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POINTWISE MULTIPLIERS FOR

TRIEBEL–LIZORKIN AND BESOV SPACES ON LIE GROUPS

TOMMASO BRUNO, MARCO M. PELOSO, AND MARIA VALLARINO

Abstract. On a general Lie group G endowed with a sub-Riemannian struc-
ture and of local dimension d, we characterize the pointwise multipliers of
Triebel–Lizorkin spaces F p,q

α for p, q ∈ (1,∞) and α > d/p, and those of Besov
spaces Bp,q

α for q ∈ [1,∞], p > d and d/p < α < 1. When G is stratified, we
extend the latter characterization to all p, q ∈ [1,∞] and α > d/p.

1. Introduction

The problem of describing explicitly the pointwise multipliers of function spaces
is one of the basic questions when studying their role, in particular, in the theory of
partial differential equations. In the Euclidean setting, the case of Sobolev spaces
was first consider by Strichartz [25]; his result was then extended to the case of
Triebel–Lizorkin spaces by a number of authors, see e.g. [26, 2.8] and the references
therein. The case of Besov spaces turned out to be more difficult and was object of
several attempts, see e.g. [19,21,23,24], until it was very recently solved by Nguyen
and Sickel [20]. To the best of our knowledge, however, no result is available in
higher generality than R

d. In this paper we consider such problem in the case of
Besov and Triebel–Lizorkin spaces defined in the sub-elliptic setting of a general
Lie group.

Beyond the classical potential spaces on R
d, in recent years the theory of function

spaces on manifolds, in particular when these are endowed with a sub-Riemannian
structure, has been at the center of intense research efforts. The standard prototype
for such a situation is the case of connected Lie groups, when the classical Laplacian
is replaced by the intrinsic sub-Laplacian with respect to a Hörmander system
X of left-invariant vector fields. The ground work for Sobolev, Triebel–Lizorkin
and Besov spaces on general Lie groups was laid in [5, 6, 7], see also [10, 11, 15],
where equivalent descriptions and norms, embeddings, interpolation and algebra
properties, among other things, were obtained.

The aim of this paper is then to characterize the pointwise multipliers for such
Triebel–Lizorkin spaces F p,qα and Besov spaces Bp,qα , which we denote by MF p,qα

and MBp,qα respectively, on a noncompact connected Lie group G. We obtain a
complete characterization of MF p,qα in the range 1 < p, q <∞, and α > d/p, where
d is the so-called “local dimension” of G, which depends only on G and X. The
case of Besov spaces turns out to be more challenging and, to a certain extent, this
should not come as a surprise in view of the Euclidean case already. For MBp,qα we
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spaces.

Math Subject Classification 46E35, 22E30, 43A15.
The first and third authors are partially supported by the 2022 INdAM–GNAMPA grant

Generalized Laplacians on continuous and discrete structures (CUP_E55F22000270001). The
second author is partially supported by the 2022 INdAM–GNAMPA grant Holomorphic Functions

in One and Several Complex Variables (CUP_E55F22000270001). All authors are members of
the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA)
of the Istituto Nazionale di Alta Matematica (INdAM).

1

http://arxiv.org/abs/2303.13134v2


2 T. BRUNO, M. M. PELOSO, AND M. VALLARINO

obtain a complete characterization in the case when G is a stratified Lie group. In
the case of a general Lie group, we characterize the multiplier space MBp,qα only
for certain ranges of the smoothness parameter α and for p > d.

The reason of this restriction is merely technical, and is due to our use (inspired
by [20]) of an equivalent Besov norm expressed in terms of a finite difference. In-
terestingly, it seems not clear what a satisfactory definition of a finite difference of
arbitrary high order should be on a general Lie group. We are able to say this on
a stratified group, and we discuss the general case at the very end of the paper.

The structure of the paper is as follows. In Section 2 we introduce some pre-
liminaries about the sub-elliptic setting of a Lie group; in Sections 3 and 4 we
characterize MF p,qα and MBp,qα for the above mentioned indices when G is a gen-
eral Lie group G, while in the final Section 5 we extend the characterization of
MBp,qα to all regularities when G is stratified.

2. Setting and preliminaries

Let G be a noncompact connected Lie group with identity e, let λ be a left Haar
measure on G and δ be the modular function. We pick a family X = {X1, . . . , Xκ}
of left-invariant linearly independent vector fields which satisfy Hörmander’s condi-
tion, and denote by dC the associated left-invariant Carnot–Carathédory distance.
We shall sometimes write |x| = dC(x, e), and denote by Br the ball centered at e
of radius r. We recall that the metric measure space (G, dC , λ) is locally doubling,
as there exists d ∈ N (depending on G and X) such that

C−1rd ≤ λ(Br) ≤ Crd ∀r ∈ (0, 1],

where C > 0 is a constant independent of r; but that in general it is not doubling,
as the growth of λ(Br) can be exponential for large r’s. For this fact and all what
follows, we refer the reader to [5, 6, 7, 8] and the references therein.

If p ∈ [1,∞], we shall denote by Lp the classical Lebesgue spaces with respect to
λ, and their norms will be denoted by ‖·‖p. The convolution between two functions
f and g, when it exists, is defined by

f ∗ g(x) =

∫

G

f(xy)g(y−1) dλ(y), x ∈ G.

We denote by L the operator

L = −
κ∑

j=1

(X2
j + (Xjδ)(e)Xj),

which is symmetric on L2, is essentially self-adjoint on C∞
c (G), and is the intrinsic

sub-Laplacian associated with X; see [1, 18]. We shall denote by L its unique
self-adjoint extension too.

The operator L is the infinitesimal generator of the diffusion (heat) semigroup
(e−tL)t>0, which has a smooth convolution kernel which we denote by pt, t > 0. It
is well known, cf. e.g. [6, Lemma 3.1], that there exist constants C, c1, c2 > 0 such
that

C−1t−
d
2 e−c1

|x|2

t ≤ pt(x) ≤ C t−
d
2 e−c2

|x|2

t , ∀t ∈ (0, 1), x ∈ G, (2.1)

and that for all h ∈ N there exist positive constants C = C(h) and b = bh such that

|XJpt(x)| ≤ Ct−
h
2 pbt(x) ∀t ∈ (0, 1), x ∈ G, J ∈ {1, . . . , κ}h. (2.2)

Here and all throughout, for J = (J1, . . . , Jh) ∈ {1, . . . , κ}h the notation XJ stands
for the differential operator XJ1 · · ·XJh

.
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2.1. Triebel–Lizorkin and Besov spaces for L. Suppose α > 0 and q ∈ [1,∞].
For p ∈ [1,∞), the Triebel–Lizorkin space F p,qα is the space of functions f ∈ Lp

such that, when m is the smallest integer larger than α/2,

‖f‖Fp,q
α

= ‖f‖p +

∥∥∥∥
(∫ 1

0

(t−α/2|(tL)me−tLf |)q
dt

t

)1/q∥∥∥∥
p

(2.3)

is finite, with the usual modification when q = ∞. For p ∈ [1,∞], the Besov space
Bp,qα is the space of functions f ∈ Lp such that, when m is as above,

‖f‖Bp,q
α

= ‖f‖p +

(∫ 1

0

(t−α/2 ‖(tL)me−tLf‖p)
q dt

t

)1/q

(2.4)

is finite, again with the usual modification when q = ∞. By [6, Theorem 4.1],
for the above p and q’s any other choice of an integer m > α/2 in (2.3) and (2.4)
gives (respectively) equivalent norms. In case no distinction between F p,qα and
Bp,qα is needed, we shall write Xp,q

α to denote either of the two. We recall that,
by [6, Theorem 5.2], if p ∈ (1,∞) and α > 0, then the space F p,2α coincides with
the Sobolev space Lpα (cf. [5]), namely the space of functions f ∈ Lp whose norm

‖f‖Lp
α
= ‖f‖p + ‖Lα/2f‖p

is finite. If α = k ∈ N, moreover, by [5, Proposition 3.3]

‖f‖Lp
k
≍

∑

0≤|J|≤k

‖XJf‖p. (2.5)

For later convenience, we define when p = ∞

‖f‖L∞
k

=
∑

0≤|J|≤k

‖XJf‖∞. (2.6)

Here and in what follows, A ≍ B for two positive quantities A and B means that
there exists C > 0 (depending on G and other circumstantial parameters) such that
C−1B ≤ A ≤ C B. Analogously, we shall write A . B if there exists such a C such
that A ≤ C B.

We finally recall that, given p, q ∈ [1,∞] and α > d/p, the spaces Bp,1d/p and Bp,qα
are algebras under pointwise multiplication; and that the same holds for the spaces
F p,qα , provided p ∈ (1,∞). See [6, Theorem 7.1]. In particular, if f, g ∈ Xp,q

α and
the indices are as above, then

‖fg‖Xp,q
α

. ‖f‖Xp,q
α

‖g‖Xp,q
α
. (2.7)

2.2. First order finite differences and equivalent norms. We introduce now
first-order finite differences on G, and recall their role in providing equivalent norms
for the spaces Xp,q

α . Higher order differences will be discussed in due course, see
in particular Section 5 and Remark 5.6.

For y ∈ G, we define the first-order difference Dy of a function f as

Dy f(x) = f(xy−1)− f(x), x ∈ G. (2.8)

If q ∈ [1,∞] and α ∈ (0, 1), we consider the associated functionals (to lighten the
notation, we write V (u) = λ(Bu) for u > 0)

S loc,q
α f(x) =

(∫ 1

0

[
1

uαV (u)

∫

|y|<u

|Dy f(x)| dλ(y)

]q
du

u

)1/q

, x ∈ G,

and, if also p ∈ [1,∞],

Ap,q
α (f) =

(∫

|y|≤1

(
‖Dy f‖p
|y|α

)q
dλ(y)

V (|y|)

)1/q

.
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By [7, Theorem 8], if p, q ∈ (1,∞) and α ∈ (0, 1), we have

‖f‖Fp,q
α

≍ ‖S loc,q
α f‖p + ‖f‖p, (2.9)

while if p, q ∈ [1,∞] and α ∈ (0, 1), then by [7, Theorem 9]

‖f‖Bp,q
α

≍ ‖f‖p +Ap,q
α (f). (2.10)

Let us stress that though the functionals S loc,q
α and Ap,q

α are defined in [7] in terms
of a right Haar measure while here in terms of λ, the two versions are equivalent
as the modular function is bounded above and below away from 0 on B1.

For later purposes, we shall prove some properties of the finite differences Dy
which will be of use. We first note that Dy satisfies the following Leibniz rule: given
two functions f and g,

Dy(fg)(x) = Dy g(x)f(x) + g(xy−1)Dy f(x), x, y ∈ G. (2.11)

We observe moreover that, if φ is a function such that suppφ ⊆ xBr for some x ∈ G
and r > 0, then for all y ∈ B1

suppDy φ ⊆ xBr+1.

Lemma 2.1. Suppose p ∈ [1,∞] and |y| ≤ 1. Then

(1) ‖Dy f‖p . ‖f‖p;
(2) ‖Dy f‖p . |y|

∑κ
j=1 ‖Xjf‖p;

(3) for all k ∈ N and ψ ∈ C∞
c there exist c = c(k) > 0 and C(ψ) > 0 such that

for all t ∈ (0, 1)

‖Dy(ψL
ke−tLf)‖p ≤ C(ψ)t−

1
2−k|y|‖1suppψ e−ctL|f |‖p,

where C(ψ) depends only on ‖ψ‖L∞
1

(see (2.6)).

Proof. The proof of (1) is straightforward, since

‖Dy f‖p . ‖f(· y−1)‖p + ‖f‖p ≤ (δ1/p(y) + 1)‖f‖p . ‖f‖p.

We then prove (2), and argue as in the proof of [9, Theorem 3.1]. Given y ∈ B1, let
γy : [0, |y|] → G be a horizontal subunit path such that γy(0) = e, γy(|y|) = y−1,
|γy(s)| ≤ |y| for every s ∈ [0, |y|].

For every x ∈ G, by Taylor’s formula applied to the function s 7→ f(xγy(s)) and
Hölder’s inequality, one has

|f(xy−1)− f(x)|p ≤

(∫ |y|

0

κ∑

j=1

|Xjf(xγy(s))| ds

)p

≤ |y|p−1

∫ |y|

0

κ∑

j=1

|Xjf(xγy(s))|
p ds,

so that

‖Dy f‖
p
p ≤ |y|p−1

∫ |y|

0

∫

G

κ∑

j=1

|Xjf(xγy(s))|
p dλ(x) ds

. |y|p−1 sup
s∈[0,|y|]

δ−p(γy(s))

∫ |y|

0

κ∑

j=1

‖Xjf‖
p
p ds . |y|p

κ∑

j=1

‖Xjf‖
p
p.

To prove (3), observe that by (2)

‖Dy(ψe
−tLLkf)‖p . |y|

κ∑

j=1

‖Xj(ψL
ke−tLf)‖p,
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and for t ∈ (0, 1), by (2.2)

‖Xj(ψL
ke−tLf)‖p ≤ ‖Xjψ · Lke−tLf‖p + ‖ψXjL

ke−tLf‖p

. ‖1suppψL
ke−tLf‖p + ‖1suppψXjL

ke−tLf‖p

. t−k‖1suppψe
−c3tL|f |‖p + t−

1
2−k‖1suppψe

−c4tL|f |‖p

. t−
1
2−k‖1suppψe

−ctL|f |‖p,

for some c3, c4, c > 0 by (2.1), and this completes the proof. �

2.3. A covering lemma. The following covering lemma will be used all through-
out. It can be obtained as [2, Lemma 1], see also [4, Lemma 2.3], with minor
modifications. For the reader’s convenience, we provide all the details.

Lemma 2.2. There exists a countable family U = {xn : n ∈ N} ⊂ G such that

(1) G =
⋃
n xnB1;

(2) for all m ∈ N there exists Nm ∈ N such that each element of G belongs to
at most Nm sets xBm, x ∈ U ;

(3) for all n ∈ N and m ∈ N there are at most N2m elements x ∈ U such that
xBm ∩ xnBm is nonempty;

(4) for all m ∈ N there exist Nm + 1 disjoint families of indices Ik, k =
1, . . . , Nm + 1 with the property that

N =

Nm+1⋃

k=1

Ik, ∀ k = 1, . . . , Nm + 1, dC(xℓ, xh) ≥ m ∀ℓ, h ∈ Ik, ℓ 6= h.

Proof. By Zorn’s lemma, there exists a countable maximal subset U of G such that
the sets xB1/2, x ∈ U , are pairwise disjoint (recall that a connected Lie group
with the topology of the Carnot–Carathéodory metric is second-countable, hence
separable). Now, take any element z ∈ G. By maximality of U , the set zB1/2

meets at least one set xB1/2, x ∈ U . It follows that z ∈ xB1/2B
−1
1/2 ⊆ xB1 and (1)

is proved.

Pick now m ∈ N and suppose that a set x0Bm meets N = Nm other sets
x1Bm, . . . , xNBm, with xj ∈ U . Then x0BmB

−1
m ∋ xj , whence x0BmB

−1
m B1/2

contains the sets xjB1/2, j = 0, . . . , N , which are pairwise disjoint. It follows that

λ(BmB
−1
m B1/2) = λ(x0BmB

−1
m B1/2) ≥ (1 +N)λ(B1/2)

whence

(1 +N) ≤
λ(BmB

−1
m B1/2)

λ(B1/2)
≤
λ(B2m+1/2)

λ(B1/2)
,

and (2) is proved.

To prove (3), observe that if xBm ∩ xnBm 6= ∅, then d(xn, x) < 2m, thus
xn ∈ xB2m. By (2), the number of such x’s is at most N2m.

It remains to prove (4). Consider a maximal family U1 of points in U such that
x1 ∈ U1 and d(xℓ, xh) ≥ m for all xℓ, xh ∈ U1 with ℓ 6= h. Then pick xn2 ∈ U \ U1,
and consider a maximal family U2 of points in U \ U1 such that xn2 ∈ U2 and
d(xℓ, xh) ≥ m for all xℓ, xh ∈ U2 with ℓ 6= h. Proceed recursively: at step k,

consider xnk
∈ U \

⋃k−1
j=1 Uj (if any) and consider a maximal family Uk of points in

U \
⋃k−1
j=1 Uj such that xnk

∈ Uk and d(xℓ, xh) ≥ m for all xℓ, xh ∈ Uk with ℓ 6= h.
Suppose by contradiction that one can proceed for more than Nm + 1 steps.

Then there exists an element xnNm+2 ∈ U \
⋃Nm+1
j=1 Uj ; but by maximality of each

of the U ′
js, for all j = 1, . . . , Nm + 1 there is x̃j ∈ Uj such that d(xnNm+2 , x̃j) < m.

Then
xnNm+2 ∈ x̃jBm, ∀j = 1, . . . , Nm + 1,
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and this contradicts (2). The required Ij ’s are then the indices of the elements in
Uj . �

We shall not stress the dependence of N on m in the following, as this will not
play any role. We shall refer to points (2) and (3) in Lemma 2.2 as the bounded
overlap property.

2.4. Pointwise multipliers. We begin by setting some notation. First, we pick a
smooth function η on G such that 0 ≤ η ≤ 1, η = 1 on B1 and supp η ⊆ B2. Such
a function will be fixed all throughout. Then we consider the following family, to
which η belongs.

Definition 2.3. We shall denote by C the class of smooth cut-off functions

C :=
{
ξ ∈ C∞

c : 0 ≤ ξ ≤ 1, ξ = 1 on B1 and supp ξ ⊆ Bm for some m ∈ N
}
.

Given any ξ ∈ C , we set

ξ̃n = ξ(x−1
n ·), and ξn =

ξ̃n∑
k ξ̃k

,

where xn ∈ U .

By Lemma 2.2, for every ξ ∈ C there exists N ∈ N such that

1 ≤
∑

n∈N

ξn(x) ≤ N, x ∈ G, (2.12)

since for all x ∈ G there are at most say N nonzero terms in the sum above. Hence,
for all ξ ∈ C

∑

n

ξn = 1, supp ξn = supp ξ̃n = xn supp ξ ⊆ xnBm,

where m ∈ N is such that supp ξ ⊆ Bm, and still for all x ∈ G there are at most N
nonzero terms in the sum for some N ∈ N. Though it is not true that ξn is a (left)
translate of ξ, it is still true that for p ∈ [1,∞]

sup
n

sup
|J|=m

‖XJξn‖p <∞. (2.13)

Such an estimate is a consequence of (2.12), the fact that ξ̃n is a left translate of ξ
and the left invariance of the norm and of the vector fields Xj .

In particular, all the above holds for η.

Definition 2.4. Suppose p, q ∈ [1,∞] and α > 0. We say that a function f is
uniformly locally in Xp,q

α , and we write f ∈ Xp,q
α,unif , if

‖f‖Xp,q
α ,unif = sup

n∈N

‖fηn‖Xp,q
α

<∞.

We denote by MXp,q
α the space of multipliers of Xp,q

α , namely the space of functions
f such that ‖fg‖Xp,q

α
≤ C(f)‖g‖Xp,q

α
for all g ∈ Xp,q

α , endowed with the norm
‖f‖MXp,q

α
of the infimum of all such C(f).

In the following lemma we prove few basic facts which will be of use all through-
out. In particular, we show that for the range of indices which we shall be interested
in the definition of Xp,q

α,unif is independent of the choice of η. In other words, if one
replaces η with any other ξ ∈ C , then the two norms are equivalent.

Lemma 2.5. Suppose ξ, φ ∈ C and let f be a function. Then the following holds.

(1) For all p ∈ [1,∞)

‖f‖pp ≍
∑

n∈N

‖fξn‖
p
p, ‖f‖∞ ≍ sup

n∈N

‖fξn‖∞. (2.14)
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(2) For p, q ∈ [1,∞] and α > d/p or p ∈ [1,∞], q = 1 and α = d/p if X = B,
and p, q ∈ (1,∞) and α > d/p if X = F ,

‖f ξ̃n‖Xp,q
α

≍ ‖fξn‖Xp,q
α

∀n ∈ N,

sup
n∈N

‖fξn‖Xp,q
α

≍ sup
n∈N

‖fφn‖Xp,q
α
. (2.15)

(3) If J is a multi-index and p, q are as in (2), then

sup
n∈N

‖ξnXJf‖Xp,q
α

. sup
n∈N

‖XJ(fξn)‖Xp,q
α
. (2.16)

Proof. To prove (1), consider first the case p <∞ and observe that

‖f‖pp =

∫

G

|f |p dλ =

∫

G

(∑

n

|f |ξn
)p
dλ.

For all x ∈ G, by Lemma 2.2 there are at most N functions ξnx
1
, . . . , ξnx

N
such that

ξnx
j
(x) 6= 0, with N independent of x. Thus,

∫

G

(∑

n

|f |ξn
)p
dλ ≍

∫

G

∑

n

|fξn|
p dλ =

∑

n

‖fξn‖
p
p, (2.17)

where the constants depend only on p and N . The case p = ∞ is similar: the
inequality

‖fξn‖∞ ≤ ‖ξn‖∞‖f‖∞ . ‖f‖∞

follows by (2.13); moreover, for x ∈ G

|f |(x) =
∑

n

|f |(x)ξn(x) =
N∑

j=1

|f |(x)ξnx
j
(x) ≤ N sup

n
sup
x

|f(x)ξn(x)|,

so that also the other inequality follows.
The equivalences stated in (2) and (3) are consequences of the algebra property,

cf. (2.7) (wherefrom the restriction on the indices). Let ψ ∈ C be such that ψ = 1

on supp ξ. Observe that ξ = ψξ, whence ξ̃k = ξ̃kψ̃k and ξk = ξkψ̃k for all k ∈ N.
For n ∈ N, by (2.7)

‖f ξ̃n‖Xp,q
α

=
∥∥∥
(∑

m

ξ̃m

)
fξn

∥∥∥
Xp,q

α

=
∥∥∥
(∑

m

ξ̃m

)
ψ̃nfξn

∥∥∥
Xp,q

α

.
∥∥∥
(∑

m

ξ̃m

)
ψ̃n

∥∥∥
Xp,q

α

‖fξn‖Xp,q
α
.

By left-invariance, the bounded overlap property, and the algebra property we now
have

∥∥∥
(∑

m

ξ̃m

)
ψ̃n

∥∥∥
Xp,q

α

=
∥∥∥
( N∑

j=1

ξ̃mj

)
ψ
∥∥∥
Xp,q

α

≤
∥∥∥
( N∑

j=1

ξ̃mj

)∥∥∥
Xp,q

α

‖ψ‖Xp,q
α

≤ N‖ξ‖Xp,q
α

‖ψ‖Xp,q
α
,

the last quantity being finite since it is the norm of a smooth and compactly sup-
ported function. We conclude that

‖f ξ̃n‖Xp,q
α

. ‖fξn‖Xp,q
α
.
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To prove the converse inequality in (2.15) we first write

‖fξn‖Xp,q
α

=
∥∥∥
(∑

m

ξ̃m

)−1

f ξ̃n

∥∥∥
Xp,q

α

=
∥∥∥
(∑

m

ξ̃m

)−1

ψ̃nf ξ̃n

∥∥∥
Xp,q

α

.
∥∥∥
(∑

m

ξ̃m

)−1

ψ̃n

∥∥∥
Xp,q

α

‖f ξ̃n‖Xp,q
α
,

again by (2.7). For α > d/p, by [6, Theorems 5.1, 5.2, 5.3], we can find a positive
integer k such that Lpk →֒ Xp,q

α , so that by (2.5)
∥∥∥
(∑

m

ξ̃m

)−1

ψ̃n

∥∥∥
Xp,q

α

.
∥∥∥
(∑

m

ξ̃m

)−1

ψ̃n

∥∥∥
Lp

k

.
∑

|I|≤k

∥∥∥XI

((∑

m

ξ̃m

)−1

ψ̃n

)∥∥∥
p

.
∑

|I|+|J|≤k

∥∥∥XI

((∑

m

ξ̃m

)−1)
XJ

(
ψ̃n
)∥∥∥
p
. 1,

by the left-invariance of the vector fields. This concludes the proof of the first
equivalence in (2.15).

We now prove the second equivalence; by symmetry, it is enough to prove one of
the two inequalities. For n ∈ N, let mn

1 , . . . ,m
n
M be the indices such that xmn

j
supp ξ

intersects xn suppφ. The number M depends only on ξ and φ, but not on n, by
the bounded overlap property. Then

f ξ̃n =

M∑

j=1

f ξ̃nφmn
j
,

whence, by using (2.15) and the left-invariance of the norms,

‖fξn‖Xp,q
α

. ‖f ξ̃n‖Xp,q
α

=
∥∥∥ξ̃n

M∑

j=1

fφmn
j

∥∥∥
Xp,q

α

. ‖ξ̃n‖Xp,q
α

∥∥∥
M∑

j=1

fφmn
j

∥∥∥
Xp,q

α

≤ ‖ξ‖Xp,q
α
M sup

j=1,...,M
‖fφmn

j
‖Xp,q

α
. sup

m
‖fφm‖Xp,q

α
,

which completes the proof of (2).
To prove (3), observe that for n ∈ N there are knj , j = 1, . . . , N , such that

‖ξnXJf‖Xp,q
α

=
∥∥∥ξn

N∑

j=1

XJ(fξknj )
∥∥∥
Xp,q

α

.

N∑

j=1

‖ξnXJ(fξknj )‖Xp,q
α

and by (2.7)

‖ξnXJ(fξknj )‖Xp,q
α

. ‖ξ̃n‖Xp,q
α

‖XJ(fξknj )‖Xp,q
α

. sup
k

‖XJ(fξk)‖Xp,q
α
,

where we used that ‖ξn‖Xp,q
α

. ‖ξ̃n‖Xp,q
α

= ‖ξ‖Xp,q
α

. This completes the proof. �

We are now ready to show that a multiplier of Xp,q
α , for α > d/p, belongs to

Xp,q
α,unif .

Proposition 2.6. Suppose α > d/p and p, q ∈ [1,∞] if X = B or p, q ∈ (1,∞)
if X = F . Then MXp,q

α →֒ Xp,q
α,unif.
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Proof. Pick f ∈MXp,q
α and observe that by (2.15)

sup
n

‖fηn‖Xp,q
α

≤ sup
n

‖f‖MXp,q
α

‖ηn‖Xp,q
α

. ‖f‖MXp,q
α

sup
n

‖η̃n‖Xp,q
α

= ‖f‖MXp,q
α

‖η‖Xp,q
α
,

and the statement follows. �

3. Multipliers of Triebel–Lizorkin spaces

In this section, inspired by [25], we shall prove the following.

Theorem 3.1. Suppose p, q ∈ (1,∞) and α > d/p. Then MF p,qα = F p,qα,unif with
equivalences of norms.

We begin with the following proposition, which in particular provides an equiv-
alent characterization of the Triebel–Lizorkin norm of a function by means of the
localizing functions in C .

Proposition 3.2. Suppose p, q ∈ (1,∞) and α > 0, and let {ϕ(n)} be a sequence
of smooth functions such that supp(ϕ(n)) ⊆ xnBm for some m ∈ N, where {xn : n ∈
N} = U is as in Lemma 2.2, and with all derivatives of order ≤ α + 1 along X

uniformly bounded. Then, for every f ∈ F p,qα ,
(∑

n∈N

‖fϕ(n)‖
p
Fp,q

α

)1/p
. ‖f‖Fp,q

α
. (3.1)

If ξ ∈ C , then

‖f‖Fp,q
α

≍
(∑

n∈N

‖fξn‖
p
Fp,q

α

)1/p
. (3.2)

Proof. Assume first that α ∈ (0, 1) and pick f ∈ F p,qα . By (2.11)

S loc,q
α (ϕ(n)f)(x) ≤

(∫ 1

0

[
1

uαV (u)

∫

|y|<u

|Dy f(x)||ϕ(n)(x)| dλ(y)

]q
du

u

)1/q

+

(∫ 1

0

[
1

uαV (u)

∫

|y|<u

|f(xy−1)Dy ϕ(n)(x)| dλ(y)

]q
du

u

)1/q

= In(x) + Jn(x).

On the one hand,

∑

n

‖In‖
p
p =

∫

G

∑

n

|In|
p dλ .

(
sup
x∈G

∑

n

|ϕ(n)(x)|

)p
‖S loc,q

α (f)‖pp . ‖S loc,q
α (f)‖pp.

On the other hand, since suppDy ϕ(n) ⊆ xnBm+1 when |y| ≤ 1, one has Jn =
Jn1xnBm+1 . By Lemma 2.1 (2) applied to ϕ(n) with p = ∞,

Jn(x) . 1xnBm+1(x)

(∫ 1

0

[
1

uαV (u)

∫

|y|<u

|f(xy−1)|y| dλ(y)

]q
du

u

)1/q

.

(∫ 1

0

[
u

uα
|f1xnBm+2 | ∗ gu(x)

]q
du

u

)1/q

. sup
u∈(0,1)

|f1xnBm+2 | ∗ gu(x),

where gu(y) =
1

V (u)1Bu(y). Then, by Young’s inequality (cf. [8, (2.2)]),

‖Jn‖
p
p . ‖f1xnBm+2‖

p
p sup
u∈(0,1)

‖gu‖
p
1 ≤ ‖f1xnBm+2‖

p
p.
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Thus,
∑

n

‖Jn‖
p
p . ‖f‖pp.

Therefore, using (2.9), the bounded overlap property and the uniform bound on
‖ϕ(n)‖∞,

(∑

n

‖fϕ(n)‖
p
Fp,q

α

)1/p
.
(∑

n

‖fϕ(n)‖
p
p

)1/p
+
(∑

n

‖S loc,q
α (ϕ(n)f)‖

p
p

)1/p

. ‖f‖p + ‖S loc,q
α (f)‖p . ‖f‖Fp,q

α
.

This shows the inequality (3.1) in the case α ∈ (0, 1). If α = k+α′ with k ∈ N and
α′ ∈ (0, 1), then by [6, Theorem 4.5]

‖f‖Fp,q
α

≍
∑

|I|≤k

‖XIf‖Fp,q

α′
, ‖fϕ(n)‖Fp,q

α
≍
∑

|I|≤k

‖XI(fϕ(n))‖Fp,q

α′
. (3.3)

Since

XI(fϕ(n)) =
∑

|J|≤|I|,|L|≤|I|−|J|

cJ,L(XJf)(XLϕ(n)),

arguing as in the case α ∈ (0, 1), with XJf in place of f and with XLϕ(n) in place
of ϕ(n), we obtain

(∑

n

‖(XJf)(XLϕ(n))‖
p
Fp,q

α′

)1/p
. ‖XJf‖Fp,q

α′
. ‖f‖Fp,q

α
,

whence (∑

n

‖fϕ(n)‖
p
Fp,q

α

)1/p
. ‖f‖Fp,q

α
.

Thus, inequality (3.1) follows for all α > 0 which are not integers. The integer case
follows from interpolation. Indeed, if k ∈ N, then by [3, §5.6] and [6, Theorem 6.1],

(ℓp(F p,qk/2), ℓ
p(F p,q3k/2))[1/2] = ℓp((F p,qk/2, F

p,q
3k/2)[1/2]) = ℓp(F p,qk ),

but also, by what shown above,

(ℓp(F p,qk/2), ℓ
p(F p,q3k/2))[1/2] = (F p,qk/2, F

p,q
3k/2)[1/2] = F p,qk ,

all with equivalences of norms. This proves (3.1).
In order to prove (3.2) we only need to prove the reverse inequality, assuming

that ξ ∈ C and ξn is as in Definition 2.3. We have that

S loc,q
α (f) = S loc,q

α

(∑

n

fξn

)
≤
∑

n

S loc,q
α (fξn).

We observe that, if {g(n)} is a sequence of nonnegative functions such that supp g(n) ⊆
xnBm for some m ∈ N, with {xn} as in Lemma 2.2, then

∥∥∥
∑

n

g(n)

∥∥∥
p
≍

(∑

n

‖g(n)‖
p
p

)1/p

(3.4)

Thus, if the right hand side of (3.2) is finite, since suppS loc,q
α (fξn) ⊆ xnBm+2, for

α ∈ (0, 1) we have

‖f‖p + ‖S loc,q
α (f)‖p .

(∑

n

‖fξn‖
p
p

)1/p

+
(∑

n

‖S loc,q
α (fξn)‖

p
p

)1/p
,
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which gives the desired conclusion when α ∈ (0, 1). To conclude, suppose now
α > 0 is noninteger and α = k + α′ with α′ ∈ (0, 1) and k ∈ N. Then, again by the
norm equivalence (3.3), we observe that

S loc,q
α′ (XIf) ≤

∑

n

S loc,q
α′ (XI(fξn))

and that suppS loc,q
α (XI(fξn)) ⊆ xnBm+2, so that for |I| ≤ k, arguing as in (3.4),

‖XIf‖Fp,q

α′
≍ ‖XIf‖p + ‖S loc,q

α′ (XIf)‖p

.
(∑

n

‖XI(fξn)‖
p
p

)1/p
+
(∑

n

‖S loc,q
α′ XI(fξn)‖

p
p

)1/p

.
(∑

n

‖XI(fξn)‖
p
Fp,q

α′

)1/p
.
(∑

n

‖fξn‖
p
Fp,q

α

)1/p
.

Thus, the statement follows for all α > 0 which are not integers. The integer case
follows from interpolation as before. �

Corollary 3.3. Suppose that p, q ∈ (1,∞), α > 0, and ξ ∈ C . Then

‖f‖MFp,q
α

≍ sup
n∈N

‖fξn‖MFp,q
α
. (3.5)

Proof. On the one hand, by Proposition 3.2, for g ∈ F p,qα one has

‖ξng‖Fp,q
α

. ‖g‖Fp,q
α
, n ∈ N,

whence ‖ξn‖MFp,q
α

. 1 uniformly for n ∈ N. Then,

‖fξn‖MFp,q
α

≤ ‖f‖MFp,q
α

‖ξn‖MFp,q
α

. ‖f‖MFp,q
α
,

which is a bound independent of n, from which the inequality &.

Conversely, let ψ ∈ C be such that ψ = 1 on supp ξ, so that ξn = ξnψ̃n. Now, if
the right hand side of (3.5) is finite, and g ∈ F p,qα , by Proposition 3.2 we have

‖fg‖Fp,q
α

.
(∑

n

‖fξng‖
p
Fp,q

α

)1/p

=
(∑

n

‖fξnψ̃ng‖
p
Fp,q

α

)1/p

≤ sup
n

‖fξn‖MFp,q
α

(∑

n

‖ψ̃ng‖
p
Fp,q

α

)1/p
. sup

n
‖fξn‖MFp,q

α
‖g‖Fp,q

α

whence the inequality . in (3.5). �

Proof of Theorem 3.1. If f ∈MF p,qα , then f is uniformly locally in F p,qα by Propo-
sition 2.6. Viceversa, assume that f is uniformly locally in F p,qα . Let ψ ∈ C be

such that ψ = 1 on supp η, so that ηn = ηnψ̃n. Then for g ∈ F p,qα , by the algebra
property of F p,qα (recall (2.7)) and Proposition 3.2

‖fg‖Fp,q
α

.

(∑

n

‖fηnψ̃ng‖
p
Fp,q

α

)1/p

. sup
n

‖fηn‖Fp,q
α

(∑

n

‖ψ̃ng‖
p
Fp,q

α

)1/p

.

(∑

n

‖ψ̃ng‖
p
Fp,q

α

)1/p

. ‖g‖Fp,q
α
,

and the theorem is proved. �
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4. Multipliers for Besov spaces

In this section we deal with the pointwise multipliers for the spaces Bp,qα . On
the one hand, as already explained, the Besov case is intrinsically different (and
more difficult) than the Triebel–Lizorkin case, and the pointwise multipliers differ
depending on whether q ≥ p or q < p. On the other hand, because of the lack of
a suitable notion of high-order differences in the full generality of a Lie group as
in the previous sections, we are unable to get a characterization of MBp,qα for all
indices p, q ∈ [1,∞] and α > d/p (which will instead be obtained in Section 5 below,
when G is stratified). We shall slightly restrict the ranges of p, q and α involved,
and get the following.

Theorem 4.1. Suppose p, q ∈ [1,∞], d < p ≤ q and α ∈ (d/p, 1) + N. Then
MBp,qα = Bp,qα,unif, with equivalence of norms.

The case when p = q = 1 and α = d is somewhat special, as B1,1
d = F 1,1

d is also
a Triebel–Lizorkin space and it is also an algebra (cf. [6, Corollary 7.2]). Thus, it
can be treated as in the previous section. We have the following.

Theorem 4.2. MB1,1
d = B1,1

d,unif with equivalence of norms.

The theorems above cover the case q ≥ p. Before we describe the case q < p, we
give the following.

Definition 4.3. For α > 0 and p, q ∈ [1,∞], we shall denote by Mp,q
α the space

of all f ∈ L1
loc such that

‖f‖Mp,q
α

= sup
‖γn‖ℓp≤1

∥∥∥
∑

n

γnηnf
∥∥∥
Bp,q

α

is finite, endowed with the above norm.

Then we have the following.

Theorem 4.4. Suppose 1 ≤ q < p < ∞, p > d and α ∈ (d/p, 1). Then MBp,qα =
Mp,q
α with equivalence of norms.

The reason of the restriction on the α’s will become clear soon, and is due to
the fact that we use first-order differences only. The approach followed for Triebel–
Lizorkin spaces does work in this case, unless p = q (which amounts to Bp,pα = F p,pα ),
since the analogue of Proposition 3.2 fails for Besov spaces.

The remaining part of the Section is devoted first to some technical results, then
to the proofs of Theorems 4.1, 4.2, and 4.4.

4.1. Some equivalences of norms. We shall need a characterization in the same
spirit as (2.10) which involves the modulus of smoothness ω1, defined as

ω1(f, t, p) = sup
|y|<t

‖Dy f‖p t > 0.

We begin with a few lemmas.

Lemma 4.5. Suppose p, q ∈ [1,∞] and α ∈ (0, 1). Then

‖f‖p +

(∫ 1

0

(t−α sup
|y|<t

‖Dy f‖p)
q dt

t

)1/q

≍ ‖f‖p +

(∑

k∈N

(2kαω1(f, 2
−k, p))q

)1/q

.

Proof. It is just a standard discretization and reconstruction of the integral. �

Lemma 4.6. Suppose p, q ∈ [1,∞] and α ∈ (0, 1). Then

‖f‖p +Ap,q
α (f) ≍ ‖f‖p +

(∑

k∈N

(2kαω1(f, 2
−k, p))q

)1/q

≍ ‖f‖Bp,q
α
.
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Proof. By (2.10), it will be enough to prove the chain of inequalities

‖f‖p +Ap,q
α (f) . ‖f‖p +

(∑

k

(2kαω1(f, 2
−k, p))q

)1/q

. ‖f‖Bp,q
α
.

The first inequality can be easily seen by decomposing the ball |y| ≤ 1 into annuli
2−k ≤ |y| ≤ 2−k+1, k ∈ N. To show the second inequality, by Lemma 4.5 it is
enough to prove that for m ≥ 1

(∫ 1

0

(t−α sup
|y|<t

‖Dy f‖p)
q dt

t

)1/q

. ‖f‖p +

(∫ 1

0

(t−α/2‖(tL)me−tLf‖p)
q dt

t

)1/q

.

Recall that, see e.g. [6, (4.1)],

f =
1

(m− 1)!

∫ 1

0

(sL)me−sLf
ds

s
+

m−1∑

ℓ=0

1

ℓ!
Lℓe−Lf.

The second term is easily dealt with, as by Lemma 2.1 (2) and the Lp-boundedness
of the heat semigroup

‖Dy(L
ℓe−Lf)‖p . |y|

ℓ∑

j=1

‖XjL
ℓe−Lf‖p . |y|‖f‖p.

As for the first term, we note that by (2.2) and again the Lp-boundedness of the
heat semigroup

‖Xj(sL)
me−sLf‖p = ‖Xje

−sL(sL)mf‖p . s−
1
2 ‖e−

s
2L(sL)mf‖p,

whence by Lemma 2.1 (1) and (2)

sup
|y|<t

∥∥∥∥Dy
∫ 1

0

(sL)me−sLf
ds

s

∥∥∥∥
p

≤

∫ 1

0

sup
|y|<t

‖Dy(sL)
me−sLf‖p

ds

s

.

∫ 1

0

min(1, s−1/2t)‖(sL)me−sLf‖p
ds

s
.

Then,

(∫ 1

0

(
t−α sup

|y|<t

∥∥∥∥Dy
∫ 1

0

(sL)me−sLf
ds

s

∥∥∥∥
p

)q
dt

t

)1/q

.

(∫ 1

0

(∫ 1

0

t−αmin(1, s−1/2t)‖(sL)me−sLf‖p
ds

s

)q
dt

t

)1/q

.

Since
∫ 1

0

t−αsα/2 min(1, s−1/2t)
ds

s
. 1,

∫ 1

0

t−αsα/2 min(1, s−1/2t)
dt

t
. 1,

uniformly for t, s ∈ (0, 1), respectively, by Schur’s test

(∫ 1

0

(∫ 1

0

t−αmin(1, s−1/2t)‖(sL)me−sLf‖p
ds

s

)q
dt

t

)1/q

.

(∫ 1

0

(s−α/2‖(sL)me−sLf‖p)
q ds

s

)1/q

,

and this completes the proof. �
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4.2. Localized norms. The aim of this subsection is twofold: on the one hand,
we shall show an analogue of Proposition 3.2 for Besov spaces, but in a necessarily
weaker form; and this sheds some light on why the Besov case is more involved
than the Triebel–Lizorkin case. On the other hand, it will provide us with a useful
result, namely Corollary 4.9 below, which we shall need to prove Theorem 4.1. Let
us give the following definition.

Definition 4.7. Suppose p, q, r ∈ [1,∞] and α > 0. We denote by Xp,q,r
α the

collection of all f ∈ S ′ such that

‖f‖Xp,q,r
α

=

(∑

n∈N

‖ηnf‖
r
Xp,q

α

)1/r

<∞

with the usual modification in case r = ∞.

In view of Definition 4.7, Proposition 3.2 can be rephrased by saying that F p,qα =
F p,q,pα with equivalence of norms when p, q ∈ (1,∞). In particular, since Bp,pα =
F p,pα , we also get that Bp,pα = Bp,p,pα for p ∈ (1,∞). As we shall see in Corollary 4.9
below, this actually holds for p ∈ [1,∞], but the situation for general p, q, r is quite
different. Indeed, we have only the following results which, on R

d, are “if and only
if”; cf. [20, Proposition 3.6]).

Proposition 4.8. Suppose p, q, r ∈ [1,∞] and α > 0.

(1) If r ≤ min(p, q), then Bp,q,rα →֒ Bp,qα ;
(2) if r ≥ max(p, q), then Bp,qα →֒ Bp,q,rα .

Proof. We shall suppose that α is not an integer, so that α = k0 + α′ with k0 ∈ N

and α′ ∈ (0, 1). When α is an integer, one can argue by interpolation as before.
We begin by proving (1). We first recall that [6, Theorem 4.5]

‖f‖Bp,q
α

≍
∑

|J|≤k0

‖XJf‖Bp,q

α′
. (4.1)

Then, by Lemma 4.6

‖f‖Bp,q
α

.
∑

|J|≤k0

(
‖XJf‖p +

(∑

k

(2kα
′

sup
|y|<2−k

‖Dy(XJf)‖p)
q

)1/q)
. (4.2)

Fix J such that |J | ≤ k0. By arguing as in (2.17) and since r ≤ p,

‖XJf‖p =
∥∥∥
∑

n

XJ(fηn)
∥∥∥
p

.

(∑

n

‖XJ(fηn)‖
p
p

)1/p

.

(∑

n

‖XJ(fηn)‖
r
p

)1/r

. ‖f‖Bp,q,r
α

.

We consider the second term in (4.2), which we write as
∑

|J|≤k0
σf,J . Since

suppDy(XJ (ηnf)) ⊆ xnB3, by Lemma 2.2 (2) arguing as in (3.4), we get

|Dy(XJf)|
r ≤

(∑

n

|Dy(XJ(ηnf))|

)r
.
∑

n

|Dy(XJ(ηnf))|
r
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with a uniform constant depending only on (N and) r. Then, since p ≥ r,

σrf,J =

(∑

k

(
2kα

′r sup
|y|<2−k

∥∥∥
(∑

n

Dy(XJ(ηnf))
)r∥∥∥

p/r

)q/r)r/q

.

(∑

k

(
2kα

′r sup
|y|<2−k

∥∥∥
∑

n

|Dy(XJ (ηnf))|
r
∥∥∥
p/r

)q/r)r/q

.

(∑

k

(2kα
′r
∑

n

sup
|y|<2−k

‖|Dy(XJ(ηnf))|
r‖p/r)

q/r

)r/q
.

It remains to observe that the last quantity equals

∥∥∥
(∑

n

2kα
′r sup

|y|<2−k

‖Dy(XJ(ηnf))‖
r
p

)

k

∥∥∥
ℓq/r

,

so that by the triangle inequality in ℓq/r (q ≥ r) one gets

σrf,J .
∑

n

‖(2kα
′r sup

|y|<2−k

‖Dy(XJ(ηnf))‖
r
p)k‖ℓq/r

=
∑

n

(∑

k

(2kα
′

sup
|y|<2−k

‖Dy(XJ(ηnf))‖p)
q

)r/q

.
∑

n

‖XJ(ηnf)‖
r
Bp,q

α′
. ‖f‖rBp,q,r

α
.

Thus (1) is proved for r <∞. If r = ∞, then r = p = q = ∞. By combining (2.14)
and (2.16), one gets ‖XJf‖∞ . supn ‖XJ(fηn)‖∞. Moreover

|DyXJf(x)| .
∑

n :x∈xnB(e,3)

|Dy(XJ (ηnf))(x)| . sup
n

|Dy(XJ (ηnf))(x)|,

so that we conclude

|y|−α|Dy(XJf)| . sup
n

‖XJ(ηnf)‖B∞,∞
α

= ‖f‖B∞,∞,∞
α

which completes the proof of (1).

We now prove (2). Since again by (4.1)

‖f‖Bp,q,r
α

≍

(∑

n

∑

|I|≤k0

‖XI(fηn)‖
r
Bp,q

α′

)1/r

.

(∑

n

∑

|I|+|J|≤k0

‖XIf ·XJηn‖
r
Bp,q

α′

)1/r

,

it will be enough to show that

(∑

n

‖XIf ·XJηn‖
r
p

)1/r
+

(∑

n

(∑

k

(2kα
′

sup
|y|<2−k

‖Dy(XIf ·XJηn)‖p)
q

)r/q)1/r

. ‖XIf‖p +

(∑

k

(2kα
′

ω1(XIf, 2
−k, p))q

)1/q

(4.3)
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whenever |I| + |J | ≤ k0. The first term in (4.3) is easily dealt with: using r ≥
p, (2.13) and arguing as in (2.14)

(∑

n

‖XIf ·XJηn‖
r
p

)1/r
≤
(∑

n

‖XIf ·XJηn‖
p
p

)1/p

. sup
n

‖XJηn‖∞
(∑

n

‖XIf · 1xnB(e,2)‖
p
p

)1/p
. ‖XIf‖p.

Next, we consider the second term in the left hand side of (4.3), and we call it E(f).
By the triangle inequality in ℓr/q (r ≥ q) and then by the embedding ℓp →֒ ℓr (r ≥ p)

E(f) ≤

(∑

k

2kα
′q

(∑

n

sup
|y|<2−k

‖Dy(XIf ·XJηn)‖
r
p

)q/r)1/q

.

(∑

k

2α
′kq

(∑

n

sup
|y|<2−k

‖Dy(XIf ·XJηn)‖
p
p

)q/p)1/q

.

(4.4)

Recall now that for all m

XIf =
1

(m− 1)!

∫ 1

0

(tL)me−tLXIf
dt

t
+

m−1∑

ℓ=0

1

ℓ!
Lℓe−LXIf

=:
∑

ℓ∈Z

fℓ+2k +

m−1∑

ℓ=0

1

ℓ!
Lℓe−LXIf,

(4.5)

where fℓ = 0 if ℓ ≤ 0, while if ℓ ≥ 1

fℓ =
1

(m− 1)!

∫ 2−ℓ+1

2−ℓ

(tL)me−tLXIf
dt

t
.

We choose any m ≥ 1 (m = 1 would suffice, but we maintain greater generality for
later use). Then, E(f)q . Iq + IIq, where

Iq =
∑

k

2α
′kq

(∑

n

sup
|y|<2−k

∥∥∥
∑

ℓ+2k≥0

|Dy(XJηn · fℓ+2k)|
∥∥∥
p

p

)q/p
, (4.6)

while

IIq =
∑

k

2α
′kq

(∑

n

sup
|y|<2−k

m−1∑

ℓ=0

‖Dy(XJηn · Lℓe−LXIf)‖
p
p

)q/p
. (4.7)

As for II, since by Lemma 2.1 (3) and (2.13)

sup
|y|<2−k

‖Dy(XJηn · Lℓe−LXIf)‖p . 2−k‖1supp ηne
−cL|XIf |‖p,

we obtain, since m > α′ and arguing as in (2.14)

II .

(∑

k

2α
′kq
(∑

n

2−kp‖1supp ηne
−cL|XIf |‖

p
p

)q/p)1/q

. ‖XIf‖p.

As for I,

Iq .
∑

k

2α
′kq

(∑

n

( ∑

ℓ+2k≥1

sup
|y|<2−k

‖Dy(XJηn · fℓ+2k)‖p
)p)q/p

.
∑

k

2α
′kq

( ∑

ℓ+2k≥1

(∑

n

sup
|y|<2−k

‖Dy(XJηn · fℓ+2k)‖
p
p

)1/p)q
.
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Notice now that for ℓ+ 2k ≥ 1 and |y| < 2−k, again by Lemma 2.1 (3) and (2.13)

‖Dy(XJηn · fℓ+2k)‖p

.

∫ 2−ℓ−2k+1

2−ℓ−2k

∥∥Dy
(
XJηn · e−(t−2−ℓ−2k−1)L(tL)me−2−ℓ−2k−1LXIf

)∥∥
p

dt

t

. 2ℓ/2
∫ 2−ℓ−2k+1

2−ℓ−2k

∥∥1supp ηne
−c2−ℓ−2kL|(tL)me−2−ℓ−2k−1LXIf |

∥∥
p

dt

t

. 2ℓ/2
∥∥1supp ηne

−c2−ℓ−2kL|(2−(ℓ+2k+1)L)me−2−ℓ−2k−1LXIf |
∥∥
p
.

(4.8)

Therefore, by the bounded overlap property and the Lp boundedness of the heat
semigroup,

∑

n

sup
|y|<2−k

‖Dy(XJηn · fℓ+2k)‖
p
p

. 2ℓp/2
∥∥e−c2−ℓ−2kL|(2−(ℓ+2k+1)L)me−2−ℓ−2k−1LXIf |

∥∥p
p

. 2ℓp/2‖(2−(ℓ+2k+1)L)me−2−ℓ−2k−1LXIf‖
p
p.

Moreover,

(∑

n

sup
|y|<2−k

‖Dy(XJηnfℓ+2k)‖
p
p

)1/p
.
(∑

n

‖XJηnfℓ+2k‖
p
p

)1/p

. ‖fℓ+2k‖p

. ‖(2−(ℓ+2k+1)L)me−2−ℓ−2k−1LXIf‖p.

In other words
(∑

n

sup
|y|<2−k

‖Dy(XJηnfℓ+2k)‖
p
p

)1/p
. min(1, 2ℓ/2)‖(2−(ℓ+2k+1)L)me−2−ℓ−2k−1LXIf‖p.

Hence,

I .

(∑

k

(
2α

′k
∑

ℓ+2k≥1

min(1, 2ℓ/2)‖(2−(ℓ+2k+1)L)me−2−ℓ−2k−1LXIf‖p

)q)1/q

,

and by the triangle inequality in ℓq we get, as m > α,

I .
∑

ℓ∈Z

min(1, 2ℓ/2)

(
∑

k

2α
′kq‖(2−(ℓ+2k+1)L)me−2−ℓ−2k−1LXIf‖

q
p

)1/q

.
∑

ℓ∈Z

2−
ℓα′

2 min(1, 2ℓ/2)

(
∑

k

2α
′ (ℓ+2k+1)q

2 ‖(2−(ℓ+2k+1)L)me−2−ℓ−2k−1LXIf‖
q
p

)1/q

. ‖XIf‖Bp,q

α′
. ‖f‖Bp,q

α
,

which completes the proof. �

Corollary 4.9. If p ∈ [1,∞] and α > 0, then Bp,pα = Bp,p,pα .

Remark 4.10. As the proof of Proposition 4.8 shows, the only properties of η
which were used were those of all functions in C . In addition to this, the proof of
part (2) shows also that for all p ∈ [1,∞] and ξ ∈ C

(∑

n∈N

‖f ξ̃n‖Bp,p
α

)1/p

. ‖f‖Bp,p
α
.
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4.3. The case q ≥ p. We now proceed to proving Theorem 4.1. One implica-
tion is given by Proposition 2.6. The other implication is given by the following
proposition.

Proposition 4.11. Suppose d < p ≤ q ≤ ∞ and α ∈ (d/p, 1) + N. Then

‖fg‖Bp,q
α

. ‖g‖Bp,q
α

‖f‖Bp,q
α ,unif

for all g ∈ Bp,qα and f uniformly locally in Bp,qα .

Proof. Let ξ ∈ C be such that ξ = 1 on supp η, so that ξη = η and ξ̃nηn = ηn.
By assumption, α = k0 + α′ with d/p < α′ < 1 for some k0 ∈ N. We begin by
observing that by (4.1)

‖fg‖Bp,q
α

≍
∑

|I|+|J|≤k0

‖XIfXJg‖Bp,q

α′
,

so that we shall consider, for |I|+ |J | ≤ k0, the quantity

‖XIfXJg‖Bp,q

α′

. ‖XIfXJg‖p +

(∑

k

(2kα
′

sup
|y|<2−k

‖Dy(XIfXJg)‖p)
q

)1/q

. ‖XIfXJg‖p +

(∑

k

(
2kα

′

sup
|y|<2−k

∥∥∥∥
∑

n

Dy(ηnξ̃nXIfXJg)

∥∥∥∥
p

)q)1/q

,

(4.9)

where we have used the identity ξ̃nηn = ηn. On the one hand,

‖XIfXJg‖p .

∥∥∥∥
∑

n

|ηnXIf ||ξ̃nXJg|

∥∥∥∥
p

. sup
n

‖ηnXIf‖∞‖XJg‖p . ‖g‖Bp,q
α

‖f‖Bp,q
α ,unif ,

(4.10)

the last step thanks to (2.16), Proposition 3.2, and the embedding Bp,qα′ →֒ L∞,
cf. [6, Theorem 5.1]. Moreover, by (2.11)

|Dy(ηnXIf · ξ̃nXJg)| ≤ |(ηnXIf)Dy(ξ̃nXJg)|+ |(ξ̃nXJg)(·y
−1)Dy(ηnXIf)|.

Suppose |y| ≤ 1. Since all the terms appearing in the right hand side above are
supported in xnB4, as in (2.14) we get

∑

k

(
2kα

′

sup
|y|<2−k

∥∥∥
∑

n

Dy(ηnXIf · ξ̃nXJg)
∥∥∥
p

)q

.
∑

k

2kα
′q sup

|y|<2−k

(∑

n

‖(ηnXIf) ·Dy(ξ̃nXJg)‖
p
p

)q/p

+
∑

k

2kα
′q sup

|y|<2−k

(∑

n

‖(ξ̃nXJg)(·y
−1)Dy(ηnXIf)‖

p
p

)q/p
=: σq0 + σq1 .

We shall estimate σ0 and σ1 separately.
Since Bp,qα′ →֒ L∞, and again by (2.16),

‖(ηnXIf)Dy(ξ̃nXJg)‖p ≤ ‖Dy(ξ̃nXJg)‖p‖ηnXIf‖∞

. ‖Dy(ξ̃nXJg)‖p‖f‖Bp,q
α ,unif ,

whence

σ0 .

(∑

k

(
2kα

′p sup
|y|<2−k

∑

n∈N

‖Dy(ξ̃nXJg)‖
p
p

)q/p)1/q

‖f‖Bp,q
α ,unif .
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As in (4.5), now we write for m ≥ 1

ξ̃nXJg =
∑

ℓ∈Z

ξ̃ng2k+ℓ + ξ̃n

m−1∑

ℓ=0

1

ℓ!
Lℓe−LXJg,

which yields

∑

k

(
2kα

′p sup
|y|<2−k

∑

n

‖Dy(ξ̃nXJg)‖
p
p

)q/p

.
∑

k

2kα
′q

(∑

n

sup
|y|<2−k

∥∥∥∥
∑

ℓ∈Z

|Dy(ξ̃ng2k+ℓ)|+
m−1∑

ℓ=0

|Dy(ξ̃nL
ℓe−LXJg)|

∥∥∥∥
p

p

)q/p

. Iq + IIq

where I and II are as the ones in (4.6) and (4.7) with g and ξ̃n in place of f and ηn,
respectively. By proceeding exactly as in the proof of Proposition 4.8, we conclude

σ0 . ‖g‖Bp,q
α

‖f‖Bp,q
α ,unif .

We now consider σ1. Since

‖(ξ̃nXJg)(·y
−j)Dy(ηnXIf)‖p ≤ ‖(ξ̃nXJg)‖∞‖Dy(ηnXIf)‖p,

we get

σ1 ≤

(∑

k

(
2kα

′p
∑

n

sup
|y|<2−k

‖ξ̃nXJg‖
p
∞‖Dy(ηnXIf)‖

p
p

)q/p)1/q

. (4.11)

By the triangle inequality in ℓq/p, Lemma 4.6 and (2.16), we get

σ1 ≤

(∑

n

‖ξ̃nXJg‖
p
∞

(∑

k

2kα
′q sup

|y|<2−k

‖Dy(ηnXIf)‖
q
p

)p/q)1/p

.

(∑

n

‖ξ̃nXJg‖
p
∞‖ηnXIf‖

p
Bp,q

α′

)1/p

≤

(∑

n

‖ξ̃nXJg‖
p
∞

)1/p

‖f‖Bp,q
α ,unif .

Let now ε > 0 be such that α′− ε > d/p. Since Bp,pα′−ε →֒ L∞ again by [6, Theorem
5.1],

(∑

n

‖ξ̃nXJg‖
p
∞

)1/p

.

(∑

n

‖ξ̃nXJg‖
p
Bp,p

α′−ε

)1/p

. ‖XJg‖Bp,p

α′−ε
(4.12)

the last bound by Remark 4.10. Since Bp,qα′ →֒ Bp,pα′−ε by [6, Theorem 5.1], we finally
get

σ1 . ‖g‖Bp,q
α

‖f‖Bp,q
α ,unif

and the proof is complete. �

4.4. The case B1,1
d . Recall that for all p ∈ [1,∞], Bp,1d/p is an algebra. The condition

q ≥ p and q ∈ [1,∞] restricts to the space B1,1
d . We have the following proposition,

which together with Proposition 2.6 concludes the proof of Theorem 4.2.

Proposition 4.12. For all g ∈ B1,1
d and f ∈ B1,1

d,unif

‖fg‖B1,1
d

. ‖g‖B1,1
d

‖f‖B1,1
d ,unif .
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Proof. Let ξ ∈ C be such that ξ = 1 on supp η, so that ξη = η and ξ̃nηn = ηn. By
Corollary 4.9, the algebra property of B1,1

d , and Remark 4.10,

‖fg‖B1,1
d

.
∑

n

‖(ηnf)(ξ̃ng)‖B1,1
d

.
∑

n

‖ηnf‖B1,1
d

‖ξ̃ng‖B1,1
d

. ‖f‖B1,1
d ,unif

∑

n

‖ξ̃ng‖B1,1
d

. ‖f‖B1,1
d ,unif‖g‖B1,1

d
,

and the proof is complete. �

4.5. The case q < p. We begin with a lemma.

Lemma 4.13. Suppose p, q ∈ [1,∞] and α ∈ (0, 1). Then Bp,qα →֒Mp,q
α →֒ Bp,qα,unif.

Proof. Pick n ∈ N and choose the sequence (γk) = 1{k=n}. Then
∑

k γkηkf = ηnf ,
and the second embedding follows.

To prove the first, observe that since ℓp →֒ ℓ∞ and by arguing as in (2.17) (in
one direction), ‖f‖Mp,q

α
is bounded by

sup
‖γn‖ℓp≤1

((∑

n

‖γnηnf‖
p
p

)1/p
+

(∑

k

(
2kαp sup

|y|<2−k

∥∥∥
∑

n

Dy(γnηnf)
∥∥∥
p

p

)q/p)1/q)

.

(
‖f‖p +

(∑

k

(
2kαp

∑

n

sup
|y|<2−k

‖Dy(ηnf)‖
p
p

)q/p)1/q)

so that arguing as from (4.4) on (with no derivatives) one gets ‖f‖Mp,q
α

. ‖f‖Bp,q
α

,
and the first embedding follows. �

Proof of Theorem 4.4. Suppose α ∈ (d/p, 1). Following (4.9) (with no derivatives)
we shall prove that given f ∈Mp,q

α and g ∈ Bp,qα

‖fg‖p +

(∑

k

(2kα sup
|y|<2−k

‖Dy(fg)‖p)
q

)1/q

. ‖f‖Mp,q
α

‖g‖Bp,q
α
. (4.13)

This implies that ‖f‖Mp,q
α

& ‖f‖MBp,q
α

.
By (4.10),

‖fg‖p . ‖g‖Bp,q
α

‖f‖Bp,q
α ,unif . ‖g‖Bp,q

α
‖f‖Mp,q

α
,

the last inequality by Lemma 4.13. By arguing as in the first part of the proof of
Proposition 4.11 (we maintain the notation therein)

(∑

k

(2kα sup
|y|<2−k

‖Dy(fg)‖p)
q

)1/q

. σ0 + σ1.

Since to estimate σ0 we did not use any condition on p and q, we might argue in
the same manner and get

σ0 . ‖g‖Bp,q
α

‖f‖Bp,q
α ,unif . ‖g‖Bp,q

α
‖f‖Mp,q

α

again by Lemma 4.13.
We are left with considering σ1. Select, by Lemma 2.2, N disjoint families of

indices Ik, k = 1, . . . , N with the property that

N =
N⋃

k=1

Ik, dC(xm, xh) ≥ 6 ∀m,h ∈ Ik, m 6= k, ∀ k.

Then, for |y| ≤ 1 and m,h ∈ Ik, m 6= h,

suppDy(ηmf) ∩ suppDy(ηhf) ⊆ xmB3 ∩ xhB3 = ∅
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and thus
∑

n∈Ik

|γn|
p‖Dy(ηnf)‖

p
p =

∑

n∈Ik

∫

G

|γn|
p|Dy(ηnf)|

p dλ

=

∫

G

∣∣∣
∑

n∈Ik

Dy(γnηnf)
∣∣∣
p

dλ =
∥∥∥
∑

n∈Ik

Dy(γnηnf)
∥∥∥
p

p
.

(4.14)

Now fix k = 1, . . . , N and pick the sequence (we assume g 6= 0 here)

γn = γ
‖ηng‖∞
‖g‖Bp,q

α′

if n ∈ Ik, γn = 0 otherwise.

If γ is small enough, then the sequence (γn) is in ℓp and has ℓp norm smaller than
1; recall (4.12). This also shows that γ can be chosen independent of g.

Therefore, by (4.11), the embedding Bp,qα ⊆ L∞ and (4.14)

σ1 .

(∑

k

(
2kαp sup

|y|<2−k

∑

n

‖ξ̃ng‖
p
∞‖Dy(ηnf)‖

p
p

)q/p)1/q

. ‖g‖Bp,q
α

(∑

k

(
2kαp sup

|y|<2−k

∥∥∥
∑

n

Dy(γnηnf)
∥∥∥
p

p

)q/p)1/q

. ‖g‖Bp,q
α

‖f‖Mp,q
α

which concludes the proof of (4.13).
Suppose now that f ∈MBp,qα and (γn) ∈ ℓp. Then (4.14) implies

‖f‖Mp,q
α

.

N∑

k=1

sup
‖γn‖ℓp≤1

∥∥∥
∑

n∈Ik

γnηnf
∥∥∥
Bp,q

α

. (4.15)

By the algebra property of Bp,qα ,
∥∥∥
∑

n∈Ik

γnηnf
∥∥∥
Bp,q

α

. ‖f‖MBp,q
α

∥∥∥
∑

n∈Ik

γnηn

∥∥∥
Bp,q

α

, (4.16)

where by (2.13)

∥∥∥
∑

n∈Ik

γnηn

∥∥∥
Bp,q

α

.
∥∥∥
∑

n∈Ik

γnηn

∥∥∥
p
+

(∑

k

2kαq sup
|y|<2−k

(∑

n

‖Dy(γnηn)‖
p
p

)q/p)1/q

.
(∑

n

‖γnηn‖
p
p

)1/p
+

(∑

k

2kαq sup
|y|<2−k

(∑

n

|γn|
p‖Dy η‖

p
p

)q/p)1/q

. ‖(γn)‖ℓp‖η‖Bp,q
α

. 1.

By (4.15) and (4.16) we conclude

‖f‖Mp,q
α

. ‖f‖MBp,q
α

and this completes the proof. �

The case p = ∞ was excluded by Theorem 4.4, but it is easier as the following
shows.

Theorem 4.14. Suppose α > 0 and q ∈ [1,∞]. Then MB∞,q
α = B∞,q

α with
equivalence of norms.

Proof. One the one hand, B∞,q
α →֒ MB∞,q

α by the algebra property of B∞,q
α . On

the other hand, since the constant function equal to 1 belongs to B∞,q
α , one also

gets MB∞,q
α →֒ B∞,q

α . �
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5. Stratified groups and wider ranges

In this section we assume that G is a stratified group with the standard dilations
δs, s > 0, and X is a basis of the first layer of the Lie algebra g. We recall that G
is said to be stratified if its Lie algebra g admits a stratification

g = V1 ⊕ · · · ⊕ VS ,

where V1 = spanX, Vj+1 = [V1, Vj ], for j = 1, . . . , S− 1, and [V1, VS ] = 0. We refer
the reader to [12, 13] for the basic facts on stratified groups.

In order not to cause any confusion, we shall stress that G is a stratified Lie group
in all the important statements of the section. We shall extend all the theorems in
the previous section to the case of all (allowed) regularities.

5.1. The case q ≥ p.

Theorem 5.1. Let G be a stratified group. Suppose p, q ∈ [1,∞], q ≥ p and
α > d/p. Then MBp,qα = Bp,qα,unif with equivalence of norms.

Inspired by [16, 17], for m, θ ∈ N and x, y ∈ G, we define

G
(m)
y,θ f(x) =

m∑

ℓ=0

(−1)m−ℓ

(
m

ℓ

)
f(xδℓ+θ(y

−1)). (5.1)

When θ = 0, we shall simply write G(m)
y for G

(m)
y,0 . Observe that G(1)

y = Dy.
The following identities hold true: for all m, θ ∈ N,

G
(m)
y,θ+1 = G

(m+1)
y,θ +G

(m)
y,θ ,

from which one gets

G
(m)
y,θ =

θ∑

j=0

(
θ

j

)
G(m+j)
y , (5.2)

and moreover one has the “Leibniz” rule

G
(m)
y,θ (fg) =

m∑

j=0

(
m

j

)
G

(j)
y,θ f ·G

(m−j)
y,θ+j g. (5.3)

All the above identities can be proved by induction, and we omit the details. The
following lemma is the high-order counterpart of Lemma 2.1.

Lemma 5.2. Suppose m, θ ∈ N, p ∈ [1,∞] and y ∈ B1. Then the following holds.

(1) ‖G
(m)
y,θ f‖p . ‖f‖p;

(2) ‖G
(m)
y,θ f‖p . |y|m

∑
|J|≤m ‖XJf‖p;

(3) for all k ∈ N and ψ ∈ C∞
c there exist c = c(k) > 0 and C(ψ) > 0 such that

for all t ∈ (0, 1)

‖G(m)
y (ψLke−tLf)‖p ≤ C(ψ)t−

m
2 −k|y|m‖1suppψ e−ctL|f |‖p,

where C(ψ) depends only on ‖ψ‖L∞
m

.

Proof. Statement (1) is obvious. Statement (2) has been proven in [17, Proposition
1] when θ = 0. We outline its proof following [16, Lemma 2] without giving
all the details. Since G is stratified, given y ∈ B1, there exist v1, . . . , vM , such
that y−1 = v1 . . . vM , with vi = expX(i), X(i) ∈ V1, |vi| . |y|, i = 1, . . . ,M (see
[13, Lemma (1.40)]). For every x ∈ G, θ ∈ N, ℓ = 0, . . . ,m, we write

f
(
xδℓ+θ(y

−1)
)
=

M∑

i=1

[
f
(
xδℓ+θ(v1 . . . vi−1)δℓ+θ(vi)

)
− f
(
xδℓ+θ(v1 . . . vi−1)

)]
+ f(x).
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Notice that for every z ∈ G, v ∈ exp(V1), j ∈ N

d

ds
f(zδs(v))|s=j = E(v)f(zδj(v)),

whereE(v) =
∑κ

j=1 cj(v)Xj . Taylor’s formula applied to the function s 7→ f(zδs(v))
shows that

f
(
xδℓ+θ(v1 . . . vi−1)δℓ+θ(vi)

)
− f

(
xδℓ+θ(v1 . . . vi−1)

)

=

m−1∑

k=0

(ℓ+ θ)k

k!
[E(vi)

kf ]
(
xδℓ+θ(v1 . . . vi−1)

)

+
(ℓ+ θ)m

(m− 1)!

∫ 1

0

(1− s)m−1[E(vi)
mf ]

(
xδℓ+θ(v1 . . . vi−1)δs(vi)

)
ds.

By the previous equality, arguing as in [16, Lemma 2] for every ℓ = 0, . . . ,m, we
can write

f
(
xδℓ+θ(y

−1)
)
=

m−1∑

n=0

(ℓ+ θ)nQn(x, y
−1) +R(x, y−1, ℓ+ θ)

for suitable functions Qn and remainder terms R. It follows that

G
(m)
y,θ f(x) =

m−1∑

n=0

m∑

ℓ=0

(−1)m−ℓ

(
m

ℓ

)
(ℓ+ θ)nQn(x, y

−1)

+

m∑

ℓ=0

(−1)m−ℓ

(
m

ℓ

)
R(x, y−1, ℓ+ θ)

=
m∑

ℓ=0

(−1)m−ℓ

(
m

ℓ

)
R(x, y−1, ℓ+ θ),

where we used the fact that
∑m
ℓ=0(−1)ℓ

(
m
ℓ

)
ℓk = 0 for every k < m, and where

R(x, y−1, ℓ+ θ) is a linear combination of terms of the form

(ℓ+ θ)m
∫ 1

0

(1− s)m−iDf(xu(s))ds,

with |u(s)| . |y|, D =
∑

|J|≤m c
D
J XJ , and i = 0, . . . ,m− 1. It follows that

‖G
(m)
y,θ f‖p .

m∑

ℓ=0

‖R(·, y−1, ℓ+ θ)‖p

. (ℓ+ θ)m|y|m
∑

|J|≤m

‖XJf‖p . |y|m
∑

|J|≤m

‖XJf‖p,

as required in (2).
Statement (3) can be proved as in Lemma 2.1 by means of (2). �

Define

ωm(f, t, p) = sup
|y|<t

‖G(m)
y f‖p t > 0.

For p, q ∈ [1,∞], α > 0 and m > α we have the equivalences of norms

‖f‖Bp,q
α

≍ ‖f‖p +

(∫ 1

0

(t−α sup
|y|<t

‖G(m)
y f‖p)

q dt

t

)1/q

≍ ‖f‖p +

(∑

k∈N

(2kαωm(f, 2−k, p))q
)1/q

.
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The first can be proved by putting together [14, Proposition 5.2] and [17, Proposi-
tion 4]. The second is just a discretization as in Lemma 4.5.

We now proceed to proving Theorem 5.1. One implication is given by Proposi-
tion 2.6. The other implication is the following proposition.

Proposition 5.3. Let G be a stratified group. Suppose p, q ∈ [1,∞], q ≥ p and
α > d/p. Then

‖fg‖Bp,q
α

. ‖g‖Bp,q
α

‖f‖Bp,q
α ,unif

for all g ∈ Bp,qα and f uniformly locally in Bp,qα .

Proof. Let ξ ∈ C be such that ξ = 1 on supp η, so that ξη = η, and ηn = ηnξ̃n.
Then, for m > α

‖fg‖Bp,q
α

≍ ‖fg‖p +

(∑

k∈N

(
2kα sup

|y|<2−k

∥∥∥
∑

n

G(2m)
y (fgηnξ̃n)

∥∥∥
p

)q)1/q

.

First we observe that

‖fg‖p .
∥∥∥
∑

n∈N

|ξ̃ng||ηnf |
∥∥∥
p
. ‖g‖p sup

n
‖ηnf‖∞ . ‖g‖Bp,q

α
‖f‖Bp,q

α ,unif , (5.4)

the last step by the embedding Bp,qα →֒ L∞. Then, by (5.3)

|G(2m)
y (fg)| ≤

∑

n

|G(2m)
y (ηnfg)| =

∑

n

|G(2m)
y (ηnf ξ̃ng)|

≤
2m∑

j=0

(
2m

j

)∑

n

|G
(2m−j)
y,j (ξ̃ng)G

(j)
y (ηnf)|.

Suppose |y| ≤ 1. Since G
(2m−j)
y,j (ξ̃ng) and G(j)

y (ηnf) are supported in B2m+3, and
ℓp →֒ ℓq we have

(∑

k

(
2kα sup

|y|<2−k

∥∥∥∥
∑

n

G(m)
y (ηnf ξ̃ng)

∥∥∥∥
p

)q)1/q

.

2m∑

j=0

(∑

k

2kαq sup
|y|<2−k

∥∥∥∥
∑

n

G
(2m−j)
y,j (ξ̃ng)G

(j)
y (ηnf)

∥∥∥∥
q

p

)1/q

.

2m∑

j=0

(∑

k

2kαq sup
|y|<2−k

(∑

n

‖G
(2m−j)
y,j (ξ̃ng)G

(j)
y (ηnf)‖

p
p

)q/p)1/q

=:
2m∑

j=0

σj .

To estimate this last term, we separate the cases when j ≤ m and j > m.
Suppose first 0 ≤ j ≤ m. Since Bp,qα →֒ L∞,

‖G
(2m−j)
y,j (ξ̃ng)G

(j)
y (ηnf)‖p ≤ ‖G

(2m−j)
y,j (ξ̃ng)‖p‖G

(j)
y (ηnf)‖∞

. ‖G
(2m−j)
y,j (ξ̃ng)‖p‖ηnf‖∞

. ‖G
(2m−j)
y,j (ξ̃ng)‖p‖f‖Bp,q

α ,unif .

Thus

m∑

j=0

σj .
m∑

j=0

( ∞∑

k=0

(
2kαp sup

|y|<2−k

∑

n

‖G
(2m−j)
y,j (ξ̃ng)‖

p
p

)q/p)1/q

‖f‖Bp,q
α ,unif .
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As in (4.5), we write (with 2m− j in place of m and with no derivative)

gℓ =
1

(2m− j − 1)!

∫ 2−ℓ+1

2−ℓ

(tL)2m−je−tLf
dt

t
, ℓ ≥ 1,

and gℓ = 0 if ℓ ≤ 0, so that

ξ̃ng =
∑

ℓ∈Z

ξ̃ng2k+ℓ + ξ̃n

m∑

ℓ=0

1

ℓ!
Lℓe−Lg.

This yields

(∑

k

(
2kαp sup

|y|<2−k

∑

n

‖G
(2m−j)
y,j (ξ̃ng)‖

p
p

)q/p)1/q

. I + II, (5.5)

where

Iq =
∑

k

2αkq
(∑

n

sup
|y|<2−k

∥∥∥
∑

ℓ

|G
(2m−j)
y,j (ξ̃ngℓ+2k)|

∥∥∥
p

p

)q/p

.
∑

k

2αkq
(∑

n

(∑

ℓ

sup
|y|<2−k

‖G
(2m−j)
y,j (ξ̃ngℓ+2k)‖p

)p)q/p

.
∑

k

2αkq
(∑

ℓ

(∑

n

sup
|y|<2−k

‖G
(2m−j)
y,j (ξ̃ngℓ+2k)‖

p
p

)1/p)q
,

while

IIq =
∑

k

2αkq
(∑

n

sup
|y|<2−k

2m−j−1∑

ℓ=0

‖G
(2m−j)
y,j (ξ̃nL

ℓe−Lg)‖pp

)q/p
.

As for II, by (5.2) and Lemma 5.2 (3) with (2.13)

sup
|y|<2−k

‖G
(2m−j)
y,j (ξ̃nL

ℓe−Lg)‖p .

j∑

h=0

sup
|y|<2−k

‖G(2m−j+h)
y (ξ̃nL

ℓe−Lg)‖p

. 2−k(2m−j)‖1supp ξ̃n
e−cL|g||‖p,

whence we obtain, since 2m− j ≥ m > α,

II .

(∑

k

2αkq
(∑

n

2−kmp‖1supp ξ̃n
e−cL|g|‖pp

)q/p)1/q

. ‖g‖p.

As for I, when ℓ + 2k ≥ 1 we observe that again by (5.2) and Lemma 5.2 (3)
with (2.13), as in (4.8), if |y| < 2−k then

‖G
(2m−j)
y,j (ξ̃ngℓ+2k)‖p

.

j∑

h=0

∫ 2−ℓ−2k+1

2−ℓ−2k

∥∥G(2m−j+h)
y,j

(
ξ̃ne

−(t−2−ℓ−2k−1)L(tL)2m−je−2−ℓ−2k−1Lf
)∥∥
p

dt

t

.

j∑

h=0

2ℓ(2m−j+h)/2

(∫ 2−ℓ−2k+1

2−ℓ−2k

∥∥1supp ξ̃n
e−c2

−ℓ−2kL|(tL)2m−je−2−ℓ−2k−1Lf |
∥∥
p

dt

t

.

j∑

h=0

2ℓ(2m−j+h)/2
∥∥1supp ξ̃n

e−c2
−ℓ−2kL|(2−(ℓ+2k+1)L)2m−je−2−ℓ−2k−1Lf |

∥∥
p
,
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whence
∑

n

sup
|y|<2−k

‖G
(2m−j)
y,j (ξ̃ngℓ+2k)‖

p
p

.

j∑

h=0

2ℓ(2m−j+h)p/2‖(2−(ℓ+2k+1)L)2m−je−2−ℓ−2k−1Lg‖pp,

as well as
(∑

n

sup
|y|<2−k

‖G
(2m−j)
y,j (ξ̃ngℓ+2k)‖

p
p

)1/p
.
(∑

n

‖ξ̃ngℓ+2k‖
p
p

)1/p

. ‖gℓ+2k‖p

. ‖(2−(ℓ+2k)L)2m−je−2−ℓ−2kLg‖p.

In other words
(∑

n

sup
|y|<2−k

‖G
(2m−j)
y,j (ξ̃ngℓ+2k)‖

p
p

)1/p

.

j∑

h=0

min(1, 2ℓ(2m−j+h)/2)‖(2−(ℓ+2k+1)L)2m−je−2−ℓ−2k−1Lg‖p,

hence I .
∑j

h=0 Ih, where

Ih .

(∑

k

(
2αk
∑

ℓ∈Z

min(1, 2ℓ(2m−j+h)/2)‖(2−(ℓ+2k+1)L)2m−je−2−ℓ−2k−1Lg‖p

)q) 1
q

.

By the triangle inequality in ℓq we get, as 2m− j > α,

Ih .
∑

ℓ

min(1, 2ℓ(2m−j+h)/2)

(∑

k

2αkq‖(2−(ℓ+2k+1)L)2m−je−2−ℓ−2k−1Lg‖qp

)1/q

=
∑

ℓ

2−ℓα/2min(1, 2ℓ(2m−j+h)/2)

×

(∑

k

2α(ℓ+2k)q/2‖(2−(ℓ+2k+1)L)2m−je−2−ℓ−2k−1Lg‖qp

)1/q

. ‖g‖Bp,q
α
,

and the case j = 0, . . . ,m is done.
Suppose now that m < j ≤ 2m. We have

‖G
(2m−j)
y,j (ξ̃ng)G

(j)
y (ηnf)‖p . ‖G

(2m−j)
y,j (ξ̃ng)‖∞‖G(j)

y (ηnf)‖p

. ‖ξ̃ng‖∞‖G(j)
y (ηnf)‖p.

Therefore, by the triangle inequality in ℓq/p,

σj .

(∑

k

(
2kαp sup

|y|<2−k

∑

n

‖ξ̃ng‖∞‖G(j)
y (ηnf)‖

p
p

)q/p)1/q

.

(∑

n

(
‖ξ̃ng‖

q
∞

∑

k

2kαq sup
|y|<2−k

‖G(j)
y (ηnf)‖

q
p

)p/q)1/p

.

(∑

n

‖ξ̃ng‖
p
∞‖ηnf‖

p
Bp,q

α

)1/p

≤

(∑

n

‖ξ̃ng‖
p
∞

)1/p

‖f‖Bp,q
α ,unif . (5.6)
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Let now ε > 0 be such that α− ε > d/p. Then Bp,pα−ε →֒ L∞, hence

(∑

n

‖ξ̃ng‖
p
∞

)1/p

.

(∑

n

‖ξ̃ng‖
p
Bp,p

α−ε

)1/p

. ‖g‖Bp,p
α−ε

(5.7)

the last bound by Remark 4.10. Since Bp,qα →֒ Bp,pα−ε, we get

σj . ‖g‖Bp,q
α

‖f‖Bp,q
α

also for m < j ≤ 2m. The proof is complete. �

5.2. The case q < p. We shall prove the analogue of Theorem 4.4 for all regulari-
ties. We begin with the following lemma.

Lemma 5.4. Suppose p, q ∈ [1,∞] and α > 0. Then Bp,qα →֒Mp,q
α →֒ Bp,qα,unif.

Proof. Pick n ∈ N and choose the sequence γk = 1{n}(k). Then
∑

k γkηkf = ηnf ,
and the second embedding follows.

To prove the first, observe that since (γn) ∈ ℓ∞

‖f‖Mp,q
α

≤ ‖f‖p +

(∑

k

(
2kαp sup

|y|<2−k

∑

n

‖G(m)
y (ηnf)‖

p
p

)q/p)1/q

so that arguing as from (5.5) on, one gets ‖f‖Mp,q
α

. ‖f‖Bp,q
α

, and the first embed-
ding follows. �

Theorem 5.5. Suppose 1 ≤ q < p < ∞ and α > d/p. Then MBp,qα = Mp,q
α with

equivalence of norms.

Proof. Pick m ∈ N with m > α. We shall prove that given f ∈Mp,q
α and g ∈ Bp,qα

‖fg‖p +

(∑

k

(2kα sup
|y|<2−k

‖G(m)
y (fg)‖qp

)1/q

. ‖f‖Mp,q
α

‖g‖Bp,q
α
. (5.8)

This implies that ‖f‖Mp,q
α

& ‖f‖MBp,q
α

.
By (5.4)

‖fg‖p . ‖g‖Bp,q
α

‖f‖Bp,q
α ,unif . ‖g‖Bp,q

α
‖f‖Mp,q

α
,

the last inequality by Lemma 4.13, as well as (we maintain the same notation as
that of Proposition 5.3)

(∑

k

(2kα sup
|y|<2−k

‖G(m)
y (fg)‖qp

)1/q

.

2m∑

j=0

σj .

Since to estimate the terms with j = 0, . . . ,m we did not use any condition on p
and q, we might argue in the same manner and get

m∑

j=0

σj . ‖g‖Bp,q
α

‖f‖Bp,q
α ,unif . ‖g‖Bp,q

α
‖f‖Mp,q

α

again by Lemma 4.13.
We are left with considering the case j = m+ 1, . . . , 2m. Select, by Lemma 2.2,

N disjoint families of indices Ik, k = 1, . . . , N with the property that

N =

N⋃

k=1

Ik, dC(xℓ, xh) ≥ 2m+ 4 ∀ℓ, h ∈ Ik, ℓ 6= k, ∀ k.

Then, for |y| ≤ 1 and ℓ, h ∈ Ik, ℓ 6= h,

suppG(m)
y (ηℓf) ∩ suppG(m)

y (ηhf) ⊆ xℓBm+2 ∩ xhBm+2 = ∅
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and thus
∑

n∈Ik

|γn|
p‖G(m)

y (ηnf)‖
p
p =

∑

n∈Ik

∫

G

|γn|
p|G(m)

y (ηnf)|
p dλ

=

∫

G

∣∣∣
∑

n∈Ik

G(m)
y (γnηnf)

∣∣∣
p

dλ =
∥∥∥
∑

n∈Ik

G(m)
y (γnηnf)

∥∥∥
p

p
.

Now fix k = 1, . . . , N and pick the sequence (we assume g 6= 0 here)

γn = γ
‖ηng‖∞
‖g‖Bp,q

α

if n ∈ Ik, γn = 0 otherwise.

If γ is small enough, then the sequence (γn) is in ℓp and has ℓp norm smaller than
1; recall (5.7). This also shows that γ can be chosen independent of g and k.

Therefore, by (5.6)

σj .

(∑

k

(
2kαp sup

|y|<2−k

∑

n

‖ξ̃ng‖∞‖G(j)
y (ηnf)‖

p
p

)q/p)1/q

. ‖g‖Bp,q
α

(∑

k

(
2kαp sup

|y|<2−k

∥∥∥
∑

n

G(j)
y (γnηnf)

∥∥∥
p

p

)q/p)1/q

. ‖g‖Bp,q
α

‖f‖Mp,q
α
,

which concludes the proof of (5.8)
Suppose now that f ∈MBp,qα and (γn) ∈ ℓp. Observe that (4.15) still holds. By

the algebra property of Bp,qα ,
∥∥∥
∑

n∈Ik

γnηnf
∥∥∥
Bp,q

α

. ‖f‖MBp,q
α

∥∥∥
∑

n∈Ik

γnηn

∥∥∥
Bp,q

α

, (5.9)

where
∥∥∥
∑

n∈Ik

γnηn

∥∥∥
Bp,q

α

.
∥∥∥
∑

n∈Ik

γnηn

∥∥∥
p
+

(∑

k

2kαq sup
|y|<2−k

(∑

n

‖G(m)
y (γnηn)‖

p
p

)q/p)1/q

.
(∑

n

‖γnηn‖
p
p

)1/p
+

(∑

k

2kαq sup
|y|<2−k

(∑

n

|γn|
p‖G(m)

y η‖pp

)q/p)1/q

. ‖(γn)‖ℓp‖η‖Bp,q
α

. 1.

By (4.15) and (5.9) we conclude ‖f‖Mp,q
α

. ‖f‖MBp,q
α

, and this completes the
proof. �

Remark 5.6. As already observed, the main obstacle to proving Theorem 4.1 for
all α > 0, or equivalently Theorem 5.1 beyond the stratified groups case, was for
us the lack of a suitable notion of finite differences of order larger than 1. It seems
not clear, indeed, what the analogue of (5.1) on a general Lie group should be.

The case of second order differences is somewhat special, and was actually con-
sidered by several authors (cf., e.g., [12, 22]) in different generalities. One may
indeed define a symmetric second-order difference of the form

S(2)y f(x) = f(xy−1)− 2f(x) + f(xy), x, y ∈ G.

Since S(2)y f = D(2)
y f(· y−1), where

D(2)
y f(x) = f(xy−2)− 2f(xy−1) + f(x),

it is tempting to define, for m ∈ N and y ∈ G, the finite difference of order m as

D(m)
y f(x) =

m∑

ℓ=0

(−1)m−ℓ

(
m

ℓ

)
f(xy−ℓ). (5.10)
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When G is a Euclidean space, this definition is nothing but the classical one, and

when m = 1 it is precisely (2.8), i.e. D(1)
y = Dy. However, if G is stratified and m ≥

2, then (5.10) does not coincide with (5.1), not even when θ = 0. Observe indeed
that in general xm 6= δm(x). Nevertheless, this differences do have remarkable
properties, as a “Leibniz rule” in the spirit of (5.3), that is for all m ∈ N

D(m)
y (fg)(x) =

m∑

j=0

(
m

j

)
D(m−j)
y f(xy−j)D(j)

y g(x), x, y ∈ G.

It is not clear to us whether S(2)y and more generally D(m)
y satisfy the analog of

Lemma 5.2 (2), or the characterization (5.1) of the Besov norm, which are essential
ingredients in our argument. This seems an interesting direction for future research
in its own right.
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