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Abstract 

Interstitial lung diseases (ILDs) are complex and heterogeneous diseases. The use of traditional diagnostic 
classification in ILD can lead to suboptimal management, which is worsened by not considering the molecular 
pathways, biological complexity, and disease phenotypes. The identification of specific “treatable traits” in ILDs, which 
are clinically relevant and modifiable disease characteristics, may improve patient’s outcomes. Treatable traits in ILDs 
may be classified into four different domains (pulmonary, aetiological, comorbidities, and lifestyle), which will facilitate 
identification of related assessment tools, treatment options, and expected benefits. A multidisciplinary care team 
model is a potential way to implement a “treatable traits” strategy into clinical practice with the aim of improving 
patients’ outcomes. Multidisciplinary models of care, international registries, and the use of artificial intelligence may 
facilitate the implementation of the “treatable traits” approach into clinical practice. Prospective studies are needed 
to test potential therapies for a variety of treatable traits to further advance care of patients with ILD.
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Introduction
ILDs include more than 200 entities of either known 
or unknown etiology [1]. The “Oslerian paradigm” has 
represented with unquestionable merit the traditional 
approach to ILDs management in the last decades. This 
paradigm classifies the diseases by linking the principal 
organ system in which symptoms and signs manifest 
with anatomic and histopathology findings [2–4]. 
Traditionally, diagnostic classification of diseases is given 
based on a set of clinical features, and patients are treated 
accordingly [5, 6]. According to the “Oslerian paradigm”, 
the traditional goal of ILD management has been to 
determine the right treatment according to the initial and 
accurate diagnosis. However, this approach has become 
somewhat outdated with advances in technology allowing 
recognition of disease endotypes and phenotypes that can 
be treated with targeted interventions. Moreover, recent 
data have highlighted variability in disease pathogenesis 
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across ILD subtypes resulting in unpredictable natural 
history and heterogeneous treatment response [7–10]. 
This evidence points towards the existence of “treatable 
traits”, specific disease characteristics that are clinically 
relevant and modifiable through pharmacological or 
non-pharmacological interventions [11]. “Treatable 
traits” approaches have been successfully implemented 
over the past decade in other chronic respiratory 
diseases, including bronchiectasis, asthma, and chronic 
obstructive pulmonary disease (COPD) [12, 13]. A 
number of treatable traits have also been identified in 
ILDs, such as progressive fibrosis or inflammation, either 
eosinophilic or neutrophilic [14–17]. The majority of 
these are phenotype-driven, while several studies are 
underway to stratify ILD patients according to clinically 
relevant endotypes [15–17]. Moving from a “disease-
centered” to a “personalized” management approach that 
is based on specific treatable traits is a priority for the 
field, with the aim of identifying new targets to customize 
treatment and improve patients’ outcomes [8]. In this 
perspective, we describe the future potential of using 
treatable traits in the management of ILDs.

The “splitting” approach in ILDs
ILDs are a heterogeneous group of conditions with over-
lapping clinical features, radiological and histological 
findings, as well as pathobiological underpinnings. This 
heterogeneity represents a substantial barrier in under-
standing disease mechanisms and developing effica-
cious and personalized treatments. The diagnosis and 
treatment of ILD has challenged physicians since the 
middle of the last century [18]. The first milestone in 

ILD diagnosis was the clinical-radiological-pathologic 
description by Louis Hamman and Arnold Rich in 1944 
of four patients who died of progressive respiratory fail-
ure within 6  months of symptoms’ onset at the Johns 
Hopkins Hospital in the United States [18] (Fig. 1).

The term Hamman-Rich syndrome became a synonym 
for an acute interstitial pneumonia of unknown cause 
that rapidly progressed to pulmonary fibrosis and 
almost invariably resulted in death. In 1957, Rubin 
and Lubliner reviewed 48 cases of the Hamman-Rich 
syndrome and added 15 cases of their own [19]. It soon 
became evident that the course of this new entity was 
not always acute, progressive, or fatal. In 1964, thanks 
to Sheridan and colleagues, the concept of idiopathic 
interstitial pneumonia evolved from the acute (or 
subacute) and fulminant disease described by Hamman 
and Rich [20]. Subsequently, at the Brompton Chest 
Hospital in London, Scadding and Hinson coined the 
term “cryptogenic fibrosing alveolitis” to describe the 
inflammatory and fibrotic changes that occurred in the 
lung parenchyma of patients with pulmonary fibrosis of 
unknown origin.

Open lung biopsy rapidly emerged as the gold stand-
ard for diagnosing ILDs [21]. In 1975, according to his 
own clinical and pathologic data, Averill Liebow classi-
fied interstitial pneumonitis into five different histologic 
categories: usual interstitial pneumonitis (UIP), desqua-
mative interstitial pneumonia (DIP), bronchiolitis oblit-
erans interstitial pneumonia (BIP), lymphoid interstitial 
pneumonia (LIP), and giant cell interstitial pneumonia 
(GIP) [22]. In 1982, a key step towards the diagnosis and 
classification of ILDs was the implementation in clinical 

Fig. 1  Milestones in history of ILD
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practice of the high-resolution computed tomography 
(HRCT) of the chest by Todo and coworkers [23], which 
substantially improved the ability to classify ILD sub-
types through noninvasive means. Consequently, clini-
cal, radiological, and, when available, histopathological 
data were integrated to improve diagnostic accuracy 
and implement classification of ILDs through the so-
called “splitting” approach [24]. This approach allowed 
the design and conduct of randomized controlled tri-
als (RCT)s for common ILDs, namely idiopathic pul-
monary fibrosis (IPF) and systemic sclerosis-associated 
(SSc) ILD [25–29]. While this approach has resulted 
in the approval of several therapies to slow IPF and 
SSc-ILD, it left many other ILDs understudied, and it 
is limited by several factors. Firstly, ILD patients shar-
ing the same diagnosis might respond differently to the 
same pharmacological treatment. Irrespective of ILD 
diagnosis, individuals with reduced telomere length 
endotype and/or known telomere-related mutations 
have more rapid disease progression and shorter lung 
transplant-free survival [30]. IPF patients who carry a 
specific polymorphism within the Toll-interacting pro-
tein (TOLLIP) gene might benefit from N-acetylcysteine 
(NAC), despite being ineffective for patients lacking 
this polymorphism and when studied in all-comers 
with IPF [31]. A European, multicenter, retrospective 
study demonstrated that IPF patients carrying muta-
tions within Telomerase Reverse Transcriptase (TERT) 
or Telomerase RNA Component (TERC) gene may not 
benefit from pirfenidone in terms of reduction of lung 
function decline, although this drug is recommended 
for IPF [32]. Moreover, in a post-hoc analysis of two tri-
als, IPF patients carrying rare variants within one tel-
omere-related gene (TRG) showed a more rapid decline 
in forced vital capacity (FVC) than non-carriers [33]. 
Finally, a strong correlation has been reported between 
the presence of reduced telomere and the harmful effect 
of immunosuppressive medication in ILD patients [34]. 
Taken together, these findings suggest a more nuanced 
approach may be needed to effectively treat diverse 
ILDs.

Secondly, multiple comorbidities are common in ILD 
and have a detrimental effect on survival, especially if 
untreated [35–37]. Although clinicians should have a 
low threshold for suspecting comorbidities in patients 
with ILD, recent data show that treatment of relevant 
comorbidities is suboptimal, and often lacking alto-
gether [35, 36].

Thirdly, data from both registries and multicenter 
studies show low-quality standards with regards 
to the management of ILD, including adherence 
to pharmacological treatment and referral to lung 
transplant centers, when indicated [37, 38].

A “treatable traits” strategy: lessons learned from other 
chronic respiratory diseases
Chronic respiratory diseases are often complex and 
heterogeneous conditions that require individualized 
assessment and treatment. Precision medicine is 
defined as “treatments targeting the needs of individual 
patients on the basis of genetic, biomarker, phenotypic, 
or psychosocial characteristics that distinguish a given 
patient from others with similar clinical presentations” 
[39, 40]. The precision medicine strategy relies on the 
systematic evaluation of “treatable traits”, as originally 
reported for chronic airway diseases by Agusti et  al. 
in 2015 [12]. According to this approach, patients 
are individually assessed for a specific set of treatable 
problems. The identification of treatable traits has led 
to the adoption of different and specific therapeutic 
strategies, thus going beyond the “Oslerian paradigm”. 
In the field of airway diseases, the Oslerian diagnostic 
classification might lead to sub-optimal management 
because specific molecular pathways and disease 
phenotypes are not taken into account [3, 4, 41]. Indeed, 
phenotypic and endotypic features of chronic airway 
diseases (e.g.: treatable traits) are variable, show non-
linear dynamic interactions, and differentially regulate 
patterns and burden of the disease as well as response 
to treatment [42, 43]. Different trials using a “treatable 
traits” strategy have been conducted both in asthma and 
COPD [44, 45]. These studies have shown that a “holistic” 
approach based on the identification of treatable traits 
might improve outcomes if compared to a “guideline-
based” approach. This represents an important step 
forward in the management of chronic airway diseases 
[44, 45].

A “treatable traits” strategy in ILDs: integrating “lumping” 
and “splitting” approaches
We recently propose and summarize a “treatable traits” 
strategy for patients with ILDs [14] (Table  1). Treatable 
traits have been classified into four different domains 
(pulmonary, etiological, comorbidities, and lifestyle) 
along with the identification of related assessment tools, 
potential treatment options, and expected benefits.

From a pulmonary perspective, patients with a pro-
gressive pulmonary fibrosis (PPF) phenotype represents 
one of the most promising treatable traits [16, 46–50]. 
PPF refers to a spectrum of ILDs that share a pheno-
type characterized by an increasing extent of fibrosis on 
HRCT, decline in lung function, and worsening symp-
toms, resulting in decreased quality of life, and early 
death [51]. It has been hypothesized that ILDs with this 
phenotype may also share pathobiological mechanisms 
regardless of their underlying cause and thus may also 
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Table 1  Treatable traits in interstitial lung diseases according to pulmonary, aetiological, comorbidities and lifestyle domains

Treatable trait Assessment tool (Potential) treatment option Expected benefits of treatment*

Aetiological

CTDs/Vasculitis Clinical features
Serum antibodies

Refer to rheumatologist
Screening for extra-respiratory 
involvement
Immunosuppressive drugs

Prevent or reduce lung damage
Reduce mortality

Drugs Drug history Assess risk–benefit of stopping 
potentially harmful drug

Reduce lung damage
Improve lung function

Exposure-related (organic 
and inorganic)

Environmental/ work/ domestic 
history of exposure
Serum precipitins

Prevent or stop exposure Prevent or reduce lung damage
Improve outcomes
Reduce mortality

Genetic Family history
Age of onset
DNA genetic testing

Refer to geneticist
Family screening
Targeted therapy

Improve outcomes

Lifestyle

Smoking Patient reported
Urine cotinine levels

Tobacco cessation support
Nicotine replacement
Antidepressant drug

Improve quality of life
Improve lung function
Prevent or reduce lung damage

Adherence to treatment Patient and relatives feedback Education
Written instructions
Self-management
Family and social support

Improve outcomes

Exposure to air pollution PM10 and NO2 concentrations Reduce exposure Reduce disease progression
Reduce exacerbation

Lack of exercise/ Deconditioning 
of skeletal muscle

Cardiopulmonary exercise testing
6MWT

Prescribed exercise programs
Pulmonary rehabilitation

Improve quality of life
Improve lung function
Improve exercise capacity

Diet Patient reported Diet instructions Improve quality of life

Pulmonary

Progressive fibrosis Patient reported symptoms
Pulmonary function tests
HRCT​

Optimization of therapy
Consider antifibrotics
Referral to lung transplant center

Slow lung function decline
Reduce mortality
Prevent exacerbation

Eosinophilic inflammation HRCT​
BAL
CBC

Steroid therapy
Adjust immunosuppression

Prevent or reduce lung damage
Improve quality of life

Neutrophilic inflammation HRCT​
BAL
CBC

Azithromycin Reduce lung damage
Improve quality of life

Acute exacerbation HRCT​
BAL

Antifibrotic therapy
Systemic glucocorticoids

Improve survival

Acute infection Patient reported symptoms
Sputum cultures
BAL

Airway clearance
Antibiotic therapy
Prophylaxis with influenza 
and pneumococcal vaccination
Adjust immunosuppression

Prevent exacerbation
Reduce mortality
Reduce hospitalization

Chronic infection or recurrent 
infection

Patient reported symptoms
Sputum cultures
BAL

Airway clearance
Adjust immunosuppression
Consider prophylactic antibiotics

Prevent exacerbation
Improve quality of life
Slow lung function decline

Chronic respiratory failure Patient reported symptoms
ABG
6MWT
Polysomnography

Long term oxygen therapy
Non-invasive ventilation
Referral to lung transplant center
Pulmonary rehabilitation
Palliative care

Improve quality of life
Improve survival

Intractable chronic cough Patient reported symptoms
Scores (LCQ, VAS, CQLQ)

Antitussive
Thalidomide
Gabapentin

Improve quality of life

Emphysema / Obstructive 
ventilatory defects

Pulmonary function tests
HRCT​

Bronchodilator therapy Improve quality of life
Slow lung function decline
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respond to similar treatments. Indeed, in patients with 
PPF, nintedanib, an intracellular tyrosine kinase inhibi-
tor with antifibrotic properties, reduces the rate of disease 
progression irrespective of the underlying ILD diagnosis 
[52–54]. Interestingly, molecular pathways targeted by 
nintedanib are augmented to a similar magnitude in lung 
tissue from several PPF, regardless of etiology [15, 54]. 
Pirfenidone, a compound with antifibrotic, anti-oxidant, 
and anti-inflammatory properties, might also represent 
an effective treatment for patients with PPF ILDs [55–57]. 

Taken together, these data suggest that the PPF phenotype 
of ILD is a clinically relevant and modifiable trait.

From an etiological perspective, the elimination of 
the inciting agent is an essential intervention in patients 
with exposure-related ILDs. A recent study showed that 
a standardized interview is able to reveal relevant inhala-
tional exposures in most patients across all types of ILDs 
[38]. Exposures were markedly different based on demo-
graphics and were associated with worse transplant-free 
survival [38]. A thorough professional cleaning of the 

CTD connective tissue disease, PM10 particulate matter 10, NO2 nitrogen dioxide, 6MWT six-minute walk test, HR-CT high-resolution computed tomography, BAL 
bronchoalveolar lavage, CBC complete blood count, ABG arterial blood gas, LCQ leicester cough questionnaire, VAS visual analogue scale, CQLQ cough-specific quality 
of life questionnaire, GERD gastro-esophageal reflux disease, PPI proton pump inhibitor, RHC right heart catheterization, NT-proBNP N-terminal pro-B-type natriuretic 
peptide, ICD implantable cardioverter defibrillator, OSA obstructive sleep apnea, CPAP continuous positive airway pressure, PET-CT Positron emission tomography 
computed tomography, BMI body mass index, FFP Fried’s frailty phenotype, K-BILD King’s brief interstitial lung disease, SGRQ-IPF St George’s respiratory questionnaire 
idiopathic pulmonary fibrosis
* Most of benefits are speculative. Most of them are based on case report/case series or benefits coming from evidences in other diseases

Table 1  (continued)

Treatable trait Assessment tool (Potential) treatment option Expected benefits of treatment*

Comorbidities

GERD Symptoms
Oesophageal pH monitoring
Manometry
Upper Endoscopy

Diet instructions
PPIs, H2-receptor antagonists, pro-
kinetics
Fundoplication

Improve outcomes
Reduce lung damage

Pulmonary hypertension Echocardiography
Consider RHC

Referral to lung transplant center
Trial with PH targeted therapies 
in selected patients (e.g.: Treprostinil)
Oxygen/Non-invasive ventilation

Improve quality of life
Improve outcomes
Reduce mortality

Congestive heart failure NT-proBNP
Echocardiography

Targeted pharmacological treatment
ICD implantation

Improve quality of life
Reduce mortality

OSA Sleep study Diet instructions
CPAP treatment

Improve quality of life
Reduce mortality

Lung cancer HRCT​
PET- CT
Biopsy

Surgical resection
Radiotherapy
Chemotherapy

Reduce mortality

Diabetes Fasting glucose persistently 
above 125 mg/dl
Random glucose levels 
above 200 mg/dl occurring 
in the context of high-dose 
glucocorticoid therapy

Diet instructions
Lifestyle instructions
Insulin
Oral hypoglycemics

Improve quality of life
Reduce systemic complication 
of diabetes
Reduce mortality

Osteoporosis/Osteopenia Bone densitometry Diet instructions
Lifestyle instructions
Pharmacological therapy

Improve quality of life
Reduce risk of fractures
Reduce mortality

Pulmonary embolism CT pulmonary angiogram Anticoagulants Reduce mortality

Obesity BMI Diet instructions
Pulmonary rehabilitation
Bariatric surgery

Improve quality of life
Improve exercise tolerance

Cachexia/Malnutrition BMI Nutritional support
Pulmonary rehabilitation

Improve quality of life

Frailty FFP binary score
Frailty Index

Nutritional supportive
Pulmonary rehabilitation
Physical activity programs

Improve quality of life
Reduce mortality

Anxiety/Depression Patient reported
scores (K-BILD; SGRQ-IPF)

Counseling/cognitive behavioural 
therapy
Antidepressant/Anxiolytics
Pulmonary rehabilitation

Improve quality of life
Improve adherence to treatment
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domestic or working environment needs to be under-
taken if the patient remains within that environment [58, 
59].

From a comorbidity perspective, the majority of 
ILD patients share additional complexity related to 
aging, concomitant conditions and extra-respiratory 
involvement [60–62]. These traits are often 
underestimated, leading to a vicious cycle that results 
in an accelerated clinical deterioration and worse 
prognosis [17, 60, 61, 63, 64]. A specific trait might be 
a major determinant of disease progression and may 
further influence other disease traits. This is the case 
of cachexia, frailty, and pulmonary hypertension (PH) 
among others. As an example, ILD patients frequently 
suffer from cachexia that often correlates with rapid 
clinical deterioration and early death [65–67]. Targeting 
cachexia in patients considered for lung transplant could 
have a substantial impact not only on body weight, but 
also on exercise tolerance, skeletal muscle strength, 
anxiety, and depression, thus potentially impacting the 
final decision on whether to proceed with transplantation 
[66, 68, 69]. Similarly, frailty is common in patients with 
ILDs and is strongly associated with dyspnea and clinical 
outcomes, including hospitalizations and mortality [69–
71]. Frail patients generally have several comorbidities 
that are common causes of exclusion from clinical trials. 
In patients with ILD, physical frailty is an important 
determinant of prognosis and may represent a modifiable 
target for intervention [72, 73]. PH secondary to ILDs is 
associated with worse outcomes such as dyspnea, quality 
of life, and short-term mortality [74]. No therapies are 
currently approved for PH in ILD [74, 75]. However, 
inhaled treprostinil has been shown to improve exercise 
capacity, as assessed by 6-min walk test, compared with 
placebo in patients with PH due to ILD [76].

From a lifestyle/behavioral perspective, there are 
multiple studies showing the association of ILDs with 
air pollution, although the mechanisms through which 
air pollution leads to the development and worsening 
of ILD remain speculative [77–81]. Air pollution, as 
demonstrated by the PM10  concentration, is associated 
with an increasing rate of pulmonary function decline in 
IPF, as well as with higher risk of disease exacerbations 
[77, 81]. Thus, it is important to integrate markers of 
air pollution in the clinical evaluation of ILD patients 
irrespective of the underlying diagnosis.

The multidisciplinary team as a tool to implement 
the “treatable trait” strategy in ILD
Multidisciplinary team (MDT) has become the diagnos-
tic gold standard for ILD, particularly IPF [82–84]. The 
“treatable traits” approach requires the MDT be actively 
involved non only in disease diagnosis but also in the 

identification and management of pulmonary, aetiologi-
cal, comorbidities, and lifestyle-related treatable traits 
with the aim of improving patients’ outcomes (Table  2) 
[82, 83]. This is the case, for example, of radiologists in the 
example of radiological progression of pulmonary fibrosis, 
cardiologists in the case of coexisting PH, or geriatricians 
for patients with frailty, or rheumatologist for possible 
connective tissue disease-ILD.

“Treatable traits” strategy in ILD: challenges 
and opportunities
Definitions and prevalence of treatable traits
Data on definition and prevalence of treatable traits in 
ILD are limited and mostly derived from monocentric 
observational studies [15, 46–48, 63]. The heterogeneity 
in prevalence of each trait depends on the intensity 
and type of the diagnostic workup, the threshold 
used to describe the trait as clinically relevant, and 
the setting where the trait has been identified (e.g.: 
primary, secondary or tertiary-care). For example, the 
prevalence of gastro-esophageal reflux disease (GERD) 
as a comorbidity varies substantially depending on 
the methods used to ascertain its presence or absence 
(e.g., medical records versus sensitive oesophageal 
pH-monitoring) [63, 85, 86]. Accordingly, the prevalence 
of GERD in IPF ranges from 0 to 94% [63]. Multicentre, 
prospective studies as well as international registries 
shared across different settings and countries are needed 
to improve the accuracy of estimates for both prevalence 
and characteristics of each single treatable trait [87–89].

Lack of endotypes in ILDs and related biomarkers
Recent RCTs in asthma and COPD have successfully 
tested that a biomarker-guided therapy directed to a 
specific treatable trait is superior to a symptom-guided 
therapy [90–92]. Specific biomarkers are already used in 
clinical practice to identify several endotypes in chronic 
respiratory diseases (e.g.: blood eosinophilia and the 
T2-high endotype in patients with asthma) [90]. How-
ever, there are few reliable biomarkers available for use 
in ILD. Biomarker discovery and identification of endo-
types in ILDs represent a growing field of research owing 
to their potential clinical relevance. The pathophysiol-
ogy of ILD is multifactorial, involving a complex inter-
action between host and environmental factors that 
results in the activation of multiple overlapping profi-
brotic pathways [93]. As a result, IPF and other ILDs may 
be indistinguishable from each other and have similarly 
variable and unpredictable clinical course, despite differ-
ent underlying etiologies [94–96]. In addition, IPF and 
non-IPF PF-ILD patients share similar rates of functional 
decline, disease progression, and response to treatment 
[54].
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Table 2  Specialist competencies within the ILD multidisciplinary care team

Specialist Competencies Treatable trait 
areas of focus

Chest physician (coordination 
of the multidisciplinary team)

✓ Diagnosis confirmation and investigation of etiology
✓ Performance and evaluation of PFTs
✓ Bronchoscopy
✓ Medication review (side effects of treatment and polypharmacy review)
✓ Ensure patient’s adherence to treatment
✓ Management of respiratory failure, LTOT, NIV
✓ Identification of patients who are candidates for lung transplant
✓ Identification and management of acute exacerbations
✓ Identification of patients eligible for RCTs
✓ Monitoring of disease severity and potential complications
✓ End-of-life care

✓ Etiological
✓ Lifestyle
✓ Pulmonary
✓ 
Comorbidities

Rheumatologist ✓ CTD suspicion and diagnosis
✓ Identification of extra-respiratory involvement
✓ Co-management and prescription of immunosuppressive and antifibrotic drugs

✓ Etiological
✓ 
Comorbidities

Physiotherapist and/or respiratory therapist ✓ Airway clearance
✓ Pulmonary rehabilitation
✓ Inhaled therapy management

✓ Lifestyle
✓ Pulmonary

Nurse ✓ Coordinate input of other healthcare professionals
✓ Support patients and their families to recognize symptoms so as to avoid 
complications
✓ Ensure patient’s adherence to treatment

✓ Lifestyle

Pathologist ✓ Support etiological diagnosis
✓ Identification of progressive fibrosis
✓ Identification of complications

✓ Etiological
✓ 
Comorbidities

Radiologist ✓ Support etiological diagnosis
✓ Identification of progressive fibrosis
✓ Identification of AE
✓ Identification of complications

✓ Etiological
✓ 
Comorbidities

Gastroenterologist ✓ Diagnosis and management of GERD
✓ Management of gastrointestinal side effects of treatment (e.g.: antifibrotics)
✓ Evaluation and management of extra-respiratory involvement

✓ 
Comorbidities

Geneticist ✓ Diagnosis of genetic disorders
✓ Genetic counseling for patient and relatives

✓ Lifestyle
✓ Etiological

Infectious disease specialist ✓ Advice on potential prophylaxis in patients treated with immunosuppressive drugs
✓ Treatment of acute and chronic infection

✓ Multisystem

Cardiologist ✓ Diagnosis and management of RHF
✓ Evaluate heart involvement in some ILDs (e.g.: sarcoidosis or scleroderma)

✓ 
Comorbidities

Psychologist ✓ Management of anxiety and depression
✓ Family support
✓ End-of-life care

✓ Lifestyle

Endocrinologist ✓ Diagnosis and management of osteoporosis and diabetes in patients treated 
with chronic steroid therapy

✓ 
Comorbidities

Nutritionist ✓ Diet instruction ✓ Lifestyle
✓ 
Comorbidities

Geriatrician ✓ Identification of frail patients
✓ Medication review
✓ Familial and social support

✓ Lifestyle
✓ 
Comorbidities

Pharmacologist ✓ Medication review (side effects of treatment and polypharmacy review)
✓ End-of-life care

✓ Pulmonary

Thoracic Surgeon ✓ Surgical biopsy
✓ Co -management of lung cancer
✓ Lung transplant

✓ Etiological
✓ 
Comorbidities

General practitioner ✓ Medication review (side effects of treatment and polypharmacy review)
✓ Ensure patient’s adherence to treatment
✓ Support patients and their families to recognize symptoms so as to avoid 
complications
✓ End-of-life care

✓ Lifestyle
✓ Pulmonary
✓ 
Comorbidities

PFTs pulmonary function tests, LTOT long-term oxygen therapy, NIV non-invasive ventilation, RCTs randomized controlled trials, CTD connective tissue disease, ILD 
interstitial lung disease, GERD gastro-esophageal reflux disease, RHF right heart failure
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Thus identify, develop, and validate molecular endo-
types in ILD through the use of specific biomarkers is of 
paramount importance in order to evaluate disease activ-
ity and guide decision-making. Molecular biomarkers 
identified so far in ILDs, along with their clinical impli-
cations, are summarized in Table  3. However, most of 
these have been investigated in observational and retro-
spective studies without assay validation or replication in 

an external cohort. Issues related to reproducibility and 
inter-individual variability has also been highlighted for 
circulating biomarkers [128]. Thus, baseline and longi-
tudinal measurement of specific and sensitive biomark-
ers in large and prospectively collected cohorts is of 
paramount importance for improving disease manage-
ment. Machine learning and artificial intelligence (AI) 
might offer the opportunity to identify combinatorial 

Table 3  Molecular biomarkers identified in ILDs that are associated with relevant outcomes

IPF idiopathic pulmonary fibrosis, HP hypersensitivity pneumonitis, IPAF interstitial pneumonia with autoimmune features, CTD-ILD connective tissue disease-
interstitial lung disease, TOLLIP toll interacting protein, NAC N-acetyl cysteine, MUC5B Mucin 5B, KL-6 Krebs von den Lungen 6, BAL bronchoalveolar lavage, NSIP non-
specific interstitial pneumonia, PAP pulmonary alveolar proteinosis, MMP-7 matrix metallopreinase 7, YKL-40 chitinase-3-like protein 1, CCL-18 C–C Motif Chemokine 
Ligand 18, IL-6 Interlukin-6, CRPM serum matrix metalloproteinase-degraded C-reactive protein, VCAM-1 vascular cell adhesion protein 1, CXCL 13 C-X-C motif 
chemokine 13
* Disease(s) in which the biomarker has been identified

Biomarker Matrix Disease* Field of action Prognostic relevance Potential treatment

Short telomere length 
[34, 30, 97–101]

Peripheral blood 
leucocytes

IPF
HP
Unclassifiable ILD
IPAF
CTD-ILD

Dysfunctional alveolar 
repair

Higher post-transplant 
morbidity Significantly 
increased risk of harm 
in patients receiving 
immunomodulatory 
treatment

Placenta derived 
mesenchymal stromal 
cells

TOLLIP gene variant [31, 
102]

Peripheral blood 
leucocytes

IPF Immune dysregulation Lung function decline
Mortality

NAC

MUC5B promoter 
polymorphism [97–99, 
103]

Peripheral blood 
leucocytes

IPF Dysfunctional alveolar 
repair

Mortality Unknown

KL-6 [104–113] Serum
BAL

CTD-ILD
NSIP
PAP
CHP
IPF

Dysfunctional alveolar 
repair

Severity of disease
Risk of progression
Risk of exacerbation
Radiological scores

Unknown

Surfactant protein D 
[104–109, 112, 113]

Serum IPF Dysfunctional alveolar 
repair

Risk of progression Unknown

MMP-7 [105, 106, 110, 
114]

Serum IPF
CHP

Extracellular matrix 
turnover and remodeling

Lung function decline
Mortality

Unknown

YKL-40 [104, 115, 119, 
120]

Serum
BAL

IPF
CHP
CTD-ILD
Sarcoidosis

Extracellular matrix 
turnover and remodeling

Risk of progression
Risk of exacerbation
Mortality

Unknown

CCL-18 [104, 111, 116] Serum IPF Immune dysregulation Lung function decline
Mortality

Unknown

IL-6 [117, 118] Serum CTD-ILD Immune dysregulation Lung function decline
Mortality

Tocilizumab

PRO-C3 and PRO-C6 
[121, 122]

Serum IPF Extracellular matrix 
turnover and remodeling

Risk of progression Unknown

CRPM [123] Serum IPF Extracellular matrix 
turnover and remodeling

Lung function decline Unknown

Periostin [124] Serum IPF
CHP

Extracellular matrix 
turnover and remodeling

Lung function decline
Mortality
Risk of exacerbation

Unknown

VCAM-1 [125, 126] Serum CTD-ILD
IPF
Unclassifiable ILD
CHP

Immune dysregulation Lung function decline
Mortality

Unknown

CXCL 13 [126, 127] Serum CTD-ILD
CHP
IPF
Unclassifiable ILD

Immune dysregulation Lung function decline
Mortality

Unknown
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biomarkers, which, in turn, may be more informative 
than markers used in isolation [129, 130].

Information technology and artificial intelligence
Information technology (IT) and AI are increasingly 
integrated in clinical practice [90]. Deep learning-based 
HRCT image algorithms has the potential to improve 
diagnostic accuracy and predict disease behavior in ILD 
[131–134]. Similarly, machine learning and genomic 
analysis have been employed for the categorization of 
ILD morphology in the setting of computational pathol-
ogy [130, 135, 136]. Several other traits might be suitable 
targets of AI. In this context, one of the most interesting 
and promising traits is represented by air pollution and 
its role in the pathogenesis and progression of ILDs [77, 
80, 81]. Although air pollution is quantifiable, predicting 
air quality is a complex task due to the dynamic nature, 
and high variability in space and time of pollutants and 
particulates. AI and deep learning algorithms might pro-
vide useful information on these dynamic changes. Thus, 
data-driven decision-making in ILDs can be leveraged 
by incorporating deep learning algorithms into clinical 
practice. However, large datasets for adequate training 
of deep learning algorithms are needed to make effective 
this approach. Open science research and collaboration 
between academia and industry should be encouraged 
to identify and standardize treatable traits through deep 
learning analysis and algorithms.

Managing treatable traits
The management of treatable traits in ILD remains a 
matter of debate, with no clear guidance for (1) the prior-
itization of treatable traits for management; (2) the tim-
ing of treatable trait intervention and (3) the integration 
of patient preferences and values into this approach. Evi-
dence from other chronic pulmonary diseases has dem-
onstrated improved outcomes when patients are included 
at all stages in the decision-making process [137].

How to identify and interpret treatable traits over time
ILD may evolve within weeks, months, or years. The evalu-
ation of treatable traits should thus be assessed repeat-
edly throughout the disease course. Dynamic biomarker 
change may reflect an evolving treatable trait, prompt-
ing a change in management strategy. One example is the 
regression of ground glass opacities (a “radiological bio-
marker”) in the context of local inflammation (the “trait”) 
following steroid treatment, which might lead physicians 
to re-define their management strategy and address other 
disease traits. An additional example is the development 
of overt autoimmune disease in a patient initially diag-
nosed with “idiopathic” nonspecific interstitial pneumo-
nia (NSIP) [138, 139]. For such patients, a regular clinical 

review of new treatable traits related to the autoimmune 
disease will be critical for the appropriate management of 
the extra-respiratory autoimmune manifestations.

How to make the “treatable traits” approach feasible 
across different healthcare systems
While a “treatable traits” approach in ILD may be feasible 
in high-income countries with well-resourced hospitals 
and strong multidisciplinary networks, this can be chal-
lenging in under-resourced countries. For example, the 
implementation of deep learning technologies within the 
MDT is strictly dependent on local resources and varies 
across countries [140]. However, although this approach 
is initially highly resource-consuming, it would likely 
become cost-saving over time. The presence of a multi-
disciplinary discussion (MDD) can optimize patients’ 
flow and avoid unnecessary delays in pharmacological 
and non-pharmacological interventions [141]. Beyond 
establishment of an ILD diagnosis and initial manage-
ment plan, additional multidisciplinary input from a 
variety of healthcare professionals can also have a promi-
nent role in identifying and managing treatable traits. For 
example, the role of a nutritionist in the management of 
ILD patients with obesity can potentially have a positive 
impact not only on the lifestyle domain but also on other 
traits, such as GERD, obstructive sleep apnea (OSA), or 
chronic cough. However, several questions remain unan-
swered, especially with regard to the optimal structure 
of such a multidisciplinary care team and which patients 
would benefit most from such intervention.

How to implement a “treatable traits” approach 
into the current landscape of ILD research
The use of traditional disease diagnosis has resulted in 
a large proportion of patients with ILDs being excluded 
from RCTs [25, 142, 143]. Using an “Oslerian paradigm”, 
10–20% of ILD patients remain “unclassifiable” despite 
an intensive diagnostic work-up [82, 144]. Patients with 
unclassifiable ILD have a heterogeneous clinical course 
and are generally excluded from RCTs, although a recent 
phase 2 trial has investigated the efficacy and safety of 
pirfenidone in this patient subset [56]. Moreover, the 
benefit of pharmacological and non-pharmacological 
treatments is frequently limited by their effect on a single 
disease pathway, partially explaining the modest impact 
of these treatments on clinically relevant outcomes [25, 
142, 143]. Trials in COPD and asthma showed that the 
implementation of a “treatable traits” strategy improves 
patients’ outcomes [44, 45]. The continued identifica-
tion and implementation of molecular signature-based 
approaches to treatable traits may overcome these rel-
evant limitations [134, 135, 145].
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Conclusion
ILDs comprise a group of complex and heterogene-
ous diseases that remain a challenge for treating phy-
sicians. The strategy described in this perspective 
focusses on key clinical treatable traits and underscores 
the importance of biomarkers for identifying clinically 
relevant treatable traits in patients with ILD, with the 
goal of using this approach in the daily management 
of ILD to improve outcomes. Compared to traditional 
ILD management, the treatable traits strategy is based 
on a “proactive” rather than “reactive” approach. This 
subtle distinction implies a relevant meaning that shift 
toward increasingly patient-centered medicine, moving 
beyond the “one size fits all” view. This is in line with an 
evolving healthcare system that is predictive, preven-
tive, personalized and participatory, the so called “P4 
medicine” [146, 147]. From a preventive point of view, 
Interstitial lung abnormalities (ILAs) are increasingly 
recognized on chest CTs [148]. Although the clini-
cal relevance of ILA remains to be clarified, increased 
mortality as well as reduced pulmonary function have 

been reported [149, 150]. Thus, identification of bio-
markers able to predict disease progression in ILA are 
of paramount importance. Finally, a SWOT analysis 
of the “treatable traits” proposal is provided in Fig.  2. 
Importantly, the identification and management of 
treatable traits should not be restricted to the pulmo-
nary domain. In fact, the detection of extra-pulmonary 
comorbidities as well as lifestyle and behavioral traits, 
although not strictly biologically related to ILDs, might 
impact quality of life and clinical outcomes. Multidis-
ciplinary models of care, international registries, and 
the use of AI may facilitate the implementation of the 
“treatable traits” approach into clinical practice. This 
perspective aims to foster collaboration among the res-
piratory community, regulatory agencies and pharma-
ceutical industries. The “treatable traits” approach is a 
clinical and research priority, with properly designed 
cohorts and RCTs needed to test potential therapies for 
a variety of treatable traits to further advance care of 
patients with ILD.

Fig. 2  SWOT analysis of the treatable trait strategy in ILD. SWOT is an acronym that identifies the four elements of the analysis: strengths (S), 
weakness (W), opportunities (O), and threats (T). A SWOT analysis allows to critically explore advantages and disadvantages resulting from internal 
and external factors
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