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2Department of Economics, Università degli Studi dell’Insubria, via Monte Generoso 71, 21100, Varese, Italy.

a)Corresponding author: alessandro.barbiero@unimi.it
b)asmerilda.hitaj@uninsubria.it

Abstract. Many problems of operations research or decision science involve continuous probability distributions, whose handling
may be sometimes unmanageable; in order to tackle this issue, different forms of approximation methods can be used. When con-
structing a k-point discrete approximation of a continuous random variable, moment matching, i.e., matching as many moments
as possible of the original distribution, is the most popular technique. This can be done by resorting to the so-called Gaussian
quadrature procedure (originally developed by Gauss in the nineteenth century) and solving for the roots of an orthogonal polyno-
mial or for the eigenvalues of a real symmetric tridiagonal matrix. The moment-matching discretization has been widely applied to
the Gaussian distribution and more generally to symmetric distributions, for which the procedure considerably simplifies. Despite
the name, Gaussian quadrature can be theoretically applied to any continuous distribution (as far as the first 2k − 1 raw moments
exist), but not much interest has been shown in the literature so far. In this work, we will consider some examples of asymmetric
distributions defined over the positive real line (namely, the gamma and the Weibull, for which expressions for the integer moments
are available in closed form) and show how the moment-matching procedure works and its possible practical issues. Comparison
with an alternative discretization technique is discussed.
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INTRODUCTION

Many problems of operations research or decision science involve quantitities that can be modelled by continuous
probability distributions. However, their handling may be sometimes unmanageable; in this case, some form of ap-
proximation is used and an available solution is the approximation-by-discretization: each continuous random variable
is substituted by a proper discrete random variable [1]. How to construct this discrete approximation is a question that
can lead to several answers, depending on which criterion one adopts to “measure” the discrepancy between the
original continuous distribution and its discrete counterpart. Moment matching, i.e., matching as many moments as
possible of the original distribution, is the most popular technique. It is well-known that a k-point discrete random
variable, which is characterized by 2k values, the k support points (x1, x2, . . . , xk) and the corresponding k probabilities
(p1, p2, . . . , pk), can preserve up to the first 2k − 1 moments of the continuous random variable. The values of the xi
and pi which lead to the exact matching of all the first 2k − 1 moments can be obtained by solving the corresponding
non-linear system of 2k equations in the 2k unknowns:

k∑
i=1

pi · xr
i = mr, r = 0, 1, . . . , 2k − 1, (1)

where mr is the r-th raw moment of the continuous random variable, and for r = 0 we have the trivial requirement
that the pi must sum up to 1. This can be done by resorting to the so-called Gaussian quadrature procedure (originally
developed by Gauss in the nineteenth century) and solving for the roots of an orthogonal polynomial [2] or comput-
ing the eigenvalues and first component of the orthornormalized eigenvectors of a symmetric tridiagonal matrix [3].
The moment-matching discretization has been widely used with the Gaussian distribution and more generally with



symmetric distributions, for which the procedure considerably simplifies (see for example [4] for an application to
complex stress-strength models). Despite the name, Gaussian quadrature can be theoretically applied to any contin-
uous distribution (having the first 2k − 1 moments finite), but not much interest has been shown in the literature so
far. In this work, we will consider some examples of asymmetric distributions and show possible practical issues of
the moment-matching procedure. The rest of the paper is structured as follows: in the next section, we briefly recall
the matching-moment procedure based on Gaussian quadrature; then, after presenting the well-known case of normal
distributions, we consider, along with the Gaussian, two asymmetrical distributions (gamma and Weibull, defined over
the positive real line, for which expressions for the integer moments are available in closed form) and illustrate how
the procedure works through some numerical examples, by considering different values of k, also warning against
some computational issues. The third section shortly reviews an alternative discretization method that overcomes the
theoretical and practical pitfalls of the moment-matching procedure. Some conclusion are drawn in the last section.

MOMENT-MATCHING FOR GAUSSIAN AND NON-GAUSSIAN DISTRIBUTIONS

System (1) can be solved by resorting to a “standard” procedure, which consists of i) computing the k points xi as the
zeros of the k-degree polynomial π(x) =

∏k
i=1(x − xi) =

∑k
j=0 C jx j, by first determining the coefficients C j through

proper rearrangements of the equations in (1); and ii) finding the k probabilities pi, by using the first k equations
of (1) [5, chap.10]. System (1) can be more efficiently solved by resorting to Golub and Welsch method [3], which
reduces to solving for the eigenvalues/eigenvectors of a sparse matrix (see also [6] for a detailed description of the
method). The two resolution techniques are equivalent and strictly interconnected [7]. It can be shown that the Gaus-
sian quadrature always yields k real, distinct values xi, which all lie in the interval spanned by the continuous random
variable; it also produces positive probabilities pi. [6] provides MatlabR© code for constructing a k-point discrete ran-
dom distribution matching as many as possible moments of an assigned sample of numerical values. This code has
been translated into R code and has been easily adapted for working with continuous random distributions belonging
to known parametric families, provided that analytic expressions are available for their first 2k − 1 finite moments [8].

For the standard normal distribution Z ∼ N(0, 1), we have that

mr =

0 if r is odd
(r − 1)!! if r is even

with r!! denoting the double factorial, i.e., the product of all numbers from r to 1 that have the same parity as r. We
note that if the distribution of the continuous random variable X is Gaussian, then the moment-matching procedure
possesses a nice and intuitive property. If the k-point discrete approximation of a standard normal random variable
Z ∼ N(0, 1) is given by the points z1, z2, . . . , zk with corresponding probabilities p1, p2, . . . , pk, the k-point discrete
approximation for any normal random variable X ∼ N(µ, σ2) can be easily recovered without applying the Gaussian
quadrature directly: it has support points µ + σ · zi, i = 1, 2, . . . , k, with the same probabilities pi.

The gamma distribution is characterized by the following probability density function:

f (x; θ, κ) =
1

Γ(κ)θκ
xκ−1e−x/θ, x > 0, θ, κ > 0;

and its raw r-th integer moment is

mr = θr Γ(r + κ)
Γ(κ)

, r = 1, 2, . . . (2)

with Γ(·) being the usual gamma function: Γ(κ) =
∫ ∞

0 xκ−1e−xdx. The Weibull distribution is characterized by the
following probability density function:

f (x; θ, κ) =
κ

θ

( x
θ

)κ−1
e−(x/θ)κ , x > 0, θ, κ > 0;

and its raw r-th integer moment is
mr = θrΓ(1 + r/κ), r = 1, 2, . . . . (3)

Unlike the normal family, for the gamma and Weibull distributions with assigned values of their two parameters, there
is no shortcut when computing the k-point discrete approximation according to the matching-moment procedure.



Let us now consider the discretization via moment-matching of a normal, gamma, and Weibull distribution, all
sharing the same values of expectation and variance, m1 = µ = 10 and σ2 = m2 − m2

1 = 16. The values of the gamma
parameters leading to these assigned moments can be easily recovered by recalling (2) and are equal to θ = 8/5
and κ = 25/4; for the Weibull distribution, by using (3), θ ≈ 11.246 and κ ≈ 2.696. Tables 1, 2, and 3 display, for
k = 3, 5, 7, respectively, the values of xi and pi, i = 1, . . . , k of the discrete k-point random distribution matching the
first 2k − 1 moments of the corresponding continuous distribution.

TABLE 1. 3-point discrete approximation for Gaussian,
gamma and Weibull distributions with mean 10 and standard
deviation 4

Gaussian Gamma Weibull

xi pi xi pi xi pi

3.072 0.1667 5.839 0.4095 4.590 0.2721
10 0.6667 12.11 0.5427 10.85 0.6076

16.93 0.1667 21.65 0.0478 17.95 0.1202

TABLE 2. 5-point discrete approximation for Gaussian, gamma
and Weibull distributions with mean 10 and standard deviation
4

Gaussian Gamma Weibull

xi pi xi pi xi pi

−1.428 0.0113 4.233 0.1455 2.644 0.0703
4.577 0.2221 8.498 0.5273 6.765 0.3626
10.00 0.5333 14.22 0.2953 11.67 0.4346
15.42 0.2221 21.96 0.0315 17.02 0.1271
21.43 0.0113 33.09 0.0004 23.00 0.0055

TABLE 3. 7-point discrete approximation for Gaussian, gamma
and Weibull distributions with mean 10 and standard deviation
4

Gaussian Gamma Weibull

xi pi xi pi xi pi

−5.002 0.0005 3.340 0.0572 1.735 0.0235
0.5330 0.0308 6.626 0.3497 4.624 0.1628

5.382 0.2401 10.89 0.4248 8.306 0.3640
10.00 0.4571 16.32 0.1514 12.43 0.3278
14.62 0.2401 23.22 0.0165 16.84 0.1107
19.47 0.0308 32.17 0.0004 21.55 0.0110
25.00 0.0005 44.63 0.0000 26.89 0.0002

Some computational problems may occur when the variance is relatively small if compared to the expected value,
as reported in [8]. A common drawback of the moment matching procedure, when applied to Gassian or non-Gaussian
distributions, which is more accentuated when k becomes larger, is its tendency to return “extreme” values, located
on the left or right tail, with a very small probability; this can be noticed looking at Table 3, where the point x7 for
the discretized Gamma distribution has a probability which is very near to zero (zero, at the fourth decimal digit).
If we consider for the gamma distribution a new combination of parameters, say θ = 150 and κ = 1/15, so that
the expected value is still 10, but the variance is now 2/3; and if we apply the moment-matching discretization, the
implementation in R returns an unfeasible solution, since the lowest value x1 would be equal to −3.337672 (with
associated probability 3.760343 · 10−12), which falls outside the natural support of the continuous distribution. This
should be caused by numerical issues in R, when the algorithm computes the eigenvalues of a tridiagonal matrix,
whose determinant, although necessarily positive in this case, is very close to zero and, due also to the finite precision



computation and the large values assumed by higher moments, can turn negative. In other cases, it may occur that the
values xi and pi cannot even be computed, since an intermediate matrix, which should be positive definite, does not
result so (again, due to finite precision computation), and subsequent Cholesky decomposition cannot be performed
on it.

ALTERNATIVE DISCRETIZATION TECHNIQUES

The issues related to moment-matching explain why other discretization procedures are sometimes employed, which
prefer to match other features than integer moments, or to restrict the focus on the first two moments only and take
into account a global measure of discrepancy like the mean squared error [9]. Moments are only partial measures of
the distribution form, they do not always determine the distribution univocally [10, p.106] and discretization based
on moment equalization up to a finite order cannot retain the functional properties of the original distribution. The
methodology proposed by [9] is theoretically appealing and strictly related to the concept of “latent variable”. Al-
though being more time-demanding, since it requires solving a non-linear constrained optimization problem numeri-
cally, it has the advantage of needing only the first two moments of the continuous random variable to be finite and is
easily implemented in R.

CONCLUSIONS

Moment-matching by means of Gaussian quadrature is quite a common way of discretizing a continuous probability
distribution into a finite number of points. Although it is more frequently and more easily applied to Gaussian or more
generally symmetrical distributions, its use is not precluded to non-Gaussian and asymmetrical distributions, provided
that closed-form expressions for the required moments are available. Some computational issues can however emerge,
especially for high values of the number of approximating points; to avoid such hurdles, one can turn to alternative
discretization procedures, for example to a recent proposal based on the matching of the first two moments only and
on a minimum-mean-squared-error criterion.
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