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CORRELATED EQUILIBRIA FOR MEAN FIELD GAMES WITH PROGRESSIVE

STRATEGIES

OFELIA BONESINI, LUCIANO CAMPI, AND MARKUS FISCHER

Abstract. In a discrete space and time framework, we study the mean field game limit for a class
of symmetric N-player games based on the notion of correlated equilibrium. We give a definition of
correlated solution that allows to construct approximate N-player correlated equilibria that are robust
with respect to progressive deviations. We illustrate our definition by way of an example with explicit
solutions.
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1. Introduction

Building on [5], we consider correlated equilibria for a simple class of symmetric finite horizon N -
player games in discrete time and their natural mean field game counterpart as the number of players
N goes to infinity.

MFGs is the acronym for mean field games and refers to a stream of literature in game theory
extremely popular nowadays whose origins are quite recent. Indeed, MFGs were introduced nearly at
the same time but independently by [14] and [18] in the mid 2000’s. In a nutshell, MFGs are limit
systems for symmetric stochastic N -player games with mean field interaction for N → ∞. Thanks to
the mean field interaction among the players, a kind of law of large numbers (known as propagation
of chaos), one expects the empirical distribution of the players’ states to converge as N → ∞ to the
law of some representative player. In the limit, the concept of Nash equilibrium translates into a
two-step solution where (i) the representative player reacts optimally to the measure flow representing
the distribution of the whole population, and (ii) the latter arises as aggregation of all such identical
players’ best responses at equilibrium. The reader interested in a broad yet detailed overview on the
topic from a probabilistic viewpoint is referred to the two-volume book by Carmona and Delarue [8].

The connection between MFGs and their finite-player counterpart can be established in two ways.
Crucial is the choice of the type of strategies the players are allowed to play. On one hand, a solution
to the MFG can be exploited in order to build approximate Nash equilibria for N -player games. See,
e.g., [7, 11, 14]. On the other hand, approximate N -player Nash equilibria can be shown to converge to
solutions of the corresponding MFG, as N → ∞. Cardaliaguet, Delarue, Lasry and Lions in [6] gave
an important contribution in this direction when the strategies are of closed loop type, exploiting the
well-posedness of the so-called master equation, which implies uniqueness of MFG solutions. Later,
Lacker in [16] was able to establish a general convergence result for non-degenerate diffusions, which
he subsequently extended to the common noise case in the joint article [17] with Le Flem.

Correlated equilibria were first introduced for many-player games by Robert Aumann, see [1, 2]. His
idea can be summarised in the following way: A correlation device or mediator (he) picks a strategy
profile according to some probability distribution which is common knowledge among the players.
Then, according to the selected profile, he privately suggests a strategy to each player, meaning that
each player only knows the recommendation provided to him by the mediator. A correlated equilibrium
(CE, for short) is a probability distribution on the space of strategy profiles such that no player is
willing to unilaterally deviate from the mediator’s suggestion. We notice that, when the distribution
used by the mediator to generate his recommendations has a product form, then CE reduces to the
usual notion of Nash equilibrium in mixed strategies. Traffic lights in routing games provide an
intuitive example of a mediator in everyday life, e.g. [21, Section 13.1.4]. Other interpretations for
such equilibria are available in the literature, we refer the interested reader to, e.g., [3].
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The notion of CE was originally introduced for static games with complete information and it
rapidly led to a massive research activity in game theory as well as in economic theory along many
directions. The survey [9] provides a thorough analysis on several aspects of the more general notion
of communication equilibrium within a wide range of games, such as stochastic games and games with
incomplete information. In particular, for stochastic games we also refer to [22, 23, 24]. Many pleasant
features of CE justify the scientific community interest towards it, for instance the fact that it may
lead to higher payoffs than Nash equilibria, its lower computational complexity (see, e.g.,[10]), and
also that CE are reachable by a wide range of learning procedures (see [13]).

CE in mean field games where first studied in [5], where the authors established approximation
and convergence results for a class of symmetric finite horizon games in restricted strategies. After
[5] two more papers on correlated equilibria in mean field games appeared, by Paul Müller and co-
authors [20, 19], whose setting is very close to ours. Indeed, they, too, consider discrete time games
with finite state and action spaces. The mean field interaction is modeled in the N -player games via
the empirical measure of players’ states. Players’ strategies depend only on the player’s individual
states in a Markovian fashion. We stress that their definition of correlated equilibrium is different
from the one we give in [5]. In particular, it does not require any explicit consistency condition for
the flow of measures, which is obtained as a consequence of their definition. Nonetheless the most
recent paper [19] has an interesting discussion on how to pass from our definition in [5] to theirs and
vice-versa. Lastly, big parts of those papers are devoted to more computational issues focusing on
learning algorithms approximating the equilibria.

Here, we consider correlated equilibria for a simple class of symmetric finite horizon N -player games
and their natural MFG counterpart as N → ∞. In the N -player setting, the state variables evolve
in discrete time, both state space and the set of control actions are finite. The mediator recommends
restricted strategies to the players, that is, feedback strategies that depend only on time and the
corresponding individual state variable. This is the same framework as in [5]. As opposed to that
work, and also to [20, 19], the deviating player is allowed to use (randomized) progressive strategies,
that is, strategies that depend on the evolution of the entire system state up to current time; see
Remark 4.4 below. We stress that the possibility for the players to deviate by playing progressive
strategies make the analysis and the proofs much more delicate than in [5]. Our main results can be
summarized as follows:

- We extend the notion of correlated solution for a mean field game to allow for progressive
deviations. Two formulations are presented, one based on closed-loop controls, the other on
stochastic open-loop controls.

- Starting from suitable correlated MFG solutions, we construct approximate N -player corre-
lated equilibria that are robust against progressive deviations.

- We provide an explicit example for a mean field game possessing correlated solutions against
progressive deviations that have non-deterministic flows of measures and satisfy all conditions
of the approximation result.

The rest of the paper is structured as follows. In Section 2, we introduce the notation and state some
preliminary definitions. In Section 3, we describe the underlyingN -player games and give the definition
of (approximate) correlated equilibrium against progressive deviations. Section 4 is dedicated to the
corresponding mean field game. Correlated MFG solutions are first defined in feedback strategies with
deviations that may directly depend on the possibly random flow of measures. In Section 5 we give an
alternative definition of correlated MFG solution in stochastic open-loop strategies and establish an
equivalence between the two formulations. Our main result is given in Section 6, where we show that
suitable correlated MFG solutions yield approximate correlated solutions for the N -player game. An
example of a correlated MFG with explicit solutions satisfying the assumptions of our approximation
result is provided in Section 7. In Appendix A, we collect some auxiliary results.

2. Preliminaries and notation

We denote with [[m,M ]] the set of natural numbers greater or equal to m and lower or equal to M ,
namely we set [[m,M ]] := {m,m+1, . . . ,M −1,M}. A given (T +1)-dimensional vector, (x0, . . . , xT ),
will be denoted with (xt)

T
t=0 or just by x when its indices are clear from the context. Then, the (t+1)-

dimensional vector of its first t + 1 components is denoted with x(t) := (x0, x1, . . . , xt). Similarly,
for a T -dimensional vector, (x1, . . . , xT ), we introduce the notation (xt)

T
t=1 (just x when the context
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is clear), and the t-dimensional vector of its first t components is denoted with x(t) := (x1, . . . , xt).
Finally, let us fix a notation that is useful in the following. Let (Ω,F ,P) be a complete probability
space supporting a (X ,B(X ))-valued random variable, X.

We consider the (discrete) time frame [[0, T ]], with finite final time T ∈ N. The individual states
and the control actions lie in non-empty finite sets X and Γ, respectively. We mostly deal with
finite sets and the sets of probability measures on them. Throughout the whole paper these sets are
equipped with the discrete metric and the metric dist(·, ·), respectively, making them Polish spaces.
The metric dist(·, ·) on the set P(E) of probability measures over a finite set E is defined as follows.
For µ, µ̃ ∈ P(E), set

dist(µ, µ̃) :=
1

2

∑

e∈E

|µ(e)− µ̃(e)|.

Notice that this metric is compatible with the weak convergence topology and, for measures over finite
sets, weak convergence is equivalent to the convergence in total variation. The set Z = [0, 1] is the
space of noise states. All the variables representing idiosyncratic noise are distributed according to ν,
uniform distribution on Z = [0, 1].

The one-step individual state dynamics is given by the following system function:

Ψ: [[0, T − 1]]× X × P(X ) × Γ×Z −→ X .

The running costs are specified through a function:

f : [[0, T − 1]]× X × P(X ) × Γ −→ R.

The terminal costs are described by the following function:

F : X × P(X ) −→ R.

Consider the product space [[0, T−1]]×X×P(X )T . We equip this space with the product topology with
respect to the topologies defined on each space, that are, respectively, discrete topology for [[0, T − 1]]
and X , since they are finite sets, and the topology of weak convergence for the space P(X ). Then, on
the space [[0, T − 1]]× X × P(X )T , we consider the σ-algebra:

B
(
[[0, T − 1]]× X × P(X )T

)
= B([[0, T − 1]])⊗ B(X )⊗ B(P(X )T )

= 2[[0,T−1]] ⊗ 2X ⊗ B(P(X ))T ,

where 2E denotes the power set of a finite set E. Notice that B(P(X )) is the Borel σ-algebra induced
by the topology of weak convergence, that in our case, where the state space X is finite, coincides
with the one induced by the metric dist(·, ·), on P(X ). On the finite set Γ we consider the discrete
topology and its Borel σ-algebra.

Let us define R̂, the set of progressive feedback strategies:

R̂ :=
{
ϕ : [[0, T − 1]]× X T × P(X )T −→ Γ, ϕ progressively measurable

}
.

As it is used several times in the following, we introduce another set of feedback strategies. It cor-
responds to the Markov strategies that depend only on the individual player’s state, see restricted
strategies in [5]:

R :=
{
ϕ : [[0, T − 1]]× X −→ Γ

}
.

This space is equipped, as all finite sets in this paper, with the discrete topology. Notice that we have

the natural inclusion R ⊂ R̂, and R is compact since it is finite.
Furthermore, for convenience of notation, for each t ∈ [[0, T − 1]], we set

Êt :=
{
ϕ : X t+1 × P(X )t+1 −→ Γ, ϕ Borel-measurable

}
,

Ê(t) :=
{
ϕ : [[0, t]]× X t+1 × P(X )t+1 −→ Γ, ϕ progressively measurable

}
,

and the corresponding restricted quantities

Et = E :=
{
ϕ : X −→ Γ, ϕ Borel-measurable

}
,

E(t) = E t :=
{
ϕ : [[0, t]] × X −→ Γ, ϕ Borel-measurable

}
.
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When considering the N -player game, the set of progressively measurable feedback strategies cor-

responds to the following subset of R̂

R̂N :=
{
ϕ : [[0, T − 1]]× X T × (MX

N )
T
−→ Γ, ϕ progressively measurable

}
,

where MX
N := {m ∈ P(X ) : for any x ∈ X ,m(x) = k

N
, k ∈ [[0, N ]]} is the set of empirical measures

of N -samples. Notice that the set R̂N is finite. Indeed this is a consequence of the finiteness of MX
N ,

whose cardinality is (N+|X |−1)!
N !(|X |−1)! . Thus, we endow this set with the discrete topology. Analogously to

what is done above, we set

Êt,N :=
{
ϕ : X t+1 × (MX

N )
t+1

−→ Γ, ϕ Borel-measurable
}
,

Ê
(t)
N :=

{
ϕ : [[0, t]]× X t+1 × (MX

N )
t+1

−→ Γ, ϕ progressively measurable
}
.

Finally, set

D := {w : R → R}, D̂ := {w : R̂ → R̂},(2.1)

which are respectively the sets of restricted and not strategies modifications. Notice again that the
former set is clearly finite and the latter, when restricted to the N -player game, is finite and denoted
by

D̂N := {w : R̂N → R̂N}.(2.2)

In the following we make extensive use of the concepts of regular conditional distribution and
probability kernel, for which we refer to [15]. For all N ∈ N, we define the set of flows of kernels

KN := {β = (βt)
T−1
t=0 : βt probability kernel from (R̂N ,B(R̂N )) to (Êt,N ,B(Êt,N )),

for all t ∈ [[0, T ]]}.

We can provide a natural interpretation for a flow of kernels β ∈ KN in our context. It represents
some procedure through which players in the N -player game select their strategies. Indeed, a player

receives a R̂N -valued suggestion from the mediator at the beginning of the game and then, at each

time step t ∈ [[0, T − 1]], determines his Êt,N -valued strategy as a function of the suggestion received
and an additional independent randomization factor (e.g. tossing a coin).

Finally, in the following, all σ-algebras and filtrations are assumed to be completed w.r.t. P-null
sets.

3. The N-player game

Consider a fixed number of players, N ∈ N, and let mN ∈ P(XN ) represent the initial distribution

of the N -player system. For any probability distribution γ ∈ P(R̂N ), we define the set NN
γ as

NN
γ :=

{
γ̃ ∈ P(R̂N × R̂N ) : γ̃(dϕ, dψ) = β0(ϕ, dψ0) . . . βT−1(ϕ, dψT−1)γ(dϕ),(3.1)

for some β = (βt)
T−1
t=0 ∈ KN

}
.

where, for all t ∈ [[0, T − 1]], ψt is the short form for ψ(t, ·, ·). The elements of NN
γ represent the joint

distribution of the mediator’s suggestion and players’ strategy choices. In particular, if γ̃ ∈ NN
γ , then

the first marginal of γ̃ equals γ.

Finally, for a probability distribution γN ∈ P(R̂N
N ), we denote its i-th marginal by

γNi (·) := γN (R̂N × · · · × · × · · · × R̂N ),

where · on the right-hand side above occupies the i-th coordinate.

Definition 3.1. We call correlated suggestion any probability distribution γN ∈ P(R̂N
N ). Then, con-

sider a probability distribution γ̃ ∈ NN
γN
i

and call it a strategy modification for the i-th player. Let

(ΩN ,FN ,PN ) be a complete probability space carrying X -valued random variables (X1,N
t , . . . ,X

N,N
t )Tt=0,

R̂N -valued random variables Φ1, . . . ,ΦN , Φ̃i, and Z-valued random variables (ξ1,Nt , . . . , ξ
N,N
t )Tt=1 and

(ϑt)
T−1
t=0 such that the following properties hold:



CORRELATED EQUILIBRIA FOR MEAN FIELD GAMES WITH PROGRESSIVE STRATEGIES 5

i) PN ◦ (X1,N
0 , . . . ,X

N,N
0 )−1 = mN ;

PN ◦ (Φ1, . . . ,ΦN )−1 = γN ;

ii) (ξ1,Nt , . . . , ξ
N,N
t )Tt=1 are i.i.d. all distributed according to ν;

iii) (ϑt)
T−1
t=0 are i.i.d. all distributed according to ν;

iv) (ξ1,Nt , . . . , ξ
N,N
t )Tt=1, (X

j,N
0 )Nj=1, (ϑt)

T−1
t=0 , and (Φj)

N
j=1 are independent;

v) P ◦ (Φi, Φ̃i)
−1 = γ̃ and, for any t ∈ [[0, T − 1]], Φ̃i(t, ·, ·) is σ(Φi, ϑt)-measurable;

vi) for any t ∈ [[0, T − 1]],

X
i,N
t+1 = Ψ

(
t,X

i,N
t , µ

i,N
t , Φ̃i(t,X

i,N , µi,N ), ξi,Nt+1

)
,

X
j,N
t+1 = Ψ

(
t,X

j,N
t , µ

j,N
t ,Φj(t,X

j,N , µj,N ), ξj,Nt+1

)
, j 6= i, PN -a.s.,

(3.2)

where µl,Nt denotes the empirical measure of all N players’ states but the l-th,

i.e. µl,Nt := 1
N−1

∑N
j=1,j 6=l δXj,N

t
, and µl,N := (µl,Nt )Tt=0 ∈ P(X )T+1 .

Any tuple ((ΩN ,FN ,PN ), (Φj)
N
j=1, (ϑt)

T−1
t=0 , (ξ

1,N
t , . . . , ξ

N,N
t )Tt=1, Φ̃i, (X

1,N
t , . . . ,X

N,N
t )Tt=0) satisfying the

conditions above is called a realization of the triple (mN , γN , γ̃) for player i ∈ [[1, N ]].

The correlated suggestion γN represents the known distribution, over the product set of the play-
ers’ strategies, according to which the mediator gives his recommendations to the players, while γ̃
represents the strategy modification for the deviating i-th player, encoded as the joint distribution
of the suggestion received and the strategy he is actually taking into action. The fact that, for any

t ∈ [[0, T − 1]], Φ̃i(t, ·, ·) is σ(Φi, ϑt)-measurable yields that, at any time instant t ∈ [[0, T − 1]], the
ith player can exploit an (independent) randomization device to choose the strategy that he actually
implements.

Remark 3.2. Notice that, for any w ∈ D̂N , given a sequence of suggestions (Φj)
N
j=1, Φ̃i = w(Φi)

satisfies assumption v) in Definition 3.1, with σ(Φ̃i(t, ·, ·)) ⊂ σ(Φi) and P ◦ (Φi, Φ̃i)(dϕ, dψ) =
δw(ϕ)(dψ)γ

N
i (dϕ).

Remark 3.3. We make the following useful remarks concerning (conditional) independence properties
of a realization.

i) Notice that the following inclusion of σ-algebras holds σ(Φ̃i) ⊆ σ((ϑt)
T−1
t=0 ,Φi), by definition.

Indeed, we have

σ(Φ̃i) = σ((Φ̃i(t, ·, ·))
T−1
t=0 ) =

∨

t∈[[0,T−1]]

σ(Φ̃i(t, ·, ·)) ⊆
∨

t∈[[0,T−1]]

σ(Φi, ϑt) = σ(Φi, (ϑt)
T−1
t=0 ),

The identities above hold since, for all t ∈ [[0, T − 1]], Êt,N are equipped with discrete topology

(making them Polish spaces) so the Borel σ-algebra of the product space R̂N coincides with

the product of the Borel σ-algebras of Êt,N . Thus, the σ-algebra generated by a R̂N -valued r.v.

coincides with the one generated by its components in Êt,N .
ii) Notice that the assumptions in Definition 3.1, in particular iv) and v), imply that for a real-

ization of (mN , γN , γ̃) as above

(ξ1,Nt , . . . , ξ
N,N
t )Tt=1, (X

j,N
0 )Nj=1 and (Φ̃i, (Φj)

N
j=1)) are independent.

In fact, by v), σ(Φ̃i, (Φj)
N
j=1)) ⊆ σ((ϑt)

T−1
t=0 , (Φj)

N
j=1) and the σ-algebras σ((ϑt)

T−1
t=0 , (Φj)

N
j=1),

σ((ξ1,Nt , . . . , ξ
N,N
t )Tt=1) and σ((X

j,N
0 )Nj=1) are independent by iv).

iii) For a realization of (mN , γN , γ̃), as above,

(Φj)
N
j=1 and Φ̃i are conditionally independent given Φi.
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We notice that (Φj)j := (Φj)
N
j=1 and ϑ := (ϑt)

T−1
t=0 are conditionally independent given Φi.

Indeed, given A ∈ B(R̂N
N ), B ∈ B(ZT+1), we have, PN -a.s.,

EN [IA((Φj)j)IB(ϑ)|Φi] = EN [EN [IA((Φj)j)IB(ϑ)|(Φ1, . . . ,ΦN )]|Φi]

= EN [IA((Φj)j)EN [IB(ϑ)|(Φ1, . . . ,ΦN )]|Φi]

= EN [IA((Φj)j)EN [IB(ϑ)]|Φi] = EN [IB(ϑ)]EN [IA((Φj)j)|Φi]

= EN [IB(ϑ)|Φi]EN [IA((Φj)j)|Φi].

Then, for arbitrary sets A ∈ B(R̂N
N ), B ∈ B(R̂N ), exploiting iv) and v) and the conditional

independence showed above, we see, PN -a.s.,

EN [IA((Φj)j)IB(Φ̃i)|Φi] = EN [EN [IA((Φj)j)IB(Φ̃i)|σ(ϑ,Φi)]|Φi]

= EN [IB(Φ̃i)EN [IA((Φj)j)|σ(ϑ,Φi)]|Φi]

= EN [IB(Φ̃i)EN [IA((Φj)j)|Φi]|Φi]

= EN [IB(Φ̃i)|Φi]EN [IA((Φj)j)|Φi]

= EN [IB(Φ̃i)|Φi]EN [IA((Φj)j)|Φi].

Remark 3.4. There is a strategy modification of particular interest for every correlated suggestion and
every player. It reflects the case in which the player i, as all the other players, follows the suggestion
he is given by the mediator. Exploiting the definition of realization of a certain triple, this corresponds

to Φi = Φ̃i,PN -a.s.. In particular, let PN ◦Φ−1
i = γ, we have

PN ◦ (Φi, Φ̃i)
−1(dϕ, dψ) = PN ◦ (Φi,Φi)

−1(dϕ, dψ) = δφ(dψ)γ(dϕ).

We denote this special strategy modification with ιγ ∈ NN
γ .

Notice that property v) is obviously satisfied in this case and, viceversa, for a realization of the triple

(m0, γ
N , ιγN

i
), we have Φi = Φ̃i, PN -a.s. and Φ̃i(t, ·, ·) is σ(Φi, ϑt)-measurable, for any t ∈ [[0, T − 1]].

The formalization of the concept of realization enables us to associate to the triple (mN , γN , γ̃) ∈

P(XN )× P(R̂N
N )× P(R̂N × R̂N ) a cost functional for player i, through the following expression:

(3.3) JN
i (mN , γN , γ̃) := E

[
T−1∑

t=0

f
(
t,X

i,N
t , µ

i,N
t , Φ̃i

(
t,Xi,N , µi,N

))
+ F

(
X

i,N
T , µ

i,N
T

)]
.

By construction, the right-hand side of (3.3) does not depend on the particular realization but only
on (mN , γN , γ̃). Indeed, γ̃ ∈ NN

γN
i

yields

γ̃(dϕ, dψ) = βN0 (ϕ(0), dψ0) . . . β
N
T (ϕ(T ), dψT )(γ

N
i )(dϕ),

for some βN = (βNt )t∈[[0,T ]] ∈ KN . Thus, the cost functional above is well-posed and we write

JN
i (mN , γN , γ̃) =

∫

XN

∫

ZNT

∫

R̂N
N

∫

Ê0,N

. . .

∫

ÊT,N

GN (x1, . . . , xN , ϕ0, . . . , ϕT−1, u1, . . . , uN , z1, . . . , zNT )

βNT (ui, dϕT ) · · · β
N
0 (ui, dϕ0)γ

N (du1, . . . , duN )ν⊗NT (dz1, . . . , dzNT )m
⊗N
0 (dx1, . . . , dxN ),

for some measurable function GN : XN × Ê0,N × . . .× ÊT−1,N × R̂N
N ×ZNT → R.

Since, for each i ∈ [[1, N ]], the functional JN
i (·) represents the costs that player i faces, his aim is

to minimize it. As natural when dealing with several players, we deal with an equilibrium concept for
optimality.

Definition 3.5. Let ε ≥ 0. We call a distribution γN ∈ P(R̂N
N ) an ε-correlated equilibrium with

initial distribution mN ∈ P(XN ) if we have

JN
i (mN , γN , ιγN

i
) ≤ JN

i (mN , γN , γ̃) + ε,

for every player i ∈ [[1, N ]] and every strategy modification γ̃ ∈ NγN
i
.

In particular, we call γN a correlated equilibrium, denoted by CE, if ε = 0.
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Definition 3.5 is in line with the notion of correlated equilibrium present in the literature. We stress
that, here, the deviating player has access to the entire history of the system and, in addition, is
allowed to use a randomization device.

4. The mean field game

Let m0 ∈ P(X ) be the initial distribution of our mean field system. In this model there is only one
representative player in the mean field game because of the symmetry in the N -player game.

Definition 4.1. Let ρ ∈ P
(
R×P(X )T+1) and call it a correlated suggestion. Call strategy modifica-

tion a function w ∈ D̂. Then, let (Ω,F ,P) be a probability space supporting X -valued process (Xt)
T
t=0,

an R-valued random variable Φ, a P(X )T+1 -valued random variable µ and Z-valued random variables
(ξt)

T
t=1, such that the following properties hold:

i) P ◦X−1
0 = m0;

ii) P ◦ (Φ, (µt)
T
t=0)

−1 = ρ;
iii) (ξt)

T
t=1 are i.i.d. all distributed according to ν;

iv) (ξt)
T
t=1, X0 and (Φ, (µt)

T
t=0) are independent;

v) the evolution of (Xt)
T
t=0 follows this dynamics: for any t ∈ [[0, T − 1]],

Xt+1 = Ψ(t,Xt, µt, w ◦ Φ(t,X, µ), ξt+1) , P-a.s..(4.1)

We call any tuple
(
(Ω,F ,P),Φ, (µt)

T
t=0,X0, (ξt)

T
t=1, w, (Xt)

T
t=0

)
satisfying the conditions above a real-

ization of the triple (m0, ρ, ρ̃).

The strategy modification w represents how the representative player decides to deviate from the
suggestion he was given. Notice that, contrary to the N -player game where the ith player can exploit
a randomization device when selecting the strategy to put in action, the choice here is a deterministic
functional of the suggestion, Φ, provided by the mediator.

Remark 4.2. As for the N -player game, we can characterize the form of a realization for the case in
which the representative player follows the suggestion provided to him.
This is the case when the function w is just the identity. Indeed, we have w ◦φ(t, x(t),m(t)) = φ(t, xt),
for each t ∈ [[0, T − 1]] and φ ∈ R. We call this special modification ι.

The player in the mean field game faces costs associated to the triple (m0, ρ, w) ∈ P(X ) × P
(
R×

P(X )T+1)× D̂ that are given by

(4.2) J(m0, ρ, w) := E

[
T−1∑

t=0

f
(
t,Xt, µt, w ◦Φ(t,X(t), µ(t))

)
+ F (XT , µT )

]
.

As noticed for the N -player game, we highlight that the cost functional above is well defined since
the right-hand side does not depend on the realization considered but only on (m0, ρ, w), and we may
write

J(m0, ρ, w) =

∫

X

∫

ZT

∫

R×P(X )T+1

Gw(x, φ, z,m)ρ(dφ, dm)ν⊗T (dz)m0(dx),(4.3)

for some function Gw : X ×R×ZT × P(X )T+1 → R.

Definition 4.3. We say that ρ ∈ P
(
R× P(X )T+1) is a correlated solution for the mean field game

with initial distribution m0 ∈ P(X ), if the following two conditions hold:

(Opt) For each strategy modification w ∈ D̂,

J(m0, ρ, ι) ≤ J(m0, ρ, w).

(Con) For any realization of (m0, ρ, ι), namely
(
(Ω,F ,P

)
,Φ, (µt)

T
t=0,X0, (ξt)

T
t=1, ι, (Xt)

T
t=0), setting

Fµ := σ
(
(µt)

T
t=0

)
, we have

µt(·) = P(Xt ∈ · |Fµ), t ∈ [[0, T ]].

The first condition above is called optimality condition, the second is called consistency condition.
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Remark 4.4. A correlated solution according to Definition 4.3 is an element of P
(
R × P(X )T+1).

The mediator thus suggests to play strategies that depend only on time and the representative player’s
current state (Markov open-loop or restricted strategies as in [5]). By the optimality condition, follow-
ing the mediator’s recommendations in those restricted strategies has to be optimal against progressive
deviations, that is, strategies that may depend on the entire history of state and flow of measures up
to current time. More precisely, if the representative player decides to deviate, then she chooses a
strategy modification w (not equal to the identity on R) that takes a (restricted) strategy recommended
by the mediator and transforms it into a progressive feedback strategy, which is then applied to generate
the state dynamics; see Eq. (4.1).

Remark 4.5. In the consistency condition of Definition 4.3, we take conditional distribution with
respect to Fµ, the σ-algebra generated by the entire flow of measures µ (up to terminal time T ). This
implies the generally weaker condition

(4.4) µt(·) = P(Xt ∈ · |Fµ
t ), t ∈ [[0, T ]],

where Fµ
t := σ

(
(µs)

t
s=0

)
is the σ-algebra generated by the flow of measures µ up to time t. The

intuition behind conditioning on the entire flow of measures is the following. In choosing a correlated
equilibrium, the mediator wants to induce a certain behavior of the population. That behavior is
represented by the flow of measures µ. In equilibrium, the representative player accepts the mediator’s
recommendations. But those recommendations are potentially correlated with the flow of measures up
to terminal time. As a consequence, the player’s state Xt at any intermediate time t can be correlated
with the flow of measures µ also at future times. In order to reproduce the population behavior given
by µ, the representative player’s state must therefore satisfy the consistency condition according to
(Con), not just (4.4). For further discussion also see Remark 4.2 in [5].

5. The mean field game in open-loop strategies

Now, we formalize an alternative structure for the mean field game, extending the class of admissible
control policies. We then prove in Section 5.2 that, under a mild assumption on the form of the
correlated solution ρ, the value of the MFG remains the same.

5.1. The definition of the MFG in open-loop strategies. Let m0 ∈ P(X ) be the initial distri-
bution of the mean field system.

Definition 5.1. Let ρ ∈ P
(
R×P(X )T+1). A tuple ((Ω,F ,P), {Gt}

T−1
t=0 , Φ, (µt)

T
t=0,X0, (ξt)

T
t=1, (ut)

T−1
t=0 )

is said to be an open-loop control policy (open-loop strategy) if (Ω,F ,P) is a complete probabil-
ity space supporting X -valued random variables Xt, t ∈ [[0, T ]], an R-valued random variable Φ, a
P(X )T+1 -valued random variable µ, Z-valued random variables (ξt)

T
t=1 and Γ-valued random vari-

ables ut, t ∈ [[0, T − 1]], and {Gt}
T−1
t=0 is a complete filtration such that

i) P ◦ (X0)
−1 = m0;

ii) P ◦ (Φ, (µt)
T
t=0)

−1 = ρ;
iii) (ξt)

T
t=1 are i.i.d. all distributed according ν;

iv) (ξt)
T
t=1, X0 and (Φ, (µt)

T
t=0) are independent;

iv’) for each t ∈ [[0, T − 1]]:
– ξt is Gt-measurable and ξt+k, k = 1, . . . , T − t, are jointly independent of Gt,
– Gt = Ht ∨ σ(µ

(t)) ∨ σ(Φ) ∨ σ(X0), with Ht independent of σ(Φ, (µt)
T
t=0,X0),

– ut is Gt-measurable;
v) for all t ∈ [[0, T − 1]],

Xt+1 = Ψ(t,Xt, µt, ut, ξt+1) , P-a.s..(5.1)

We denote with A the set of all open-loop control policies and, with a slight abuse of notation, in
the following we write just (ut)

T−1
t=0 ∈ A for ((Ω,F ,P), {Gt}

T−1
t=0 , Φ, (µt)

T
t=0,X0, (ξt)

T
t=1, (ut)

T−1
t=0 ) ∈ A.

We call any tuple
(
(Ω,F ,P), {Gt}

T−1
t=0 ,Φ, (µt)

T
t=0,X0, (ξt)

T
t=1, (ut)

T−1
t=0 , (Xt)

T
t=0

)
as above a realization

of the triple (m0, ρ, (ut)
T−1
t=0 ).

Remark 5.2. Notice that this new setting includes the previous one. Indeed, setting ut = w ◦
Φ(t,X(t), µ(t)), t ∈ [[0, T − 1]], the recursive structure of the problem yields that ut is Gt-measurable

with Gt = σ(X0) ∨ σ(Φ) ∨ σ(µ
(t)) ∨ σ(ξ(t)), that is Ht = σ(ξ(t)), and thus all the conditions in iv’)
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hold. In particular, the closed-loop strategy ι, corresponding to the case in which the ith-player follows
the mediator’s suggestion induces the open-loop admissible strategy

(5.2) uιt := ι ◦ Φ(t,X(t), µ(t)) = Φ(t,Xt), Φ ∈ R.

In this case the costs associated to the triple (m0, ρ, (ut)
T−1
t=0 ) ∈ P(X ) × P

(
R× P(X )T+1) ×A are

given by

(5.3) Ĵ(m0, ρ, (ut)
T−1
t=0 ) := E

[
T−1∑

t=0

f (t,Xt, µt, ut) + F (XT , µT )

]
.

In this definition of the costs, there is a little abuse of notation. Indeed, (ut)
T−1
t=0 ∈ A stands for

((Ω,F ,P), {Gt}
T−1
t=0 , Φ, (µt)

T
t=0,X0, (ξt)

T
t=1, (ut)

T−1
t=0 ) ∈ A.

Definition 5.3. We say that ρ ∈ P
(
R×P(X )T+1) is an open-loop correlated solution for the mean

field game with initial distribution m0 ∈ P(X ), if the following two conditions hold:

(Opt) For each strategy modification (ut)
T−1
t=0 ∈ A,

Ĵ(m0, ρ, (u
ι
t)
T−1
t=0 ) ≤ Ĵ(m0, ρ, (ut)

T−1
t=0 ).

(Con) For any realization of (m0, ρ, (u
ι
t)
T−1
t=0 ), namely ((Ω,F , {Gt}

T−1
t=0 ,P), Φ, (µt)

T
t=0, X0, (ξt)

T
t=1, (u

ι
t)
T−1
t=0 ,

(Xt)
T
t=0), setting Fµ := σ

(
(µt)

T
t=0

)
, we have

µt(·) = P(Xt ∈ · |Fµ), t ∈ [[0, T ]].

5.2. The optimal value of the objective functional in the MFG. This section is devoted to
proving that the value of the objective functional at equilibrium in the limit game remains the same if
we enlarge the set of admissible strategies to include open-loop controls with the information structure
given in Definition 5.1.

We start by showing that, under suitable technical assumptions needed to guarantee the well-
posedness of all the conditional expectations involved, a conditional Dynamic Programming Principle
holds for MFG solutions in the sense of Definition 4.3. Then, we prove by backward induction in time
that the value of the MFG in closed-loop strategies is the same as the one in open-loop strategies
and that, therefore, a closed-loop solution according to Definition 4.3 is also an open-loop solution
according to Definition 5.3.

Our first assumption requires the state dynamics to be non-degenerate; more precisely:

(A1) For any t ∈ [[0, T − 1]], any m ∈ P(X ), any x, y ∈ X and any u ∈ Γ,

P(Ψ(t, x,m, u, Z) = y) > 0,

where Z is a random variable with distribution ν.

In addition, we make a finiteness assumption on the structure of the correlated solution. To this
end, let ρ be a solution of the MFG starting at m0 according to Definition 4.3. Consider a realization(
(Ω,F ,P),Φ, (µt)

T
t=0,X0, (ξt)

T
t=1, w, (Xt)

T
t=0

)
of (m0, ρ, w) according to Definition 4.1. Given the fact

that R is finite and limiting our analysis to the functions ϕ ∈ R such that P(Φ = ϕ) > 0, the induced
conditional probability Pϕ(·) := P(·|Φ = ϕ) is well-defined. The finiteness assumption on ρ is now:

(R1) If (Φ, (µt)
T
t=0) is distributed according to ρ, then there exists, for any choice of ϕ ∈ R such

that P(Φ = ϕ) > 0, a subset Pϕ ⊂ P(X )T+1 of finite cardinality such that Pϕ(µ
(T ) ∈ Pϕ) = 1

and, for any m ∈ Pϕ, Pϕ(µ
(T ) = m) > 0.

Remark 5.4. The assumptions above are used to ensure the well-posedness of conditional probabilities

of the form Pϕ(·|µ
(t) = m(t),X(t) = x(t)), for any m(t) ∈ P

(t)
ϕ , any x(t) ∈ X t+1, where P

(t)
ϕ :=

πP(X )t+1(Pϕ) = {m ∈ P(X )t+1 s.t. there exists l ∈ P(X )T−t s.t. (m, l) ∈ Pϕ}. Indeed, for this to

hold it is enough to check that Pϕ(µ
(T ) = m,X(T ) = x(T )) > 0, for any x(T ) ∈ X T+1 and any m ∈ Pϕ.

First, exploiting disintegration we write

Pϕ(µ
(T ) = m,X(T ) = x(T )) = Pϕ(X

(T ) = x(T )|µ(T ) = m) · Pϕ(µ
(T ) = m),(5.4)

where the second term in the product on the right is clearly strictly positive by Assumption (R1).
Then, another round of disintegration yields

Pϕ(X
(T ) = x(T )|µ(T ) = m)
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= Pϕ(X0 = x0|µ
(T ) = m)

T−1∏

t=0

Pϕ(Xt+1 = xt+1|µ
(T ) = m,X(t) = x(t))(5.5)

= m0({x0})
T−1∏

t=0

Pϕ(Xt+1 = xt+1|µ
(T ) = m,X(t) = x(t)).

Now, exploiting the iterative dynamics of the state in the game, we have that, for any fixed t ∈ [[0, T−1]],

Pϕ(Xt+1 = xt+1|µ
(T ) = m,X(t) = x(t))

= Pϕ(Ψ(t, xt,mt, ut, ξt+1) = xt+1|µ
(T ) = m,X(t) = x(t))(5.6)

=
∑

γ∈Γ

Pϕ(Ψ(t, xt,mt, γ, ξt+1) = xt+1)Pϕ(ut = γ|µ(T ) = m,X(t) = x(t)) > 0.

Hence, putting together Equations (5.4), (5.5) and (5.6), we get

Pϕ(µ
(T ) = m,X(T ) = x(T )) ≥ Pϕ(µ

(T ) = m)m0({x0})
T−1∏

t=0

Pϕ(Xt+1 = xt+1|µ
(T ) = m,X(t) = x(t)) > 0.

(5.7)

Finally notice that the very same proof can be carried out replacing ut with w ◦ ϕ(t, x(t),m(t)) and so
the result holds, in particular, for the MFG in Definition 4.1.

Let ρ be a solution of the MFG starting at m0 and satisfying (R1). Consider a realization(
(Ω,F ,P),Φ, (µt)

T
t=0,X0, (ξt)

T
t=1, w, (Xt)

T
t=0

)
of (m0, ρ, w). Set ρ2(·|ϕ) = P(µ ∈ ·|Φ = ϕ). Such a

realization then has the following properties, conditionally on the event {Φ = ϕ}:

i)ϕ Pϕ ◦ (X0)
−1 = m0;

ii)ϕ Pϕ ◦ (Φ, (µt)
T
t=0)

−1 = Pϕ ◦ (ϕ, (µt)
T
t=0)

−1 = δϕ ⊗ ρ2(·|ϕ);
iii)ϕ (ξt)

T
t=1 are i.i.d. all distributed according to Pϕ · (ξt)

−1 = ν;

iv)ϕ (ξt)
T
t=1, X0 and (µt)

T
t=0 are independent w.r.t. Pϕ;

v)ϕ for all t ∈ [[0, T − 1]],

Xt+1 = Ψ
(
t,Xt, µt, w ◦ ϕ(t,X(t), µ(t)), ξt+1

)
, Pϕ-a.s..(5.8)

Notice that properties i)ϕ, ii)ϕ, iii)ϕ, iv)ϕ and v)ϕ are a consequence of the corresponding properties
in the unconditional setting and the independence in property iv).

Hence, the (conditional) costs associated to the triple (m0, ρ, w) ∈ P(X ) × P
(
R × P(X )T+1) × D̂

are

(5.9) Jϕ(m0, ρ, w) := Eϕ

[
T−1∑

t=0

f
(
t,Xt, µt, w ◦ ϕ(t,X(t), µ(t))

)
+ F (XT , µT )

]
,

where Eϕ[·] := E[·|Φ = ϕ].

We set

Jϕ(t, x
(t),m(t), w) = Eϕ

[
T−1∑

s=t

f(s,Xs, µs, w ◦ ϕ(s,X(s), µ(s))) + F (XT , µT )|X
(t) = x(t), µ(t) = m(t)

]
.

and thus, in particular,

Jϕ(T, x
(T ),m(T ), w) = F (xT ,mT ).

Notice that, for any fixed t ∈ [[0, T − 1]], X(t) and (µs)
T
s=t+1 are Pϕ-conditionally independent given

µ(t). Indeed, consider a fixed t ∈ [[0, T − 1]] and let x(t) ∈ X t+1 and m[t+1] := (ms)
T
s=t+1 ∈ P

[T−t]
ϕ , with

P
[T−t]
ϕ := πP(X )T−t(Pϕ) = {m ∈ P(X )T−t s.t. there exists l ∈ P(X )t+1 s.t. (l,m) ∈ Pϕ}. Exploiting

tower property and measurability, we have

Pϕ(X
(t) = x(t), (µs)

T
s=t+1 = m[t+1]|µ(t)) = Eϕ[Eϕ[1{x(t)}(X

(t))1{m[t+1]}((µs)
T
s=t+1)|X0, µ

(t), ξ(t)]|µ(t)]

= Eϕ[1{x(t)}(X
(t))Eϕ[1{m[t+1]}((µs)

T
s=t+1)|X0, µ

(t), ξ(t)]|µ(t)]
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= Eϕ[1{x(t)}(X
(t))Eϕ[1{m[t+1]}((µs)

T
s=t+1)|µ

(t)]|µ(t)]

= Eϕ[1{m[t+1]}((µs)
T
s=t+1)|µ

(t)]Eϕ[1{x(t)}(X
(t))|µ(t)]

= Pϕ(X
(t) = x(t)|µ(t))Pϕ((µs)

T
s=t+1 = m[t+1]|µ(t)).

As a consequence of the conditional independence stated above, Jϕ(t, x
(t),m(t), w) = Jϕ(t, x

(t),m(t), w̃)

if w ◦ ϕ(u, ·) = w̃ ◦ ϕ(u, ·), for u ≥ t. Indeed, take w, w̃ ∈ D̂ such that w ◦ ϕ(u, ·) = w̃ ◦ ϕ(u, ·), for
u ≥ t. We have

Jϕ(t, x
(t),m(t), w̃) = Eϕ

[
T−1∑

s=t

f(s,Xs, µs, w̃ ◦ ϕ(s,X(s), µ(s))) + F (XT , µT )|X
(t) = x(t), µ(t) = m(t)

](5.10)

=: Eϕ

[
Gt(x

(t),m(t), (µs)
T
s=t+1, (ξs)

T
s=t+1, (w̃ ◦ ϕ(s, ·))Ts=t)|X

(t) = x(t), µ(t) = m(t)
]

=

∫

ZT−t

∑

m[t+1]∈PT−t
ϕ

Gt(x
(t),m(t),m[t+1], (zs)

T
s=t+1, (w̃ ◦ ϕ(s, ·))Ts=t)Pϕ((µs)

T
s=t+1 = m[t+1]|µ(t))ν⊗(T−t−1)(dz)

=

∫

ZT−t

∑

m[t+1]∈PT−t
ϕ

Gt(x
(t),m(t),m[t+1], (zs)

T
s=t+1, (w ◦ ϕ(s, ·))Ts=t)Pϕ((µs)

T
s=t+1 = m[t+1]|µ(t))ν⊗(T−t−1)(dz)

= Jϕ(t, x
(t),m(t), w),

where we have used the notation dz = dzt+1, . . . , dzT and in the third identity we have exploited the
fact that, for any fixed t ∈ [[0, T − 1]], X(t) and (µs)

T
s=t+1 are Pϕ-conditionally independent given µ(t).

Then, we write Jϕ(t, x
(t),m(t), (ws)

T
s=t) = Jϕ(t, x

(t),m(t), w). Thus, the optimal value function is
defined as

Vϕ(t, x
(t),m(t))

= inf
wt∈R̂t

Eϕ

[
T−1∑

s=t

f(s,Xs, µs, wt(s,X
(s), µ(s))) + F (XT , µT )|X

(t) = x(t), µ(t) = m(t)

]
,

where R̂t := {w : [[t, T ]]× X T × Pϕ → Γ, progressively measurable}.
Our aim, now, is to show that, even in this non-Markovian setting, the following DPP holds.

Proposition 5.5. For any t ∈ [[0, T − 1]],

Vϕ(t, x
(t),m(t))

= inf
γ∈Γ

Eϕ

[
f(t, xt,mt, γ) + Vϕ

(
t, (x(t),Ψ(t, xt,mt, γ, ξt+1)), (m

(t), µt+1)
) ∣∣∣∣X

(t) = x(t), µ(t) = m(t)

]
.

Proof. By construction and measurability properties, it holds

Vϕ(t, x
(t),m(t))

= inf
wt∈R̂t

Eϕ

[
T−1∑

s=t

f(s,Xs, µs, wt(s,X
(s), µ(s))) + F (XT , µT )

∣∣∣X(t) = x(t), µ(t) = m(t)

]

= inf
wt∈R̂t

Eϕ

[
f(t, xt,mt, wt(t, x

(t),m(t))) +

T−1∑

s=t+1

f(s,Xs, µs, wt(s,X
(s), µ(s)))

+ F (XT , µT )
∣∣∣X(t) = x(t), µ(t) = m(t)

]

= inf
wt∈R̂t

{
f(t, xt,mt, wt(t, x

(t),m(t)))

+
∑

(y,l)∈X×Pϕ

Pϕ(Ψ(t, xt,mt, wt(t, x
(t),m(t)), ξt+1) = y, µt+1 = l|X(t) = x(t), µ(t) = m(t))·
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· Eϕ

[ T−1∑

s=t+1

f(s,Xs, µs, wt(s,X
(s), µ(s))) + F (XT , µT )

∣∣∣X(t+1) = (x(t), y), µ(t+1) = (m(t), l)
]}

Now, exploiting the fact that Pϕ is finite (to exchange the inf and the summation) and the conditional
independence property shown above (together with the consequent identity in Equation (5.10)), we
have

Vϕ(t, x
(t),m(t))

= inf
γ∈Γ

inf
wt+1∈R̂t+1

{
f(t, xt,mt, γ)

+
∑

(y,l)∈X×Pϕ

Pϕ(Ψ(t, xt,mt, γ, ξt+1) = y, µt+1 = l|X(t) = x(t), µ(t) = m(t))·

· Eϕ

[ T−1∑

s=t+1

f(s,Xs, µs, ws(X
(s), µ(s))) + F (XT , µT )

∣∣∣X(t+1) = (x(t), y), µ(t+1) = (m(t), l)
]}

= inf
γ∈Γ

{
f(t, xt,mt, γ)

+
∑

(y,l)∈X×Pϕ

inf
wt+1∈R̂t+1

{
Pϕ(Ψ(t, xt,mt, γ, ξt+1) = y, µt+1 = l|X(t) = x(t), µ(t) = m(t))·

· Eϕ

[ T−1∑

s=t+1

f(s,Xs, µs, ws(X
(s), µ(s))) + F (XT , µT )

∣∣∣X(t+1) = (x(t), y), µ(t+1) = (m(t), l)
]}}

= inf
γ∈Γ

{
f(t, xt,mt, γ) +

∑

(y,l)∈X×Pϕ

{
Vϕ(t+ 1, (x(t+1), y), (m(t), l))·

· Pϕ(Ψ(t, xt,mt, γ, ξt+1) = y, µt+1 = l|X(t) = x(t), µ(t) = m(t))

}}

= inf
γ∈Γ

{
Eϕ

[
f(t, xt,mt, γ) + Vϕ(t, (x

(t),Ψ(t, xt,mt, γ, ξt+1)), (m
(t), µt+1))|X

(t) = x(t), µ(t) = m(t)
]}
.

�

Thus, we have shown the DPP and we can proceed with the second step.

Proposition 5.6. Assume (A1). Let ρ ∈ P(R × P(X )T+1 ) be a correlated solution of the MFG
in closed-loop strategies starting at m0 according to Definition 4.3. If ρ satisfies (R1), then ρ is a
solution for the mean field game in open-loop strategies, as in Definition 5.3, too. In particular, for

any ϕ ∈ R, V̂ϕ(t, x
(t),m(t)) and Vϕ(t, x

(t),m(t)) coincide.

Remark 5.7. Notice that, since the consistency conditions in Definitions 4.3 and 5.3 are the same
and the set of closed-loop strategies is included in the set of open-loop strategies, a solution of the
correlated MFG in open-loop strategies, ρ ∈ P(R × P(X )T+1 ), is automatically a solution for the
corresponding game in closed-loop strategies.

Proof. We have already discussed the form of the objective functional for the MFG in closed-loop
controls when showing the DPP. Regarding the relaxed MFG, conditionally on the suggestion received
by the representative player (that is on the event {Φ = ϕ}), a realization of (m0, ρ, (ut)

T−1
t=0 ), i.e. a

tuple
(
(Ω,F , {Gt}

T−1
t=0 ,P),Φ, (µt)

T
t=0, X0, (ξt)

T
t=1, (ut)

T−1
t=0 , (Xt)

T
t=0

)
, satisfies the following:

i)ϕ Pϕ ◦ (X0)
−1 = m0;

ii)ϕ Pϕ ◦ (Φ, (µt)
T
t=0)

−1 = δϕ ⊗ ρ2(·|ϕ);
iii)ϕ (ξt)

T
t=1 are i.i.d. all distributed according Pϕ ◦ (ξt)

−1 = ν;
iv)ϕ (ξt)

T
t=1, X0 and (µt)

T
t=0 are independent w.r.t. Pϕ;

iv’)ϕ For each t ∈ [[0, T − 1]],
– ξt is Gt-measurable and ξt+k, k = 1, . . . , T − t, are jointly independent of Gt w.r.t. Pϕ,
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– Gt = Ht ∨ σ(µ
(t)) ∨ σ(Φ) ∨ σ(X0), with Ht independent of σ((µt)

T
t=0,X0,Φ) w.r.t. Pϕ,

– ut is Gt-measurable,
v’)ϕ for any t ∈ [[0, T − 1]],

Xt+1 = Ψ(t,Xt, µt, ut, ξt+1) , Pϕ-a.s..(5.11)

Let’s quickly review how we check the properties in iv’)ϕ. Notice that the other properties are
trivial. Let us first recall that measurability properties concern σ-algebras and not the specific prob-
ability measure on them, hence we have to exhibit proofs only for the independence properties. For
any arbitrary fixed t ∈ [[0, T − 1]], we have

• (ξt+k)
T−t
k=1, are jointly independent of Gt w.r.t. Pϕ. Indeed, let A ∈ Gt and (Bk)

T−t
k=1 ∈ B(Z),

exploiting the tower property, the fact that σ(Φ) ⊂ Gt and the fact that Gt and (ξt+k)
T−t
k=1 are

independent w.r.t. P, we obtain

Pϕ(A ∩ {ξt+1 ∈ B1} ∩ · · · ∩ {ξT ∈ BT−t}) =
E[1{ϕ}(Φ)1A1B1(ξt+1) . . . 1BT−t

(ξT )]

P(Φ = ϕ)

=
E[E[1{ϕ}(Φ)1A1B1(ξt+1) . . . 1BT−t

(ξT )|Gt]]

P(Φ = ϕ)
=

E[1{ϕ}(Φ)1AE[1B1(ξt+1) . . . 1BT−t
(ξT )|Gt]]

P(Φ = ϕ)

=
E[1{ϕ}(Φ)1A

∏T−t
k=1 P(ξt+k ∈ Bk)]

P(Φ = ϕ)
=

T−t∏

k=1

P(ξt+k ∈ Bk)P(A|Φ = ϕ).

• Gt = Ht∨σ(µ
(t))∨σ(Φ)∨σ(X0), with Ht independent of σ(µ,X0,Φ) w.r.t. Pϕ. By assumption,

Ht, σ(X0) and σ(Φ, µ) are independent w.r.t. P. Take A ∈ Ht, B ∈ σ(µ) and C ∈ σ(X0), we
get

Pϕ(A ∩B ∩ C) =
E[1{ϕ}(Φ)1A1B1C ]

P(Φ = ϕ)
=

E[E[1{ϕ}(Φ)1A1B1C |Φ, µ]]

P(Φ = ϕ)
=

E[1{ϕ}(Φ)1BE[1A1C |Φ, µ]]

P(Φ = ϕ)

=
E[1{ϕ}(Φ)1BE[1A1C ]]

P(Φ = ϕ)
=

P(A)P(C)E[1{ϕ}(Φ)1B ]

P(Φ = ϕ)
= Pϕ(A)Pϕ(C)Pϕ(B).

The (conditional) costs associated to the triple (m0, ρ, (ut)
T−1
t=0 ) ∈ P(X )×P

(
R×P(X )T+1)×A are

(5.12) Ĵϕ(m0, ρ, (ut)
T−1
t=0 ) := Eϕ

[
T−1∑

t=0

f (t,Xt, µt, ut)) + F (XT , µT )

]
.

Then,

V̂ϕ(t, x
(t),m(t)) = inf

(ut)
T−1
t=0 ∈A

Eϕ

[
T−1∑

s=t

f(s,Xs, µs, us) + F (XT , µT )|X
(t) = x(t), µ(t) = m(t)

]
,

and so, in particular, at the terminal time T ∈ N, we have

V̂ϕ(T, x
(T ),m(T )) = F (XT ,mT ).

We want to prove that V̂ϕ = Vϕ. One side of the inequality is straightforward. Indeed, closed-loop
controls as in Definition 4.1 induce admissible open-loop controls in the sense of Definition 5.1, through

ut := w ◦ ϕ(t,X(t), µ(t)), t ∈ [[0, T − 1]].

Thus, it holds V̂ϕ ≤ Vϕ. We show that V̂ϕ ≥ Vϕ, by backward induction on t. We have V̂ϕ(T, x
(T ),m(T )) =

F (XT ,mT ) = Vϕ(T, x
(T ),m(T )). Now, as an induction hypothesis, assume that V̂ϕ(t+1, x(t+1),m(t+1)) =

Vϕ(t + 1, x(t+1),m(t+1)). To prove that V̂ϕ(t, x
(t),m(t)) = Vϕ(t, x

(t),m(t)), it is enough to check that

Ĵϕ(t, x
(t),m(t), (ut)

T−1
t=0 ) ≥ Vϕ(t, x

(t),m(t)), for any admissible sequence of controls u ∈ A. Exploiting
the definitions and induction hypothesis, we see

Ĵϕ(t, x
(t),m(t), (ut)

T−1
t=0 ) = Eϕ

[
T−1∑

s=t

f(s,Xs, µs, us) + F (XT , µT )

∣∣∣∣X
(t) = x(t), µ(t) = m(t)

]

= Eϕ

[
f(t, xt,mt, ut)

∣∣∣X(t) = x(t), µ(t) = m(t)
]



14 OFELIA BONESINI, LUCIANO CAMPI, AND MARKUS FISCHER

+

∫

X×P(X )
Pϕ(Xt+1 = Xt+1, µt+1 = mt+1|X

(t) = x(t), µ(t) = m(t))·

· Eϕ

[
T−1∑

s=t+1

f(s,Xs, µs, us) + F (XT , µT )

∣∣∣∣X
(t+1) = x(t+1), µ(t+1) = m(t+1)

]

= Eϕ

[
f(t, xt,mt, ut)

∣∣∣X(t) = x(t), µ(t) = m(t)
]
+

∫

X×P(X )
Ĵϕ(t+ 1, x(t+1),m(t+1), u)·

· Pϕ(Xt+1 = xt+1, µt+1 = mt+1|X
(t) = x(t), µ(t) = m(t))

≥ Eϕ

[
f(t, xt,mt, ut)

∣∣∣X(t) = x(t), µ(t) = m(t)
]
+

∫

X×P(X )
Vϕ(t+ 1, x(t+1),m(t+1))·

· Pϕ(Xt+1 = xt+1, µt+1 = mt+1|X
(t) = x(t), µ(t) = m(t)).

Now, exploiting, in sequence, the fact that ξt+1 is jointly independent of X(t), ut and µ(t+1), the
tower property, the fact that ut is Gt-measurable, the fact that µt+1 and Gt are Pϕ-conditionally

independent given µ(t) and the measurability properties of conditional expectations, we obtain, for
any A ∈ B(P(X )), B ∈ B(Z) and C ∈ B(Γ),

Pϕ(µt+1 ∈ A, ξt+1 ∈ B,ut ∈ C|X(t) = x(t), µ(t) = m(t))(5.13)

= Pϕ(ξt+1 ∈ B|X(t) = x(t), µ(t) = m(t))Pϕ(µt+1 ∈ A, ut ∈ C|X(t) = x(t), µ(t) = m(t))

= Pϕ(ξt+1 ∈ B)
E[(1A(µt+1)1C(ut))(1{x(t)}(X

(t))1{m(t)}(µ
(t))1{ϕ}(Φ))]

P(X(t) = x(t), µ(t) = m(t),Φ = ϕ)

= Pϕ(ξt+1 ∈ B)
E[E[1A(µt+1)|Gt]]1C(ut)1{x(t)}(X

(t))1{m(t)}(µ
(t))1{ϕ}(Φ)

P(X(t) = x(t), µ(t) = m(t),Φ = ϕ)

= Pϕ(ξt+1 ∈ B)
E[E[1A(µt+1)|Φ, µ

(t)]1C(ut)1{x(t)}(X
(t))1{m(t)}(µ

(t))1{ϕ}(Φ)]

P(X(t) = x(t), µ(t) = m(t),Φ = ϕ)

= Pϕ(ξt+1 ∈ B)E[1C(ut)E[1A(µt+1)|Φ, µ
(t)]|X(t) = x(t), µ(t) = m(t),Φ = ϕ]

= Pϕ(ξt+1 ∈ B)E[1A(µt+1)|Φ = ϕ, µ(t) = m(t)]E[1C(ut)|X
(t) = x(t), µ(t) = m(t),Φ = ϕ]

= Pϕ(ξt+1 ∈ B)Pϕ(µt+1 ∈ A|µ(t) = m(t))Pϕ(ut ∈ C|X(t) = x(t), µ(t) = m(t))

= ν(B)Pϕ(µt+1 ∈ A|µ(t) = m(t))λt(C),

where λt(C) := Pϕ(ut ∈ C|X(t) = x(t), µ(t) = m(t)). Then, exploiting the iterative dynamics of the
state and Equation (5.13), we have

Ĵϕ(t, x
(t),m(t), (ut)

T−1
t=0 ) ≥ Eϕ

[
f(t, x,mt, ut)

+ Vϕ(t+ 1, (x(t),Ψ(t, xt,mt, ut, ξt+1)), (m
(t), µt+1))|X

(t) = x(t), µ(t) = m(t)
]

= Eϕ

[
f(t, x,mt, ut) +

∫

Z
Vϕ(t+ 1, (x(t),Ψ(t, xt,mt, ut, z)), (m

(t), µt+1))ν(dz)|X
(t) = x(t), µ(t) = m(t)

]

=

∫

Γ

{
f(t, x,mt, γ) +

∫

Z
Eϕ

[
Vϕ(t+ 1, (x(t),Ψ(t, xt,mt, γ, z)), (m

(t) , µt+1))|µ
(t) = m(t)

]
ν(dz)

}
λt(dγ)

≥ inf
γ∈Γ

{
f(t, x,mt, γ)) +

∫

Z
Eϕ

[
Vϕ(t+ 1, (x(t),Ψ(t, xt,mt, γ, z)), (m

(t) , µt+1))|µ
(t) = m(t)

]
ν(dz)

}

= Vϕ(t, x
(t),m(t)),

where the last identity follows from the DPP in Proposition 5.5. Finally, to conclude it is sufficient to
integrate with respect to ρ1(dϕ). Hence, we have shown that under Assumptions (A1) and (R1) the
optimal value of the two mean field games is the same.

�
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6. Approximate N-player Correlated Equilibria

Here, we show how to construct approximate N -player correlated equilibria starting from a suitable
solution of the MFG. We make the following additional assumptions on dynamics and costs:

(A2) Continuity of Ψ: [[0, T − 1]]× X × Γ×Z → X :
1) For every (t, x, γ) ∈ [[0, T − 1]]× X × Γ and for all m, m̃ ∈ P(X ),

ν ({z : Ψ(t, x,m, γ, z) 6= Ψ(t, x, m̃, γ, z)}) ≤ w(dist(m, m̃)),

where w : [0,+∞) → [0, 1] is some non-decreasing function with lims→0+ w(s) = 0.
2) For any t ∈ [[0, T − 1]], Ψ(t, ·) is τ ⊗ ν-almost everywhere continuous, for every τ ∈

P(X ×P(X ) × Γ).
(A3) The functions f and F , running cost and terminal cost, are Lipschitz continuous with the same

Lipschitz constant L.

For an illustration of the continuity assumption (A2) on the dynamics, see Remark 6.1 in [5].
Assumption (A3) is rather standard; in our finite setting, it is a true restriction only with respect to
the measure argument of f and F .

The correlated suggestion ρ we start with must satisfy, in addition to (R1), the following condition
on its information structure:

(R2) If (Φ, (µt)
T
t=0) is distributed according to ρ, then there exist αt : [0, 1] × P(X)t+2 → E , t ∈

[[0, T − 1]], Borel-measurable functions and a uniformly distributed random variable Z
d
∼ ν,

independent of µ s.t. Φ(t, ·) := αt(Z, µ
(t+1))(·), for all t ∈ [[0, T − 1]].

Remark 6.1. If ρ satisfies (R2), then it admits a decomposition of the form

ρ(C0 × · · · × CT−1 ×B) =

∫

B

ρ1(C0 × · · · × CT−1|m)ρ2(dm)

=

∫

B

∫

Z
⊗T−1

t=0 δαt(z,m(t+1))(Ct)ν(dz)ρ2(dm),

for any Ct ∈ B(E), t ∈ [[0, T − 1]] and B ∈ ⊗T+1B(P(X )) and where, for t ∈ [[0, T − 1]], αt :

[0, 1] × P(X )t+2 → E are Borel functions.
Finally let us notice that, if (Φ, (µt)

T
t=0) is distributed according to ρ that satisfies (R2), then, for

each t ∈ [[0, T − 1]], Φ(t) and µ are conditionally independent given µ(t+1). The example presented in
Section 7 seems to suggest that the two conditions are equivalent.

Theorem 6.2. Let m0 ∈ P(X ), and suppose (A1) – (A3) hold. Let ρ ∈ P(R × P(X )T+1) be a
correlated solution of the mean field game starting at m0 and satisfying (R1) – (R2). For N ∈ N,
define γN ∈ P(RN ) by

γN (C1 × · · · × CN ) :=

∫

P(X )T+1

N∏

j=1

ρ1(Cj |m)ρ2(dm).

Then, for all N ∈ N, γN is an εN -correlated equilibrium for the N -player game with initial distribution
m⊗N

0 and the sequence {εN}N∈N ⊆ [0,+∞) is such that limN→∞ εN = 0.

Remark 6.3. Let (Zj)
N
j=1 be i.i.d. r.v.s distributed according to ν, also independent of µ, and define,

for j ∈ [[1, N ]], Φj through Φj(t, ·) := αt(Zj , µ
(t+1))(·), t ∈ [[0, T − 1]], with α as in (R2). Then we

have P ◦ (Φ1, . . . ,ΦN )−1 = γN :=
∫
P(X )T+1

∏N
j=1 ρ1(·|m)ρ2(dm).

Proof. We prove the result only for strategy modifications of the first player. Then, the general result
is a consequence of the symmetry in the problem. With a small abuse of notation, we simply write ι
for ιγ , when its clear from the context the distribution that it refers to. We also use this same symbol ι

for both the N -player game and the mean field game. Consider the correlated suggestion γN ∈ P(RN )
defined in the statement of the theorem. For each N ∈ N, γN is an εN -correlated equilibrium for the
initial distribution m⊗N

0 , once the sequence {εN}N∈N is defined as

εN := JN
1 (m⊗N

0 , γN , ι)− inf
β̃N∈N

γN1

JN
1 (m⊗N

0 , γN , β̃N ), for all N ∈ N.
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By definition of infimum, it is possible to find a sequence of strategy modifications, {γ̃N}N∈N ⊆ NγN
1
,

such that

(6.1) JN
1 (m⊗N

0 , γN , γ̃N ) ≤ inf
β̃N∈N

γN1

JN
1 (m⊗N

0 , γN , β̃N ) +
1

N
, N ∈ N.

Thence, to complete the proof of the theorem, so showing that εN
N→∞
−→ 0, it suffices to prove the

following:

(6.2) lim
N→∞

JN
1 (m⊗N

0 , γN , ιγN
1
) = J(m0, ρ, ι),

(6.3) lim inf
N→∞

JN
1 (m⊗N

0 , γN , γ̃N ) ≥ J(m0, ρ, ι).

Proof of (6.2). First of all, let us notice that the following equation holds

(6.4) JN
1 (m⊗N

0 , γN , ιγN
1
) =

∫

P(X )T+1

JN
1 (m⊗N

0 , γNm , ιγN
m,1

)ρ2(dm),

where, for each N ∈ N and for each m ∈ P(X )T+1, γNm := ⊗Nρ1(·|m). In fact, it holds γN1 =

γN ◦ π−1
1 =

(∫
P(X )T+1 ρ1(·|m)⊗Nρ2(dm)

)
◦ π−1

1 =
∫
P(X )T+1 ρ1(·|m)ρ2(dm), and γNm,1 = γNm ◦ π−1

1 =

ρ1(·|m)⊗N ◦ π−1
1 = ρ1(·|m).

Indeed, thanks to the particular structure of the cost functional and the fact that ιγN
1
(dφ, du) =

δu(dφ)γ
N
1 (du), we write

JN
1 (m⊗N

0 , γN , ιγN
1
)

=

∫

XN

∫

ZNT

∫

RN

∫

R
GN (x, φ, (uj)

N
j=2, z)δu1(dφ)γ

N (du1, . . . , duN )ν⊗NT (dz)m⊗N
0 (dx)

=

∫

XN

∫

ZNT

∫

RN

∫

R
GN (x, (uj)

N
j=1, z)γ

N (du1, . . . , duN )ν⊗NT (dz)m⊗N
0 (dx)

=

∫

XN

∫

ZNT

∫

P(X )T+1

∫

RN

GN (x, (uj)
N
j=1, z)γ

N
m (du1, . . . , duN )ρ2(dm)ν⊗NT (dz)m⊗N

0 (dx)

=

∫

P(X )T+1

(∫

XN

∫

ZNT

∫

RN

GN (x, (uj)
N
j=1, z)γ

N
m (du1, . . . , duN )ν⊗NT (dz)m⊗N

0 (dx)

)
ρ2(dm)

=

∫

P(X )T+1

(∫

XN

∫

ZNT

∫

RN+1

GN (x, φ, (uj)
N
j=2, z)δu1(dφ)γ

N
m (du)ν⊗NT (dz)m⊗N

0 (dx)

)
ρ2(dm)

=

∫

P(X )T+1

JN
1 (m⊗N

0 , γNm , ιγN
m,1

)ρ2(dm).

Notice that, here we have implicitly exploited the conditional independence and independence prop-

erties proved in Remark 3.3, points ii) and iii). Indeed, assume PN ◦ (Φ̃1,Φ1, . . . ,ΦN )−1 = λ

and denote with λi the measure projected on it ith component(s), that is λi := λ ◦ (πi)
−1. Let

A,B1, . . . , BN ∈ B(R̂N ). Exploiting Remark 3.3 (iii), we get

PN (Φ̃1 ∈ A,Φ1 ∈ B1, . . . ,ΦN ∈ BN )

=

∫

R̂N

1B1(φ1)

∫

R̂N×R̂N−1
N

1A(dψ)

N∏

j=2

1Bj
(φj)λ1,3,...,N+1(dψ, dφ2, . . . , dφN |φ1)λ2(dφ1)

=

∫

R̂N

1B1(φ1)

∫

R̂N

1A(dψ)λ1(dψ|φ1)

∫

R̂N−1
N

N∏

j=2

1Bj
(φj)λ3,...,N+1(dφ2, . . . , dφN |φ1)λ2(dφ1)

=

∫

R̂N×R̂N
N

1A(dψ)

N∏

j=1

1Bj
(φj)λ1(dψ|φ1)λ3,...,N+1(dφ2, . . . , dφN |φ1)λ2(dφ1)

=

∫

R̂N×R̂N
N

1A(dψ)
N∏

j=1

1Bj
(φj)δφ1(dψ)γ

N (dφ1, . . . , dφN ),
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where the last step is a consequence of the fact that PN ◦ (Φ1, . . . ,ΦN )−1 = γN and PN ◦ (Φ̃1,Φ1)
−1 =

ιγN
i
. Thus, we have λ(dψ, dφ1, . . . , dφN ) = δφ1(dψ)γ

N (dφ1, . . . , dφN ).

Furthermore, for the mean field game, we have

(6.5) J(m0, ρ, ι) =

∫

P(X )T+1

J(m0, ρ1(·|m)⊗ δm, ι)ρ2(dm),

where ρ1(·|m) as in the statement of the theorem. In fact, with similar computations as above for JN
1 ,

we get

J(m0, ρ, ι) =

∫

X

∫

ZT

∫

R×P(X )T+1

Gι(x, φ, z,m)ρ(dφ, dm)ν⊗T (dz)m0(dx)

=

∫

X

∫

ZT

∫

P(X )T+1

∫

R
Gι(x, φ, z,m)ρ1(dφ|m)ρ2(dm)ν⊗T (dz)m0(dx)

=

∫

P(X )T+1

∫

X

∫

ZT

∫

R
Gι(x, φ, z,m)ρ1(dφ|m)ν⊗T (dz)m0(dx)ρ2(dm)

=

∫

P(X )T+1

J(m0, ρ1(·|m)⊗ δm, ι)ρ2(dm),

and this ends the proof of the identity.
In the proof of (6.2), that is the case in which all the players follow the mediator’s suggestion,

computations simplify considerably. Indeed, since the recommendation γN belongs to P(RN ), for any
N ∈ N, we can proceed as in the proof of [5, Theorem 5.1 and Theorem 6.1], that is through the
following three steps:

1. We show that, for any fixed m ∈ P(X )T+1, there exists a subsequence of indeces such that

lim
k→∞

J
Nk

1 (m⊗Nk

0 , γNk
m , ι) = J(m0, ρm, ιρm),

for some ρm ∈ P(R×P(X )T+1), with γNm = ρ1(·|m)⊗N .

2. We prove a result of chaos propagation that enables us to deduce that, in the limit, for all
m ∈ P(X )T+1, we have

Pm ◦ (Xm
t , µ

m
t )−1 = m̂m

t ⊗ δm̂m
t
, for all t ∈ [[0, T ]],

for some m̂m
t ∈ P(X ).

3. We show that, for ρ2-almost every m ∈ P(X )T+1, (m̂m
t )Tt=0 = (mt)

T
t=0, independently of the

convergent subsequence considered, and conclude by integrating in (mt)
T
t=0 ∈ P(X )T+1 w.r.t.

ρ2(dm).

Step 1. Fix a flow of measure m ∈ P(X )T+1. Consider the sequence of triples {(m⊗N
0 , γNm , ι)}N∈N. For

each N ∈ N, consider the tuple ((ΩN,m,FN,m,PN,m), (ΦN,m
j )Nj=1, (ϑ

N,m
t )T−1

t=0 , (ξ
1,N,m
t , . . . , ξ

N,N,m
t )Tt=1,

Φ̃N,m
1 , (X1,N,m

t , . . . ,X
N,N,m
t )Tt=0), a realization of (m⊗N

0 , γNm , ι). Since we are proving (6.2), w.l.o.g. we

assume that ΦN,m
1 = Φ̃N,m

1 , PN,m-a.s. Set, for any N ∈ N,

ηNm := PN,m ◦ (ΦN,m
1 , (µ1,N,m

t )Tt=0, (ξ
1,N,m
t )Tt=1, Φ̃

N,m
1 , (X1,N,m

t )Tt=0)
−1.

Since, for any N ∈ N, ηNm belongs to the compact set P(R × P(X )T+1 × ZT × R × X T+1), the
sequence {ηNm}N∈N admits a convergent subsequence, {ηNk

m }k∈N, with limit ηm. On a suitable prob-
ability space, (Ωm,Fm,Pm), we consider a R× P(X )T+1 × ZT × R × X T+1- valued random vector,

(Φm, (µmt )Tt=0, (ξ
m
t )Tt=1, Φ̃

m, (Xm
t )Tt=0), such that

(6.6) ηm := Pm ◦ (Φm, (µmt )Tt=0, (ξ
m
t )Tt=1, Φ̃

m, (Xm
t )Tt=0)

−1

and set

(6.7) ρm := Pm ◦ (Φm, (µmt )Tt=0)
−1 ∈ P(R×P(X )T+1),

(6.8) βm := Pm ◦ (Φ̃m,Φm, (µmt )Tt=0)
−1 ∈ P(R×R×P(X )T+1).

Then, the limit variables, (Φm, (µmt )Tt=0, (ξ
m
t )Tt=1, Φ̃

m, (Xm
t )Tt=0), satisfy the following properties:
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i) By the continuous mapping theorem and the fact that, by hypothesis, X1,N,m
0

d
∼ m0, for all

N ∈ N, we get

Pm ◦ (Xm
0 )−1 = m0.

ii) ρm = Pm ◦ (Φm, (µmt )Tt=0)
−1 ∈ P(R×P(X )T+1), by definition.

iii) As a consequence of the independence of the variables (ξ1,N,m
t )Tt=1,X

1,N,m
0 , and (ΦN,m

1 , Φ̃N,m
1 )

and the fact that they jointly converge in distribution, together with the continuous mapping

theorem and the fact that ξ1,N,m
t

d
∼ ν, N ∈ N, t ∈ [[1, T ]], we have

ξmt
d
∼ ν, for any t ∈ [[1, T ]].

iv) Since, for any N ∈ N, ΦN,m
1 = Φ̃N,m

1 , PN,m-a.s., we get Φm = Φ̃m, Pm-a.s. Then, we have

Φ̃m(t, x(t),m(t)) = Φm(t, x(t),m(t)) = ιt(Φ
m, x(t),m(t)).

Furthermore, since (ΦNk,m
j )Nk

j=1, Φ̃
Nk,m
1 , as well as Φm and Φ̃m, areR-valued variables, reasoning

as in the Step 3 of the proof of [5, Theorem 5.1], we get that (ξmt )Tt=1, X
m
0 and (Φm, (µmt )Tt=0)

are independent.
v) Furthermore, proceeding as in the Step 3. of the proof of [5, Theorem 5.1], it is possible to

prove that (Xm
t )Tt=0 follows the dynamics: for any t ∈ [[0, T − 1]],

Xm
t+1 = Ψ

(
t,Xm

t ,Φ
m
(
t,Xm,(t), µm,(t)

)
, ξmt+1

)
, Pm-a.s.

= Ψ
(
t,Xm

t ,Φ
m (t,Xm

t ) , ξmt+1

)
.

(6.9)

These features correspond to properties i)-v) in Definition 4.1. We have proved that the tuple

((Ωm,Fm,Pm),Φm, (µmt )Tt=0,X
m
0 , (ξ

m
t )Tt=1, Φ̃

m, (Xm
t )Tt=0) is a realization of the triple (m0, ρm, ι).

Furthermore, since, for any N ∈ N, PN,m ◦ (ΦN,m
1 )−1 = ρ1(·|m), we get Pm ◦ (Φm)−1 = ρ1(·|m).

Furthermore, we have

(6.10) lim
k→∞

J
Nk

1 (m⊗Nk

0 , γNk
m , ι) = J(m0, ρm, ι).

Equation (6.10) follows from the joint convergence in distribution of the variables that form a realiza-
tion together with hypothesis (A3) and the dominated convergence theorem. Notice that, here, the

fact that ΦN,m
1 , as well as Φm, are R-valued is crucial.

Step 2. The symmetry and independence among the players in the prelimit game enable us to prove
a result of chaos propagation for the convergent subsequence associated to (m⊗N

0 , γNm , ι). We are not
going to show this property directly but exploiting an equivalent characterization of propagation of
chaos, namely [12, Theorem 4.2](see Theorem A.1, in the Appendix).
In fact, we can work iteratively to show that chaos propagates from t to t+ 1 for each t ∈ [[0, T − 1]].
This fact implies

(6.11) Pm ◦ (Xm
t , µ

m
t )−1 = m̂m

t ⊗ δm̂m
t
, t ∈ [[0, T ]].

for some deterministic flow of measures (m̂m
t )Tt=0 ∈ P(X )T+1, with m̂m

0 = m0.
We show that propagation of chaos holds, for our specific structure, for the first time step. This same
reasoning can be immediately extended to the other time steps implying our thesis. We notice that this

is possible only because the variables {ΦN,m
j }Nj=1 take values in R. For a detailed proof see Appendix A.

Reframing the result (6.11) of chaos propagation in the dynamics described in Equation (6.9), we
get, Pm-a.s.,

(6.12)

{
Xm

t+1 = Ψ
(
t,Xm

t , m̂
m
t ,Φ

m (t,Xm
t ) , ξmt+1

)
,

Pm ◦ (Xm
t )−1 = m̂m

t , t ∈ [[0, T ]].

Notice that, in the variable Φm, we are omitting the dependence on the measure m̂. We are allowed
to do this because this variable takes values in R, being distributed according to ρ1(·|m). The system
in (6.12) has a unique solution. It is a consequence of the iterative definition of the process (Xm

t )Tt=0

and of properties i)-v) of the limit realization. Thence, the flow of measures (m̂m
t )Tt=0 ∈ P(X )T+1,

corresponding to this system, is uniquely determined for each (mt)
T
t=0 ∈ P(X )T+1.



CORRELATED EQUILIBRIA FOR MEAN FIELD GAMES WITH PROGRESSIVE STRATEGIES 19

Step 3. Now, our aim is to prove that (m̂m
t )Tt=0 = (mt)

T
t=0, for ρ2-almost all (mt)

T
t=0 ∈ P(X )T+1.

Let ρ be the correlated solution for the mean field game starting at m0, as in the statement of the
theorem, and consider a realization of (m0, ρ, ι), i.e.

(
(Ω∗,F∗,P∗),Φ∗, (µ∗t )

T
t=0,X

∗
0 , (ξ

∗
t )

T
t=1, ι, (X

∗
t )

T
t=0

)
.

By definition of realization, such a tuple satisfies properties i)-v) in Definition 4.1. In particular,
without loss of generality, we set

i) P∗ ◦ (X∗
0 )

−1 = m0;
ii) P∗ ◦ (Φ∗, (µ∗t )

T
t=0)

−1 = ρ;

iii) (ξ∗t )
T
t=1 i.i.d. with ξ∗t

d
∼ ν;

iv) (ξ∗t )
T
t=1,X

∗
0 and (Φ∗, (µ∗t )

T
t=0) independent;

iv’) ι(Φ∗) = Φ∗, P∗-a.s.;
v) for all t ∈ [[0, T − 1]],

X∗
t+1 = Ψ

(
t,X∗

t , µ
∗
t , ι ◦ Φ

∗ (t,X∗, µ∗) , ξ∗t+1

)
= Ψ

(
t,X∗

t , µ
∗
t ,Φ

∗ (t,X∗
t ) , ξ

∗
t+1

)
, P∗-a.s.

The fact that ρ is a correlated solution for the mean field game (consistency condition) and the
definition of ρ1(·|m) imply, respectively, that, for ρ2-almost all m ∈ P(X )T+1, we have:

• P∗
(
X∗

t ∈ ·
∣∣(µ∗t )Tt=0 = (mt)

T
t=0

)
= mt, t ∈ [[0, T ]];

• P∗
(
Φ∗ ∈ ·

∣∣(µ∗t )Tt=0 = (mt)
T
t=0

)
= ρ1(·|m);

Then, setting Qm(·) = P∗(·|(µ∗t )
T
t=0 = (mt)

T
t=0), we get:

• Qm ◦ (X∗
t )

−1 = mt, t ∈ [[0, T ]];
• Qm ◦ (Φ∗)−1 = ρ1(·|m);
• Qm ◦ (ξ∗t )

−1 = ν, t ∈ [[1, T ]];

where the last item is a consequence of the fact that (ξ∗t )
T
t=1 is jointly independent of (µ∗t )

T
t=0, by

property iv) above. Hence, for ρ2-almost all (mt)
T
t=0 ∈ P(X )T+1, Qm-almost surely, for any t ∈

[[0, T − 1]], we have

(6.13)

{
X∗

t+1 = Ψ
(
t,X∗

t ,mt,Φ
∗ (t,X∗

t ) , ξ
∗
t+1

)

Qm ◦ (X∗
t )

−1 = mt, t ∈ [[0, T ]].

This means that the tuple
(
(Ω∗,F∗,Qm),Φ∗, (µ∗t )

T
t=0,X

∗
0 , (ξ

∗
t )

T
t=1, (X

∗
t )

T
t=0

)
is a solution for the system

(6.12). Finally, exploiting the uniqueness of solution for this system, we obtain the following identities,
that hold for ρ2-almost all (mt)

T
t=0 ∈ P(X )T+1:

(m̂m
t )Tt=0 = (mt)

T
t=0, ρm = Pm ◦ (Φm, µm)−1 = Qm ◦ (Φ∗,m)−1 = ρ1(·|m) ⊗ δm.

Notice that the second equation is a consequence of the fact that Pm◦(Φm)−1 = ρ1(·|m). In particular,
we rewrite the equation in (6.10) as

(6.14) lim
k→∞

J
Nk

1 (m⊗Nk

0 , γNk
m , ι) = J(m0, ρ1(·|m) ⊗ δm, ι).

Notice that the limit above does not depend on the subsequence considered and so we can deduce
that the whole sequence converges to this limit. Now, an application of the dominated convergence
theorem, together with the identities (6.4) and (6.5), yields

lim
N→∞

JN
1 (m⊗N

0 , γN , ι) = lim
N→∞

∫

P(X )T+1
JN
1 (m⊗N

0 , γNm , ι)ρ2(dm)

=

∫

P(X )T+1
lim

N→∞
JN
1 (m⊗N

0 , γNm , ι)ρ2(dm)

=

∫

P(X )T+1
J(m0, ρ1(·|m)⊗ δm, ι)ρ2(dm) = J(m0, ρ, ι).

This ends the proof of (6.2).
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Proof of (6.3). Consider the minimizing sequence of strategy modifications {γ̃N}N∈N ⊆ NγN
1
, defined

in (6.1). Now, set

γN (dϕ1, . . . , dϕN , dm) : =




N⊗

j=1

ρ1(dϕj |m)


 ρ2(dm)

=




N⊗

j=1

(∫

Z

T−1⊗

t=0

δαt(zj ,m(t+1))(dϕj(t, ·))ν(dzj)

)
 ρ2(dm)

= γNm(dϕ1, . . . , dϕN )ρ2(dm) ∈ P(RN × P(X )T+1),

(6.15)

where αt has been chosen according to (R2), see Remark 6.1 and 6.3. The peculiar form of the starting
MFG solution ρ that satisfies assumption (R2), and the consequent form of the correlated suggestion
in the N -player game, will be crucial to give an interpretation to any N -player game realization in
the mean-field sense. Now, we want to build a sequence of realizations of {(m⊗N

0 , γN , γ̃N )}N∈N. For
a fixed N ∈ N, let (ΩN ,FN ,PN ) be a complete probability space. On this probability space, we set:

i) (Xj
0)

N
j=1, X -valued random variables i.i.d. according to m0;

(Φj)
N
j=1, R-valued random variables, such that

Φj(t, ·) := αt(Zj , µ
(t+1)), j = 1, . . . , N, t = 0, . . . , T − 1,

with (Zj)
N
j=1 i.i.d.

d
∼ ν and independent of µ

d
∼ ρ2.

In particular, this implies that PN ◦ ((Φj)
N
j=1, µ)

−1(dφ1, . . . , dφN , dm) = γN (dφ1, . . . , dφN , dm)

and so that PN ◦ ((Φj)
N
j=1)

−1(dφ1, . . . , dφN ) = γN (dφ1, . . . , dφN );

ii) (ξ1t , . . . , ξ
N
t )Tt=0, Z-valued random variables i.i.d. all distributed according to ν;

iii) (ϑt)
T
t=0, Z-valued random variables i.i.d. all distributed according to ν;

iv) (ξ1t , . . . , ξ
N
t )Tt=0, (X

j
0)

N
j=1, ((µt)

T
t=0, (Zj)

N
j=1) and (ϑt)

T−1
t=0 are independent;

v) Υ̃N
1 , R̂-valued random variable s.t. Υ̃N

1 (t, ·) = wN
t (ϑt,Φ1)(·), with wN

t : [0, 1]×R → Êt,N Borel

function, for any t ∈ [[0, T − 1]], and PN ◦ (Φ1, Υ̃
N
1 )−1 = γ̃N

1.

We set the following dynamics for the X -valued processes, (Xj,N
t )Tt=0, j ∈ [[1, N ]], for t ∈ [[0, T − 1]],

X
j,N
t+1 = Ψ

(
t,X

j,N
t , µ

j,N
t ,Φj(t,X

j
t ), ξ

j
t+1

)
, PN -a.s.,(6.16)

where, for all t ∈ [[0, T ]] and j ∈ [[1, N ]], µj,Nt := 1
N−1

∑N
k 6=j,k=1 δXk,N

t
and µj,N := (µj,Nt )Tt=0. This

corresponds to the case where all the players stick to the suggestion given by the mediator.

Then, we define another sequence of processes, (X̃j,N
t )Tt=0, j ∈ [[1, N ]], setting X̃j,N

0 := X
j
0 and, for

t ∈ [[0, T − 1]],

X̃
j,N
t+1 = Ψ

(
t, X̃

j,N
t , µ̃

j,N
t ,Φj(t, X̃

j,N
t ), ξjt+1

)
,(6.17)

X̃
1,N
t+1 = Ψ

(
t, X̃

1,N
t , µ̃

1,N
t , Υ̃1,N (t, X̃1,N , µ̃1,N ), ξ1t+1

)
, PN -a.s.,

where, for all t ∈ [[0, T ]] and j ∈ [[1, N ]], µ̃j,Nt := 1
N−1

∑N
k 6=j,k=1 δX̃k,N

t
and µ̃j,N := (µ̃j,Nt )Tt=0. This

represents the case in which only the first player is deviating from the suggestion according to the
minimizing sequence of strategy modifications introduced in the beginning of the proof. Hence,

((ΩN ,FN ,PN ), (Φj)
N
j=1, (ϑt)

T−1
t=0 , (ξ

1
t , . . . , ξ

N
t )Tt=1,Φ1, (X

1,N
t , . . . ,X

N,N
t )Tt=0) and ((ΩN ,FN ,PN ), (Φj)

N
j=1,

(ϑt)
T−1
t=0 , (ξ

1
t , . . . , ξ

N
t )Tt=1, Υ̃

N
1 , (X̃

1,N
t , . . . , X̃

N,N
t )Tt=0) are, respectively, a realization of the triple (m⊗N

0 , γN , ι)

and (m⊗N
0 , γN , γ̃N ) for the first player. Indeed, we notice that, with this construction, also condition

v) in Definition 3.1 is satisfied.

Then, we define another sequence of processes, (X̂j,N
t )Tt=0, j ∈ [[2, N ]], setting X̂j,N

0 := X
j
0 and, for

t ∈ [[0, T − 1]],

X̂
j,N
t+1 = Ψ

(
t, X̂

j,N
t , µ̂

1,N
t ,Φj(t, X̂

j,N
t ), ξjt+1

)
, PN -a.s.,(6.18)

1The existence of these Borel functions is a consequence of the measurability condition in v) in Definition 3.1 and of
Doob’s Lemma (see [15, Lemma 1.13]).
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where, for all t ∈ [[0, T ]], µ̂1,Nt := 1
N−1

∑N
k=2 δX̂k,N

t
and µ̂1,N := (µ̂1,Nt )Tt=0. These processes describe the

evolution of the system excluding the first player.

Finally, we define the process, (X
1,N
t )Tt=0, setting X

1,N
0 := X1

0 and, for t ∈ [[0, T − 1]],

X
1,N
t+1 = Ψ

(
t,X

1,N
t , µt, Υ̃

1,N (t, X̃1,N , µ̃1,N ), ξ1t+1

)
, PN -a.s..(6.19)

This last one is an auxiliary process whose utility will be made clear in the following. From now on,

for simplicity of notation, for t ∈ [[0, T − 1]], we write ũ1,Nt for Υ̃1,N (t, X̃1,N , µ̃1,N ).

First of all, we focus on ((ΩN ,FN ,PN ),Φ1, (µt)
T
t=0, (µ

1,N
t )Tt=0, (ϑt)

T−1
t=0 , (ξ

1
t )

T
t=1, (X

1,N
t )Tt=0). For all

t ∈ [[0, T ]], an application of the tower property yields

EN [dist(µ1,Nt , µt)] =

∫

P(X )T+1

EN [dist(µ1,Nt , µt)|µ = m]ρ2(dm).

Conditionally on the event {(µt)
T
t=0 = (mt)

T
t=0}, we have already seen that (µ1,Nt )Tt=0 converges weakly

to (mt)
T
t=0, as N goes to infinity. Since (mt)

T
t=0 ∈ P(X )T+1 is deterministic, the convergence result

above holds in probability, that is, for any fixed ǫ > 0, Pm
N (dist(µ1,Nt , µt) > ǫ)

N→∞
−→ 0. Then, we have

Em
N [dist(µ1,Nt , µt)] ≤ Pm

N (dist(µ1,Nt , µt) > ǫ) + ǫPm
N (dist(µ1,Nt , µt) ≤ ǫ)

≤ Pm
N (dist(µ1,Nt , µt) > ǫ) + ǫ

N→∞
−→ ǫ,

and we obtain by the arbitrariness of ǫ > 0 that Em
N [dist(µ1,Nt , µt)]

N→∞
−→ 0, for any t ∈ [[0, T ]]. Finally,

by disintegration, an application of the dominated convergence theorem yields

lim
N→∞

EN [dist(µ1,Nt , µt)] =

∫

P(X )T+1

lim
N→∞

EN [dist(µ1,Nt , µt)|µ = m]ρ2(dm) = 0, for all t ∈ [[0, T ]],

and consequently

(6.20) lim
N→∞

EN [distT (µ
1,N , µ)] = 0.

Now, we prove the following claim.

Claim 6.4. For any λ = (λt)
T
t=0 ∈ {µ̃j,Nt , j ∈ [[1, N ]]} ∪ {µj,Nt , j ∈ [[1, N ]]}

(6.21) lim
N→∞

E
[
distT (λ, µ̂

1,N )
]
= 0.

Proof of Claim 6.4. We prove the claim for λ = µ̃j,N , the proof for λ = µj,N being similar. Since by
definition of distT , we have

E
[
distT (µ̃

j,N , µ̂1,N )
]
= E

[
T∑

t=0

dist(µ̃j,Nt , µ̂
1,N
t )

]
=

T∑

t=0

E

[
dist(µ̃j,Nt , µ̂

1,N
t )

]
,

it suffices to prove that, for any j ∈ []1, N ]], and any t ∈ []0, T ]],

(6.22) lim
N→∞

E

[
dist(µ̃j,Nt , µ̂

1,N
t )

]
= 0.

We notice that the definition of the distance dist together with the upper bound for empirical measures
in (2.1) in [5] implies that, for all j ∈ []1, N ]], t ∈ []0, T ]],

(6.23) E

[
dist(µ̂1,Nt , µ̃

j,N
t )

]
≤

1

N − 1
+

1

N − 1

N∑

l=2

P

(
X̃

l,N
t 6= X̂

l,N
t

)
.

In fact, for j = 1, we have

E

[
dist(µ̂1,Nt , µ̃

j,N
t )

] (2.1)

≤ E

[
1

N − 1

N∑

l=2

1
X̃

l,N
t 6=X̂

l,N
t

]
=

1

N − 1

N∑

l=2

P

(
X̃

l,N
t 6= X̂

l,N
t

)
.
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Whereas, for j ∈ []2, N ]], we get

E
[
dist(µ̂1,Nt , µ̃

j,N
t )

] (2.1)

≤ E


 1

N − 1

N∑

l=2,l 6=j

1
X̃

l,N
t 6=X̂

l,N
t

+
1

N − 1
1
X̃

1,N
t 6=X̂

j,N
t




≤ E

[
1

N − 1

N∑

l=2

1
X̃

l,N
t 6=X̂

l,N
t

+
1

N − 1

]

=
1

N − 1

N∑

l=2

P
(
X̃

l,N
t 6= X̂

l,N
t

)
+

1

N − 1
.

Furthermore, we prove that, for all t ∈ []0, T ]], we have the following convergence, as N → ∞,

(6.24) lim
N→∞

1

N − 1

N∑

j=2

P

(
X̃

j,N
t 6= X̂

j,N
t

)
= 0.

In fact, (6.24), with t = 0, follows from the fact that, for all N ∈ N,

N∑

j=2

P

(
X̃

j,N
0 6= X̂

j,N
0

)
= 0.

which is a consequence of the fact that, by construction, for all N ∈ N, j ∈ [[1, N ]], X̃j,N
0 = X

j
0 , PN -a.s.

and for all N ∈ N, j ∈ [[2, N ]], X̂j,N
0 = X

j
0 , PN -a.s.. Then, we prove (6.24) for a generic time, reasoning

by induction. Let us assume that (6.24) holds for t, for all j ∈ []2, N ]], we have

P

(
X̃

j,N
t+1 6= X̂

j,N
t+1

)
= P

(
X̃

j,N
t+1 6= X̂

j,N
t+1 , X̃

j,N
t 6= X̂

j,N
t

)
+ P

(
X̃

j,N
t+1 6= X̂

j,N
t+1 , X̃

j,N
t = X̂

j,N
t

)

≤ P

(
X̃

j,N
t 6= X̂

j,N
t

)
+ P

(
X̃

j,N
t+1 6= X̂

j,N
t+1 , X̃

j,N
t = X̂

j,N
t

)
=: ⋆,

where we have exploited disintegration. Using the iterative definition of the processes (X̃j,N
t )Tt=0 and

(X̂j,N
t )Tt=0 through Ψ and the fact that Φj, by construction, takes values in R we get

⋆ = P

(
Ψ
(
t, X̃

j,N
t , µ̃

j,N
t ,Φj(t, X̃

j,N
t ), ξjt+1

)
6= Ψ

(
t, X̂

j,N
t , µ̂

1,N
t ,Φj(t, X̂

j,N
t ), ξjt+1

)
, X̃

j,N
t = X̂

j,N
t

)

+ P

(
X̃

j,N
t 6= X̂

j,N
t

)

= P

(
Ψ
(
t, X̂

j,N
t , µ̃

j,N
t ,Φj(t, X̂

j,N
t ), ξjt+1

)
6= Ψ

(
t, X̂

j,N
t , µ̂

1,N
t ,Φj(t, X̂

j,N
t ), ξjt+1

)
, X̃

j,N
t = X̂

j,N
t

)

+ P

(
X̃

j,N
t 6= X̂

j,N
t

)

= P

(
X̃

j,N
t 6= X̂

j,N
t

)
+ P

(
Ψ
(
t, X̂

j,N
t , µ̃

j,N
t ,Φj(t, X̂

j,N
t ), ξjt+1

)
6= Ψ

(
t, X̂

j,N
t , µ̂

1,N
t ,Φj(t, X̂

j,N
t ), ξjt+1

))

Then, an application of Fubini’s Theorem, together with the independence properties of

(ξjt+1)
N
j=2, yields

P

(
X̃

j,N
t+1 6= X̂

j,N
t+1

)
= P

(
X̃

j,N
t 6= X̂

j,N
t

)
+ E

[∫

Z
1
Ψ(t,X̂j,N

t ,µ̃
j,N
t ,Φj(t,X̂

j,N
t ),z)6=Ψ(t,X̂j,N

t ,µ̂
1,N
t ,Φj(t,X̂

j,N
t ),z)ν(dz)

]

≤ P
(
X̃

j,N
t 6= X̂

j,N
t

)
+ E

[
w(dist(µ̃j,Nt , µ̂

1,N
t )

]
,

(6.25)

where the inequality in the last row follows from Assumption (A2) 1).
Now, notice that

(6.26) lim
N→∞

max
j∈[[2,N ]]

E

[
dist(µ̃j,Nt , µ̂

1,N
t )

] (6.23)
≤ lim

N→∞

{
1

N − 1
+

1

N − 1

N∑

l=2

P

(
X̃

l,N
t 6= X̂

l,N
t

)}
= 0,
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because of the induction hypothesis. Thence, with the notation dist(µ̃j,Nt , µ̂
1,N
t ) = δNj , for any ε > 0,

we have

max
j∈[[2,N ]]

E

[
w(dist(µ̃j,Nt , µ̂

1,N
t ))

]
= max

j∈[[2,N ]]
E
[
w(δNj )

]

≤ max
j∈[[2,N ]]

{
E
[
w(δNj )

∣∣δNj ≥ ε
]
P(δNj ≥ ε) + E

[
w(δNj )

∣∣δNj < ε
]
P(δNj < ε)

}

≤ max
j∈[[2,N ]]

{
||w||∞P(δNj ≥ ε) + E

[
w(δNj )

∣∣δNj < ε
] }

≤ max
j∈[[2,N ]]

{
||w||∞P(δNj ≥ ε) + w(ε)

}
≤ w(ε) + ||w||∞ max

j∈[[2,N ]]

E[δNj ]

ε

≤ w(ε) +
||w||∞
ε

max
j∈[[2,N ]]

E[dist(µ̃j,Nt , µ̂
1,N
t )]

N→∞
−→ w(ε),

where we have made use of disintegration, the fact that w is bounded, Markov’s inequality and the
convergence result in (6.26).

The fact that w converges to 0 as its argument goes to zero and the arbitrariness of ε > 0 therefore
implies

(6.27) lim
N→∞

{
max

j∈[[2,N ]]
E

[
w(dist(µ̃j,Nt , µ̂

1,N
t ))

]}
= 0.

Applying once more the induction hypothesis to the inequality in (6.25), we get

lim
N→∞

1

N − 1
P

(
X̃

j,N
t+1 6= X̂

j,N
t+1

)
≤ lim

N→∞

{
1

N − 1
P

(
X̃

j,N
t 6= X̂

j,N
t

)
+ max

j∈[[2,N ]]
E

[
w(dist(µ̃j,Nt , µ̂

1,N
t )

]}
= 0.

(6.28)

Thus, we have shown (6.24), which, together with (6.23), implies (6.22) and so our claim.

Then, by the triangular inequality and the monotonicity of expectation, Equation (6.20) together
with the statement in Claim 6.4 yields

EN [distT (µ̃
1,N , µ)] ≤ EN [distT (µ̃

1,N , µ̂1,N )] + EN [distT (µ̂
1,N , µ1,N )] + EN [distT (µ

1,N , µ)]
N→∞
−→ 0.

(6.29)

Now, set

(6.30) J̃N
1 (m⊗N

0 , γN , γ̃N ) := EN

[
T∑

t=0

f(t, X̃1,N
t , µt, ũ

1,N
t ) + F (X̃1,N

T , µT )

]
,

and

(6.31) J
N
1 (m⊗N

0 , γN , γ̃N ) := EN

[
T∑

t=0

f(t,X
1,N
t , µt, ũ

1,N
t ) + F (X

1,N
T , µT )

]
,

with processes X̃1,N and X
1,N

defined in Equations (6.17) and (6.19).
Now, consider a real valued sequence {fn}n∈N s.t., for any n ∈ N, fn = hn+gn+h with limn→∞ hn = 0,
gn ≥ 0, for all n ∈ N. Then,

lim inf
n→∞

fn ≥ h.(6.32)

In order to prove Equation (6.3), we want to exploit the inequality in Equation (6.32) with gN =

J
N
1 (m⊗N

0 , γN , γ̃N ) − J(m0, ρ, ι), hN = JN
1 (m⊗N

0 , γN , γ̃N ) − J
N
1 (m⊗N

0 , γN , γ̃N ) and h = J(m0, ρ, ι).
First of all, (A3) and the convergence in Equation (6.29) imply

|JN
1 (m⊗N

0 , γN , γ̃N )− J̃N
1 (m⊗N

0 , γN , γ̃N )|(6.33)

≤ EN

[
T∑

t=0

|f(t, X̃1,N
t , µ̃

1,N
t , ũ

1,N
t )− f(t, X̃1,N

t , µt, ũ
1,N
t )|+ |F (X̃1,N

T , µ̃
1,N
T )− F (X̃1,N

T , µT )|

]
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≤ EN

[
T∑

t=0

Ldist(µ̃1,Nt , µt) + Ldist(µ̃1,NT , µT )

]
= LE

[
distT (µ̃

1,N , µ)
] N→∞

−→ 0.

Furthermore, for all t ∈ [[0, T ]],

lim
N→∞

PN (X̃1,N
t 6= X

1,N
t ) = 0.(6.34)

We show this by induction on t ∈ [[0, T ]]. Indeed, for t = 0, PN (X̃1,N
0 6= X

1,N
0 ) = 0, being X̃1,N

0 =

X
1,N
0 = X1

0 , PN -a.s., by construction. Now, suppose that limN→∞ PN (X̃1,N
t 6= X

1,N
t ) = 0, for some

t ∈ [[0, T ]]. Then, exploiting Assumption (A2) 1), we obtain

PN (X̃1,N
t+1 6= X

1,N
t+1) ≤ PN(X̃1,N

t 6= X
1,N
t ) + PN (X̃1,N

t+1 6= X
1,N
t+1, X̃

1,N
t = X

1,N
t )

≤ PN(X̃1,N
t 6= X

1,N
t )

+ PN

(
Ψ
(
t, X̃

1,N
t , µ̃

1,N
t , ũ

1,N
t , ξ1t+1

)
6= Ψ

(
t,X

1,N
t , µt, ũ

1,N
t , ξ1t+1

)
, X̃

1,N
t = X

1,N
t

)

≤ PN(X̃1,N
t 6= X

1,N
t ) + PN

(
Ψ
(
t, X̃

1,N
t , µ̃

1,N
t , ũ

1,N
t , ξ1t+1

)
6= Ψ

(
t, X̃

1,N
t , µt, ũ

1,N
t , ξ1t+1

))

≤ PN(X̃1,N
t 6= X

1,N
t ) + EN

[
w
(
dist(µ̃1,Nt , µt)

)]
,

and the last term on the right goes to zero as N goes to infinity by the induction assumption and the
convergence in Equation (6.29), reasoning in a similar way as in the proof of Equation (6.27). As a
consequence, we see

|J̃N
1 (m⊗N

0 , γN , γ̃N )− J
N
1 (m⊗N

0 , γN , γ̃N )|(6.35)

≤ EN

[
T∑

t=0

|f(t, X̃1,N
t , µt, ũ

1,N
t )− f(t,X

1,N
t , µt, ũ

1,N
t )|+ |F (X̃1,N

T , µT )− F (X
1,N
T , µT )|

]

≤ 2||f ||∞

T∑

t=0

PN (X̃1,N
t 6= X

1,N
t ) + 2||F ||∞PN (X̃1,N

T 6= X
1,N
T )

N→∞
−→ 0,

where we have exploited the fact that f and F being L-Lipschitz continuous real-valued function on
a compact domain are bounded. The convergences in Equations (6.33) and (6.35) implies

|hN | = |JN
1 (m⊗N

0 , γN , γ̃N )− J
N
1 (m⊗N

0 , γN , γ̃N )|

≤ |JN
1 (m⊗N

0 , γN , γ̃N )− J
N
1 (m⊗N

0 , γN , γ̃N )|+ |JN
1 (m⊗N

0 , γN , γ̃N )− J
N
1 (m⊗N

0 , γN , γ̃N )|
N→∞
−→ 0.

Thus, an application of the inequality in (6.32) with

gN = J
N
1 (m⊗N

0 , γN , γ̃N )− J(m0, ρ, ι),

hN = JN
1 (m⊗N

0 , γN , γ̃N )− J
N
1 (m⊗N

0 , γN , γ̃N )

and
h = J(m0, ρ, ι),

yields (6.3) provided that gN = J
N
1 (m⊗N

0 , γN , γ̃N )− J(m0, ρ, ι) ≥ 0. This is a consequence of the fact

that J
N
1 (m⊗N

0 , γN , γ̃N ) can be interpreted as the value of the MFG when the representative player

implements the strategy ũ1,Nt = Υ̃N
1 (t, X̃1,N

t , µ̃N1 ), t ∈ [[0, T − 1]]. Indeed, the realization of the triple

(m⊗N
0 , γN , γ̃N ) for the first player on the previously defined complete probability space (ΩN ,FN ,PN )

can be seen as a tuple
(
(ΩN ,FN , {G

N
t }T−1

t=0 ,PN ),Φ1, (µt)
T
t=0,X0, (ξ

1
t )

T
t=1, (ũ

1,N
t )T−1

t=0 , (X
1,N
t )Tt=0

)
such

that

i) PN ◦ (X1
0 )

−1 = m0;
ii) PN ◦ (Φ1, (µt)

T
t=0)

−1 = ρ;
iii) (ξ1t )

T
t=1, Z-valued random variables i.i.d. all distributed according to ν;

iv) X1
0 , (ξ

1
t )

T
t=1, (Φ1, (µt)

T
t=0) are independent;

iv’) For each t ∈ [[0, T − 1]],
– ξ1t is GN

t -measurable and (ξ1t+k)
T
k=1 are jointly independent of GN

t ,

– GN
t = HN

t ∨ σ(µ(t)) ∨ σ(Φ1) ∨ σ(X
1
0 ), with HN

t independent of σ(Φ1, (µt)
T
t=0,X

1
0 ),
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– ũ
1,N
t is GN

t -measurable,
v) Finally, for t ∈ [[0, T − 1]], the state dynamics for the first player is given by

X
1,N
t+1 = Ψ

(
t,X

1,N
t , µt, ũ

1,N
t , ξ1t+1

)
, PN -a.s.

Above we have exploited the fact that, by definition, the sequence of control actions (ũ1,Nt )T−1
t=0 ,

ũ
1,N
t = Υ̃N

1 (t, X̃1,N , µ̃1,N ) = wN
t (ϑt,Φ1)((X̃

1,N )(t), (µ̃1,N )(t)),

is adapted to the filtration {GN
t }T−1

t=0 , defined as

GN
t := σ((Xj

0)
N
j=1, (ξ

1
s , . . . , ξ

N
s )ts=1,Φ1, (ϑs)

t
s=0, (Zj)

N
j=2, µ

(t)) = HN
t ∨ σ(µ(t)) ∨ σ(Φ1) ∨ σ(X

1
0 ),

with HN
t := σ((Xj

0)
N
j=2, (Zj)

N
j=2, (ξ

1
s , . . . , ξ

N
s )ts=1, ϑ

(t)). Notice that, for all t ∈ [[1, T ]], ξ1t is GN
t -

measurable and, in turn, GN
t is jointly independent of (ξ1t+k)

T−t
k=1. Furthermore, for all t ∈ [[0, T ]],

HN
t , σ(X1

0 ) and σ(Φ1, (µt)
T
t=0) are independent.

Hence, the tuple ((ΩN ,FN , {G
N
t }T−1

t=0 ,PN ),Φ1, (µt)
T
t=0,X

1
0 , (ξ

1
t )

T
t=1, (ũ

1,N
t )T−1

t=0 , (X
1,N
t )Tt=0) represents a

realization of the triple (m0, ρ, (ũ
1,N
t )T−1

t=0 ) for the open-loop MFG, with costs given by

Ĵ(m0, ρ, (ũ
1,N
t )T−1

t=0 ) = J
N
1 (m⊗N

0 , γN , γ̃N ).

Now, ρ is a solution of the correlated MFG according to Definition 4.3 and the values of the objec-
tive functionals at the equilibrium for the correlated MFGs in open-loop and closed-loop strategies
are the same (see Proposition 5.6). Thus, by the optimality condition in Definition 5.3, we get

J
N
1 (m⊗N

0 , γN , γ̃N ) ≥ J(m0, ρ, ι) ≥ 0 and this ends our proof.

�

7. A Toy Example

In order to further motivate the definition of mean field game solution given in Section 4, we
consider the two-state example introduced in [5] and show that it possesses correlated solutions with
non-deterministic flow of measures also in the sense of Definition 4.3. Moreover, assumptions (A1) –
(A3) as well as conditions (R1) – (R2) on the correlated solution will be seen to hold.

Let us recall the setting. Let T = 2, X = {−1, 1}, and Γ = {0, 1}. Let the system function and the
cost functional, respectively, be given by

Ψ(x, γ, z) = Ψ(t, x, γ, z) = x[1{0}(γ)(1[0, 1
2
] − 1( 1

2
,1])(z) + 1{1}(γ)(1[0, 3

4
] − 1( 3

4
,1])(z)]

= x[(1 − γ)(1[0, 1
2
] − 1( 1

2
,1])(z) + γ(1[0, 3

4
] − 1( 3

4
,1])(z)],(7.1)

and

f(t, x, γ,m) = c0(1− t)γ + t(c1γ − xM(m)),

F (x,m) = −xM(m),(7.2)

with c0, c1 > 0.

1 −1

1/21/2

1/21/2

1 −1

3/41/4

1/43/4

Figure 1. States and corresponding transition probabilities for the action γ = 0 (left)
and γ = 1 (right).
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Now, we consider the following candidate correlated solution for the game

ρ =+ β1(δ(ϕ+,m+) + δ(ϕ
−
,m

−
)) + β2(δ(ϕ0,m+) + δ(ϕ0,m−

))

+ β3(δ(ϕ̂+,m̂+) + δ(ϕ̂
−
,m̂

−
)) + β4(δ(ϕ0,m̂+) + δ(ϕ0,m̂−

)),(7.3)

where

ϕ0(t, x) := 0, ϕ+(t, x) := 1{1}(x) =
1 + x

2
, ϕ−(t, x) := 1{−1}(x) =

1− x

2
,

ϕ̂+(t, x) = 1{0}(t)1{1}(x) =
(1− t)(1 + x)

2
, ϕ̂−(t, x) := 1{0}(t)1{−1}(x) =

(1− t)(1 − x)

2
(7.4)

and

m+ := (m0,m
+
1 ,m

+
2 ), m+ := (m0,m

−
1 ,m

−
2 ), m̂+ := (m0,m

+
1 ,m0), m̂− := (m0,m

−
1 ,m0),(7.5)

with

m0 =
1

2
δ1 +

1

2
δ−1,

m+
1 =

5β1 + 4β2
8(β1 + β2)

δ1 +
3β1 + 4β2
8(β1 + β2)

δ−1, m−
1 =

3β1 + 4β2
8(β1 + β2)

δ1 +
5β1 + 4β2
8(β1 + β2)

δ−1,

m+
2 =

21β1 + 16β2
32(β1 + β2)

δ1 +
11β1 + 16β2
32(β1 + β2)

δ−1, m−
2 =

11β1 + 16β2
32(β1 + β2)

δ1 +
21β1 + 16β2
32(β1 + β2)

δ−1,(7.6)

and βi > 0, i ∈ [[1, 4]],
∑4

i=1 βi =
1
2 .

Let ((Ω,F ,P),Φ, ι, (X0 ,X1,X2), (µ0, µ1, µ2), (ξ1, ξ2)) be a realization of (m0, ρ, ι). First of all, let’s
check that this example satisfies the additional assumptions we have set for this extended framework.

(A1) Fix t ∈ {0, 1}, x, y ∈ {−1, 1} and γ ∈ {0, 1} and let Z be a r.v. distributed according to ν
defined on a probability space (Ω,F ,P). We have

P(Ψ(x, γ, Z) = y) = P(x[(1− γ)(1[0, 1
2
] − 1( 1

2
,1])(Z) + γ(1[0, 3

4
] − 1( 3

4
,1])(Z)] = y)

and so
– for x = y ∈ {−1, 1} and γ = 0:

P (Ψ(x, γ, Z) = y) = P

(
(1[0, 1

2
] − 1( 1

2
,1])(Z) = 1

)
= P

(
Z ∈

[
0,

1

2

])
=

1

2
;

– for x = y ∈ {−1, 1} and γ = 1:

P (Ψ(x, γ, Z) = y) = P

(
(1[0, 3

4
] − 1( 3

4
,1])(Z) = 1

)
= P

(
Z ∈

[
0,

3

4

])
=

3

4
;

– for x 6= y ∈ {−1, 1} and γ = 0:

P (Ψ(x, γ, Z) = y) = P

(
(1[0, 1

2
] − 1( 1

2
,1])(Z) = −1

)
= P

(
Z ∈

(
1

2
, 1

])
=

1

2
;

– for x 6= y ∈ {−1, 1} and γ = 1:

P (Ψ(x, γ, Z) = y) = P
(
(1[0, 3

4
] − 1( 3

4
,1])(Z) = −1

)
= P

(
Z ∈

(
3

4
, 1

])
=

1

4
.

Thus, for any t ∈ {0, 1}, x, y ∈ {−1, 1} and γ ∈ {0, 1},

P (Ψ(x, γ, Z) = y) ≥
1

4
> 0.(7.7)

(R1) Notice that in the example P(Φ = ϕ) > 0 if and only if ϕ ∈ {ϕ0, ϕ+, ϕ−, ϕ̂+, ϕ̂−} =: F. Thus,
if ϕ ∈ F \ {ϕ0}, the conditions in (R1) are obviously satisfied. Indeed, the corresponding set
Pϕ reduces to a singleton: in particular, we have Pϕ+ = {m+}, Pϕ

−

= {m−}, Pϕ̂+
= {m̂+}

and Pϕ̂
−

= {m̂−}. When {Φ = ϕ0}, we have Pϕ0 = {m+,m−, m̂+, m̂−} and:
(1) |Pϕ0 | = 4;
(2) Pϕ0(µ ∈ Pϕ0) = 1;

(3) Pϕ0(µ = m) ≥ min{ β2

2(β2+β4)
, β4

2(β2+β4)
}, for any m ∈ M := {m+,m−, m̂+, m̂−}.
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Further notice that, in this case, we have

P(0)
ϕ0

= {m0}, P(1)
ϕ0

= {m
(1)
+ ,m

(1)
− } = {(m0,m

+
1 ), (m0,m

−
1 )}.

(R2) In order to guarantee the validity of this assumption, we have to set a new condition on
the parameters of the model, that is β1 = β3 = β and β2 = β4 = γ (so that β + γ = 1

4 ).
It is sufficient to notice that, given a probability space (Ω,F ,P) endowed with a couple of
independent random variables µ ∼ ρ2, with ρ2 = ρ ◦ π−1

P(X ) =
1
4(δm−

+ δm+ + δm̂
−

+ δm̂+
), and

W ∼ ν and setting

Φ = 1{m+}(µ)(1[0,4β](W )ϕ+ + 1(4β,1](W )ϕ0) + 1{m
−
}(µ)(1[0,4β](W )ϕ− + 1(4β,1](W )ϕ0)

+ 1{m̂+}(µ)(1[0,4β](W )ϕ̂+ + 1(4β,1](W )ϕ0) + 1{m̂+}(µ)(1[0,4β](W )ϕ̂+ + 1(4β,1](W )ϕ0)(7.8)

=: α1(W,µ
(2)),

we have:
– P ◦ (Φ, µ)−1 = ρ. Indeed, exploiting the fact that µ is distributed according to ρ2 and

that Φ is defined via Equation (7.8), for (ϕ, m̃) ∈ F×M, we have

P((Φ, µ) = (ϕ, m̃)) =
∑

m∈M

1{m}(m̃)P(µ = m)P(Φ = ϕ|µ = m)

=
1

4

{
1{m+}(m̃)(4β1{ϕ+}(ϕ) + 4γ1{ϕ0}(ϕ)) + 1{m

−
}(m̃)(4β1{ϕ

−
}(ϕ) + 4γ1{ϕ0}(ϕ))

+ 1{m̂+}(m̃)(4β1{ϕ̂+}(ϕ) + 4γ1{ϕ0}(ϕ)) + 1{m̂
−
}(m̃)(4β1{ϕ̂

−
}(ϕ) + 4γ1{ϕ0}(ϕ))

}

= ρ(ϕ, m̃).

– It holds that

Φ(0, ·) = 1{m+}(µ)1[0,4β](W )1{1} + 1{m
−
}(µ)1[0,4β](W )1{−1}

+ 1{m̂+}(µ)1[0,4β](W )1{1} + 1{m̂
−
}(µ)1[0,4β](W )1{−1}

= 1{m+
1 }(µ1)1[0,4β](W )1{1} + 1{m−

1 }(µ1)1[0,4β](W )1{−1}

= α0(W,µ1),

with α0 : Z × P(X )2 → E , measurable function defined as

α0(w,m) := 1{m+
1 }(m)1[0,4β](w)1{1} + 1{m−

1 }(m)1[0,4β](w)1{−1},

Hence, the conditional independence property holds being equivalent to the existence of
a Z ∼ ν independent of µ s.t. Φ(0, ·) = u(Z, µ(1)), with u : Z × P(X )2 → E , measurable
function (see [15, Proposition 6.13]).

(A2) This is omitted being the same as in [5].
(A3) Let us start by checking the Lipschitzianity of f .

-t = 0: for any x1, x2 ∈ X , γ1, γ2 ∈ Γ and m1,m2 ∈ P(X ),

|f(0, x1, γ1,m1)− f(0, x2, γ2,m2)| = c0|γ1 − γ2| = c0d(γ1, γ2);

-t = 1: for any x1, x2 ∈ X , γ1, γ2 ∈ Γ and m1,m2 ∈ P(X ),

|f(1, x1, γ1,m1)− f(1, x2, γ2,m2)| ≤ c1d(γ1, γ2) + 2dist(m1,m2) + 2d(x1, x2).

Now, for any x1, x2 ∈ X and m1,m2 ∈ P(X ),

|F (x1,m1)− F (x2,m2)| ≤ 2d(x1, x2) + 2dist(m1,m2).

Hence, the validity of the last assumption follows from the choice L = max{c0, 4, c1 + 4} =
max{c0, c1 + 4}.

Now, let us write down some identities specific for the example that we are going to exploit in the
following. Concerning the means associated to the measure flows, we have

M(m0) = 0, M(m+
1 ) = −M(m−

1 ) =
β1

4(β1 + β2)
= β,
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M(m+
2 ) = −M(m−

2 ) =
5β1

16(β1 + β2)
=

5

8
β.(7.9)

Then, set P0(·) := P(·|Φ = ϕ0) and, analogously, E0[·] := E[·|Φ = ϕ0]. The distribution of the measure
flow conditionally on the event {Φ = ϕ0} can be computed explicitly and it is given by

P0

(
µ(2) = m+

)
= P0

(
µ(2) = m−

)
=

β2

2(β2 + β4)
=

1

4
,

P0

(
µ(2) = m̂−

)
= P0

(
µ(2) = m̂+

)
=

β4

2(β2 + β4)
=

1

4
,(7.10)

and, setting m
(1)
+ := (m0,m

+
1 ) and m

(1)
− := (m0,m

−
1 ), we have

P0

(
µ(1) = m

(1)
+

)
= P0

(
µ(1) = m

(1)
−

)
=

1

2
.(7.11)

Then, we compute the distribution of µ(2) conditionally on µ(1):

P0

(
µ(2) = m+|µ

(1) = m
(1)
+

)
= P0

(
µ(2) = m−|µ

(1) = m
(1)
−

)
=

β2

β2 + β4
=

1

2
,(7.12)

P0

(
µ(2) = m̂+|µ

(1) = m
(1)
+

)
= P0

(
µ(2) = m̂−|µ

(1) = m
(1)
−

)
=

β4

β2 + β4
=

1

2
.(7.13)

The conditions on parameters ensuring the optimality of ρ are presented in the following result.

Proposition 7.1. Consider the MFG setting described above. Then,

ρ = β(δ(ϕ+ ,m+) + δ(ϕ
−
,m

−
) + δ(ϕ̂+,m̂+) + δ(ϕ̂

−
,m̂

−
)) + γ(δ(ϕ0,m+) + δ(ϕ0,m−

) + δ(ϕ0,m̂+) + δ(ϕ0,m̂−
)),

(7.14)

is optimal provided that

i) β, γ ∈ [0, 1] and β + γ = 1
4 ,

ii) 0 < c0 <
β
2 ,

ii) 5
32β < c1 <

5
16β.

Remark 7.2. Under the assumption that β1 = β3 = β and β2 = β4 = γ, which we have previously set
to ensure the validity of (R2), the consistency property is automatically satisfied. Furthermore, under
the stronger conditions in the Proposition above, there are still infinitely many correlated solutions but
we loose a degree of freedom w.r.t. the result in [5].

Proof. In this simplified context the set of strategy modifications maps the set F into

R̂ = {ψ : {0, 1} × X 3 ×M → Γ, progressively measurable},(7.15)

that is, for any w ∈ D̂ and for any ϕ ∈ F, w(ϕ)(0, (x0, x1, x2), (m0,m1,m2)) = w(ϕ)(0, x0,m0) and
w(ϕ)(1, (x0 , x1, x2), (m0,m1,m2)) = w(ϕ)(1, (x0 , x1), (m0,m1)). In order to find the conditions on the
parameters in the definition of ρ in Equation (7.14) ensuring that it is a solution in the MFG, we
rewrite the cost functional exploiting desintegration over sets of the form {Φ = ϕ}, with ϕ ∈ F,

J(m0, ρ, w) = E

[
c0w(Φ)(0,X0,m0) + c1w(Φ)(1, (X0,X1), (m0, µ1))−X1M(µ1)−X2M(µ2)

]

= β

{
c0E+

[
w(ϕ+)(0,X0,m0)

]
+ c1E+

[
w(ϕ+)(1, (X0,X1), (m0,m

+
1 ))
]

− E+

[
X1

]
M(m+

1 )− E+

[
X2

]
M(m+

2 )

}
+ β

{
c0Ê+

[
w(ϕ̂+)(0,X0,m0)

]

+ c1Ê+

[
w(ϕ̂+)(1, (X0,X1), (m0,m

+
1 ))
]
− Ê+

[
X̂1

]
M(m+

1 )− Ê+

[
X̂2

]
M(m0)

}

+ β

{
c0E−

[
w(ϕ−)(0,X0,m0)

]
+ c1E−

[
w(ϕ−)(1, (X0,X1), (m0,m

−
1 ))
]

− E−

[
X1

]
M(m−

1 )− E−

[
X2

]
M(m−

2 )

}
+ β

{
c0Ê−

[
w(ϕ̂−)(0,X0,m0)

]
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+ c1Ê−

[
w(ϕ̂−)(1, (X0,X1), (m0,m

−
1 ))
]
− Ê−

[
X1

]
M(m−

1 )− Ê−

[
X2

]
M(m0)

}

+ 4γ

{
c0E0

[
w(ϕ0)(0,X0,m0)

]
+ c1E0

[
w(ϕ0)(1, (X0,X1), (m0, µ1))

]

− E0

[
X1M(µ1)

]
− E0

[
X2M(µ2)

]
}
,

where we have exploited the fact that the conditioning on {Φ = ϕ}, with ϕ ∈ {ϕ+, ϕ−, ϕ̂+, ϕ̂−},

completely determines the measure flow as well. Notice that the notation E+ (resp. E−, Ê+, Ê− and
E0) was introduced to denote conditional expectation w.r.t. the event {Φ = ϕ+} (resp. ϕ−, ϕ̂+, ϕ̂−

and ϕ0). Before proceeding with the study of the different cases we make a useful remark.

Consider the probability space (Ω,F ,Pϕ), where Pϕ(·) = P(·|Φ = ϕ), with ϕ ∈ F. For any

t ∈ [[0, T − 1]], X(t) and (µt+1, . . . , µT ) are conditionally independent given µ(t). Indeed, for any

m ∈ P(X )T−t, x ∈ X t+1, exploiting in sequence the tower property, the measurability of X(t) w.r.t.

σ(X0, ξ1, . . . , ξt,Φ, µ
(t)), the joint independence of µ from X0 and ξ1, . . . , ξT , and the measurability of

conditional expectations, we have

Pϕ((µt+1, . . . , µT ) = m,X(t) = x|µ(t)) = Eϕ[1{m}(µt+1, . . . , µT )1{x}(X
(t))|µ(t)]

= Eϕ[1{x}(X
(t))Eϕ[1{m}(µt+1, . . . , µT )|µ

(t),X0, ξ1, . . . , ξt]|µ
(t)]

= Eϕ[1{x}(X
(t))Eϕ[1{m}(µt+1, . . . , µT )|µ

(t)]|µ(t)]

= Eϕ[1{m}(µt+1, . . . , µT )|µ
(t)]Eϕ[1{x}(X

(t))|µ(t)]

= Pϕ((µt+1, . . . , µT ) = m|µ(t))Pϕ(X
(t) = x|µ(t)).

Now, let’s start by discussing the first case, that is when the suggestion is {Φ = ϕ+}. We proceed
exploiting the DPP (Proposition 5.5). In the following we omit the dependency on the measure flow
being it identically equal to a single element and we introduce the following simplified notations:

V+ := Vϕ+ , V− := Vϕ
−

, V̂+ := Vϕ̂+
, V̂− := Vϕ̂

−

and V0 := Vϕ0 .

• For t = 2, x ∈ {−1, 1}3,

V+(2, (x0, x1, 1)) = F (1,m+
2 ) = −M(m+

2 ) = −
5

4
β,

V+(2, (x0, x1,−1)) = F (−1,m+
2 ) = +M(m+

2 ) =
5

4
β,

• For t = 1, x ∈ {−1, 1}2,

V+(1, (x0,−1)) = min
γ∈{0,1}

{
c1γ +M(m+

1 ) + E+ [V+ (2, (x0,−1,Ψ(−1, γ, ξ2)))]

}

= min
γ∈{0,1}

{
c1γ +M(m+

1 ) +M(m+
2 ) [P+ (Ψ(−1, γ, ξ2) = −1)− P+ (Ψ(−1, γ, ξ2) = 1)]

}

= M(m+
1 ) + min

{
M(m+

2 )

(
1

2
−

1

2

)
, c1 +M(m+

2 )

(
−
1

4
+

3

4

)}

= β +min

{
0, c1 +

5

16
β

}
.

This implies that, at time t = 1 in state (x0,−1), γ = 0 is optimal which corresponds to ϕ+

evaluated at t = 1, x = −1. Analogously,

V+(1, (x0, 1)) = min
γ∈{0,1}

{
c1γ −M(m+

1 ) + E+ [V+ (2, (x0, 1,Ψ(1, γ, ξ2)))]

}
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= −β +min

{
0, c1 −

5

16
β

}
.

This implies that γ = 1 (and so ϕ+) is optimal at time t = 1 and state (x0, 1) if and only if
c1 −

5
16β < 0, that is

0 < c1 <
5

16
β.(7.16)

• For t = 0, x ∈ {−1, 1},

V+(0,−1) = min
γ∈{0,1}

{
c0γ + E+ [V+ (1, (−1,Ψ(−1, γ, ξ2)))]

}

= min
γ∈{0,1}

{
c0γ +

(
−β + c1 −

5

16
β

)
P+ (Ψ(−1, γ, ξ2) = 1) + βP+ (Ψ(−1, γ, ξ2) = −1)

}

= min

{
0 +

1

2

(
−β + c1 −

5

16
β

)
+

1

2
β, c0 +

(
−β + c1 −

5

16
β

)
1

4
+ β

3

4

}

= min

{
1

2

(
c1 −

5

16
β

)
, c0 +

(
c1 −

5

16
β

)
1

4
+ β

1

2

}
.

Since c1 −
5
16β < 0 and all the parameters are positive, at time t = 0 in state x0 = −1, γ = 0

is optimal which corresponds to ϕ+ evaluated at t = 0, x = −1. Analogously,

V+(0, 1) = min
γ∈{0,1}

{
c0γ + E+ [V+ (1, (1,Ψ(1, γ, ξ2)))]

}

= min

{
1

2

(
c1 −

5

16
β

)
, c0 +

(
c1 −

5

16
β

)
3

4
− β

1

2

}
.

This implies that γ = 1 (and so ϕ+) is optimal at time t = 0 and state 1 if and only if
1
2

(
c1 −

5
16β
)
> c0 +

(
c1 −

5
16β
)

3
4 − β 1

2 . Since we have already set c1 < 5
16β, we set the

following stronger condition that guarantees the validity of the inequality above

0 < c0 <
1

2
β.(7.17)

Hence, we have shown that, conditionally on the event {Φ = ϕ+}, ϕ+ is optimal.
The case {Φ = ϕ−} is completely analogous and leads to the same constraints on the coefficients.
Now, let’s discuss in details the case in which the suggestion is {Φ = ϕ̂+}.

• For t = 2, x ∈ {−1, 1}3,

V̂+(2, (x0, x1, x2)) = F (x2,m0) = −x2M(m0) = 0,

• For t = 1, x ∈ {−1, 1}2,

V̂+(1, (x0, x1)) = min
γ∈{0,1}

{
c1γ − x1M(m+

1 ) + Ê+

[
V̂+ (2, (x0, x1,Ψ(x1, γ, ξ2)))

]}

= min
γ∈{0,1}

{
c1γ − x1M(m+

1 )

}

= −x1M(m+
1 ) + c1 min

{
0, γ
}
= −x1M(m+

1 ).

This implies that at time t = 1, in any state (x0, x1), γ = 0 is optimal which corresponds to
ϕ̂+ evaluated at t = 1.

• For t = 0, x ∈ {−1, 1},

V̂+(0,−1) = min
γ∈{0,1}

{
c0γ + Ê+

[
V̂+ (1, (−1,Ψ(−1, γ, ξ2)))

]}
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= min
γ∈{0,1}

{
c0γ + (−β)Ê+ [Ψ(−1, γ, ξ2)]

}

= min

{
0, c0 +

β

2

}
.

At time t = 0 in state x0 = −1, γ = 0 is optimal which corresponds to ϕ̂+ evaluated at
t = 0, x = −1. Analogously,

V̂+(0, 1) = min
γ∈{0,1}

{
c0γ + Ê+

[
V̂+ (1, (1,Ψ(1, γ, ξ2)))

]}
= min

{
0, c0 −

β

2

}
.

The condition that we have set in Equation (7.17) yields that γ = 1 (and so ϕ̂+) is optimal at
time t = 0 and state 1. Hence, we have checked that, conditionally on the event {Φ = ϕ̂+},
ϕ̂+ is optimal.

The computations for the case {Φ = ϕ̂−} are analogous and lead to the same constraints.
The last case, namely {Φ = ϕ0}, is the most complicated. Indeed, in this case we have to handle

a random measure flow and consequently different flows of measure and different outcomes when
evaluating the strategies of the representative player. This is done exploiting again the dynamic
programming principle.

• For t = 2, x ∈ {1,−1}3, (m0,m1,m2) ∈ {m+, m̂+,m−, m̂−} = Dϕ0 ,

V0(2, (x0, x1, x2), (m0,m1,m2)) = −x2M(m2).(7.18)

In particular, we have

V0(2, (x0, x1, 1),m+) = V0(2, (x0, x1,−1),m−) = −M(m+
2 ) = −

5

8
β,

V0(2, (x0, x1,−1),m+) = V0(2, (x0, x1, 1),m−) = M(m+
2 ) =

5

8
β,

V0(2, (x0, x1, x2), (m0,m1,m0)) = 0.

• For t = 1, x ∈ {1,−1}2, (m0,m1) ∈ {m
(1)
+ ,m

(1)
− } = D

(1)
ϕ0 ,

V0(1, (x0, x1), (m0,m1)) = min
γ∈{0,1}

{
c1γ − xM(m1)

+ E0

[
V0(2, (x0, x1,Ψ(x1, γ, ξ2), (m0,m1, µ2)))|X

(1) = (x0, x1), µ
(1) = (m0,m1)

]}
.(7.19)

Exploiting the computations at the previous step, the fact that ξ2 and (Φ, µ,X0, ξ1) are inde-

pendent, and the fact that, on the probability space (Ω,F ,Pϕ0), X
(1) and µ2 are conditionally

independent given µ(1), we have

V0(1, (x0, 1),m
(1)
+ ) = min

γ∈{0,1}

{
c1γ −M(m+

1 )

+ E0

[
V0(2, (x0, 1,Ψ(1, γ, ξ2)), (m

(1)
+ , µ(2)))|X(1) = (x0, 1), µ

(1) = m
(1)
+

]}

= −M(m+
1 ) + min

γ∈{0,1}

{
c1γ +M(m+

2 )

[
P0(Ψ(1, γ, ξ2) = −1, µ = m+

2 |X
(1) = (x0, 1), µ

(1) = m
(1)
+ )

− P0(Ψ(1, γ, ξ2) = 1, µ = m+
2 |X

(1) = (x0, 1), µ
(1) = m

(1)
+ )

]}

= −M(m+
1 ) + min

γ∈{0,1}

{
c1γ +M(m+

2 )

[
P0(Ψ(1, γ, ξ2) = −1)P0(µ = m+

2 |X
(1) = (x0, 1), µ

(1) = m
(1)
+ )

− P0(Ψ(1, γ, ξ2) = 1)P0(µ = m+
2 |X

(1) = (x0, 1), µ
(1) = m

(1)
+ )

]}

= −β + min
γ∈{0,1}

{
c1γ +

5

8
β

[
P0(Ψ(1, γ, ξ2) = −1)P0(µ = m+

2 |µ
(1) = m

(1)
+ )
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− P0(Ψ(1, γ, ξ2) = 1)P0(µ = m+
2 |µ

(1) = m
(1)
+ )

]}

= −β +min
{
0 +

5

16
β

[
1

2
−

1

2

]
, c1 +

5

16
β

[
1

4
−

3

4

]}
= −β +min

{
0, c1 −

5

32
β
}

and, similarly,

V0(1, (x0,−1),m
(1)
− ) = min

γ∈{0,1}

{
c1γ +M(m−

1 )

+ E0

[
V0(2, (x0,−1,Ψ(−1, γ, ξ2)), (m

(1)
− , µ(2)))|X(1) = (x0,−1), µ(1) = m

(1)
−

]}

= −β +min
{
0 +

5

16
β

[
1

2
−

1

2

]
, c1 +

5

16
β

[
1

4
−

3

4

]}
= −β +min

{
0, c1 −

5

32
β
}
.

This yields that γ = 0 (and so ϕ0) is optimal at time t = 0 when (x,m) ∈ {((x0, 1), (m0,m
+
1 )),

((x0,−1), (m0,m
−
1 ))} if and only if c1 −

5
32β > 0. Thus, we set the condition

5

32
β < c1.(7.20)

Analogously, we compute

V0(1, (x0,−1),m
(1)
+ ) = min

γ∈{0,1}

{
c1γ +M(m+

1 )

+ E0

[
V0(2, (x0,−1,Ψ(−1, γ, ξ2)), (m

(1)
+ , µ(2)))|X(1) = (x0,−1), µ(1) = m

(1)
+

]}

= β +min
{
0 +

5

16
β

[
1

2
−

1

2

]
, c1 +

5

16
β

[
3

4
−

1

4

]}
= β +min

{
0, c1 +

5

32
β
}
,

and

V0(1, (x0, 1),m
(1)
− ) = min

γ∈{0,1}

{
c1γ +M(m−

1 )

+ E0

[
V0(2, (x0, 1,Ψ(1, γ, ξ2)), (m

(1)
− , µ(2)))|X(1) = (x0, 1), µ

(1) = m
(1)
−

]}

= β +min
{
0 +

5

16
β

[
1

2
−

1

2

]
, c1 +

5

16
β

[
3

4
−

1

4

]}
= β +min

{
0, c1 +

5

32
β
}

Thus, γ = 0 (and so ϕ0) is optimal at time t = 0 when (x,m) ∈ {((x0,−1), (m0,m
+
1 )),

((x0, 1), (m0,m
−
1 ))}, without the need of any further constraint.

• For t = 0, x0 ∈ {1,−1},

V0(0, x0) = V0(0, x0,m0)

= min
γ∈{0,1}

{c0γ + E0 [V0(1, (x0,Ψ(x0, γ, ξ1), (m0, µ1))|X0 = x0, µ0 = m0]} .(7.21)

Finally, we study the initial time step in detail, exploiting the fact that X0, ξ1 and µ1 are
independent on the probability space (Ω,F ,P0):

V0(0, 1) = min
γ∈{0,1}

{c0γ + E0 [V0(1, (1,Ψ(1, γ, ξ1), (m0, µ1))|X0 = 1, µ0 = m0]}

= min
γ∈{0,1}

{c0γ + E0 [V0(1, (1,Ψ(1, γ, ξ1), (m0, µ1))|X0 = 1]}

= min
γ∈{0,1}

{
c0γ +

β

2

[
P0 (Ψ(1, γ, ξ1) = −1) + P0 (Ψ(1, γ, ξ1) = 1)

]

−
β

2

[
P0 (Ψ(1, γ, ξ1) = 1) + P0 (Ψ(1, γ, ξ1) = −1)

]}

= min

{
0 +

β

2

[(
1

2
+

1

2

)
−

(
1

2
+

1

2

)]
, c0 +

β

2

[(
1

4
+

3

4

)
−

(
1

4
+

3

4

)]}

= min{0, c0}
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and, similarly,

V0(0,−1) = min
γ∈{0,1}

{c0γ + E0 [V0(1, (−1,Ψ(−1, γ, ξ1), (m0, µ1))|X0 = −1, µ0 = m0]}

= min

{
0 +

β

2

[(
1

2
+

1

2

)
−

(
1

2
+

1

2

)]
, c0 +

β

2

[(
1

4
+

3

4

)
−

(
1

4
+

3

4

)]}

= min{0, c0}.

Hence, at time t = 0, γ = 0 (and so ϕ0) is optimal at any state.

Thus, we have proved that, conditionally on the event {Φ = ϕ0}, the strategy ϕ0 is optimal, completing
the analysis of the various cases. Now, putting together the conditions in Equations (7.16), (7.17) and
(7.20), we obtain the statement of the theorem.

�

Appendix A. Propagation of chaos

First of all, let us recall some basic definitions, for which we refer to [12]. We denote with Πn the
set of permutations over n elements, namely over [[1, n]]. Consider a probability measure p ∈ P(X )
and a sequence of symmetric probability measures {pn}n∈N, with pn ∈ P(X n), for each n ∈ N. We
call the sequence of probability measures (pn)n∈N p-chaotic if for any choice of k ∈ N continuous and
bounded functions on X , g1, . . . , gk, we have

(A.1) lim
n→∞

∫

Xn

g1(s1) . . . gk(sk)pn(ds1, . . . , dsn) =
k∏

j=1

∫

X
gj(s)p(ds).

Then, we call a sequence of symmetric probability measures (pn)n∈N chaotic, if there exists a probabil-
ity measure p ∈ P(X ) s.t. (pn)n∈N is p-chaotic. Let (βn(·, ·))n∈N be a sequence of probability kernels
such that, for any n ∈ N, βn : X n × B(X )n → [0, 1] satisfies the following (symmetry) condition:

βn(x,B) = βn(πx, πB), for any π ∈ Πn.

We say that propagation of chaos holds for the sequence (βn(·, ·))n∈N if (Upn)n∈N is chaotic for any
chaotic sequence (pn)n∈N , where, for any n ∈ N,

Upn(B) :=

∫

Xn

βn(x,B)pn(dx), for all B ∈ B(X )n.

We are going to show that propagation of chaos holds in our case via the following equivalent
characterization.

Theorem A.1 (Theorem 4.2, in [12]). Consider a couple of complete and separable metric spaces,
(X , dX ) and (Y, dY ). For each n ∈ N, let Πn denote the set of permutations over [[1, n]]. Let βn :
X n × B(Yn) → [0, 1] be a sequence of Markovian transition functions (probability kernels), i.e. for
xn ∈ X n and B ∈ B(Yn), βN (xn, B) is the probability that the state of the n-particle system lies
in B, given that the initial state was xn. Suppose that the transition functions satisfy the following
condition:

(A.2) βn(xn, B) = βn(πxn, πB), for all π ∈ Πn, for all xn ∈ X n and for all B ∈ B(Yn).

Then, {βn}n∈N propagates chaos if and only if, whenever µn(xn) :=
1
n

∑n
j=1 δ(xn)j → p in P(X ) with

xn ∈ X n, then {β̃n(xn, ·)}n∈N is F (p)-chaotic, where F : P(X ) → P(Y), is a continuous function

w.r.t. weak topologies and β̃n is defined as

β̃n(xn, B) =
1

n!

∑

π∈Πn

βn(xn, πB).

Now, we should reframe the general definitions above in our context. Consider xN ∈ XN (initial
conditions) and B ∈ B(XN ). In our case, for an arbitrary fixed N ∈ N, the probability kernel is given
by

βN (xN , B) = PN,m ◦ (X1,N,m
1 , . . . ,X

N,N,m
1 )−1(B)

= PN,m

((
Ψ(0, xNj ,

1

N − 1

∑

k 6=j

δxN
k
,ΦN,m

j (0, xNj ), ξj,N,m
1 )

)N
j=1

∈ B

)
,

(A.3)
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where, in the second line, we have exploited the fact that ΦN,m
1 = Φ̃N,m

1 , PN,m-a.s., and that, since

γNm = ρ1(·|m)⊗N , ΦN,m
j takes values in R, for each j ∈ [[1, N ]].

We have the following propagation of chaos result:

Claim A.2. Propagation of chaos holds for the first time step of our model, i.e. (βN (·, ·))N∈N, as
defined in Equation (A.3), propagates chaos.

Proof of Claim A.2. First of all, we need to prove that condition (A.2) in Theorem A.1 holds. We
denote with π a generic permutation of [[1, N ]]. For any xN ∈ XN and B = B1 × . . . ×BN ∈ B(XN ),
with πB = Bπ(1) × . . .×Bπ(N), we have

βN (πxN , πB)

= PN,m

((
Ψ(0, xNπ(j),

1

N − 1

∑

k 6=j

δxN
π(k)

,ΦN,m
j (0, xNπ(j)), ξ

j,N,m
1 )

)N
j=1

∈ πB

)
= ⋆.

Since (ΦN,m
j )Nj=1

d
∼ ρ1(·|m)⊗N and (ξj,N,m

1 )Nj=1
d
∼ ν⊗N are independent, we reorder the terms to get

⋆ = PN,m

((
Ψ(0, xNπ(j),

1

N − 1

∑

k 6=j

δxN
π(k)

,ΦN,m
π(j) (0, x

N
π(j)), ξ

π(j),N,m
1 )

)N
j=1

∈ πB

)

= PN,m

((
Ψ(0, xNj ,

1

N − 1

∑

k 6=j

δxN
k
,ΦN,m

j (0, xnj ), ξ
j,N,m
1 )

)N
j=1

∈ B

)
= βN (xN , B).

Thus, we have shown that condition (A.2) holds. Now, to conclude that (βN (·, ·))N∈N propagates chaos

we need to prove that, for any given sequence xN ∈ XN , N ∈ N, such that µN (xN ) := 1
N

∑N
j=1 δxN

j
→ p

in P(X ), the sequence (β̃N (xN , ·))∞N=1, with β̃N defined as

β̃N (xN , B) =
1

N !

∑

π∈ΠN

βN (xN , πB), xN ∈ XN , B ∈ B(X )N ,

is F (p)-chaotic, where F : P(X ) → P(X ) is a suitable continuous function.

Suppose that µN (xN ) = 1
N

∑N
j=1 δxN

j
→ p in P(X ), let us consider g1, . . . , gl ∈ Cb(X ), l ∈ N, exploiting

property (A.2) we have

∫

XN

g1(y1) . . . gl(yl)β̃N (xN , dy1 . . . dyN ) =
1

N !

∑

π∈ΠN

∫

XN

g1(y1) . . . gl(yl)βN (xN , dyπ(1) . . . dyπ(N))

=
1

N !

∑

π∈ΠN

∫

XN

g1(y1) . . . gl(yl)βN (πxN , dy1 . . . dyN ) =: ⋆

Now, we exploit the definition of βN (·, ·) to gather terms together in order to get

⋆ =
1

N !

∑

π∈ΠN

∫

RN

∫

ZN

l∏

j=1

gj(Ψ(0, xNπ(j),
1

N − 1

∑

k 6=j

δxN
π(k)

, φj(0, x
N
π(j)), zj))ν

⊗N (dz1, . . . , dzN )γNm(dφ)

=
1

N !

∑

π∈ΠN

l∏

j=1

∫

R

∫

Z
gj(Ψ(0, xNπ(j),

1

N − 1

∑

k 6=j

δxN
π(k)

, φ(0, xNπ(j)), z))ν(dz)ρ1(dφ|m)

=
1

N !

∑

π∈ΠN

l∏

j=1

∫

R

∫

Z
gj(Ψ(0, xNπ(j),

N

N − 1
µN (xN )−

1

N − 1
δxN

π(j)
, φ(0, xNπ(j)), z))ν(dz)ρ1(dφ|m)

=
(N − l)!

N !

∑

λ∈IN:l

l∏

j=1

∫

R

∫

Z
gj(Ψ(0, xNλ(j),

N

N−1
µN (xN )−

1

N−1
δxN

λ(j)
, φ(0, xNλ(j)), z))ν(dz)ρ1(dφ|m)

=: ⋄,
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where IN :l denotes the set of injections from [[1, l]] to [[1, N ]].
Set µN :l to be, for a vector xN ∈ XN , the symmetric probability measure given by

(A.4) µN :l(x
N ) =

(N − l)!

N !

∑

λ∈IN:l

δ(xN
λ(1)

,...,xN
λ(l)

).

It is possible to show, see [12] pg. 29, that µN (xN ) −→
N→∞

p implies µN :l(x
N ) −→

N→∞
p⊗l. We have

⋄ =
(N − l)!

N !

∑

λ∈IN:l

l∏

j=1

∫

R

∫

Z
gj(Ψ(0, xNλ(j),

N

N−1
µN (xN )−

1

N−1
δxN

λ(j)
, φ(0, xNλ(j)), z))ν(dz)ρ1(dφ|m)

=

∫

X l

l∏

j=1

∫

R

∫

Z
gj(Ψ(0, yj ,

N

N−1
µN (xN )−

1

N−1
δyj , φ(0, yj), z))ν(dz)ρ1(dφ|m)µN :l(x

N )(dy1, . . . , dyl)

=

∫

X l

µN :l(x
N )(dy)

{ l∏

j=1

∫

R
ρ1(dφ|m)

∫

Z
ν(dz)gj(Ψ(0, yj ,

N

N−1
µN (xN )−

1

N−1
δyj , φ(0, yj), z))

}

−→
N→∞

∫

X l

p⊗l(dy)

{ l∏

j=1

∫

R
ρ1(dφ|m)

∫

Z
ν(dz)gj(Ψ(0, yj , p, φ(0, yj), z))

}

=

l∏

j=1

∫

X
p(dy)

∫

R
ρ1(dφ|m)

∫

Z
ν(dz)gj(Ψ(0, y, p, φ(0, y), z)) =

l∏

j=1

∫

X
gj(x)q(p)(dx),

where q(p) is the image of (p, ρ1(·|m), ν) via the mapping (y, φ, z) 7→ Ψ(0, y, p, φ(0, y), z). In particular,
the convergence in the fourth line is proved as follows, exploiting a generalization of the continuous
mapping theorem, namely [4, Theorem I.5.5]. In the notation of [4, Theorem I.5.5], we have PN =

µN :l(x
N )

N→∞
−→ p⊗l, by assumption. Furthermore, we consider the following functions hN : X l →

[−
∏l

j=1 ‖gj‖∞,
∏l

j=1 ‖gj‖∞], for all N ∈ N, and h : X l → [−
∏l

j=1 ‖gj‖∞,
∏l

j=1 ‖gj‖∞], defined, for
y ∈ X , by

hN (y) :=
l∏

j=1

∫

R

∫

Z
gj(Ψ(0, yj ,

N

N−1
µN (xN )−

1

N−1
δyj , φ(0, yj), z))ν(dz)ρ1(dφ|m),

h(y) :=
l∏

j=1

∫

R

∫

Z
gj(Ψ(0, yj , p, φ(0, yj), z))ν(dz)ρ1(dφ|m).

We have that both previous functions are measurable, since the finite set X l is equipped with the
discrete metric. Finally, we show that, for any y ∈ X l, hN (y) → h(y), as N → ∞. We prove this
for l = 2, but the result can be extended to any l ∈ N. In the following we exploit the notation
ǭN,j :=

N
N−1µN (xN )− 1

N−1δyj . Exploiting the fact that g1, g2 ∈ Cb(X ) and (A2), we have

|hN (y)− h(y)|

=
∣∣∣

2∏

j=1

∫

R

∫

Z
gj(Ψ(0, yj , ǭN,j , φ(0, yj), z))ν(dz)ρ1(dφ|m)−

2∏

j=1

∫

R

∫

Z
gj(Ψ(0, yj , p, φ(0, yj), z))ν(dz)ρ1(dφ|m)

∣∣∣

≤
∣∣∣

2∏

j=1

∫

R

∫

Z
gj(Ψ(0, yj , ǭN,j , φ(0, yj), z))ν(dz)ρ1(dφ|m)

−

∫

R

∫

Z
g1(Ψ(0, y1, ǭN,1, φ(0, y1), z))ν(dz)ρ1(dφ|m)

∫

R

∫

Z
g2(Ψ(0, y2, p, φ(0, y2), z))ν(dz)ρ1(dφ|m)

∣∣∣

+
∣∣∣
∫

R

∫

Z
g1(Ψ(0, y1, ǭN,1, φ(0, y1), z))ν(dz)ρ1(dφ|m)

∫

R

∫

Z
g2(Ψ(0, y2, p, φ(0, y2), z))ν(dz)ρ1(dφ|m)

−
2∏

j=1

∫

R

∫

Z
φj(Ψ(0, yj , p, φ(0, yj), z))ν(dz)ρ1(dφ|m)

∣∣∣
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≤ ‖g1‖∞

∣∣∣
∫

R

∫

Z
g2(Ψ(0, y2, ǭN,2, φ(0, y2), z)) − g2(Ψ(0, y2, p, φ(0, y2), z))ν(dz)ρ1(dφ|m)

∣∣∣

+ ‖g2‖∞

∣∣∣
∫

R

∫

Z
g1(Ψ(0, y1, ǭN,1, φ(0, y1), z))− g1(Ψ(0, y1, p, φ(0, y1), z))ν(dz)ρ1(dφ|m)

∣∣∣

≤ 2‖g1‖∞‖g2‖∞

∣∣∣
∫

R

∫

Z
1Ψ(0,y2,ǭN,2,φ(0,y2),z)6=Ψ(0,y2,p,φ(0,y2),z)ν(dz)ρ1(dφ|m)

∣∣∣

+ 2‖g1‖∞‖g2‖∞

∣∣∣
∫

R

∫

Z
1Ψ(0,y1,ǭN,1,φ(0,y1),z)6=Ψ(0,y1,p,φ(0,y1),z)ν(dz)ρ1(dφ|m)

∣∣∣

≤ 2‖g1‖∞‖g2‖∞(w(dist(ǭN,1, p)) + w(dist(ǭN,2, p)))
N→∞
−→ 0.

Indeed, lims→0+ w(s) = 0 and, for any j ∈ {1, 2},dist(ǭN,j , p) ≤ dist(ǭN,j , µN (xN )) + dist(µN (xN ), p).
The second term on the right vanishes as N → ∞ by assumption and

dist

(
N

N−1
µN (xN )−

1

N−1
δyj , µN (xN )

)
=

1

2

∑

z∈X

|
N

N−1
µN (xN )(z)−

1

N−1
δyj (z)− µN (xN )(z)|

=
1

2(N − 1)

∑

z∈X

|µN (xN )(z) − δyj (z)| ≤
1

N − 1
→ 0.

Thence, an application of [4, Theorem I.5.5] yields the desired convergence. To conclude we need to
show that the function q : P(X ) → P(X ), defined, for p ∈ P(X ), as the image of (p, ρ1(·|m), ν) via the
mapping (y, φ, z) 7→ Ψ(0, y, p, φ(0, y), z), is a continuous function of p. This function q(p) corresponds
to the function F (p) in the statement of Theorem A.1. Let’s consider a sequence {pn}n∈N ⊆ P(X ),
such that pn −→

N→∞
p weakly and let B ∈ B(X ). Exploiting hypothesis (A2), we are able to deduce

|q(pn)(B)− q(p)(B)|

≤

∣∣∣∣
∫

X
pn(dy)

∫

R
ρ1(dφ|m)

∫

Z
ν(dz)1B(Ψ(0, y, pn, φ(0, y), z))

−

∫

X
p(dy)

∫

R
ρ1(dφ|m)

∫

Z
ν(dz)1B(Ψ(0, y, p, φ(0, y), z))

∣∣∣∣

≤

∣∣∣∣
∫

X
pn(dy)

∫

R
ρ1(dφ|m)

∫

Z
ν(dz)

{
1B(Ψ(0, y, pn, φ(0, y), z)) − 1B(Ψ(0, y, p, φ(0, y), z))

}∣∣∣∣

+

∣∣∣∣
∫

X
(pn − p)(dy)

∫

R
ρ1(dφ|m)

∫

Z
ν(dz)1B(Ψ(0, y, p, φ(0, y), z)

∣∣∣∣

≤

∫

X
pn(dy)

∫

R
ρ1(dφ|m)

∫

Z
ν(dz)1{Ψ(0,y,pn,φ(0,y),z)6=Ψ(0,y,p,φ(0,y),z)}

+

∣∣∣∣
∫

X
(pn − p)(dy)

∫

R
ρ1(dφ|m)

∫

Z
ν(dz)

∣∣∣∣

≤

∫

X
pn(dy)

∫

R
ρ1(dφ|m)w(dist(pn, p)) +

∫

X
|pn − p|(dy)

≤ w(dist(pn, p)) + dist(pn, p).

This fact, in particular, implies

dist(q(pn), q(p)) = dTV (q(pn), q(p)) = sup
B∈B(X )

|q(pn)(B)− q(p)(B)|

≤ w(dist(pn, p)) + dist(pn, p) −→
N→∞

0,

where dTV denotes the distance in total variation, that coincides with the distance dist(·, ·), compatible
with weak topology, because the set X is finite. So, we get the continuity of q and conclude the proof
of chaos propagation. �
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