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Abstract

In this paper we present a key exchange protocol in which Alice
and Bob have secret keys given by two conics embedded in a large
ambient space by means of the Veronese embedding and public keys
given by hyperplanes containing the embedded curves. Both of them
construct some common invariants given by the intersection of two
conics.
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1 Introduction

After the celebrated algorithm of Shor [13] in 1994, public key cryptog-
raphy based on the most popular problems called factorization and dis-
crete logarithm are considered to be unsafe for quantum computers. As a
consequences of this algorithm, a research is flourishing towards the post-
quantum cryptography in order to prevent a possible crisis in near fu-
ture. To standardize the post-quantum candidates, the United States gov-
ernment agency National Institute of Standards and Technology (NIST)
launched the first round of a competition for the post-quantum crypto-
graphic algorithms [14] in 2016 with the following remark:

”In recent years, there has been a substantial amount of research on quan-
tum computers – machines that exploit quantum mechanical phenomena to solve
mathematical problems that are difficult or intractable for conventional comput-
ers. If large-scale quantum computers are ever built, they will compromise the
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security of many commonly used cryptographic algorithms. In particular, quan-
tum computers would completely break many public-key cryptosystems, includ-
ing RSA, DSA, and elliptic curve cryptosystems. These cryptosystems are used
to implement digital signatures and key establishment and play a crucial role in
ensuring the confidentiality and authenticity of communications on the Internet
and other networks.”

NIST -2016.
During the period from the NIST’s first round in 2016 to the fourth

round in 2022, we have witnessed many schemes based on various math-
ematical problems classifying the post-quantum cryptography as lattice-
based, code-based, multivariate, hash-based, and isogeny based cryptog-
raphy [1, 6, 4]. We have also witnessed the powerful attacks for the post
quantum schemes. The multivariate schemes known as Rainbow can be
broken in a weekend time on a classical laptop due to Ward Beullen [2].
Furthermore, an isogeny based key encapsulation mechanism known as
SIKE encountered polynomial time classical attacks [3, 10, 12].

In 2020 a key exchange scheme called quadratic surface intersection
(QSI) key exchange was proposed by D. Di Tullio and M. Gyawali [8]
based on a new problems in computational algebraic geometry, for ex-
ample solving large system of high degree polynomial equations in many
variables, or finding the primary decomposition of an ideal generated by
many polynomials in many variables, which were conjectured to be quan-
tum resistant.

In this work, we propose a new key exchange scheme which resembles
QSI key exchange but unlike quadratic surface we use plane conics em-
bedded in a high degree surface S contained in a high-dimensional space.
By using conics, we have smaller key size in a higher security level than
the QSI scheme. Two parties A and B choose a plane conic embedded,
in two different ways, in a high degree surface S contained in a high di-
mensional space. Let us call CA and CA these curves, respectively. More
precisely,

• The secret keys of A and B are respectively embeddings fA, fB : P1 →
S , whose images are isomorphic copies of plane conics CA, CB.

• The public key of A is a pair of hyperplanes (HA,1,HA,2) containing
CA and the same is for B.

The exchanged key will be a set of invariants associated to the ”areas”
of the four triangles constructed using the four points of intersection of the
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”non-embedded versions” of CA and CB. These ”areas” can be computed
only if the trapdoor (the explicit embedding P1 → S) is known for one
of the conics. Obviously here ”area” is a suitable generalization in any
affine plane of the usual definition of area for triangles in real affine planes
A2(R).

For a proof of concept, we implemented our algorithm in SAGE [15]
and is publicly available in

https://github.com/mgyawali/CSI_key_exchange.
In section 2, we give a brief background materials which will be used

in the following sections. We present the new key exchange scheme and
its detailed description in sections 3 and 4. In section 5, we provide a toy
example which further describes the main idea of the scheme. In section
6 we try to give a brief security analysis. We propose a parameter set in
section 7 and provide some open problems in section 8.

2 Invariants for sets of four points on affine planes

Firstly we give a very informal definition of an invariant.

Definition 2.1. For any family of geometric objectsF and for any group G acting
on F , an invariant ι is an element of a fixed field F associated to any object o ∈ F
which is preserved by the action of G, i.e.

ι(g · o) = ι(o) for any g ∈ G.

Example 2.2. A familiar example is the j-invariant belonging to the complex
numbers: in this case we can take F = {smooth plane cubics in the projective
plane over complex numbers}, G = {group of linear plane automorphisms} (see
[8]).

In this section we want to define suitable invariants for a set of four dis-
tinct points belonging to any affine plane. Before doing this, we need some
facts about symmetric functions. Let us start by fixing any field F. Let us
consider the four symmetric elementary functions F4 → F as follows:

σ1(a, b, c, d) = a + b + c + d
σ2(a, b, c, d) = ab + ac + ad + bc + bd + cd
σ3(a, b, c, d) = abc + abd + acd + bcd
σ4(a, b, c, d) = abcd.
Here ”symmetric” means that the values of the above functions are in-

variant under the action of the symmetric group S4 over the four elements
a, b, c, d. It is well known that every symmetric function F4 → F is in fact

https://github.com/mgyawali/CSI_key_exchange


2 INVARIANTS FOR SETS OF FOUR POINTS ON AFFINE PLANES 4

a polynomial function on σ1, σ2, σ3, σ4 and that there exists a well known
algorithm allowing to detect such polynomial.

Moreover, by any computer algebra system, it is easy to prove that:
- if we define a map ϕ : F4 → F4 by using the above four functions σi

in this way:
(a, b, c, d)→ (σ1(a, b, c, d), σ2(a, b, c, d), σ3(a, b, c, d), σ4(a, b, c, d))

such map is dominant;
- if we restrict ϕ to the elements a, b, c, d satisfying a linear relation, then

Im(ϕ) has dimension 3.
For instance, if we assume that a + b = c + d then Im(ϕ) is the hyper-

surface of F4 having equation: σ3
1 − 4σ1σ2 + 8σ3 = 0.

Now let us consider the affine plane A2(F) over F. Let P, Q, R, S be
four distinct points, belonging to the plane, in general position; this means
that no three of them are collinear. It is known that, in any affine plane, all
the triple of non-collinear points are equivalent under affine transforma-
tions. I. e., for any ordered triples of distinct points, in general position,
P, Q, R and P′, Q′, R′ there exists a unique affine transformation α such that
α(P) = P′, α(Q) = Q′, α(R) = R′.

In real affine planes A2(R) it is possible to calculate the area of any tri-
angle τ whose vertices have coordinates (x1, y1), (x2, y2), (x3, y3) by using
the following formula:

Area(τ) =
1
2

∣∣∣∣∣∣det

 1 1 1
x1 x2 x3
y1 y2 y3

∣∣∣∣∣∣ .

Note that, for any affine transformation α(~v) = M · ~v +~c, from the
above formula we can easily deduce that:

area(α(τ)) = |det(M)| · area(τ)

where M is the (2, 2) matrix taking into account the linear part of the affine
transformation α. Therefore, if we consider the subgroup G of affine trans-
formations with matrix M such that det(M)2 = 1 and let it act on the plane,
we get that the areas of triangles are invariant according our definition.
Note that this is obviously an invariant for triangles, (i.e. for unordered
triple of distinct non collinear points) because the area is independent by
the order of the vertices of the triangle. From now on the elements of G
will be called equiaffinities.

Now we want to use the above real invariant to define invariants for
objects in any affine plane. We have to get off the factor 1/2 and the ab-
solute value; however, in this case, the determinant is sensitive about the



2 INVARIANTS FOR SETS OF FOUR POINTS ON AFFINE PLANES 5

order of the three points. To avoid this problem we can define the fol-
lowing invariant for any set of three distinct non collinear points P, Q, R
belonging to any affine plane A2(F), assuming that the three points have
coordinates, respectively, (x1, y1), (x2, y2), (x3, y3):

Ar(P, Q, R) = (det

 1 1 1
x1 x2 x3
y1 y2 y3

)2.

As we explained before, Ar(P, Q, R) is invariant under the action of
any α ∈ G. However we need invariants for 4-ples of points, so we have
to use more complex definitions as follows.

Let P, Q, R, S be any set of four distinct points in A2(F), in general
position, having coordinates, respectively (x1, y1), (x2, y2), (x3, y3)(x4, y4);
let us put

a = Ar(P, Q, R)
b = Ar(P, Q, S)
c = Ar(P, R, S)
d = Ar(Q, R, S);

and let A, B, C, D be the four values of the four elementary symmetric
functions of a, b, c, d:

A = σ1(a, b, c, d) = a + b + c + d
B = σ2(a, b, c, d) = ab + ac + ad + bc + bd + cd
C = σ3(a, b, c, d) = abc + abd + acd + bcd
D = σ4(a, b, c, d) = abcd.
Then A, B, C, D are four invariants of the set P, Q, R, S under the action

of G over the affine plane.
In fact:
- every α ∈ G sends P, Q, R, S into another set P′, Q′, R′, S′ having the

same properties,
- the four values Ar(−,−,−) are preserved, as we have seen above,
- the symmetric functions σi allow to define elements of F not depend-

ing on the order of the considered four points.
For future use we need to know whether, in this way, we can obtain all

the elements of F4 or not. Unfortunately the answer is negative. Firstly we
know that the map ϕ is only dominant. Secondly we know that, if there
exists a linear relation among a, b, c, d then dim(Im(ϕ)) = 3. In this case
we have no linear relations of this type, however dim(Im(ϕ)) = 3 too. Let
us explain why: up to affine transformations in G we can assume that the
coordinates of the four points P, Q, R, S give rise the the following (3, 4)
matrix
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1 1 1 1
0 p 0 h
0 0 q k

 ,

where all entries p, q, h, k are different from zero because the points are in
general position. Now a, b, c, d are exactly the squares of the four minors
of the matrix:

a = (pq)2

b = (pk)2

c = (−hq)2

d = (pq− hq− pk)2,
so that the four elements of F are in fact squares (in arbitrary fields this
means that not all elements of F can be joined) of four elements among
which there is a linear relation. By a computer algebra system you can
prove that dim(Im(ϕ)) = 3; in fact Im(ϕ) is a singular quartic hypersur-
face in P3. This means that the points of Im(ϕ) depend only on three
parameters.

In the sequel the set of points under consideration will be the intersec-
tions of two affine conics in general position, and one of them will have
equation: y = x2. A priori this would give the following problem: the co-
ordinates of the four points could be defined only on a suitable extension
of F. However this does not matter. In this case the above (3, 4) matrix
will be  1 1 1 1

x1 x2 x3 x4
x2

1 x2
2 x2

3 x2
4

 ,

and a, b, c, d will be Vandermonde determinants. Note that this is true,
whatever extension needed, because one of the conic has equation y = x2.
These assumptions implies some important facts:

• The four functions A, B, C, D are symmetric functions of the four
values x1, x2, x3, x4, hence they can be expressed as polynomials in
the four elementary symmetric functions of the four elements of F:
x1, x2, x3, x4. These elements are distinct as the two conics are in gen-
eral position.

• These four values are the distinct roots of a unique monic degree four
polynomial p(t) of F[t] obtained by eliminating y among the equa-
tions of the two conics. Hence the four values of the four elementary
symmetric functions of x1, x2, x3, x4 are the coefficient of p(t).
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• In conclusion the values A, B, C, D can be computed directly from
the polynomial p(t), without passing through the coordinates of the
four points, avoiding to use any extension of F.

• For instance, if p(t) = t4 + σ1t3 + σ2t2 + σ3t + σ4, then

A = 2σ2
1 σ2

2 − 6σ3
1 σ3 − 8σ3

2 + 28σ1σ2σ3 − 12σ2
1 σ4 + 36σ2

3 + 32σ2σ4.

3 General description of the model

Trusted setup: Suppose a trusted third party generates the following in-
formation (or by Alice if there is no trusted third party):

• A finite field F of order q.

• A surface S ⊂ Pn(F) for which there exists a secret isomorphism to
the plane σ : P2(F)→ S . This isomorphism will be the composition
of a public embedding σB : P2 → Pn and a secret isomorphism φ of
Pn.

• A public embedding φ ◦ σB ◦ f := fpub : P1(F) → S for which
σ−1( fpub(P

1)) is a smooth public conic Γ = f (P1) where f is a public
embedding of P1 in P2.

• At least three secret automorphisms α1, α2, α3 ∈ Aut(S0), where S0 :=
σB(P

2) under the identification S0 → P2, and where αi are linear iso-
morphism of P2, (see Appendix A).

Key generation: The first user A (Alice) computes an embedding fA :
P1 → S = φ(S0) of the form

fA = φ ◦ α1 ◦ σB ◦ f .

A then computes two hyperplanes HA,1,HA,2 containing fA(P1). Then
we have that [pk means public key, sk means secret key]:

pkA = (HA,1,HA,2), skA = fA.

The second user B (Bob), after choosing a secret composition (for some
positive integers ε1...ε2q):

β = αε1
2 αε2

3 ...α
ε2q−1
2 α

ε2q
3 ,
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computes an embedding fB : P1 → S = φ(S0) of the form

fB = φ ◦ β ◦ σB ◦ f .

B then computes two hyperplanes HB,1,HB,2 containing fB(P1). The
public and private keys of B are

pkB = (HB,1,HB,2) and skB = fB

respectively.

Key exchange: A and B can compute a common key in the following
way:

• A computes f−1
A (HB,1 ∩HB,2) which are points of P1. The pullback

of a hyperplane is rather easy to be computed: it is just a polyno-
mial substitution, while the intersection is just a g.c.d. between two
univariate polynomials. At the end the pullback is described by a
monic polynomial of degree 4. We will see in the next section how to
compute the invariants of the set of 4 points f ( f−1

A (HB,1 ∩HB,2)).

• B computes f−1
B (HA,1 ∩HA,2) and analogously he is able to recover

the invariants.

4 Concrete instantiation

In what follows, all projective spaces will be projective spaces over the
fixed finite field F. Let us choose projective coordinates (t : v) for P1

and (X : Y : U) for P2; moreover let us choose, once for all, the affine
plane U 6= 0 and let x := X/U, y := Y/U be affine coordinates in this
plane. Let us define f : P1 → P2 by f (t : v) = (tv : t2 : v2). Let us
call Γ the corresponding smooth plane conic, having projective equation
YU − X2 = 0 and affine equation y− x2 = 0.

Fix a degree d and then define B to be the set of homogeneous mono-
mials of degree d in F[X, Y, U]:

B = {Xd, Xd−1Y, ..., Yd, Yd−1U, ..., Ud}.

Let b be the set of homogeneous monomials of degree 2d in F[t, v]

b = {t2d, t2d−1v, ..., v2d}.
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The set B defines a polynomial map

σB : P2 → Pn, where n =

(
d + 2

2

)
− 1.

The image of this map S0 = σB(P
2) is called Veronese surface and it has

degree d2. Obviously, this map send Γ into a smooth rational normal curve
σB(Γ) of degree 2d whose span is a projective space of dimension 2d. The
embedding of Γ in S0, hence in Pn, is given by a unique (n + 1, 2d + 1)
sparse matrix MB such that

MBb = B.

Be careful: the above equality is true when we substitute the vector
σB( f (t : v)) to the vector B.

Note that any projective isomorphism P2 → P2 induces a correspond-
ing isomorphism Pn → Pn and a corresponding isomorphism S0 → S0,
which remains fixed as a surface in Pn, but not every projective isomor-
phism Pn → Pn comes from some projective isomorphism P2 → P2; in
such cases S0 is not fixed, in general, however the curve σB(Γ) is trans-
formed in another smooth curve of the same degree in Pn (see Appendix
A).

4.1 Computation of embeddings and automorphisms

Generation of fpub: the first user (Alice) chooses a random projective
invertible transformation φ : Pn → Pn. In practical this means to chose
a generic, invertible (n + 1, n + 1) matrix Vφ. According to what we have
remarked above, this transformation does not come from P2, hence it does
not fix S0, however we can consider the 2d-degree curve φ(σB(Γ)), which
is given by the (n + 1, 2d + 1) matrix VφMB such that

VφMBb = VφB.

Then Alice computes fpub = φ ◦ σB ◦ f . The secret σ of the general
setting is φ ◦ σB. Alice can publish the matrix VφMB.

Generation of αi : Alice chooses random projective plane isomorphisms
αi, with i = 1, 2, 3, such that they are area preserving affine transforma-
tions from the affine point of view. In our coordinates this means to choose
random invertible (3, 3) matrices of the following type (up to a non con-
stant factor), having determinant equal to 1.
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∗ ∗ ∗∗ ∗ ∗
0 0 1

 .

where ∗ is any element of F. For any such matrix it is easy to get the
corresponding (n + 1, n + 1) matrix Ai describing the induced projective
isomorphism αi in Pn such that αi ◦ σB = σB ◦ αi.

Now Alice considers the rational 2d-degree curves which are the trans-
formed of αi(σB(Γ)) under the action of φ. These curves are given by the
(n + 1, 2d + 1) matrix Vφ Ai MB such that

Vφ Ai MBb = Vφ AiB.

Alice keeps secret the first matrix (i = 1), hence the corresponding ra-
tional 2d-degree curve in Pn, say CA, and publishes the matrices Vφ A2V−1

φ

and Vφ A3V−1
φ .

The second user (Bob) chooses a random sequence of integers ε1...ε2q
and a secret matrix of the following type:

VφBV−1
φ = Vφ Aε1

2 Aε2
3 ...A

ε2q−1
2 A

ε2q
3 V−1

φ

by multiplying powers of the matrices published by Alice; of course:

B = Aε1
2 Aε2

3 ...A
ε2q−1
2 A

ε2q
3 .

Then Bob considers the following matrix

[VφBV−1
φ ][VφMB].

Note that it is equal to VφBMB (note also that Bob does not know B)
hence it defines another rational 2d-degree curve, say CB, which is the
transformed of β(σB(Γ)) under the action of φ, where β is defined as in
section 3 and β = αε1

2 αε2
3 ...α

ε2q−1
2 α

ε2q
3 . Note that CA is unknown to Bob and

CB is unknown to Alice.
CA and CB have four distinct common points, say {P′1, P′2, P′3, P′4}which

are the intersection among these two curves. In fact

α1(σB(Γ)) = σB(α1(Γ))

because the isomorphism α1 comes from P2. Analogously:

β(σB(Γ)) = σB(β(Γ))
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for the same reason. In the projective plane α1(Γ) and β(Γ) intersect at four
distinct points {P, Q, R, S} and the same is true in our affine plane, thanks
to the choice of Γ and the fact that the projective isomorphisms of P2 are
random. Therefore {P, Q, R, S} are sent in Pn by σB into the four common
points {P1, P2, P3, P4} between α1(σB(Γ)) and β(σB(Γ)). Such points are
sent by φ into {P′1, P′2, P′3, P′4}.

Key exchange : after Alice has published the above matrices she solves
the following linear system of 2d + 1 equations in n + 1 unknowns ([..]t
means transposition):

[w]tVφ A1MB = [0]t.

Every generic solution gives rise to the n + 1 coefficients of a hyper-
plane in Pn containing CA; such hyperplanes cut CB at 2d distinct points,
among which there are {P′1, P′2, P′3, P′4}.

Alice publishes two generic solutions of the above linear system.
On the other hand, Bob solves the analogous linear system

[v]tVφBMB = [0]t.

Every generic solution gives rise to the n + 1 coefficients of a hyper-
plane in Pn containing CB; such hyperplanes cut CA at 2d distinct points,
among which there are {P′1, P′2, P′3, P′4}.

Bob publishes two generic solutions of the above linear system.

4.2 Invariants computation

After Alice has received two solutions v1 and v2 of Bob’s linear system,
she calculates, for i = 1 and i = 2:

[vi]t(Vφ A1V−1
φ )(VφMB)b

which are 2d-degree homogeneous polynomials of F[t, v] such that, among
their roots, there are four values sent in the four points: Γ∩ [α−1

1 (β(Γ))] by
f . The roots of these polynomials are

f−1(σ−1
B {σB(α1(Γ)) ∩ HBobi}),

where HBobi are Bob’s hyperplanes. To detect what are the four roots
corresponding to the above points it is sufficient to calculate the g.c.d. of
the two polynomials. Let pA(t) be the monic g.c.d. of the two polynomials
with respect to t.
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After Bob has received two solutions w1 and w2 of Alice’s linear sys-
tem, he calculates, for i = 1 and i = 2:

[wi]t(VφBV−1
φ )(VφMB)b

which are 2d-degree homogeneous polynomials of F[t, v] such that, among
their roots, there are four values sent in the four points Γ ∩ [β−1 ◦ α1(Γ)]
by f . The roots of these polynomials are

f−1(σ−1
B ({σB(β(Γ)) ∩ HAlicei}),

where HAlicei are Alice’s hyperplanes. To detect what are the four roots
corresponding to the above points it is sufficient to calculate the g.c.d. of
the two polynomials. Let pB(t) be the monic g.c.d. of the two polynomials
with respect to t.

Now Alice knows a monic polynomial pA(t) whose roots are the ab-
scissas of four points of Γ and Bob knows a monic polynomial pB(t) whose
roots are the abscissas of other four points of Γ. The two sets of four points
are equivalent under an equiaffine map (see section 2): β−1 ◦ α1 (and its
inverse), hence the four invariants defined at the end of section 2 are the
same for Alice and Bob.

5 Toy example

In this section we want to describe in details a very simple example by
using d = 3 and a finite field of characteristic p sufficiently high such that
the following integers need not to be considered mod p. Let us fix some
notation as in section 4. Let (X : Y : U) be coordinates in P2 and let
x := X/U, y := Y/U be affine coordinates in the plane U 6= 0. Let

(X3 : X2Y : X2U : XY2 : XYU : XU2 : Y3 : Y2U : YU2 : U3)

be a standard base of plane cubics. Let (t : v) be coordinates in P1 and let
(t2 : tv : v2) be a standard base of degree two homogeneous polynomials
in (t : v). Let us call B the above base of cubics and let us consider it as a
(10, 1) vector.

Let us embed P2 in P9 (the space of plane cubics) with coordinates

(x0 : x1 : x2 : x3 : x4 : x5 : x6 : x7 : x8 : x9),

by using the 3-Veronese embedding: x0 = X3, x1 = X2Y ... and so on.
Let us choose the conic Γ given by the following embedding of P1 in P2 :
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X = tv, Y = t2, U = v2 so that the equation of Γ in P2 is YU − X2 (y = x2

in the affine coordinates) and the corresponding sextic curve Γ := σB(Γ)
in P9 is

x0 = t3v3, x1 = t4v2, x2 = t2v4, x3 = t5v, x4 = t3v3, x5 = tv5, x6 =
t6, x7 = t4v2, x8 = t2v4, x9 = v6.

Note that this curve is contained in the intersection of these hyper-
planes: x7 − x1 = 0, x8 − x2 = 0, x4 − x0 = 0, in fact it is a rational normal
curve of degree 6, hence its span is a P6.

If we call b the following base of homogeneous polynomials of degree
6 in two variables:

(t6 : t5v : t4v2 : t3v3 : t2v4 : tv5 : v6)

and we consider it as a (7, 1) vector, we can describe the above embedding
by using a unique (10, 7) sparse matrix M in this way:

Mb = B.

with

M :=



0 0 0 1 0 0 0
0 0 1 0 0 0 0
0 0 0 0 1 0 0
0 1 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 1 0
1 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 1


.

The above choices are public. Now let us assume that Alice chooses a
secret non singular (10, 10) matrix V describing a linear automorphism of
the 9-dimensional projective space of plane cubics. For instance:
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V :=



0 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 0


.

Note that det(V) = −1 and that the above autormorphism is not in-
duced by a projectivity of the plane. For instance in the above automor-
phism the cubic X3 corresponds to X2Y: the first one is a triple line, the
second one not, and this is not possible for two projectively equivalent
plane cubics. This fact is crucial for our aim: see at the end of this section.

Now Alice picks up the following secret equiaffinity α in the affine
plane coordinates (x, y):

x → x/2− y/3− 2/3
y→ 2y + 2,

α induces a projectivity on the space of plane cubics which is described by
the following (10, 10) matrix A by using the standard base B

A :=



1/8 −1/4 −1/2 1/6 2/3 2/3 −1/27 −2/9 −4/9 −8/27
0 1/2 1/2 −2/3 −2 −4/3 2/9 10/9 16/9 8/9
0 0 1/4 0 −1/3 −2/3 0 1/9 4/9 4/9
0 0 0 2 4 2 −4/3 −16/3 −20/3 −8/3
0 0 0 0 1 1 0 −2/3 −2 −4/3
0 0 0 0 0 1/2 0 0 −1/3 −2/3
0 0 0 0 0 0 8 24 24 8
0 0 0 0 0 0 0 4 8 4
0 0 0 0 0 0 0 0 2 2
0 0 0 0 0 0 0 0 0 1


,

but it is described by the following different matrix by using the secret
base VB:

VAV−1.

The sextic rational curve, transformed of Γ := σB(Γ) under the isomor-
phism of P9 induced by α and then by the isomorphism of P9 defined by
V, which is in fact the secret conic of Alice, is:
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[x0, x1, x2, x3, x4, x5, x6, x7, x8, x9]t = VAV−1VMb = VAMb

(where [..]t means transposition), so that if Alice solves the following linear
system:

[w]tVAM = [0]t

she gets coefficients of hyperplanes of P9 containing the transformed of Γ.
In this example it is easy to see that the solutions are generated by:

[w1]t := [−24,−72,−48,−2, 1, 0,−26, 0, 0, 0]
[w2]t := [8100, 24192, 17064, 684, 0, 1, 9360, 51/2, 338, 0]
[w3]t := [−576,−1728,−1224,−48, 0, 0,−672,−2,−26, 1].
Now Alice picks up another secret equiaffinity β. To get very simple

computations let us assume that β in the affine plane coordinates (x, y) is:
x → x/2− 2y/3 + 2/3
y→ 2y + 2;

β induces a projectivity on the space of plane cubics which is described by
the following (10, 10) matrix B by using the standard base B

B :=



1/8 −1/2 1/2 2/3 −4/3 2/3 −8/27 8/9 −8/9 8/27
0 1/2 1/2 −4/3 0 4/3 8/9 −8/9 −8/9 8/9
0 0 1/4 0 −2/3 2/3 0 4/9 −8/9 4/9
0 0 0 2 4 2 −8/3 −8/3 8/3 8/3
0 0 0 0 1 1 0 −4/3 0 4/3
0 0 0 0 0 1/2 0 0 −2/3 2/3
0 0 0 0 0 0 8 24 24 8
0 0 0 0 0 0 0 4 8 4
0 0 0 0 0 0 0 0 2 2
0 0 0 0 0 0 0 0 0 1


,

but which is described by the following matrix by using our secret base
VB:

VBV−1.

Now Alice is ready to publish her public keys: VM, VBV−1, wi and
Bob can come into play: in this toy example Bob uses simply the matrix
VBV−1 and he solves the following linear system:

[v]tVBV−1VM = [v]tVBM = [0]t.
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The solutions of this linear systems are coefficients of hyperplanes of
P9 containing the transformed of Γ under the projectivity induced by β
and then under the isomorphism of P9 defined by V. Such curve, which
is in fact the secret conic of Bob, is

[x0, x1, x2, x3, x4, x5, x6, x7, x8, x9]t = VBV−1VMb = VBMb.

In this example it is easy to see that the solutions are generated by
[v1]t := [6, 9,−24, 1,−73/8, 0, 73/4, 0, 0, 0]
[v2]t := [−27,−54, 1809/8, 0, 171/2, 1,−657/2, 0, 5329/32,−4161/64]
[v3]t := [0, 0, 9, 0, 6, 0,−24, 1, 73/4,−73/8].
Now Bob is ready to publish his public keys: vi.
The exchange of public keys is complete.
To get Bob’s information Alice calculates: [vi]t(VAV−1)(VM)b and, to

get Alice’s information, Bob calculates: [wi]t(VBV−1)(VM)b. Not that all
public keys are necessary to do these calculations.

They get polynomials of degree 6 in (t : v). More precisely, Alice gets:
−1/6(16v4 − 12tv3 − 8t2v2 + 3t3v + t4)(4v2 − 3tv + 2t2)
1/8(16v4 − 12tv3 − 8t2v2 + 3t3v + t4)(121v2 − 24tv + 32t2)
(16v4 − 12tv3 − 8t2v2 + 3t3v + t4)v2

and Bob gets:
4/3(16v4 + 12tv3 − 8t2v2 − 3t3v + t4)(−4v2 − 3tv + 4t2)
−8(16v4 + 12tv3 − 8t2v2 − 3t3v + t4)(−238v2 − 168tv + 223t2)
8(16v4 + 12tv3 − 8t2v2 − 3t3v + t4)(−17v2 − 12tv + 16t2).
Alice and Bob consider the g.c.d. of their polynomials (of course two

polynomials i.e. two hyperplanes are sufficient), which have degree 4, and
the roots of the g.c.d. In this way they get the first coordinates, in the affine
plane (x,y), of four points belonging to Γ; the second ones are determined
by the known equation of Γ which is y = x2.

Alice gets: (1, 1), (2, 4), (−2, 4), (−4, 16).
Bob gets: (−1, 1), (2, 4), (−2, 4), (4, 16).
These two sets of four points are sent each other by the plane equiaffin-

ity β−1 ◦ α ( and α−1 ◦ β ) but, of course, neither Alice nor Bob knows these
transformations (actually, in this toy example, Alice knows α and β be-
cause Bob has used simply VBV−1, but in general β is unknown to Alice)
and moreover there is no possibility for them to pair points correctly, so
that they have to calculate the symmetric invariants described in section
2. For instance, for Alice the four symmetric functions of the first coor-
dinates of her points have the following values: σ1 = 3, σ2 = −8, σ3 =
−12, σ4 = 16. For Bob we have, respectively: −3,−8, 12, 16. In both cases
the invariant A of section 2 is 4248.
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It is useful to explain why the above g.c.d. appears. In the P9 of plane
cubics we have two rational normal curves of degree 6: α(Γ) := σB(α(Γ))
and β(Γ) := σB(β(Γ)). Their spans are 6-dimensional and intersect in a
P3. In the plane (X : Y : U) the two conics α(Γ) and β(Γ) intersect at four
points which are sent by the 3-Veronese embedding into four points of P9,
say P1, P2, P3, P4. These points generate the P3 which is the intersection
of the two above 6-dimensional spans, hence their belong to both sextics.
Every hyperplane containing one of the two sextics, intersected with the
other one, gives rise to 6 points, among which there are P1, P2, P3, P4. This
situation is isomorphically transformed by the linear automorphism of P9

induced by V, but this does not affect the argument.
When Alice considers [vi]tVAMb = 0 she gets her (t : v) coordinates of

the 6 points of intersection between the i− th Bob’s hyperplane with β(Γ).
Among them there are always Alice’s (t : v) coordinates of P1, P2, P3, P4.

When Bob considers [wi]tVBMb = 0 he gets his (t : v) coordinates
of the 6 points of intersection between the i − th Alice’s hyperplane with
α(Γ). Among them there are always Bob’s (t : v) coordinates of P1, P2, P3, P4.

Neither Alice nor Bob are interested in the unknown coordinates of
P1, P2, P3, P4 in P9, but both of them, via the (t : v) coordinates, can recover
the personal (and different) pull back on Γ of P1, P2, P3, P4.

To conclude the example we remark that Alice can also consider the
plane cubics: [vi]tVAB = 0. Every Alice’s cubic is broken into a line (de-
pending from the chosen Bob’s hyperplane) and the common conic

9X2 + 12XY + 4Y2 − 48XU − 41YU + 64U2 = 0

which is α−1(β(Γ)). If Alice intersects this conic with Γ she gets the four
points (1, 1), (2, 4), (−2, 4), (−4, 16).

Bob cannot do the same, because he does not know V, however if we
consider the plane cubics: [wi]tVBB = 0 we have that they are broken into
a line (depending from the chosen Alice’s hyperplane) and the common
conic

9X2 − 12XY + 4Y2 + 48XU − 41YU + 64U2 = 0

which is β−1(α(Γ)). If we intersect this conic with Γ we get the four Bob’s
points (−1, 1), (2, 4), (−2, 4), (4, 16).
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6 A brief security analysis

A detailed security analysis is beyond the scope of this paper, however in
this section we give an outline. First of all let us remark that the previous
Toy Example has no security claims because Bob uses the public matrix
VBV−1, given by Alice, hence whoever can do Bob’s calculation and get
Bob’s four points.

Now let us try to give an estimate of the computational complexity
needed to use our protocol. Alice and Bob have to multiply (n + 1, n + 1)
matrices (or matrices of smaller size), recall that n + 1 = (d+2

2 ) and to
calculate an inverse, hence the computational complexity is of order O(d6).
Moreover they have to solve linear systems of 2d + 1 equations in n + 1
variables, but this imply a computational complexity of order only O(d4),
in the end the overall order is O(d6).

It is more difficult to determine the computational complexity needed
to break the protocol. In our method there is not an obvious problem such
that, if a third part, say Charlie, solves it then he gets the secret key. From
this point of view the method is different from the ones based on the fac-
torization of a big integer number N, where the underlying problem is to
find the prime factors of N.

It follows that, to break the method, it is necessary to find the secret
key using only publicly available informations.

The public vectors wi (or vi) can be used to determine plane curves of
degree d by using the known base B hoping to get a common conic, to in-
tersect it with Γ and to get four points equivalent to Alice’s or Bob’s points
under an equiaffinity. In this case Charlie can calculate the same invariants
as Alice and Bob. But this is not possible because these vectors identify
curves with respect to the secret base VB and not B. For instance, in the
Toy Example it is easy to see that, as V defines a linear automorphism in
the space of cubics not coming from a projectivity of P2, Charlie’s cubics
are irreducible.

Knowledge of VM does not help either: if Charlie calculates

[wi]tVMb = 0

he gets degree 2d polynomials whose g.c.d. is a polynomial of degree 4
giving the first coordinates of the four points α(Γ) ∩ Γ, but they are not
equivalent to α(Γ) ∩ β(Γ) by an equiaffinity. The same if Charlie uses vi,
with β instead of α.

On the other hand, knowledge of matrix V is sufficient to break the
method. This fact was remarked in a private communication from W. Cas-
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tryck (see [16]) who made an in-depth analysis of [8] on which our ideas
are based.

If Charlie knows V, finding the common conic component among curves

[wi]tVB = 0

he gets α(Γ), and, similarly, using curves

[vi]tVB = 0

he gets β(Γ). The intersection of these two conics consists of four points
which are equivalent with Γ ∩ [β−1 ◦ α(Γ)] and with [α−1 ◦ β(Γ)] ∩ Γ, re-
spectively, by equiaffinities. Hence Charlie can calculate the secret key by
using these four points as Alice anb Bob do.

To break the method Charlie could try to determine matrix V knowing
VM (recall that M is public), but this leads to a maximal rank linear system
of (2d + 1)(n + 1) equations in (n + 1)2 variables. The solutions depend
on (n + 1)2 − (n + 1)(2d + 1) parameters, which are too many for a brute
force attempt.

However there is another possibility to find V. The d−Veronese em-
bedding of P2 is a smooth surface S0 of Pn defined by

D(d) := d(d2 − 1)(d + 6)/8

linearly independent quadrics. Our surface S is φ(S0) where φ is the linear
isomorphism represented by V (recall Section 3). The quadrics defining
S0 are known, while a set of quadrics defining S can be determined in the
following way (see [16]):

• pick random points in P1(F) and map them into S using fpub;

• move the points around S using random combinations of Vφ A2V−1
φ

and Vφ A3V−1
φ ;

• starting from a quadric with indeterminate coefficients, for any sam-
pled point obtain a linear condition on these coefficients;

• repeat previous step until you are left with a solution which is a vec-
tor space of quadrics of dimension D(d): any base of this space de-
fines S .

The heaviest calculation contained in the previous algorithm is a linear
system of O(d2) equations in O(d4) variables; the complexity is of order
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O(d8) because the computational complexity of a linear system with N
equations in N + h variables is the maximum among O(N3) and O(N2h).

Now, let us determine the Lie algebras AS0 and AS associated to S0 and
S , respectively. Recall that the Lie algebra associated to the smooth inter-
section of r quadrics in Pn(F), defined by r symmetric matrices A1, ..., Ar
of type (n + 1, n + 1), as set, is the set of (n + 1, n + 1) invertible matrices
Y such that

Yt Ai + AiY ∈ 〈A1, ...Ar〉 i = 1, ..., r.

The computational complexity of such calculations is of order O(d16)
because it must be solved a linear systems in (n+ 1)2 + r2 variables, where
r = D(d), with (n + 1)2 equations.

In our case, both algebras are isomorphic to the Lie algebra of P2(F)
which is sl3(F) with the standard bracket product; moreover matrix V
induces an isomorphism: (..)→ V(..)V−1 among the two algebras.

It can be shown (see [16]) that, up to a constant, matrix V represents
also an isomorphism between

F〈Xd, Xd−1Y, ..., Ud〉 as right AS0-module
and
F〈x0, x1, ..., xn〉 as right AS -module.
Obviously it is not easy to find the above isomorphism (see for in-

stance [7] and [11]), however Castryck suggests a strategy in [16], based
on the partial derivatives of degree d polynomials, generic elements of
F〈Xd, Xd−1Y, ..., Ud〉. However this strategy does not work very well when
char(F) < d.

In conclusion, the computational complexity of Castryck’s attack is at
least of order O(d16) plus a part whose complexity is difficult to evaluate,
but which in any case does not run when char(F) is low. On the other
hand, we do not know other methods to determine V.

To make the method even safer, with a little effort, we could keep the
matrix M secret, i. e. the conic Γ.

7 Key size comparison

A detailed security analysis is required to understand the difficulty of
underlying problem. In our case, we propose a parameter set accord-
ing to an experimental evidence. For AES-128 bit security level, we set
d = 14, q ≈ 232. The size of public and private keys (in bytes) are pre-
sented in Table 1.
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Table 1: Key size comparison
Schemes sk pk

Classic McEliece 6492 261120
Kyber 1632 800

QSI key Exchange 2448000 10880
CSI (This work) 13920 960

For QSI and CSI, we have computed the key size of Bob. In CSI, the
public and private keys of Bob are

pkB = (HB,1,HB,2) and skB = fB
respectively. The hyperplanes HB,1,HB,2 are vectors of length n + 1,

where n = (d+2
2 )− 1 and the embedding fB is represented by a matrix of

size (n + 1, 2d + 1) = (120, 29).

8 Conclusion

We have proposed a new key exchange scheme based on a new mathe-
matical problem. We conjectured that the underlying problem is difficult
for the large scale quantum computer, therefore the key exchange is ex-
pected to fit in the post-quantum scenario. We leave a detailed study of
the problem for future work.

References

[1] Daniel J. Bernstein, Johannes Buchmann, Erik Dahmen. Post-
Quantum Cryptography, Springer-Verlag Berlin Heidelberg, 2009.

[2] Ward Beullens. Breaking Rainbow Takes a Weekend on a Laptop, Cryptol-
ogy ePrint Archive 2022/214, https://eprint.iacr.org/2022/214

[3] Wouter Castryck, Thomas Decru An efficient key recovery attack
on SIDH (preliminary version), Cryptology ePrint Archive 2022/975
https://eprint.iacr.org/2022/975

[4] Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and
Joost Renes. CSIDH: An Efficient Post-Quantum Commutative Group

https://eprint.iacr.org/2022/214
https://eprint.iacr.org/2022/975


REFERENCES 22

Action, In: Peyrin T., Galbraith S. (eds) Advances in Cryptology - ASI-
ACRYPT 2018. Lecture Notes in Computer Science, vol 11274. Springer,
Cham, 2018.

[5] Ciro Ciliberto. An Undergraduate Primer in Algebraic Geometry,
Springer-Verlag Berlin Heidelberg, Unitext 129, 2021.
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A Veronese surfaces

For ease of references, we collect here the definitions and a few basic facts
about Veronese mappings; for a more complete discussion see [5] section
6.4 or [9] chap. 2.

The Veronese mapping vm,d : Pm → Pn, where n = (m+d
d ) − 1, is an

embedding given via monomials of degree d. To define it, we need some
preliminaries.

Denote the monomials in F[x0, ..., xm] as mI := xi0
0 · ... · x

im
m with I =

(i0, ..., im) and |I| = i0 + ... + im. The lexicographic order on monomials is
defined as follows:

mI > mJ ⇐⇒ ∃h : i0 = j0, ..., ih−1 = jh−1, ih > jh.

It is a well known fact that the number of monomials of degree d in
m + 1 variables is (m+d

d ). With this notation, the Veronese embedding is
given by

vm,d : (x0 : ... : xm) ∈ Pm → (mI)|I|=d ∈ Pn,

with monomials listed in lexicographic order in (mI)|I|=d. The image of the
Veronese map is the Veronese variety Vm,d := Im(vm,d); it is an m−dimensional
variety isomorphic to Pm; in particular V1,2 is a smooth conic in P2.

We are mainly interested in Veronese surfaces, i.e. the case m = 2,
where we use variables X, Y, U. Then V2,d is a surface of degree d2, iso-
morphic to P2 and embedded in Pn, with n = (d+2

2 )− 1.
A generic projectivity φ : Pn → Pn, given by a matrix Vφ ∈ GL(n +

1, F) does not leave V2,d invariant, i.e. φ(V2,d) 6= V2,d; however, any pro-
jectivity α : P2 → P2, induces a suitable projectivity α : Pn → Pn, such
that v2,d ◦ α = α ◦ v2,d, hence α leaves V2,d invariant, i.e. α(V2,d) = V2,d.

We can determine the matrix A ∈ GL(n+ 1, F) representing α, in terms
of the entries of A ∈ GL(3, F) representing α, in the following way. The
place of the monomial mI = Xi1Yi2Ui3 , I = (i1, i2, i3), i1 + i2 + i3 = d,
among the monomials of degree d in lexicographic order is

p(I) :=
(i2 + i3)(i2 + i3 + 1)

2
+ i3 + 1.

For instance, if d = 6 and I = (1, 2, 3), p(I) = 19.
Let lr := ar1X + ar2Y + ar3U, r = 1, 2, 3, the linear polynomial given

by the r−th row of A then DI := li1
1 li2

2 li3
3 is a homogeneous polynomial

of degree d in the variables X, Y, U, hence it is a linear combination of the
monomials mJ of degree d; the coefficients of this linear combination (in
lexicographic order) are the entries of the p(I)−th row of A.
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