

variance is estimated using WCE with the Bartlett kernel and bandwidth M = ⌊T 1/2⌋

and WPE with Daniell kernel and bandwidth m = ⌊T 1/3⌋.

For the unemployment rate, the equal predictive ability test indicates that the one-

year ahead ECB SPF forecasts outperform all the benchmarks in all the samples. At

two-year ahead, the ECB SPF forecasts still outperform the Gaussian random walk

with drift and the naive benchmarks on the full sample. The subsample analysis reveals

an improvement of the relative performance in the second subsample with evidence

of superior predictive ability against the uniform, the unconditional Gaussian and the

naive benchmarks. Moreover, the ECB SPF encompasses all the benchmarks at both

horizons. Overall, these results indicate that for unemployment the ECB SPF provides

more accurate predictions than the benchmarks at the one year-ahead horizon and, in

the second period, also at the two-year horizon.

Results for real GDP growth are less favourable for the ECB SPF. At the one-year

horizon, the ECB SPF outperforms the benchmarks on the full sample (but the results

are less clear cut if the WPE estimate is used). This is mostly due to the superior

performance of the ECB SPF in the second subsample. At the two-year horizon, the

ECB SPF does not consistently outperform any benchmark on the full sample. In fact,

the forecast encompassing test suggests that at the two-year horizon the ECB SPF can be

improved by combinations with the uniform and the unconditional Gaussian benchmarks

in the whole sample and in the first subsample. Overall, these results indicate that for
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Table 4: Forecast evaluation tests. Subsample Q1.2000 - Q4.2009, T = 40.

Panel A: Equal Predictive Ability Test
1 year ahead 2 years ahead

LRV Uni UG GRW GRWD Naive Uni UG GRW GRWD Naive

UN
WCE 3.08* 3.67* 3.18* 2.93* 2.80* 0.37 1.02 1.47 2.81* 2.27*
WPE 2.52* 3.05* 2.64* 2.44* 2.37* 0.31 0.87 1.32 2.56* 1.87

GDP
WCE 1.31 1.20 1.55 1.64 2.20* -1.49 -2.23 1.28 1.56 1.04
WPE 1.08 0.99 1.45 1.53 2.11* -1.40 -2.01 1.16 1.43 1.31

HICP
WCE -0.65 -1.05 1.32 1.64 0.90 -0.57 -1.06 1.29 1.55 -0.27
WPE -0.58 -0.94 1.19 1.48 0.83 -0.46 -0.82 1.13 1.32 -0.26

Panel B: Forecast Encompassing Test
1 year ahead 2 years ahead

LRV Uni UG GRW GRWD Naive Uni UG GRW GRWD Naive

UN
WCE 0.50 0.39 0.10 -0.20 -1.74 1.47 1.41 0.97 -0.73 -1.70
WPE 0.42 0.33 0.11 -0.20 -1.93 1.23 1.20 1.16 -0.88 -1.41

GDP
WCE 0.95 0.94 0.32 0.36 -1.99 2.75* 2.92* 0.90 0.77 -0.13
WPE 0.81 0.78 0.29 0.32 -2.05 2.52* 2.64* 0.81 0.69 -0.17

HICP
WCE 3.27* 3.61* 0.49 -0.13 -0.30 3.15* 3.22* 0.13 -0.50 0.69
WPE 2.87* 3.14* 0.43 -0.11 -0.29 2.47* 2.38* 0.11 -0.40 0.67

Note: Equal predictive ability test statistics and the forecast encompassing test statistics for one-
year and two-year ahead ECB SPF density forecasts against the uniform, unconditional Gaussian, the
Gaussian random walk, the Gaussian random walk with drift, and the naive benchmark forecasts on
the subsample Q1.2000 - Q4.2009 (T = 40) using the RPS loss. A negative equal predictive ability test
statistic sign implies that benchmark performs better than the ECB SPF, and a negative value for the
forecast encompassing test indicates that the estimated unrestricted weight on the benchmark is neg-
ative. Long run variances are estimated using WCE with Bartlett kernel and bandwidth M = ⌊T 1/2⌋
and WPE with Daniell kernel and bandwidth m = ⌊T 1/3⌋. One-sided significance at the 5% level is
indicated with using standard asymptotics and with * using fixed-smoothing asymptotics.
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Table 5: Forecast evaluation tests. Subsample Q1.2010 - Q4.2019, T = 40.

Panel A: Equal Predictive Ability Test
1 year ahead 2 years ahead

Variable LRV Uni UG GRW GRWD Naive Uni UG GRW GRWD Naive

UN
WCE 4.25* 3.79* 2.21* 2.39* 5.10* 2.99* 2.72* 1.36 1.62 2.34*
WPE 3.52* 3.17* 1.98* 2.16* 4.82* 2.65* 2.39* 1.26 1.49 2.10*

GDP
WCE 3.89* 3.19* 2.82* 2.82* 2.67* -0.11 0.14 1.80 2.08* 0.86
WPE 3.35* 2.69* 3.35* 3.33* 2.50* -0.11 0.13 1.97* 2.25* 0.73

HICP
WCE 2.50* 1.24 -0.01 0.07 2.32* 0.12 1.34 1.61 1.55 1.98
WPE 1.97* 1.10 -0.01 0.06 1.90 0.10 1.15 1.25 1.22 1.97*

Panel B: Forecast Encompassing Test
1 year ahead 2 years ahead

Variable LRV Uni UG GRW GRWD Naive Uni UG GRW GRWD Naive

UN
WCE -0.05 0.15 -0.51 -0.54 -4.80 0.36 0.47 -0.51 -0.81 -1.84
WPE -0.04 0.12 -0.46 -0.48 -4.79 0.32 0.42 -0.47 -0.74 -1.67

GDP
WCE -0.09 -0.50 -0.71 -0.71 -2.25 1.58 1.35 1.54 1.47 -0.53
WPE -0.08 -0.42 -1.02 -1.01 -2.12 1.50 1.28 1.25 1.16 -0.44

HICP
WCE 1.70 -0.08 1.73 1.65 -1.76 2.25* -0.31 0.04 0.27 -1.63
WPE 1.30 -0.07 1.40 1.37 -1.41 1.87 -0.26 0.03 0.21 -1.65

Note: Equal predictive ability test statistics and the forecast encompassing test statistics for one-year and
two-year ahead ECB SPF density forecasts against the uniform, unconditional Gaussian, the Gaussian
random walk, the Gaussian random walk with drift, and the naive benchmark forecasts on the subsam-
ple Q1.2010 - Q4.2019 (T = 40) using the RPS loss. A negative equal predictive ability test statistic
sign implies that benchmark performs better than the ECB SPF, and a negative value for the forecast
encompassing test indicates that the estimated unrestricted weight on the benchmark is negative. Long
run variances are estimated using WCE with Bartlett kernel and bandwidth M = ⌊T 1/2⌋ and WPE with
Daniell kernel and bandwidth m = ⌊T 1/3⌋. One-sided significance at the 5% level is indicated with
using standard asymptotics and with * using fixed-smoothing asymptotics.
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real GDP growth, ECB SPF can outperform simple benchmarks at least at one-year

horizon, especially in the second subsample.

In the case of inflation, the ECB SPF does not statistically outperform the bench-

marks, except, in the whole sample, the Gaussian Random walks at the two-year ahead

horizon, and, in the second subsample, the uniform (at the one-year horizon) and possi-

bly the naive. In fact, the forecast encompassing tests indicate that in the first subsample

the uniform and the unconditional Gaussian are not encompassed by the ECB SPF, sug-

gesting that one can improve the ECB SPF density forecasts by combining them with

these benchmarks.

As for the benchmarks, the ECB SPF easily outperforms and encompasses the naive

benchmark, indicating that professional forecasters update their information set when

making their predictions and that previous round forecasts are uninformative. On the

other hand, the uniform, and to a lesser extent, the unconditional Gaussian benchmarks

seem the most difficult to outperform and encompass, especially for two-year ahead

forecasts.

Comparing the application of standard asymptotics with fixed-smoothing asymp-

totics, we reject the null hypotheses of equal predictive ability or of no encompassing

more frequently for the tests with standard asymptotics. Spurious rejections occur in

the whole sample especially at the two-year horizon, due to a higher level of depen-

dence in dt, which exacerbates the size distortions induced by standard asymptotics, see

Section 4. For example, in Table 3 standard asymptotics indicate that, for the unem-

ployment rate, the ECB SPF outperforms all the benchmarks at the two-year horizon,

but this evidence is partially spurious and therefore not fully confirmed when using

fixed-smoothing asymptotics.

The application of fixed-smoothing asymptotics also allows us to perform reliable

inference even on the two equally-sized subsamples of only 40 observations, when the

size distortions of standard asymptotics can be quite large, see Section 4. The forecast
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encompassing test results for the second subsample in Table 5 indicate that for inflation

the ECB SFP encompasses all the benchmarks, whereas standard asymptotics would

have often lead us to the opposite conclusion, demonstrating the risks of using standard

asymptotics in such a small sample. Therefore, fixed-smoothing asymptotics reinforces

one of our key findings, namely that the performance of the ECB SPF improves relative

to the benchmarks in the second subsample.

6 Conclusions

In this paper, we apply fixed-b and fixed-m asymptotics to tests of equal predictive

accuracy and encompassing for survey density forecasts. In an original Monte Carlo

design, we verify that fixed-smoothing asymptotics delivers correctly sized tests in this

framework, even when only a small number of out of sample observations is available.

We apply the density forecast evaluation tests with fixed-smoothing asymptotics to

evaluate the predictive ability of density forecasts from the European Central Bank’s

Survey of Professional Forecasters (ECB SPF) over the period 2001.Q1-2019.Q4, tak-

ing as benchmarks simple density forecasts generated from a uniform distribution, an

unconditional Gaussian distribution, a Gaussian random walk distribution, a Gaussian

random walk with drift distribution, and the previous survey round forecast.

Our results indicate that ECB SPF density forecasts for unemployment and real

GDP growth outperformed and sometimes encompassed the benchmarks, especially at

one year ahead and in the second subsample. Survey forecasts for inflation do not

easily outperform nor encompass the benchmarks, but again the relative performance

improved in the second subsample. For all the variables, the application of fixed smooth-

ing asymptotics strengthens the evidence of an improvement in relative predictive ability

since 2010, indicating a change in the forecasting practice after the financial crisis.
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A Density forecast encompassing test

In this Appendix, we show the null hypothesis of density forecast encompassing can be

tested using the DM framework by defining dt as in (6).

If we denote the forecast errors associated with ft,c(λ) in (5) as et,c(λ) = yt − ft,c(λ),

then, the optimal weight in the minimum QPS sense has

λ̂ = argmin
T∑
t=1

(et,c(λ)
′et,c(λ)). (12)

The derivative is

∂

∂λ

T∑
t=1

(et,c(λ)
′et,c(λ)) =

T∑
t=1

2(yt − ft,c(λ))
′ ∂

∂λ
(−ft,c(λ)) =

T∑
t=1

2(yt − ft,c(λ))
′(ft,1 − ft,2)

and the first order condition therefore gives

T∑
t=1

2(yt − ft,c(λ))
′(ft,1 − ft,2) = 0.

which is met for λ = λ̂ (i.e., λ̂ is defined in this way).

Let

dt(λ) = −(yt − ft,c(λ))
′(ft,1 − ft,2)

If yt, f1,t and f2,t are jointly mixing with a sufficient rate, then so is dt(λ).

Denoting σ2
T (λ) = V ar(

√
T 1

T

∑T
t=1 dt(λ)) as the long run variance, assuming that

dt(λ) is mixing with sufficient rate and σT (λ) > 0 then we have a CLT for standardised

sum of dt(λ). This suggests a LM type test for forecast encompassing. Mimicking the

first order condition, denote λ0 as the value of λ that gives E(dt(λ))|λ=λ0 = 0, then

√
T
1/T

∑T
t=1 dt(λ0)

σT (λ0)
→d N(0, 1)
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and, under H0 : {λ0 = 0} then

√
T
1/T

∑T
t=1 dt

σT

→d N(0, 1)

where we used dt and σT in place of dt(0) and σT (0) to shorten the notation.

Rewriting

dt(λ) = −(yt − ft,1 − λ(ft,1 − ft,2))
′(ft,1 − ft,2)

then

dt = e′t,1(et,1 − et,2)

These facts suggest for H0 : {λ0 = 0} the test statistic

√
T
1/T

∑T
t=1 dt

σ̂
=

√
T
1/T

∑T
t=1 e

′
t,1(et,1 − et,2)

σ̂

for an appropriate estimate of the long rung variance σ̂.

To complete the specification of the test and to check the power, we rewrite

√
T

T

T∑
t=1

dt =

√
T

T

T∑
t=1

(dt − dt(λ0) + dt(λ0))

=

√
T

T

T∑
t=1

(dt − dt(λ0))) +

√
T

T

T∑
t=1

(dt(λ0))

=

√
T

T

T∑
t=1

(dt − dt(λ0)) +Op(1)

and notice that

dt − dt(λ0) =− (yt − ft,c(0))
′(ft,1 − ft,2) + (yt − ft,c(λ0))

′(ft,1 − ft,2)

=(ft,c(0)− ft,c(λ0))
′(ft,1 − ft,2)

=(ft,1 − (1− λ0)ft,1 − λ0ft,2)
′(ft,1 − ft,2)

=λ0(ft,1 − ft,2)
′(ft,1 − ft,2) = λ0(et,1 − et,2)

′(et,1 − et,2)
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Thus, for the alternative HA : {λ0 > 0} the null hypothesis is rejected if the test statistic

takes a value larger than the critical value.

Notice that the value that solves E(dt(λ0)) = 0 is

λ0 =
E(e′t,1(et,1 − et,2))

E(et,1 − et,2)′(et,1 − et,2)

so if, for example, et,1 and et,2 are vectors of independent, identically distributed sequen-

cies, independent from each other, then λ0 = 1/2. On the other hand, if E(e′t,1(et,1 −

et,2)) = 0 then λ0 = 0.

The Ranked Probability Score (RPS) may be treated in the same way, using the

cumulative distribution functions of each density forecast Ft,i and of the individual

realisation Yt.
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B Assumption for fixed-smoothing limits

Assumption 1 Partial sums of dt are such that the functional central limit theorem

(FCLT) holds
√
T

T

1

σT

⌊rT ⌋∑
t=1

dt ⇒ W (r)

where ⌊.⌋ denotes the integer part of a number, r ∈ [0, 1] and W (r) is a standard Brow-

nian motion.

Assumption 1 is sufficient to establish the fixed-smoothing limits (10) and (11). This

assumption is not primitive, but it is convenient because it may be established under a

range of conditions. For example, Phillips and Solo (1992) consider linear processes of

independent, identically distributed innovations of martingale difference sequences. On

the other hand, Wooldridge and White (1988) consider mixing processes, thus allowing

for forms of heteroskedasticity that may also induce non-stationarity, under the addi-

tional assumption that V ar
(√

T/T 1/σT

∑⌊rT ⌋
t=1 dt

)
→ r. In view of the non-linearity in

the loss function, establishing a linear representation for dt from primitive assumptions

on fk,i
t and ykt may be very challenging, whereas establishing mixing properties may be

easier, especially when fk,i
t and ykt are limited to being M -dependent processes. How-

ever, as the two classes may overlap but are not included in each other, see discussion

in Phillips and Solo (1992) and Andrews (1984), we prefer the more general assumption

given here, that encompasses them both.
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C Average scores and summary statistics

Sample averages for the RPS scores are reported in Table 6. The ECB SPF always

achieves one of lowest score across variables and forecasting horizons, although situations

in which the ECB SPF is outperformed by a benchmark also occurred (most notably,

in the 2000-2009 subsample for GDP at two years with the uniform and for HICP with

the unconditional Gaussian). Averages scores increase in the second subsample for the

unemployement rate and, at the two-year horizon, for HICP, suggesting a decrease in

predictability since 2010 for these variables. However, in these cases the deterioration of

the average RPS scores is usually less marked for the ECB SPF than for the benchmarks.

Summary statistics of the process dt for unemployment, GDP and HICP forecasts

against the benchmarks are in Tables 7-9. We report the full sample mean, the standard

deviation, and autocorrelations up to the fourth lag and the eighth lag. The latter may

be worth looking at because in the presence of large autocorrelation of dt (relative to

the sample size), the DM test may have low power, see Coroneo and Iacone (2021).

Results for the equal predictive ability case are in the top panel of each table. A

positive entry for the sample mean indicates that the forecasters are more accurate than

the benchmark, which is often the case. The autocorrelation profile seems usually more

relevant when the unconditional Gaussian benchmark is used. Fortunately, even in these

cases we can see that the autocorrelation coefficients at lag eight are usually quite small,

indicating a quick decay of the dependence.

Results for the forecast encompassing case are in the bottom panel of each table. A

negative entry for the sample mean is associated with an unrestricted negative estimate of

the weight in the forecast combination (which is not feasible given that the weight needs

to be between 0 and 1). We interpret this result as evidence that the SPF forecast cannot

be improved by a linear combination with the benchmark. This most often happens

for the naive benchmark. In Table 10, we report the estimated forecast combination

weights for the full sample (from 2000.Q1 to 2019.Q4) and the two subsamples (2000.Q1
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Table 6: Average RPS Scores.

Full sample Q1.2000 - Q4.2019, T = 80
SPF Uni UG GRW GRWD Naive

UN
1YR 0.72 1.81 2.04 0.96 0.99 0.97
2YR 1.41 1.99 2.20 1.65 1.79 1.62

GDP
1YR 1.05 1.56 1.55 1.79 1.85 1.33
2YR 1.85 1.59 1.57 2.45 2.64 1.88

HICP
1YR 1.10 1.18 1.21 1.26 1.31 1.15
2YR 1.21 1.19 1.27 1.64 1.75 1.23

Subsample Q1.2000 - Q4.2009, T = 40.
SPF Uni UG GRW GRWD Naive

UN
1YR 0.66 1.50 1.94 0.96 1.03 0.90
2YR 1.39 1.58 2.02 1.58 1.82 1.61

GDP
1YR 1.15 1.65 1.64 1.97 2.06 1.57
2YR 1.95 1.47 1.37 2.73 3.03 1.99

HICP
1YR 1.11 1.03 0.97 1.43 1.51 1.14
2YR 1.09 1.03 0.97 1.49 1.62 1.08

Subsample Q1.2010 - Q4.2019, T = 40.
SPF Uni UG GRW GRWD Naive

UN
1YR 0.77 2.13 2.14 0.96 0.96 1.04
2YR 1.43 2.40 2.38 1.72 1.75 1.63

GDP
1YR 0.95 1.47 1.46 1.62 1.64 1.10
2YR 1.74 1.71 1.77 2.16 2.25 1.77

HICP
1YR 1.09 1.34 1.44 1.08 1.10 1.16
2YR 1.34 1.36 1.57 1.79 1.87 1.37

Note: Sample averages of the RPS scores for one-year and two-
year ahead forecast, ECB SPF and benchmarks. The top panel
refers to the full sample (Q1.2000 - Q4.2019, T = 80), the middle
panel to the first half-sample (Q1.2000 - Q4.2009, T = 40) and
the bottom panel to the second-half sample (Q1.2010 - Q4.2019,
T = 40).

to 2009.Q4 and 2010.Q1 to 2019.Q4). Comparing across the two subsamples, we can

see that the estimated forecast combination weights are in general smaller in the second

period, suggesting that overall the benchmarks contained less additional information in

the second part of the sample.
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Table 7: Summary Statistics of dt for unemployment rate.

Panel A: Equal Predictive Ability Statistic
1 year ahead 2 years ahead

Uni UG GRW GRWD Naive Uni UG GRW GRWD Naive
Mean 1.10 1.33 0.25 0.28 0.25 0.58 0.79 0.24 0.37 0.21
STD 1.05 1.17 0.37 0.41 0.40 1.48 1.62 0.64 0.65 0.48
AC1 0.82 0.81 0.63 0.66 0.30 0.86 0.86 0.74 0.71 0.35
AC2 0.59 0.61 0.23 0.28 -0.06 0.63 0.64 0.38 0.32 0.02
AC3 0.36 0.40 0.04 0.10 -0.06 0.41 0.43 0.22 0.18 -0.04
AC4 0.20 0.25 0.01 0.04 -0.06 0.22 0.26 0.15 0.19 -0.02
AC8 -0.22 -0.23 -0.01 -0.11 0.01 -0.23 -0.19 -0.04 -0.19 -0.07

Panel B: Forecast Encompassing Statistic
1 year ahead 2 years ahead

Uni UG GRW GRWD Naive Uni UG GRW GRWD Naive
Mean 0.03 0.04 -0.01 -0.01 -0.07 0.25 0.27 0.00 -0.05 -0.07
STD 0.43 0.49 0.16 0.17 0.16 0.79 0.88 0.28 0.25 0.19
AC1 0.72 0.71 0.50 0.50 0.28 0.87 0.85 0.69 0.64 0.39
AC2 0.45 0.43 0.05 0.05 -0.14 0.64 0.62 0.27 0.19 0.08
AC3 0.27 0.28 0.11 0.11 -0.05 0.44 0.43 0.15 0.10 -0.05
AC4 0.18 0.20 0.21 0.17 -0.10 0.25 0.27 0.16 0.18 -0.05
AC8 -0.14 -0.11 0.31 0.15 0.23 -0.23 -0.24 0.26 0.12 -0.01

Note: sample mean, standard deviation (STD), and autocorrelation coefficients up to order 4,
and order 8 (AC1, AC2, AC3, AC4, AC8) of dt for the unemployment rate using the RPS loss
function. The top panel refers to dt as defined for the equal predictive ability test in (3), and
the bottom panel refers to dt as defined for the forecast encompassing test in (6).
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Table 8: Summary Statistics of dt for GDP growth.

Panel A: Equal Predictive Ability Statistic
1 year ahead 2 years ahead

Uni UG GRW GRWD Naive Uni UG GRW GRWD Naive
Mean 0.51 0.50 0.74 0.80 0.28 -0.25 -0.28 0.60 0.80 0.03
STD 1.07 1.21 1.71 1.83 0.60 1.00 0.84 1.95 2.22 0.25
AC1 0.70 0.66 0.72 0.70 0.50 0.81 0.82 0.75 0.74 0.15
AC2 0.40 0.33 0.44 0.41 0.18 0.55 0.58 0.33 0.31 -0.19
AC3 0.18 0.11 0.27 0.25 0.18 0.37 0.39 0.02 0.00 -0.19
AC4 0.06 0.01 0.13 0.11 0.14 0.27 0.32 -0.11 -0.12 -0.12
AC8 -0.05 -0.04 0.05 0.06 0.11 0.03 0.24 -0.04 -0.02 0.09

Panel B: Forecast Encompassing Statistic
1 year ahead 2 years ahead

Uni UG GRW GRWD Naive Uni UG GRW GRWD Naive
Mean 0.05 0.03 0.00 0.01 -0.08 0.34 0.29 0.15 0.15 -0.01
STD 0.35 0.35 0.41 0.43 0.21 0.52 0.47 0.49 0.55 0.13
AC1 0.67 0.52 0.71 0.72 0.45 0.83 0.81 0.80 0.80 0.12
AC2 0.38 0.26 0.41 0.43 -0.01 0.60 0.55 0.49 0.50 -0.20
AC3 0.17 0.05 0.15 0.16 -0.03 0.41 0.35 0.25 0.25 -0.20
AC4 0.14 0.02 0.04 0.03 0.04 0.31 0.27 0.08 0.09 -0.13
AC8 0.05 0.08 0.15 0.15 0.18 0.10 0.25 0.06 0.07 0.09

Note: sample mean, standard deviation (STD), and autocorrelation coefficients up to order 4,
and order 8 (AC1, AC2, AC3, AC4, AC8) of dt for GDP growth using the RPS loss function.
The top panel refers to dt as defined for the equal predictive ability test in (3), and the bottom
panel refers to dt as defined for the forecast encompassing test in (6).
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Table 9: Summary Statistics of dt for HICP.

Panel A: Equal Predictive Ability Statistic
1 year ahead 2 years ahead

Uni UG GRW GRWD Naive Uni UG GRW GRWD Naive
Mean 0.08 0.11 0.16 0.21 0.05 -0.02 0.06 0.43 0.53 0.01
STD 0.53 0.79 0.88 0.92 0.23 0.52 0.58 1.08 1.24 0.11
AC1 0.51 0.72 0.61 0.63 0.15 0.52 0.69 0.71 0.73 -0.02
AC2 0.33 0.61 0.38 0.40 -0.29 0.27 0.51 0.43 0.46 -0.02
AC3 0.20 0.51 0.18 0.22 -0.03 0.12 0.36 0.26 0.28 0.03
AC4 0.06 0.32 0.08 0.16 0.13 -0.04 0.19 0.15 0.18 0.19
AC8 -0.04 0.04 -0.28 -0.26 0.09 -0.21 -0.02 -0.34 -0.34 -0.08

Panel B: Forecast Encompassing Statistic
1 year ahead 2 years ahead

Uni UG GRW GRWD Naive Uni UG GRW GRWD Naive
Mean 0.14 0.11 0.10 0.09 -0.02 0.16 0.08 0.01 0.00 0.00
STD 0.25 0.36 0.35 0.36 0.11 0.26 0.29 0.38 0.43 0.05
AC1 0.42 0.64 0.57 0.60 0.12 0.51 0.68 0.68 0.72 -0.02
AC2 0.26 0.53 0.45 0.49 -0.30 0.27 0.48 0.45 0.49 -0.02
AC3 0.13 0.42 0.21 0.26 -0.02 0.12 0.34 0.28 0.32 0.05
AC4 -0.01 0.25 0.09 0.16 0.13 -0.04 0.15 0.06 0.11 0.18
AC8 -0.09 0.04 -0.25 -0.20 0.07 -0.23 -0.08 -0.27 -0.29 -0.10

Note: sample mean, standard deviation (STD), and autocorrelation coefficients up to order 4,
and order 8 (AC1, AC2, AC3, AC4, AC8) of dt for HICP using the RPS loss function. The top
panel refers to dt as defined for the equal predictive ability test in (3), and the bottom panel
refers to dt as defined for the forecast encompassing test in (6).
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Table 10: Estimated forecast combination weights

Full sample Q1.2000 - Q4.2019, T = 80
1 year ahead 2 years ahead

Variable Uni UG GRW GRWD Naive Uni UG GRW GRWD Naive
UN 0.03 0.03 0.00 0.00 0.00 0.23 0.21 0.01 0.00 0.00
GDP 0.09 0.06 0.01 0.01 0.00 0.80 0.95 0.17 0.14 0.00
HICP 0.38 0.34 0.28 0.23 0.00 0.53 0.37 0.02 0.00 0.00

Subsample Q1.2000 - Q4.2009, T = 40.
1 year ahead 2 years ahead

Variable Uni UG GRW GRWD Naive Uni UG GRW GRWD Naive
UN 0.07 0.04 0.01 0.00 0.00 0.41 0.30 0.16 0.00 0.00
GDP 0.15 0.14 0.05 0.05 0.00 1.00 1.00 0.15 0.11 0.00
HICP 0.64 0.72 0.09 0.00 0.00 0.61 0.73 0.03 0.00 0.76

Subsample Q1.2010 - Q4.2019, T = 40.
1 year ahead 2 years ahead

Variable Uni UG GRW GRWD Naive Uni UG GRW GRWD Naive
UN 0.00 0.01 0.00 0.00 0.00 0.05 0.07 0.00 0.00 0.00
GDP 0.00 0.00 0.00 0.00 0.00 0.54 0.45 0.20 0.17 0.00
HICP 0.19 0.00 0.50 0.48 0.00 0.47 0.00 0.01 0.06 0.00

Note: LS estimate of λ in (5) using the RPS loss function. The top panel refers to the full sam-
ple (Q1.2000 - Q4.2019, T = 80), the middle panel to the first half-sample (Q1.2000 - Q4.2009,
T = 40) and the bottom panel to the second-half sample (Q1.2010 - Q4.2019, T = 40).
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D QPS results

In this Appendix, we report sample averages for the QPS scores, summary statistics

of the process dt, the equal predictive ability tests and the forecast encompassing tests

using the Quadratic Probability Score (QPS) loss function.

Sample averages for the QPS scores are reported in Table 11. Results are similar to

the ones with the RPS loss function, and the ECB SPF still achieves some of the lowest

scores across benchmarks and horizons. However, with this loss function, the superior

performance of the ECB SPF against the benchmarks and the change in average scores

for the second sub-sample are less noticeable.

Summary statistics of the process dt for unemployment, GDP and HICP forecasts

are in Tables 12-14. We report the full sample mean, the standard deviation, and

autocorrelations up to the fourth lag and the eighth lag for the QPS loss function.

Results for the equal predictive ability case are in the top panel of each table. A positive

entry for the sample mean indicates that the forecasters are more accurate than the

benchmark. Results for the forecast encompassing case are in the bottom panel of each

table. A negative entry for the sample mean is associated with an unrestricted negative

estimate of the weight in the forecast combination.

In Table 15, we report the estimated forecast combination weights for the full sample

(from 2000.Q1 to 2019.Q4) and the two subsamples (2000.Q1 to 2009.Q4 and 2010.Q1

to 2019.Q4). Weights have a pattern similar to the one observed with RPS, but these

are often higher.

Density forecast evaluation test results are reported in Table 16, for the full sample,

and in Tables 17 and 18, for the two subsamples. In Panel A, we report the equal

predictive accuracy test, and in Panel B we report the forecast encompassing test. A

negative value of the equal predictive accuracy test indicates that the benchmark is

performing better than the ECB SPF forecast, while a negative value for the forecast

encompassing test indicates that the unrestricted weight on the benchmark is negative, as
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it does not have any additional information with respect to the ECB SPF forecast. One-

sided rejections at the 5% level from standard asymptotics critical values are indicated

shading the appropriate cell and rejections using fixed-smoothing asymptotics critical

values are reported using *. The long run variance is estimated using WCE with the

Bartlett kernel and bandwidthM = ⌊T 1/2⌋ and WPE with Daniell kernel and bandwidth

m = ⌊T 1/3⌋.

Overall, using the QPS in the equal predictive ability test yields qualitatively the

same outcome as using the RPS, although significant results are less frequent when

the QPS is used, see for example the case of the real GDP growth. For the forecast

encompassing test, we find that the null of no encompassing is rejected more often

with the QPS. The comparison of the outcomes of the tests with the two different loss

functions indicates that the ECB SPF place more probability in the neighbourhood of

the effective outcome, often near-missing the true realisation. As for the performance of

the individual benchmarks, we again find that the forecasts from naive benchmark are

outperformed and encompassed statistically more often, confirming the conclusion that

this evidence supports the conjecture that the participants in the survey successfully

update their predictions.
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Table 11: Average QPS Scores.

Full sample Q1.2000 - Q4.2019, T = 80
SPF Uni UG GRW GRWD Naive

UN
1YR 0.79 0.92 0.97 0.84 0.84 0.88
2YR 0.91 0.94 0.98 0.91 0.92 0.96

GDP
1YR 0.87 0.92 0.90 0.96 0.97 0.91
2YR 0.97 0.92 0.90 1.00 1.02 0.97

HICP
1YR 0.91 0.89 0.87 0.88 0.89 0.91
2YR 0.89 0.89 0.88 0.93 0.94 0.90

Subsample Q1.2000 - Q4.2009, T = 40.
SPF Uni UG GRW GRWD Naive

UN
1YR 0.75 0.90 0.97 0.83 0.84 0.84
2YR 0.88 0.92 0.97 0.89 0.91 0.95

GDP
1YR 0.91 0.92 0.90 0.95 0.97 0.96
2YR 1.04 0.92 0.89 0.99 1.03 1.04

HICP
1YR 0.90 0.87 0.83 0.89 0.90 0.90
2YR 0.86 0.88 0.83 0.90 0.91 0.86

Subsample Q1.2010 - Q4.2019, T = 40.
SPF Uni UG GRW GRWD Naive

UN
1YR 0.83 0.94 0.97 0.85 0.85 0.93
2YR 0.94 0.95 0.99 0.93 0.93 0.97

GDP
1YR 0.84 0.92 0.91 0.96 0.97 0.86
2YR 0.91 0.92 0.91 1.00 1.01 0.90

HICP
1YR 0.92 0.91 0.90 0.87 0.87 0.93
2YR 0.93 0.91 0.92 0.95 0.96 0.93

Note: Sample averages of the QPS scores for one-year and two-
year ahead forecast, ECB SPF and benchmarks. The top panel
refers to the full sample (Q1.2000 - Q4.2019, T = 80), the middle
panel to the first half-sample (Q1.2000 - Q4.2009, T = 40) and
the bottom panel to the second-half sample (Q1.2010 - Q4.2019,
T = 40).
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Table 12: Summary Statistics of dt for unemployment rate, QPS.

Panel A: Equal Predictive Ability
1 year ahead 2 years ahead

Uni UG GRW GRWD Naive Uni UG GRW GRWD Naive
Mean 0.13 0.18 0.05 0.06 0.10 0.03 0.07 0.00 0.02 0.05
STD 0.23 0.25 0.20 0.20 0.18 0.22 0.25 0.15 0.16 0.14
AC1 0.47 0.56 0.48 0.49 0.27 0.67 0.73 0.59 0.60 0.10
AC2 0.25 0.35 0.29 0.30 -0.06 0.35 0.43 0.17 0.23 -0.06
AC3 0.04 0.12 0.08 0.09 0.05 0.13 0.22 0.03 0.11 -0.02
AC4 -0.04 0.07 0.05 0.05 0.04 -0.02 0.12 0.00 0.07 0.12
AC8 -0.09 0.01 -0.06 -0.08 0.12 -0.17 -0.04 -0.18 -0.16 0.03

Panel B: Forecast Encompassing Statistic
1 year ahead 2 years ahead

Uni UG GRW GRWD Naive Uni UG GRW GRWD Naive
Mean 0.02 0.02 0.02 0.02 -0.03 0.05 0.05 0.03 0.02 -0.01
STD 0.11 0.12 0.10 0.10 0.07 0.11 0.12 0.07 0.07 0.05
AC1 0.45 0.48 0.44 0.44 0.29 0.70 0.74 0.57 0.60 0.11
AC2 0.26 0.26 0.26 0.27 -0.10 0.36 0.40 0.13 0.20 -0.08
AC3 0.04 0.04 0.06 0.06 0.09 0.15 0.18 -0.02 0.06 -0.07
AC4 -0.02 0.03 0.04 0.04 0.03 -0.01 0.09 -0.01 0.03 0.07
AC8 -0.06 0.05 -0.07 -0.09 0.19 -0.20 -0.11 -0.17 -0.15 0.08

Note: sample mean, standard deviation (STD), and autocorrelation coefficients up to order 4,
and order 8 (AC1, AC2, AC3, AC4, AC8) of dt for the unemployment rate using the QPS loss
function. The top panel refers to dt as defined for the equal predictive ability test in (3), and
the bottom panel refers to dt as defined for the forecast encompassing test in (6).
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Table 13: Summary Statistics of dt for GDP growth, QPS.

Panel A: Equal Predictive Ability
1 year ahead 2 years ahead

Uni UG GRW GRWD Naive Uni UG GRW GRWD Naive
Mean 0.05 0.03 0.08 0.10 0.04 -0.06 -0.07 0.02 0.05 0.00
STD 0.28 0.26 0.31 0.31 0.17 0.23 0.21 0.26 0.28 0.05
AC1 0.50 0.48 0.47 0.47 0.17 0.76 0.75 0.72 0.73 0.16
AC2 0.05 0.02 0.09 0.10 -0.04 0.46 0.45 0.37 0.36 -0.29
AC3 -0.05 -0.07 0.02 0.01 0.05 0.28 0.32 0.20 0.16 -0.22
AC4 -0.11 -0.08 0.04 0.01 -0.05 0.18 0.26 0.07 0.04 -0.01
AC8 0.08 0.09 -0.02 -0.05 0.03 0.08 0.19 -0.09 -0.15 0.08

Panel B: Forecast Encompassing Statistic
1 year ahead 2 years ahead

Uni UG GRW GRWD Naive Uni UG GRW GRWD Naive
Mean 0.05 0.05 0.05 0.05 0.00 0.09 0.08 0.07 0.07 0.00
STD 0.13 0.12 0.13 0.13 0.07 0.12 0.11 0.10 0.10 0.03
AC1 0.53 0.49 0.47 0.46 0.10 0.77 0.75 0.74 0.75 0.13
AC2 0.08 0.04 0.04 0.04 -0.12 0.49 0.46 0.45 0.45 -0.24
AC3 -0.02 -0.04 -0.06 -0.07 0.03 0.31 0.32 0.30 0.30 -0.15
AC4 -0.08 -0.06 -0.09 -0.09 -0.10 0.21 0.26 0.20 0.20 -0.04
AC8 0.08 0.11 0.11 0.11 0.06 0.10 0.20 0.10 0.10 0.06

Note: sample mean, standard deviation (STD), and autocorrelation coefficients up to order 4,
and order 8 (AC1, AC2, AC3, AC4, AC8) of dt for GDP growth using the QPS loss function.
The top panel refers to dt as defined for the equal predictive ability test in (3), and the bottom
panel refers to dt as defined for the forecast encompassing test in (6).
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Table 14: Summary Statistics of dt for HICP, QPS.

Panel A: Equal Predictive Ability
1 year ahead 2 years ahead

Uni UG GRW GRWD Naive Uni UG GRW GRWD Naive
Mean -0.02 -0.05 -0.03 -0.03 0.00 0.00 -0.02 0.03 0.04 0.00
STD 0.25 0.22 0.24 0.24 0.09 0.25 0.19 0.23 0.23 0.06
AC1 0.30 0.23 0.30 0.33 -0.14 0.38 0.30 0.44 0.49 -0.25
AC2 0.23 0.22 0.20 0.22 -0.20 0.29 0.15 0.31 0.37 -0.12
AC3 0.12 0.14 0.10 0.11 0.03 0.15 0.03 0.10 0.17 0.13
AC4 -0.01 -0.03 -0.04 0.00 -0.04 -0.09 -0.22 -0.15 -0.09 0.00
AC8 -0.16 -0.13 -0.21 -0.21 0.01 -0.07 -0.06 -0.33 -0.34 -0.11

Panel B: Forecast Encompassing Statistic
1 year ahead 2 years ahead

Uni UG GRW GRWD Naive Uni UG GRW GRWD Naive
Mean 0.08 0.07 0.07 0.07 0.00 0.07 0.05 0.04 0.04 0.00
STD 0.13 0.11 0.11 0.11 0.04 0.13 0.10 0.10 0.11 0.03
AC1 0.33 0.28 0.28 0.31 -0.17 0.39 0.31 0.35 0.41 -0.26
AC2 0.24 0.24 0.21 0.22 -0.17 0.29 0.12 0.21 0.27 -0.12
AC3 0.12 0.15 0.10 0.11 0.02 0.16 0.03 0.04 0.10 0.16
AC4 -0.02 -0.01 0.03 0.05 -0.07 -0.09 -0.22 -0.24 -0.17 0.00
AC8 -0.18 -0.12 -0.23 -0.23 0.00 -0.07 -0.08 -0.10 -0.15 -0.11

Note: sample mean, standard deviation (STD), and autocorrelation coefficients up to order 4,
and order 8 (AC1, AC2, AC3, AC4, AC8) of dt for HICP using the QPS loss function. The top
panel refers to dt as defined for the equal predictive ability test in (3), and the bottom panel
refers to dt as defined for the forecast encompassing test in (6).
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Table 15: Estimated forecast combination weights, QPS.

Full sample Q1.2000 - Q4.2019, T = 80
1 year ahead 2 years ahead

Variable Uni UG GRW GRWD Naive Uni UG GRW GRWD Naive
UN 0.14 0.10 0.21 0.19 0.00 0.40 0.30 0.47 0.38 0.00
GDP 0.34 0.37 0.26 0.25 0.00 0.72 0.89 0.44 0.37 0.50
HICP 0.57 0.74 0.64 0.62 0.35 0.51 0.63 0.35 0.31 0.29

Subsample Q1.2000 - Q4.2009, T = 40.
1 year ahead 2 years ahead

Variable Uni UG GRW GRWD Naive Uni UG GRW GRWD Naive
UN 0.12 0.09 0.15 0.12 0.00 0.39 0.30 0.42 0.32 0.00
GDP 0.45 0.52 0.38 0.35 0.08 0.93 1.00 0.64 0.51 0.29
HICP 0.59 0.81 0.54 0.51 0.79 0.46 0.66 0.36 0.31 0.93

Subsample Q1.2010 - Q4.2019, T = 40.
1 year ahead 2 years ahead

Variable Uni UG GRW GRWD Naive Uni UG GRW GRWD Naive
UN 0.15 0.12 0.33 0.34 0.00 0.42 0.30 0.58 0.53 0.00
GDP 0.20 0.20 0.15 0.14 0.00 0.46 0.48 0.24 0.22 0.95
HICP 0.54 0.64 0.81 0.77 0.00 0.57 0.58 0.34 0.33 0.00

Note: LS estimate of λ in (5) using the QPS loss function. The top panel refers to the full sam-
ple (Q1.2000 - Q4.2019, T = 80), the middle panel to the first half-sample (Q1.2000 - Q4.2009,
T = 40) and the bottom panel to the second-half sample (Q1.2010 - Q4.2019, T = 40).
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Table 16: Forecast evaluation tests. Full sample Q1.2000 - Q4.2019, T = 80, QPS.

Panel A: Equal Predictive Ability Test
1 year ahead 2 years ahead

Variable LRV Uni UG GRW GRWD Naive Uni UG GRW GRWD Naive

UN
WCE 3.61* 3.81* 1.49 1.58 4.22* 0.71 1.37 0.12 0.57 2.97*
WPE 3.69* 3.48* 1.35 1.43 4.13* 0.62 1.18 0.11 0.51 3.46*

GDP
WCE 1.16 0.83 1.76 1.98* 1.91* -1.10 -1.57 0.43 0.96 0.02
WPE 0.92 0.68 1.40 1.57 1.72 -0.90 -1.30 0.37 0.83 0.02

HICP
WCE -0.56 -1.48 -0.89 -0.71 0.40 -0.05 -0.76 0.91 1.11 0.31
WPE -0.48 -1.41 -0.77 -0.61 0.37 -0.04 -0.77 0.92 1.06 0.27

Panel B: Forecast Encompassing Test
1 year ahead 2 years ahead

Variable LRV Uni UG GRW GRWD Naive Uni UG GRW GRWD Naive

UN
WCE 1.37 1.11 1.17 1.10 -2.68 2.78* 2.18* 2.52* 2.08* -1.74
WPE 1.36 1.03 1.07 1.02 -2.40 2.41* 1.84 2.30* 1.87* -1.89

GDP
WCE 2.44* 2.45* 2.50* 2.52* -0.04 3.46* 3.49* 3.29* 3.26* 1.47
WPE 1.96* 2.02* 2.01* 2.03* -0.03 2.84* 2.87* 2.83* 2.79* 1.54

HICP
WCE 4.34* 4.17* 4.22* 4.02* 0.95 3.22* 3.66* 2.74* 2.31* 0.43
WPE 3.73* 4.04* 3.73* 3.46* 0.92 2.71* 3.98* 2.62* 2.12* 0.37

Note: Equal predictive ability test statistics and the forecast encompassing test statistics for one-year
and two-year ahead ECB SPF density forecasts against the uniform, unconditional Gaussian, the Gaus-
sian random walk, the Gaussian random walk with drift, and the naive benchmark forecasts on the full
sample Q1.2000 - Q4.2019 (T = 80) using the QPS loss. A negative equal predictive ability test statistic
sign implies that benchmark performs better than the ECB SPF, and a negative value for the forecast
encompassing test indicates that the estimated unrestricted weight on the benchmark is negative. Long
run variances are estimated using WCE with Bartlett kernel and bandwidth M = ⌊T 1/2⌋ and WPE with
Daniell kernel and bandwidth m = ⌊T 1/3⌋. One-sided significance at the 5% level is indicated with
using standard asymptotics and with * using fixed-smoothing asymptotics.
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Table 17: Forecast evaluation tests. Subsample Q1.2000 - Q4.2009, T = 40, QPS.

Panel A: Equal Predictive Ability Test
1 year ahead 2 years ahead

LRV Uni UG GRW GRWD Naive Uni UG GRW GRWD Naive

UN
WCE 2.13* 2.78* 1.38 1.51 2.15* 0.53 1.07 0.27 0.65 2.31*
WPE 1.70 2.31* 1.12 1.21 1.93 0.42 0.92 0.22 0.53 2.15*

GDP
WCE 0.26 -0.08 0.70 0.97 1.36 -2.39 -3.95 -1.15 -0.10 0.63
WPE 0.22 -0.07 0.61 0.85 1.35 -2.29 -3.96 -1.10 -0.10 0.62

HICP
WCE -0.50 -1.51 -0.26 -0.07 -0.54 0.21 -0.79 0.84 1.20 -0.49
WPE -0.45 -1.37 -0.26 -0.07 -0.49 0.18 -0.62 0.62 0.90 -0.48

Panel B: Forecast Encompassing Test
1 year ahead 2 years ahead

LRV Uni UG GRW GRWD Naive Uni UG GRW GRWD Naive

UN
WCE 0.71 0.62 0.59 0.52 -0.89 1.74 1.68 1.55 1.28 -1.23
WPE 0.58 0.52 0.48 0.42 -0.86 1.38 1.41 1.27 1.04 -1.15

GDP
WCE 2.63* 2.70* 2.60* 2.63* 0.35 5.04* 5.60* 5.12* 4.97* 0.75
WPE 2.31* 2.44* 2.27* 2.30* 0.36 4.79* 5.56* 4.84* 4.64* 0.77

HICP
WCE 3.00* 3.54* 3.28* 3.20* 1.58 2.18* 3.45* 2.81* 2.28* 1.00
WPE 2.69* 3.22* 3.14* 3.07* 1.48 1.82 2.57* 2.19* 1.80 1.01

Note: Equal predictive ability test statistics and the forecast encompassing test statistics for one-year
and two-year ahead ECB SPF density forecasts against the uniform, unconditional Gaussian, the Gaus-
sian random walk, the Gaussian random walk with drift, and the naive benchmark forecasts on the
subsample Q1.2000 - Q4.2009 (T = 40) using the QPS loss. A negative equal predictive ability test
statistic sign implies that benchmark performs better than the ECB SPF, and a negative value for the
forecast encompassing test indicates that the estimated unrestricted weight on the benchmark is neg-
ative. Long run variances are estimated using WCE with Bartlett kernel and bandwidth M = ⌊T 1/2⌋
and WPE with Daniell kernel and bandwidth m = ⌊T 1/3⌋. One-sided significance at the 5% level is
indicated with using standard asymptotics and with * using fixed-smoothing asymptotics.
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Table 18: Forecast evaluation tests. Subsample Q1.2010 - Q4.2019, T = 40, QPS.

Panel A: Equal Predictive Ability Test
1 year ahead 2 years ahead

Variable LRV Uni UG GRW GRWD Naive Uni UG GRW GRWD Naive

UN
WCE 4.76* 3.31* 0.72 0.72 5.29* 0.48 0.94 -0.30 -0.14 2.40*
WPE 4.28* 2.78* 0.65 0.65 5.46* 0.40 0.80 -0.28 -0.12 2.18*

GDP
WCE 1.72 1.58 2.01* 2.04* 1.91 0.14 0.07 1.16 1.30 -0.61
WPE 1.65 1.49 2.10* 2.14* 1.53 0.13 0.06 1.20 1.35 -0.58

HICP
WCE -0.24 -0.48 -0.93 -0.84 1.80 -0.29 -0.25 0.46 0.55 1.40
WPE -0.19 -0.41 -0.75 -0.69 2.03* -0.24 -0.22 0.37 0.44 1.54

Panel B: Forecast Encompassing Test
1 year ahead 2 years ahead

Variable LRV Uni UG GRW GRWD Naive Uni UG GRW GRWD Naive

UN
WCE 2.37* 1.62 1.67 1.73 -4.18 2.84* 1.64 2.57* 2.36* -1.41
WPE 2.23* 1.43 1.53 1.59 -4.32 2.46* 1.44 2.34* 2.05* -1.31

GDP
WCE 1.08 1.04 1.15 1.16 -0.91 1.46 1.39 1.35 1.33 1.33
WPE 1.02 0.97 1.14 1.15 -0.73 1.37 1.30 1.24 1.22 1.26

HICP
WCE 2.89* 2.42* 2.60* 2.53* -0.66 2.41* 2.01* 1.23 1.23 -0.82
WPE 2.27* 1.97* 2.11* 2.08* -0.72 2.06* 1.79 1.00 1.00 -0.91

Note: Equal predictive ability test statistics and the forecast encompassing test statistics for one-year and
two-year ahead ECB SPF density forecasts against the uniform, unconditional Gaussian, the Gaussian
random walk, the Gaussian random walk with drift, and the naive benchmark forecasts on the subsam-
ple Q1.2010 - Q4.2019 (T = 40) using the QPS loss. A negative equal predictive ability test statistic
sign implies that benchmark performs better than the ECB SPF, and a negative value for the forecast
encompassing test indicates that the estimated unrestricted weight on the benchmark is negative. Long
run variances are estimated using WCE with Bartlett kernel and bandwidth M = ⌊T 1/2⌋ and WPE with
Daniell kernel and bandwidth m = ⌊T 1/3⌋. One-sided significance at the 5% level is indicated with
using standard asymptotics and with * using fixed-smoothing asymptotics.
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