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POINTWISE MULTIPLIERS FOR
TRIEBEL-LIZORKIN AND BESOV SPACES ON LIE GROUPS

TOMMASO BRUNO, MARCO M. PELOSO, AND MARIA VALLARINO

ABSTRACT. On a general Lie group G endowed with a sub-Riemannian struc-
ture and of local dimension d, we characterize the pointwise multipliers of
Triebel-Lizorkin spaces Fj'? for p,q € (1,00) and a > d/p, and those of Besov
spaces B5? for ¢ € [1,00], p > d and d/p < a < 1. When G is stratified, we
extend the latter characterization to all p,q € [1,00] and a > d/p.

1. INTRODUCTION

The problem of describing explicitly the pointwise multipliers of function spaces
is one of the basic questions when studying their role, in particular, in the theory of
partial differential equations. In the Euclidean setting, the case of Sobolev spaces
was first consider by Strichartz [25]; his result was then extended to the case of
Triebel-Lizorkin spaces by a number of authors, see e.g. [26] 2.8] and the references
therein. The case of Besov spaces turned out to be more difficult and was object of
several attempts, see e.g. [T9211[23L24], until it was very recently solved by Nguyen
and Sickel [20]. To the best of our knowledge, however, no result is available in
higher generality than R?. In this paper we consider such problem in the case of
Besov and Triebel-Lizorkin spaces defined in the sub-elliptic setting of a general
Lie group.

Beyond the classical potential spaces on R?, in recent years the theory of function
spaces on manifolds, in particular when these are endowed with a sub-Riemannian
structure, has been at the center of intense research efforts. The standard prototype
for such a situation is the case of connected Lie groups, when the classical Laplacian
is replaced by the intrinsic sub-Laplacian with respect to a Hormander system
X of left-invariant vector fields. The ground work for Sobolev, Triebel-Lizorkin
and Besov spaces on general Lie groups was laid in [BLI6L[7], see also [10,1T]I5],
where equivalent descriptions and norms, embeddings, interpolation and algebra
properties, among other things, were obtained.

The aim of this paper is then to characterize the pointwise multipliers for such
Triebel-Lizorkin spaces F2'? and Besov spaces B24, which we denote by M FZ-4
and M BP9 respectively, on a noncompact connected Lie group G. We obtain a
complete characterization of M FP9 in the range 1 < p,q < oo, and « > d/p, where
d is the so-called “local dimension” of G, which depends only on G and X. The
case of Besov spaces turns out to be more challenging and, to a certain extent, this
should not come as a surprise in view of the Euclidean case already. For M B9 we
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obtain a complete characterization in the case when G is a stratified Lie group. In
the case of a general Lie group, we characterize the multiplier space M B2 only
for certain ranges of the smoothness parameter « and for p > d.

The reason of this restriction is merely technical, and is due to our use (inspired
by [20]) of an equivalent Besov norm expressed in terms of a finite difference. In-
terestingly, it seems not clear what a satisfactory definition of a finite difference of
arbitrary high order should be on a general Lie group. We are able to say this on
a stratified group, and we discuss the general case at the very end of the paper.

The structure of the paper is as follows. In Section 2] we introduce some pre-
liminaries about the sub-elliptic setting of a Lie group; in Sections Bl and Ml we
characterize M FP9 and M BP9 for the above mentioned indices when G is a gen-
eral Lie group G, while in the final Section [B] we extend the characterization of
M B4 to all regularities when G is stratified.

2. SETTING AND PRELIMINARIES

Let G be a noncompact connected Lie group with identity e, let A be a left Haar
measure on G and 0 be the modular function. We pick a family X = {Xy,..., X}
of left-invariant linearly independent vector fields which satisfy Hérmander’s condi-
tion, and denote by d¢ the associated left-invariant Carnot—Carathédory distance.
We shall sometimes write |z| = dc(x,e), and denote by B, the ball centered at e
of radius r. We recall that the metric measure space (G, d¢, ) is locally doubling,
as there exists d € N (depending on G and X) such that

C~lr? < X\(B,) < Cr? vre(0,1],

where C' > 0 is a constant independent of r; but that in general it is not doubling,
as the growth of A(B,) can be exponential for large r’s. For this fact and all what
follows, we refer the reader to [BLL[7L[8] and the references therein.

If p € [1, 00], we shall denote by L? the classical Lebesgue spaces with respect to
A, and their norms will be denoted by || - ||,. The convolution between two functions
f and g, when it exists, is defined by

frglx) = /Gf(zy)g(y_l) d\(y), wed.

We denote by L the operator
£= =3 (X2 + (X,0)(0) X)),
j=1
which is symmetric on L2, is essentially self-adjoint on C2°(G), and is the intrinsic
sub-Laplacian associated with X; see [IL[I8]. We shall denote by £ its unique
self-adjoint extension too.

The operator £ is the infinitesimal generator of the diffusion (heat) semigroup
(e7**)4=0, which has a smooth convolution kernel which we denote by p;, t > 0. It
is well known, cf. e.g. [6, Lemma 3.1], that there exist constants C, ¢y, ¢y > 0 such
that

Ot e~ < py(2) < Ot Fee™ | vie(0,1),2€G, (2.1)
and that for all h € N there exist positive constants C' = C(h) and b = by, such that
X pe(2)] < Ct 3py(x)  VEe(0,1),2€G, Je{l,....x}".  (22)

Here and all throughout, for J = (Ji,...,J,) € {1,...,k}" the notation X ; stands
for the differential operator X, --- X, .
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2.1. Triebel-Lizorkin and Besov spaces for £. Suppose a > 0 and ¢ € [1, o0].
For p € [1,00), the Triebel-Lizorkin space F?¢ is the space of functions f € L?
such that, when m is the smallest integer larger than a/2,

1 d 1/q
ez = 17+ | [ riearme ey §)

(2.3)
P
is finite, with the usual modification when ¢ = co. For p € [1, 0], the Besov space
BP9 is the space of functions f € L? such that, when m is as above,

! dt\

fllsze =7l + ([ e e §) (2.4
is finite, again with the usual modification when ¢ = oco. By [0, Theorem 4.1],
for the above p and ¢’s any other choice of an integer m > «/2 in [Z3) and (Z4)
gives (respectively) equivalent norms. In case no distinction between FP9 and
BP1 is needed, we shall write X2? to denote either of the two. We recall that,
by [6l Theorem 5.2], if p € (1,00) and a > 0, then the space FF? coincides with
the Sobolev space LP, (cf. [5]), namely the space of functions f € LP whose norm

£ 1Lz = 11l + 1L2f 1
is finite. If @ = k € N, moreover, by [5 Proposition 3.3]
I£llz =< D 1 X fllp- (2.5)
0<|J|<k
For later convenience, we define when p = co
Ifllee = D X f oo (2.6)
0<|J|<k

Here and in what follows, A =< B for two positive quantities A and B means that
there exists C' > 0 (depending on G and other circumstantial parameters) such that
C~'B < A < C B. Analogously, we shall write A < B if there exists such a C such
that A < CB.

We finally recall that, given p,q € [1, 00] and a > d/p, the spaces BZ’/; and BP:1
are algebras under pointwise multiplication; and that the same holds for the spaces
F24, provided p € (1,00). See [6, Theorem 7.1]. In particular, if f,g € X29 and
the indices are as above, then

[f9llxze < N lxzallglxzo. (2.7)

2.2. First order finite differences and equivalent norms. We introduce now
first-order finite differences on G, and recall their role in providing equivalent norms
for the spaces X2¢ . Higher order differences will be discussed in due course, see
in particular Section Bl and Remark
For y € G, we define the first-order difference D, of a function f as
D, f(z) = flay™") — f(z), =z€G. (2.8)

If ¢ € [1,00] and « € (0, 1), we consider the associated functionals (to lighten the
notation, we write V(u) = A(B,,) for u > 0)

seoso) = ([ g [ mvswiow] MY e,

and, if also p € [1, o0,

ABI(f) = (/y<1 (I?;|£|Ip)q ‘ciAO(;/')))l/q_
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By [, Theorem 8], if p,q € (1,00) and « € (0,1), we have

1Al Egea = 1182 fllp + 1/ llps (2.9)
while if p, g € [1,00] and « € (0,1), then by [7, Theorem 9]
£l Bzee < [ fllp + AZI(S)- (2.10)

Let us stress that though the functionals S°©¢ and A9 are defined in [7] in terms
of a right Haar measure while here in terms of )\, the two versions are equivalent
as the modular function is bounded above and below away from 0 on B;.

For later purposes, we shall prove some properties of the finite differences D,
which will be of use. We first note that D, satisfies the following Leibniz rule: given
two functions f and g,

Dy(fg)(z) =Dy g(x)f(x) + g(zy™") Dy f(z),  z,y€G. (2.11)

We observe moreover that, if ¢ is a function such that supp ¢ C xB,. for some z € G
and r > 0, then for all y € By

suppDy ¢ C 2By 41.

LEMMA 2.1. Suppose p € [1,00] and |y| < 1. Then

(1) 1Dy fllp < 1£1lp5

(2) 1Dy fllp < 1913251 155 £l

(3) for all k € N and ¢ € C2° there exist ¢ = c(k) > 0 and C(¢) > 0 such that
for allt € (0,1)

- 1 e
1Dy (WL e f)llp < C)™ = [yl Lsuppw ™| flllp,
where C (1)) depends only on |[Y||Ls (see (2.6)).
Proof. The proof of (1) is straightforward, since

1Dy fllp S 1FCy™Dllp + 1l < (872 ) + DIy S 1F -

We then prove (2), and argue as in the proof of [9, Theorem 3.1]. Given y € By, let

Yy [0, |y]] = G be a horizontal subunit path such that ,(0) = e, v,(|ly|) = vy~ 1,

17y (s)] < [yl for every s € [0, [y]].
For every x € G, by Taylor’s formula applied to the function s — f(xv,(s)) and
Hoélder’s inequality, one has

[flay™") = (@) < (/Oy ngjf(my(S))Idsy

lyl *
<l [ X fan )l s,
0 j=1
so that

. ly| K
ID, FIE < Iyl / /G SO (@ () dA(z) ds
=1

s€[0,]yl]

ly| * K
St s 50 [ SIS ds S I S 1
0 =1 j=1
To prove (3), observe that by (2)

1Dy (e L5 f)llp S 1yl D IX (L e ),

Jj=1
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and for ¢ € (0,1), by 22)
] k —tC ] k —tLl pk —tL
X5 (LY = f)llp < N X500 - L% fllp + [0 XL fllp
S M euppw £5e ™ fllp + [1Leuppw X; L5 £l
St Laupppe ™ E 1l + 72 | Laupp ye ™€ £
= supp ¥ © p supp € P
_1_ e

Stz klllsur)pwe CtL|f|H;Da

for some c3, cq4, ¢ > 0 by 21, and this completes the proof. ]

2.3. A covering lemma. The following covering lemma will be used all through-
out. It can be obtained as |2, Lemma 1], see also |4, Lemma 2.3], with minor
modifications. For the reader’s convenience, we provide all the details.

LEMMA 2.2. There exists a countable family U = {x,: n € N} C G such that
(1) G=U, znBu;
(2) for all m € N there exists Ny, € N such that each element of G belongs to
at most N,, sets tBy,, t € U;
(3) for alln € N and m € N there are at most Na,, elements x € U such that
By, N Xy By, is nonempty;
(4) for all m € N there exist Ny, + 1 disjoint families of indices I, k =
1,..., Ny, + 1 with the property that
Nop+1
N= |J I, Vk=1,...,Nu+1, do(ze,zn) =m VOhe Iy, £#h.
k=1

Proof. By Zorn’s lemma, there exists a countable maximal subset ¢/ of G such that
the sets xBy/3, * € U, are pairwise disjoint (recall that a connected Lie group
with the topology of the Carnot—Carathéodory metric is second-countable, hence
separable). Now, take any element z € G. By maximality of U, the set 2B/,
meets at least one set B /9, ¥ € U. It follows that z € zBl/QB;;Q C zB; and (1)
is proved.

Pick now m € N and suppose that a set z9B,, meets N = N,, other sets
1B, ..., aNBp, with @; € U. Then 2By, B;' > z;, whence xoBp,B;,' By /o
contains the sets x; By, j = 0,..., N, which are pairwise disjoint. It follows that

AN BB, 'Bijs) = Mwo BB, ' By j2) > (14 N)A(By/2)

whence )
AN BB, By 2) - M Bam+1/2)

(LN < A B1/2) = ABip)

and (2) is proved.

To prove (3), observe that if By, N z,B, # 0, then d(x,,z) < 2m, thus
Zp € xBay,. By (2), the number of such z’s is at most Na,,.

It remains to prove (4). Consider a maximal family U; of points in I such that
x1 € Uy and d(xg, xp) > m for all ap, xp, € Uy with £ # h. Then pick x,, € U \ U,
and consider a maximal family Uy of points in U \ Uy such that z,, € Us and
d(xg,zp) > m for all xp,x, € Us with £ # h. Proceed recursively: at step k,
consider x,, € U\ Uf;ll U; (if any) and consider a maximal family U, of points in
U\ Uf;ll U; such that z,, € Uy and d(x¢, xp) > m for all x4,z € Uy, with £ # h.

Suppose by contradiction that one can proceed for more than N, + 1 steps.
Then there exists an element x,, ., €U\ Uj—vz’"lﬂ U;; but by maximality of each
of the Ujs, for all j = 1,..., Ny, + 1 there is &; € U; such that d(zyy, ,,,Tj) < m.
Then

Tnn, 4o € TjBm, Vi=1,...,Nn+1,
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and this contradicts (2). The required I;’s are then the indices of the elements in
U;. O

We shall not stress the dependence of NV on m in the following, as this will not
play any role. We shall refer to points (2) and (3) in Lemma as the bounded
overlap property.

2.4. Pointwise multipliers. We begin by setting some notation. First, we pick a
smooth function 7 on G such that 0 <7 < 1,7 =1 on By and suppn C Bs. Such
a function will be fized all throughout. Then we consider the following family, to
which 7 belongs.

DEFINITION 2.3. We shall denote by ¢ the class of smooth cut-off functions
€ = {SGCEO: 0<¢<1,€=1o0n By and suppé C B, forsomemGN}.
Given any £ € %, we set

&
Zk gk’

€n Zf(fﬁﬁl')a and €n =

where x,, € U.
By Lemma 221 for every £ € € there exists N € N such that

1< Z«fn(ac) <N, zeQ, (2.12)
neN

since for all x € G there are at most say N nonzero terms in the sum above. Hence,
forall £ € @

Zgn =1, supp &, = Suppgn = xpsupp & C T, By,
n

where m € N is such that supp ¢ C B,,,, and still for all € G there are at most NV
nonzero terms in the sum for some N € N. Though it is not true that &, is a (left)
translate of &, it is still true that for p € [1, o]

sup sup || X &|p < oo. (2.13)

n |J|l=m
Such an estimate is a consequence of ([ZIZ), the fact that &, is a left translate of &
and the left invariance of the norm and of the vector fields Xj.
In particular, all the above holds for 7.

DEFINITION 2.4. Suppose p,q € [1,00] and o > 0. We say that a function f is
uniformly locally in X2, and we write f € XP? . if

a,unif?

HfHXg’q,unif = sup || [l xpe < 0.
neN

We denote by M XP9 the space of multipliers of X?-9, namely the space of functions
f such that || fg|lxre < C(f)|gllxze for all g € X9, endowed with the norm
| fllarxza of the infimum of all such C(f).

In the following lemma we prove few basic facts which will be of use all through-
out. In particular, we show that for the range of indices which we shall be interested
in the definition of X'{ .. is independent of the choice of 7). In other words, if one
replaces 1 with any other £ € €, then the two norms are equivalent.

LEMMA 2.5. Suppose &, ¢ € € and let f be a function. Then the following holds.

(1) For allp € [1,00)
IF1E = > 1€l 1/1loo = 5D [1&nloc- (2.14)

neN
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(2) Forp,q € [l,00] and a > d/p orp € [1,00], ¢ =1 and « = d/p if X = B,
and p,q € (1,00) and a > d/p if X = F,

I fénllxza < || fénllxze V€N,

2.15
sup [l f¢nllxpo =< sup || f6nll xp (2.15)
neN neN
(3) If J is a multi-index and p,q are as in (2), then
sup [[£ Xy fllxza < sup [ Xy (f&)llxza. (2.16)
neN neN

Proof. To prove (1), consider first the case p < oo and observe that

5= [ 1sran= [ (Sisie) ar

For all x € G, by Lemma [2.2] there are at most NV functions &z, ..., &nz. such that
fnja; (x) # 0, with N independent of z. Thus,

S Uf16) dv= | STIfealrdr = S lIsglE, (2.17)
o\ 5 T "

where the constants depend only on p and N. The case p = oo is similar: the
inequality

[fénlloo < l€nlloollflloe S NI flloo
follows by (ZI3)); moreover, for x € G

Fl@) = D If1@)en(2) = 3 If1(@)éns (@) < N supsup | f(@)n ()]

so that also the other inequality follows.

The equivalences stated in (2) and (3) are consequences of the algebra property,
cf. 7)) (wherefrom the restriction on the indices). Let ¢ € € be such that ¢ =1
on supp . Observe that & = 1€, whence & = &b and & = &,y for all k € N.

For n € N, by ([27)
1Fallxgs = [[ (X ém) 6] .
- H<;Em)¢;n‘f§n xe s H(;gm)q/;”

By left-invariance, the bounded overlap property, and the algebra property we now
have

1 &nllxza-

Xg’q

N
H(zm:ém)l/;" XP = H(;é’%)w‘ xpa

N
<[[(X2&n)| ..o lelxzs < Nllglxpellvllxze,
=1 °

the last quantity being finite since it is the norm of a smooth and compactly sup-
ported function. We conclude that

1£énllxze S [1FEnllxza-
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To prove the converse inequality in (2I5]) we first write

I &allxze = | ( ;gm)l 5l o
- H(zm:gm)_lij"fg” xpa H(;gm)‘iz,n

again by ([27). For o > d/p, by [0, Theorems 5.1, 5.2, 5.3|, we can find a positive
integer k such that L < X2, so that by (Z3)

H(;Em)_lijn X2 s H(;g’”)_ I Lr
<5 Jn((se) )],
< 3 ((Z6) )xw

[T14|J|<k

Xp,quanXZi’qa
a

<1
P

)

by the left-invariance of the vector fields. This concludes the proof of the first

equivalence in ([2.13]).

We now prove the second equivalence; by symmetry, it is enough to prove one of
the two inequalities. For n € N, let m7, ..., m; be the indices such that L supp &
intersects x, supp ¢. The number M depends only on £ and ¢, but not on n, by
the bounded overlap property. Then

~ M ~
f&n = fond)m;’v

j=1

whence, by using (2I5]) and the left-invariance of the norms,

1f&allxze S 11l xpo = |

n
J Pp,q
Xa

M
&n
j=1

S Il xzo

3| xpa
< €llxzaM  sup || fdmrllxza S sup || fémllxza,
=1 M m

which completes the proof of (2).
To prove (3), observe that for n € N there are k7', j = 1,..., N, such that

X llxze = | Z €0 Xs (£l 0

N
& Y Xy (f&r)
j=1

’qu ~

and by (271
16n X5 (f&r ) xze S €nllxza | Xa(Fér)lIxpe S sup X (f&k) || xz0a,

where we used that ||&, | xza < [[€]lxze = [|€]|xza. This completes the proof. [

We are now ready to show that a multiplier of X249 for o > d/p, belongs to
XP#Z

a,unif”

PROPOSITION 2.6. Suppose o > d/p and p,q € [1,00] if X = B or p,q € (1,00)
if X =F. Then MXP9 — XP1

a,unif
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Proof. Pick f € MXZ?? and observe that by (215
sup || fnl xzs < sup [|fllaexzoallml xz-e
n n
S I larxzasup |inllxze = [|f | arxzalnll xze,
n

and the statement follows. O

3. MULTIPLIERS OF TRIEBEL—LIZORKIN SPACES
In this section, inspired by [25], we shall prove the following.

THEOREM 3.1. Suppose p,q € (1,00) and o > d/p. Then MFP* = F2'% . with
equivalences of norms.

We begin with the following proposition, which in particular provides an equiv-
alent characterization of the Triebel-Lizorkin norm of a function by means of the
localizing functions in % .

PROPOSITION 3.2. Suppose p,q € (1,00) and o > 0, and let {pn)} be a sequence
of smooth functions such that supp(@(,)) € &y By, for some m € N, where {x,,: n €
N} = U is as in Lemma[Z2, and with oll derivatives of order < a+ 1 along X
uniformly bounded. Then, for every f € FP9,

1/p
(X I emltya) " S flepe. (3.1)
neN
If £ € €, then
1/p
HfHF(f'q = (Z Hfgn”};rg,Q) . (32)
neN

Proof. Assume first that « € (0,1) and pick f € FP4. By ZII)

+ (/o1 [ﬁ(u) /y@ [f(zy~') Dy w(n)(:c)|d)\(y)]q dg)%
= In() + Ju(z).

On the one hand,

P
S E = /G S ILPdA < <sggz|so<n)<x>|) 1S9 p)p < e (f) 2.

On the other hand, since supp Dy @) € %, Bpy1 when [y| < 1, one has J, =
Jnls, B By Lemma 1] (2) applied to ¢,y with p = oo,

m41°

= 1””"3"‘“(“’”)</01 {ﬁ@) /|| Fay™)ly] d/\(y)r %U)/ '

LTu ¢ du\ V4
~1f1 -
(/O |:’U,D‘ |f IanL+2| * gu(‘r):| w )

SU.p |f1Ian+2| * gu(.’I]),
u€(0,1)

A

A

where g, (y) = ﬁlgu (y). Then, by Young’s inequality (cf. [8 (2.2)]),

[Tnlly S 1 f1lepBoselly sup (gl < 1f 12, B lh-
u€e(0,1)
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Thus,
Il S 11

Therefore, using (23], the bounded overlap property and the uniform bound on
H P(n) H 00

(S ifewlte)” s (Siremlz)” + (5w niz)

SIAlly + 1S21 Ao S IF Iz

This shows the inequality [B1)) in the case o € (0,1). If &« = k+ o with k € N and
o' € (0,1), then by [6, Theorem 4.5]

Iz = D 1X1fllee,  femlre = D 1Xi(fom)llps.  (3.3)
[I|<k [I|<k

Since

Xi(fem)) = > crL(X1f)(Xpom)),
[JISIIILIS =] T]

arguing as in the case a € (0,1), with X;f in place of f and with X7, in place
of (), we obtain

1/p
(Y I Xep@)loa) S I1Xaflps S Iflpgs,

whence
» 1/p -
(D Ifamlpa) S Ufllze.

Thus, inequality (B]) follows for all & > 0 which are not integers. The integer case
follows from interpolation. Indeed, if k¥ € N, then by [3, §5.6] and |6, Theorem 6.1],

(P (EP8) 07 (ED0, )y = (P, FL )1 jop) = C(ED),

but also, by what shown above,

(P () P (Fgo sz = (B 5, B3y )y = Fi7,

all with equivalences of norms. This proves (B.1]).
In order to prove [B2) we only need to prove the reverse inequality, assuming
that £ € € and &, is as in Definition [Z3 We have that

siea(f) = sea(S0 ) < D Seea(sen).

n

We observe that, if {g(,)} is a sequence of nonnegative functions such that supp g,y C
Xy By, for some m € N, with {z,} as in Lemma 22 then

HZ%) e (ZHg(n)ll?)l/p (3.4)

Thus, if the right hand side of ([.2) is finite, since supp S/°¢4(fE,) C 2y, By, for
a € (0,1) we have

1/p 1/p
I+ 152Dl 5 (T hsealz)  + (S hstortrente)



MULTIPLIERS FOR TRIEBEL-LIZORKIN AND BESOV SPACES 11

which gives the desired conclusion when « € (0,1). To conclude, suppose now
a > 0 is noninteger and o = k + o/ with o/ € (0,1) and k € N. Then, again by the
norm equivalence ([B3)), we observe that

Sy (X1 f) < Zsl"c’q r(f&n)

and that supp S°¢9(X;(f¢,)) € xnBumoe, so that for |I| < k, arguing as in (34,

loc,
XSl pze =< NX 1 fllp + 1505 (X2 )l

< (Swxare) ™ + (Sisyexiety)
(ZHXI Feltn) " < (S 1s6alge)”

Thus, the statement follows for all & > 0 which are not integers. The integer case
follows from interpolation as before. O

COROLLARY 3.3. Suppose that p,q € (1,00), a >0, and §{ € €. Then
[ fllarrza =< sup || f&nllarrza. (3.5)
neN
Proof. On the one hand, by Proposition B2 for g € F?? one has

€ngllrze S llgllpges neN,

whence [|&, ]| prpre S 1 uniformly for n € N. Then,

1f&nllaerze < Nfllaerzallénllarrzs S fllarrze,

which is a bound independent of n, from which the inequality 2.
Conversely, let 1) € € be such that v = 1 on supp&, so that &, = £,v,. Now, if
the right hand side of (1) is finite, and g € F£9, by Proposition 3.2 we have

faleze < (X seaaltg.)”
= (S s6uuslty)”

1/
< swp | fenlarrz (3 sl 0" S suplfeullurgalglege
n

whence the inequality < in (33]). O

Proof of Theorem[3l. If f € MFP9, then f is uniformly locally in F?-? by Propo-
sition Viceversa, assume that f is uniformly locally in F?4. Let ¢» € € be
such that ¢» = 1 on suppn, so that n, = nn{/;n. Then for g € FP9, by the algebra
property of F?¢ (recall ([27))) and Proposition B2

- 1/p
oz 5 (3 Wmadnoliy )
p

<supnfnnnFM(Z||wng||qu> <Z|wngnw> < lgllmpe,

and the theorem is proved. O
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4. MULTIPLIERS FOR BESOV SPACES

In this section we deal with the pointwise multipliers for the spaces B2¢. On
the one hand, as already explained, the Besov case is intrinsically different (and
more difficult) than the Triebel-Lizorkin case, and the pointwise multipliers differ
depending on whether ¢ > p or ¢ < p. On the other hand, because of the lack of
a suitable notion of high-order differences in the full generality of a Lie group as
in the previous sections, we are unable to get a characterization of M B?-? for all
indices p, ¢ € [1,00] and & > d/p (which will instead be obtained in Section Bl below,
when G is stratified). We shall slightly restrict the ranges of p, ¢ and « involved,
and get the following.

THEOREM 4.1. Suppose p,q € [1,¢], d < p < q and o € (d/p,1) + N. Then

P4 — RBP4 ; ;
MBLT = B it with equivalence of norms.

The case when p = ¢ = 1 and a = d is somewhat special, as B;’l = Fdl’1 is also
a Triebel-Lizorkin space and it is also an algebra (cf. [6l Corollary 7.2]). Thus, it
can be treated as in the previous section. We have the following.

THEOREM 4.2. MB;’1 =it ¢ with equivalence of norms.

d,uni

The theorems above cover the case ¢ > p. Before we describe the case ¢ < p, we
give the following.

DEFINITION 4.3. For @ > 0 and p, ¢ € [1, 0], we shall denote by MZ? the space
of all f € L _such that

loc
”f”IV[g’q = Ssup H Z'Ynnnf‘
n

[lynller <1

B
is finite, endowed with the above norm.
Then we have the following.

THEOREM 4.4. Suppose 1 <g<p<oo,p>dand«€ (d/p,1). Then MBE1 =
MPE-1 with equivalence of norms.

The reason of the restriction on the «’s will become clear soon, and is due to
the fact that we use first-order differences only. The approach followed for Triebel—-
Lizorkin spaces does work in this case, unless p = ¢ (which amounts to B2P = FPP),
since the analogue of Proposition B.2] fails for Besov spaces.

The remaining part of the Section is devoted first to some technical results, then
to the proofs of Theorems [l A2 and [£4

4.1. Some equivalences of norms. We shall need a characterization in the same
spirit as (2.I0) which involves the modulus of smoothness wy, defined as

wl(fvtap): sup ||Dyf||p t>0.
lyl<t

We begin with a few lemmas.

LEMMA 4.5. Suppose p,q € [1,00] and o € (0,1). Then

1 dt\ /e ) . 1/q
151+ ([ @ s 1D 71005 ) = sl + (s 241
0 lyl<t keN
Proof. Tt is just a standard discretization and reconstruction of the integral. O

LEMMA 4.6. Suppose p,q € [1,00] and o € (0,1). Then

1/q
1 fllp + ARLC) =< ([ fllp + <Z(2k“w1(f,2k,p))q) = || fllzza.

keN
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Proof. By [2110)), it will be enough to prove the chain of inequalities

1/q
£l +ARS) S Ny + (Z(Qmwl(fﬂ_kap))q) S flsze-

k

The first inequality can be easily seen by decomposing the ball |y| < 1 into annuli
27k < |y| < 27%*1 k € N. To show the second inequality, by Lemma it is
enough to prove that for m > 1

1 1/q 1/a
([ s 10, 71 ) <t + ([ oo 4
0 ly|<t

Recall that, see e.g. [0 (4.1)],

m—1

1 ! m_—S ds -
f:m/o( Lyre >t f — +Z£,£e f.

The second term is easily dealt with, as by Lemma 2] (2) and the LP-boundedness
of the heat semigroup

14
1Dy (L™ )y S Tyl Y IXL ™ fllp S Llll £l

j=1

As for the first term, we note that by (Z2)) and again the LP-boundedness of the
heat semigroup

X (s£)™ e fllp = 1Xje ™A (sL)™ fllp S 57 2 lle™ 35 (sL)™ £ s
whence by Lemma [ZT] (1) and (2)

sup
ly|<t

1
D, / (sLymestp L
O S

1
s/SWMM%W*%m
p O

ly|<t

/‘mm S (sL) e Al

1 q 1/q
d dt
Dy/ (SL")me_SLf—S ) 7)
0 S lp

1 1 dt
< ([ ([ rmmina oo, &) 4
o \Jo t
Since

1 1
d dt

/ t=s*/2 min(1, s~1/%) = i S / t=s* 2 min(1, s~ V%) — <1,
0 $ 0 t

Then,

1
(/ (t_o‘ sup
0 lyl<t

uniformly for ¢,s € (0,1), respectively, by Schur’s test

(Al(ﬂft“mm< sty e, L) ?)

1 1/
< ([ ermsme )

and this completes the proof. O
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4.2. Localized norms. The aim of this subsection is twofold: on the one hand,
we shall show an analogue of Proposition for Besov spaces, but in a necessarily
weaker form; and this sheds some light on why the Besov case is more involved
than the Triebel-Lizorkin case. On the other hand, it will provide us with a useful
result, namely Corollary [£9] below, which we shall need to prove Theorem [l Let
us give the following definition.

DEFINITION 4.7. Suppose p,q,r € [1,00] and o > 0. We denote by X2%" the
collection of all f € &’ such that

1/r
fllxgnr = (X Inaflli) - <oc

neN
with the usual modification in case r = co.

In view of Definition 7], Proposition B:2 can be rephrased by saying that F2? =
FD%P with equivalence of norms when p,q € (1,00). In particular, since B2P =
FDP we also get that B2P = B2PP for p € (1,00). As we shall see in Corollary 4.9
below, this actually holds for p € [1, 0o], but the situation for general p, ¢, r is quite
different. Indeed, we have only the following results which, on R?, are “if and only
if”; cf. |20, Proposition 3.6]).

PROPOSITION 4.8. Suppose p,q,r € [1,00] and o > 0.

(1) If r < min(p, q), then BT — BP4;
(2) if r > max(p, q), then BR9 — BRT.

Proof. We shall suppose that « is not an integer, so that o = kg + o’ with kg € N

and o € (0,1). When « is an integer, one can argue by interpolation as before.
We begin by proving (1). We first recall that [6l Theorem 4.5]

1 lsza = > 11X Sl (4.1)

[J1<ko

Then, by Lemma [0l

, 1/q
flpzr S S (|XJf|p+(Z<2’m i IDy(XJf)Ip)q) ) (4.2)
k

—k
| 71<ko vI<2

Fix J such that |J| < ko. By arguing as in (2I7) and since r < p,

10l = || 2 X ()

p
1/r

1/p
S(Siumi) s (Stml;) % Wl

We consider the second term in (£2), which we write as Z|J|§k0 o¢,.g. Since
supp Dy, (X (0, f)) C 2, B3, by Lemma [2.2] (2) arguing as in (3.4), we get

Dy (X )" < (DDy(XJ(nnfm) <7D, (X )
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with a uniform constant depending only on (N and) r. Then, since p > r,
o r a/r\"
o= (@ s [(Zosmn)] )")
% lyl<2—+ 1A P/
q/r\ "/
S, )"
- p/r

< (Z(Qko/r sup
k
, r/q
S (@Y s 1D, L))

ly|<2—F
k n lyl<2™

It remains to observe that the last quantity equals

H(;z’m’f sup 1D, (Xs(mf);),

ly|<2=F

2q/r7

so that by the triangle inequality in £4/" (¢ > r) one gets

7rg S 2N sup 1Dy (X 0Dl )elew
n y|<2-

’ T/q
3 (e s 1D,

k lyl<2~

S 1Xs Pl pesa S M1 f I gar-
n

Thus (1) is proved for r < co. If r = oo, then r = p = ¢ = co. By combining (2.14)
and [ZI6), one gets [| X flloo < sup,, | X7(fnn)|lco. Moreover

D, Xsf (@) S D IDy(Xs(maf)(@)] S sup | Dy(Xs(maf)) ()],
n:x€xy,B(e,3) "

so that we conclude

yIm* Dy (X )] S sup (| X s ()l e = [1fll pgeoee

which completes the proof of (1).
We now prove (2). Since again by (£1])

1/r
flsper = (3 10l

n |I|<ko

1/r
(XX s xomliy)

n I+ J[<ko

it will be enough to show that

(;|X1f'XJ""|;)1/T+ (Z (2(2’“" sup |Dy(Xzf-an)llﬂq)ﬁq)m

n k ly|<2=F

1/q
< 1X0fl + (Z@’m w1<XIf,2-k,p>>q) (4.3)

k
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whenever |I| 4 |J| < ko. The first term in (@3] is easily dealt with: using r >

p, I3) and arguing as in (2.I4)
1/r 1/p
(S 0x0r - Xomallp) < (DOUXef - Xomally)

1/p
S sup [ Xomalloo (Y2 1X0S - Leumells) S 1K1 Sl

Next, we consider the second term in the left hand side of [@3)), and we call it E(f).
By the triangle inequality in £7/7 (r > ¢) and then by the embedding ¢ < ¢" (r > p)

q/r\ 1/aq
(22’”"1(2 sup || Dy (X1f - Xynm) |) )

n lyl<2=F

(4.4)
q/p\ 1/4
< (Z?a kq(Zl sup 1D, (X, xmalg) )"
n lyl<2=*
Recall now that for all m
m—1
_ 1 m—tL t le—L
(4.5)

=Y foyon+ Z E,Eé e FX

LEL
where f; =01if £ <0, while if £ > 1

—e41

1 ? o dt
fg = m/zie (tﬁ) (§] tLX]f?

We choose any m > 1 (m = 1 would suffice, but we maintain greater generality for
later use). Then, E(f)? < I9+ 119, where

p\ 4/P
ZQQ kq(z sup Z | Dy (X 0n - fegor) |H ) (4.6)

lyl<2=* "y ork>0

while

m-l a/p
I[‘JZZQakq(Z sup ZHD (X ym - rle ﬁX]f |;D) ) (4.7)

k n 1WI<27% g

As for II, since by Lemma 2] (3) and (213

S, IDy (X - L™ X1)lp S 27 1 Lsuppnne ™1 X1]llp,
yl<2=

we obtain, since m > o’ and arguing as in (214

. a/p\ /1
15 (L2 (D e xisly) ) £ 151,
k n

As for 1,

) p\ 4/P
rEYe(T( X s 10w fewl))
k n

t42k>1 <27k

522‘“’“1( (32 swp 1Dy (X feranl )”p).
k

42k>1  n WIS
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Notice now that for £+ 2k > 1 and |y| < 2%, again by Lemma 1] (3) and Z.I3)
Dy (Xgmn - fesar)llp

9—f—2k+1
5 —t—2k H Dy (XJnn ’ e_(t_Qigizkil)L(t‘c)me_27£72k71£Xff) Hp%
e (4.8)

_o—t—2k o—t—2k—1 dt
S I e T e I
2—€—2k

5 2@/2“1

supprn @ 2 E|(2m kD pym =2 L X
" P

Therefore, by the bounded overlap property and the LP boundedness of the heat
semigroup,

Z Sup kH Dy(Xymn - fer26)lly

n lyl<2
< 9tp/2 Hefcz*"f*”ﬂ(27(e+2k+1)£)m672*’»’*2’“*1£XIf| Hp
~ p
S 2722 E D Lyme T X g,
Moreover,
1/p 1/p
(2 sup 1Dy (omafean)l) 5 (2 1Xmafevanl)
n 1Y<27 n

Sl fesakllp
_ m_ _9—t—2k—1
5 H(2 (2+2k+1)£) e 2 LX[pr.

In other words

1/p . _ m _o—t—2k—1
(X s, 1Dy (maferanll) S min(1, 272 (2 240 Lyme 2K, £
n y|<2—

Hence,

oh 1 q\ 1/q
15(2(2” S min(1,20/2)| (2~ (EF2kHD pyme-2 ‘Xff|p)) |

k 042k>1

and by the triangle inequality in ¢ we get, as m > «,

1/q
I< Z min(l, 2@/2) (Z 2a’kq||(2—(e+2k+1)£)me_2Ezk1£X1f|g>

Le k

1/q
© 3o min, 2 (S S gy )

[/ k
S IXif g Sl sz
which completes the proof. ]

COROLLARY 4.9. Ifp € [1,00] and o > 0, then BEP = BRPP,

REMARK 4.10. As the proof of Proposition shows, the only properties of 7
which were used were those of all functions in %". In addition to this, the proof of
part (2) shows also that for all p € [1,00] and £ € ¢

~ 1/p
(S salsns) £l

neN
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4.3. The case g > p. We now proceed to proving Theorem Il One implica-
tion is given by Proposition The other implication is given by the following
proposition.

PROPOSITION 4.11. Suppose d <p < q < oo and « € (d/p,1) + N. Then
1f9llsze < NgllBzall fll Bz wit
for all g € B2 and f uniformly locally in BP1.

Proof. Let £ € € be such that £ = 1 on suppn, so that {&n = n and gnnn = .
By assumption, o = kg + o with d/p < o/ < 1 for some kg € N. We begin by
observing that by (Z1])

Ifallmge = D I1X1fXuglprs,
[]+]T<ko

so that we shall consider, for |I| + |J| < ko, the quantity
1X15 X 9]l

1/q
SIxe gl + (S swp 10,67 X))

k lyl<2— (49)
ko' ~ q\ 1/q
Sixixogly+ (X (2 s | S 0méxiixs)| ))
k ly|<2=F n p
where we have used the identity g,mn = 7). On the one hand,
X0 Xl | 35 I X160
n P (4.10)

S sup (1 X1 flloo [ Xgllp < lgll 2o | £l 20 i
n

the last step thanks to (2I6), Proposition B2, and the embedding BY? — L,
cf. [6l Theorem 5.1]. Moreover, by ([2I1))

| Dy (mn X1 f - £.X19) < |(77nXIf>Dy(anJg)| + |(anJg)('y71)Dy(nnXIf)|'

Suppose |y| < 1. Since all the terms appearing in the right hand side above are
supported in x,, By, as in (ZI4) we get

~ q
3 <2’m’ sup || "Dy (1 X f - an.]g)Hp>
k n

ly|<2-F

<32 sup (S lmaXes) - DyExagly)”
k n

ly|<2—F

ly|<2=*

, ~ _ a/p
302 sup (DG X9y Dy Xef)IE) " =i of + o,
k n
We shall estimate o9 and o1 separately.
Since B2, — L, and again by (ZI6),
| X1f) Dy Xs9)llp < | Dy(&nXs9)[plln X1 flloo
5 || Dy(anJg)HP”fHBg’q,unifa

whence

~ a/p\ 1/a
w05 (S (2 s SID,EXDE) ) Il
k

lyl<2=* neN
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As in (@3], now we write for m > 1

m—1

~ ~ —_ 1 B
&nXyg = ZEnQQk-i-é +&n Z Eﬁée LXJg,
LEL =0

which yields

q/p
Z(z’m sup 371D, 6 X0 |p>

k lyl<2—F

<Z2’W‘1(Z sup

ly|<2=*

p) q/p
p

where I and II are as the ones in ({6) and @) with g and &, in place of f and 7,,
respectively. By proceeding exactly as in the proof of Proposition L8, we conclude

m—1
Z | Dy (§ngok+e)| + Z |Dy(€n£ée_LXJg)|
LET £=0

S 194111

oo S gl szl f1l B2 unit-
We now consider oy. Since
160 X39)(y™7) Dy (1 X1.6)llp < 11(€n X 39) o/l Dy (11 X1 )l
we get
. a/p\ 1/q
(X (27X s lEXlniDmxnlg) ) @
k n lyl<2”
By the triangle inequality in ¢4/, Lemma E6 and (I8), we get

p/a\ 1/p
s(ZmﬂX]gnp (22’““ sup D, Xiflg) )

lyl<

~ 1/p
S (Z IanJg||f;o|nnxff||gp}q)

_ 1/p
< (DsnXJgH%;) T -

Let now € > 0 be such that o/ —e > d/p. Since BY? _ < L> again by [0, Theorem
5.1],

/p

<Z||Enxjg||f;o> (ZmnxfganE) IXogley  (412)

the last bound by Remark 10 Since BY,? < BY” _ by [6l Theorem 5.1|, we finally
get

o1 S 19l szell f1l 522, unie

and the proof is complete. O

4.4. The case B;’l. Recall that for all p € [1, o0], BZ’/; is an algebra. The condition

g > p and ¢ € [1, 00] restricts to the space B;’l. We have the following proposition,
which together with Proposition concludes the proof of Theorem

PROPOSITION 4.12. For all g € By and f € By,

1ol sn < Nl



20 T. BRUNO, M. M. PELOSO, AND M. VALLARINO

Proof. Let £ € € be such that £ =1 on suppn, so that {&n = n and gnnn =ny,. By
Corollary 4.9 the algebra property of B;’l, and Remark .10,

1l S 3100 Eng)l g
n
< a1 [ngll
n

I 55 ie S Nngls S 1t el s
n

and the proof is complete. O
4.5. The case ¢ < p. We begin with a lemma.
LEMMA 4.13. Suppose p,q € [1,00] and o € (0,1). Then BE? — MP? — B4

a,unif*
Proof. Pick n € N and choose the sequence (V) = 1{z—pn}. Then >, vinrf = nnf,
and the second embedding follows.

To prove the first, observe that since 7 — ¢>° and by arguing as in (ZI7) (in
one direction), || f||psz.« is bounded by

p 1/p ( kap Hp q/p)l/q)
”’Ynslui?<l((;”7nnnf|p) + %:(2 |yf32pfk zn:Dy(%ﬂ?nf) p)

< (W (S S o) o,001g)") ")

n lyl<2~

so that arguing as from ([&4) on (with no derivatives) one gets || f| p2e S || fll 529,
and the first embedding follows. O

Proof of Theorem[{.J} Suppose « € (d/p,1). Following [@9) (with no derivatives)
we shall prove that given f € M2? and g € BE4

1/q
ol (@ swp IDG0I) S Iflzellalpe (013)

k ly|<2~

This implies that ||f||Mg,q 2 ”f”MBg’q'
By @.I0),
1f9llp < Mgl Bz el fl Bz it S NgllBzallfllarze,
the last inequality by Lemma By arguing as in the first part of the proof of
Proposition ELTT] (we maintain the notation therein)

1/q
(Z(Qka sup |Dy(f9)|p)q) < 0o + o1
k ly|<2=F

Since to estimate op we did not use any condition on p and ¢, we might argue in
the same manner and get

o0 S gllszall fll Bzaunie S llgllpzellfll gz

again by Lemma T3]
We are left with considering 7. Select, by Lemma 221 N disjoint families of
indices I, k =1,..., N with the property that

N
N= ]I, de(zm,xn) > 6 Ym,h eIy, m#k, Vk.
k=1

Then, for |y| <1 and m,h € Iy, m # h,
supp Dy (nm f) Nsupp Dy (nn f) € xmBs NxpBs = 0
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and thus
S Il I Dy )2 = 3 / Iy lP| Dy (e )P dA
nely nely

, . (4.14)
:/ Z Dy(%”?ﬂf)’ dX = H Z Dy(’}/nﬁnf)H '
G nely nely 3

Now fix k =1,..., N and pick the sequence (we assume g # 0 here)

79l 0

if n € I, Yo = 0 otherwise.
gl 5oy

Tn =
If ~ is small enough, then the sequence (v,) is in ¢? and has ¢ norm smaller than
1; recall ([@I2). This also shows that v can be chosen independent of g.
Therefore, by [@I1), the embedding B¢ C L*° and ({I4)

a/p\ 1/4q
o < (2(2’“0‘1’ sup ZangH ||Dy(77nf)|g) )

k lyl<2~
p\ /PN 1/a
S 0uum ) ) S lallszel e

< gl sz (Z (2 sup
k

ly|<2=F

which concludes the proof of (Z.I3).
Suppose now that f € MBE? and (v,) € ¢F. Then [I4) implies

1fllagzes < Z sup | Z Yo | . (4.15)
k1 lnller <1 Ba
By the algebra property of B9,
H Z Yl f Bra ™ HfHMB”q Z Inin g’ (4.16)
nely <

where by (Z13))
q/p\ 1/4
(ZQM s (LI, Gunly) )

§ Tnln S E 'Ynnn
BP,'-] k
nely « nely ly|<2—

1/p . a/p\ 1/a
< (3 o) +<Z2aq . (Sharivyz) )

k ly|<2~
S Iom)llerlinllgze S 1.

By (£I3) and (@I6) we conclude

1 llazze S N llarmze

and this completes the proof. O

The case p = oo was excluded by Theorem [£4] but it is easier as the following
shows.

THEOREM 4.14. Suppose o« > 0 and q € [1,00]. Then MB>? = B> with
equivalence of norms.

Proof. One the one hand, B5>? — MBS by the algebra property of BS>9. On
the other hand, since the constant function equal to 1 belongs to B5™9, one also
gets M B9 — B2, O
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5. STRATIFIED GROUPS AND WIDER RANGES

In this section we assume that G is a stratified group with the standard dilations
ds, § > 0, and X is a basis of the first layer of the Lie algebra g. We recall that G
is said to be stratified if its Lie algebra g admits a stratification

g=Vie---aVs,

where Vi =spanX, V41 = [V, V], for j =1,...,5—1, and [V4, V] = 0. We refer
the reader to [I2[I3] for the basic facts on stramﬁed groups.

In order not to cause any confusion, we shall stress that G is a stratified Lie group
in all the important statements of the section. We shall extend all the theorems in
the previous section to the case of all (allowed) regularities.

5.1. The case ¢ > p.

THEOREM b5.1. Let G be a stratified group. Suppose p,q € [1,00], ¢ > p and
a > d/p. Then MBPY = B .. with equivalence of norms.

O, uni

Inspired by [I6L17], for m,0 € N and z,y € G, we define

m

Gg(/n;) f(@) = Z(*l)m_é (?) F(@éero(y™)). (5.1)

£=0

When ¢ = 0, we shall simply write G{™ for GU't). Observe that G{!) = D,.
The following identities hold true: for all m, 9 eN,

m+1 m
G;(y 0+1 = G( = G )
from which one gets
0
Gy,G) = Z (,7) G;(y +])a (52)
j=0
and moreover one has the “Leibniz” rule
Gy (f9) = <;) Gylo -Gyl g (5.3)

j=0
All the above identities can be proved by induction, and we omit the details. The
following lemma is the high-order counterpart of Lemma 211

LEMMA 5.2. Suppose m,0 € N, p € [1,00] and y € By. Then the following holds.

(1) | Gi]’;’fnp 1£llp;

(2) 1Gy3 fllp S 1™ 5 <o 11X £l
(3) for all ke N and p € C®° there exist ¢ = c(k) > 0 and C(¢p) > 0 such that
forallt € (0,1)

IG™ (WL ™ )l < O E g™ Louppw ™1 f1llps
where C (1)) depends only on ||[¢| L.
Proof. Statement (1) is obvious. Statement (2) has been proven in [I7, Proposition
1] when # = 0. We outline its proof following [16, Lemma 2] without giving
all the details. Since G is stratified, given y € B, there exist vy,...,vas, such

that y=' = vy ... 05, with v; = expX®, XD € Vi, || < Jyl, i = 1,..., M (see
[13] Lemma (1.40)]). For every x € G, 0 € N, £ =0,...,m, we write

f(.%'(sg_,_@ Z .Tég.,.@ .’Ui_l)(Sg_;,_g(Ui)) — f($5g+9(?}1 S /Ui—l))} + f(x)

i=1
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Notice that for every z € G, v € exp(V1), j € N

L F s 0))jamy = B (25 (0)),

where E(v) = Z;”:l ¢;(v)X;. Taylor’s formula applied to the function s — f(z0,(v))
shows that

f(1'5¢+9(1)1 e ’L)Z',l)(Sngg(’Ui)) — f(SC(Sngg(’Ul N ’Uifl))

[E(Ui)kf] ($5€+9(U1 . -Ui—l))

(£+9)m ! m—1 m
+m/0 (1= 8)™HE i)™ fl(2de40(vr - - - vi1)ds(vs)) ds.

By the previous equality, arguing as in [16, Lemma 2] for every £ = 0,...,m, we
can write

m—1

F@dero(y™) = D (€+0)"Qu(w,y™") + R(z,y~", L +6)

n=0

for suitable functions @, and remainder terms R. It follows that

SHECED D) Wil ¢ RO

n=0 (=0

+ i(—l)”H <”Z) Rz,y~',0+0)

=0
_ i(q)m*f (?) R(z,y~ ', 0+0),

where we used the fact that Y," (—1)¢("})¢* = 0 for every k < m, and where
R(z,y~1, ¢+ 0) is a linear combination of terms of the form

(C+o)m / (1 — )™ D f (zu(s))ds,

with [u(s)| < [yl D =32, 1<m P Xy, and i =0,...,m — 1. It follows that
1GYS o S S IRCy™ £+ 0)],
£=0

SU+0"y™ > NXafly Sly™ > X F s

[J]<m [J]<m
as required in (2).
Statement (3) can be proved as in Lemma 2] by means of (2). O
Define

wm(fatap) = sup || Gg(;m) fHP t> 0.
lyl<t

For p,q € [1,00], & > 0 and m > a we have the equivalences of norms
' OPFILAN
Iz =11+ ([ 7 s 166 r1) )
0 ly|<t

1/q
=11+ (T wntr 2 )

keN
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The first can be proved by putting together [14, Proposition 5.2] and [I7, Proposi-
tion 4]. The second is just a discretization as in Lemma [L.5]

We now proceed to proving Theorem B.Il One implication is given by Proposi-
tion The other implication is the following proposition.

PROPOSITION 5.3. Let G be a stratified group. Suppose p,q € [1,00], ¢ > p and
a>d/p. Then

£l Bz < gl Bzell f Il 522 unie
or all g € B2Y and [ uniformly locally in B21.
(o7 «

Proof. Let £ € € be such that £ = 1 on suppn, so that {&n = n, and 7, = nngn.
Then, for m > «
a\ 1/q
J)
First we observe that

sz = Wal+ (3 (2 sup
|3 Enslina ]| < s nnlle < lglmzelF oz e (54)

> GP™ (fgmmén)

keN lyl<27F
1fgllp <
neN

the last step by the embedding B2? < L>°. Then, by (&3)

|G (fg)] < ZIG(Q’”) 1 f9)| = ZIG (1 fEng)|

< Z (Qm) Z |G (6,9) GD (3, f).

Suppose |y| < 1. Since Gg?*j)(gng) and Géj) (nnf) are supported in Bay,43, and

P — 01 we have
)Q) 1/q
p

(Z(Q’m sup
ZG<2” D (E,9) G (1. f)

Z GI™ (0 f€ng)

k ly|<2=*

<3 (S

q> 1/q
ly|<2—* p

<Z ngaq su q@m= J) G P W\
< p ZH D (g,9) GO (g £

j=0 k lyl<2—F
2

To estimate this last term, we separate the cases when 7 < m and j > m.
Suppose first 0 < 7 < m. Since B2 — L°°,

1GE7 ) (E0g) G af)llp < 1 GET ) (Eag) 1ol G (0 f) o
<N G ()l f oo
SIGE" D (Eg)llpll F1l 529 it

m m [e'e) q/p 1/‘1
Zajgz(z(zm o SIGE gng>|5) ) -
1 =0

ly|<2—*
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As in ([{3), we write (with 2m — j in place of m and with no derivative)
—et1
1 2 ; dt
=" tL)Pm e e f— 1>1
ge (mejfl)!/g—e ( ) e fta Z 4

and g, = 0 if £ <0, so that

€ng =D Engonie +én Z g,ﬁé

LEL

This yields

) q/pN\ 1/q
(}j(%w sup §]<mﬂ>&wm> ) <14, (55)
k

ly|<2=F
where
o p\ 4/P
79 — 22041“1(2 sup ZlG " (gng€+2k |H )
B n lyl<2=F Ty
) (o) p\ 4/P
5 2204 Q(Z (Zl lsug) . |G / (gngéJr?k)Hp) )
k n 14
ak (2m—j) VN
ST (S(S s 1057 )
k n 2
while

2m—j—1

~ a/p
R Dol SR YR

n ly|<2=* £=0

As for II, by (£2) and Lemma [(52] (3) with 2I3)

2m— m—
sup || G (g, Ll m<2swnw I (€Ll g) |
ly|<2—F h—o lyl<27*
So7Rem=D| L o o g,

whence we obtain, since 2m — 57 > m > a,

1/q
_ el q/p
II < <22akq(22 kmp||1suppgne c |g|||g) > < lgllp-

k n

As for I, when ¢ + 2k > 1 we observe that again by (5.2) and Lemma (3)
with ZI3), as in &), if |y| < 27 then

2m—
1 G (€ngesan)llp

2~ £—2k+1

m— — 0 —2k—1 m—ij  — —f0—2k—1 dt
<Z/ e G ]

o2k Pt

27472k+1

J
) —ith _ =2k p _g—t—2k—1p d
I (T O
h=0 o

t

J
< Z 22(2m—j+h)/2||lsuppg e—c2*£*2kﬁ|(2—(Z+2k+1)E)Qm—je—27€72k71£f|H
h=0
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whence
Z sup || Gl(f;n ])(fngéJer)Hg
n |y|<2 k
S Z 2€(2m_j+h)p/2” (2—(€+2k+1)£)2m—je—2*’572k—1[,g|‘5,
h=0
as well as
L 1/p ~ 1/p
2m—
(Z | ‘sup ) H Gl(;,j J)(fnglJer)Hg) ,S (Z ||§ng€+2k|‘g)
n lyl<2- "

S llgesarllp
< (-2 py2m—iem2 e g

In other words

N 1/p
(2 sup 1GE" D Eageran)ll)

n |y|<2*’“

<me 1. 9t(2m— J+h)/2)||( e+2k+1)L)szjefr’f*%*lz:g”p,
h=0

hence I < ZLO Iy, where

1

q q
I (Z (204 mina, 2tz -2kt gyim s e ) )

LeZ

By the triangle inequality in ¢¢ we get, as 2m — j > «,

1/q
I, ,S Zmin(l,2@(2m—j+h)/2>(Z2akq||(2—(€+2k+1)£>2m—ge_2 -2k 1Lg||g>
14 k

_ Z 27@&/2 Inin(l, 2@(2m7j+h)/2)

1/q
_ s —0—2k—1
y (22a(6+2k)q/2|(2 (EF2k+1) £y2m—j =2 L9|g>
k
< llgllsea,

and the case j = 0,...,m is done.
Suppose now that m < j < 2m. We have

1GS(Eg) GP (0 )l S 1| G (60 loo | GF ()
N ||§ng||ooH Gg(;j)(nnf)np'

Therefore, by the triangle inequality in ¢2/7,

q/p\ 1/q
ajs(z(z’w sup Z|sng|oo|e<ﬂ>(nnf>|p) )
k

ly|<2~

- ) p/a\ 1/p
S (S (16a1a 2 s j6@ml) )

n k lyl<
1/p

- 1/p -
§<Z|§ngl |nnf|qu) s(Zn&ngn&) Ifler s (5.6)
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Let now £ > 0 be such that « —e > d/p. Then BY?_ < L*, hence

/p

(Z ||Eng||1;o) (Z 18100 ) < lgllpes. (5.7

the last bound by Remark [I0} Since BE'? < BYP_ | we get

a—e?

o S llgll szl fll gz
also for m < j < 2m. The proof is complete. O

5.2. The case ¢ < p. We shall prove the analogue of Theorem (4] for all regulari-
ties. We begin with the following lemma.

LEMMA 5.4. Suppose p,q € [1,00] and o > 0. Then BP? < MP9 — B

a, umf

Proof. Pick n € N and choose the sequence v = 1,,3(k). Then >, yenef = nnf,
and the second embedding follows.
To prove the first, observe that since (v,) € £

1/q
e < 161+ (32 (27 s 3065 annlE) ")

k ly|<2=F
so that arguing as from (B.3) on, one gets || f||pze < || f]| gz, and the first embed-
ding follows. O

THEOREM 5.5. Suppose 1 < ¢ <p < oo and a > d/p. Then M BP9 = M with
equivalence of norms.

Proof. Pick m € N with m > a. We shall prove that given f € M29 and g € B24

1/q
||f9||p+(2(2’w‘ sup ||G(m)(fg)||q) SNl arzallgll gaa (5.8)

k ly|<2~

This implies that || f{|laze 2 1| sz
By ©.4)
1f9llp < Ngllpzall fll Bz wnie S Ngllmall fllarza,

the last inequality by Lemma 13| as well as (we maintain the same notation as
that of Proposition [B.3])

1/q 2m
(T s 16 alg) 30
3 lyl<2—* j=0

Since to estimate the terms with j = 0,...,m we did not use any condition on p
and ¢, we might argue in the same manner and get

m
> 05 S l9llszell Fll sz i S llgllszell fllame
j=0
again by Lemma T3]
We are left with considering the case j = m +1,...,2m. Select, by Lemma 2.2]
N disjoint families of indices I, k = 1,..., N with the property that

N=|J &L  do(we,zn)>2m+4 VOhel, (#£Fk, Yk

Then, for |y| <1 and ¢,h € Iy, £ # h,

supp G™ (e f) N supp G™ (i f) € ¢ B2 N 2 Bipgz = 0
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and thus
Z |%|p|\G(m)(77nf B = Z/ Ivm | G(m)(nnf )P dA
nely nely

> G () ‘ X = H Z G{( %mnf)H

/G nely

Now fix k =1,..., N and pick the sequence (we assume g # 0 here)

9nglloo
91l s
If ~ is small enough, then the sequence () is in ¢? and has ¢ norm smaller than

1; recall ([@1). This also shows that v can be chosen independent of g and k.
Therefore, by (5.0

q/p\ 1/q
ajg(z(w swp S Gugle] G |P) )

& ly|<2~
_ P\ 9/P\ /4
S eunn) ) S ool

< lgll g <Z (2 sup
k

ly|<2=F

n € Iy, v, = 0 otherwise.

n =

which concludes the proof of (5.]))
Suppose now that f € M B2? and (,) € 7. Observe that [I5) still holds. By

the algebra property of BP9,
> Wl
nely

‘ > vt
nely

(5.9)

e S sz e

where
i a/p\ 1/a
| > vama BMNHZW (qu sup (Z||G;m><wn>||g) )
nely k lyl<2* n

q/p\ 1/4q
S (S tmr) " (Zz’mq swp (S hallcgal) )

lyl<2—
S ) llerlInll Bz S 1.

By @I3) and (B3) we conclude ||f[[pze < [|fllarpre, and this completes the
proof. O

REMARK 5.6. As already observed, the main obstacle to proving Theorem [Tl for
all & > 0, or equivalently Theorem .1l beyond the stratified groups case, was for
us the lack of a suitable notion of finite differences of order larger than 1. It seems
not clear, indeed, what the analogue of (5.I) on a general Lie group should be.

The case of second order differences is somewhat special, and was actually con-
sidered by several authors (cf., e.g., [1222]) in different generalities. One may
indeed define a symmetric second-order difference of the form

S f(z) = flay™) = 2f(x) + f(zy), w,y€G.
Since S f = DI f(-y~1), where
D f(z) = flay™?) — 2f(ay ") + f(a),

it is tempting to define, for m € N and y € G, the finite difference of order m as

D fl0) =30 () e (5.10)

£=0
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When G is a Euclidean space, this definition is nothing but the classical one, and
when m = 1 it is precisely (Z3), i.e. D;l) = D,. However, if G is stratified and m >
2, then (&I0) does not coincide with (&I), not even when 6§ = 0. Observe indeed
that in general 2™ # §,,(x). Nevertheless, this differences do have remarkable
properties, as a “Leibniz rule” in the spirit of (B.3]), that is for all m € N

m

DI (fg)(a) = 3 (j‘) DI fay ) DY g(),  wy € G.

Jj=0

It is not clear to us whether 8152) and more generally Dém) satisfy the analog of
Lemma[5.2 (2), or the characterization (B.]) of the Besov norm, which are essential
ingredients in our argument. This seems an interesting direction for future research
in its own right.
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