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Sintesi

L’obiettivo di questa tesi è studiare la degenerazione di automorfismi speciali (detti non-
simplettici) su certe famiglie di varietà irriducibili olomorfe simplettiche (varietà IHS).

Infatti lo spazio dei moduli delle threefold cubiche lisce è isomorfo ad uno spazio di moduli

N ρ,ζ
⟨6⟩ di varietà IHS dotate di uno speciale automorfismo di ordine 3 non-simplettico. Questo

è un risultato di Boissière–Camere–Sarti, [BCS19b]. Nello stesso articolo gli autori hanno

esteso il risultato al caso generico con una singolarità cosiddetta nodale. Estendere questa

mappa vuol dire in primo luogo studiare il limite di una degenerazione ad un parametro che

ha come punto centrale il periodo di una threefold cubica nodale. Quello che succede è che se

consideriamo una famiglia ad un parametro inN ρ,ζ
⟨6⟩ che ha come limite un periodo nodale suc-

cede che nel limite la famiglia degenera ad una famiglia di varietà IHS con un automorfismo

di ordine 3 non-simplettico con un reticolo invariante più grande. In questo senso diciamo che

l’automorfismo degenera. In secondo luogo vuol dire fornire una mappa (che in questo caso

è birazionale) tra il luogo nodale ed un opportuno spazio di moduli di varietà IHS aventi un

automorfismo non-simplettico di ordine 3, con appunto un invariante più grande.

La prima parte della tesi è dedicata a trovare un risultato analogo per cubiche nodali non

generiche, in particolare, andando in codimensione sempre più alta, si trova una mappa bi-

razionale tra i sottoluoghi del luogo nodale il cui elemento generico è una cubica con una sola

singolarità Ai con i = 2, 3, 4 ed uno spazio di moduli di varietà IHS di tipo K3[2] con un au-

tomorfismo non-simplettico ρi di ordine 3. Per far ciò utilizziamo delle tecniche sviluppate da

Boissière, Camere e Sarti per arrivare ad una restrizione biettiva della mappa dei periodi.

La seconda parte, in collaborazione con Boissière e Comparin, è dedicata allo studio in det-

taglio della geometria del limite che può essere espresso infatti come risoluzione simplettica

della varietà di Fano delle rette che giacciono sulla fourfold cubica ciclica, ovvero un ricopri-

mento 3 a 1 ciclico di P4
che ramifica su una threefold cubica che in questo caso ha singolarità

isolate di tipo Ai con i = 2, 3, 4.

Parole chiave: geometria algebrica, varietà IHS, automorfismi, spazi di moduli, ipersu-

perfici cubiche, risoluzioni simplettiche, varietà grassmanniane .
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Abstract

The aim of this thesis is to study the degeneration of special automorphisms (termed non-
symplectic) on certain families of irreducible holomorphic symplectic varieties (IHS varieties).

In fact, the moduli space of smooth cubic threefolds is isomorphic to a moduli space N ρ,ζ
⟨6⟩

of IHS varieties equipped with a special order 3 non-symplectic automorphism. This is a re-

sult by Boissière–Camere–Sarti, [BCS19b]. In the same paper, the authors extended the result

to the general case with a so-called nodal singularity. Extending this map primarily means

studying the limit of a one-parameter degeneration whose central point is the period of a

nodal cubic threefold. What happens is that if we consider a one-parameter family in N ρ,ζ
⟨6⟩

that has a nodal period as its limit, it turns out that at the limit the family degenerates into

a family of IHS varieties with an order 3 non-symplectic automorphism with a larger invari-

ant. In this sense, we say the automorphism degenerates. Secondly, it means providing a map

(which in this case is birational) between the nodal locus and a suitable moduli space of IHS

varieties possessing a non-symplectic order 3 automorphism, with precisely a larger invariant.

The first part of the thesis is dedicated to finding a similar result for non-generic nodal cubics.

In particular, by going to increasingly higher codimension, a birational map is found between

the subspaces of the nodal locus whose generic element is a cubic with a single singularity

Ai for i = 2, 3, 4, and a moduli space of IHS varieties of type K3[2] with a non-symplectic

ρi automorphism of order 3. To achieve this, we employ techniques developed by Boissière,

Camere, and Sarti to arrive at a bijective restriction of the period map.

The second part, in collaboration with Boissière and Comparin, is dedicated to a detailed

study of the geometry of the limit which can in fact be expressed as the symplectic resolution

of the Fano variety of lines lying on the cyclic cubic fourfold, that is, a cyclic 3-to-1 cover of

P4
branching over a cubic threefold which in this case has isolated singularities of type Ai for

i = 2, 3, 4.

Keywords: algebraic geometry, IHS manifolds, automorphisms, moduli spaces, cubic hy-

persurfaces, symplectic resolutions, grassmannian varieties.
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Résumé

L’objectif de cette thèse est d’étudier la dégénérescence des automorphismes spéciaux (appelés

non-symplectiques) sur certaines familles de variétés symplectiques holomorphes irréductibles

(variétés IHS).

En fait, l’espace des modules des threefolds cubiques lisses est isomorphe à un espace des

modulesN ρ,ζ
⟨6⟩ de variétés IHS dotées d’un automorphisme spécial d’ordre 3 non-symplectique.

Ceci est un résultat de Boissière–Camere–Sarti, [BCS19b]. Dans le même papier, les auteurs

ont étendu le résultat au cas général avec une singularité dite nodale. Étendre cette appli-

cation signifie d’abord étudier la limite d’une dégénérescence à un paramètre dont le point

central est la période d’une threefold cubique nodale. Ce qui se passe, c’est que si nous

considérons une famille à un paramètre dans N ρ,ζ
⟨6⟩ qui a pour limite une période nodale, il

s’avère qu’à la limite la famille dégénère en une famille de variétés IHS avec un automor-

phisme d’ordre 3 non-symplectique avec un invariant plus grand. En ce sens, nous disons que

l’automorphisme dégénère. Deuxièmement, cela signifie fournir une application (qui dans ce

cas est birationnelle) entre l’hyperplan nodal et un espace approprié de modules de variétés

IHS ayant un automorphisme non-symplectique d’ordre 3, avec justement un invariant plus

grand.

La première partie de la thèse est consacrée à trouver un résultat analogue pour les cubiques

nodales non génériques. En particulier, en montant en codimension de plus en plus élevée, on

trouve une application birationnelle entre les sous-espaces de l’hyperplan nodal dont l’élément

générique est un cubique avec une seule singularité Ai avec i = 2, 3, 4 et un espace des mod-

ules de variétés IHS de type K3[2] avec un automorphisme non-symplectique ρi d’ordre 3.

Pour ce faire, nous utilisons des techniques développées par Boissière, Camere et Sarti pour

arriver à une restriction bijective de la application des périodes.

La deuxième partie, en collaboration avec Boissière et Comparin, est consacrée à l’étude détail-

lée de la géométrie de la limite qui peut en fait être exprimée comme la résolution symplectique

de la variété de Fano des droites qui se trouvent sur la fourfold cubique cyclique, c’est-à-dire

une couverture cyclique 3 à 1 de P4
qui se ramifie sur une threefold cubique qui dans ce cas a

des singularités isolées de type Ai avec i = 2, 3, 4.

Mots clés: géométrie algébrique, variétés IHS, automorphismes, espaces de moduli, hy-

persurfaces cubiques, résolutions symplectiques, variétés grassmanniennes.
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Du sagst:
Es steht schlecht um unsere Sache.
Die Finsternis nimmt zu. Die Kräfte nehmen ab.
Jetzt, nachdem wir so viele Jahre gearbeitet haben,
Sind wir in schwierigerer Lage als am Anfang.

Der Feind aber steht stärker da denn jemals.
Seine Kräfte scheinen gewachsen. Er hat ein unbesiegliches Aussehen angenommen.
Wir aber haben Fehler gemacht, es ist nicht mehr zu leugnen.
Unsere Zahl schwindet hin.
Unsere Parolen sind in Unordnung. Einen Teil unserer Wörter
Hat der Feind verdreht bis zur Unkenntlichkeit.

Was ist jetzt falsch von dem, was wir gesagt haben,
Einiges oder alles?
Auf wen rechnen wir noch? Sind wir Übriggebliebene, herausgeschleudert
Aus dem lebendigen Fluß? Werden wir zurückbleiben
Keinen mehr verstehend und von keinem verstanden?

Müssen wir Glück haben?

So fragst du. Erwarte
Keine andere Antwort als die deine.

- An Den Schwankenden, Bertolt Brecht
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Introduction

One way to characterize compact complex Kähler manifolds is with their first Chern class,

or, from a differential point of view, with their Ricci curvature. Moreover, as per the famous

Beauville–Bogomolov decomposition, modulo a finite étale covering, every Ricci flat compact

complex Kähler manifold is a product of complex tori, Calabi–Yau manifolds and irreducible

holomorphic symplectic (IHS) manifolds. For this reason the study of these manifolds has at-

tracted many mathematicians during the last fifty years and we chose to study the last class

of manifolds mentioned, i.e. IHS manifolds.

IHSmanifolds are one possible higher-dimensional generalization of a well-studied class of

surfaces: K3 surfaces. In fact IHSmanifolds, likeK3 surfaces, havemany interesting algebraic

and geometric properties. Notably, one of their main properties is the presence of a natural

structure of even integral lattice on the second cohomology group with integer coefficients,

given by the Beauville–Bogomolov–Fujiki (BBF) quadratic form. This fact has important con-

sequences, in particular relatively to the study of automorphisms on IHS manifolds. Indeed,

due to the work of Huybrechts, Markman and Verbitsky, there exist some Torelli theorems

for IHS manifolds. These theorems allow to describe automorphisms of IHS manifolds from

classes of isometries of their second cohomology group. The study of automorphisms on IHS

manifold has been, therefore, a very rich field of study that has led to many results.

Our main interest in the presence of an automorphism on a family of IHS manifolds is

that it introduces some “rigidity” at the level of moduli spaces. Let us explain this better. Con-

sider an IHS manifold X̄ . Then, for each IHS manifold X deformation equivalent to X̄ we

can consider the pair (X, η) where η is an isometry between the second cohomology group

with integer coefficients and an abstract lattice L (which is fixed once we fix the deformation

type, see Remark 2.25). The moduli space of the pairs (X, η) is, by a result of Huybrechts (see
[Huy04, Section 3.1]), a smooth non-Hausdorff complex manifold. Moreover, we can define a

period map associating to each pair (X, η) the image through η of its symplectic form. If we

restrict the period map to any connected component of the moduli space of the pairs (X, η) it
becomes a surjection by [Huy99, Theorem 8.1]. Now, if we restrict it again to those IHS man-

ifolds X deformation equivalent to X̄ which additionally admit some special automorphism

(a non-symplectic automorphism of prime order) and we ask some technical conditions onX
then the restriction of the period map is an isomorphism into its image (called period domain).
This was proved in [BCS19a] for theK3[n] type of deformation and then generalized to every

ix



known type in [BC22].

This rigidity was crucial in order to find a surprising isomorphism between the moduli

space of smooth cubic threefolds and a moduli space of IHS fourfolds, namely the moduli

spaceN ρ,ζ
⟨6⟩ of IHS fourfolds ofK3[2]-type with a non-symplectic automorphism of order three,

whose invariant lattice has rank one and is generated by a class of square 6. Indeed, Boissière–

Camere–Sarti in [BCS19b] found out, using the results by [ACT11] and [LS07] about cubic

threefolds, that both the above mentioned moduli spaces admit a period map which is an iso-

morphism on the same period domain. But this correspondence goes deeper. Indeed, Allcock–

Carlson–Toledo studied in [ACT11] the GIT compactification of the moduli space of smooth

cubic threefolds, providing, thus, an extension of the period map to some singular cubic three-

folds, e.g. nodal cubic threefolds. Therefore, in [BCS19b] the authors posed their interest in

the case where there is a one-parameter family degenerating to the period of a generic nodal

cubic threefold from the point of view of the moduli space of IHS fourfolds with a special au-

tomorphism of order three. They found that, in the limit, the family “degenerates by jumping

to a family with another automorphism with a bigger invariant lattice”. In other words they

found, roughly speaking, that in the family N ρ,ζ
⟨6⟩ there are no IHS fourfolds having a nodal

period but, in order to find one, we need to slightly modify the automorphism and consider

an automorphism with a bigger invariant lattice. We call this phenomenon degeneration of the
automorphism and it is the starting point of this thesis.

The main subject of this thesis is the study of the degeneration of the automorphism

along non-generic nodal periods. Indeed, a cubic threefold is GIT stable if and only if all its

singularities are of typeAi for i = 1, . . . , 4, so our first objective is to study the degeneration of
the automorphismwhen the limit is a cubic threefold having one isolated singularity of typeAi
for i = 2, 3, 4. The method proposed here uses and generalizes some techniques of [Cam16],

[BCS19a], [BCS19b] and [CC20]. The idea is to define a locus ∆Ai
3 where a cubic threefold

Ci having one isolated singularity of type Ai is generic. The period map is then a bijection

between∆Ai
3 and a sublocusΩi/Γ of the period domain modulo the action of some arithmetic

group. Now, the challenge is to find an IHS manifold X of K3[2]-type with a non-symplectic

automorphism of order three, with a bigger invariant compared to the smooth case. Chosen

a marking η on X we want, moreover, that (X, η) lives in a moduli space where the period

map is an isomorphism onto the image. Finally, we want that this image is at least birational

to Ωi/Γ. It looks like a lot to hope for but the main result of this thesis is the following:

Theorem 0.1. The ∆Ai
3 locus for i = 1, . . . , 4 is birational to a (10 − i)-dimensional moduli

space of fourfolds ofK3[2]-type with Picard group of the generic member isometric toRi endowed
with a non-symplectic automorphism of order three, having invariant lattice isometric to Ti. These
lattices are defined in the following table.

i Ri Ti
1 U(3)⊕ ⟨−2⟩ U(3)⊕ ⟨−2⟩
2 U ⊕A2(−2)⊕ ⟨−2⟩ U(3)⊕ ⟨−2⟩
3 U ⊕A2(−1)⊕2 ⊕ ⟨−2⟩ U ⊕A2(−1)⊕2 ⊕ ⟨−2⟩
4 U ⊕ E6(−1)⊕ ⟨−2⟩ U ⊕ E6(−1)⊕ ⟨−2⟩

x



This relation is, as said above, “surprising” as it relates the world of cubic threefolds and

the world of IHS manifolds. It becomes a little less surprising (although not at all trivial) when

we look at how we define the desired IHS manifold X needed to obtain this relation. For

every cubic threefoldC ⊂ P4
we can associate the so-called cyclic cubic fourfold Y associated

to C , i.e. the 3:1 cyclic cover of P4
branched on C . This variety is the archetypal example

of Fano variety of K3 type, a class of variety which has a deep connection to the IHS world.

There exist many ways to associate an IHS manifold to a cubic fourfold Y , one of them is

considering the Fano variety of lines F (Y ) on Y . When Y is smooth, this is an IHS manifold

ofK3[2]-type by the well-known result of Beauville–Donagi ([BD85]). On the other hand, the

cyclic cubic fourfolds associated to nodal cubic threefolds are singular. This implies that also

the Fano variety of lines on them are singular. To overcome this problem in the first part of

the thesis we consider IHS manifolds which are birational to these singular varieties. In the

second part we shift our focus to the singular varieties F (Y ) which are Fano varieties of lines

on cyclic cubic fourfolds arising from cubic threefolds having isolated singularities of type Ai
for i = 2, 3, 4. In fact the case for i = 1 has been studied in [BHS23], moreover their resolution

has been studied, with different methods, in [Yam22]. In particular we are interested in their

geometry and in the presence of an automorphism. This second part is in collaboration with

S. Boissière and P. Comparin. The main result can be summarized with the following theorem.

Theorem 0.2. Let Ci be a complex projective cubic threefold having one isolated singularity of
type Ai for i = 2, 3, 4 and let Yi be its associated cyclic cubic fourfold. Assume that there exist no
plane Π ⊂ Y such that Π ∩ Sing(Yi) ̸= ∅. Then the Fano variety of lines F (Yi) of Yi admits a

unique symplectic resolution by an IHS manifold ofK3[2]-type F̃ (Yi).
Moreover, there exist integral lattices Ri and Ti, defined below, such that:

i) Pic
(
F̃ (Yi)

)
≃ Ri;

ii) there exists a non-symplectic automorphism τ ∈ Aut
(
F̃ (Yi)

)
whose invariant sublattice is

H2(F̃ (Yi),Z)τ
∗ ≃ Ti

with Ti and Ri defined in the following table:

i Ti Ri
2 ⟨6⟩ ⊕A2(−1) ⟨6⟩ ⊕D4(−1)

3 ⟨6⟩ ⊕ E6(−1) ⟨6⟩ ⊕ E6(−1)

4 ⟨6⟩ ⊕ E8(−1) ⟨6⟩ ⊕ E8(−1)

In Chapter 1 we introduce some basic notions about lattice theory and Springer theory

which we will use in the following chapters. In Chapter 2 we introduce some theory of IHS

manifolds. In Chapter 3 we study the relation between nodal cubic threefolds and IHS man-

ifolds with a non-symplectic automorphism of order 3 which leads to prove Theorem 0.1. In

Chapter 4 we study the geometry of the Fano variety of lines on singular cyclic cubic fourfolds

which leads to prove Theorem 0.2. In Chapter 5 we write down the computations which in our

opinion were important but harmful to the comprehension of the text.
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Chapter 1

Basic notions and prerequisites

“Non temere, zeta reticoli on my mind”

- Meganoidi, Zeta reticoli

1 Basic facts about lattices

In this section we recall the most important definitions and results of lattice theory that we

need in the next chapters. The general references on lattice theory used here are [Nik80] and

[CS99], see also [Men19, Section 2].

Definition 1.1. A lattice L is a free Z-module of finite rank together with a non-degenerate
symmetric bilinear form (−,−) : L× L→ Z. We denote (x, x) also by x2.

By non-degenerate we mean that for any non-zero l ∈ L there exists l′ ∈ L such that the

product (l, l′) ̸= 0. Let L be a lattice of rank n, and let B := {e1, . . . , en} be a Z-basis of L.
Then we call Gram matrix of L associated to B the n× n symmetric matrix(e1, e1) · · · (e1, en)

.

.

.

.
.
.

.

.

.

(en, e1) · · · (en, en)

 .

Moreover, a lattice L of rank n is said:

• even if (l, l) ∈ 2Z for every l ∈ L;

• odd if it is not even.

The determinant of a lattice L is the determinant of any Gram matrix G of the lattice.

Remark 1.2. The determinant does not depend on the choice of the Gram matrix. Indeed, if G
and G′ are two Gram matrices associated to two distinct Z-basis of L, then G′ = StGS, where S
is an invertible matrix with integer entries, so det(S) = ±1 and det(G′) = det(G).
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A latticeL is said unimodular if det(L) = ±1. A sublattice of a latticeL is a free submodule

L′ ⊂ L equipped with the symmetric bilinear form which is the restriction to L′ × L′
of the

form defined on L× L.
The divisibility of an element l ∈ L in a lattice L is the positive generator of the ideal

{(l,m) |m ∈ L} ⊂ Z .

A sublattice L′ ⊂ L is primitive if L/L′
is a free module. Given a subset S ⊂ L there exists

an important primitive lattice associated to it which will be used in the next chapters. We call

the orthogonal complement of S in L, the primitive sublattice of L defined as

S⊥ := {l ∈ L | (l, s) = 0 for every s ∈ S}.

The direct sum of two lattices L1 and L2 is the lattice L1 ⊕ L2 whose bilinear form is

(v1 + v2, w1 + w2) := (v1, w1)1 + (v2, w2)2

for every v1, w1 ∈ L1 and v2, w2 ∈ L2, where (−,−)1 and (−,−)2 are the bilinear forms of

L1 and L2 respectively. Note that, as L is non-degenerate by definition, ifM is a sublattice of

L, then
M ⊕M⊥ ⊂ L

is a sublattice of maximal rank, i.e., rk(M) + rk(M⊥) = rk(L).
For a lattice L of rank n we write LR := L ⊗Z R and the bilinear form is extended R-

bilinearly to LR.

Since the lattice is non-degenerate, the quadratic form associated to the bilinear form onLR ∼=
Rn admits an orthonormal basis by Sylvester’s theorem, i.e., there is an R-basis {f1, . . . , fn}
of LR such that(

n∑
i=1

xifi

)2

= ϵ1x
2
1 + · · ·+ ϵnx

2
n with ϵ1, . . . , ϵn ∈ {±1}.

After a permutation of the basis {f1, . . . , fn} we can assume that ϵi = 1 for i = 1, . . . , l(+)

and ϵi = −1 for i = l(+) + 1, . . . , n for some l(+) ∈ {0, . . . , n}.
Using, again, the fact that a lattice is by definition non-degenerate we define l(−) := n− l(+),

the signature of L will be then the pair of integers (l(+), l(−)). A lattice is positive definite if
l(−) = 0, similarly it is negative definite if l(+) = 0, while it is indefinite if l(+), l(−) ̸= 0. We

now give some examples of lattices which will appear in the next chapters.

Example 1.3. Let k be a non-zero integer, then we denote by ⟨k⟩ the rank one lattice L = Z e
with bilinear form (e, e) = k.

Example 1.4. If L is a lattice, for every non-zero integer k we denote by L(k) the lattice obtained
by taking the same Z-module and bilinear form:

(v, w)L(k) := k(v, w)L

for every v, w ∈ L.
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Example 1.5. Let U denote the hyperbolic lattice, i.e., the unique unimodular lattice of rank 2
and signature (1, 1). Its Gram matrix is the following:(

0 1
1 0

)
.

Example 1.6. We denote by E8 be the even unimodular lattice of signature (8, 0) whose Gram
matrix is the following: 

2 −1
−1 2 −1

−1 2 −1 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 2
−1 2


.

Equivalently, E8 is represented by the following Dynkin diagram

α1

α8

α2 α3 α4 α5 α6 α7

,

where {α1, . . . , α8} is a Z-basis of E8 and the bilinear form is described as follows:

• (αi, αi) = 2 for every i = 1, . . . , 8;

• (αi, αj) = 0 if the nodes αi and αj in the diagram are not linked;

• (αi, αj) = −1 if the nodes αi and αj in the diagram are linked.

Example 1.7. We denote by E8(−1) be the lattice obtained by multiplying by −1 the Gram
matrix of E8, i.e., the lattice whose Gram matrix is the following:

−2 1
1 −2 1

1 −2 1 1
1 −2 1

1 −2 1
1 −2 1

1 −2
1 −2


. (1.7.1)

It is an even unimodular lattice of signature (0, 8).

Remark 1.8. In the same way of Example 1.6 we can associate to any Dynkin diagram of type
ADE a positive definite lattice. Therefore, in the following chapters, we will denote byAn,Dn and
En the lattices associated with the respective Dynkin diagrams.
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If L and L′
are two lattices with bilinear forms (−,−) and (−,−)′ respectively, we call

morphism of lattices φ : L → L′
a morphism of Z-modules such that for every l1, l2 ∈ L we

have (l1, l2) = (φ(l1), φ(l2))
′
. Note that morphisms between two non-degenerate lattices are

always injective. We say that a lattice L is primitively embedded in a lattice L′
if there is a

morphism φ : L→ L′
such that φ(L) is a primitive sublattice of L′

. An isometry is a bijective

morphism of lattices. The group of isometries of a lattice to itself is denoted by O(L).

1.1 Discriminant group and primitive embeddings

From now on, L will be a non-degenerate lattice. A fundamental tool in lattice theory is the

discriminant group associated to a lattice L. In order to define it, we need to introduce the

dual of a lattice L, which is L∨ := HomZ(L,Z). Consider the following morphism of lattices

ϕ : L ↪→ L∨, v 7→ (v, · ).

Since the bilinear form is non-degenerate, ϕ is injective. We then obtain an isomorphism

ϕQ : L⊗Q ∼−→ L∨ ⊗Q .

The restriction of ϕ−1
Q to L∨

gives an embedding L∨ ↪→ L⊗Q, which characterizes the dual

L∨
as

L∨ = {u ∈ L⊗Z Q | (u, v) ∈ Z for every v ∈ L}.

We now see how to obtain a basis for the dual L∨
. Let B = {v1, . . . , vn} be a basis of L and

letM be the Gram matrix associated to B. If B∨ = {v∨1 , . . . , v∨n} is the dual basis of B, then
the matrix which represents ϕ in the basis B and B∨

is matB,B∨(ϕ) =M . SinceM is also the

matrix of ϕQ we have

matB∨,B(ϕ
−1
Q ) =M−1.

Moreover, ϕ−1
Q represents the embedding L∨ ↪→ L ⊗ Q, so the columns ofM−1

give a basis

of L∨
.

Lemma 1.9 (Smith normal form). Let L be a non-degenerate lattice. Then there exists a basis
{v1, . . . , vn} of L and non-zero integers λ1, . . . , λn ∈ Z such that { v1λ1 , . . . ,

vn
λn

} is a basis of
L∨ ⊂ L⊗Q.

Since L ⊂ L∨
is a subgroup of maximal rank, the quotient

DL := L∨/L

is a finite group: we call it the discriminant group of L. We denote by discr(L) the order of the
discriminant group: this coincides with | det(G)|, where G is a Gram matrix of L. Note that
if DL is trivial, then L is unimodular. We say that the lattice L is p-elementary if

DL
∼=
(

Z
pZ

)⊕k
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for a prime number p and a non-negative integer k.

In general the dual L∨
is not a lattice: the bilinear form (−,−)Q obtained on L∨

by extending

Q-bilinearly the bilinear form (−,−) of L can take non-integer values. Note that, for every

x1, x2 ∈ L∨
and l1, l2 ∈ L we have

(x1 + l1, x2 + l2)Q = (x1, x2)Q + (x1, l2)Q + (l1, x2)Q + (l1, l2)Q

≡ (x1, x2)Q (mod Z).

Hence DL is equipped with a so-called finite bilinear form

bL : DL ×DL → Q /Z, (x̄, ȳ) 7→ (x, y)Q.

Moreover, the Q-extension of the quadratic form (−)2 : L → Z induces a quadratic form on

DL modulo Z:
qL : DL → Q /Z, x̄ 7→ (x)2Q.

If L is an even lattice, we can say more: for every x ∈ L∨
and l ∈ L we have

(x+ l)2Q = (x)2Q + (l)2Q + 2(x, l)Q ≡ (x)2Q (mod 2Z)

Thus, if L is even, DL is equipped with a so-called finite quadratic form

qL : DL → Q /2Z, x̄ 7→ (x)2Q.

Both the finite bilinear form and the finite quadratic form of DL can be represented by a

matrix: if {xi}i is a system of independent generators of DL, then:

• the matrix MbL = (ai,j) with ai,j = bL(xi, xj) ∈ Q /Z represents the finite bilinear

form bL;

• the matrixMqL = (ai,j) with

ai,j =

{
bL(xi, xj) ∈ Q /Z if i ̸= j

qL(xi) ∈ Q /2Z if i = j

represents the finite quadratic form qL.

We conclude this part by recalling some properties of primitive embeddings.

Definition 1.10. Two primitive embeddings i : S ↪→ L, j : S ↪→ L′ define isomorphic primitive
sublattices if there exists an isomorphism φ : L→ L′ such that φ(i(S)) = j(S).

The following theorem is originally found in [Nik80, Proposition 1.15.1], but we prefer to

give its reformulation in [CC20, Theorem 2.5].

Theorem 1.11 (Proposition 1.15.1 in [Nik80]). Let S be an even lattice of signature (s(+), s(−))
and discriminant form qS . Then all the primitive embeddings of S ↪→ L, for L the unique even
lattice of invariants (m(+),m(−), qL), are determined by quintuples Θi := (HS , HL, γ, T, γT )
such that:
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• HS is a subgroup of DS , HL is a subgroup of DL and γ : HS → HL is an isometry
qS |HS

≃ qL|HL
;

• T is a lattice of signature (m(+)−s(+),m(−)−s(−)) and discriminant form qT = (−qS⊕
qL)|Γ⊥/Γ, with Γ ⊂ DS⊕DL the graph of γ and Γ⊥ the orthogonal complement of Γ with
respect to the form (−qS)⊕ qL which has values in Q/Z;

• γT ∈ O(qT ).

In particular, T is isomorphic to the orthogonal complement of ι(S) inL. Moreover, two quintuples
Θ and Θ′ define isomorphic primitive sublattices if and only if µ̄(HS) = H ′

S for µ ∈ O(S) and
there exist ϕ ∈ O(qL), ν : T → T isomorphism such that γ′ ◦ µ̄ = ϕ ◦ γ and ν̄ ◦ γT = γ′T ′ ◦ ν̄.

1.2 Overlattices

Let L and R be two lattices such that L ⊂ R and rk(L) = rk(R). We say that R is an

overlattice of L. The discriminant groupDL of a lattice L plays an important role in the study

of the overlattices of L. Note that if R is an overlattice of L, then L has finite index in R. We

have the following lemma.

Lemma 1.12. Let L be a lattice and R ⊃ L be an overlattice. Then

[R : L]2 =
discr(L)
discr(R) =

|DL|
|DR|

.

Proof. Consider the following inclusions

L→ R→ R∨ → L∨,

where the composition is the canonical inclusion of L in its dual L∨. Let BL and BR be two
basis of L andR respectively, andML andMR be the Gram matrices associated. LetW be the
matrix which represents the inclusion L ↪→ R in the basis BL and BR. Then the transposed
matrixW t represents the inclusion R∨ ↪→ L∨, soML = W tMRW . Since |det(W )| is equal
to the index [R : L], and | det(MR)| and |det(ML)| are by definition the discriminants of R
and L respectively, we have

[R : L]2 =
discr(L)
discr(R) =

|DL|
|DR|

,

as we wanted.

In particular we state an immediate corollary.

Corollary 1.13. Let R ⊃ L be an overlattice of a lattice L andMR,ML their respective Gram
matrices. Then, det(ML)

det(MR) is a perfect square.

6



Let L be a lattice. We say that a subgroup G ⊂ DL is isotropic if

bL(g, g
′) ≡ 0 (mod Z)

for every g, g′ ∈ G. The following result gives a relation between the overlattices of L and the

isotropic subgroups of DL.

Proposition 1.14 (Proposition 1.4.1, Item (a), in [Nik80]). Let L be a lattice with discriminant
group DL. For every overlattice R ⊃ L, let HR be the subgroup HR := R/L ⊂ DL. Then the
following is a bijection.

{overlattices of L} ↔ {isotropic subgroups of DL},
R 7→ HR.

Proof. We refer to [Nik80, Proposition 1.4.1,(a)]. Let π : L∨ → L∨/L = DL be the natural
projection. There is a bijection between the set of groupsR such that L ⊂ R ⊂ L∨ and the set
of subgroups ofDL, obtained by sendingR toHR := π(R). Now, π(R) is isotropic if and only
if bL(x, y) ≡ 0 for every x, y ∈ R, i.e., bQ(x, y) ∈ Z for every x, y ∈ R. This holds if and only
ifR is a lattice. We conclude that the bijection above gives a bijection between the overlattices
of L and the isotropic subgroups of DL.

So, in order to determine all the overlattices of a lattice L, it is sufficient to find the sub-

groups of the discriminant groupDL which are isotropic. SinceDL is a finite group, this shows

that a lattice has a finite number of overlattices.

2 Complex Reflection Groups and Springer Theory

In this section we will recall some notions about reflection groups and Springer theory. A

deeper reference for this is [Bro10] or [BS21, Section 3].

Let V be a complex vector space of dimC(V ) = n and W ⊂ GLn(V ) a finite subgroup of

the complex general linear group of degree n. Given an element g ∈ GLn(V ) we define the
subset V g := {v ∈ V | g(v) = v} ⊂ V of the elements fixed by g. Moreover we define also

the set

Ref(W ) := {s ∈W | dim(V s) = n− 1} .

Definition 1.15. A finite subgroupW ⊂ GLn(V ) is called a complex reflection group ifW =
⟨Ref(W )⟩.

A classic result, stated e.g. in [Bro10, Theorem 4.1], is the following

Theorem (Serre–Chevalley, Shepherd–Todd). Given a complex reflection groupW acting on a
complex vector space V of dimC(V ) = n then there exist f1, . . . , fn homogeneous polynomials
of degree d1, . . . , dn such that the invariant ring by the action ofW is given by

C[V ]W = C[f1, . . . , fn].

7



The family {f1, . . . , fn} is not unique (up to permutations) but the degrees {d1, . . . , dn}
are uniquely determined (up to permutations) by V andW . There exists another family which

is uniquely determined (up to permutations) by V andW . Indeed, a result by Solomon [Bro10,

Theorem 4.44 and Section 4.5.4] implies that the gradedC[V ]W -module ofW -invariant deriva-

tions ofC[V ] admits a homogeneousC[V ]W -basis (g1, . . . , gn)whose degrees (d
∗
1, . . . , d

∗
n) are

called co-degrees. The co-degrees are invariant up to permutation.

Now, in order to state the results that we need from Springer theory, we need to define the

following numbers for any e ∈ N

λ(e) := | {1 ≤ i ≤ n | e divides di} |

λ∗(e) := | {1 ≤ i ≤ n | e divides d∗i } |.

Moreover, if the primitive e-th root of the unity ζe is a eigenvalue for the action of w ∈ W ,

we set V (w, ζe) to be the eigenspace of V with respect to the action of w relative to ζe. Then,
putting together various results from [LS99, Theorem C] and [Spr74, Theorem 3.4, Theorem

4.2, Theorem 6.2], we state the following

Theorem 1.16 (Springer, Lehrer-Springer). Let W be a complex reflection group acting on V .
Then for every e ∈ N it holds λ(e) = maxw∈W dim(V (w, ζe)). If, moreover, e is such that
λ(e) = λ∗(e), then the elements we which attain the maximum define a unique conjugacy class
inW .

Let us explain the results in this section with a couple of examples.

2.1 Isometries of order 3 on D4

From classical theory, that can be found e.g. in [CS99, Chapter 4, Section 7], the group of

lattice isometries of D4 is O(D4) ≃ G28 ≃ W (F4) =: W whereW (F4) denotes the Coxeter
group F4 and G28 is the 28-th group in the Shepherd–Todd classification. If we consider its

action on V = C4
it is a complex reflection group. In order to compute the degrees and co-

degrees one can use a computer algebra program like MAGMA or refer to [Bon21]. In any case

we have that the degrees are

(d1, d2, d3, d4) = (2, 6, 8, 12)

and the co-degrees are

(d∗1, d
∗
2, d

∗
3, d

∗
4) = (0, 4, 6, 10).

So we can look at λ(3) = maxw∈W dim(V (w, ζ3)) = 2 = λ∗(3). Suppose that this maxi-

mum is attained in w3 ∈ W = W (F4) ⊂ GL4(V ). Therefore w3 is an integer matrix which

admits ζ3 as eigenvalue whose eigenspace is 2-dimensional, thus the same is true also for ζ̄3.
Moreover, as the triple (W,V, 3) satisfies the hypothesis of Theorem 1.16, w3 is unique up to

conjugation. Wrapping up everything, we proved that there exists only one isometry of D4,

up to conjugation, of order three and without fixed points (the last statement comes from the

fact that the only eigenvalues are ζ3 and ζ̄3).
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2.2 Isometries of order 3 on E6

Here we want to apply again the same idea. Lattice isometries ofE6 are justO(E6) ≃ Z/2Z×
G35 ≃ Z/2Z×W (E6) (again it is a classical result which can be found on [CS99, Chapter 4,

Section 8.3]) with the same convention as above. W := W (E6) acts as a complex reflection

group on V = C6
. The degrees are

(d1, d2, d3, d4, d5, d6) = (2, 5, 6, 8, 9, 12)

and the co-degrees are

(d∗1, d
∗
2, d

∗
3, d

∗
4, d

∗
5, d

∗
6) = (0, 3, 4, 6, 7, 10).

Now λ(3) = maxw∈W dim(V (w, ζ3)) = 3 = λ∗(3) and we assume that w3 attains the maxi-

mum. With the same argument as above we obtain thatw3 has ζ3 and ζ̄3 as triple eigenvalues.
Therefore we proved that up to conjugation (and sign) there exists only one order three isom-

etry without fixed points on E6.
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Chapter 2

Irreducible holomorphic symplectic
manifolds

“Robando flores a la luz de la luna
Pido perdón a diestra y siniestra
Pero no me declaro culpable.”

- Nicanor Parra, Yo Pecador

One of the classes of manifolds in algebraic geometry which has encountered a growing inter-

est over the last forty years is surely the one of irreducible holomorphic symplectic manifolds.

There exist many reasons why they have been so studied, one of them is surely the fact that

they are a distinguished class of manifolds having trivial first Chern class, by Theorem 2.2. In

this chapter we will give the basic definitions and first properties. There exists a vast multi-

plicity of good references which we used for this chapter; the main and most complete are

surely [Huy99] and[Deb22], but we used also the summary made in [Ber20].

1 An introduction to irreducible holomorphic symplectic man-
ifolds

1.1 Definition of IHS manifolds and first properties

We begin this section by writing the definition of the main object of our study. Recall that

given a manifoldX , we say that a holomorphic 2-form onX is symplectic if it has everywhere

maximal rank.

Definition 2.1. An irreducible holomorphic symplectic (from now on IHS) manifoldX is a com-
pact complex Kähler manifold which is simply connected and such that there exists a symplectic
2-form ωX such that H0(X,Ω2

X) = CωX .

Consider an IHS manifold X . The fact that X admits a symplectic 2-form has impor-

tant consequences. Primarily, it implies that X has even complex dimension, since the skew-
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symmetric form ωx on the tangent space TxX has maximal rank at every point x ∈ X , and

the rank of a skew-symmetric form is even.

Denote the canonical bundle ofX asKX , and let the dimension ofX be 2n. AsωnX does not

vanish onX , we conclude that the canonical bundle is trivial, withKX
∼= OX . Consequently,

the first Chern class of X is trivial.

As the form ω : TX×TX → C⊗OX has maximal rank, we find an isomorphism between

the tangent bundle TX and the cotangent bundle Ω1
X .

IHS manifolds hold a distinctive position among manifolds for which the first Chern class

is zero. Beauville showed that these manifolds naturally arise as fundamental components of

manifolds with this property.

Theorem2.2 (Beauville-Bogomolov). LetM be a compact Kählermanifold such that c1(M)R =
0. Then there exists a finite étale covering M̃ ofM in the form

M̃ = T ×
∏
i

Ci ×
∏
j

Xj ,

where T is a complex torus, Ci is a Calabi-Yau manifold for every i and Xj is an IHS manifold
for every j.

Proof. See [Bea83b, Theorem 2].

Several general results can be obtained for any IHS manifold, for example at the level of

cohomology. LetX be an IHSmanifold. It is a consequence of Definition 2.1 that h2,0(X) = 1.
Further, for a manifold of dimension dim(X) = 2n, the Hodge cohomologyHk,0(X) is given
by

Hk,0(X) =

{
C if k is even and k ≤ 2n

0 if k is odd

as referred to in Beauville’s work (see [Bea83b, Section 4, Proposition 3, Item ii)]). Moreover,

again by Definition 2.1, we deduce that theH1
is trivial by simple connectedness. In particular

this implies that the Picard groupPic(X) and the Néron–Severi groupNS(X) are isomorphic.

Through this identification, we consider the Picard group Pic(X) as a subgroup of the second
cohomology group H2(X,Z). The second cohomology group carries significant importance

in the study of IHS manifolds. The corresponding Hodge numbers for X are given by

1 h1,1(X) 1

Furthermore, due to the Universal Coefficient Theorem for cohomology, the second cohomol-

ogy group H2(X,Z) is torsion-free, as the simple connectedness of X yields H1(X,Z) = 0.
Indeed, we can say more:

Theorem 2.3. Let X be an IHS manifold of dimension 2n and whose second Betti number is
b2(X) ̸= 6. There exists a unique non-degenerate symmetric integral and non-divisible bilinear
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form (−,−) that endows H2(X,Z) with the structure of a lattice of signature (3, b2(X) − 3)
with the following property: there exists a positive rational number cX such that the equality∫

X
σ2n = cX(σ, σ)

n

holds for every σ ∈ H2(X,Z).
Moreover, let ω be a symplectic 2-form on X , then

(ω, ω) = 0 and (ω, ω̄) > 0.

Proof. See [Bea83b, Section 8, Theorem 5, Item a)− c)].

Definition 2.4. We refer to the bilinear form in Theorem 2.3 as the Beauville–Bogomolov–Fujiki
form (BBF form). Unless specified differently, a bilinear form (−,−) on H2(X,Z) for an IHS
manifoldX is understood to be the Beauville-Bogomolov-Fujiki form. When we discuss the lattice
structure of H2(X,Z), we refer to the structure given in Theorem 2.3. We will use cX to denote
the Fujiki constant for X .

Given that the orthogonal complement of H2,0(X) is H2,0(X) ⊕ H1,1(X), the Néron–

Severi group can be described as NS(X) = ω⊥ ∩H2(X,Z). For a projective manifoldX , the

Néron-Severi group thus forms a primitive sublattice ofH2(X,Z) with signature (1, b2(X)−
3).

We refer to the Néron–Severi group equipped with the restriction of the BBF form as the

Néron–Severi lattice or, equivalently, the Picard lattice. For two divisorsD1, D2 onX , (D1, D2)
denotes the product of the corresponding line bundles, i.e., (D1, D2) = (OX(D1),OX(D2)).

Definition 2.5. We refer to a line bundleL ∈ Pic(X) as primitive if it is primitive as an element
of the lattice NS(X).

The Kleiman projectivity criterion for surfaces can be generalized to IHS manifolds.

Theorem 2.6. Let X be an IHS manifold. Then, X is projective if and only if there exists a line
bundle D ∈ Pic(X) such that D2 > 0.

Proof. See [Huy99, Theorem 3.11]

Definition 2.7. For a projective IHS manifoldX , a ⟨k⟩-polarization onX is defined by choosing
a primitive ample line bundle L ∈ Pic(X) such that L2 = k. By the definition of the BBF form,
k is always strictly positive, since an ample class is also Kähler.

Finally, note that the morphism induced by a birational map preserves the BBF form.

Proposition 2.8. If f : X1 99K X2 is a birational map between IHS manifolds, then f restricts to
a biregular map f|U1

: U1 → U2, where Ui ⊆ Xi is open whose complement have codimension at
least two for i = 1, 2, and the map f∗ : H2(X1,Z) → H2(X2,Z), induced through the inclusion
of Ui in Xi, is a Hodge isometry. Moreover, f∗ does not depend on the choice of Ui.

Proof. See [O’G97, Proposition 1.6.2].

This result is important as the lattice structure on the second cohomology group is a crucial

tool for studying morphisms between IHS manifolds.
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1.2 Examples of IHS manifolds

Every example of an IHS manifold can yield an entire set of IHS manifolds due to the following

theorems. Let X denote an IHS manifold. Then [Huy99, Remark 1.12] states the following

using the result known as Bogomolov–Tian–Todorov theorem (see [Bog78], [Tia87], [Tod89]).

Theorem 2.9. There exists a universal deformation family denoted as X → Def(X), where
Def(X) is smooth.

This family X → Def(X) is based on X, meaning that the fiber over 0 is isomorphic to

X. The Zariski tangent space of the universal deformation family at the point 0 ∈ Def(X) is
isomorphic toH1(X,TX) ∼= H1(X,ΩX). Since Def(X) is smooth, this implies that Def(X)
has dimension equal to h1,1(X).

Proposition 2.10. Assume that X → B is a smooth and proper family over an analytic base B
and that the fiberX0 over a point 0 ∈ B is an IHS manifold. Then, for every b ∈ B such thatXb

is Kähler, Xb is also an IHS manifold.

Proof. See [Bea83b, Proposition 9].

Corollary 2.11. Every fiber of the universal deformation family X → Def(X) is an IHS mani-
fold.

Proof. This is a direct consequence of Proposition 2.10 and the fact that, by [KS60, Theorem
15], any smooth deformation of a Kähler manifold is again a Kähler manifold.

We are now set to present some examples of IHS manifolds. If two IHS manifolds are

deformation equivalent, we say that they are of the same deformation type or in the same

family of deformations.

Note that IHS manifolds only appear in even dimensions. The first example we can find

of an IHS manifold is a classical one: the K3 surface. Even though we will not use much

about the geometry of K3 surfaces we want to give a brief description of them and some

of their properties as they are an easy approach to the world of IHS manifolds and many of

their features can be generalized to higher dimensions. Also, many conjectures and research

directions arise from their geometry.

Definition 2.12. A K3 surface is a smooth compact complex surface that is simply-connected
and possesses a trivial canonical bundle.

The definition of a 2-dimensional IHS manifold coincides with the definition of aK3 sur-
face. Indeed everyK3 surface is a Kähler manifold as proven in [Siu83].

Remark 2.13. All K3 surfaces are deformation equivalent, as described in [Huy16, Chapter 7,
Theorem 1.1].

Next, as exercise, we compute h1,1(Σ) for any K3 surface Σ. We can derive the other

Hodge numbers directly from the structure of the IHS manifold. Due to the triviality of the

canonical bundle, we apply Noether’s formula: e(Σ) = 12χ(OΣ), where e(Σ) represents the
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topological Euler characteristic of Σ, and χ(OΣ) is the holomorphic Euler characteristic given

by χ(OΣ) = h0,2 − h0,1 + 1 = 2. Thus, we find e(Σ) = 24 and the second Betti number,

b2(Σ) = e(Σ) − 2 = 22. As, by definition of IHS manifold, H0(Σ,Ω2
Σ) is generated by a

symplectic form, we also find h1,1(Σ) = 20. The lattice H2(Σ,Z) has rank 22, and in this

case, the BBF form is the cup product.

Theorem 2.14. The second cohomology group with the BBF form can be shown to be isomorphic,
as an abstract lattice, to the unimodular lattice U⊕3 ⊕ E8(−1)⊕2.

Proof. For a detailed proof, please refer to [Huy16, Chapter 14, example 1.4].

So, we are able to give the following definition.

Definition 2.15. The abstract rank-22 unimodular lattice, LK3 = U⊕3⊕E8(−1)⊕2, is referred
to as the K3 lattice.

The first examples of IHS manifolds in higher dimensions were provided by Fujiki in di-

mension 4, and then extended to all even dimensions by Beauville [Bea83b]. The majority of

the results we are going to cite can be found in loc.cit.. Our interest will be predominantly in

one family of deformations constructed as follows. Let Σ be a K3 surface; for our purposes,

we can restrict to the case where Σ is projective.

Definition 2.16. We define theHilbert scheme ofn points onΣ as the variety that parameterizes
zero-dimensional subschemes (Z,OZ) of length n (i.e., dimOZ = n) on the surface Σ, denoted
by Σ[n]. Oftentimes we will denote it also by Hilbn(Σ). We will refer to the Hilbert scheme Σ[2]

of two points on Σ also as the Hilbert square of Σ.

This definition sometimes can bring, from our point of view, to a lack of geometricmeaning,

in the sense that it is not so clear how to generalize facts aboutK3 surfaces to Hilbert schemes

of points on them. In order to deal with this fact we can give another equivalent definition.

In line with [Bea83b, Section 6], we use the following notations:

• Σ(n)
stands for the variety of 0-cycles of degree n, defined as the quotient of Σn :=

n times︷ ︸︸ ︷
Σ× · · · × Σ by the symmetric group onn elements. Wewill refer to it alsowith Symn(Σ).

• We label the natural mapping associating each finite scheme with the corresponding

0-cycle (termed the Hilbert-Chow morphism) as ϵ : Σ[n] → Σ(n)
.

• We denote the locus of cycles in the form p1+ . . .+ pn such that there exists i ̸= j with
pi = pj , also called diagonal, as D ⊂ Σ(n)

.

Definition 2.17 (Alternative definition). Consider on Σn the action γ of the symmetric group
Sn on Z/nZ which permutes the factors. Then the quotient Σ(n) = (Σn)/Sn is singular on the
diagonal. The blow-up of Σ(n) along the diagonal is the Hilbert scheme Σ[n] of n points on Σ and
the blow-up morphism is identified with the Hilbert–Chow morphism.
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Example 2.18 (Hilbert square). There exists a nice way to characterize points on the Hilbert
square S[2] of a surface S. Indeed the support of a closed subscheme of length two ξ can either
consists of two points or one. If the support of ξ consists of two points p ̸= q then ξ is outside
the preimage of the diagonal under the Hilbert–Chow morphism and therefore it can be identified
with p+ q. If the support of ξ consists of one point p then it can be identified with the pair (p, v)
with v ∈ P(Tp(S)).

This characterization will be important to understand Chapter 4. The reason of this lies in

the following proposition.

Proposition 2.19. Let x ∈ X be a closed point of a k-scheme X . Then the set Z2
x of length two

subschemes supported only at x is in bijection with P(Tx(X)).

Proof. Wewant to construct the explicit bijection. Any element v ∈ Tx(X) defines amorphism
ϕv ∈ Homk(Spec(k[ϵ]/(ϵ

2)), X). So we define the morphism:

α : Homk(Spec(k[ϵ]/(ϵ
2)), X) → Z2

x

ϕv 7→ Zϕv

where Zϕv is the scheme theoretic image of ϕv , i.e. the smallest closed subscheme Zϕv ⊂ X
through which ϕv factors. This is a subscheme of X supported at x. If v is not the zero vector
then the stalk at x is given by OX,x/ ker((ϕv)x) ≃ k[ϵ]/(ϵ2) which is a subscheme of length
two. Moreover, consider ϕv, ϕw ∈ Homk(Spec(k[ϵ]/(ϵ

2)), X). If there exists an isomorphism
of k[ϵ]/(ϵ2) commuting with ϕv and ϕw, then they define the same subscheme in X . But the
isomorphisms of k[ϵ]/(ϵ2) are given by any multiplication of ϵ by a non-zero element c ∈ k∗.
Therefore, the morphism α induces a morphism ᾱ : P(Tx(X)) → Z2

x .
Viceversa, take Z ∈ Z2

x defined by the ideal IZ and consider OZ,x ≃ OX,x/IZ,x. This is
a length two module over the local ring OX,x, hence there exists a short exact sequence of
k(x)-vector spaces:

0 k(x) OX,x/IZ,x k(x) 0.

Then OX,x/IZ,x ≃ k(x) ⊕ k(x). The right side of the equivalence inherits a multiplication
(a, b) · (c, d) = (ab, ad + cb). Now, we can compose the projection OX,x → OX,x/IZ,x ≃
k(x)⊕ k(x) with the map (a, b) 7→ a+ ϵb to obtain the desired tangent vector. Note that the
considerations done in the first half of the proof about the zero vector and proportional vectors
apply also here.

By Fogarty’s theorem [Ber12, Theorem 3.1], we know that the Hilbert scheme Σ[n]
is

smooth, connected, and of dimension 2n. Additionally, the singular locus of Σ(n)
is the di-

agonalD, and the Hilbert–Chow morphism ϵ is a birational map acting as a desingularization

of Σ(n)
. We also know that E = ϵ−1(D) is an irreducible divisor on Σ[n]

. This implies that a

generic point on Σ[n]
can be viewed as an n-tuple of non-ordered distinct points p1+ . . .+ pn

on Σ.
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Theorem 2.20. For any projective K3 surface Σ and for any n ≥ 2, the Hilbert scheme of n
points on Σ is a projective IHS manifold.

Proof. See [Bea83b, Section 6, Theorem 3].

Remark 2.21. It should be remarked that this result, for n = 2, is due to Fujiki in [Fuj83].

Consider again a projectiveK3 surface Σ and n ≥ 2. There is a natural primitive embed-

ding of lattices

i : H2(Σ,Z) → H2(Σ[n],Z)

such that H2(Σ[n],Z) = i(H2(Σ,Z)) ⊕ Zδ as lattices, with 2δ = E, according to Beauville

([Bea83b, Proposition 6]). Additionally, δ2 = −2(n − 1) implies H2(Σ[n],Z) ∼= U⊕3 ⊕
E8(−1)⊕2 ⊕ ⟨−2(n− 1)⟩.

As for the Picard group of the Hilbert scheme of n points Σ[n]
, the lattice inclusion i es-

tablishes an identification

Pic(Σ[n]) = i(Pic(Σ))⊕ Zδ.

In particular, the Picard rank of the Hilbert scheme of n points on aK3 surface Σ is always at

least two.

Remark 2.22. By Theorem 2.6, if Σ is projective then Σ[n] is projective as well. However, for any
line bundle L ∈ Pic(Σ), the corresponding line bundle i(L) on Σ[n] is never ample for n ≥ 2, as
it has zero product with the class of the exceptional divisor E, which means (i(L), E) = 0.

Definition 2.23. For any n ≥ 2, the abstract lattice LK3[n] = U⊕3⊕E8(−1)⊕2⊕⟨−2(n− 1)⟩
is known as the K3[n]-lattice.

It should be noted that for any n ≥ 2, as h1,1(Σ[n]) = h1,1(Σ) + 1, the space Def(Σ) can
be viewed as a proper, closed subspace of codimension one in Def(Σ[n]). This represents IHS
manifolds ofK3[n]-type that are Hilbert schemes of a deformation of Σ. Consequently, a very
general IHS manifold of K3[n]-type is not isomorphic to the Hilbert scheme of n points on a

K3 surface, as indicated by [Bea83b, Theorem 6].

Lemma 2.24. The Fujiki constant for any IHS manifoldX ofK3[n]-type is given by cX = (2n)!
n!2n .

Proof. See [Bea83b, Section 9] for details.

The previously mentioned examples, including K3 surfaces and IHS manifolds of K3[n]-
type where n ≥ 2, illustrate a set of IHS manifold examples for every even dimension. We list

here the other known deformation families of IHS manifolds.

• Generalized Kummermanifolds, [Bea83b, Section 7] - These exist in every even dimension.

If X represents a generalized Kummer manifold and dimX = 2, then X is a Kummer

surface, i.e. a K3 surface defined by blowing up the singularities of the quotient of a

torus by {±1}. For dimX > 2, the second Betti number of X is b2(X) = 7, hence X
is not of K3[n]-type. We define an IHS manifold as of Kummer-type if it is deformation
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equivalent to a generalized Kummer manifold. For the sake of completeness we sketch

here the construction. Let A be a complex two-dimensional torus and n ≥ 1 an integer.

ThenHilbn+1(A) is holomorphic symplectic, but it is not an IHS manifold since it is not

simply connected. Then we consider the summation morphism

s : Hilbn+1(A) → A

[(Z,OZ)] 7→
∑
p∈A

l(OZ,p)p

and we define Kn(A) := s−1(0), where 0 ∈ A is the zero-point of the torus. The fiber

Kn(A) is then an IHS manifold of dimension 2n, as proved by Beauville in [Bea83b].

• O’Grady’s example in dimension 6, [O’G03] - This particular example only occurs in di-

mension 6. An X in this family possesses a second Betti number b2(X) = 8, therefore,
it is neither ofK3[3]-type nor of Kummer-type.

• O’Grady’s example in dimension 10,[O’G99] - This specific example exists only in dimen-

sion 10. AnX within this family has a second Betti number b2(X) = 24, indicating that
it is neither ofK3[5]-type nor of Kummer-type.

Moreover, the lattice H2(X,Z) is a deformation invariant and in literature there can be

found an explicit description for each example (see e.g. [Deb22]) , therefore we will say that

an IHS manifoldX is of type L ifH2(X,Z) ≃ L, furthermore assuming that the deformation

type is fixed as one of the above.

Remark 2.25. There exists no general proof of the fact that if H2(X,Z) ≃ H2(Y,Z) ≃ L, for
X , Y IHS manifolds and L a lattice, then X ∼def Y . Nevertheless, these lattices are different for
every family of deformations currently known.

2 Moduli spaces and period maps

2.1 Marked IHS manifolds and monodromy operators

An essential characteristic of K3 surfaces is the existence of a Torelli theorem for them, as

articulated in the following theorem.

Theorem 2.26 (Global Torelli theorem forK3 surfaces). TwoK3 surfaces S and Σ are isomor-
phic if and only if there exists a Hodge isometry H2(S,Z) → H2(Σ,Z).
Moreover, for any Hodge isometry f : H2(S,Z) → H2(Σ,Z), there exists an isomorphism
f̃ : Σ → S such that f̃∗ = f if and only if f sends a Kähler class on S to a Kähler class on
Σ. If such f̃ exists it is unique.

Proof. For the proof see [BR75].

This theorem marks a milestone in the field of IHS manifolds, providing significant im-

petus to explore analogous outcomes in higher dimensions. As we will show, these higher-

dimensional parallels do exist, but their formal expressions are anything but straightforward.
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This complexity is particularly highlighted in the flawed, oversimplified version of the Torelli

theorem for higher dimensions, an error made evident through Namikawa’s counterexample

in [Nam02].

Consider an IHS manifold X of type L.

Definition 2.27. A marking on X is an isometry η : H2(X,Z) → L. A marked IHS manifold
is a pair (X, η), where X is an IHS manifold together with a marking η : H2(X,Z) → L on X .
Two marked IHS manifolds (X1, η1) and (X2, η2) are isomorphic if there exists an isomorphism
f : X1 → X2 such that η2 = η1 ◦ f∗.

Let (X, η) be a marked IHS manifold, and consider again the universal deformation family

π : X → Def(X). We can extend the marking η to the family X , in the sense that there exists

a family of markings (Fb : Xb → L)b∈B such that F0 = η, see [Kod86, Theorem 2.4]. Then we

can define a local period map

P : Def(X) → P(L)
b 7→ [Fb(H

2,0(Xb))].

Clearly P(0) = [η(H2,0(X))].

Definition 2.28. We call period domain the analytic subvariety

Ω = {[x] ∈ P(L⊗ C)| x2 = 0, (x, x̄) > 0}.

It is an open subvariety (in the analytic topology) on a quadric hypersurface in P(L⊗ C).

Remark 2.29. The image of P is contained in Ω by the properties of BBF form, see Theo-
rem 2.3. We call period point of (X, η) the image P(0).

Theorem 2.30 (Local Torelli theorem). Let (X, η) be a marked IHS manifold; the local period
map P : Def(X) → Ω is a local isomorphism.

Proof. See [Bea83b, Section 8 Theorem 5, Item b)].

In order to move to the global case we need the definition of parallel transport operator.

These isometries play a key role in the theory of IHS manifolds.

Definition 2.31 ([Mar11, Definition 1.1]). Let X1, X2 be IHS manifolds. An isomorphism f :
H2(X1,Z) → H2(X2,Z) is said to be a parallel transport operator if there exist

• a smooth and proper family π : X → B of IHS manifolds over an analytic base B,

• bi ∈ B, for i = 1, 2, such that there exists ψi : Xi
∼−→ Xbi isomorphisms.

• a continuous path γ : [0, 1] → B with γ(0) = b1, γ(1) = b2
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such that f is induced, through the isomorphisms ψi, by the parallel transport in the local system
R2π∗Z along γ.
Given an IHSmanifoldX , amonodromy operator is a parallel transport operator f : H2(X,Z) →
H2(X,Z).

The BBF form is topological, hence invariant under parallel transport. Therefore, every par-

allel transport operator is a lattice isometry. Moreover, we can see that, given two intersecting

families of deformation, they can be glued to obtain a third family of deformations, hence the

composition of two parallel transport operators is a parallel transport operator; in particular

monodromy operators form a subgroup insideO(H2(X,Z)), which we callmonodromy group
and we denote byMon2(X).

Definition 2.32. A Hodge monodromy operator is a monodromy operator in O(H2(X,Z))
which is a Hodge isometry; we denote byMon2Hdg(X) the subgroup of such operators.

Proposition 2.33. Let f : X 99K Y be a birational map between IHS manifolds. Then f∗ :
H2(Y,Z) → H2(X,Z) is a parallel transport operator.

Proof. See [Huy04, Lemma 2.4]

In particular, this means that the group of birational automorphisms of an IHS manifold

X acts on H2(X,Z) as a group of monodromy operators.

Definition 2.34. Let (X, η) be a marked IHS manifold of type L. We denote by Mon(L) the
subgroup of O(L) given by

η−1 ◦Mon2(X) ◦ η.

We define the coarse moduli space of marked IHSmanifolds of typeL as the set of marked

manifolds (X, η), modulo the equivalence relation given by isomorphism of marked mani-

fold. We call it ML. By the local Torelli theorem, the universal deformations can be used

as local charts for the moduli space ML. More specifically, by [Huy12, Proposition 4.3], for

any marked pair (X, η) there exists a holomorphic embedding Def(X) ↪→ ML, identifying

Def(X)with an open neighbourhood of the point (X, η) ∈ ML. The maps P : Def(X) → Ω.

Theorem 2.35. The moduli spaceML of marked IHS manifolds which are deformation equiva-
lent to X is a smooth non-Hausdorff complex manifold.

Proof. See [Huy04, Section 3.1].

Remark 2.36. Every two marked IHS manifolds (X1, η1) and (X2, η2) are deformation equiv-
alent if and only if they are in the same connected component of ML. In particular, they are
in the same connected component if and only if η−1

2 ◦ η1 is a parallel transport operator, see
[Mar11, Lemma 7.5]. This also implies that the number of connected components of ML is
equal to [O(H2(X,Z)) : Mon2(X)].

Then we can define a global period map

P : ML → Ω.
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Theorem 2.37 (Surjectivity of the period map). Let M0
L be a connected component of ML.

Then the restriction toM0
L of the period map is surjective.

Proof. See [Huy99, Theorem 8.1].

The global Torelli theorem generalizes for every deformation type of IHS manifolds in the

following way. The two parts of the statement were proved respectively by Huybrechts and

Verbitsky.

Theorem 2.38 (Global Torelli theorem for marked IHS manifolds). For every two inseparable
points (X1, η1) and (X2, η2) inML, the IHS manifolds X1 and X2 are bimeromorphic.
Let M0

L be a connected component of ML, and call P0 the restriction to M0
L of the period map:

for every p ∈ ΩL, the fiber P−1
0 (p) consists of pairwise inseparable points.

Proof. See [Huy99, Theorem 4.3] for the first part and [Ver13, Theorem 1.16] for the second
part.

In [Mar11] the author combines the global Torelli theorem with results on the Kähler cone

of irreducible holomorphic symplectic manifolds to state a Hodge-theoretic version of the

global Torelli theorem.

Theorem 2.39 (Hodge theoretic Torelli Theorem [Mar11, Theorem 1.3]). LetX and Y be IHS
manifolds of the same deformation type. Then:

• X and Y are bimeromorphic, if and only if there exists a parallel transport operator f :
H2(X,Z) → H2(Y,Z) which is an isomorphism of integral Hodge structures.

• Let f : H2(X,Z) → H2(Y,Z) be a parallel transport operator, which is an isomorphism
of integral Hodge structures. There exists an isomorphism f̃ : X → Y inducing f if and
only if f maps some Kähler class on X to a Kähler class on Y .

This last result justifies the use of lattice theory to study automorphisms on an IHS man-

ifold. In order to do so, it is needed a characterization of the group of monodromy oper-

ators inside the group of isometries of the second cohomology group of the manifold. We

define the positive cone of an IHS manifold X to be the connected component CX of the set{
x ∈ H1,1(X,R) | x2 > 0

}
containing a Kähler class and its Kähler cone KX ⊂ H1,1(X,R)

as the cone consisting of Kähler classes.

2.2 Chamber decomposition

Here we give some important notions useful to the construction of a moduli space endowed

with a period map which will be crucial for the following chapters. The purpose of this section

is not to give a complete overview of the chamber decomposition. For a more complete review

see [Mar11] and [AV15].

Let X be a projective IHS manifold whose Néron–Severi group is NS(X).
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Remark 2.40. For x, y ∈ H1,1(X,R) with x ∈ CX and y2 > 0, the element y belongs to the
positive cone if and only if (x, y) > 0.

Definition 2.41. We call prime exceptional divisor an effective divisor E which is reduced, ir-
reducible and such that E2 < 0, and we denote by PX the set of classes of such divisors.

• The fundamental exceptional chamber of X is the cone

FEX = {x ∈ CX | (x,E) > 0 for every E ∈ PX}.

• An exceptional chamber of the positive cone CX is a subset in the form g(FEX) for some
monodromy operator g ∈ Mon2Hdg(X).

By its definition the fundamental exceptional chamber is an exceptional chamber within

the structure of CX . Exceptional chambers, by definition, are also cones, and given thatFEX is

open, these chambers are open too. If two exceptional chambers have non-empty intersection

then they coincide by [Mar11, Theorem 6.18, Item 2)].
Moreover, a parallel transport operator, provided it respects the Hodge decomposition,

maps one exceptional chamber to another. The same is true for monodromy operators, and

it is articulated in [Mar11, Lemma 5.12, Item 1)]. Therefore, the group Mon2Hdg(X), by its

definition, acts transitively on the set of exceptional chambers.

Furthermore, the action of a Hodge monodromy operator on the set of exceptional cham-

bers can provide insightful information regarding whether the operator originates from a bi-

rational map of X into itself.

Proposition 2.42. Given a monodromy operator f ∈ Mon2Hdg(X), there exists a birational
morphism f̃ such that f̃∗ = f if and only if f∗(FEX) = FEX .

Proof. See [Mar11, Lemma 5.11, Item 6].

Given a Kähler class x on X , by definition of the BBF form x lies in one connected com-

ponent of the positive cone CX . Actually we can say more: since (x,E) > 0 for any effective

classE by the Nakai–Moishezon criterion, the Kähler coneKX is contained in the fundamen-

tal exceptional chamber. Hence the fundamental exceptional chamber FEX can be defined

also as the exceptional chamber containing a Kähler class.

Definition 2.43 ([AV15, Definition 1.13], [Mon15, Definition 1.2]). A monodromy birationally
minimal (MBM) class is a rational class δ ∈ H1,1(X) ∩H2(X,Q) of negative square such that
there exists a bimeromorphic map f : X 99K Y and a monodromy operator h ∈ Mon2(X) such
that the hyperplane δ⊥ ⊂ H1,1(X) ∩H2(X,R) contains a face of h(f∗(KY )). We denote with
∆(X) the set of integral MBM classes, which are also called wall divisors.

These classes are important as they give a wall and chamber structure to the positive cone

and moreover the following theorem holds.
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Theorem 2.44 ([AV15, Theorem 6.2], [Mon15, Proposition 1.5]). Given an IHSmanifoldX then
its Kähler cone KX is a connected component of CX \ H∆ withH∆ defined as:

H∆ :=
⋃

δ∈∆(X)

δ⊥ ⊂ H1,1(X) ∩H2(X,R).

Example 2.45 (Numerical characterization in the K3[2]-case). We point out that by [HT09,
Theorem 22] and [Mar13, Theorem 1.2] there exists a numerical characterization of the elements
in∆(X) in theK3[2]-type case. An effective class δ is a wall divisor on an IHS fourfold ofK3[2]-
type X if and only if satisfies one of the following:

• (δ, δ) = −2

• (δ, δ) = −10 and it has divisibility 2, i.e. (δ,H2(X,Z)) ∈ 2Z.

Moreover, we recall that by [Mar13, Proposition 1.5] an effective class δ is monodromy reflective,
i.e. the reflection by δ is an integral monodromy operator, if and only if (δ, δ) = −2.

Fixing a connected component inM◦
L ⊂ ML and considering a marking η, we can trans-

late these definitions to the lattice, e.g. ∆(L) will be the set consisting of elements η(δ) with
δ a wall divisor for (X, η) ∈ M◦

L. We also define CL := {x ∈ L⊗ R | (x, x) > 0} and, given

again (X, η) ∈ M◦
L, the monodromy group of L isMon2(L) := η ◦Mon2(X) ◦ η−1

.

Definition 2.46. The Kähler-type chambers of the positive cone CX are the connected compo-
nents of

CX \
⋃

δ∈∆(X)

δ⊥.

By definition, Kähler-type chambers are open and they coincide if their intersection is non-

empty. A parallel transport operator that respects the Hodge decomposition sends a Kähler-

type chamber onto another Kähler-type chamber, see [Mar11, Lemma 5.12, Item 2)].

Now we introduce the definition of some convex cones inside NS(X)⊗ R ⊆ H1,1(X,R);
those two vector spaces are not in general equal. A movable line bundle is a line bundle on X
that admits a positive multiple whose base locus has codimension at least 2.

Definition 2.47. To simplify the notation, we denote by Pos(X) the intersectionNS(X)R ∩CX .

• The movable cone Mov(X) ⊆ Pos(X) is the convex cone generated by classes of movable
line bundles on X .

• The nef cone Nef(X) ⊆ Mov(X) is the closed convex cone generated by classes of nef line
bundles on X .

• The ample cone A(X) ⊆ Nef(X) is the convex cone generated by classes of ample line
bundles on X .
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Remark 2.48. If X is projective and has Picard rank one, all those cones are the same, since
NS(X) is generated by a single ample class in this situation. In general, the ample cone is open
and it is the interior of the nef cone Nef(X), see [Laz04, Theorem 1.4.23].

Proposition 2.49. The interior of themovable coneMov(X)0 is the intersectionNS(X)R∩FEX .
There is a one-to-one correspondence between the set of exceptional chambers in the positive cone
CX and the set of the restrictions of the exceptional chambers to Pos(X).

Proof. See [Mar11, Lemma 6.22].

Remark 2.50. Proposition 2.49, together with Proposition 2.42, implies that a monodromy
operator is induced by a birational map if and only if it fixes the movable cone.

Also the decomposition in Kähler-type chambers of CX induces a decomposition onPos(X),
so that the chambers are the connected components of

Pos(X) \
⋃

δ∈∆(X)

δ⊥. (2.50.1)

The ample cone is the intersection KX ∩ Pos(X), so it can be defined as the chamber of

the movable cone containing an ample class. Moreover the movable cone Mov(X) can be

characterized as the connected component, in the decomposition of Pos(X), containing an

ample class.

Definition 2.51. We call exceptional (resp. Kähler-type) chambers of Pos(X) the restrictions
of the exceptional (resp. Kähler-type) chambers to Pos(X). The chambers of the movable cone are
then the Kähler-type chambers of Pos(X) which lie inside Mov(X). The walls of a chamber K
are the subspaces of Pos(X) which lie in the boundary ofK and are a maximal open subset of a
linear subspace, where maximality is taken with respect to inclusion.

Remark 2.52. By the definition of Kähler-type chambers and by Proposition 2.42, every Kähler-
type chamber inside FEX corresponds to a birational model Y ofX which is an IHS manifold,
and it is the image through a birational map g : X 99K Y of the Kähler cone of Y . Similarly,
every Kähler-type chamber inside Mov(X) corresponds to a birational model Y of X and is
the image through a birational map g : X 99K Y of the ample cone of Y .
Finally the closure of the union of the Kähler-type chambers inside the movable cone is equal
toMov(X): this is the description of the closure of the exceptional chamber ofX as the closure
of the birational Kähler cone of X given in [Mar11, Proposition 5.6].

2.3 Automorphisms of IHS manifolds

In this section we recall some results about automorphisms on IHS manifolds. Let (X, η) be a
marked IHS manifold of type L. Then Proposition 2.33 implies the existence of the following

maps:

Aut(X) →Mon2(X) → Mon2(L)

σ 7→ σ∗ 7→ η−1 ◦ σ∗ ◦ η.
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where the second map is an isomorphism by definition of Mon2(L). About the first one,

in general we can only say that the kernel is finite and deformation invariant using [Huy99,

Proposition 9.1]. On the other hand ifX is ofK3[n]-type, it is injective by [Bea83a, Proposition
10]. Moreover, we can compute its image using the Hodge theoretic Torelli Theorem 2.39.

Consider S a projective K3 surface with an automorphism σ ∈ Aut(S). Then we can

associate an automorphism which will be called natural automorphism σ[n] ∈ Aut(S[n]), for
any n ≥ 2. This is obtained by sending the zero-dimensional subscheme Z ⊂ S of length n
to the zero-dimensional subscheme σ(Z).
Equivalently, one can see this automorphism in the following way. There exists a natural

action of σ× · · ·×σ on Sn which passes to the quotient inducing an action σ(n) on S(n)
. The

diagonal is mapped to itself under σ(n), therefore it exists a unique automorphism σ[n] on S[n]

commuting with the blow-up of the diagonal (i.e. the Hilbert-Chow morphism).

The natural automorphism σ[n] is the identity on S[n]
if and only if σ is the identity on S, so

there is an injective morphism Aut(S) ↪→ Aut(S[n]). Moreover, (σ[n])∗(δ) = δ. But we can
say more.

Theorem 2.53. Let S be a projective K3 surface, and take n ≥ 2 an integer. An automorphism
σ ∈ Aut(S[n]) is natural if and only if it leaves globally invariant the exceptional divisor E,
introduced by the Hilbert–Chow morphism, on S[n].

Proof. See [BS12, Theorem 1].

A natural way to characterize automorphisms on an IHS manifold X is to look at their

action on the symplectic form ωX . Indeed, by the Hodge theoretic Torelli Theorem 2.39 an

automorphism σ ∈ Aut(X) induces a Hodge isometry in cohomology. Therefore it induces a

morphism

α : Aut(X) → C∗

σ 7→ α(σ)

in a way that σ∗(ωX) = α(σ) · ωX .

Remark 2.54. If we restrict the morphism α to a finite subgroup G < Aut(X) then α(G) is a
finite subgroup of C∗, so it is cyclic and generated by a root of unity.

Definition 2.55. An automorphismσ is said symplectic if its action is trivial onωX , i.e. σ∗C(ωX) =
ωX , and non-symplectic otherwise. If no non-trivial power of a non-symplectic automorphism is
symplectic then the automorphism is called purely non-symplectic.

Remark 2.56. If a non-symplectic automorphism has prime order then it is automatically purely
non-symplectic.

Definition 2.57. Let X be an IHS manifold. The transcendental lattice of X is the primitive
sublattice Tr(X) = NS(X)⊥ ⊂ H2(X,Z).
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Definition 2.58. Let σ ∈ Aut(X) be an automorphism of finite order on X . The invariant
lattice of σ is the primitive sublattice Tσ = H2(X,Z)σ∗

= {t ∈ H2(X,Z)| σ∗(t) = t} and the
coinvariant lattice of σ is the primitive sublattice Sσ = T⊥

σ .

These sublattices have a very precise relation with the Néron–Severi lattice and the tran-

scendental lattice.

Proposition 2.59. If σ ∈ Aut(X) is symplectic, then Tr(X) ⊂ Tσ and Sσ ⊂ NS(X). If
σ ∈ Aut(X) is non-symplectic, then Tσ ⊂ NS(X) and Tr(X) ⊂ Sσ .

Proof. Let n be the order of σ and ω be the symplectic form of X .
Let σ be symplectic. Every x ∈ Sσ resolves (id+σ∗+ ...+(σ∗)n−1)(x) = 0 by [BNWkS13,

Lemma 5.1]. Then

0 = (x+σ∗(x)+ ...+(σ∗)n−1(x), ω) =

n−1∑
i=0

((σ∗)i(x), ω) =

n−1∑
i=0

((σ∗)i(x), (σ∗)iω) = n(x, ω)

so x ∈ NS(X) and Sσ ⊂ NS(X). The other inclusion is then obtained passing to the orthog-
onal complements.

If σ is non-symplectic, let ζ ̸= 1 be the root of unity such that σ∗ω = ζω. Then, for every
x ∈ Tσ ,

(ω, x) = (σ∗(ω), σ∗(x)) = ξ(ω, x),

so x ∈ NS(X). The other inclusion is then obtained from the definition of the coinvariant
lattice Sσ .

2.4 Moduli Spaces and periodmaps for IHSmanifolds with a non-symplectic
automorphism

Now, we want to specialize the constructions of coarse moduli spaces and period maps when

there exist a non-symplectic automorphism on an IHS manifold X . Indeed, the presence of

an automorphism allows us to provide more precise notions. The notions given in this section

were first given and analyzed in [BCS19a] for theK3[n]-type deformation family, then [BC22]

generalized their results to the other deformation families.

Given an isometry ρ of a lattice L and an embedding j : T ↪→ L of the invariant lattice

T ≃ Lρ we give the following definition.

Definition 2.60. A (ρ, j)-polarization of an IHS manifold X of type L consists of the following
data:

i) a marking η;

ii) a primitive embedding ι : T ↪→ Pic(X) such that η ◦ ι = j;

25



iii) an automorphism σ ∈ Aut(X) such that σ∗|H2,0(X) = ζ · id (with ζ a primitive n-th root of
unity) and η is a framing for σ, i.e. the following diagram commutes

H2(X,Z) H2(X,Z)

L L

σ∗

η η

ρ

The period domain is in this case (see [BC22, Section 3.2])

Ωρ,ζT := {x ∈ P(Sζ) | hS(x, x̄) > 0} ,

where we denoted with S the orthogonal complement of T in L and with Sζ the eigenspace
relative to ζ inside SC.

Remark 2.61. Note that the isotropic condition of a point in the period domain has not been
dropped. Indeed take a point x ∈ P(Sζ), then hS(x, x) = hS(ρ(x), ρ(x)) = hS(ζx, ζx) =
ζ2hS(x, x). Comparing the first and the last we deduce that hS(x, x) = 0.

The period map on a connected component Mρ,ζ
T of the moduli space of (ρ, j)-polarized

IHS manifolds X of type L is surjective on

Ωρ,ζT \
⋃

δ∈∆(S)

(δ⊥ ∩ Ωρ,ζT )

by [BC22, Proposition 3.12], but in order to give a bijective restriction we need to introduce

another definition. ChooseK(T ) as a connected component of

CT \
⋃

δ∈∆(S)

δ⊥ ⊂ TR.

Here we denoted by CT := CL ∩ (T ⊗ C).

Definition 2.62. A (ρ, j)-polarized manifold (X, η) isK(T )-general if η(Kσ∗
X ) = K(T ) where

we denote by Kσ∗
X the invariant Kähler cone, i.e. Kσ∗

X := {x ∈ KX | σ∗(x) = x}.

Now define the following

Γρ,ζT :=
{
γ|S ∈ O(S) | γ ∈ O(L), γ|T = id, γ ◦ ρ = ρ ◦ γ

}
and

∆′(L) :=
{
ν ∈ ∆(L) | ν = νT + νS , νT ∈ TQ, νS ∈ SQ, ν

2
T , ν

2
S < 0

}
.

Moreover, we setHT :=
⋃
δ∈∆(T ) δ

⊥
andH′

T :=
⋃
δ∈∆′(T ) δ

⊥
.
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Theorem 2.63. [BCS19a, Theorem 5.6, Proposition 6.2] The restriction of the period map to the
moduli space ofK(T )-general IHS manifolds of type L

Mρ,ζ
K(T ) → Ωρ,ζT \

(
HT ∪H′

T

)
is an isomorphism and it induces an isomorphism on the quotients:

Pρ,ζ
K(T ) : N

ρ,ζ
K(T ) :=

Mρ,ζ
K(T )

Mon2(T, ρ)
→

Ωρ,ζT \ (HT ∪H′
T )

Γρ,ζT
. (2.63.1)

Here we denoted with Mon
2(T, ρ) the group of (ρ, T )-polarized monodromy operators:

Mon
2(T, ρ) :=

{
g ∈ Mon2(L) | g|T = id, g ◦ ρ = ρ ◦ g

}
.

Wewant now to give amore general notion of polarization and introduce the (M, j)-polarization
for a latticeM of signature (1, t) with a primitive embedding j : M ⊂ L defined in [Cam16,

Definition 3.1] as follows.

Definition 2.64. Given an IHSmanifoldX of typeLwe say that it carries an (M, j)-polarization
if it has:

1. a marking η : H2(X,Z) → L;

2. a primitive embedding ι : M ↪→ Pic(X) such that η ◦ ι = j.

Remark 2.65. The (ρ, j)-polarization is a special type of (M, j)-polarization with M = T ,
the invariant lattice for the isometry ρ, and on which we ask the existence of an automorphism
satisfying item iii) of Definition 2.60.

Moreover, it is immediate to see that the notion ofK(T )-generality comes from the notion

of K(M)-generality for an (M, j)-polarized IHS manifold given in [Cam18, Definition 3.10].

Indeed, letCM be the connected component of the positive cone such that ι(CM ) contains the
Kähler coneKX of an (M, j)-polarized IHS manifoldX . We define alsoK(M) as a connected
component (also called chamber) of

CM \
⋃

δ∈∆(M)

δ⊥ ⊂M ⊗ R.

Definition 2.66. An (M, j)-polarized IHS manifold (X, η) is K(M)-general if ι(K(M)) =
KX ∩ ι(CM ).

In order to see that this definition is a generalization of the one given above suppose that

(X, η) is a (T, j)-polarized IHS manifold of type L where T is the invariant lattice of an auto-

morphism ρ ∈ O(L). Suppose moreover that the (T, j)-polarization extends in a natural way

to a (ρ, j)-polarization, i.e. condition iii) of Definition 2.60 is satisfied. Then, as T is the invari-

ant sublattice of ρ, both definitions of CT coincide. For the same reason Kσ∗
X = KX ∩ ι(CT ).

Looking at Definition 2.60, we see thatKX ∩ ι(CT ) = Kσ∗
X = ι(K(T )) is equivalent to requir-

ing that η(KX ∩ ι(CT )) = η(Kσ∗
X ) = K(T ). In loc. cit. the author finds also a period map and

its injective restriction with statements similar to the (ρ, j)-polarized case.
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Chapter 3

Cubic threefolds and IHS manifolds

“We shall not cease from exploration
And the end of all our exploring
Will be to arrive where we started
And know the place for the first time.”

- T.S Eliot, Four quartets

In this chaper we dig into the surprising relation between cubic hypersurfaces and irreducible

holomorphic symplectic manifolds.

This chapter resulted in a paper:

GIT stable cubic threefolds and certain fourfolds ofK3[2]-type,
https://arxiv.org/abs/2301.11149, submitted.

1 Introduction

The relation between cubic hypersurfaces and irreducible holomorphic symplectic manifolds.

has attracted the interest of many experts during the last decades. Various examples of this

interest can be found in literature. The first one is the classical result, due to Beauville and

Donagi [BD85], stating that the Fano variety of lines on a cubic fourfold is deformation equiv-

alent to the Hilbert square of a K3 surface. There are plenty of other examples, to cite a few

[Has00], [LLSvS17] and in the article of Boissière–Camere–Sarti [BCS19b] which is at the core

of this chapter.

In loc.cit. the authors prove the existence of an isomorphism ψ between the moduli space

Csm3 of smooth cubic threefolds and the moduli spaceN ρ,ξ
⟨6⟩ of fourfolds ofK3[2]-type endowed

with a special non-symplectic automorphism of order three. Moreover, they analyze the ex-

tension of the period map to singular cubics, given in [ACT11], in order to give a geometric

interpretation of the degenerations of the automorphism ψ along either the chordal or the

singular nodal hyperplanes, where the cubic threefolds either acquire a nodal singularity or
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they are related to the chordal cubic. In particular they find a birational morphism between

the stable discriminant locus (corresponding to a generic nodal degeneration) ∆A1
3 and the

9-dimensional moduli space of fourfolds of K3[2]-type endowed with a non-symplectic auto-

morphism of order three, having invariant lattice isometric to U(3)⊕⟨−2⟩. In the exceptional

locus of this birational morphism there are some interesting subloci, e.g. cubic threefolds hav-

ing an isolated singularity of type Ai for i = 2, 3, 4.

The aim of this chapter is to provide a similar result also for the closed subloci∆A2
3 ,∆A3

3 ,

∆A4
3 ⊂ ∆A1

3 where∆Ai
3 is the closure of the set of cubic threefolds having an isolated singular-

ity of type Ai for i = 1, . . . , 4 taken in the moduli space of cubic threefolds. These threefolds

are of our interest because Allcock proved in [All03, Theorem 1.1] that a singular cubic three-

fold is GIT stable if and only if all its singularities are of type Ai for i = 2, 3, 4. Therefore,
they are in the strata at the border of the GIT compactification of the moduli space of smooth

cubic threefolds; different types of compactifications have been studied recently in many arti-

cles, e.g. [Yok02], [LS07], [CMGHL21], [CMGHL23] and the already cited [All03] and [ACT11].

The strategy to reach our goal will be the following. In [BCS19b, Section 4] the authors

note that, in order to understand geometrically the degenerations of the automorphism along

the nodal hyperplanes, one has to consider a moduli space of fourfolds ofK3[2]-type with an

automorphism having an invariant lattice which is bigger than in the smooth case. So, we will

start from a generic cubic threefold C in ∆Ai
3 , then we will find a K3 surface Σ̂ having the

same period ofC . The natural choice for Σ̂will be the one used in [ACT11] to define the period

of a nodal cubic. Then, we want to find some conditions on the Hilbert square Σ̂[2]
of Σ̂ such

that Σ̂[2]
is a “good candidate” for the relation we are looking for. Indeed, our aim is to define

a birational map between ∆Ai
3 and some moduli space of fourfolds of K3[2]-type. Therefore

a “good candidate” should be endowed with a marking, a non-symplectic automorphism and

generic in a particular moduli space. Moreover, we want that the restriction of the period map

to this moduli space is an isomorphism onto its image. Indeed, in general the period map

for IHS manifolds is not an isomorphism because there may exist birational, non-isomorphic

models in the fiber over a period. In order to ensure that this does not happen we will use

the notion ofK(T )-generality for a fourfold ofK3[2]-type, introduced by Camere in [Cam18,

Definition 3.10] recalled in Definition 2.66.

The main results of this chapter can be summarized as follows.

Theorem 3.1. The ∆Ai
3 locus for i = 1, . . . , 4 is birational to a (10 − i)-dimensional moduli

space of fourfolds ofK3[2]-type with Picard group of the generic member isometric toRi endowed
with a non-symplectic automorphism of order three, having invariant lattice isometric to Ti. These
lattices are defined in the following table.

i Ti Ri
1 U(3)⊕ ⟨−2⟩ U(3)⊕ ⟨−2⟩
2 U ⊕A2(−2)⊕ ⟨−2⟩ U(3)⊕ ⟨−2⟩
3 U ⊕A2(−1)⊕2 ⊕ ⟨−2⟩ U ⊕A2(−1)⊕2 ⊕ ⟨−2⟩
4 U ⊕ E6(−1)⊕ ⟨−2⟩ U ⊕ E6(−1)⊕ ⟨−2⟩
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We will find a sufficient condition on the Picard group of Σ̂[2]
in Section 3.3, then we will

use this result in Section 3.4 and 3.5 to prove Theorem 3.1 for i = 1, 3 and 4. For these cases
the result is proven, respectively, in Proposition 3.19, Proposition 3.21 and Proposition 3.22.

Note that for i = 1 this coincides with the result stated in [BCS19b, Proposition 4.6]. To prove

that Σ̂[2]
is a “good candidate” in the sense explained above we rely on the theory of moduli

spaces of irreducible holomorphic symplectic manifolds with automorphism. This theory has

been the object of great interest for the mathematical community; e.g. in [AS08], [Tak11]

and [AST11] the authors study in depth non-symplectic automorphism of prime order onK3
surfaces. Other examples showing this interest are [CC20] and [BCS16]. The case i = 2 will

be discussed in Section 3.6, where we start from a generic cubic in ∆A2
3 and discover that its

associated Σ̂[2]
does not define a “good candidate”. This fact is somehow surprising at first but

studying it we will find out many differences with the other cases; e.g. in order to find Σ̂ in this

case we need to blow-up three points which are permuted by a non-symplectic automorphism

of order 3 instead of one fixed point as for i = 3, 4. Moreover, in the case with i = 2 we do not
have theK(T )-generality property and there are multiple birational non-isomorphic models;

therefore, in order to deal with the ∆A2
3 locus we will introduce in Section 3.7 the notion of

Kähler cone sections of K-type which generalizes the notion of K(T )-generality. Finally, we
will show in Section 3.8 that the notion just introduced leads us to the proof of Theorem 3.1

for i = 2.

2 Cubic threefolds

In this section we define the objects we are mainly interested in, i.e. the nodal cubic threefold

C and theK3 surface whose Hilbert square will be our “good candidate” as said in the intro-

duction.

Let C ⊂ P4
be a cubic threefold described by the vanishing of a homogeneous polynomial of

degree 3:

f(x0 : x1 : x2 : x3 : x4) = ax30 + x20f1(x1, x2, x3, x4)+

+ x0f2(x1, x2, x3, x4) + f3(x1, x2, x3, x4)

where the fi are homogeneous polynomials of degree i in C[x1, x2, x3, x4] and a ∈ C. We

want to impose conditions on the coefficients in order to describe a nodal cubic, i.e. with an

isolated singularity of type ADE. So, let C be singular in p0 ∈ P4
, which we may assume, after

a suitable change of coordinates, to be (1 : 0 : ... : 0). Hence, imposing that p0 belongs to the
cubic and the conditions on the Jacobian of f , we obtain that both the cubic part in x0 and

the linear part in x1, . . . , x4 must vanish. Moreover, in order for p0 to be the only singularity

we take c ̸= 0 and f2, f3 sufficiently generic in |OP3(3)|. Modulo another change of projective

coordinates we assume c = 1. Thus the equation becomes

f(x0 : x1 : x2 : x3 : x4) = x0f2(x1, x2, x3, x4) + f3(x1, x2, x3, x4) = 0.

Let now Y ⊂ P5
be the triple cover of P4

branched over C . Therefore Y is described by the

vanishing of the following polynomial

F (x0 : x1 : x2 : x3 : x4 : x5) = x0f2(x1, x2, x3, x4) + f3(x1, x2, x3, x4) + x35
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using the same notation as above. This hypersurface has again an isolated singularity of type

ADE at the point p ∈ P5
of coordinates (1 : 0 : ... : 0). The construction outlined here is

standard and as we will use it frequently we introduce the following definition.

Definition 3.2. We say that a cubic fourfold Y ⊂ P5 is associated to a cubic threefold C ⊂ P4

when Y → P4 is a triple cover branched on C .

Let us consider now the hyperplaneH ⊂ P5
given by {x0 = 0}. In this hyperplane, which

we will identify with P4
of coordinates (x1 : x2 : x3 : x4 : x5), we consider the surface Σ

given by the following intersection:{
f2(x1, x2, x3, x4) = 0

f3(x1, x2, x3, x4) + x35 = 0.
(3.2.1)

This is the complete intersection of a quadric Q (defined by f2 = 0) and a cubic K (defined

by f3 + x35 = 0) in P4
when f2 and f3 are sufficiently generic. This surface is deeply linked

to the fourfold Y and a theorem by Wall [Wal99] links the singularities of Σ to those of the

blow-up Blp(Y ) of Y at p.

Theorem 3.3 ([Wal99, Theorem 2.1]). Let q be a singular point of Σ. If both Q and K have a
singularity in q then the whole line p̄q connecting p and q is singular in Y .
If q is not a singularity of bothQ andK and is an ADE singularity of type T forQ orK then one
of the followings holds:

i) Q is smooth at q and the cubic fourfold Y has exactly two singularities, namely p and p′, on
the line p̄q and p′ is of type T.

ii) Q is singular at q and the line p̄q meets Y only in p and the blow-up Blp(Y ) of Y in p has a
singularity of type T at q.

As we asked p to be the only singularity on Y , the only possibility is the one described by

item ii) of the Theorem 3.3. Thus the possibilities for the singularities of Σ are exactly those

that can be found in the following table, based on [DR01, Lemma 2.1].

T A1 A2 An≥3 D4 Dn≥5 E6 E7 E8

T̂ ∅ ∅ An−2 3A1 A1 +Dn−2 A5 D6 E7

Here T̂ is the type of the singularities that one can find on the exceptional divisor of the blow-

up of a variety in a point p that has a singularity of type T.

Another interesting observation on Σ can be done following the argument of C. Lehn ([Leh18,

Lemma 3.3, Theorem 3.6]) and Hassett ([Has00, Lemma 6.3.1]).

Theorem 3.4. Let Y ⊂ P5 be a cubic fourfold with simple isolated singularities and suppose that
it is neither reducible, nor a cone over a cubic threefold. Let p ∈ Y be a singular point and assume
that there exist no planes Π ∈ Y such that p ∈ Π. Then the minimal resolution of Σ := F (Y, p),
the Fano variety of lines in Y passing through p, is a K3 surface. Moreover, F (Y ), the Fano
variety of lines in Y , is birational to Hilb2(Σ)
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Proof. We write here the explicit morphism as it will be useful for the next sections.
For the first part, see the discussion above. Moreover, Σ is a (2,3)-complete intersection in

P4 having only isolated ADE singularities, so it admits a minimal model which is aK3 surface.
For the rest of the proof, considerW ⊂ Y the cone over Σ with vertex p. This is a Cartier

divisor on Y cut out by the equation f2 = 0. Hence a generic line l ⊂ Y intersects W in
exactly two points counted with multiplicity, thus defining a closed subscheme ξl∩W of length
two on Σ. Therefore, we can define the birational map

φ−1 : F (Y ) 99K Hilb2(Σ)

l 7→ ξl∩W

The birational inverse of φ is given by the natural map

φ : Hilb2(Σ) → F (Y )

ξ 7→ lξ

where we define the residual line lξ as follows. The intersection between Y and ⟨ξ, p⟩ ≃ P2

consists of a cone over ξ and a line lξ .

Remark 3.5. Note that φ has no indeterminacy points. Moreover, note that the indeterminacy
locus of φ−1 is contained in F (Y, p) ≃ Σ. Indeed, looking at the definition of φ−1 in the proof
above we can see that it is not defined when a line l ⊂ Y is contained inW , the cone over Σ with
vertex p. This means that either l ⊂ Σ or p ∈ l, the former is impossible otherwise the plane
Πl,p := ⟨l, p⟩ would be contained in Y .

Remark 3.6. The condition of not having planes passing through the singular point of a cyclic
cubic fourfold is a generic condition as computations done in Section 5.3 show. For this reason from
now on we will suppose that this condition is satisfied by every cyclic cubic fourfold appearing also
when not explicitly said.

2.1 Moduli space of cubic threefold as a ball quotient

In this sectionwe to recall Allcock–Carlson–Toledo’s construction of a periodmap for themod-

uli space of GIT stable cubic threefolds as done in [ACT11]. This section is not to be intended

as a complete overview of their work but as a recollection of their results useful to understand

the following sections.

We denote by Cs3 := |OP4(3)|//PGL5(C) the GIT moduli space of PGL5(C)-stable of

stable cubic threefolds and Csm3 the sublocus of smooth cubic threefolds (this is the open set

determined by the nonvanishing of the discriminant as shown in [Muk03, Chapter 5]). Now,

given C ∈ Csm3 the idea outlined by Allcock–Carlson–Toledo is to use the associated cyclic

cubic fourfold to induce a period map on C ∈ Csm3 . Indeed, for any cubic fourfold Y we can

define a marking, i.e. an isometry

η : H4
◦ (Y,Z) → S(−1) ≃ U⊕2 ⊕ E⊕2

8 ⊕A2
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of the middle primitive cohomology. Moreover, the period of the marked pair (Y, η) is just
[η(H3,1(Y ))] ∈ P(S(−1) ⊗ C). Let σ be the covering automorphism of the associated cubic

fourfold Y . Given a marking η for Y we can define the abstract isometry induced by σ as

ρ := η ◦ σ ◦ η−1
and we define a framing as the equivalence class of markings η̃ compatible

with ρ, i.e. η̃ ◦ ρ = ρ ◦ η̃, up to action of µ6 := {± idS(−1),±ρ,±ρ2}.
Now, we denote by Fsm

3 the moduli space of framed smooth cubic threefolds and by Γ :=
{γ ∈ O(S(−1)) | γ ◦ ρ = ρ ◦ γ}. The latter acts on the former by composition with the

framing, i.e. (C, η) 7→ (C, γ ◦ η). As µ6 ⊂ Γ acts trivially on Fsm
3 we consider PΓ := Γ/µ6

and Csm3 ≃ Fsm
3 /PΓ. So, any framing η : H4

◦ (Y,Z) → S(−1) induces an isomorphism

η : H4
◦ (Y,Z) → S(−1)ξ , where S(−1)ξ is the eigenspace of S⊗C for the eigenvalue ξ of the

isometry ρ. Note that if we act on a a marked cubic fourfold of period η(H3,1(Y )) with an

element of µ6 we get that the period is multiplied by a non-zero scalar, therefore it remains

well defined on the framed cubic threefolds. Therefore we have the following.

Theorem 3.7. The period map sending a framed cubic threefold (C, η) to [η(H3,1(Y ))] ∈
P(S(−1)ξ) is an isomorphism onto the image equivariant with respect to the action of PΓ. More-
over, the image is the complement of an hyperplane arrangementH with:

H :=
⋃

δ∈S(−1), δ2=2

δ⊥.

Proof. See [ACT11, Theorem 1.9].

In loc. cit. the authors study also an extension of the period map for the GIT stable cubic

threefolds (see [All03] for the details on GIT stability of cubic threefolds). In particular in

[ACT11, Chapter 6] the authors show, by studying the limit Hodge structure of the nodal

degeneration of a cubic threefold, that the period map can be extended to ∆A1
3 using the

period of its associatedK3 surface, i.e. the one defined in Section 3.2.

Theorem 3.8 ([ACT11, Theorem 6.1]). The period map above defined can be holomorphically
extended to an isomorphism between the GIT stable locus Cs3 and its image, mapping ∆A1

3 to a
divisor.

2.2 Motivating example

Here we introduce the example which will be the core of our analysis. Given, as in before, a

ramified cyclic covering Y → P4
branched along the cyclic cubic C there exists a covering

automorphism σ on Y acting by multiplication by a primitive third root of the unity ζ . Any
marking of the middle primitive cohomology H4

◦ (Y,Z) → S(−1) can be composed with the

Abel–Jacobi map in order to induce amarking on the middle primitive cohomology of the Fano

variety of lines F (Y ).

H4
◦ (Y,Z) S(−1)

H2
◦ (F (Y ),Z) S.

η̃

A −id

η

33



From [BD85] we know that S admits a unique, up to isometries, primitive embedding inL and

this embedding has T ≃ ⟨6⟩ as orthogonal complement. We are interested in giving a relation

between cubic threefolds and IHS manifolds of K3[2]-type. This is classically (e.g. [ACT11])

done by looking at the cubic fourfolds which cover P4
and branch over a cubic threefold. Then

there is a nice description of the Plücker divisor on a fourfold of K3[2]-type associated to a

generic cubic fourfold of discriminant six made by Hassett in his thesis [Has00, Section 6]: it

is θ = 2θK3 − 3ϵ where θK3 is a square six class on the underlying K3 surface and ϵ is half
of the exceptional class coming from the Hilbert–Chow morphism. In our case even though

we do not ask for genericity we make the same choice; moreover, as they are all the same

up to isometry, we choose θK3 = 3u1 + u2. So we have assigned an embedding j : ⟨6⟩ →
L and j(⟨6⟩)⊥ ≃ S as expected. Now using [Nik80, Cor 1.5.2] (see also Proposition 3.13

below) we can extend the isometry H2
◦ (F (Y ),Z) ⊕ ⟨6⟩ η ⊕ j−−−→ S(−1) ⊕ j(⟨6⟩) to a marking

η̄ : H2(F (Y ),Z) → L. Finally, σ ∈ Aut(Y ) induces on F (Y ) an automorphism that will be

also denoted with σ ∈ Aut(F (Y )) in order to simplify the notation. Therefore there exists a

natural isometry on L that is ρ := η̄ ◦σ∗ ◦ η̄−1
. So, F (Y ) is an IHS manifold ofK3[2]-type and

admits a (ρ, j)-polarization with the lattice ⟨6⟩ playing the role of T in Definition 2.60 and a

primitive third root of the unity as ζ . The period map Pρ,ζ
⟨6⟩ relative to this space has the period

domain isomorphic to a 10-dimensional complex ball

Ωρ,ζT := {x ∈ P(Sζ)|hS(x, x) > 0} ≃ CB10.

3 Degeneracy lattices

In this section we begin to study the degenerations of the automorphism ρ over the nodal

hyperplane.

We want to focus on the case described in Section 2.2. Take ω a period in H∆ and (X, η) ∈
P−1
⟨6⟩ (ω) a point in the fiber of the period map of ⟨6⟩-polarized IHS manifolds ofK3[2]-type.

Definition 3.9. The degeneracy lattice of (X, η) is the sublattice of S generated by those MBM
classes δi ∈ S which are orthogonal to ω.

This lattice is ρ-invariant and orthogonal to j(⟨6⟩). So, in general, the degeneracy lattice

will be R0 := Span(δ1, . . . , δn, ρ(δ1), . . . , ρ(δn)).

Remark 3.10. For each i ∈ {1, . . . , n} the sublattice Span(δi, ρ(δi)) =: Rδi ⊂ R0 is just the
degeneracy lattice of a polarized IHSmanifold (X, η) generic inH∆ and, with a simple calculation,
Rδi ≃ A2(−1). For the sake of completeness let us show this calculation. By definition Rδi ≃
⟨δi, ρ(δi)⟩ with δ2i = (ρ(δi))

2 = −2. Moreover, (δi, ρ(δi)) = (ρ(δi), ρ
2(δi)) = (ρ(δi),−δi −

ρ(δi)) = −(ρ(δi), δi) + 2 and the computation is done.

Remark 3.11. As explained in [BCS19b] the isometry ρ ∈ O(L) is not represented by any au-
tomorphism of X . In fact if ρ was represented by an automorphism of X , this one would be
automatically non-symplectic. Consider now l ∈ NS(X) an ample class (it always exists as X is
projective) then consider l+ρ∗l+(ρ∗)2l which is still ample and invariant. Therefore it is a multi-
ple of the generator of the rank one invariant lattice, we call θ the primitive ample invariant class.
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Since δi ∈ S, the divisor η−1(δi) is orthogonal to θ, yielding a contradiction as (η−1(δi), θ) > 0
by the ampleness of θ.

Recall that in Section 2.2 we provided an embedding j : ⟨6⟩ → L such that j(⟨6⟩)⊥ ≃ S.
With the help of j we can induce an embedding of ⟨6⟩⊕R0 which in general will not be primi-

tive. So, we define T0 := ⟨6⟩ ⊕R0 as the saturation of ⟨6⟩⊕R0 in L. Note that T0 ↪→ Pic(X)
by definition of degeneracy lattice and the equality will hold for a generic element, i.e. a ⟨6⟩-
polarized IHS fourfold ofK3[2]-type which has a generic period orthogonal to a fixed number

of MBM classes δ1, . . . , δn.

The strategy we will use is the same used in [BCS19b] and in [DK07, §11]. We want to

prove the following claim.

Claim 3.12. The Picard group of the Hilbert square Σ̂[2] of the minimal resolution of the surface
defined in Section 3.2 is generated by the square six polarization and 2i classes of square (−2)
orthogonal to it, with i = 1, . . . , 4. Therefore it is generic in the above sense.

Then we want to look for an isometry on L related to ρ which has a bigger invariant

lattice. In particular, denoting with S0 := T⊥
0 in L, we look at idT0 ⊕ρ|S0

∈ O(T0) ⊕ O(S0).

If it can be lifted to an isometry ρ0 ∈ O(L) then as T0 ≃ Pic(Σ̂[2]) we can find an IHS

manifold ofK3[2]-type with the same period (by definition of period of a nodal cubic given in

[ACT11]) generic in the space of the IHS manifolds ofK3[2]-type which are (ρ0, j)-polarized.
It is important to remark that by definition of the (ρ, j)-polarization, as the isometry ρ ∈ O(L)
comes from a non-symplectic automorphism σ onX , it can be restricted to an isometry ρS0 ∈
O(S0). Indeed, as ω ∈ δ⊥ we deduce that ζ3 · (ρ (δ) , ω) = (ρ (δ) , ρ (ω)) = (δ, ω) = 0, thus
the isometry ρ can be restricted to an isometry of both the Picard lattice and its orthogonal

complement. In order to lift the isometry we will apply the following result

Proposition 3.13 ([Nik80, Cor 1.5.2]). LetL be a finite index overlattice ofS⊕T ⊂ L determined
by the pair (H, γ), where H < DS is a subgroup and γ : H → DT is a group monomorphism.
Moreover, let ρS ∈ O(S) and ρT ∈ O(T ) be two isometries such that the induced isometry on the
discriminant ρ∗S ∈ O(DS) restricts to an isometry of H .
Then the isometry ρS ⊕ ρT ∈ O(S) ⊕ O(T ) lifts to an isometry ρ ∈ O(L) of L if and only if
ρS |H is conjugate to the induced isometry ρ∗T via γ, or equivalently γ ◦ ρ∗S |H = ρ∗T ◦ γ.

Proof. The first implication is obvious as ρS = ρ|S and ρT = ρ|T . The second implication is
done just by noting that in the diagram

H H

γ(H) γ(H)

ρ∗S

γ γ

ρ∗T

the pair
(
ρ∗S(H) = H, ρ∗T ◦ γ ◦ (ρ∗S)−1 = γ

)
determines an overlattice isometric to L and we

call this isometry ρ.
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Recall now that the Picard group of an IHS fourfold ofK3[2]-type can be written as

Pic(Σ̂[2]) ≃ Pic(Σ̂)⊕ ⟨ϵ⟩ ≃ TK3 ⊕ ⟨−2⟩

where ϵ is the (−2)-class given by half of the exceptional divisor introduced by the Hilbert–

Chow morphism and TK3 ⊂ LK3 is a sublattice of the K3 lattice LK3 ≃ U⊕3 ⊕ E8(−1)⊕2
.

Thus we consider the isometry ρ̃0 := ρ0|TK3
. Then the following proposition proves that there

exists an automorphism σ of the K3 surface Σ̂ whose action on cohomology is conjugate to

ρ̃0.

Proposition 3.14. Let Σ be a K3 surface and ρ ∈ O(LK3). Suppose that ρ(ω) = λω where
ω ∈ H2(Σ,C) is the period of Σ and 1 ̸= λ ∈ C∗. Then if Pic(Σ) is fixed by ρ there exists
σ ∈ Aut(Σ) and an element w in the Weyl subgroup of Σ such that wρw−1 = σ.

This proposition is an immediate corollary of the following theorem by Namikawa.

Theorem 3.15 ([Nam85] Theorem 3.10). Let Σ be a K3 surface and G a finite subgroup of
the group of isometries in Λ = H2(Σ,Z). Denote by ω the period of Σ, by ΛG the sublattice of
elements in Λ fixed by G and set SG,Σ = (ΛG)⊥ ∩ {Cω}⊥ = (ΛG)⊥ in H1,1

Z (Σ). Then there
exists an element t in the Weyl subgroup of Σ,W (Σ), such that tGt−1 ⊂ Aut(Σ) if and only if

i) Cω is G-invariant;

ii) SG,Σ contains no element of length −2;

iii) if ω ∈ ΛG then SG,Σ is either 0 or nondegenerate and negative definite;

iii’) if ω /∈ ΛG then ΛG contains an element a with (a, a) > 0.

Therefore if we consider the natural automorphism on Σ[2]
induced by σ then we see

that the former variety is equipped with an automorphism whose action in cohomology is

conjugate to ρ0.

Theorem 3.16. Let C be a cyclic nodal cubic and Σ̂, θ as in Section 3.2. Let (Σ̂[2], η) the Hilbert
square of (Σ̂, η̃) and suppose that Pic(Σ̂[2]) ≃ j(θ)⊕W ≃ ⟨6⟩ ⊕R0 = T0. If the action induced
by ρ on the discriminant groupDW is trivial then the isometry idT0 ⊕ρ|S0

∈ O(T0)⊕O(S0) lifts
to an isometry ρ0 ∈ O(L). Finally, if we define K(T0) as the chamber containing a Kähler class
of Σ[2], then the latter isK(T0)-general and defines a point in Mρ0,ζ

K(T0)
.

Proof. In order to prove the statement it is sufficient to prove that the isometry idT0 ⊕ ρ|S0
∈

O(T0) ⊕ O(S0) lifts to an isometry ρ0 ∈ O(L). In order to lift it the condition stated in
Proposition 3.13 is that the action induced by ρ on the discriminant group DS0 is trivial. This
discriminant group is isomorphic to a quotient of DW ⊕DS(−1), but the action of ρ is trivial
on DW by hypothesis, therefore it is enough to check the triviality on DS(−1). Again DS(−1)

is isomorphic to a quotient of DL ⊕D⟨6⟩, the action induced by ρ is trivial on the first factor
because it is an order three isometry on DL ≃ Z/2Z and on the second by construction. The
K(T0)-generality of Σ̂[2] follows from [BCS19a, Lemma 5.2].
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Remark 3.17. In this section we provided also an automorphism on Σ̂ whose action on cohomol-
ogy is conjugate to ρ̃0. Therefore, we proved that, under the same hypotheses of Theorem 3.16,
(Σ̂, η̃) ∈ Kρ̃0,ζ

TK3
, the moduli space of (ρ̃0, j̃)-polarizedK3 surfaces.

In the next sections we analyze case by case what happens. In order to perform this anal-

ysis we define∆Ai
3 for i = 1, . . . , 4 as the biggest sub-locus of the space of stable cubic three-

folds where the generic element is a cubic with an isolated singularity of type Ai.

Remark 3.18. One can check (an explicit computation is done in Section 5.1) that the dimension
of the ∆Ai

3 locus is 10− i.

Notation. In the following sections every time an IHSmanifold endowedwith a (ρ, j)-polarization
will appear we will use the following notations. The definition of the isometry playing the role of
ρ will be clear in all cases. The embedding j will be constructed in the same way each time as
follows. We will exhibit a square six class θ which has an embedding in L as in Section 2.1. This
embedding will induce an embedding of the whole fixed lattice in L playing the role of j. More-
over, we will choose for any Hilbert square over a K3 surface the natural marking induced by a
marking on a K3 surface, i.e. fixing a marking η̃ on a K3 surface Σ̂ the natural marking η on
its Hilbert square Σ̂[2] induced by η̃ is the lifting of η̃ ⊕ id⟨−2⟩ to the whole second cohomology
group with integer coefficients. Then we will take the embedding ι in a way compatible with j,
i.e. ι(⟨6⟩) = 2θK3 − 3ϵ with θK3 fixed and this embedding will induce also an embedding on its
orthogonal. In order to lighten the notation and the exposition we will often omit the markings
where their presence is obvious.

4 Singularity of type A1

In this section we recall the results discussed in [BCS19b, Section 4.3] where the authors pro-

vide a birationality result for the nodal hyperplane. In order to see the analogy with the loci

we are interested in we briefly review it giving a proof that fits our framework.

With the notation of Section 3.2 let p0 be an isolated singularity of type A1 for C ⊂ P4
. This

implies, for reasons of corank of the singularity (see [All03, Section 2] or directly do the com-

putation), that f2 is a rank 4 quadratic form and Y ⊂ P5
has an isolated singularity of typeA2.

Moreover, by genericity, we can assume that the surface Σ given by the following equations:{
f2(x1, x2, x3, x4) = 0

f3(x1, x2, x3, x4) + x35 = 0.
(3.18.1)

is a smoothK3 surface. Here x1, . . . , x5 are the homogeneous coordinates on the hyperplane

H ⊂ P5
given by {x0 = 0}. The covering automorphism σ on Y induces an automorphism τ

of Σ. Explicitly, τ is given by x5 7→ ζ3 ·x5 and the identity on the other coordinates. The fixed

locus of τ is a curve of genus 4. In [AS08] the authors show that the generic case (i.e. the one

which we are considering) has Pic(Σ) ≃ U(3). Therefore for the Hilbert square of Σ it holds:

Pic(Σ[2]) ≃ Pic(Σ)⊕ ⟨−2⟩ ≃ U(3)⊕ ⟨−2⟩ ≃ ⟨6⟩ ⊕A2(−1) := T0.
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Note that the last isometry is given by:

U(3)⊕ ⟨−2⟩ := ⟨u1, u2⟩ ⊕ ⟨ϵ⟩ ≃ ⟨2(u1 + u2)− 3ϵ⟩ ⊕ ⟨u1 − ϵ, ϵ− u2⟩ ≃ j(θ)⊕W.

This proves Claim 3.12. Moreover, τ induces an order three isometry ρ ∈ O(L) with j(θ)
as fixed sublattice. So, ρ restricts to an order three isometry without fixed points of W ≃
A2(−1). There exists only one isometry ofA2(−1) of order three without fixed points modulo

conjugation and its action on the discriminantDA2(−1) is trivial. Therefore, applying Theorem

3.16 there exists ρ0 ∈ O(L) lifting id|T0 ⊕ρ|S0
and (Σ[2], η, τ) ∈ Mρ0,ζ

K(T0)
.

Proposition 3.19 ( [BCS19b, Proposition 4.6]). Let R0 = Span(δ1, ρ(δ1)) ≃ A2(−1) be the
degeneracy lattice relative to a period ω of a generic cubic threefold having a single singularity of
type A1. Then the A1 locus ∆A1

3 is birational to the moduli space N ρ0,ζ
K(T0)

.

Proof. The idea is to use the same structure of the proof of [BCS19b, Proposition 4.6] within
our theoretical approach. First we note that the extension of the period map P3 : Csm

3 →
B10\(Hn∪Hc)

PΓ to the nodal locus is done by [ACT11, Section 6] defining its period as the period
of its associatedK3 surface. In our case the generic A1 nodal cubic has the period

P3(C) := P ρ̃0,ζ
U(3)((Σ, η)).

The latter period map is defined by taking Kρ̃0,ζ
U(3) as the moduli space of lattice polarized K3

surfaces with a non-symplectic automorphism of order three whose action on cohomology is
conjugate to ρ̃0. Following [DK07] this space comes with a period map

P ρ̃0,ζ
U(3) : K

ρ̃0,ζ
U(3) → Ωρ̃0,ζU(3) := {x ∈ P((S0)ζ) | hS0(x, x) > 0}

which induces a bijection

P ρ̃0,ζ
U(3) : K

ρ̃0,ζ
U(3) →

Ωρ̃0,ζU(3) \ HU(3)

Γρ̃0,ζU(3)

where we denote with
HU(3) :=

⋃
µ∈S0, µ2=−2

µ⊥ ∩ Ωρ̃0,ζU(3)

and with
Γρ̃0,ζU(3) := {γ ∈ O(LK3) | γ ◦ ρ̃0 = ρ̃0 ◦ γ} .

By definition we find the following equality:

Ωρ̃0,ζU(3)

Γρ̃0,ζU(3)

=
Ωρ0,ζS ∩ δ⊥1

Γρ0,ζS

.

As proven above (Σ[2], η, τ) defines a point inMρ0,ζ
K(T0)

. The period map in this space, following
equation (2.63.1), descends to a bijection

Pρ0,ζ
T0

: N ρ0,ζ
K(T0)

=
Mρ0,ζ

K(T0)

Mon2(T0, ρ0)
→

Ωρ0,ζT0
\
(
HT0 ∪H′

T0

)
Γρ0,ζT0

.
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By their definitions we see that Ωρ0,ζT0
= Ωρ̃0,ζU(3) and Γ

ρ0,ζ
T0

= Γρ̃0,ζU(3). Moreover, as S0 ⊂ LK3 is a
sublattice of the unimodularK3 lattice the following holds:

HT0 :=
⋃

µ∈S0, µ2=−2

µ⊥ ∩ Ωρ0,ζT0
= HU(3).

Now it is easy to see that
Ω

ρ0,ζ
T0

\
(
HT0

∪H′
T0

)
Γ
ρ0,ζ
T0

is birational to
Ω

ρ̃0,ζ

U(3)
\HU(3)

Γ
ρ̃0,ζ

U(3)

. So in order to conclude

the proof it is enough to show that ∆A1
3 is birational to Kρ̃0,ζ

U(3) as the claim of the proposition
would follow through a composition of birational morphisms. But this is true as in [ACT11]
the authors show that the discriminant locus maps isomorphically to its image, the nodal hy-
perplane arrangement, through the period map, therefore a generic point in ∆A1

3 is mapped
isomorphically to the period of a genericK3 surface inKρ̃0,ζ

U(3) and by [DK07] this is an isomor-
phism.

5 Singularity of type A3 and A4

In this section we prove Theorem 3.1 for ∆A3
3 and ∆A4

3 . The cases treated in this section are

very similar to the A1 case; we will keep the same notation.

Let p0 be a singularity of type Ak with k ≥ 2 for C ⊂ P4
. As a polynomial coincide with its

Maclaurin expansion and the Hessian matrix is an analytical invariant, these are the corank 1

singularities, therefore this translates in f2 being a rank 3 quadratic form.

Remark 3.20. We will not use the explicit equations of the families considered. Nevertheless, in
order to follow the computations it is better to pass to a handier form. As we work over C we may
assume that, after a suitable linear change of coordinates, f2(x1, x2, x3, x4) = x2x3 + x24. Then
an equation of Y becomes

F (x0 : x1 : x2 : x3 : x4 : x5) = x0(x2x3 + x24) + f3(x1, x2, x3, x4) + x35.

Let us consider again the hyperplane H ⊂ P5 given by {x0 = 0}. Here the surface Σ is given by
the following complete intersection:{

f2(x1, x2, x3, x4) = x2x3 + x24 = 0

f3(x1, x2, x3, x4) + x35 = 0.
(3.20.1)

5.1 Singularity of type A3

If C has an singularity of type A3 then with a standard computation (just add a cube in the

new variable) one shows that Y has an singularity of typeE6, thus, this timeΣ has one isolated

singularity of type A5, call it p ∈ Σ. Let us consider Σ̂ the blow up of Σ at p. This is a K3
surface. The covering automorphism σ on Y descends to an automorphism τ on Σ. So, the
singular point p is a fixed point for the automorphism τ . As the locus we are blowing up is

fixed by the automorphism there exists a unique lift τ̂ such that τ̂ is an automorphism of Σ̂
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and commutes with the blow up map β. The fixed locus for τ̂ consists of two curves and two

points. Stegmann in her PhD thesis gives a detailed description of surfaces which are complete

(2,3)-intersection in P4
and from [Ste20, Proposition 6.3.10] we find that the Picard lattice of

Σ̂ is just the span of ⟨C1, E1, E2, E3, E4, E5⟩ ⊂ Pic(Σ̂) with the following Gram matrix:

0 0 0 1 0 0
0 −2 1 0 0 0
0 1 −2 1 0 0
1 0 1 −2 1 0
0 0 0 1 −2 1
0 0 0 0 1 −2


By genericity the Picard lattice has rank 6 (see Section 5.1 for calculations), therefore

⟨C1, E1, E2, E3, E4, E5⟩ = Pic(Σ̂).

As the fixed locus of τ̂ consists of two curves and two isolated points, we deduce, using [AS08,

Table 2], that the Picard lattice admits an embedding of the invariant sublatticeU⊕A2(−1)⊕2
.

Moreover, this is an isomorphism of lattices. In fact, ⟨C1 +E3, C1⟩ ⊕ ⟨E1, E2 −C1⟩ ⊕ ⟨E4 −
C1, E5⟩ ≃ U⊕A2(−1)⊕2

exhibitsU⊕A2(−1)⊕2
as a primitive sublattice of the Picard lattice,

the isomorphism comes from comparison of the determinants. Moreover the automorphism

τ̂ is clearly non-symplectic (as it is the multiplication by a third root of the unity ζ3 of the last
coordinate). Now we investigate some properties of Σ̂[2]

. Its Picard lattice is

Pic(Σ̂[2]) ≃ Pic(Σ̂)⊕ ⟨−2⟩ ≃ U ⊕A2(−1)⊕2 ⊕ ⟨−2⟩ ≃ E6(−1)⊕ ⟨6⟩ := T0

where the last isomorphism is given by

Pic(Σ̂)⊕ ⟨−2⟩ ≃
≃ ⟨E1, E2, E3, E4, E5, C1 − ϵ⟩ ⊕ ⟨2(2C1 + E1 + 2E2 + 3E3 + 2E4 + E5)− 3ϵ⟩

where ϵ is the (−2)-class which is half of the divisor introduced by the Hilbert–Chow mor-

phism. It is useful to describe also the trascendental lattice Tr(Σ̂[2]) of Σ̂[2]
.

Tr(Σ̂[2]) ≃ Tr(Σ̂) ≃ U⊕2 ⊕ E8(−1)⊕A2(−1)⊕2

First we note that Pic(Σ̂[2]) ≃ E6(−1) ⊕ ⟨6⟩ ≃ W ⊕ j(θ) with θ = 2θK3 − 3ϵ and again

we assume θK3 = 3u1 + u2 with an isometry so with another choice of the marking. This

proves Claim 3.12. Again we can associate to τ̂ an order three isometry ρ ∈ O(L) with j(θ) as
fixed sublattice with Proposition 3.14. Therefore it restricts to an order three isometry without

fixed points onW ≃ E6(−1). As said in Section 2.2 there exists only one, up to conjugation

and sign, order three isometry without fixed points on E6. We can write it explicitly. Let

E6 = ⟨e1, . . . , e6⟩ with the standard Bourbaki numeration

e1 e3 e4 e5 e6

e2
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then ρ is given by

e1 7→ −e1 − e3 − e4 − e5 − e6

e2 7→ e3 + e4 + e5

e3 7→ −e2 − e3 − e4

e4 7→ −e4 − e5

e5 7→ e4

e6 7→ e1 + e2 + e3 + e4 + e5.

Now, Z/3Z ≃ DW = ⟨−4
3e1 − e2 − 5

3e3 − 2e4 − 4
3e5 −

2
3e6⟩ and therefore after substituting

the expression of ρ on the generator of DW we note that the action induced by ρ is trivial on
DW . Finally we can apply Theorem 3.16 to deduce also in this case that there exists ρ0 ∈ O(L)

lifting id|T0 ⊕ρ|S0
and (Σ̂[2], η, τ̂) ∈ Mρ0,ζ

K(T0)
.

Proposition 3.21. Let R0 = Span(δ1, δ2, δ3, ρ(δ1), ρ(δ2), ρ(δ3)) ≃ E6(−1) be the degenera-
tion lattice relative to a period ω of a generic cubic threefold having one singularity of type A3.
Then the A3 locus ∆A3

3 is birational to the moduli space N ρ0,ζ
K(T0)

.

Proof. It is easy to see that one can adjust the same proof of Proposition 3.19 to this case and
everything works.

5.2 Singularity of type A4

This section is analogous to the previous section so we omit the details.

If C has now a singularity of type A4 then Y has a singularity of type E8 and Σ an isolated

singularity of type E7 which we will call p ∈ Σ. Stegmann’s work [Ste20, Proposition 6.3.12]

and the computations in Section 5.1 provide us once again the description of its Picard lattice

Pic(Σ̂) = ⟨C1, E1, . . . E7⟩ with the following Gram matrix:

0 1 0 0 0 0 0 0
1 −2 1 0 0 0 0 0
0 1 −2 1 0 0 0 0
0 0 1 −2 1 0 0 0
0 0 0 1 −2 1 0 1
0 0 0 0 1 −2 1 0
0 0 0 0 0 1 −2 0
0 0 0 0 1 0 0 −2


The fixed locus of the automorphism τ̂ , induced by the cover automorphism, is just the union

of three isolated points and three curves. Therefore we deduce from [AS08] that there exists

an embedding of U ⊕E6(−1) in the Picard lattice which turns out to be an isometry. Indeed,

it is immediate to see that Pic(Σ̂) ≃ ⟨C1, C1 + E1⟩ ⊕ ⟨E2 − C,E3, . . . E7⟩ ≃ U ⊕ E6(−1).
Now Σ̂[2]

has Picard lattice

Pic(Σ̂[2]) ≃ Pic(Σ̂)⊕ ⟨−2⟩ ≃ U ⊕ E6(−1)⊕ ⟨−2⟩ ≃ E8(−1)⊕ ⟨6⟩
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where the last isometry is given by

Pic(Σ̂)⊕ ⟨−2⟩ ≃ ⟨E1, . . . , E7, C1 − ϵ⟩⊕
⊕ ⟨2(−2C1 + 3E1 + 4E2 + 5E3 + 6E4 + 4E5 + 2E6 + 3E7)− 3ϵ⟩

and ϵ is, as usual, the (−2)-class given by half of the divisor introduced by the Hilbert–Chow

morphism. Once again we note that with Proposition 3.14 we have the existence of an order

3 automorphism on Σ̂ conjugate to ρ̃ = ρ|TK3
. This automorphism is, modulo conjugation,

uniquely determined by its invariant lattice by [AS08], therefore it is τ̂ . As in the previous

section we note thatPic(Σ̂[2]) ≃ j(θ)⊕W , proving Claim 3.12. MoreoverW ≃ E8(−1)which
has trivial discriminant, therefore we can apply Theorem 3.16 and check that (Σ̂[2], η, τ̂) ∈
Mρ0,ζ

K(T0)
. Then we can deduce the following

Proposition 3.22. Let R0 = Span(δ1, . . . , δ4, ρ(δ1), . . . , ρ(δ4)) ≃ E8(−1) be the degeneracy
lattice relative to a period ω of a generic cubic threefold having one singularity of type A4. Then
the A4 locus ∆A4

3 is birational to the moduli space N ρ0,ζ
K(T0)

.

6 Singularity of type A2

In this Section we begin the study of ∆A2
3 . As we will see in this section this case is quite

different from the other cases already treated, nevertheless we will use the same notation in

order to stress the similarities.

With a standard computation (using e.g the recognition principle stated in [BW79]) we can

see that when C has an isolated singularity of type A2, Y has an isolated singularity of type

D4. The family of cubic threefolds having a singularity of type A2 corresponds to the generic

family of complete (2, 3)-intersections in P4
where the quadratic part f2 has rank 3 (a proof of

this fact can be found in the Section 5.1). Thus, the singular locus of the quadric hypersurface

defined by f2 = 0 is a line (l1(t) : · · · : l4(t) : s); this line intersects the cubic hypersurface in
3 points p1, p2, p3 for f3 sufficiently generic. Hence, Σ has exactly three singular points. Let σ
be a covering automorphism on Y ; it restricts to an order three automorphism τ onΣ, namely

the one which maps x5 7→ ζ3 · x5 where ζ3 is just a primitive third root of the unity. As we

are interested in the minimal resolution Σ̂ of Σ (which is just the blow up of Σ at each pi) we
want to prove that the automorphism τ ofΣ lifts to an automorphism τ̂ of Σ̂ and find its fixed

locus.

Proposition 3.23. With the above notation there exists a unique lift τ̂ such that τ̂ is an au-
tomorphism of Σ̂ and commutes with the map giving the minimal resolution of singularities β.
Moreover Fix(τ̂) ≃ Fix(τ) is a curve of genus 4.

Proof. The singular locus Sing(Σ) is a proper orbit for the automorphism τ , where proper
means that Fix(τ) ∩ Sing(Σ) = ∅. Indeed the points in the singular locus are permuted by σ.
Take pi ∈ Sing(Σ) of coordinates (l̄1 : · · · : l̄4 : s̄) then (l̄1 : · · · : l̄4 : ζ3s̄) is again on the same
line defined by the singular locus of f2 = 0 and a different point of Sing(Σ). So Sing(Σ) is
mapped to itself and therefore there exists a unique lift τ̂ such that τ̂ is an automorphism of Σ̂
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and commutes with β. By construction of τ̂ , Fix(τ̂) ∩ (Σ̂ \ β−1(Sing(Σ))) ≃ Fix(τ) as τ̂ acts
in the same way of τ outside the exceptional divisors introduced by blowing up. Moreover, the
diagram

Σ̂ Σ̂

Σ Σ

τ̂

β β

τ

commutes by the universal property of blow-ups, therefore τ̂(β−1(pi)) = β−1(τ(pi)) =
β−1(pj) (where j = i+ 1 modulo 3). Therefore Fix(τ̂) ≃ Fix(τ) which is a curve of genus 4.
In order to see that it is indeed a genus 4 curve one can look at the explicit computation done
in [AS08, Proposition 4.7].

It follows from the results in loc. cit., since the automorphism τ̂ on the K3 surface Σ̂
fixes exactly one curve, that the invariant lattice T (τ̂) in H2(Σ̂,Z) is isometric to U(3) and
its orthogonal complement in H2(Σ̂,Z) is isometric to U ⊕ U(3) ⊕ E8(−1)⊕2

. As we are

considering a generic Y with only one singularity of typeD4 and thus a generic K3 surface Σ
with exactly three A1 singularities, the Picard lattice T of Σ̂ is of rank four. We use again the

description given in [Ste20, Proposition 6.3.8] and we find a lattice ⟨C1, E1, E2, E3⟩ ⊂ Pic(Σ̂)
with the following Gram matrix: 

0 1 1 1
1 −2 0 0
1 0 −2 0
1 0 0 −2


We consider C to be generic with a singularity of type A2 therefore by genericity (using

the computations of the rank of the Picard group in Section 5.1) it holds ⟨C1, E1, E2, E3⟩ =
Pic(Σ̂).

Remark 3.24. Note that

⟨C1, E1, E2, E3⟩ = ⟨C1, C1 + E1,−2C1 − E1 + E2,−E2 + E3⟩ ≃ U ⊕A2(−2).

From the discussion above we know that T (τ̂) ≃ U(3) admits a primitive embedding U(3) ↪→ T ,
so from this isomorphismwe see thatU(3)⊕A2(−2) ⊂ U⊕A2(−2) can be written as a sublattice
of finite index.

As in previous sections we note the following isometry:

Pic(Σ̂[2]) ≃ Pic(Σ̂)⊕ ⟨−2⟩ ≃ U ⊕A2(−2)⊕ ⟨−2⟩ ≃ ⟨6⟩ ⊕D4(−1).

This isometry can be described by

Pic(Σ̂[2]) = ⟨C1, E1, E2, E3, ϵ⟩ ≃ ⟨−E1, E2, C1 − ϵ, E3, 2(2C1 + E1 + E2 + E3)− 3ϵ⟩.

Here we are implicitly giving an embedding of the square six polarization class θ into the

Picard lattice as 2θK3 − 3ϵ where θK3 is a square six class on the K3 surface Σ̂. As already
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remarked in Section 2.1, up to an isometry (so after a change of the marking), we can suppose

θK3 to be 3u1 + u2 as in our setting. This proves Claim 3.12. It is useful to describe also the

transcendental lattice Tr(Σ̂[2]) of Σ̂[2]
. So

Tr(Σ̂[2]) ≃ Tr(Σ̂) ≃ U⊕2 ⊕ E8(−1)⊕A2(−1)⊕D4(−1).

In this case we cannot proceed as described in Section 3.3. Indeed, let us denote with T0 =
η(Pic(Σ̂[2])) and S0 = T⊥

0 = η(Tr(Σ̂[2])) and prove the following proposition.

Proposition 3.25. There exists no order three isometry ρ0 ∈ O(L) on theK3[2] lattice L which
extends the isometry idT0 ⊕ ρ|S0

∈ O(T0)⊕O(S0).

Proof. In order to apply Proposition 3.13, DD4(−1) < DS0 must be contained in the subgroup
H of the proposition. Therefore, in order to lift the order three isometry without fixed points
ρ, it must be the identity on H . But we know from Section 2.1 that there exists only one, up
to conjugation, order three isometry without fixed points on D4(−1) and it is not trivial on
DD4(−1) ≃ (Z/2Z)2. For the sake of completeness we write explicitly the order three isometry
ρ of D4(−1) without fixed points.
We can express this lattice as D4(−1) = ⟨d1, d2, d3, d4⟩ with the following Gram matrix:

−2 0 −1 0
0 −2 1 0

−1 1 −2 1
0 0 1 −2


Then the isometry on the generators is given by:

d1 7→ −d1 + d3 − d4

d2 7→ −d1 + d2 − d3

d3 7→ −d1 − d2 + d3 + d4

d4 7→ −d2 + d3 − d4.

After a standard computation a basis ofDD4(−1) can be given by ⟨−d1+ 1
2d2+d3+

1
2d4,

1
2d1−

d2 − d3 − 1
2d4⟩ = ⟨a, b⟩ and we see that ρ∗(a) = b and ρ∗(b) = a+ b, where ρ∗ is the map on

DD4(−1) induced by ρ.

We still have a non-symplectic automorphism of order three on the K3 surface Σ̂ and,

thus, on Σ̂[2]
. Hence, as noted in Remark 3.10, we can see the latter as a point (Σ̂[2], η) having

a degeneracy latticeRδ1 ≃ Rδ2 ≃ A2(−1) ⊂ R0, “forgetting” one of the two roots orthogonal

to its period (cfr. with Definition 3.9). We now call Tδ1 = ⟨6⟩ ⊕ A2(−1) ≃ ⟨θ, δ1⟩ and Sδ1
its orthogonal complement in L. Then it is well defined ρδ1 ∈ O(L), the lifting to L of the

isometry id|Tδ1 ⊕ ρ|Sδ1
to L. In order to see this, it is enough to note that in the proof of the

lifting of the isometry in Theorem 3.16 the hypothesis on the Picard lattice is not used, the only

thing used is the triviality of ρ on the discriminant and in our case this holds onRδ1 . So, exactly
as in the case A1 done in [BCS19b, §4.3], the isometry ρδ1 restricts to an isometry of (Zϵ)⊥.

44



Note that the fixed part of ρδ1 is by definition ⟨6⟩⊕A2(−1) ≃ U(3)⊕⟨−2⟩ and if we consider
a primitive embedding Tδ1 ⊂ Pic(Σ̂[2]) we get Tδ1 ⊕ A2(−2) ≃ ⟨6⟩ ⊕ A2(−1) ⊕ A2(−2) ≃
U(3)⊕A2(−2)⊕ ⟨−2⟩ ⊂ Pic(Σ̂[2]).

Lemma 3.26. The action of τ̂ on H2(Σ̂,Z) is conjugate to the isometry ρδ1 restricted to (Zϵ)⊥.

Proof. The proof is a straight-forward application of Theorem 3.15. Take G = ⟨ρδ1⟩, then
condition i) is simply verified. As LG ≃ U(3), also condition iii′) is easily verified. Lastly
SG,X ≃ A2(−2), thus also condition ii) is verified, therefore there exists an automorphism τ̄

on Σ̂ whose action is conjugate to ρδ1 .
If τ̂ = τ̄ we are ok. Otherwise, we use the same argument of [AS08, Lemma 4.4, Proposition 4.7]
which is the following. As τ̄ is an order 3 automorphism whose invariant lattice is isomorphic
to U(3) it fixes a genus 4 curve P̄ . Consider the linear system |P̄ | associated to P̄ and the
map Φ : Σ̂ → P4. Consider an elliptic curve R on Σ̂ intersecting P̄ , then τ̄ preserves R and
has exactly 3 fixed points on it by Riemann Hurwitz formula. Using [SD74, Theorem 5.2] we
deduce that Φ is an embedding. We can choose projective coordinates (x1 : · · · : x5) on P4

such that the hyperplane H whose preimage Φ−1(H) = P̄ is given by x5 = 0. Therefore the
induced automorphism on the image is the automorphism of P4 that maps x5 7→ ζ3 · x5. In
other words we can make a change of coordinates on Σ̂ such that τ̂ = τ̄ .

We now consider the natural automorphism τ̂ [2] induced on Σ̂[2]
by τ̂ . As its invariant

lattice is Tδ1 we see that (Σ̂[2], η, τ̂) defines a point in N ρδ1 ,ζ

Tδ1
. If Σ̂[2]

is moreover K(Tδ1)-

general we can conclude as in Sections 3.4 and 3.5; but, it turns out not to be the case as

proved by the following proposition.

Proposition 3.27. Σ̂[2] is notK(Tδ1)-general.

Proof. Note that by [Mar11, Theorem 6.18] the group of monodromies Mon2(Σ̂) acts transi-
tively on the set of exceptional chambers, therefore, up to taking a different birational model,
in order to prove that Σ̂[2] is notK(Tδ1)-general it is sufficient to show that there exists a wall
divisor µ ∈ ∆(Σ̂) not fixed by the action of τ̂ but such that C τ̂ ∩ µ⊥ ̸= 0, where C τ̂ denotes
a connected component of the invariant positive cone. We will prove that there exist both −2
and −10 walls which are not fixed by τ̂ by exhibiting them. The wall divisor E1 is not fixed
by τ̂ but its orthogonal hyperplane intersects non-trivially C τ̂ , e.g in 2C+E1+E2+E3. The
same is true for the wall divisor 2E1 + ϵ.

This proposition implies that (Σ̂[2], η, τ̂) is a non-separable point inMρδ1 ,ζ

Tδ1
, i.e. for which

the T2 condition of separability fails. Moreover this condition persists also if we consider

(Σ̂[2], η, τ̂) in the quotient N ρδ1 ,ζ

Tδ1
. Indeed, in [BCS19a, Section 4] the authors show that the

points in the fibre over a period ω ∈ N ρδ1 ,ζ

Tδ1
are in a one-to-one correspondence with the

number of orbits of the monodromy action on the chambers. In the proof of Proposition 3.27

we found a (−10)-class defining a wall whose orbit cutsK(Tδ1), therefore there exists at least
two chambers which are not in the same orbit of the monodromy action. This implies the

following corollary.
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Corollary 3.28. There exist at least two non biregular models inN ρδ1 ,ζ

Tδ1
which are over the same

fiber of a period ω relative to a generic cubic threefold with a single singularity of type A2.

The pair (Σ̂[2], η) defines also a point in themoduli space of (M, j)-polarized IHSmanifolds

of K3[2]-type, whereM := U ⊕ A2(−2) ⊕ ⟨−2⟩. So we shift our interest in giving a formal

characterization of marked IHSmanifolds (X,ϕ) carrying the following commutative diagram

in the data:

Tδ1 M Pic(X) ⊂ H2(X,Z) H2(X,Z)

L L.

j

ι

ϕ

σ∗

ϕ

ρδ1

(3.28.1)

7 Kähler cone sections of K-type

In this section we introduce the notion of Kähler cone sections of K-type in order to give a

more detailed description of the following situation. Let (X,ϕ) be an (M, j)-polarized IHS

manifold of type L and let T ⊂ M be a primitive sublattice. In this situation the pair (X,ϕ)
is both (M, j)-polarized and (T, j|T )-polarized, so we can compare the notions ofK(M) and
K(T ) generality when the two chambers are chosen in such a way thatKX ∩ ι(K(T )) ̸= ∅ ≠
KX ∩ ι(K(M)), where ι denotes the C-linear extension of the map ι of the diagram (3.28.1).

Recall that K(T ) and K(M) are, respectively, a connected component of CT \
⋃
δ∈∆(T ) δ

⊥

and CM \
⋃
δ∈∆(M) δ

⊥
. By their definition, ∆(T ) = ∆(M) ∩ T and CT = CM ∩ (T ⊗ R),

therefore our choice of the chambersK(M) andK(T ) impliesK(M) ∩ (T ⊗R) ⊂ K(T ) as
the embedding of both via ι intersects KX .

Lemma 3.29. If a pair (X,ϕ) as above isK(T )-general then it is alsoK(M)-general.

Proof. Suppose thatX is notK(M)-general: ι(CM )∩KX is then a proper subset of ι(K(M)).
By Theorem 2.44 there exists λ ∈ ∆(X) such that λ⊥ ∩ ι(K(M)) ̸= ∅ and ϕ(λ) /∈ ∆(M). But
remember that∆(M) ⊃ ∆(T ) and by our choice of the chambersK(M)∩ (T ⊗R) ⊂ K(T );
then ϕ(λ) /∈ ∆(T ) and λ⊥ ∩ ι(K(T )) ⊃ λ⊥ ∩ ι(K(M) ∩ (T ⊗ R)) ̸= ∅ implying that X is
notK(T )-general.

Remark 3.30. The converse to the previous statement is not true. A counterexample is given by
the IHS fourfold Σ̂[2] in Section 3.6. In fact, Proposition 3.27 shows that (Σ̂[2], η) is not K(Tδ1)-
general while it is clearlyK(M)-general by [BCS19a, Lemma 5.2].

So, we give the following more general definition.

Definition 3.31. LetK be a (connected and open) subset of a chamberK(T ) such thatK(T ) ⊃
ϕ(KX), with KX denoting the Kähler cone of a (T, j)-polarized IHS manifold (X,ϕ). Then we
say that X has a Kähler cone section ofK-type ifK = ϕ(KX) ∩ CT .

Remark 3.32. Note that if we choose a subsetK which is not connected or not open then no IHS
manifold satisfies the above definition as its Kähler cone is connected and open.
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If the subset K chosen in Definition 3.31 is a proper subset of K(T ) any IHS manifold X
with a Kähler section cone ofK-type will not beK(T )-general. The following characterization
gives us a link between the two definitions.

Proposition 3.33. Let (X,ϕ) be a (T, jT )-polarized IHS manifold of type L. If X has a Kähler
cone section ofK-type then there exist:

i) a latticeM with an embedding jM :M ↪→ L;

ii) a primitive embedding ι̃ : T ↪→M ;

iii) a chamberK(M), i.e. a connected component ofCM \
⋃
δ∈∆(M) δ

⊥, withK(M)∩CT = K ;

such that (X,ϕ) is aK(M)-general, (M, jM )-polarized IHS manifold.
Conversely, if (X,ϕ) is a K(M)-general, (M, jM )-polarized IHS manifold with T ⊂ M then it
has a Kähler cone section ofK-type withK = K(M) ∩ CT .

Proof. By Theorem 2.44 the Kähler cone ofX is a connected component of CX \H∆, so denote
with Λ ⊂ ∆(X) the set of those MBM classes λ for which λ⊥ is an extremal ray, i.e. if α, β ∈
CX are such that α+β ∈ λ⊥ then α, β ∈ λ⊥. DefineM as a lattice of minimal rank containing
T and ϕ(Λ) and such that every embedding in the chain of inclusions T ⊂ M ⊂ M ′ :=
ϕ(Pic(X)) is primitive and use the first to define ι̃; fix an embedding jM : M ↪→ L such that
(jM )|T = jT . Then by construction there exists a chamber K(M) of CM \ H∆(M) such that
(X,ϕ) is (M, jM )-polarized with ιM := jM ◦ ϕ−1 and K(M)-general. Moreover, denoting
with ιT the embedding T ↪→ Pic(X)we obtain ιM (K(M)∩CT ) = KX∩ιT (CT ) = ιM (K) by
hypothesis and injectivity of ιM , therefore the first part of the statement is proved. The second
one is obvious using the fact that ιT and ιM are injective and that by construction ιT = (ιM )|T .
Indeed ιT (K) = ιT (K(M) ∩ CT ) = ιM (K(M)) ∩ ιT (CT ) = KX ∩ ιT (CT ).

Remark 3.34. Note that in the proof of the above proposition we chose to exhibit a minimalM ⊃
T for which the statement holds. In fact, the same holds for every latticeM ′ ⊃M ⊃ T for which
(X,ϕ) admits an (M ′, j′)-polarization by Lemma 3.29. In particular it holds forM ′ ≃ Pic(X).

We now fix a chamber K and (X, η) a (T, jT )-polarized IHS manifold with a Kähler

cone section of K-type. According to Proposition 3.33 we can find a pair (M, jM ) such that

(X, η) is (M, jM )-polarized,K(M)-general IHS manifold, withK(M)∩CT = K . We define

N := jM (M)⊥ and S := jT (T )
⊥
. On the moduli spaceMK(M),jM of (M, jM )-polarized IHS

manifolds of type L which are K(M)-general it is defined a period map which is an isomor-

phism by [Cam18, Theorem 3.13],

PK(M) : MK(M),jM → ΩM,jM \
(
HM ∪H′

K(M)

)
where a marked pair (X,ϕ) is sent to ϕ(H2,0(X)).
We define the subfamily F T

jM ,K of the (T, jT )-polarized IHS manifold of type L with the

Kähler cone section of typeK and embedding jM . Then we state the following theorem.
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Theorem 3.35. The period map PK(M) restricted to F T
jM ,K defines a bijection with

ΩTjM ,K := {ω ∈ P(NC) | (ω, ω̄) > 0, q(ω) = 0} \
(
(HS ∩NC) ∪H′

K(M)

)
with HSδ1

:= ∪ν∈∆(S)Hν and H′
K(M) := ∪ν∈∆′(K(M))Hν .

Proof. Consider the period map PK(M). If we restrict this map to those IHS manifolds which
are in F T

jM ,K then the image cannot lie inHS ∩NC because if there existed ν ∈ HS such that
ω := ϕ−1(H2,0(X)) ∈ Hν we would have ϕ−1(ν) ∈ NS(X) by definition of NS(X) as the
orthogonal complement of H2,0(X) in H2(X,Z). Therefore η−1(ν) would be a wall divisor
yielding a contradiction using the same argument of Remark 3.11. Being PK(M) an injective
morphism, in order to get a bijection we just need to show what is the image. Take a period
ω ∈ ΩTjM ,K and consider (X,ϕ) = P−1

K(M)(ω) then it is immediate to see that (X,ϕ) is indeed
an element ofF T

jM ,K as it isK(M)-general and by Proposition 3.33 it has a Kähler cone section
ofK-type.

8 A moduli space for the singularity of type A2

In this section we give the proof of Theorem 3.1 for∆A2
3 and continue the description started

at the end of Section 3.6, therefore we will use the same notation resumed in the diagram

3.28.1. Moreover, we recall that Tδ1 = U(3)⊕ ⟨−2⟩ andM = U ⊕A2(−2)⊕ ⟨−2⟩.
Let us define K(M) as the connected component of CM \ ∪ν∈∆(M)Hν which contains a

Kähler class of Σ̂[2]
, i.e. KΣ̂[2] ⊂ ι(K(M))⊗R. We choose in a compatible way alsoK(Tδ1), i.e.

KΣ̂[2]∩ι(K(Tδ1)) ̸= ∅ ≠ KΣ̂[2]∩ι(K(M)); we also chooseK := K(M)∩(Tδ1⊗R) ⊂ K(Tδ1).

Moreover, in the case of Σ̂[2]
, the map i : M → Pic(Σ̂[2]) is an isomorphism and therefore

i(K(M)) = KΣ̂[2] . So, we define the family F
ρδ1 ,ζ

K,Tδ1
⊂ Mρδ1 ,ζ

Tδ1
of IHS manifolds in Mρδ1 ,ζ

Tδ1
which have a Kähler cone section of K-type and admit an embedding Tδ1 ↪→ M ↪→ Pic(X)
compatible with the polarization, i.e. for which the commutative diagram (3.28.1) is defined.

Remark 3.36. We do not want to choose the embedding of M in L in the data but only the
embedding j of Tδ1 . It is an easy exercise using [Nik80, Proposition 1.15.1] to see that there are
only two possible non-isomorphic embeddings of Tδ1 in L and they correspond respectively to the
two possible non-isomorphic embeddings ofM in L (see Section 5.2). Recall that we say that two
embeddings j1 and j2 ofM in L are isomorphic if there exists an automorphism φ ∈ O(L) such
that j2 = φ ◦ j1. Therefore we choose the embedding jk such that jk(Tδ1)

⊥ = j(Tδ1)
⊥ =: Sδ1 ≃

U(3)⊕ U ⊕ E8(−1)⊕2 ⊃ Tr(Σ̂[2]). Note that doing so (Σ̂[2], η) ∈ F
ρδ1 ,ζ

K,Tδ1
.

Proposition 3.37. The period map PK(M) restricted to F
ρδ1 ,ζ

K,Tδ1
defines a bijection with

Ω
ρδ1 ,ζ

K,Tδ1
:= {ω ∈ P(NC(ζ)) | (ω, ω̄) > 0} \

(
(HSδ1

∩NC) ∪H′
K(M)

)
with HSδ1

:= ∪ν∈∆(Sδ1
)Hν andH′

K(M) := ∪ν∈∆′(K(M))Hν .
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Proof. This proposition states thatwe can apply Theorem 3.35 alsowith the additional structure
of the (ρδ1 , Tδ1)-polarization. The image of PK(M) lies in the eigenspace P(NC(ζ)) by defini-
tion of Picard group. Take now a period ω ∈ Ω

ρδ1 ,ζ

M,K(M) and consider (X,ϕ) = P−1
K(M)(ω), we

want to show that on X there exists an automorphism σ satisfying the properties required in
diagram (3.28.1). Define σ∗ := ϕ−1 ◦ ρδ1 ◦ϕ. It is an isomorphism of integral Hodge structures
since

σ∗(ωX) := σ∗(P−1
K(M)(ω)) = ϕ−1(ρδ1(ω)) = ζωX .

Moreover, it is a parallel transport operator as ρδ1 ∈ Mon2(L). If it preserves also a Kähler
class we can conclude with Markman’s Torelli Theorem 2.39. ButX has a Kähler cone section
ofK-type, therefore

KX ∩ i(Tδ1) ⊃ KX ∩ i(Tδ1) ∩ i(CM ) = i(K(M)) ∩ i(Tδ1) ̸= ∅

thus, ρδ1 fixes a Kähler class.

Remark 3.38. Note that if (X1, ϕ1) and (X2, ϕ2) define the same point inMM,K(M), i.e. there
exists a biregular morphism f : X1 → X2 such that ϕ1 = ϕ2 ◦ f∗ and i1 = i2 ◦ f∗, then also
σ1 = f−1 ◦ σ2 ◦ f by [BC22, Theorem 1.8].

Let

Mon2(M, j, ρδ1) :=
{
g ∈ Mon2(L) | g(M) =M, g(t) = t,

g ◦ ρδ1 = ρδ1 ◦ g, ∀t ∈ Tδ1}

and denote its image in O(N) via the restriction map with Γ
ρδ1
M,j . Note that Mon2(M, j, ρδ1)

is the stabilizer of F
ρδ1 ,ζ

K,Tδ1
for the action of Mon2(M, j) on MM,K(M,Tδ1 )

. Moreover, by def-

inition, the bijection defined in Proposition 3.37 is equivariant with respect to the action of

Mon2(M, j, ρδ1) and of Γ
ρδ1
M,j . Denoting N

ρδ1 ,ζ

K,Tδ1
:= F

ρδ1 ,ζ

K,Tδ1
/Mon2(M, j, ρδ1) we deduce the

following corollary:

Corollary 3.39. There exists a bijection between N
ρδ1 ,ζ

K,Tδ1
and Ω

ρδ1 ,ζ

K,Tδ1
/Γ

ρδ1
M,j .

The whole formal construction made above is “natural” in the sense that it arises from the

theory of K3 surfaces in a compatible way. Let us clarify this sentence. Consider a diagram

similar to (3.28.1) where (X,ϕ) is, this time, a marked K3 surface such that the following

commutative diagram is defined

U(3) U ⊕A2(−2) Pic(X) ⊂ H2(X,Z) H2(X,Z)

LK3 LK3.

j

i

ϕ

σ∗

ϕ

ρ̃

Where ρ̃ is ρδ1 restricted to ⟨−2⟩⊥. Define the subfamily of the K3 surfaces with an am-

ple U(3)-polarization for which there exists the above diagram as K ρ̃,ζ
U(3),U⊕A2(−2) and note
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that Σ̂ ∈ K ρ̃,ζ
U(3),U⊕A2(−2). Then with the same techniques of Proposition 3.37 we can find a

generalized version of [DK07, Theorem 11.3] which applies to our subfamily and obtain the

following proposition. We denote with

Γρ̃U(3),U⊕A2(−2) := {γ ∈ O(LK3) | γ|U⊕A2(−2) ∈ O(U ⊕A2(−2)),

γ|U(3) = id and γ ◦ ρ̃ = ρ̃ ◦ γ}.

Proposition 3.40. The period map defines a bijection between K ρ̃,ζ
U(3),U⊕A2(−2) and

Ωρ̃,ζU(3),U⊕A2(−2) := {ω ∈ P(NC(ζ)) | (ω, ω̄) > 0} \
(
HSδ1

∩NC

)
with HSδ1

:= ∪ν∈∆(Sδ1
)Hν . Moreover, this bijection descends to bijection at the level of iso-

morphism classes, i.e. Ωρ̃,ζU(3),U⊕A2(−2)/Γ
ρ̃
U(3),U⊕A2(−2) parametrizes isomorphism classes of K3

surfaces in K ρ̃,ζ
U(3),U⊕A2(−2).

Proof. Consider the period map for the K3 surfaces which are (ρ̃, U(3))-ample, by [DK07,
Theorem 11.2] it is a bijection with

Ωρ̃U(3) := {ω ∈ P((Sδ1 ⊗ C)(ζ)) | (ω, ω̄) > 0} \ HSδ1
.

If we moreover consider the restriction to our subfamily then it is easy to see that [DK07,
Theorem 10.2] guarantees the assertion.

We can now state the following proposition which answers our question in a formal way.

Proposition 3.41. Let R0 = Span(δ1, δ2, ρ(δ1), ρ(δ2)) ≃ D4(−1) be the degeneracy lattice
relative to a period ω of a generic cubic threefold having a single singularity of type A2. Then the
A2 locus ∆A2

3 is birational to the moduli space N
ρδ1 ,ζ

K,Tδ1
.

Proof. The proof has again the same structure of the proof of Theorem 3.19, we review here
the main points. Recall that the extension of the period map P3 : Csm

3 → B10\(Hn∪Hc)
PΓ to the

nodal locus is done by [ACT11] defining its period as the period of its associated K3 surface
(see also Section 2.1). In our case the generic A2 nodal cubic has the period

P3(C) := P ρ̃,ζ
U(3),U⊕A2(−2)((Σ, η)).

The latter period map is the same of Proposition 3.40. Following Proposition 3.40 this map
yields an isomorphism between K ρ̃,ζ

U(3),U⊕A2(−2) and Ωρ̃,ζU(3),U⊕A2(−2).

As proven in Section 3.6 (Σ̂[2], η, τ) defines a point inF
ρδ1 ,ζ

K,Tδ1
. The period map in this space

defines a bijection which, according to Corollary 3.39, descends to a bijection between N
ρδ1 ,ζ

K,Tδ1

and Ω
ρδ1 ,ζ

K,Tδ1
/Γ

ρδ1
M,j . Note that Ω

ρδ1 ,ζ

K,Tδ1
/Γ

ρδ1
M,j and

Ωρ̃,ζU(3),U⊕A2(−2)/Γ
ρ̃
U(3),U⊕A2(−2)
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are birational. So, in order to conclude the proof, it is enough to show that ∆A2
3 is birational

to the isomorphism classes of K3 surfaces in K ρ̃,ζ
U(3),U⊕A2(−2) as the claim of the proposition

would follow through a composition of birational morphisms. But this is true as in [ACT11,
Section 6] the authors show that the discriminant locus maps isomorphically to its image,
the nodal hyperplane arrangement, through the period map, therefore a generic point in ∆A2

3

is mapped isomorphically to the period of a generic K3 surface in K ρ̃,ζ
U(3),U⊕A2(−2) and by

Proposition 3.40 this is an isomorphism.

Remark 3.42. Also Kondō notes in [Kon02] this family as a codimension 1 family in the moduli
space of curves of genus 4 which consists of smooth curves with a vanishing theta null.
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Chapter 4

The Fano variety of lines on a
singular cyclic cubic fourfold

“Non so se quello che hai detto è giusto, ma posso provare.
Se mi aiuti”

- Federico Fellini, 8 e 1
2

In this chapter we analyze in depth the birational relation between the Fano variety of lines

on a singular cyclic cubic fourfold and the Hilbert square of a singularK3 surface mentioned

in Section 3.2. This chapter is the result of a collaboration with S. Boissière and P. Comparin

which is a work in progress.

1 Introduction

In the context of complex projective geometry, cubic hypersurfaces have been deeply studied

by the mathematical community for many reasons, one of them being their rich geometry.

There has been a growing interest over the last fitfty years in one class in particular: cubic

fourfolds. One of the reasons why cubic fourfolds are particularly interesting resides in their

Hodge structure. Indeed, they are the archetypal example of Fano varieties of K3 type (see

[Fat22] for a survey on the subject). Because of this fact they are deeply related to the world

of IHS manifolds.

As we have seen, the meaning of the degeneracy of the automorphism is that when the pe-

riod point goes to the closure of the period domain, the automorphism of the family jumps to

another family with a bigger invariant lattice. In view of this, in [BHS23] the authors studied

in detail the geometry of the Fano variety of lines of a cuspidal cyclic cubic fourfold, i.e. a cyclic

cubic fourfold having a cubic threefold with one isolated singularity of typeA1 as branch locus.

The aim of this chapter of the thesis is to supplement their results studying the Fano variety

of lines F (Yi) of a cyclic cubic fourfold having as branch locus a cubic threefold with one
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isolated singularity of type Ai with i = 2, 3, 4. In particular, using the notation of Chapter 3,

we prove that F (Yi) admits a symplectic resolution by a (ρi, Tδi)-polarized IHS manifold of

K3[2]-type.
The main theorem of this chapter is the following

Theorem 4.1. Let Ci be a complex projective cubic threefold having one isolated singularity of
type Ai for i = 2, 3, 4 and let Yi be its associated cyclic cubic fourfold. Assume that there exist no
plane Π ⊂ Y such that Π ∩ Sing(Yi) ̸= ∅. Then the Fano variety of lines F (Yi) of Yi admits a
unique symplectic resolution by an IHS manifold ofK3[2]-type F̂ (Yi).
Moreover, there exist integral lattices Ri and Ti, defined below, such that:

i) Pic
(
F̂ (Yi)

)
≃ Ri;

ii) there exists a non-symplectic automorphism of order three τi ∈ Aut
(
F̂ (Yi)

)
whose invari-

ant sublattice is H2(F̂ (Yi),Z)τ
∗
i ≃ Ti

with Ti and Ri defined in the following table:

i Ti Ri
2 ⟨6⟩ ⊕A2(−1) ⟨6⟩ ⊕D4(−1)

3 ⟨6⟩ ⊕ E6(−1) ⟨6⟩ ⊕ E6(−1)

4 ⟨6⟩ ⊕ E8(−1) ⟨6⟩ ⊕ E8(−1)

2 Basic facts about symplectic varieties

In this section we recall some basic facts about symplectic varieties.

Let X be a normal complex projective variety and Xreg
its regular part. The sheaf Ω

[p]
X of

reflexive holomorphic p-forms onX is defined as ι∗Ω
p
Xreg , where we denoted by ι the inclusion

of the regular partXreg ⊂ X . Then a symplectic form onX is a closed reflexive 2-form ω, i.e.

a global section of Ω
[2]
X , on X which is non-degenerate at each point of Xreg

.

Definition 4.2 ([Bea00, Definition 1.1]). Assume that a normal projective variety X admits a
symplectic form ω. Then X has symplectic singularities if for one (hence for every) resolution
f : X̂ → X of the singularities (i.e. a birational proper map from a smooth variety) of X, the
pullback f∗ωreg of the holomorphic symplectic form ωreg = ω|Xreg extends to a holomorphic
2-form on X̂ . In this case X is called symplectic variety.

From now on we denote byX a symplectic variety, ω a symplectic form on it and π : X̂ →
X a resolution of singularities. Then the regular 2-form π[∗]ω (see the discussion in [Keb13]

for the definition of pullback of reflexive forms), in general, is degenerate. Therefore we give

the following definition.

Definition 4.3. A resolution of singularities π : X̂ → X is said symplectic if π[∗]ω is non-
degenerate.
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Recall that a birational map π : Y → X between normal irreducible algebraic varieties

with canonical bundlesKX andKY is called crepant if the canonical map

π∗KX → KY

defined over the non-singular locus extends to an isomorphism over the whole manifold Y .

Proposition 4.4. Let π : X̂ → X be a resolution of singularities. The following are equivalent:

• π is crepant;

• π is symplectic;

• K
X̂
is trivial;

• for every symplectic form ω′ on Xreg, its pull-back π[∗]ω′ extends to a symplectic form on
X̂ .

Proof. See [Fu06, Proposition 1.6].

Finally, Kaledin showed in [Kal06] that there exists a canonical stratification of a symplec-

tic variety X .

Theorem 4.5. LetX be a symplectic variety. Then there exists a canonical stratification of closed
subschemes X = X0 ⊃ X1 ⊃ . . . such that:

• Xi+1 is the singular locus of Xi;

• the normalization of every irreducible component of Xi is a symplectic variety.

Proof. See [Kal06, Theorem 2.3]

We call leaf each stratum of this decomposition. In particular each irreducible component

of a leaf has even dimension.

3 A reminder on cyclic cubic fourfolds

In this section we will recall the notation used in Section 3.2 which we will use throughout the

rest of the chapter.

A cubic fourfold is said cyclic if it can be obtained as a 3:1 cyclic cover of P4
branched along

a cubic threefold. If it has one isolated singularity of type ADE in p := (1 : 0 : . . . : 0) we can
give an equation for the fourfold Y with the vanishing of the following polynomial

F (x0 : x1 : x2 : x3 : x4 : x5) = x0f2(x1, x2, x3, x4) + f3(x1, x2, x3, x4) + x35, (4.5.1)

where fi are sufficiently generic homogeneous polynomials of degree i in C[x1, x2, x3, x4]
such that p is the only singularity of Y . In the hyperplane H ⊂ P5

defined by {x0 = 0},
which we identify with P4

of coordinates (x1 : x2 : x3 : x4 : x5), we consider the surface
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Σ given as the complete intersection of the quadric Q defined by f2 = 0 and the cubic K
defined by f3 + x35 = 0. The singularities of this surface are given by the singular points of Q
as shown in Theorem 3.3.

Moreover, recall that, by [DR01, Lemma 2.1], if p is a singular point of Y of type T, then

the singular points of Σ are of type T̂ , as described by the following table.

T A1 A2 An≥3 D4 Dn≥5 E6 E7 E8

T̂ ∅ ∅ An−2 3A1 A1 +Dn−2 A5 D6 E7

Note that there exist cases in which there is more than one singular point on Σ, indeed the

number of singularities ofΣ depends on the number of solutions of the equation f3(1, 0, 0, 0, x) =
0. This surface is embedded in F (Y ), the Fano variety of lines on Y by the results of [Leh18,

Lemma 3.3, Theorem 3.6] and [Has00, Lemma 6.3.1], which we summarized in Theorem 3.4.

Throughout this chapter we will also assume that every cyclic cubic fourfold has no planes

through its singular point. This hypothesis is a genericity assumption as shown in Remark 3.6.

4 A symplectic resolution for F (Y )

In this section we determine the existence of a symplectic resolution for F (Y ) when Y is a

cyclic cubic fourfold branched along a cubic threefold having one isolated singularity of type

Ai for i = 2, 3, 4.
In order to do the computations, let us consider the following equation:

F (x0, . . . , x5) = x0Q(x2, x3, x4) +K(x1, . . . , x5) = x0q1(x2, x3, x4)+

+ x21h2(x2, x3, x4, x5) + x1q2(x2, x3, x4, x5) + k2(x2, x3, x4, x5).
(4.5.2)

With k2, qi and h2 homogeneous polynomials of degree, respectively, three, two and one. This

is close to the equation studied by Boissière–Heckel–Sarti [BHS23, Section 3, Equation (3.2)]

for the cyclic cubic fourfold branched over a cubic threefold with one singularity of type A1.

Here we put, following their notation, h1 = 0 or, equivalently, we considered a rank 3 quadric

given by {f2 = 0}.

Remark 4.6. Consider a cyclic cubic fourfold Y whose branch locus is a cubic threefold with one
isolated singularity of type Ak and k > 1. The equation defining such cubic can be brought to the
form of Equation (4.5.2). Indeed, as noted in Section 3.2, an equation for Y can be brought to the
form of Equation (4.5.1). To see that the rank of f2 for these fourfolds is three note that, in a chart
containing the singular point, it is equal to the rank of the Hessian at the origin. Consequently, by
drawing a comparison with the local analytic form of a singularity of typeAk (see [Arn72, Section
1]), specifically xk+1

1 + x22 + x23 + x24, we see that this is three.

Now, considerF (Y ). This is a singular variety with singular locusF (Y, p) by [AK77, Corol-
lary 1.11]. Moreover, the latter is isomorphic, by Theorem 3.4, to the singular K3 surface Σ.
All the singularities of Σ are in the affine chart x1 ̸= 0, so in order to resolve its singularities

we can do a local computation. The point q0 = (0 : 1 : 0 : 0 : 0 : 0) ∈ Sing(Σ), so we call
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l0 the line pq0, i.e. the line corresponding to q0 under the isomorphism F (Y, p) ≃ Σ. Now
consider the Plücker embedding Gr(2, 6) ↪→ P14

, the Plücker relations yield that Gr(2, 6)
is locally given by eight complex coordinates. So, in an affine neighbourhood U of [l0] we
choose Plücker coordinates (p02, ..., p05, p12, ..., p15) characterizing the lines passing through
the following points:

(1 : 0 : −p12 : −p13 : −p14 : −p15), (0 : 1 : p02 : p03 : p04 : p05).

Moreover, we put (pi,2, pi,3, pi,4) =: pi for better readability.

On this chart a line in P5
is given by:

x0 = λ, x1 = µ, x5 = −λp15 + µp05, (x2, x3, x4) = −λp1 + µp0

with (λ : µ) ∈ P1
. Then to find equations for F (Y ) we can substitute these expressions in

Equation (4.5.2) and extract the homogeneous components ϕi,j of degree (i, j) in (λ, µ). Then
the equations become:

ϕ3,0 = q1(p1)− k2(p1, p15)

ϕ2,1 = −2B1(p0, p1) + q2(p1, p15) + k2,12 ((p0, p05), (p1, p15))

ϕ1,2 = q1(p0)− h2(p1, p15)− 2B2((p0, p05), (p1, p15))− k1,22 ((p0, p05), (p1, p15))

ϕ0,3 = h2(p0, p05) + q2(p0, p05) + k2(p0, p05).

Here we denoted with Bi the bilinear forms relative to qi and with ki,j2 the form of weight

(i, j) relative to k2.

Proposition 4.7. The blow-up map α : BlΣ(F (Y )) → F (Y ) is a resolution of the indetermina-
cies of the rational map φ−1 : F (Y ) → Hilb2(Σ) mentioned in Theorem 3.4 and BlΣ(F (Y )) ≃
Hilb2(Σ).

Proof. The argument is the same of [BHS23, Theorem 3.1]. First, let us recall the definition
that the map φ is a map which associates to any closed subscheme of length two ξ on Σ the
residual line given by the intersection of the plane ⟨ξ, p⟩ and the cubic fourfold Y . We want to
prove that the rational map α−1 ◦ φ is a bijection and conclude that it is an isomorphism with
Zariski’s main theorem. To prove the bijection we will compute the fibres of α and φ to show
that they are isomorphic.
First, note that we just need to check what happens over the singularities of Σ. Indeed, in
order to compute the fibers over nonsingular points for the K3 surface we can reduce to the
smooth case studied in [BHS23]. This is because, if we want to study the equation locally, in a
neighbourhood of a line lx̄ corresponding to a point x̄ := (0 : x̄1 : x̄2 : x̄3 : x̄4 : x̄5) ∈ P5, then
we can perform a change of variable bringing x̄ to the origin and do the same computations
done in loc.cit.. See Section 5.4 for the explicit transformation.
Let us now compute the fibers of the morphism φ. Any plane Πa containing the line l0 corre-
sponding to the origin cuts x0 = x1 = 0 in only one point of coordinates (0 : 0 : a2 : a3 : a4 :
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a5) corresponding to a := (a2 : a3 : a4 : a5) ∈ P3. The intersection Πa ∩ Y is a plane cubic
in P2 of coordinates (b0 : b1 : b2) given by the equation F (b0 : b1 : b2a) = 0. The line l0 has
equation b2 = 0 on this plane and the residual conic is given by the equation:

b0b2q1(a2, a3, a4) + b21h2(a2, a3, a4, a5) + b1b2q2(a2, a3, a4, a5) + b22k2(a2, a3, a4, a5).

The fiber of φ over l0 is given by those planes whose residual conic is the union of two lines
through the singular point p. Thus it is isomorphic to the cone

C̃ := {(a2 : a3 : a4 : a5) ∈ P3 | q1(a2, a3, a4) = 0}.

Now, in order to compute the blow-up BlΣ(F (Y )), we compute its local expression on the
chart U . So, it is given locally as the closure of the image of the regular morphism:

U \ (Σ ∩ U) U × P3

((p0, p05), (p1, p15)) (((p0, p05), (p1, p15)), (p12 : p13 : p14 : p15)).

Denote with a := (a2 : a3 : a4 : a5) the coordinates of the P3. Assuming a5 ̸= 0 put a5 = 1
and the relations of the blow-up become

p1,i = p15aj

for j = 2, 3, 4. Therefore, the equations of BlΣ(F (Y )) on the local chart become:

ϕ̂3,0 = q1(a)− p15k2(a, 1)

ϕ̂2,1 = −2B1(p0, a) + p15(q2(a, 1) + k2,12 ((p0, p05), (a, 1)))

ϕ̂1,2 = q1(p0)− p15(h2(a, 1) + 2B2((p0, p05), (a, 1)) + k1,22 ((p0, p05), (a, 1)))

ϕ̂0,3 = h2(p0, p05) + q2(p0, p05) + k2(p0, p05).

The equation of the fiber under α of a line l0 corresponding to the origin is found putting
p0 = 0 and p15 = 0. After homogeneization:

α−1(l0) = {(a2 : a3 : a4 : a5) ∈ P3 | q1(a2, a3, a4) = 0} = C̃.

Remember that there exist no planes contained in Y passing through its singular point by as-
sumption. So, the blow-up map α : BlΣ(F (Y )) → F (Y ) is a resolution of the indeterminacies
of the rational map φ−1 since the coordinate a of a line l0 selects one plane Πa which cuts Y
in three lines: l0, l1 and l2. Then l1 and l2 (which are not necessarily distinct) define a closed
subscheme of length two on Σ as seen in the proof of Theorem 3.4. Then, by Zariski’s main
theorem, BlΣ(F (Y )) ≃ Σ[2].

Consider now the symplectic resolution π : Σ̂ → Σ which is just a sequence of blow-ups

on the singular points. Recall that Σ̂ is a K3 surface and thus we consider its Hilbert square

Hilb2(Σ̂) which is an IHS manifold. The map π induces a birational map π[2] : Hilb2(Σ̂) 99K

Hilb2(Σ) in the following way. To a generic closed subscheme ξ
ιξ
↪−→ Σ̂ of length 2 it associates

the scheme theoretic image of ιξ ◦ π.
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Remark 4.8. The inverse morphism (π[2])−1 restricts to an isomorphims onHilb2(Σ) \Z where
Z := {ξ ∈ Hilb2(Σ) | supp(ξ) ∩ Sing(Σ) ̸= ∅}. It is an easy computation to see that Z has
dimension at most 2. Indeed, the singular locus of Σ consists of isolated points. Let r ∈ Sing(Σ)
and ξ ∈ Hilb2(Σ) be such that r ∈ supp(ξ) ∩ Σ. By the characterization of Example 2.18 we
know that ξ can be identified either as r+ t with t ∈ Σ and t ̸= r or r+ v with v ∈ P(Tr(Σ)). In
the first case we see that the set {r + t ∈ Hilb2(Σ) | t ∈ Σ, t ̸= r} is isomorphic to Σ \ {r}. In
the second case, Tr(Σ) = Tr(Q)∩Tr(K) in particular Tr(Σ) ⊂ Tr(K) and dim(Tr(Σ)) ≤ 3 as
K is smooth, thus dim(P(Tr(Σ))) ≤ 2. So Z is a finite union of closed subschemes of dimension
at most two.

Proposition 4.9. If there exist a birational map f : X 99K Y between a normal, irreducible,
projective variety X and an IHS manifold Y and a closed subscheme Z ⊂ X of codimension at
least 2 such that f|X\Z : X ′ := X \ Z → Y ′ ⊂ Y is an isomorphism, then f induces on X a
symplectic form and all the singularities of the latter are symplectic.

Proof. The argument is close to [Leh18, Theorem 3.6] and stated explicitly in [BHS23, Theorem
3.1], we write it here for the sake of completeness. From the fact that X ′ is isomorphic to an
open subset of Y we deduce that the canonical bundle is trivial onX ′. Then asX is a normal,
irreducible variety and the codimension of Z is at least two, we obtain KX = 0 as a Cartier
divisor. We want to prove now that X has symplectic singularities using [Nam85, Theorem
6], i.e. we need to prove that X has rational Gorenstein singularities and the regular locus
Xreg of X admits an everywhere non-degenerate holomorphic closed 2-form. Let W be the
desingularization of an elimination of indeterminacies for f , so that the following diagram
exists and commutes

W
p

~~

q

  
X

f // Y.

Then H0(W,OW (KW )) = H0(W, q∗(OY (KY )) = H0(Y,OY (KY )) = C since Y is an IHS
manifold, so KW is effective. But KW − p∗KX = KW as we proved that KX is trivial and
thus the singularities of X are canonical. This implies that X has rational singularities by
Elkik–Flenner theorem ([Rei87, Section 3, page 363]). It remains to prove that f induces an ev-
erywhere non-degenerate holomorphic closed 2-form onXreg. Note that clearlyXreg\Z ≃ X ′

asX ′ is isomorphic to a smooth open subset of Y . SinceX ′ is isomorphic to an open subset ofY
it admits a symplectic form inherited from that of Y ′. Now, H0(X ′,Ω2

X′) ≃ H0(Xreg,Ω2
Xreg)

as Ω2
Xreg is reflexive and by [Har80, Theorem 1.6] any reflexive sheaf is normal . So any sym-

plectic 2-form on X ′ extends to the whole Xreg and it is still closed as X has rational sin-
gularities (see [KS21, Theorem 1.13]). Moreover, it is also non-degenerate otherwise it would
degenerate along a divisor cutting also X ′. Therefore by [Nam85, Theorem 6] we deduce that
X has symplectic singularities.

Corollary 4.10. The varieties Hilb2(Σ) and F (Y ) have symplectic singularities which admit a
symplectic resolution.
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Proof. Note that both (π[2])−1 and (π[2])−1 ◦ φ−1 respect the hypotheses of Proposition 4.9.
The fact that they admit a symplectic resolution is proven in [Leh18, Corollary 5.6] and [Yam22,
Proposition 3.5].

Remark 4.11. The fact that both the varietiesHilb2(Σ) and F (Y ) admit a symplectic resolution
can be proven with a more general approach, see [KLSV18, Remark 5.4] for the details.

Remark 4.12. Note that the proof of Corollary 4.10 provides a birational map betweenHilb2(Σ̂i)

and ̂Hilb2(Σi) and, thus, they have the same Picard group by Proposition 2.33.

We will call
̂Hilb2(Σ) a symplectic resolution of Hilb2(Σ) and, thus, of F (Y ) by Proposi-

tion 4.7. This does not imply that every symplectic resolution F̂ (Y ) of F (Y ) is of this form.

Indeed, a priori, it is not true that any symplectic resolution of a variety factors through its

blow-up on the singular locus, but using the fact that F (Y ) is a four-dimensional variety we

can prove the following lemma.

Lemma 4.13. Every symplectic resolution R of F (Y ) factors through the blow-up BlΣ(F (Y )).

Proof. Consider the symplectic resolution:

γ : ̂Hilb2(Σ) → F (Y )

By [WW03, Theorem 1.1] the exceptional locusE of γ can be either a divisor or 2-dimensional.
In the latter case dim(γ(E)) = 0 by [WW03, Lemma 2.1]. Therefore, as the singular locus Σ
of F (Y ) is a surface, the map γ contracts a divisor E into Σ. Moreover, as ̂Hilb2(Σ) is smooth
the divisor E is Cartier and by the universal property of blow-up there exists a unique map
γ′ : ̂Hilb2(Σ) → BlΣ(F (Y )) which factors γ through the blow-up.

Thus, we proved that every symplectic resolution of F (Y ) is isomorphic to a symplectic

resolution of Hilb2(Σ). Nevertheless, in order to highlight the point of view which we are

using we will also denote by F̂ (Y ) a symplectic resolution of F (Y ).

5 Geometry of F (Y )

In this section we investigate some geometric properties of F (Y ) when Y is a cyclic fourfold

branched along a cubic threefold C having one isolated singularity of type Ai for i = 2, 3, 4.

First, we want to study the nature of the singular points of F (Y ) on the 2-dimensional

leaf, i.e.

Sing(F (Y )) \ Sing(Sing(F (Y ))) ≃ Σ \ {Sing(Σ)}.

Proposition 4.14. For every point of Σ \ {Sing(Σ)} ⊂ F (Y ) there exists a neighbourhood of
F (Y ) which is analytically isomorphic to (C2, 0) × (Γ, t) with (Γ, t) the germ of a point on a
surface having an isolated singularity on t of type:

59



i) D4 if C has an isolated singularity of type A2;

ii) E6 if C has an isolated singularity of type A3;

iii) E8 if C has an isolated singularity of type A4.

Proof. In order to do local computations we want to change the local chart given by Plücker
coordinates given in Section 4.4 in a way that a point of the 2-dimensional leaf, which we can
assume to be the line l2 passing through (1 : 0 : 0 : 0 : 0 : 0) and (0 : 0 : 1 : 0 : 0 : 0), is
the origin in the new chart. Therefore, we choose Plücker coordinates characterizing the lines
passing through the points:

(1 : −p11 : 0 : −p13 : −p14 : −p15), (0 : p01 : 1 : p03 : p04 : p05).

Moreover, as we assumed that l2 ∈ F (Y ), we obtain (with a slight abuse of notation) after
a linear coordinate change q1(x2, x3, x4) = x2h1(x3, x4) + q1(x3, x4) and K(x1, . . . , x5) =
x22h3(x1, x3, x4, x5)+x2q3(x1, x3, x4, x5)+ k2(x1, x3, x4, x5). With computations analogous
to Section 4.4 we get the following equations for F (Y ):

ϕ3,0 = q1(p̄1)− k2(p11, p̄1, p15)

ϕ2,1 = −2B1(p̄0, p̄1) + q3(p11, p̄1, p15) + k2,12 (p01, p̄0, p05, p11, p̄1, p15)− h1(p̄1)

ϕ1,2 = q1(p̄0) + h1(p̄0)− h3(p11, p̄1, p15)− 2B3(p01, p̄0, p05, p11, p̄1, p15) + k1,22 (p01, p̄0, p05, p11, p̄1, p15)

ϕ0,3 = h3(p01, p̄0, p05) + q3(p01, p̄0, p05) + k2(p01, p̄0, p05).

Here we put p̄i = (pi,3, pi,4). In order to determine the nature of the singularity at the origin
we use the same argument of [BHS23, Theorem 4.1 item (2)]. Note that in a neighbourhood
of a nonsingular point of Σ the hypersurfaces Q := {Q = 0} and K := {K = 0} meet
transversally, therefore h1 and h3 are not proportional. Hence we can suppose that after a
linear change of coordinates h1(x3, x4) = x3 and h3(x1, x3, x4, x5) = x4. Therefore, we can
use the equations ϕ1,2 and ϕ0,3 to obtain complex analytic local expressions p̂03, p̂04 for p03
and p04 in terms of p01, p05, p11, p13, p14, p15. Thus, there exists a local biholomorphism in a
neighbourhood of the origin between our variety and the variety χ ⊂ C2 × C4 described by
the equations:

ϕ3,0 = q1(p̄1)− k2(p11, p̄1, p15)

ϕ2,1 = −2B1(p̂03, p̂04, p̄1) + q3(p11, p̄1, p15) + k2,12 (p01, p̂03, p̂04, p05, p11, p̄1, p15)− h1(p̄1).

Here (p01, p05) are local coordinates for Σ as the latter is given by p1 = 0. By [Kal06, Theorem
2.3] (see also [LMP23, Proposition 2.2]) we know that every point in Σ \ Sing(Σ) has a neigh-
bourhood which is locally analytically isomorphic to (C2, 0)× (Γ, t) with (Γ, t) the germ of a
smooth point or a rational double point on a surface. Therefore, as we want to understand the
structure over the origin, we put p01 = p05 = 0. Thus we can consider the surface Γ given by
the following equations in C4:

ϕ3,0 = q1(p̄1)− k2(p11, p̄1, p15)

ϕ2,1 = q3(p11, p̄1, p15)− h1(p̄1).
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Again we can consider h1(p̄1) = p1,3 and use a local inversion of the second equation to
obtain a local expression p̂13 for p13 as a quadratic expression in p11, p14, p15. Now to draw
conclusions we need to specialize our manifold to our case. Let us begin with putting the
condition of being a cyclic cubic fourfold, then an equation for Γ in C3 given by p11, p14, p15
becomes:

ϕ3,0 = q1(p̂13, p14)− k2(p11, p̂13, p14) + p315.

Then the following things can happen (see Section 5.5 for explicit computations):

i) p311 appears in k2(p11, p̂13, p14): then the equation is semiquasihomogenous (SQH) of de-
gree (13 ,

1
2 ,

1
3) thus it has a singularity of type D4 at the origin. The condition on K is

equivalent to ask an isolated singularity of type A2 for the cubic threefold C .

ii) p411 appears in ϕ3,0 and p311 does not appear in k2(p11, p̂13, p14): this monomial appears
thanks to both q1 and k2, so if it is not eliminated then the equation is SQH of degree
(14 ,

1
2 ,

1
3) yielding a singularity of type E6. This condition is obtained when C has an

isolated singularity of type A3.

iii) p511 appears in k2(p11, p̂13, p14), p411 does not appear in ϕ3,0 and p311 does not appear in
k2(p11, p̂13, p14): the equation is SQH of degree (15 ,

1
2 ,

1
3), yielding a singularity of type

E8. This condition is satisfied when C has an isolated singularity of type A4.

The type of singularity of the germ (Γ, 0) is, thus, determined by the above calculations.

As also noted in Chapter 3, the behaviour of F (Y ) when Y is branched along a cubic

threefold of type A2 is very different from the A3 and A4 cases, therefore, we will divide the

study in two different sections.

5.1 Cubic fourfold branched along a threefold having an isolated singularity
of type A3 or A4

We start by studying the geometry of F (Yi) in the case where Yi is branched along a cubic

threefold having one isolated singularity of type A3 or A4.

When a cubic threefold C has an isolated singularity of type, respectively, A3 or A4 then

the cyclic cubic fourfold Y associated to C has an isolated singularity of type E6 or E8. By

[DR01, Lemma 2.1] then Σ has an isolated singularity of type, respectively A5 or E7.

Proposition 4.15. Let Σ be a surface with one isolated singularity q0 of type ADE. Then

Sing(Hilb2(Σ)) ≃ Blq0 Σ =: Σ̂.

Moreover, ̂Hilb2(Σ) is obtained by successive blow-ups along singular loci.

Proof. This is computation can be found in [Yam18, Section 2].
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Consider now the covering automorphism σ defined on Yi. This automorphism is just

the identity on the first five coordinates and maps x5 7→ ξ3 · x5 with ξ3 a third primitive

root of the unity. It is a projectivity and, thus, maps lines to lines. Therefore it induces a

linear automorphism on F (Yi). This is a linear automorphism mapping the singular locus to

itself, therefore there exists only one automorphism on BlΣ F (Yi) commuting with the blow-

up morphism by the universal property of blow-ups. This automorphism corresponds via the

isomorphism of Proposition 4.7 to the natural automorphism σ
[2]
i induced on Hilb2(Σi) by

the action of σ on Σi (see Section 5.6 for the details). By [Yam18, Section 2] if Σi has an

isolated singularity then
̂Hilb2(Σi) is obtained by a sequence of blow-ups along the successive

singular loci, therefore we can iterate the above argument and induce an automorphism σ̂
[2]
i

on
̂Hilb2(Σi) (we will explain better this iterative argument in the proof of Proposition 4.16).

In Chapter 3 we studied the manifolds obtained considering the Hilbert squareHilb2(Σ̂i) and
we proved that on these manifolds there exists a non-symplectic automorphism of order three

whose action in cohomology is represented by ρi ∈ O(L) (we use here the same notation).

Proposition 4.16. The automorphism σ̂
[2]
i induces ρi in cohomology, i.e. there exists a marking

ηi on ̂Hilb2(Σi) such that ρi = η−1
i ◦ (σ̂[2]i )∗ ◦ ηi.

Proof. The only irreducible component E1 of the exceptional divisor of the first blow-up α is
clearly preserved by the induced automorphism. If C had one isolated singularity of, respec-
tively, type A3 or A4 then Σ has, respectively:

• one isolated singularity of type A5. Then by [Yam18, Section 2] ̂Hilb2(Σ) is obtained
by Hilb2(Σ) via 3 blow-ups, two of them introducing each one two irreducible compo-
nents of the effective divisor and the third another one. At every blow-up, the induced
automorphism maps the subgroup of the Picard group generated by the irreducible com-
ponents of the exceptional divisor into itself because it commutes with the composition
of blow-ups by the universal property of blow-ups. As the automorphism has order three
it cannot swap two irreducible components, thus it preserves all the 6 irreducible com-
ponents of the exceptional divisor introduced at each blow-up.

• One isolated singularity of type E7. Then by [Yam18, Section 2] the successive blow-
ups introduce on ̂Hilb2(Σ) 7 irreducible exceptional divisors in an E7 configuration.
The induced automorphism maps the subgroup of the Picard group generated by these
divisors into itself as it commutes with the composition of blow-ups by the universal
property of blow-ups. We recall here the picture of the blow-ups needed.

E7
D6

D4

A1 A1

A1

A1
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Each arrow represents a blow-up. Each line represents an irreducible component of the
exceptional divisor which are coloured with a different colour at each blow-up. So, with
the same argument of abovewe deduce that the irreducible components introduced at the
first three blow-ups are preserved. Finally, the three irreducible components introduced
by the last blow-up cannot be permuted as the intersection between different irreducible
components needs to be preserved (as the first 4 irreducible components are preserved).

Therefore the invariant lattice has, respectively, rank at least 7 or 9. The Picard lattice is,
isomorphic, respectively, to T3 or T4 of Theorem 3.1 which have, respectively, rank 7 or 9.
By [BCS16, Corollary 5.7], the action of natural automorphisms on IHS manifolds of K3[2]-
type are uniquely determined by the action on the invariant lattice and the possibilities are
listed in [BCS16, Table 1]. Thus, confronting all the possibilities, the invariant lattices must be
isomorphic to the Picard lattices and the action of σ̂[2]i induces ρi in cohomology.

Therefore, considered also the results of Section 4.4, we can state the following theorem.

Theorem 4.17. Let Ci be a complex projective cubic threefold having one isolated singularity of
type Ai for i = 3, 4 and let Yi be its associated cyclic cubic fourfold. Assume that there exist no
plane Π ⊂ Yi such that Π ∩ Sing(Yi) ̸= ∅. Then the Fano variety of lines F (Yi) of Yi admits a
unique symplectic resolution by an IHS manifold ofK3[2]-type F̂ (Yi).
Moreover, there exists an integral lattice Ti, defined below, such that:

i) Pic
(
F̂ (Yi)

)
≃ Ti;

ii) there exists a non-symplectic automorphism τi ∈ Aut
(
F̂ (Yi)

)
whose invariant sublattice is

H2(F̂ (Yi),Z)τ
∗
i ≃ Ti

with Ti defined in the following table:

i Ti
3 ⟨6⟩ ⊕ E6

4 ⟨6⟩ ⊕ E8

Proof. First, note that by [Yam18], the symplectic resolution ̂Hilb2(Σi) of Hilb2(Σi) is unique.
Therefore, by Lemma 4.13 the variety F (Yi) admits a unique symplectic resolution.
The Picard groups Pic

(
F̂ (Yi)

)
are isomorphic to those of Hilb2(Σ̂i) as noted in Remark 4.12.

The existence of the automorphism τi and its action in cohomology is determined by Propo-
sition 4.16. The details on this automorphism and the Picard groups then follow from Theo-
rem 3.1.

Moreover, we can say more about the geometry of F̂ (Y ).

Proposition 4.18. The varietyH, obtained by F (Y ) after a suitable number of successive blow-
ups on the singular loci, has transversal ADE singularities, thus its blow-up on Sing(H) is a crepant
resolution.
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Proof. In [Yam18] the author shows with his computations that if Σ has an isolated singularity
of type Tn with Tn a singularity of type ADE then BlSing(Hilb2(Σ))Hilb

2(Σ) has the same sin-
gularities of Hilb2(Γ) with Γ a surface with an isolated singularity of type T ′

m andm < n. In
particular after a suitable number of blow-ups the varietyH, obtained by successive blow-ups
along singular loci, will not have 0-dimensional symplectic leaves, i.e. Sing(H)will be smooth.
So, by Proposition 4.14, the varietyH has only transversal singularities. The blow-up is then a
crepant resolution by [Per07, Proposition 4.2].

5.2 Cubic fourfold branched along a threefold having an isolated A2

Now we want to focus to the case where C has an isolated singularity of type A2 and thus Σ
has three A1 singularities, namely q0, q1 and q2.

First, we want to describe the singular locus Sing(Hilb2(Σ)).

Proposition 4.19. Suppose thatΣ has threeA1 singularities q0, q1 and q2, then Sing(Hilb2(Σ))
consists of three irreducible components Σ̂i ≃ Blqi Σ. An irreducible component Σ̂i intersects the
other two components in qj , with j ̸= i.

Proof. Consider the Hilbert–Chow morphism hc : Hilb2(Σ) → Sym2(Σ). This morphism can
be identified with the blow-up along the diagonal∆, so

hc−1(Sing(Sym2(Σ)) \∆) ⊂ Sing(Hilb2(Σ)) ⊂ hc−1(Sing(Sym2(Σ))).

Now, Sing(Sym2(Σ)) \∆ consists of cycles where at least one point lies in Sing(Σ), therefore
all the length two subschemes ξ such that their support consists of two different points on Σ
and at least one of them is in Sing(Σ) are also singular points for Hilb2(Σ). Therefore, the
remaining points of Hilb2(Σ) which might possibly be singular are those on the fibers over
2qi for i = 0, 1, 2. These points are length 2 closed subschemes of Σ entirely supported on
an isolated singularity of type A1. Therefore, using the computations about Hilb2(Γ) with Γ
a surface having one isolated singularity of type Ai done in [Yam18, Section 2.1], we can see
that hc−1(2qi) ∩ Sing(Hilb2(Σ)) is isomorphic to the exceptional divisor Li of Blqi Σ. Thus,
the embedding:

Σ → Sing(Sym2(Σ))

p 7→ p+ qi

induces an embedding:

Blqi Σ → Sing(Hilb2(Σ))

p ̸∈ Li 7→ p+ qi

p ∈ Li 7→ p.

Finally, the point qi + qj with i ̸= j is a point which is mapped through the two different
isomorphisms to q̂j ∈ Σ̂i and q̂i ∈ Σ̂j , where we denoted by q̂k the preimage of a point qk ∈ Σ
under the blow-up Blqs Σ → Σ with s ̸= k.
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Remark 4.20. This proposition in particular implies that Sing(Hilb2(Σ)) has three singular
points, namely q0+q1, q0+q2 and q1+q2. Indeed, the three connected components Σ̂i ≃ Blqi(Σ)
are smooth on the preimage of qi under the blow-up as qi is a singularity of type A1 for Σ.

Now, we want to prove that the symplectic resolution
̂Hilb2(Σ) ψ−→ Hilb2(Σ) is unique.

Recall that, as noted in Section 4.4,
̂Hilb2(Σ) is obtained byHilb2(Σ̂) via a sequence of Mukai

flops µ : Hilb2(Σ̂) 99K ̂Hilb2(Σ) performed over the 2-dimensional fibers of Hilb2(Σ̂) →
Sym2(Σ). Moreover, the birational map π[2] restricts to an isomorphism between Hilb2(Σ̂) \
(
⋃
Πi ∪

⋃
Λij) and Hilb2(Σ) \ (

⋃
hc−1(2qi)∪

⋃
hc−1(qi+ qj)) with i ̸= j. Here we denoted

by Πi ≃ P2
and Λij ≃ P1 × P1

the subspaces of Hilb2(Σ̂) which are, respectively, hc−1(2Li)
and hc−1(Li + Lj).

Proposition 4.21. The symplectic resolution ̂Hilb2(Σ) ofHilb2(Σ) is unique up to isomorphism.

Proof. Here, we use again [WW03, Theorem 1.2] and we want to prove that the central fiber
does not contain components isomorphic to P2. The central fiber is ψ−1(qi + qj). From the
discussion above we see that ψ−1(qi + qj) ≃ Λij ≃ P1 × P1.

In analogy with Section 5.1 we want to prove that
̂Hilb2(Σ) is obtained by Hilb2(Σ) via

successive blow-ups on the singular loci. Let S := Sing(Hilb2(Σ)).

Lemma 4.22. The blow-up map β : BlS Hilb
2(Σ) → Hilb2(Σ) is crepant.

Proof. As the canonical bundle of Hilb2(Σ) is trivial the statement is equivalent to ask that
X := BlS Hilb

2(Σ) has trivial canonical bundle. First, note that

dim(β−1(qi + qj)) = codim(β−1(qi + qj)) = 2

so if we prove thatKX is trivial onX \
⋃
β−1(qi+ qj) then asX is normal and irreducible we

get KX = 0. By Proposition 4.14 and Proposition 4.19, Hilb2(Σ) at each point of Σ̂i \ qi + qj
admits a local description as C2 ×Γ with Γ a surface with a singularity of type A1. Therefore,
as shown in [Per07, Proposition 4.2], the blow-up is locally isomorphic to Γ̂ × C2 where Γ̂
denotes its blow-up which is crepant as Γ̂ → Γ is so.

We can now prove the following lemma.

Lemma 4.23. BlS Hilb2(Σ) has only symplectic singularities.

Proof. Consider the symplectic resolution ψ : ̂Hilb2(Σ) → Hilb2(Σ) and the composition of
birational maps f := ψ−1 ◦ β : BlS Hilb

2(Σ) 99K ̂Hilb2(Σ). As β is crepant the map f is
defined and injective on a complement to a closed subset Z ⊂ BlS Hilb

2(Σ) of codimension
codim(Z) ≥ 2 by [Kal01, Lemma 2.3 (i)]. Then BlS Hilb

2(Σ) has only symplectic singularities
from Proposition 4.9.

Remark 4.24. By [Yam22, Proposition 3.5] we already knew also that BlS Hilb2(Σ) has only
symplectic singularities. Indeed, in the latter the author proves more: it admits a symplectic reso-
lution.
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Indeed we can say more. As it turns out BlS Hilb
2(Σ) is smooth and it is the symplectic

resolution of
̂Hilb2(Σ) also in this case.

Proposition 4.25. The symplectic resolution ̂Hilb2(Σ) ofHilb2(Σ) is isomorphic toBlS Hilb2(Σ).

Proof. Consider the symplectic resolution ψ′ : H′ → BlS Hilb
2(Σ). Then β ◦ ψ′ : H′ →

Hilb2(Σ) is a symplectic resolution of Hilb2(Σ) which by Proposition 4.21 is unique. Thus,
H′ ≃ ̂Hilb2(Σ) is the unique symplectic resolution of BlS Hilb2(Σ). The Picard group of
̂Hilb2(Σ) is isomorphic to the Picard group of Hilb2(Σ̂) as they are two symplectic resolu-

tions of the same symplectic variety Sym2(Σ). Moreover, by Section 3.6, it is Pic( ̂Hilb2(Σ)) ≃
D4(−1)⊕ ⟨6⟩. Therefore, ψ : ̂Hilb2(Σ) → Hilb2(Σ) has relative Picard number 3. By Propo-
sition 4.19 we deduce that β : BlS Hilb

2(Σ) → Hilb2(Σ) has at least relative Picard number
3, but the resolution ψ factors through β by Lemma 4.13, thus, the statement follows by con-
frontation of the relative Picard groups. Indeed, we proved that ψ′ : ̂Hilb2(Σ) → BlS Hilb

2(Σ)
is a small symplectic contraction (see [WW03, Definition 2]) so by [WW03, Theorem 1.1] if it is
not an isomorphism it can be either a sequence of Mukai flops or a contraction of some planes.
Both cases are impossible as ψ factors through ψ′ and in the 2-dimensional fibres of ψ there
exist no planes.

Now, we are interested in the presence of an automorphism on
̂Hilb2(Σ). Indeed, with

the same argument of Section 5.1, we can induce an automorphism σ̂[2] on ̂Hilb2(Σ). We are

interested now in the action of σ̂[2] in cohomology. First note that by Proposition 3.23 the

automorphism σ on Σ induces also a natural automorphism τ2 on Hilb2(Σ̂), where by Σ̂ we

denote the minimal resolution of Σ. As both σ[2] and τ2 are natural automorphisms induced

by σ we can see that π[2] ◦ τ2 = σ[2] ◦ π[2] (see Section 4.4 for the definition of π[2]).

Proposition 4.26. The automorphism σ̂[2] has the same action of τ2 in cohomology.

Proof. In order to prove this it is enough to show that the respective fixed loci are isomorphic,
as by [BCS16, Corollary 7.5] the action of such automorphism is uniquely determined by the
fixed locus. By the description of τ2 made in Proposition 3.23 we can see that it mapsLi toLi+1

mod 3. Moreover, σ maps qi to qi+1 mod 3. Therefore, Fix(τ2) ⊂ Hilb2(Σ̂) \ (
⋃

Πi ∪
⋃
Λij) is

mapped isomorphically through π[2] toFix(σ[2]) ⊂ Hilb2(Σ)\(
⋃
hc−1(2qi)∪

⋃
hc−1(qi+qj)).

So we are left to prove thatFix(σ[2]) ≃ Fix(σ̂[2]). The automorphism σ̂[2] is defined as the only
automorphism such that β ◦ σ̂[2] = σ[2] ◦ β. Then as σ maps qi to qi+1 mod 3 it is immediate
to see that σ[2] maps the irreducible component in the singular locus Σ̂i to Σ̂i+1 mod 3. So
Fix(σ[2]) ≃ Fix(σ̂[2]).

Then we can state the following theorem.

Theorem 4.27. Let C2 be a complex projective cubic threefold having one isolated singularity
of type A2 and let Y2 be its associated cyclic cubic fourfold. Assume that there exists no plane
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Π ⊂ Y such that Π ∩ Sing(Yi) ̸= ∅. Then the Fano variety of lines F (Y2) of Y2 admits a unique
symplectic resolution by an IHS manifold ofK3[2]-type F̂ (Y2).
Moreover, there exists an integral lattice Ti, defined below, such that:

i) Pic
(
F̂ (Yi)

)
≃ ⟨6⟩ ⊕D4(−1);

ii) there exists a non-symplectic automorphism τ2 ∈ Aut
(
F̂ (Yi)

)
whose invariant sublattice

is H2(F̂ (Yi),Z)τ
∗
2 ≃ ⟨6⟩ ⊕A2(−1).

Proof. By Proposition 4.21 and Proposition 4.26 we obtain the unicity of the symplectic resolu-
tion and the induction of the automorphism. The explicit expression of the Picard lattice and
the invariant lattice follow from the description of Hilb2(Σ̂), made in Section 3.6.

Putting together Theorem 4.27 and Theorem 4.17 we obtain Theorem 4.1.

6 Final considerations

In this section we draw some considerations on the results obtained in this chapter in the

context of nodal degenerations of cubic threefolds studied in Chapter 3. This interpretation is

linked to the issue brought up by [BHS23, Section 4.2] in the generic nodal case.

Consider a one parameter family {Ct}t̸=0 of smooth cubic threefolds degenerating to a

nodal cubic threefold C0. Then, consider the family of cyclic cubic fourfolds {Yt} where each

Yt is branched along Ct and the family of their associated Fano varieties of lines {F (Yt)}. On
each element of the family F (Yt) there exists a non-symplectic automorphism σt of order 3
naturally induced by the covering automorphism. Moreover, in [BCS19b, Section 3] the au-

thors showed that for t ̸= 0 the pair (F (Yt), σt) endowed with a properly defined marking

(we recalled the details in Section 2.2) live in the moduli spaceMρ,ζ
⟨6⟩ of (ρ, ⟨6⟩)-polarized IHS

manifolds of K3[2]-type. The period map Pρ,ζ
⟨6⟩ is then surjective on the complement of the

nodal hyperplane arrangementH.

Suppose now that C0 has one isolated singularity of type Ai for i = 1, . . . , 4. Then

lim
t→0

Pρ,ζ
⟨6⟩ ((F (Yt), σt) = ω0 ∈ H.

In Theorem 3.1 we proved that the choice of the manifold Σ̂[2] = Hilb2(Σ̂) over the period

ω0 with the automorphism τ̂i
[2]

extends holomorphically the period map Pρ,ζ
⟨6⟩ over the subloci

∆Ai
3 . This choice was motivated by the analogy with the work of [BCS19b] but, as proven in

Theorem 4.1, it is not the only possible choice. Indeed, the pairs (Σ̂[2], τ̂ [2]) and (F̂ (Y0), σ̂0) are

equivariantly birational and, thus, if not isomorphic, they are non-separated points in Mρi,ζ
Ti

.

In this case they just correspond to two different choices of Kähler chambers. We leave the

question on the isomorphism between the two birational models open.
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Chapter 5

Computations

“Le vent se lève! ... il faut tenter de vivre!”

- Paul Valéry, Le Cimetière marin

In this chapter we write down the computations which we mentioned in the previous chapters

of the thesis.

1 Dimension of moduli spaces

In this section we compute the dimensions of themoduli spaces of families which are complete

intersections in P4
of a quadric hypersurface of rank 3 or 4 and a cyclic cubic threefold. Using

the generalized Morse lemma and the Recognition principle as done e.g. in [Hec20] one can

arrive to a generic form for the families we are interested in and count the free parameters.

But the computations are long so we will use the following result which is a direct application

of the Generalised Morse Lemma (see [GLS07, I, Theorem 2.47] for a possible reference) and

the Recognition Principle [BW79, Lemma 1]. As this theorem appears on a PhD dissertation

which has not been published at the day we are writing this article we include here its proof.

Theorem 5.1 ([Hec20, Theorem 1.15]). Let Y ⊂ AnC be a hypersurface defined by a polynomial
P ∈ C[x1, . . . , xn] and assume that the origin is an isolated singular point of Y of corank one.
Then, there exist polynomials C1, . . . , Ck+1 in the coefficients of P and depending on the choice
of an analytic coordinate change such that the conditions

C1 = · · · = Ck = 0, Ck+1 ̸= 0

on the coefficients ofP are equivalent to (Y, 0) being of typeAk. Moreover, eachCi is homogeneous
of degree i − 2 and fixing the analytic coordinate change they depend on, there is an explicit
algorithm computing them.

Proof. Let k ∈ N. Using the generalized Morse lemmawe suppose that, after a suitable analytic
coordinates change, P has the form:

P (x) = x21 + · · ·+ x2n−1 + P3(xn) + · · ·+ Pk+1(xn) +

n−1∑
i=1

xiQi(x1, . . . , xn)
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where each Pi is a polynomial of degree i and each Qi of degree k. In order to apply the
recognition Principle we take the weight α(Ak) =

(
1
2 , . . . ,

1
2 ,

1
k+1

)
and note that the terms of

degree α(Ak) < 1 are P3(xn) + · · ·+ Pk(xn), the terms of degree α(Ak) = 1 are x21 + · · ·+
x2n−1 + Pk+1(xn) and the terms of degree α(Ak) > 1 are

∑n−1
i=1 xiQi(x1, . . . , xn). Therefore

we write Cixn = Pi(xn) and conclude using the recognition Principle.

This will lead us to prove the following proposition.

Proposition 5.2. The dimension of the family KAi associated to the cubic threefold having one
Ai singularity (and thus of the subfamily of cubic threefolds having an isolated singularity of type
Ai) for i = 1, . . . , 4 is 10− i. A generic element ΣAi in KAi is such that rk(Pic(ΣAi)) = 2i

Proof. We start from the most general case which is the A1 case. Note that this is the only
corank 0 case so the theorem does not apply in this case. The equations are given by{

f2(x1, x2, x3, x4) = 0

f3(x1, x2, x3, x4) + ax35 = 0.
(5.2.1)

So we have
(
3+2
2

)
= 10 parameters for the quadric and

(
3+3
3

)
+ 1 = 21 for the cubic. Then

we have to impose 4 conditions because if two cubic hypersurfaces differ by a multiple of
the quadric they yield the same intersection. As every equation is defined up to a constant the
parameters are 10+21−4−1−1 = 25. Thenwe have to consider the projective transformations
which preserve the family, as projectivities are up to a constant are 4 · 4+ 1− 1 = 16. Finally,
the dimension of this family is 25−16 = 9. Now, we consider the familyKAi associated to the
cubic threefold having oneAi singularity for i ≥ 2. In these cases we have the same parameters
and projective transformations as before but we need to add 1 condition for being a corank 1
singularity (this is equivalent to ask that f2 = 0 has rank 3 as a quadric) and i− 2 conditions
coming from Theorem 5.1. Therefore the dimension of the moduli space of the family of (2, 3)-
complete intersections in P4 associated to a cubic threefold having a singularity of type Ai is
10 − i. Then if we take a generic element ΣAi in KAi then by [AST11, Section 9] we obtain
rk(Pic(ΣAi)) = 22− 2(10− i+ 1) = 2i.

2 An easy exercise

Here we outline the execution of the exercise mentioned in Remark 3.36.

LetL be theK3[2] lattice. ThenDL ≃ Z/2Zwith finite quadratic form qL = ⟨32⟩. Moreover let

T = U(3)⊕⟨−2⟩ andM = U⊕A2(2)⊕⟨−2⟩. Clearly, qT ≃ qL⊕qU(3) and qM ≃ qL⊕qA2(2),

so given [Nik80, Proposition 1.15.1], recalled in Theorem 1.11, the only possibilities for the

respective orthogonal complements for T in L are the following:

• the genus of the lattice with signature (2, 18) and discriminant form qT (−1) ⊕ qL is

non-empty. Using the notation of Conway–Sloane ([CS99]) this is II(2,18)2
+2
I 3−2

. There

exists only one class of isomorphism represented by

U ⊕ U(3)⊕ E7 ⊕ E8 ⊕ ⟨−2⟩.
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• the genus of the lattice with signature (2, 18) and discriminant form qU(3)(−1) is non-
empty. Using the notation of Conway–Sloane ([CS99]) this is II(2,18)3

−2
. There exists

only one class of isomorphism represented by

U ⊕ U(3)⊕ E⊕2
8 .

Analogously forM :

• the genus of the lattice with signature (2, 16) and discriminant form qM (−1) ⊕ qL is

non-empty. Using the notation of Conway–Sloane ([CS99]) this is II(2,16)2
−4
I 3+1

. There

exists only one class of isomorphism represented by

U⊕2 ⊕ E8 ⊕D4 ⊕ ⟨−6⟩ ⊕ ⟨−2⟩.

• the genus of the lattice with signature (2, 16) and discriminant form qA2(2)(−1) is non-

empty. Using the notation of Conway–Sloane ([CS99]) this is II(2,16)2
−2
II 3

+1
. There

exists only one class of isomorphism represented by

U⊕2 ⊕ E8 ⊕D4 ⊕A2.

3 Planes through the singular point

Here we write the explicit computation of the equations needed to define a generic plane

through the singular point p = (1 : 0 : ... : 0) contained in the cubic fourfold Y of equation

F (x0, . . . , x5) = x0Q(x1, . . . , x5) +K(x1, . . . , x5) = 0.

Let (a0 : a) and (b0 : b) with a, b ∈ P4
be two points of Y . Then the plane Π passing through

these points have equation

(λ+ µa0 + νb0 : µa+ νb) (λ : µ : ν) ∈ P2. (5.2.2)

Imposing the condition of being in Y we get:

(λ+ µa0 + νb0)Q(µa+ νb) +K(µa+ νb) =

= (λ+ µa0 + νb0)(µ
2Q(a) + 2µνB(a, b) + ν2Q(b))+

+ µ3K(a) + µ2νK2,1(a, b) + µν2K1,2(a, b) + ν3K(b) = 0

using the same notations of Section 4.4. In order for this to be identically zero all the coeffi-

cients of the different homogeneous components have to be trivial. Therefore:

Q(a) = 0

B(a, b) = 0

Q(b) = 0

K(a) = 0

K2,1(a, b) = 0

K1,2(a, b) = 0

K(b) = 0.
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Now fix b such that Q(b) = K(b) = 0, the equations imply that a = (a1, ..., a5) resolves five
equations. Recall now that we want the planeΠ to be non-degenerate so the points p, a and b
are distinct. In particular, a, b ∈ C5 \ {0}. This shows that if Q andK are sufficiently generic

the system has not solutions.

4 Translation of the equation

In this section we write the explicit translation mentioned in the proof of Proposition 4.7.

Keeping the notation of Section 4.4, note that at least one coordinate x̄i ̸= 0, for simplicity

suppose x̄1 = 1. Then the translation to bring x̄ to (0 : 1 : 0 : 0 : 0 : 0) is ti = xi− x̄ix1 when
i ̸= 0, 1 and ti = xi in the other cases. So we write the Equation (4.5.2) in the following way:

F (t0, . . . , t5) = t0Q(t2 + x̄2, t3 + x̄3, t4 + x̄4) +K(t1, t2 + x̄2, . . . , t5 + x̄5). (5.2.3)

Now, remember that (0 : 1 : x̄2 : · · · : x̄5) satisfies Q(x̄2, x̄3, x̄4) = K(1, x̄2, . . . , x̄5) = 0 as

x̄ ∈ Σ. So, we can write

Q(t2 + x̄2, t3 + x̄3, t4 + x̄4) = q1(t2 + x̄2, t3 + x̄3, t4 + x̄4) = q1(t2, t3, t4) + 2t1B1(ti, x̄j)

= q1(t2, t3, t4) + t1h1(t2, t3, t4)

and

K(t1, t2 + x̄2, . . . , t5 + x̄5) = t21h2(t2 + x̄2, . . . , t5 + x̄5) + t1q2(t2 + x̄2, . . . , t5 + x̄5)+

+ k2(t2 + x̄2, . . . , t5 + x̄5) =

= t21(h2(t2, . . . , t5) + k1,2(ti, x̄j)) + t1(q2(t2, . . . , t5)+

+ 2B2t1(ti, x̄j) + k2,1(ti, x̄j))+

+ k2(t2, . . . , t5) =

= t21h̃2(t2, . . . , t5) + t1q̃2(t2, . . . , t5) + k2(t2, . . . , t5).

If we substitute the expressions of Q and K in Equation (5.2.3) we see that it has the same

form of [BHS23, Equation (3.2)].

5 Computations in Proposition 4.14

There are many ways to find explicit equations for a generic cubic threefold with one singular-

ity of type Ai for i = 2, 3, 4. A very interesting approach is given by Heckel in his Ph.D. thesis

[Hec20, Section 1]. In loc. cit., the author writes an explicit algorithm using the Recognition

Principle [BW79, Lemma 1] and the Generalized Morse Lemma [GLS07, I, Theorem 2.47]. This

approach has the disadvantage of being too computational heavy in relation to the results we

need in Proposition 4.14, so we propose here another one.

Keeping the notation of Proposition 4.14 we want to prove the following proposition.
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Proposition 5.3. Suppose that a cubic threefold Ci defined by the equation:

F = x0q1(x2, x3, x4) +K(x1, . . . , x4) =

= x0(x2h1(x3, x4) + q1(x3, x4)) + x22h3(x1, x3, x4) + x2q3(x1, x3, x4)+

+ k2(x1, x3, x4) = 0.

has one isolated singularity of type Ai for i = 2, 3, 4. Then the surface Γ locally defined by

ϕ3,0 = q1(p̃13, p14)− k2(p1,1, p̃13, p14) + p315

has a singularity in the origin of type Tias defined in the following table:

i Ti

2 D4

3 E6

4 E8

Proof. We consider the different cases:

• i=2. In this case the polynomial F (1, x1, . . . , x4) is SQH of degree (13 ,
1
2 ,

1
2 ,

1
2) if and only

if the coefficient of x31 is non-trivial. As noted in the proof of Proposition 4.14 this implies
that Γ has a D4 singularity in the origin.

• i=3. Clearly, the coefficient of x31 is trivial otherwise we would be in the case i = 2.
Indeed, in this case the polynomial F (1, x1, . . . , x4) is SQH of degree (14 ,

1
2 ,

1
2 ,

1
2). So, x

2
1

must be multiplied by a non-trivial linear form in x2, x3, x4. Remember that p̃13 is a local
expression for p13 obtained substituting it with a local expression of q3(p1,1, p13, p14) =
p13. Therefore, in ϕ3,0 appears, non-trivially, either the term p41,1 (if in q3 depends from
x1) or a term in p21,1p1,4. In both cases ϕ3,0 is SQH of degree (14 ,

1
2 ,

1
3), thus Γ has an E6

singularity.

• i=4. Clearlywe need to exclude the above cases. In this case the polynomialF (1, x1, . . . , x4)
is SQH of degree (15 ,

1
2 ,

1
2 ,

1
2) and there exist no quadratic term in x1. In particular,

q3(p1,1, p13, p14) = q3(p13, p14). So, ϕ3,0 = q1(p̃13(p14), p14)− k2(p1,1, p̃13(p14), p14) +
p315. Therefore, if F (1, x1, . . . , x4) is SQH with weight (15) with respect to x1 then the
same is true for ϕ3,0, implying that it is SQH of degree (15 ,

1
2 ,

1
3), thus Γ has an E8 sin-

gularity.

6 The action of the automorphism on BlΣi
(F (Yi))

In this section we give explain better the induction of the automorphism on BlΣi(F (Yi)).
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First, by the universal property of blow-ups there exists only one automorphism τ on

BlΣi(F (Yi)) commuting with the blow-up morphism α. Consider the following diagram:

Hilb2(Σi) BlΣi(F (Yi))

F (Yi).

µ

φ
α

Remember that µ is an isomorphism. Moreover, note that µ ◦σ[2] ◦µ−1 ∈ Aut(BlΣi(F (Yi))),
so if we show that this automorphism commutes with α we obtain that it is τ . In order to

show this we prove the following lemma.

Lemma 5.4. The automorphisms σ[2] and σ are φ-equivariant, i.e. φ ◦ σ[2] = σ ◦ φ.

Proof. This is a straight-forward computation. Keeping the notation of Chapter 4, we assume
that the singular point p ∈ Y has coordinates (1 : 0 : ... : 0). Moreover, we assume that
p1 := (0 : P11 : ... : P15) and p2 := (0 : P21 : ... : P25) are two distinct points of Σi.
Therefore, φ(σ[2](p1 + p2)) = φ(σ(p1) + σ(p2)) = lσ(p1)σ(p2) with lσ(p1)σ(p2) the residual
line of the intersection of the plane Π := ⟨p, σ(p1), σ(p2)⟩ with Yi. As the action of σ is the
identity on the first five coordinates we obtain that Π = σ(Π′) with Π′ = ⟨p, p1, p2⟩, thus
φ ◦ σ[2](p1 + p2) = σ ◦ φ(p1 + p2). Now it remains to check the equivariance on the pairs
p1 + p2 where p1 ∈ Σi and p2 ∈ P(Tp1(Σi)) (remember the characterization introduced in
Example 2.18). Then, σ[2](p1 + p2) = σ(p1) + dσ(p2) with dσ the differential of σ at the
point p1. As the map σ is linear its differential has the same action of σ component-wise.
Thus the same computation of the previous part show that the automorphisms σ[2] and σ are
φ-equivariant.

Now it is easy to show that µ ◦ σ[2] ◦ µ−1
commutes with α as:

α ◦ µ ◦ σ[2] ◦ µ−1 = φ ◦ σ[2] ◦ µ−1 = σ ◦ φ ◦ µ−1 = σ ◦ α.
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Ringraziamenti
In this page, which is the most personal of this document, I would like to use my favourite

language: Italian. So, if you see yourself mentioned, please ask somebody or some program

to translate it, although probably everyone I will mention already knows the Italian needed to

understand.

Il dottorato mi ha portato a: dormire in una canoa per 10 giorni. Stare in case senza elettricità e

a volte senza acqua corrente. A non sentire nemmeno più la puzza di muffa dall’abitudine. Mi si è

rotto il computer 3 volte. Mi hanno clonato la carta di credito. Ho bucato la gomma due volte nei vari

tragitti Milano-Poitiers. Ho dovuto produrre documenti falsi per avere un conto in banca in Francia

(sì, per gli ispettori della LCL che stessero leggendo queste parole ora posso dirlo: non ho mai abitato

a casa di Paolo Menegatti). E molte altre cose che qui tralasciamo (in certi dipartimenti italiani sono

ancora chiamato l’incornato). Eppure non rimpiango nemmeno un momento di averlo fatto. In fondo

penso che al dottorato si applichi bene quello che dice Woody Allen all’inizio di Annie Hall: “...pieno di

solitudine, di miseria, di sofferenza, di infelicità e disgraziatamente dura troppo poco”. Se mi è piaciuto

sicuramente lo devo alle persone che hanno condiviso con me questo pezzo di strada.

Ho già ringraziato nella sezione adeguata chi mi ha aiutato il me matematico, qui vorrei ringraziare

solamente chi ha aiutato il me persona. Inoltre, nonostante ci siano innumerevoli persone che mi hanno

aiutato in questi anni vorrei metter in questa sezione solo chi effettivamente ha reso meno pesanti i

macigni che questo percorso mi ha fatto trovare sulla strada, quindi prego di non rimanere male chi

nonostante l’affetto non trovi il suo nome in questa lista.

Vorrei cominciare questi ringraziamenti dalle due persone che mi hanno accettato come studente.

Grazie Alessandra per tutto il tempo che hai dedicato ad ordinare la mia mente e i miei scritti spesso

confusi. Grazie per la libertà che mi hai dato e grazie per tutte le volte che avevo bisogno di un incor-

aggiamento e tu, spesso mentendo, me lo hai dato. Grazie Chiara per tutte le risposte intelligenti alle

mie domande stupide e per non avermi mai fatto sentire stupido nel porle. Grazie per tutte le strade

che mi hai aiutato a costruire. Grazie per avermi dato fermezza quando mi muovevo troppo e per la

gentile umanità con cui hai affrontato certi miei momenti complicati.

Quando si fa un dottorato in cotutela è difficile stringere rapporti con le persone dei rispettivi di-

partimenti (specialmente se per quasi un anno non si è riusciti a frequentare questi per via del COVID).

Chiunque abbia parlato con me per più di 8 minuti sa quanto NON mi sia piaciuta la città di Poitiers,

eppure ci saranno tante cose che mi mancheranno, dal profumo del mercato del sabato mattina al poter

uscir di casa 2 minuti prima dell’orario di ritrovo (che quando esci con un greco ed una brasiliana va

calcolato come 45 minuti dopo l’orario che si era deciso) quindi grazie Poitiers. Ma soprattutto grazie

Poitiers per tutte le persone che mi hai permesso di conoscere. Grazie Samuel per avermi insegnato

molto, avermi sempre trattato da pari nonostante l’evidente differenza e per avermi fatto anche da in-

segnante di francese (non in tutti i corsi di francese il professore si mette a parlare di cubiche nodali alla

prima lezione). Grazie ai miei "fratelli" maggiori matematici: Pietro e Romain. Grazie Pietro per tutti

gli 8 che hai corretto nei miei appunti e per avermi insegnato molte parole francesi come la traduzione

giusta di "palla di neve". Grazie per avermi fatto sentire veramente un fratello minore. Grazie Romain

per ogni cena al tuo castello. Ta Geeeeule RRRomaaaaain (grazie Léa per avermi insegnato le cose fon-

damentali). Grazie Irene per avermi accolto in una città buia e fredda ed avermi fatto sentire veramente

in famiglia. Grazie Enrica per ogni volta che hai prestato la tua raffinata mente alle mie stupidaggini.

Grazie Sokratis per ogni filmaccio ed ogni concerto a cui mi hai trascinato. Grazie Ana per essere stata

una brava studentessa ed aver finalmente imparato dal maestro cosa vuol dire essere latino veramente.
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Grazie a tutte le persone che mi hanno reso la vita più facile nel dipartimento di Poitiers.

Al contrario Milano è la mia città, tanto brutta quanto grande l’amore che provo per essa. Grazie a

tutte le persone che mi hanno reso la vita più facile in via Saldini. Grazie a Benedetta, con cui ogni do-

manda stupida prendeva una piega interessante ed unica persona con cui ho potuto condividere la mia

vastissima ignoranza (sappi che negherò fino alla morte ogni affermazione che ti ho fatto riguardante

geometria in questi anni). Grazie all’inclusivo club di Padel: Canne, Mattia e Monza (lo scontrino della

mia racchetta piange ancora). Grazie a Cappo maestro di mascolinità alfa e a Ema Pavia maestro di

mascolinità beta. Grazie al Maestro Teo per tutti i ristoranti più economici di Parigi che mi ha fatto

conoscere. Grazie alla Guff a cui non posso dire cose ironiche sennò magari non le capisce e ci rimane

male quindi solo "Grazie". Grazie a Jacopo per NON avermi aiutato a vincere il mio terrore dei passaggi

esposti in montagna. Grazie a Fra Batt per ogni giro fatto prima di tornare a casa con relativo aggior-

namento sui pessimi risultati della juve. Grazie alla Lobby del primo piano (Gigi, Eu, Andre e Mariano)

per tutti gli insegnamenti preziosi.

Grazie a Paola e alla sua bellissima famiglia per il tempo passato a Temuco. Nonostante gli sten-

dardi dell’inter ad accogliermi mi sono sentito a casa a Milano (sì nonostante le vostre snobberie

quartiere Adriano è Milano Milano). Grazie al Pablo che mi ha fatto capire che l’accoglienza sudamer-

icana è di un altro livello. È stato bello sentirsi in un gruppo di amici anche in un altro continente e

questo è stato grazie a te. Grazie a tutti le persone che ho incontrato al Somachi, al dipartimento di
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