
Digital Object Identifier (DOI) https://doi.org/10.1007/s00220-023-04899-z
Commun. Math. Phys. (2024) 405:15 Communications in

Mathematical
Physics

Almost Global Existence for Some Hamiltonian PDEs
with Small Cauchy Data on General Tori

D. Bambusi1 , R. Feola2, R. Montalto1

1 Dipartimento di Matematica, Università degli Studi di Milano, Via Saldini 50, 20133 Milan, Italy.
E-mail: dario.bambusi@unimi.it; riccardo.montalto@unimi.it

2 Dipartimento di Matematica e Fisica, Università degli Studi RomaTre, Largo San Leonardo Murialdo 1,
00144 Rome, Italy. E-mail: roberto.feola@uniroma3.it

Received: 24 February 2023 / Accepted: 23 October 2023
Published online: 25 January 2024 – © The Author(s) 2024

Abstract: In this paper we prove a result of almost global existence for some abstract
nonlinear PDEs on flat tori and apply it to some concrete equations, namely a nonlinear
Schrödinger equation with a convolution potential, a beam equation and a quantum
hydrodinamical equation. We also apply it to the stability of plane waves in NLS. The
main point is that the abstract result is based on a nonresonance condition much weaker
than the usual ones, which rely on the celebrated Bourgain’s Lemma which provides a
partition of the “resonant sites” of the Laplace operator on irrational tori.
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1. Introduction

The problem of studying long time behaviour of solutions of Hamiltonian non linear
PDEs on compact manifolds is fundamental and widely studied. In this paper we focus
on the so called problem of “almost global existence”, namely the problem of provingthat
solutions corresponding to smooth and small initial data remain smooth and small for
times of order ε−r with arbitrary r ; here ε is the norm of the initial datum.

We recall that there exist quite satisfactory results for semilinear equations in one
space dimension [1,5,19], which have also been extended to some semilinear PDEs
with unbounded perturbations [47] and to some quasilinear wave equations [24], grav-
ity capillary water waves [12] (see also [13]), capillary water waves [42], quasi-linear
Schrödinger [32] and pure gravity water waves [14] still in dimension one. We also
mention that for semilinear PDEs there are some results about sub-exponentially long
stability time, see for instance [16,17,22,30,34].

On the other hand for the case of higher dimensional manifolds only particular ex-
amples are known [4,11,23,26–28,33] and for PDEs in higher space dimension with
unbounded perturbations only partial results have been obtained [31,35,43]. A slightly
different point of view is the one developed in [46] in which the authors give some upper
bounds on the possible energy transfer to high modes, for initial data Fourier supported
in a box for the cubic NLS on the irrational square torus in dimension two.

To discuss the main difficulty met in order to obtain almost global existence in more
than one space dimension, we recall that all the known results deal with perturbations of
linear systems whose eigenvalues are of the form ±iω j with ω j real numbers playing
the role of frequencies. Here j belongs to some countable set of indexes, say Z

d , d ≥ 1
(for instance).

The main point is that, in all known results, the frequencies are assumed to verify a
certain non-resonance condition. More precisely, for some fixed γ, τ > 0, one typically
requires
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{| j1|, ..., | jr |})−τ γ, (1.1)

except in the case

r even, � = r

2
and (up to permutations) ji = ji+ r

2
, (1.2)

where max3 {| j1|, ..., | jr |} denotes the third largest number among | j1|, ..., | jr |. Con-
dition (1.1) is a kind of second Melnikov condition since it requires to control linear
combinations involving two frequencies with index arbitrarily large. Monomials in the
vector field supported on indexes satisfying (1.2) are called resonant monomials, which
are the ones that cannot be canceled out through a Birkhoff normal form procedure. We
first remark that conditions (1.1)–(1.2) are quite strong, and, in particular, (1.2) implies
that the only resonant monomials are action preserving in the sense that |u j |2 are con-
stants of motion. Secondly one can easily convince that there are plenty of situation in
which the conditions above are violated. Just as an example, even in dimension d = 1
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(in the case j ∈ Z), and assuming ω j even in j one can only hope to impose (1.1) except
in the case

r even, � = r

2
and (up to permutations) | ji | = | ji+ r

2
|, (1.3)

which is weaker than (1.2). Indeed it is no more true that the “actions” |u j |2 are preserved.
On the contrary one can only infer that the so called super-actions are preserved by the
motion, i.e. quantities of the form (in the case d = 1)

|u j |2 + |u− j |2.
This suggests that the situation in which the linear system has multiple eigenvalues is
more delicate. We mention, for instance, [29] where the authors deal with the multiplicity
of the eigenvalues of the Laplacian on T

d , d > 1, by introducing the super-actions

Jn :=
∑

k∈Zd ,|k|2=n
|uk |2.

We finally remark that, apart from the possible multiplicity of eigenvalues, to have
“good” lower bounds as in (1.1) is fundamental, in classical approaches, to prove the
well-posedness of the Birkhoff map. It is also well known that to prove such lower bounds
one needs to have good separation properties of the linear eigenvalues. For instance one
can think of the Laplacian on T

1 = S
1 where differences between eigenvalues grows at

infinity since

|| j |2 − |k|2| ≥ | j | + |k|, ∀ j, k ∈ Z. | j | �= |k|.
This property holds, in some special cases also in high dimensions. For example it
holds in the case of the Laplace-Beltrami operator on S

d and more in general holds for
compact manifolds that are homogeneous with respect to a compact Lie Group of rank
1. These are special situations in high dimension in which it is still possible to prove
bounds like (1.1), so essentially the problem of Birkhoff normal form can be treated
as in the one dimensional case. These are the cases treated in [5,6,30]. Nevertheless,
in general high dimensional settings differences of eigenvalues accumulate to zero (for
example in the case of � on straight, irrational tori) and the Diophantine condition (1.1)
is typically violated. We refer to [7] where properties of the Laplacian on general tori
are discussed. In these more resonant cases it is anyway still possible to prove much
weaker Diophantine conditions of the form
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≥ (max {| j1|, ..., | jr |})−τ γ (1.4)

for all possible choices of indexes j1, ..., jr , except the case (1.3). This is a condition
typically fulfilled in any space dimension. The crucial point is that condition (1.4) allows
the small divisors to accumulate to zero very fast (as the largest index among | j1|, . . . , | jr |
goes to infinity), and this could in principle create a loss of derivatives in the construction
of the map used to put the system in Birkhoff normal form. We refer for instance to
[11,35,43] (and reference therein) and where this problem is dealt with to prove partial
long time stability results, by imposing (1.4) for small r (say r = 3, 4). By partial results
we mean that, in the latter papers, the time scales of stability are of order at most ε−q
with a strong limitation on q ≤ 4, and they left open the case q large.
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In the present paper our aim is to develop a novel and self-contained framework in
order to prove almost global existence (see Theorem 2.10 where any r are considered)
for some Hamiltonian PDEs in which the linear frequencies are assumed to fulfil the
weak condition (1.4).

The key point is that we also require the frequencies ω j and the indexes j to fulfill
a structural property ensured by a Lemma by Bourgain on the “localization of resonant
sites” in T

d . This allows to prove a theorem ensuring that the Hamiltonian of the PDE
can be put in a suitable block-normal form which can be used to control the growth
of Sobolev norms. For more details we refer the reader to the last paragraph of this
introduction.

We emphasize that one of the points of interest of our paper is that it shows the
impact of results of the kind of [15,20,25] dealing with linear time dependent systems
on nonlinear systems, thus, in view of the generalizations [7–9], it opens the way to the
possibility of proving almost global existence in more general systems, e.g. on some
manifolds with integrable geodesic flow.

In the present paper, after proving the abstract result, we apply it to a few concrete
equations for which almost global existence was out of reach with previous methods.
Precisely we prove almost global existence of small amplitude solutions (1) for nonlinear
Schrödinger equations with convolution potential, (2) for nonlinear beam equations and
(3) for a quantum hydrodinamical model (QHD). We also prove Sobolev stability of
plane waves for the Schrödinger equation (following [29]). We emphasize that these
results were known only for the exceptional case of the square torus. We remark that
our main theorem extends some partial results on the models listed above, we refer for
instance to [33] for the QHD system (case (3) ) and [11] for the Beam equation (case
(2)). For irrational tori the only result (as far as we know) ensuring at least a quadratic
lifespan of nonlinear Schrödinger equations with unbounded, quadratic nonlinearities
has been proved in [35]. The present paper, at least for semilinear nonlinearity, provides
a method to prove polinomially long time stability for NLS on irrational tori.

To present in a more precise way the result, we recall that an arbitrary torus can be
easily identified with the standard torus endowed by a flat metric. This is the point of
view we will take. For the Schrödinger equation we show that, without any restrictions
on the metric of the torus, one has that if the potential belongs to a set of full measure
then one has almost global existence. For the case of the beam equation, we use the
metric in order to tune the frequencies and to fulfill the nonresonance condition, thus
we prove that if the metric of the torus is chosen in a set of full measure then almost
global existence holds. Examples of tori fulfilling our property are rectangular tori with
diophantine sides, but also more general tori are allowed.

The result for the QHD model is very similar to that of the beam equation: if the
metric is chosen in a set of full measure, then almost global existence holds. Also the
result of Sobolev stability of plane waves in the Schrödinger equation is of the same
kind: if the metric belongs to a set of full measure, one has stability of the plane waves
over times longer than any inverse power of ε.

We also recall the result [10] in which the authors consider a nonlinear wave equation
on T

d and prove that if the initial datum is small enough in some Sobolev norm then the
solution remains small in a weaker Sobolev norm for times of order ε−r with arbitrary
r . The main difference is that this result involves a loss of smoothness of the solution
which is not present in our result; however, we emphasize that at present our method
does no apply to the wave equation since no generalizations of Bourgain’s Lemma to
systems of first order are known.
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Finally we remark that our point of view is to show that solutions starting from a ball
of radius ε do not reach the boundary of a ball of radius 2ε for very long time. Proving
this implies both the existence and the stability of the solution over a large time scale
O(ε−r ). A different point of view is to give upper bounds on the possible growth of the
Sobolev norm in terms of the time t . This problem, as already remarked, has been tackled
widely for linear equations. However we mention [18,44,45] and the recent result [41]
dealing with nonlinear equations. A dual point of view is to study possible instability
of solutions, namely to show that even solutions evolving from small initial data could
show a large growth of the Sobolev norm by waiting for sufficiently long time. Without
trying to be exhaustive we quote [21,36–40].

Ideas of the proof of the abstract result. Our aim is to study the dynamics of a Hamil-
tonian system whose corresponding Hamiltonian has an elliptic fixed point at the origin.
Passing to the Fourier side and in appropriate complex coordinates u j we assume that
the Hamiltonian has the form

H(u) = H0 + P(u), u = (u j ) j∈Zd , H0 :=
∑

j∈Zd

ω j |u j |2,

where ω j are the linear frequencies of oscillations, the unknown u belongs to some scale
of separable Hilbert spaces (we will work actually on scales of Sobolev spaces) and the
perturbation P = O(uq) is a regular enough (say C∞) function having a zero at the
origin of order at least q ≥ 3. We also assume that H conserves the momentum. The
precise assumptions on H are given in Sect. 2.2. By classical theory one expects that the
homogeneous terms of high degree (at least q in this example) give a small contribution
to the dynamics of the linear Hamiltonian. In other words, for u belonging to a small
ball around the origin of order ε one expects a bound like εq−1 for the vector field XP
generated by the perturbation P . This would implies the stability of solutions, evolving
from initial data of size ε, over a times scale of order O(ε−q). In classical Birkhoff
normal form approach the main idea is to construct a symplectic change of coordinates
� which transform the Hamiltonian H into

H ◦� = H0 + Z + O(ur+2), r 	 q,

where Z is in standard Birkhoff normal form, i.e. it Poisson commutes with H0. Under
suitable non-resonance conditions on the frequencies ω j one can also ensure that Z
Poisson commutes with the Sobolev norms

‖u‖2s =
∑

j∈Zd

(1 + | j |2) s
2 |u j |2, (1.5)

which is not a priori guaranteed only by the condition {Z , H0} = 0. However in this
strong non-resonant case, one expect a time of stability of order O(ε−r ), since since
neither H0 nor Z contribute to the possible growth of the Sobolev norm. Of course this
is a very favourable situation. General settings are usually more complicated and the
strategy described above fails.

Our point of view is the following. First of all, following [5], we decompose the
variables in variables of large index (high modes) and variables of small index (low
modes), i.e. we split

u = u≤ + u⊥, N 	 1,
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where N is a fixed large constant and u⊥ is supported only on u j with indexes | j | > N .
The first crucial observation is that the terms in the Hamiltonian which are at least
cubic in high variables u⊥ (the case q = 3) give a very small contribution. Indeed if
u is in a space of sufficiently high regularity (say Hs) one expects a tame-like bound
N−s+s0 for the generated vector field (see Lemma 3.8). Therefore as first step we split
the Hamiltonian function as

H = H0 + P0 + P1 + P2 + P⊥,

where P⊥ has a zero of order at least 3 in u⊥, where Pj , j = 0, 1, 2 is homogeneuos of
degree j in u⊥. We have the following important remarks:

• First of all we remark that, thanks to the conservation of momentum the monomials
(of homogeneity r ) appearing in the perturbation P have the form

( �
∏

i=1

u ji

)( r
∏

i=�+1

u ji

)

for some 0 ≤ � ≤ r,

j1 + · · · + j� − j�+1 − · · · − jr = 0.

All the resonant monomials, i.e. the ones Poisson commuting with H0, are those
supported on indexes satisfying

�
∑

i=1

ω ji −
r
∑

k=�+1

ω jk = 0.

Hypothesis 2.8 guarantees that the condition above is verified if and only if up to
permutation, one has (see (2.22))

r = 2� and ω ji = ω ji+�
, i = 1, . . . , �.

This implies that resonant monomials Poisson commute both with H0 and with the
Sobolev norm ‖ · ‖2s in (1.5).
• the term P⊥ already gives a small contribution, at least for regular u. So we do not

apply any normal form procedure to eliminate monomials belonging to P⊥.
• By momentum conservation if a homogenous term of degree q has only one high

variable u j with | j | > N then one has the bound | j | ≤ qN . This means that these
monomials can be eliminate just by requiring the very weak non-resonance condition
1.4. Indeed, in this case, the right hand side of (1.4) can be bounded from below by
a constant depending only on N . Then no loss of derivatives can arise from these
small divisors. Only resonant monomials cannot be eliminated. See the first item for
details.
• The crucial point of our strategy is to deal with the terms belonging to P2, and here

it is fundamental the second assumption on the frequencies ω j , i.e. they fulfil the
Bourgain’s clustering property. We refer to Hypothesis 2.5 for a precise statement.
Roughly speaking such property implies that the is a partition of Z

d = ∪α
α ,
made by clusters 
α ⊂ Z

d with the following properties: the clusters have a dyadic
property that allows to control the Hs-norm with the L2-norm, and indexes j, k ∈ Z

d

belonging to different clusters j ∈ 
α , k ∈ 
β , possesses frequencies ω j and ωk
which are well-separated. See formula (2.19).
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Now, consider a monomial of the form

u j1u j2

( �
∏

i=3

u ji

)( q
∏

i=�+1

u ji

)

with | j1| ∼ | j2| 	 max{| j3|, . . . , | jq |}. (1.6)

Hypothesis 2.5 guarantees that if the two highest indexes j1, j2 do not belong to the same
cluster then the very weak lower bounds in (1.4) can be improved. This is the content
of the fundamental Lemma 3.17. Therefore one can cancel out all the monomials in
P2 with the exception of those monomials in (1.6) for which j1, j2 belong to the same
Bourgain’s cluster.

In conclusion, performing a normal form procedure takin into account the remarks
above, we transform the Hamiltonian H into (see Theorem 3.3)

H̃ = H0 + Z0 + Z2 + RT + R⊥,

where R⊥ is homogeneous of degree at least 3 in u⊥, RT has large minimal degree
O(ur ), Z0 is supported only on low modes and commutes both with H0 and ‖ · ‖2s ,
while Z2 is quadratic in the high variables, i.e. it can be seen as a quadratic form in the
high variables with coefficients the low variables. In particular it is in block-diagonal
normal form (according to Definition 3.2), namely the two highest indexes belong to the
same Bourgain’s cluster. The important consequence, proved in Lemma 4.3, is that the
flow generated by Z2 is uniformly bounded in Hs . This follows the ideas implemented
in [15,20,25] to give upper bounds on the flows of linear Schrödinger equations with
multiplicative potential.

2. The Abstract Theorem

2.1. Phase Space. Denote Zd := Z
d ×{−1, 1}. Let g be a positive definite, symmetric,

quadratic form on Z
d and, for J ≡ ( j, σ ) ∈ Zd , denote

|J |2 ≡ | j |2 :=
d
∑

i=1

| ji |2, |J |2g ≡ | j |2g := g( j, j). (2.1)

We define

�2
s (Zd;C) :=

{

u ≡ (uJ )J∈Zd , uJ ∈ C, :
‖u‖2s :=

∑

J∈Zd

(1 + |J |)2s |uJ |2 <∞
}

. (2.2)

In the following we will simply write �2
s for �2

s (Zd;C) and �2 for �2
0. We denote by Bs(R)

the open ball of radius R and center 0 in �2
s . Furthermore in the following Us ⊂ �2

s will
always denote an open set containing the origin.

We endow �2 by the symplectic form i
∑

j∈Zd u( j,+)∧u( j,−), which, when restricted

to �2
s (s > 0), is a weakly symplectic form.
Correspondingly, given a function H ∈ C1(Us), for some s, its Hamilton equations

are given by

u̇( j,+) = −i
∂H

∂u( j,−)

, u̇( j,−) = i
∂H

∂u( j,+)

, (2.3)
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or, compactly

u̇( j,σ ) = −σ i
∂H

∂u( j,−σ)

. (2.4)

We will also denote by

XH (u) := (X J )J∈Zd , X( j,σ ) := −σ i
∂H

∂u( j,−σ)

(2.5)

the corresponding (formal) Hamiltonian vector field.
In the following we will work on the space �2

s with s large. More precisely, all the
properties we will ask will be required to hold for all s large enough.

2.2. The Class of Functions (and Perturbations). Given an index J ≡ ( j, σ ) ∈ Zd we
define the involution

J̄ := ( j,−σ). (2.6)

Given a multindex J ≡ (J1, ..., Jr ), with Jl ∈ Zd , l = 1, ..., r , we define J̄ :=
( J̄1, ..., J̄r ).

On the contrary, for a complex number the bar will simply denote the complex con-
jugate.

Definition 2.1. On �2
s we define the involution I by

(I u)J := u J̄ . (2.7)

The sequences such that I u = u will be called real sequences.

Given a multi-index J ≡ (J1, ..., Jr ), we also define its momentum by

M(J) :=
r
∑

l=1

σl jl . (2.8)

In particular in the following we will deal almost only with multi indexes with zero
momentum, so we define

Ir :=
{

J ∈ (Zd)r : M(J) = 0
}

. (2.9)

Given a homogeneous polynomial P of degree r , namely P : �2
s → C for some s, it

is well known that it can be written in a unique way in the form

P(u) =
∑

J1,...,Jr∈Zd

PJ1,...,Jr u J1 ...uJr , (2.10)

with PJ1,...,Jr ∈ C symmetric with respect to any permutation of the indexes.
We are now ready to specify the class of functions we will consider.

Definition 2.2 (Polynomials). Let r ≥ 1. We denote by Pr the space of formal polyno-
mials P(u) of the form (2.10) satisfying the following conditions:



Almost Global Existence for Some Hamiltonian PDEs Page 9 of 50 15

P.1 (Momentum conservation): P(u) contains only monomyals with zero momentum,
namely (recall (2.9))

P(u) =
∑

J∈Ir
PJuJ1 ...uJr ; (2.11)

P.2 (Reality): for any J ∈ (Zd)r , one has PJ̄ = PJ.
P.3 (Boundedness): The coefficients PJ are bounded, namely

sup
J∈Ir
|PJ| <∞.

For R > 0 we endow the space Pr with the family of norms

‖P‖R := sup
J∈Ir
|PJ|Rr . (2.12)

Given r2 ≥ r1 ≥ 1 we denote by Pr1,r2 :=
⋃r2

l=r1
Pl the space of polynomials P(u)

that may be written as

P =
r2∑

l=r1

Pl , Pl ∈ Pl ,

endowed with the natural norm

‖P‖R :=
r2∑

l=r1

‖Pl‖R .

Of course other possible choices for the norm (2.12) are possible (see for instance
the majorant norm on multilinear operators in [17]). However this choice is sufficient to
prove the needed properties on the polynomials in Pr . We refer to Sect. 3.1.

Remark 2.3. By the reality condition (P.2) in Definition 2.2, one can note that if P ∈ Pr
then

• P(u) ∈ R for all real sequence u (see Definition 2.1).
• Fix J1, J2 ∈ Z

d and define

AJ1,J2(u) :=
∑

J3,...,Jr∈Zd

(J1,J2,J3,...,Jr )∈Ir

PJ1,J2,J3,...,Jr u J3 ...uJr .

Then, for all real sequence u, one has

A( j1,+),( j2,−) = Ā( j2,+),( j1,−); (2.13)

this “formal selfadjointness” will play a fundamental role in the following.

Definition 2.4 (Functions). We say that a function P ∈ C∞(Us;C) belongs to class P ,
and we write P ∈ P , if
• all the terms of its Taylor expansion at u = 0 are of class Pr for some r ;
• the vector field XP (recall (2.5)) belongs to C∞(Us; �2

s ) for all s > d/2.
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The Hamiltonian systems that we will study are of the form

H = H0 + P, (2.14)

with P ∈ P and H0 of the form

H0(u) :=
∑

j∈Zd

ω j u( j,+)u( j,−), (2.15)

and ω j ∈ R a sequence on which we are going to make some assumptions in the next
subsection.

2.3. Statement of the Main Result. We need the following assumption.

Hypothesis 2.5. The frequency vector ω = (ω j ) j∈Zd satisfies the following.

F.1 There exist constants C1 > 0 and β > 1 such that, ∀ j large enough one has

1

C1
| j |β ≤ ω j ≤ C1 | j |β .

F.2 For any r ≥ 3 there exist γr > 0 and τr such that the following condition holds for
all N large enough

∀J1, ..., Jr with |Jl | ≤ N , ∀l = 1, ..., r
r
∑

l=1

σ jlω jl �= 0 �⇒
∣
∣
∣
∣
∣

r
∑

l=1

σ jlω jl

∣
∣
∣
∣
∣
≥ γr

N τr
. (2.16)

F.3 There exists a partition

Z
d =

⋃

α


α, (2.17)

with the following properties:
F.3.1 ∗ either 
α is finite dimensional and centered at the origin, namely there

exists C1 such that

j ∈ 
α �⇒ | j | ≤ C1

∗ or it is dyadic, namely there exists a constant C2 independent of α such that

sup
j∈
α

| j | ≤ C2 inf
j∈
α

| j | . (2.18)

F.3.2 There exist δ > 0 and C3 = C3(δ) such that, if j ∈ 
α and i ∈ 
β with α �= β,
then

|i − j | + ∣∣ωi − ω j
∣
∣ ≥ C3(|i |δ + | j |δ) . (2.19)

Remark 2.6. If in the above inequality one substitutes |i − j | by a norm of |i − j |which
is equivalent to the norm |.|, then (2.19) still holds with a different constant. The same
is true if one substitutes the norms at right hand side with equivalent norms. In the
following we will exploit such a freedom.
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Finally, we need a separation property of the resonances, namely that the resonances
do not couple very low modes with very high modes. To state this precisely, we first
define an equivalence relation on Z

d

Definition 2.7. For i, j ∈ Z
d , we say that i ∼ j if ωi = ω j . We denote by [i] the

equivalence classes with respect to such an equivalence relation.

Hypothesis 2.8. The frequency vector ω = (ω j ) j∈Zd satisfies the following.

(NR.1) The equivalence classes are dyadic, namely there exists C > 0 such that

C inf
j∈[i] | j | ≥ sup

j∈[i]
| j |, ∀i ∈ Z

d; (2.20)

(NR.2) Non-resonance: Given any sequence ofmultiindexes ( jk , σk) ∈ Zd , k = 1, . . . , l,
one has that the condition

l
∑

i=1

σiω ji = 0 (2.21)

implies that � is even and that there exists a permutation τ of (1, ..., l) such that

∀ i = 1, ..., l/2, ω jτ (i) = ω jτ (i+l/2)
and στ( j) = στ( j+l/2). (2.22)

We say that a sequence of multiindexes satisfying (2.22) is resonant, otherwise
we say that it is non-resonant.

Remark 2.9. We point out that the Hypothesis 2.8 is only used in Sect. 4 in order to prove
energy estimates for the system in normal form, see Lemma 4.2.

Our main abstract theorem pertains the Cauchy problem
{
u̇ = XH (u)

u(0) = u0
. (2.23)

Theorem 2.10. Consider the Cauchy problem (2.23) where H has the form (2.14) with
H0 as in (2.15) and P ∈ P vanishing at order at least 3 at u = 0. Assume that the
frequencies ω j fulfill Hypotheses 2.5, 2.8 and let β > 1 be the constant given by Hyp.
2.5. For any integer r there exists sr ∈ N such that for any s ≥ sr there exists ε0 > 0
and c > 0 with the following property: if the initial datum u0 ∈ �2

s is real and small,
namely if

I u0 = u0, ε := ‖u0‖�2
s

< ε0, (2.24)

then the Cauchy problem (2.23) has a unique solution

u ∈ C0((−Tε, Tε), �
2
s ) ∩ C1((−Tε, Tε), �

2
s−β)

with Tε > cε−r . Moreover there exists C > 0 such that

sup
|t |≤Tε

‖u(t)‖�2
s
≤ Cε. (2.25)

The main step for the proof of Theorem 2.10 consists in proving a suitable normal
form lemma which is given in the next section.
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3. Normal Form

In the following we will use the notation a � b to mean there exists a constant C ,
independent of all the relevant parameters, such that a ≤ Cb. If we want to emphasize
the fact that the constant C depends on some parameters, say r, s, we will write a �s,r b.
We will also write a � b if a � b and b � a.

Furthermore in order to separate low and high frequency modes in a way coherent
with the resonance relations we have to measure the size of the indexes j ∈ Zd by the
size of the corresponding frequency. Precisely, we define

| j |ω := |ω j |1/β, |J |ω ≡ |(J, σ )|ω := | j |ω . (3.1)

Remark 3.1. In general |.|ω is not a norm, since the triangular inequality could fail to
hold, however this will not cause any problem in the forthcoming developments.

In the following we will informally say that an index j is larger then N if | j |ω > N .
We need the following definition.

Definition 3.2 (N-block normal form). Let r̄ ≥ 3 and N 	 1. We say that a polynomial
Z ∈ P3,r̄ of the form

Z =
r̄
∑

l=3

∑

J∈Il
ZJuJ1 ...uJl ,

(recall Definition 2.2)
is in N -block normal form if ZJ �= 0 only if J ≡ (J1, ..., Jl) fulfills one of the

following two conditions:

1. |Jn|ω ≤ N for any n = 1, . . . , l and
∑l

n=1 σ jnω jn = 0;
2. there exist exactly 2 indexes larger than N , say J1 and J2 and the following two

conditions hold:
2.1 J1 = ( j1, σ1), J2 = ( j2, σ2) with σ1σ2 = −1.
2.2 there exist α such that j1, j2 ∈ 
α , namely both the large indexes belong to the

same cluster1 
α .

We now state the main result of this section.

Theorem 3.3. Fix any N 	 1, s0 > d/2 and consider the Hamiltonian (2.14) with ω j
fulfilling Hypothesis 2.5 and P ∈ P . For any r̄ ≥ 3 there are τ > 0, sr̄ > s0 such that
for any s ≥ sr̄ there exist Rs,r̄ , Cs,r̄ > 0 such that for any R < Rs,r̄ the following holds.
If

RN τ < Rs,r̄ , (3.2)

then there exists an invertible canonical transformation

T (r̄), [T (r̄)]−1 : Bs(R)→ Bs(Cs,r̄ R), (3.3)

such that
H (r̄) := H ◦ T (r̄) = H0 + Z (r̄) + RT + R⊥ (3.4)

where

1 Recall conditions F.3.1, F.3.2 in Hypothesis 2.5.
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• Z (r̄) ∈ P3,r̄ is in N-block normal form and fulfills
∥
∥
∥Z (r̄)

∥
∥
∥
R

�r̄ R3 ; (3.5)

• RT is such that XRT ∈ C∞(Bs(Rs,r̄ ); �2
s ) and

sup
‖u‖s≤R

∥
∥XRT (u)

∥
∥
s �r̄ ,s R2(RN τ )r̄−3, ∀R ≤ Rs,r̄ ; (3.6)

• R⊥ is such that XR⊥ ∈ C∞(Bs(Rs,r̄ ); �2
s ) and

sup
‖u‖s≤R

∥
∥XR⊥(u)

∥
∥
s �r̄ ,s

R2

Ns−s0
, ∀R ≤ Rs,r̄ . (3.7)

The rest of the section is devoted to the proof of this theorem and is split in a few
subsections.

3.1. Properties of the Class of Functions P . First we give the following lemma.

Lemma 3.4 (Estimates on the vector field).Fixr ≥ 3, R > 0. Then for any s > s0 > d/2
there exists a constant Cr,s > 0 such that, ∀P ∈ Pr , the following inequality holds:

‖XP (u)‖s ≤ Cr,s
‖P‖R
R

, ∀ u ∈ Bs(R).

Proof. Let P ∈ Pr . Then (recalling (2.5)) one has XP = ((XP )J )J∈Zd with

(XP )( j,+) = −i∂u( j,−)
P

= −ir
∑

J1,...,Jr−1∈Zd , J=( j,+)
M(J1,...,Jr−1)+ j=0

PJ,J1,....,Jr−1uJ1 . . . uJr−1 (3.8)

and similarly for (XP )( j,−). Remark that the r.h.s. of (3.8) defines a unique symmetric
(r − 1)-linear form

(X̃ P )( j,+)(u
(1), ..., u(r−1)) := ir

∑

J1,...,Jr−1∈Zd

M(J1,...,Jr−1)+ j=0

PJ,J1,....,Jr−1u
(1)
J1

. . . u(r−1)
Jr−1

. (3.9)

In order to apply Lemma A.1 we decompose

u(l) = u(l)
+ + u(l)

− , with u(l)
σ := (u(l)

( j,σ )) j∈Zd . (3.10)

Substituting in the previous expression we have

(X̃ P )+(u(1), ..., u(r−1)) =

=
r−1
∑

l=0

(

r − 1
l

)

(X̃ P )+(u(1)
+ , ..., u(l)

+ , u(l+1)
− , ..., u(r−1)

− ) .
(3.11)



15 Page 14 of 50 D. Bambusi, R. Feola, R. Montalto

Now each of the addenda of (3.11) fulfills the assumptions of Lemma A.1. Therefore,
since ‖u‖s0 ≤ ‖u‖s one has

∥
∥
∥(X̃ P )+(u(1)

+ , ..., u(l)
+ , u(l+1)

− , ..., u(r−1)
− )

∥
∥
∥
s

� sup
(J,J1,...,Jr )∈(Zd )r

∣
∣PJ,J1,...,Jr−1

∣
∣

∥
∥
∥u(1)

∥
∥
∥
s
...

∥
∥
∥u(r−1)

∥
∥
∥
s
.

Taking all the u(l) equal to u ∈ Bs(R) (i.e. ‖u‖s < R) and recalling the norm in (2.12)
one gets the thesis for (XP )+. Similarly one gets the thesis for (XP )− and this concludes
the proof of the lemma. ��

As usual given two functions f1, f2 ∈ C∞(�2
s ;C) we define their Poisson Brackets

by

{ f1; f2} := i
∑

j∈Zd

(
∂ f1

∂u( j,−)

∂ f2
∂u( j,+)

− ∂ f1
∂u( j,+)

∂ f2
∂u( j,−)

)

≡ d f1X f2 , (3.12)

which could be ill defined (but will turn out to be well defined in the cases we will
consider).

We recall that if both f1 and f2 have smooth vector field then

X{ f1; f2} = [X f1; X f2 ], (3.13)

with [·; ·] denoting the commutator of vector fields.

Lemma 3.5 (Poisson brackets). Given two polynomials P1 ∈ Pr1 and P2 ∈ Pr2 , one
has {P1; P2} ∈ Pr1+r2−2 with

‖{P1; P2}‖R ≤ 2r1r2

R2

∥
∥Pr1

∥
∥
R

∥
∥Pr2

∥
∥
R .

Proof. It follows by formula (3.12) recalling (2.12) and exploiting the momentum con-
servation. ��

We now fix some large N > 0, but will track the dependence of all the constants
on N . Corresponding to N we define a decomposition of u in low and high modes.
Precisely, we define the projectors

�≤u := (uJ )|J |ω≤N , �⊥u := (uJ )|J |ω>N (3.14)

and denote
u≤ := �≤u, u⊥ := �⊥u, (3.15)

so that u = u≤ + u⊥.
As in [1,5], a particular role is played by the polynomials P ∈ Pr which are quadratic

or cubic in u⊥. We are now going to give a precise meaning to this formal statement.
First, given f ∈ C∞(Us;C), we denote by

dl f (u)(h1, ..., hl)

the l-th differential of f evaluated at u and applied to the increments h1, ..., hl .
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Definition 3.6. Let P ∈ Pr and recall the notation (3.15).
• We say that P has has a zero of order 0 in u⊥ if P(u≤) is not identically zero for
u ∈ �2

s .
•We say that P has has a zero of order at least 1 in u⊥ if P(u≤) = 0, ∀ u ∈ �2

s .
•We say that P has has a zero of order at least k ≥ 2 in u⊥ if

P(u≤) = 0,

dl P(�≤u)(�⊥h1, ...,�
⊥hl) = 0 ∀ u, h1, ..., hl ∈ �2

s ∀ l = 1, ..., k − 1

We say that P is homogeneous of degree k ≥ 1 in u⊥ if it has a zero of order at least k,
but not of order at least k + 1.

We say that P is homogeneous of degree 0 if it has a zero of order 0 in u⊥ and
P(u) ≡ P(u≤) for u ∈ �2

s .

Remark 3.7. By the very definition of normal form, one can decompose Z (r) = Z0 + Z2,
with Z0 homogeneous of degree zero in u⊥ and Z2 homogeneous of degree 2 in u⊥.
Furthermore Z0 is in Birkhoff normal form in the classical sense, namely it contains
only resonant monomials, i.e. monomials of the form

uJ1 ...uJr , with
∑

l

σlω jl = 0 .

We also remark that, in view of Hypothesis 2.8-(NR.2) such monomials are super-action
preserving.

Lemma 3.8. For all s > s0 > d/2 and all r ≥ 3, there exists a constant Cr,s > 0 such
that the following holds:

(i) if P ∈ Pr has a zero of order at least 2 in u⊥, then

sup
‖u‖s≤R

∥
∥�≤XP (u)

∥
∥
s ≤

Cr,s

Ns−s0

‖P‖R
R
;

(ii) if P ∈ Pr has a zero of order at least 3 in u⊥, then

sup
‖u‖s≤R

‖XP (u)‖s ≤ Cr,s

Ns−s0

‖P‖R
R

.

Proof. Consider first the case (i) and remark that, using the notation (3.10), we have
(

�≤XP (u)
)

± = ±i∇u≤± P , so that �≤XP (u) has a zero of order 2 in u⊥. It follows that
both in the case (i) and in the case (ii) we have to estimate a polynomial function X (u)

of the form (3.8) with a zero of second order in u⊥. To exploit this fact consider first the
+ component and consider again the multilinear form (X̃)+ as in (3.9): we have

X+(u) = X+(u⊥ + u≤) =
r−1
∑

l=0

(

r − 1
l

)

(X̃)+(u⊥, ..., u⊥
︸ ︷︷ ︸

l−times

, u≤, ..., u≤
︸ ︷︷ ︸

r−1−l−times

),

but, since X+(u) has a zero of at least second order in u⊥, one has

X+(u) =
r−1
∑

l=2

(

r − 1
l

)

(X̃)+(u⊥, ..., u⊥
︸ ︷︷ ︸

l−times

, u≤, ..., u≤
︸ ︷︷ ︸

r−1−l−times

) .
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Consider the first addendum (which is the one giving rise to worst estimates): proceeding
as in the proof of Lemma 3.4 one can apply Lemma A.1 and get the estimate

∥
∥
∥(X̃)+(u⊥, u⊥, u≤, ..., u≤)

∥
∥
∥
s

� sup
j, j1,..., jr−1∈Zd

∣
∣Pj, j1,−−−, jr−1

∣
∣×

×
(∥
∥
∥u⊥

∥
∥
∥
s

∥
∥
∥u⊥

∥
∥
∥
s0

∥
∥u≤

∥
∥r−3
s0

+
∥
∥u≤

∥
∥
s

∥
∥
∥u⊥

∥
∥
∥

2

s0

∥
∥u≤

∥
∥r−4
s0

)

,

but

∥
∥
∥u⊥

∥
∥
∥

2

s0
=

∑

|J |ω>N

〈J 〉2s0 |uJ |2 =
∑

|J |ω>N

〈J 〉2s |uJ |2
〈J 〉2(s−s0)

�
∥
∥u⊥

∥
∥

2
s

N 2(s−s0)
= ‖u‖2

s

N 2(s−s0)
.

Since, by F.1 one has | j |ω � | j | and therefore 1
〈 j〉 � 1

N , it follows

∥
∥
∥(X̃)+(u⊥, u⊥, u≤, ..., u≤)

∥
∥
∥
s

� sup
j, j1,..., jr−1∈Zd

∣
∣Pj, j1,−−−, jr−1

∣
∣
Rr−1

Ns−s0

� ‖P‖R
R

1

Ns−s0
.

The other cases can be treated similarly. ��

3.2. Lie Tranfsorm. Given G ∈ Pr,r̄ , consider its Hamilton equations u̇ = XG(u),
which, by Lemma 3.4, are locally well posed in a neighborhood of the origin. Denote
by �t

G the corresponding flow, then we have the following Lemma whose proof is equal
to the finite dimensional case.

Lemma 3.9. Consider r̄ ≥ r1 ≥ r ≥ 3 and s > s0 > d/2. There exists Cr,s > 0 such
that for any G ∈ Pr,r1 and any R > 0 satisfying

‖G‖R
R
≤ 1

Cr,s
, (3.16)

the following holds. For any |t | ≤ 1 one has �t
G(Bs(R)) ⊂ Bs(2R) and the estimate

sup
u∈Bs (R)

∥
∥�t

G(u)− u
∥
∥ ≤ |t |Cr,s

‖G‖R
R

, ∀t : |t | ≤ 1 .

Definition 3.10. The map �G := �t
G

∣
∣
∣
t=1

is called the Lie transform generated by G.

In order to describe how a function is transformed under Lie transform we define the
operator

adG : C∞(Us, C)→ C∞(Us, C)

f �→ adG f := { f ;G} ,
and its k-th power adkG f := {adk−1

G f ;G} for k ≥ 1. Also the following Lemma has a
standard proof equal to that of the finite dimensional case.
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Lemma 3.11. Let r̄ ≥ r ≥ 3 and s > s0 > d/2 and consider G ∈ Pr,r̄ . There
exists Cr,s > 0 such that for any R > 0 satisfying (3.16) the following holds. For any
f ∈ C∞(Bs(2R);C) and any n ∈ N one has

f (�t
G(u)) =

n
∑

k=0

tk

k! (ad
k
G f )(u) +

1

n!
∫ t

0
(t − τ)n(adn+1

G f )
(

�τ
G(u)

)

dτ, (3.17)

∀u ∈ Bs(R) and any t with |t | ≤ 1.

From Lemma 3.5 one has the following corollary.

Corollary 3.12. Let G ∈ Pr1,r2 , F ∈ Pr3,r4 , with r1, r2, r3, r4 ≤ r̄ and 3 ≤ r1 ≤ r2.
Let n̄ ∈ N be the smallest integer such that (n̄ + 1)(r1 − 2) + r2 > r̄ . Then there exists
Cr̄ > 0 such that for any k ≤ n̄, one has

∥
∥
∥(adG)k F

∥
∥
∥
R
≤
(
Cr̄ ‖G‖R

R2

)k

‖F‖R .

A further standard Lemma we need is the following.

Lemma 3.13. Let G ∈ Pr1,r2 , 3 ≤ r1, r2 ≤ r̄ and let �G be the Lie transform it
generates. Let Rs by the largest value of R such that (3.16) holds. Then there exists
C > 0 such that for any F ∈ C∞(Bs(2Rs)) satisfying

sup
‖u‖s≤2R

‖XF (u)‖s =: CR <∞ , ∀R < Rs .

one has
sup

‖u‖s≤R/C

∥
∥XF◦�G (u)

∥
∥
s =: 2CR <∞, ∀R < Rs .

From Lemma 3.11, Corollary 3.12 and Lemma 3.13, one has the following Corollary
which is the one relevant for the perturbative construction leading to the normal form
lemma.

Corollary 3.14. There exists μ0 > 0 such that for any G ∈ Pr,r̄ , 3 ≤ r ≤ r̄ , the
following holds. If

μ := Cr̄ ‖G‖R
R2 < μ0,

with Cr̄ the constant of Corollary 3.12, then, for any F ∈ Pr1,r̄ , r1 ≤ r̄ , one has

F ◦�G = F̃ + RF,G,

with F̃ ∈ Pr+r1−2,r̄ (F̃ ≡ 0 if r + r1 − 2 > r̄ ) and RF,G ∈ C∞(Bs(R/C);C) which
fulfill the following estimates

∥
∥
∥F̃
∥
∥
∥
R

�r̄ μ ‖F‖R , sup
‖u‖s≤R/C

∥
∥XRF,G (u)

∥
∥
s

� ‖F‖R
R

μn̄,

with n̄ as in Corollary 3.12 and C as in Lemma 3.13.
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3.3. Homological Equation. In order to construct the transformation T (r̄) of Theo-
rem 3.3, we will use the Lie transform generated by auxiliary Hamiltonian functions
G3, ...,Gr̄ , with G� ∈ P�,r̄ , which in turn will be constructed by solving the homolog-
ical equation

{H0;G} + Z = F (3.18)

with F ∈ P�,r̄ a given polynomial of order 2 in u⊥ and Z to be determined, but in N -
block normal form. In order to solve the homological equation we need a nonresonance
condition seemingly stronger than (2.16), but which actually follows from F.1, F.2, F.3
of Hypothesis 2.5.

First we remark that (recall Remark 2.6), by F.1, the assumptions F.2 implies

F.2’ For any r ≥ 3 there exist γr > 0 and τr such that the following condition holds
for all N large enough

∀J1, ..., Jr with | jl |ω ≤ N , ∀l = 1, ..., r
r
∑

l=1

σ jlω jl �= 0 �⇒
∣
∣
∣
∣
∣

r
∑

l=1

σ jlω jl

∣
∣
∣
∣
∣
≥ γr

N τr
, (3.19)

with redefined constants.

Similarly F.3.2 implies

F.3.2’ There exist δ > 0 and C3 = C3(δ) such that, if j ∈ 
α and i ∈ 
β with α �= β,
then

|i − j | + ∣∣ωi − ω j
∣
∣ ≥ C3(|i |δω + | j |δω), (3.20)

which is the one we will use.
To state the non-resonance condition we need the following definition.

Definition 3.15 (Non resonant multi-indexes). For � ∈ N and N 	 1 we say that multi-
indexes J = (J1, ..., Jl) ∈ Il (see (2.9)), with Ji = ( ji , σi ) ∈ Zd , are non resonant
multi-indexes if

l
∑

i=1

σ ji ω ji �= 0, (3.21)

and one of the following conditions holds:

(I.1) there is at most one index larger than N ;
(I.2) there exist exactly 2 indexes larger than N , say J1 and J2 with σ1σ2 = 1 ;
(I.3) there exist exactly 2 indexes larger than N , say J1 and J2 with σ1σ2 = −1 and

such that there exist α �= β such that j1 ∈ 
α and j2 ∈ 
β , namely if the two
largest indexes are such that σ1σ2 = −1 then they belong to different clusters.2

We denote by J N
l the subset of Il of non resonant multi-indexes.

We denote by SN
l the subset of Il made of multi-indexes J such that there exist at

least three indexes larger than N .

Remark 3.16. By Definitions 3.2 and 3.15 we notice that an Hamiltonian Z ∈ Pr , r ≥ 3,
of the form (2.11) but supported only on multi-indexes J ∈ Ir\

(

J N
r ∪SN

r

)

is in N -block
normal form.

2 Recall conditions F.3.1, F.3.2 in Hypothesis 2.5.
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Lemma 3.17. Assume Hypothesis 2.5 and let r ∈ N. Then there exist τ ′r and γ ′r > 0,
such that for any 3 ≤ p ≤ r and any multi-index J ∈ J N

p one has the bound

∣
∣
∣
∣
∣

p
∑

l=1

σlω jl

∣
∣
∣
∣
∣
≥ γ ′r

N τ ′r
. (3.22)

Proof. Assume that we are in the case (I.1) in Definition 3.15. If all the indexes jl are
smaller than N , then there is nothing to prove in view of (3.21) and (F.2) in Definition
2.5.

Consider now the case where there is only one index, say J1, larger than N and the
length of the multi-index is n + 1 ≤ r . The quantity to be estimated is now

∣
∣
∣
∣
∣

n
∑

l=2

σlω jl + σ1ω j1

∣
∣
∣
∣
∣

. (3.23)

By condition F.1, one has
∣
∣
∣
∣
∣

n
∑

l=2

σlω jl

∣
∣
∣
∣
∣
≤ r NβC1 and |ω j1 | ≥ C1| j1|β.

Therefore, if

| j1| ≥ 2(rC2
1 )1/βN =: N1

the estimate (3.22) is satisfied. Hence, the estimate on the quantity (3.23) is nontrivial
only if all the indexes are smaller than N1. It follows that we can use (2.16) with N
replaced by N1, getting

|(3.23)| ≥ γr

N τr
1
= γr

2τr (rC2
1 )τr /βN τr

which implies the bound (3.22) by choosing

γ ′r ≤
γr

2τr (rC2
1 )τr /β

.

This concludes the case (I.1).
Consider now the case (I.2), i.e. when there are two indexes larger than N , say J1

and J2 with σ1σ2 = 1. This case is dealt with similarly to the previous case.
We discuss now to the case σ1σ2 = −1. By condition (I.3) in Definition 3.15 there

exist α �= β such that j1 ∈ 
α and j2 ∈ 
β . It follows (recall (F.3) in Hyp. 2.5) that
either

∣
∣ω j1 − ω j2

∣
∣ ≥ C(| j1|δω + | j2|δω) (3.24)

or

| j1 − j2| ≥ C(| j1|δω + | j2|δω) . (3.25)

for some C > 0. Assume for concreteness that | j1| ≥ | j2| and σ1 = 1, σ2 = −1.
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Consider first the case where (3.24) holds. The quantity to be estimated is
∣
∣
∣
∣
∣

n
∑

l=3

σlω jl + ω j1 − ω j2

∣
∣
∣
∣
∣

. (3.26)

Notice that (3.24) implies
∣
∣ω j1 − ω j2

∣
∣ ≥ C | j1|δω and that we also have

∣
∣
∣
∣
∣

n
∑

l=3

σlω jl

∣
∣
∣
∣
∣
≤ (r − 2)Nβ.

Then it follows that (3.22) is automatic if

| j1|ω ≥
2(r − 2)1/δ

C
Nβ/δ =: N2.

Hence the bound on (3.26) is nontrivial only if all the indexes are smaller than N2. In
this case we can apply (2.16) with N2 in place of N , getting

|(3.26)| ≥ γr

N τr
2
= γrCτr

2τr (r − 2)τr /δN
β
δ
τr

which is the wanted estimate, in particular with τ ′r ≥ β
δ
τr .

It remains to bound (3.26) from below with indexes fulfilling (3.25).
By the zero momentum condition we have

n
∑

l=3

σl jl + j1 − j2 = 0

but
∣
∣
∣
∣
∣

n
∑

l=3

σl jl

∣
∣
∣
∣
∣
≤

n
∑

l=3

| jl | ≤ C
n
∑

l=3

| jl |ω ≤ CrN

while

| j1 − j2| ≥ C | j1|δω .

It follows that in our set there are no indexes with C | j1|δω > r N (otherwise the zero
momentum condition cannot be fulfilled), so all the indexes must be smaller than N3 :=
(r N/C)1/δ , and again we can estimate (3.26) using (2.16) with N substituted by N3,
thus getting the thesis. ��
Lemma 3.18. (Homological equation). Consider the Homological equation (3.18) with
H0 as in (2.15) and ω j satisfying Hypotheses 2.5 and where F ∈ Pr,r̄ is a polynomial
having a zero of order 2 in u⊥. Then equation (3.18) has solutions Z ∈ Pr,r̄ and G ∈ Pr,r̄
where Z is in N-block normal form, N 	 1 and moreover

‖Z‖R ≤ ‖F‖R , (3.27)

‖G‖R ≤ N τ ′̄r

γ ′̄r
‖F‖R . (3.28)
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Proof. Notice that, denoting uJ := uJ1 ...uJr and recalling (3.12), one has

{H0; uJ} = i
∑

j

∂H0

∂u( j,−)

∂uJ
∂u( j,+)

− ∂H0

∂u( j,+)

∂uJ
∂u( j,−)

= i
∑

j

ω j u( j,+)

∂uJ
∂u( j,+)

− ω j u( j,−)

∂uJ
∂u( j,−)

= i
∑

j

ω j uJ

(
r
∑

l=1

δ( j,+),Jlω j − δ( j,−),Jlω j

)

= iuJ

(
r
∑

l=1

δ( j,+),( jl ,σl )ω jl − δ( j,−),( jl ,σl )ω jl

)

= iuJ

r
∑

l=1

σlω jl .

It follows that, writing

P =
∑

J∈Ir
PJuJ

one can solve the Homological equation (3.18) by defining (recall Definition 3.15)

Z(u) :=
∑

J∈Ir\J N
r

PJuJ,

G(u) :=
∑

J∈J N
r

PJ
i
∑r

l=1 σlω jl
uJ .

By Remark 3.16 we have that Z is in N -block normal form. The estimates (3.27)–(3.28)
immediately follow using Lemma 3.17. ��

3.4. Proof of the Normal Form Lemma. Theorem 3.3 is an immediate consequence of
the forthcoming Lemma 3.19. To introduce it, we first split

P = P̃ + RT,0

with P̃ ∈ P3,r̄ and RT,0 having a zero of order at least r̄ + 1 at the origin. A relevant
role will be played by the quantity ‖P̃‖R . In order to simplify the notation, we remark
that, for R sufficiently small there exists Ks,r̄ such that

sup
‖u‖s≤R

∥
∥XRT,0(u)

∥
∥
s
≤ Ks,r̄‖P̃‖R Rr̄−3 1

R
.

Lemma 3.19 (Iterative lemma). Assume Hypothesis 2.5 and fix r̄ ≥ 3. There exists
μr̄ > 0 such that for any 3 ≤ k ≤ r̄ and any s > s0 > d/2 there exist Rs,k > 0,
Cs,k, τ > 0 such that for any R < Rs,k and any N 	 1 the following holds. If one has

μ := ‖P̃‖R
R2 N τ < μr̄ , (3.29)
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then there exists an invertible canonical transformation

T (k) : Bs(R)→ Bs(Cs,k R), (3.30)

with
[T (k)]−1 : Bs(R)→ Bs(Cs,k R), (3.31)

such that
H (k) := H ◦ T (k) = H0 + Z (k) + Pk + RT,k + R⊥,k (3.32)

where

• Z (k) ∈ P3,k is in N-block normal form and fulfills

∥
∥
∥Z (k)

∥
∥
∥
R

�r̄ ,k ‖P̃‖R ; (3.33)

• Pk ∈ Pk,r̄ fulfills

‖Pk‖R �r̄ ,k ‖P̃‖Rμk−3 ; (3.34)

• RT,k is such that XRT,k ∈ C∞(Bs(Rs,k); �2
s ) and

sup
‖u‖s≤R

∥
∥XRT,k (u)

∥
∥
s

�r̄ ,k,s ‖P̃‖Rμr̄−3 1

R
, ∀R ≤ Rs,k ; (3.35)

• R⊥,k is such that XR⊥,k ∈ C∞(Bs(Rs,k); �2
s ) and

sup
‖u‖s≤R

∥
∥XR⊥,k (u)

∥
∥
s

�r̄ ,k,s
‖P̃‖R
R

1

Ns−s0
, ∀R ≤ Rs,k . (3.36)

The proof occupies the rest of the section and is split in a few Lemmas. We reason
inductively. First, we consider the Taylor expansion of Pk in u⊥ and we write

Pk = Pk,e f f + Rk,⊥, (3.37)

with Pk,e f f containing only terms of degree 0, 1 and 2 in u⊥, while Rk,⊥ has a zero of
order at least 3 in u⊥. Then we determine Gk+1 and Zk+1 by solving the homological
equation

{H0;Gk+1} + Pk,e f f = Zk+1, (3.38)

so that, by Lemma 3.18 and the inductive assumption (3.34), we get

‖Gk+1‖R � ‖Pk‖R N τ � R2‖P̃‖Rμk−2 (3.39)

‖Zk+1‖R � ‖Pk‖R N τ � ‖P̃‖Rμk−3. (3.40)

Consider the Lie transform �Gk+1 (recall Definition 3.10) generated by Gk+1. By the
estimate (3.39) and the condition (3.29) we have that there is Rs,k+1 > 0 such that (3.16)
is fulfilled for R < Rs,k+1. Hence Lemma 3.9 applies and so we deduce that the map
�Gk+1 is well-posed.

We study now H (k) ◦�Gk+1 . To start with we prove the following Lemma.
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Lemma 3.20. Let Gk+1 be the solution of (3.38), then one has

H0 ◦�Gk+1 = H0 + Zk+1 − Pk,e f f + H̃0 + RH0,Gk+1 , (3.41)

with H̃0 ∈ Pk+1,r̄ , and, provided R < R0
k+1, for some R0

k+1, one has
∥
∥
∥H̃0

∥
∥
∥
R

� μk−2‖P̃‖R . (3.42)

Furthermore, there exists C0 > 0 such that one has

sup
‖u‖s≤R/C0

∥
∥
∥XRH0,Gk+1

(u)

∥
∥
∥
s

� μr̄−3‖P̃‖R R−1 . (3.43)

Proof. Let n̄ be such that (n̄ + 1)(k − 2) + k > r̄ ; using the expansion (3.17) one gets

H0 ◦�Gk+1 = H0 + {H0;Gk+1} +
n̄
∑

l=2

adlGk+1

l! H0 + RH0,Gk+1

= H0 + {H0;Gk+1} +
n̄
∑

l=2

adl−1
Gk+1

l! {H0;Gk+1} + RH0,Gk+1 (3.44)

where we can rewrite explicitly the remainder term as

RH0,Gk+1 =
1

n̄!
∫ 1

0
(1− τ)n̄

(

adn̄Gk+1
{H0,Gk+1}

)

◦�τ
Gk+1

dτ .

Since Gk+1 fulfills the Homological equation one has

{H0,Gk+1} = Zk+1 − Pk,e f f ∈ Pk,r̄

with

‖{H0,Gk+1}‖R � ‖Pk‖R � μk−3‖P̃‖R .

Hence, defining H̃0 to be the sum in Eq. (3.44), one has

∥
∥
∥H̃0

∥
∥
∥
R
≡
∥
∥
∥
∥
∥

n̄
∑

l=2

adl−1
Gk+1

l! {H0;Gk+1}
∥
∥
∥
∥
∥
R

�
n̄
∑

l=2

(
C ‖Gk+1‖R

R2

)l−1 1

l!μ
k−3‖P̃‖R � μk−3‖P̃‖Rμ = μk−2‖P̃‖R,

provided R is small enough. Analogously one gets

sup
‖u‖s≤R/C

∥
∥
∥XRH0,Gk+1

(u)

∥
∥
∥
s

� μk−3 ‖P̃‖Rμn̄

R
,

and, since k + n̄ ≥ r̄ the thesis follows. ��
In an analogous way one proves the following simpler Lemma whose proof is omitted.
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Lemma 3.21. Let Gk+1 ∈ Pk,r̄ fulfills the estimate (3.39), then we have

Pk ◦�Gk+1 = Pk + P̃k + RPk ,Gk+1,

Z (k) ◦�Gk+1 = Z (k) + Z̃ (k) + RZ (k),Gk+1
,

(3.45)

and the following estimates hold

∥
∥
∥P̃k

∥
∥
∥
R

� ‖P̃‖Rμk−2, sup
‖u‖s≤R/C

∥
∥
∥XRPk ,Gk+1

(u)

∥
∥
∥
s

� ‖P̃‖Rμr̄

R
,

∥
∥
∥Z̃ (k)

∥
∥
∥
R

� ‖P̃‖Rμk−2, sup
‖u‖s≤R/C

∥
∥
∥XRZ(k),Gk+1

(u)

∥
∥
∥
s

� ‖P̃‖Rμr̄

R
.

End of the proof of Lemma 3.19. We consider the Lie transform �Gk+1 generated by
Gk+1 determined by the equation (3.38) and we define

T (k+1) := T (k) ◦�Gk+1 .

By estimate (3.39), condition (3.29), taking R small enough, we have that Lemma 3.9
applied to Gk+1 and the inductive hypothesis on T (k) imply that T (k+1) satisfies (3.30)–
(3.31) with k � k + 1 and some constant Cs,k+1.

Recalling (3.41), (3.45) we define

Z (k+1) = Z (k) + Zk+1, Pk+1 = P̃k + Z̃ (k) + H̃0

RT,k+1 = RH0,Gk+1 + RPk ,Gk+1 + RZ (k),Gk+1
+ RT,k ◦�Gk+1,

R⊥,k+1 = R⊥,k + R⊥,k ◦�Gk+1 .

Then the iterative estimates follow from the estimates of Lemmas 3.20 and 3.21. This
concludes the proof. ��
Proof of Theorem 3.3. Condition (3.2) implies (3.29). Then the result follows by Lemma
3.19 taking k = r̄ . ��

An important consequence of Theorem 3.3 is the following.

Corollary 3.22. Consider the Hamiltonian (2.14) with ω j fulfilling Hypotheses 2.5 and
P ∈ P (see Definition 2.4). For any r ≥ 3 there exists Nr > 0, τ > 0 and sr > d/2 and
a canonical transformation Tr such that for any s ≥ sr there exists Rs > 0 and Cs > 0
such that the following holds for any R < Rs:
(i) one has

Tr ∈ C∞(Bs(R/Cs); Bs(R)), T −1
r ∈ C∞(Bs(R/Cs); Bs(R)), (3.46)

Hr := H ◦ Tr = H0 + Zr + R(r), (3.47)

where

• Zr ∈ P3,r is in Nr -block normal form according to Definition 3.2;
• R(r) is such that XR(r) ∈ C∞(Bs(Rs/Cs); Bs(Rs)) and

sup
‖u‖s≤R

∥
∥XR(r) (u)

∥
∥
s �r Rr+1, ∀R ≤ Rs/Cs . (3.48)
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(i i) Given u ∈ Bs(R) we write u = (u≤, u⊥) according to the splitting (3.14)–(3.15)
with N replaced by Nr and we set Zr = Z0 + Z2 (see Remark 3.7) where Z0 is the part
independent of z⊥ and Z2 is the part homogeneous of order 2 in z⊥. Then we have

sup
‖u‖s≤R

∥
∥
∥�
≤XZ2(u

≤, u⊥)

∥
∥
∥
s

�r Rr+1, ∀R ≤ Rs/Cs . (3.49)

Proof. Let us fix
r̄ = 2r − 1, (3.50)

consider τ = τr given by Lemma 3.17 and fix

sr = 2(s0 + τ(r̄ − 3)).

We now take Nr = N such that

RN τ � R1/2 ⇐⇒ N � R−1/2τ . (3.51)

With this choices the assumption (3.2) holds taking R < Rs with Rs small enough. Then
Theorem 3.3 applies with s ≥ sr , N = Nr and τ = τr chosen above. First of all notice
that

(RN τ )r̄−3 � 1

Nsr−s0
⇐⇒ R

r̄−3
2 � R

sr−s0
2τ . (3.52)

Then formulæ (3.46)–(3.47) follow by (3.3)–(3.4) setting R(r) = RT + R⊥. Then
estimate (3.48) follows by (3.6)–(3.7) and (3.52). The estimate (3.49) follows by Lemma
3.8 and the choice of N = Nr in (3.51). ��

4. Dynamics and Proof of the Main Result

In this section we conclude the proof of Theorem 2.10.
Consider the Cauchy problem (2.23) (with Hamiltonian H as in (2.14)) with an initial

datum u0 satisfying (2.24) and fix any r ≥ 3. Recalling Hypotheses 2.5, 2.8, setting

ε � R, (4.1)

then for s 	 1 large enough and ε small enough (depending on r ), we have that the
assumptions of Corollary 3.22 are fulfilled. Therefore we set

z0 := Tr (u0),

and we consider the Cauchy problem

ż = XHr (z), z(0) = z0, (4.2)

with Hr given in (3.47). By (3.46) we have that the bound (2.25) on the solution u(t) of
(2.23) follows provided we show

‖z(t)‖2s �s ‖z(0)‖2s + Rr+2|t |, |t | < TR (4.3)

where z(t) is the solution of the problem (4.2) and where we denoted

TR := sup
{|t | ∈ R

+ : ‖z(t)‖s < R
}

, (4.4)

the (possibly infinite) escape time of the solution from the ball of radius R.
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The rest of the section is devoted to the proof of the claim (4.3). To do this we now
analyze the dynamics of the system (4.2) obtained from the normal form procedure. To
this end we write the Hamilton equations in the form of a system for the two variables
(z≤, z⊥) and also split the normal form Zr = Z0 + Z2 as in item (i i) in Corollary 3.22.
We get

ż≤ = �z≤ + XZ0(z
≤) + �≤XZ2(z

≤, z⊥) + �≤XR(r) (z≤, z⊥), (4.5)

ż⊥ = �z⊥ + �⊥XZ2(z
≤, z⊥) + �⊥XR(r) (z≤, z⊥) . (4.6)

where � is the linear operator such that �z = XH0(z). The key points to analyze the
dynamics are the following:

(i) Z0 is in standard Birkhoff normal form, namely it contains only monomyals Poisson
commuting with H0;

(ii) by item (i) of Lemma 3.8 one has that �≤XZ2(z
≤, z⊥) is a remainder term (see item

(i i) in Corollary 3.22);
(iii) �⊥XZ2(z

≤, z⊥) is linear in z⊥. Furthermore, for any given trial solution z≤(t) it
is a time dependent family of linear operators, which by the property (2.13) are
Hamiltonian and thus conserve the L2 norm;

(iv) since Z2 is in normal form it leaves invariant the dyadic decomposition 
α on which
the �2 norm is equivalent to all the �2

s norms.

Remark 4.1. Recalling (2.15) we have that a monomial uJ1 ...uJl , Ji = ( ji , σi ) ∈ Il ,
i = 1, . . . , l Poisson commutes with the Hamiltonian H0 if and only if condition (2.21)
holds true. Therefore, by Hypothesis 2.8-(NR.2), the Hamiltonian Z2 is supported only
on monomials with indexes satisfying (2.22).

Formally we split the analysis in a few lemmas. The first is completely standard and
provides a priori estimates on the low frequency part z≤ of the solution of (4.5).

Lemma 4.2. There exists K1 such that for any real initial datum z0 ≡ (z≤0 , z⊥0 ) for (4.5),
(4.6), fulfilling ‖z0‖s ≤ R/2 (with R small as in (4.1)) the following holds. One has that

∥
∥
∥z≤(t)‖2s ≤ ‖z≤(0)

∥
∥
∥

2

s
+ K1R

r+2 |t | , ∀t, |t | < TR, (4.7)

where TR is given in (4.4).

Proof. For i ∈ Z
d , define the “superaction”

J[i] :=
∑

j∈[i]
z( j,−)z( j,+) ≡

∑

j∈[i]

∣
∣z( j,−)

∣
∣2

where the sum is over the indexes belonging to the equivalence class of [i] according
to Definition 2.7 and the second equality follows from the reality of u. Then, by the
property of being in normal form and by properties (NR.1), (NR.2) in Hypothesis 2.8,
we have

{

J[i]; Z0
} = 0, so that J̇[i] =

{

J[i]; Z2
}

+
{

J[i];R(r)
}

. Denote by E the set of
all the equivalence classes of Definition 2.7, and, for e ∈ E , denote

〈e〉 := inf
i∈e〈i〉

and define the norm
|z|2s :=

∑

e∈E
〈e〉2s Je.
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By using the dyadic property (2.20), one has that the norm | · |s is equivalent to the
standard one on �≤�2

s . Thus we have

d

dt

∣
∣z≤
∣
∣2
s =

∑

e∈E
〈e〉2s d

dt
Je =

∑

e∈E
〈e〉2s

(

{Je; Z2} +
{

Je;R(r)
})

= d
(∣
∣z≤
∣
∣2
s

) (

XZ2(z
≤, z⊥) + XR(r) (z≤, z⊥)

)

.

Then by (3.48)–(3.49)
the last quantity is estimated by a constant times Rr+2. From this, denoting by K0

the constant in the above inequality, one gets
∣
∣z≤(t)

∣
∣2
s ≤

∣
∣z≤(0)

∣
∣2
s + K0R

r+2|t |.
So we have

∥
∥z≤(t)

∥
∥

2
s ≤ C

∣
∣z≤(t)

∣
∣
2
s ≤ C

∣
∣z≤(0)

∣
∣
2
s + CK0R

r+2 |t | ,
from which, writing K1 := K0C one gets the estimate (4.7). ��

We now provide a priori estimates on the high frequencies z⊥ which evolve according
to (4.6).

Lemma 4.3. Fix r 	 1. There is sr such that for any s > sr there exists K3 = K3(s)
such that for any real initial datum z0 ≡ (z≤0 , z⊥0 ) for (4.5), (4.6), fulfilling ‖z0‖s ≤ R/2
(with R small as in (4.1)) the following holds. One has that

∥
∥
∥z⊥(t)

∥
∥
∥

2

s
≤ K2

∥
∥
∥z⊥(0)

∥
∥
∥

2

s
+ K3R

r+2|t |, ∀t , |t | < TR, (4.8)

where TR is given by (4.4).

Proof. First, we denote by Z(z≤) : �⊥�2 → �⊥�2 the family of linear operator s.t.
XZ2(z

≤, z⊥) = Z(z≤)z⊥; We also write Z(t) := Z(z≤(t)), with z≤(t) the projection
on low modes of the considered solution. We now introduce some further notations. For
any z ∈ �⊥�2, we introduce the projector �α associated to the block 
α of the partition.
More precisely, for any α, we define

�α : �⊥�2 → �⊥�2, �αu :=
{

z( j,σ ) if j ∈ 
α

0 if j �∈ 
α
. (4.9)

Then any sequence z ∈ �⊥�2 can be written as

z =
∑

α

zα, zα := �αu . (4.10)

By the property 2.2 of Definition 3.2, the normal form operatorZ(t) has a block-diagonal
structure, namely it can be written as

Z(t) =
∑

α

Zα(t), Zα(t) := �αZ(t)�α . (4.11)

For any block 
α , we define
n(α) := min j∈
α 〈 j〉
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and for any z ∈ �2
s , we define the norm

[[z]]s :=
(∑

α

n(α)2s‖zα‖0
) 1

2
.

By using the dyadic property (2.18), one has that the norm [[·]]s is equivalent to the
�2
s -norm ‖ · ‖s .

Consider now the normal form part of equation (4.6), namely

ż⊥ = �z⊥ + �⊥XZ2(z
≤, z⊥) ; (4.12)

by (4.9), (4.10), (4.11), it is block diagonal, namely it is equivalent to the decoupled
system

∂t zα(t) = �zα(t) + Zα(t)zα(t) .

Since Zα is Hamiltonian, one immediately has that

‖zα(t)‖0 = ‖zα(t0)‖0, ∀t, t0 ∈ [−TR, TR], ∀α. (4.13)

Therefore, for any t ∈ [−TR, TR], for the solution of (4.12) one has

‖z(t)‖2s�s [[z(t)]]2s �s

∑

α

n(α)2s‖zα(t)‖20
(4.13)

�s

∑

α

n(α)2s‖zα(t0)‖20 �s [[z0]]2s �s‖z0‖2s ,

so that, denoting by U(t, τ ) the flow map of (4.12), one has

‖U(t, τ )z0‖s ≤ K2 ‖z0‖s , ∀t . (4.14)

Consider now (4.6). Using Duhamel formula one gets

z⊥(t) = U(t, 0)z0 +
∫ t

0
U(t, τ )�⊥XR(z≤(τ ), z⊥(τ ))dτ

which, together with (4.14) and using also (3.48), implies

d

dt

∥
∥
∥z⊥

∥
∥
∥

2

s
≤ Kr R

r+2.

We then deduce the estimate (4.8). ��
Conclusion of the proof of Theorem 2.10. By Lemmas 4.2, 4.3 (see estimates (4.7), (4.8))
we have that the claim (4.3) holds. By a standard bootstrap argument one can show that
(recall (4.4), (4.1)) TR � ε−r . This implies the thesis. ��
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5. Applications

Let e1, ..., ed be a basis of R
d and let

� :=
{

x ∈ R
d : x =

d
∑

j=1

2πn je j , n j ∈ Z

}

(5.1)

be a maximal dimensional lattice. We denote T
d
� := R

d/�.
To fit our scheme it is convenient to introduce in T

d
� the basis given by e1, ..., ed , so

that the functions turn out to be defined on the standard torus T
d := R

d/(2πZ)d , but
endowed by the metric gi j := e j · ei . In particular the Laplacian turns out to be

�g :=
d
∑

l,n=1

gln∂xl ∂xn , x = (x1, . . . , xd) ∈ T
d , (5.2)

where gln is the inverse of the matrix gi j . The positive definite symmetric quadratic
form of equation (2.1) is then defined by

g(k, k) :=
d
∑

l,n=1

glnklkn, ∀ k ∈ Z
d .

The coefficients gln , l, n = 1, . . . , d, of the metric g above can be seen as parameters
that will be chosen in the set we now introduce. We also assume the symmetry gi j = g ji
for any i, j = 1, . . . , d, hence we identify the metric g with (gi j )i≤ j , namely we identify

the space of symmetric metrics with R
d(d+1)

2 . We denote by ‖g‖22 :=
∑

i, j |gi j |2
Definition 5.1. Consider the open set

G0 :=
{
(

gi j
)

i≤ j ∈ R
d(d+1)

2 : inf
x �=0

g(x, x)

|x |2 > 0

}

.

Fix τ∗ := d(d+1)
2 + 1 We then define the set of admissible metrics as follows.

G := ∪γ>0Gγ

where

Gγ :=
{

g ∈ G0 :
∣
∣
∣

∑

i≤ j

gi j�i j
∣
∣
∣ ≥ γ

(
∑

i≤ j |�i j |
)τ∗

∀� ≡ (�i j )i≤ j ∈ R
d(d+1)

2 \ {0}
}

Remark 5.2. The set Gγ above satisfies a diophantine estimate |(G0 ∩ BR)\Gγ | � γ

(BR is the ball in R
d(d+1)

2 ), implying that G has full measure in G0 (we denote by | · |
the Lebesgue measure). We also point out that in Sect. 5.1, we only take the metric
g ∈ G0 and we shall use the convolution potential in order to impose the non-resonance
conditions. For the other applications, namely in Sects. 5.2, 5.3, 5.4 we shall use that the
metric g is of the form g = β ḡ, with ḡ in the set of the admissible metrics G. We then
use the parameter β, in order to verify the non-resonance conditions required.
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5.1. Schrödinger Equations with Convolutions Potentials. We consider Schrödinger
equations of the form

i∂tψ = −�gψ + V ∗ ψ + f (|ψ |2)ψ, x ∈ T
d (5.3)

where �g is in (5.2) with g ∈ G0 (see Definition 5.1), V is a potential, ∗ denotes the
convolution and the nonlinearity f is of class C∞(R, R) in a neighborhood of the origin
and f (0) = 0. Equation (5.3) is Hamiltonian with Hamiltonian function

H =
∫

Td
(∇ψ · ∇ϕ + ϕ(V ∗ ψ) + F(ψϕ)) dx (5.4)

where F is a primitive of f and ϕ is a variable conjugated to ψ . To get equation (5.3)
one has to restrict to the invariant manifold ϕ = ψ .

Fix n ≥ 0 and R > 0, then the potential V is chosen in the space V given by

V :=
⎧

⎨

⎩
V (x) = 1

|Td |g
∑

k∈Zd

V̂ke
ik·x : V̂k〈k〉n ∈

[

−1

2
,

1

2

]

, ∀k ∈ Z
d

⎫

⎬

⎭
, (5.5)

which we endow with the product probability measure. Here and below |Td |g is the
measure of the torus induced by the metric g.

Theorem 5.3. There exists a set V(res) ⊂ V with zero measure such that for any V ∈
V \ V(res) the following holds. For any r ∈ N, there exists sr > d/2 such that for any
s > sr there is εs > 0 and C > 0 such that if the initial datum for (5.3) belongs to Hs

and fulfills ε := |ψ |s < εs then

‖ψ(t)‖s ≤ Cε, for all |t | ≤ Cε−r .

We are now going to prove this theorem. To fit our scheme simply introduce the
Fourier coefficients

ψ(x) = 1

|Td |1/2
g

∑

j∈Zd

u( j,+)e
i j ·x , ϕ(x) = 1

|Td |1/2
g

∑

j∈Zd

u( j,−)e
−i j ·x .

In these variables the equation (5.3) takes the form (2.4) with H = H0 + P , H0 of the
form (2.15) with frequencies

ω j := | j |2g + V̂ j , (5.6)

and P obtained by substituting in the F dependent term of the Hamiltonian (5.4). It is
easy to see that the perturbation is of class P of Definition 2.4.

In order to apply our abstract Birkhoff normal form theorem, we only need to verify
the Hypotheses 2.5, 2.8. The hypothesis (F.1) in Hyp. 2.5 holds trivially with β = 2
using (5.6).

The hypothesis (F.3) follows by the generalization of the Bourgain’s Lemma proved
in [15]. Precisely we now prove the following lemma.

Lemma 5.4. The assumption (F.3) of Hypothesis 2.5 holds.
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Proof. Let 
α be the partition of Z
d constructed in Theorem 2.1 of [15]. It satisfies the

properties

|| j |2g − | j ′|2g| + | j − j ′| ≥ C0(| j |δ + | j ′|δ), j ∈ 
α, j ′ ∈ 
β, α �= β,

max
j∈
α

| j | � min
j∈
α

| j |,

for some C0 > 0 and δ ∈ (0, 1). Clearly, one has that if j ∈ 
α, j ′ ∈ 
β with α �= β,
one has that

|ω j − ω j ′ | + | j − j ′| = || j |2g − | j ′|2g + V̂ j − V̂ j ′ | + | j − j ′|
≥ || j |2g − | j ′|2g| + | j − j ′| − 2 sup

j∈Zd
|V̂ j |

≥ || j |2g − | j ′|2g| + | j − j ′| − 1

≥ C0(| j |δ + | j ′|δ)− 1 ≥ C0(| j |δ + | j ′|δ)/2,

provided | j |δ +| j ′|δ ≥ 2
C0

, which is verified when | j |+| j ′| ≥ C(δ,C0) for some constant
C(δ,C0) > 0. ��

It remains to verify conditions (F.2) in Hyp. 2.5 and (NR.1), (NR.2) in Hyp. 2.8.
Given r and N we define

Z
d
N :=

{

j ∈ Z
d : | j | ≤ N

}

,

Kr
N :=

{

k ∈ Z
Z
d
N : 0 �= |k| ≤ r

}

,

and remark that its cardinality #Kr
N ≤ Ndr . For k ∈ Kr

N , consider

VN
k (γ ) := {V ∈ V |ω · k| < γ } .

Lemma 5.5. One has ∣
∣
∣VN

k (γ )

∣
∣
∣ ≤ 2γ Nn (5.7)

with n the number in the definition of V in (5.5).

Proof. If VN
k (γ ) is empty there is nothing to prove. Assume that Ṽ ∈ VN

k (γ ). Since

k �= 0, there exists j̄ such that k j̄ �= 0 and thus
∣
∣
∣k j̄

∣
∣
∣ ≥ 1; so we have

∣
∣
∣
∣
∣

∂ω · k
∂ V̂ j̄

∣
∣
∣
∣
∣
≥ 1.

It means that if VN
k (γ ) is not empty it is contained in the layer

∣
∣
∣
̂̃Vj̄
′ − V̂ ′̄

j

∣
∣
∣ ≤ γ

whose measure is γ 〈 j̄〉n ≤ 2γ Nn . This implies (5.7). ��
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Lemma 5.6. For any r there exists τ and a set V(res) ⊂ V of zero measure, s.t., if
V ∈ V \ V(res) there exists γ > 0 s.t. for all N ≥ 1 one has

|ω · k| ≥ γ

N τ
, ∀k ∈ Kr

N .

Proof. From Lemma 5.5 it follows that the measure of the set

V(res)(γ ) :=
⋃

N≥1

⋃

k∈Kr
N

VN
k

( γ

Ndr+2

)

is estimated by a constant times γ . It follows that the set

V(res) := ∩γ>0V(res)(γ )

has zero measure and with this definition the lemma is proved. ��
We remark that Lemma 5.6 implies that for V ∈ V(res) the frequencies ω j satisfy

ω j �= ωi for any i �= j . So that the equivalence class [ j] (see Definition 2.7) are
composed by the single element j ∈ Z

d .

5.2. Beam Equation. In this section we study the beam equation

ψt t + �2
gψ + mψ = −∂F

∂ψ
+

d
∑

l=1

∂xl
∂F

∂(∂lψ)
, (5.8)

with F(ψ, ∂x1ψ, ..., ∂xdψ) a function of class C∞(Rd+1;R) in a neighborhood of the
origin and having a zero of order 2 at the origin.

Introducing the variable ϕ = ψ̇ ≡ ψt , it is well known that (5.8) can be seen as an
Hamiltonian system in the variables (ψ, ϕ) with Hamiltonian function

H(ψ, ϕ) :=
∫

Td

(

ϕ2

2
+

ψ(�2
g + m)ψ

2
+ F(ψ, ∂1ψ, ..., ∂dψ)

)

dx . (5.9)

In order to fulfill the diophantine non-resonance conditions on the frequencies we need
to make some restrictions on the metric g whereas, we only require that the mass m > 0
is strictly positive. More precisely, we consider ḡ be a metric in the set of the admissible
metrics G given in the definition 5.1. We consider a metric g of the form

g = β ḡ, β ∈ B := (β1, β2), 0 < β1 < β2 < +∞. (5.10)

we shall use the parameter β in order to tune the resonances and to impose the non-
resonance conditions required in order to apply Theorem 2.10. The precise statement of
the main theorem of this section is the following one.

Theorem 5.7. Let g ∈ G, There exists a set of zero measure B(res) ⊂ B such that if
β ∈ B \B(res) then for all r ∈ N there exist sr > d/2 such that the following holds. For
any s > sr there exist εrs, c,C such that if the initial datum for (5.8) fulfills

ε := ∥∥(ψ0, ψ̇0)
∥
∥
s := ‖ψ0‖Hs+2 +

∥
∥ψ̇0

∥
∥
Hs < εsr , (5.11)

then the corresponding solution satisfies
∥
∥(ψ(t), ψ̇(t))

∥
∥
s ≤ Cε, for |t | ≤ cε−r . (5.12)
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We actually state also a corollary which state that there exists a full measure set of
metrics (not only constrained to a given direction g) for which the statements of Theorem
5.7 hold. Let 0 < β1 < β2 and define

G0(β1, β2) :=
{

g ∈ G0 : β1 ≤ ‖g‖2 ≤ β2

}

. (5.13)

where G0 is given in the definition 5.1.

Corollary 5.8. There exists a zero measure set G(res)
β1,β2

⊆ G0(β1, β2) such that for any

g ∈ G0(β1, β2)\G(res)
β1,β2

the conclusion of theorem 5.7 hold.

Proof of Corollary 5.8. To shorten notations in this proof, we denote by n := d(d+1)
2 .

For any β1 ≤ β ≤ β2, we denote by σβ the surface n − 1 dimensional measure on the
sphere ∂Bβ := {‖g‖2 = β}. We now prove the following two claims

• Claim 1. One has that the surface measure of all diophantine metrics G in G0
with norm equal 1 has full surface measure in G0 ∩ ∂B1, namely σ1(G ∩ ∂B1) =
σ1(G0 ∩ ∂B1).
• Claim 2. Let g ∈ G ∩ ∂B1 and let Bg ⊂ (β1, β2) the full measure set provided in

Theorem 5.7. We shall prove that

G(nr)
β1,β2

:=
⋃

g∈∂B1∩G
Bg

has full measure in G0(β1, β2).
Proof of Claim 1. Let E ⊂ ∂B1. Then the set

βE := {βx : x ∈ E
} ⊂ ∂Bβ

and, by standard scaling properties,

σβ(βE) = Cnβ
n−1σ1(E) for some constant Cn > 0. (5.14)

By (5.13) and Remark (5.2), the set Gβ1,β2 := G0(β1, β2) ∩ G has full measure in the
open set G0(β1, β2). By Fubini one has

|G0(β1, β2)| =
∫ β2

β1

σβ(G0 ∩ ∂Bβ) dβ

(5.14)= Cn

∫ β2

β1

βn−1σ1(G0 ∩ ∂B1) dβ

= Cn(β
n
2 − βn

1 )

n
σ1

(

G0 ∩ ∂B1

)

(5.15)

and similarly

|Gβ1,β2 | =
∫ β2

β1

σβ(G ∩ ∂Bβ) dβ

(5.14)= Cn

∫ β2

β1

βn−1σ1(G ∩ ∂B1) dβ

= Cn(β
n
2 − βn

1 )

n
σ1

(

G ∩ ∂B1

)

. (5.16)
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Since |G0(β1, β2)| = |Gβ1,β2 |, by comparing (5.15), (5.16), one immediately gets that
σ1(G ∩ ∂B1) = σ1(G0 ∩ ∂B1).
Proof of claim 2. By Fubini, the Lebesgue measure |G(nr)

β1,β2
| is

|G(nr)
β1,β2
| =

∫

G∩∂B1

|Bg| dσ1(g) = (β2 − β1)

∫

G∩∂B1

dσ1(g) = (β1 − β2)σ1(G ∩ ∂B1)

Claim 1= (β1 − β2)σ1(∂B1 ∩ G0) = |G0(β1, β2)|.
The claimed statement has then been proved.

��
To prove Theorem 5.7 we first show how to fit our scheme and then we prove that

the Hypotheses of Theorem 2.10 are verified.
To fit our scheme we first introduce new variables

u+(x) := 1√
2

((

�2
g + m

)1/4
ϕ + i

(

�2
g + m

)−1/4
ψ

)

, (5.17)

u−(x) := 1√
2

((

�2
g + m

)1/4
ϕ − i

(

�2
g + m

)−1/4
ψ

)

, (5.18)

and consider their Fourier series, namely, for σ = ±1

uσ (x) = 1

|Td |1/2
g

∑

j∈Zd

u( j,σ )e
σ i j ·x .

In these variables the beam equation (5.8) takes exactly the form (2.4) with H = H0 + P ,
H0 of the form (2.15) with frequencies

ω j :=
√

| j |4g + m . (5.19)

and P obtained by substituting (5.18)–(5.18) in the F dependent term of the Hamiltonian
(5.9). Thanks to the regularity assumption on F , it is easy to see that the perturbation P
is of class P .

The verification of (F.3) in Hyp. 2.5 goes exactly as in the case of the Schrödinger
equation, since the asymptotic of ω j in (5.19) is ω j = | j |2g + O(1). The asymptotic
condition (F.1) is also trivially fulfilled with β = 2. The main point is to verify the
non-resonance conditions (F.2) and the conditions (NR.1), (NR.2) in Hyp. 2.8. This will
occupy the rest of this subsection.

First of all we remark that the equivalence classes of Definition 2.7 are simply defined
by

[ j] ≡
{

i ∈ Z
d : |i |g = | j |g

}

.

Now, recall that g = βg with g ∈ G and β ∈ B = [β1, β2]. One can easily verify that

| j |g = β| j |g (5.20)

implying that | j |g = |k|g if and only if | j |g = |k|g . Hence the equivalence class [ j] is

[ j] ≡
{

i ∈ Z
d |i |ḡ = | j |ḡ

}

.

We are going to prove the following Lemma
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Lemma 5.9. Let g ∈ G. There exists a set B(res) ⊂ B of zero measure, s.t., if β ∈
B\B(res) then (NR.1), (NR.2) and (F.2) hold for the metric g = β g.

We first need a lower bound on the distance between points with different modulus
in Z

d . The following lemma holds

Lemma 5.10. Fix any N > 1 and let g ∈ G, β ∈ B = (β1, β2), g = βg. One has that
if j, k ∈ Z

d such that |�|, |k| ≤ N, | j |g �= |k|g, then there exists γ > 0 and a constant
C(β1) such that

||k|2g − |�|2g| ≥
C(β1)γ

N 2τ∗

where τ∗ is given in the definition 5.1.

Proof. By recalling the Definition 5.1 of the admissible set G, since g ∈ G, one has that
there exists γ > 0 such that

∣
∣
∣

∑

i≤ j

gi j�i j
∣
∣
∣ ≥ γ

(
∑

i≤ j |�i j |
)τ ∀� = (�i j )i≤ j ∈ R

d(d+1)
2 \ {0}.

By (5.20), since g = βg, one has that

| |k|2g − |�|2g | = β

∣
∣
∣

∑

i j

gi j
(

ki k j − �i� j
)
∣
∣
∣

≥ β1
γ

(
∑

i, j |ki k j − �i� j |
)τ . (5.21)

Since |�|, |k| ≤ N , one has the following chain of inequalities:

∑

i, j

|ki k j − �i� j | ≤
∑

i j

(|�i ||� j | + |ki ||k j |) � |�|2 + |k|2
|�|,|k|≤N

� N 2.

The latter inequality, together with (5.21) imply that there exists a constant C(β1) such
that

| |k|2g − |�|2g | ≥
C(β1)γ

N 2τ

uniformly on β ∈ (β1, β2). The claimed statement has then been proved. ��
Using the property (5.20), one can easily verify that the frequencies ω j ≡ ω j (β)

assume the form

ω j (β) = β2
 j , 
 j :=
√

| j |4g +
m

β4 . (5.22)

Since β2 ≥ β ≥ β1 > 0,

∣
∣
∣

r
∑

i=1

σiω ji

∣
∣
∣ = β2

∣
∣
∣

r
∑

i=1

σi
 ji

∣
∣
∣ ≥ β2

1

∣
∣
∣

r
∑

i=1

σi
 ji

∣
∣
∣
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one can verify non resonance conditions on 
 j . Since the map

(β1, β2)→ (ζ1, ζ2) :=
( m

β4
2

,
m

β4
1

)

, β �→ ζ := m

β4 (5.23)

is an analytic diffeomorphism, we can introduce ζ = m/β4 as parameter in order to
tune the resonances. Hence we verify non resonance conditions on the frequencies


 j (ζ ) =
√

| j |4ḡ + ζ , j ∈ Z
d . (5.24)

Lemma 5.11. Let ḡ ∈ G. For any K ≤ N, consider K indexes j1, ..., jK with | j1|g <

... | jK |g ≤ N; and consider the determinant

D :=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣


 j1 
 j2 . . . 
 jK
∂ζ 
 j1 ∂ζ 
 j2 . . . ∂ζ 
 jK

. . . . . .

. . . . . .

∂K−1
ζ 
 j1 ∂K−1

ζ 
 j2 . . . ∂K−1
ζ 
 jK

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

There exists C > 0 s.t.

D ≥ C

NηK 2 ,

for some constant η ≡ ηd > 0 depending only on the dimension d.

The proof was given in [2]. For sake of completeness we insert it.

Proof. For any i = 1, . . . , K , for any n = 0, . . . , K − 1, one computes

∂nζ 
 ji (ζ ) = Cn(| ji |4ḡ + ζ )
1
2−n

for some constant Cn �= 0. This implies that

D ≥ C
K
∏

i=1

√

| ji |4ḡ + ζ |det(A)|

where the matrix A is defined as

A =

⎛

⎜
⎜
⎜
⎝

1 1 . . . 1
x1 x2 . . . xK
. . . . . .

. . . . . .

xK−1
1 xK−1

2 . . . xK−1
K

⎞

⎟
⎟
⎟
⎠

where

xi := 1

| ji |4ḡ + ζ
, i = 1, . . . , K .
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This is a Van der Monde determinant. Thus we have

|det(A)| =
∏

1≤i<�≤K
|xi − x�| =

∏

1≤i<�≤K

∣
∣
∣

1

| ji |4ḡ + ζ
− 1

| j�|4ḡ + ζ

∣
∣
∣

≥
∏

1≤i<�≤K

|| ji |4ḡ − | j�|4ḡ|
|| ji |4ḡ + ζ ||| j�|4ḡ + ζ |

≥
∏

1≤i<�≤K

(| ji |2ḡ + | j�|2ḡ)|| ji |2ḡ − | j�|2ḡ|
|| ji |4ḡ + ζ ||| j�|4ḡ + ζ |

Lemma 5.10≥ CN−K 2(τ∗+4)

which implies the thesis. ��
Exploiting this Lemma, and following step by step the proof of Lemma 12 of [2] one

gets

Lemma 5.12. Let g ∈ G. Then and for any r there exists τ ≡ τr with the following
property: for any positive γ small enough there exists a set Iγ ⊂ (ζ1, ζ2) such that
∀ζ ∈ Iγ one has that for any N ≥ 1 and any multi-index J1, ..., Jr with |Jl | ≤ N ∀l,
one has

r
∑

l=1

σl
 jl �= 0 �⇒
∣
∣
∣
∣
∣

r
∑

l=1

σl
 jl

∣
∣
∣
∣
∣
≥ γ

N τ
.

Moreover, ∣
∣(ζ1, ζ2) \ Iγ

∣
∣ ≤ Cγ 1/r .

End of the proof of Lemma 5.9. Let γ > 0. By recalling the diffeomorphism (5.23), one
has that the set

Iγ := {β ∈ [β1, β2] : m/β4 ∈ Iγ }.
satisfies the estimate

|(β1, β2) \ Iγ | � γ
1
r

Now, if we take β ∈ Iγ and if
∑r

i=1 σiω ji �= 0, one has that

∣
∣
∣

r
∑

i=1

σiω ji

∣
∣
∣ = β2

∣
∣
∣

r
∑

i=1

σi
 ji

∣
∣
∣

β1≤β≤β2≥ β2
1

∣
∣
∣

r
∑

i=1

σi
 ji

∣
∣
∣

≥ β2
1γ

N τ
.

By the above result, one has that, if

β ∈
⋃

γ>0

Iγ

then (NR.2) holds and furthermore
⋃

γ>0 Iγ has full measure. Hence the claimed state-

ment follows by defining B(res) := B\
(
⋃

γ>0 Iγ

)

. ��
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5.3. The Quantum Hydrodinamical System. We consider the following quantum hydro-
dynamic system on an irrational torus T

d
�

⎧

⎨

⎩

∂tρ = −m�gφ − div(ρ∇gφ)

∂tφ = − 1
2 |∇gφ|2 − p(m + ρ) +

κ

m + ρ
�gρ − κ

2(m + ρ)2 |∇gρ|2,
(QHD)

where m > 0, κ > 0, the function p belongs to C∞(R+;R) and p(m) = 0. The function
ρ(t, x) is such that ρ(t, x) +m > 0 and it has zero average in x . The variable x is on the
irrational torus T

d (as in the previous two applications). We assume the conditions

p′(m) > 0. (5.25)

We shall use Theorem 2.10 in order to prove the following almost global existence result.
In order to give a precise statement of the main result, we shall introduce the following
notation. Given a function u : Td → C, we define

�0u := 1

|Td
�|

1
2

∫

Td
u(x) d x, �⊥0 := Id −�0.

Let ḡ be a metric in the set of the admissible metrics G given in the definition 5.1. Exactly
as in the case of the Beam equation, we consider a metric g of the form

g = β ḡ, β ∈ B := (β1, β2), 0 < β1 < β2 < +∞. (5.26)

we shall use the parameter β in order to tune the resonances and to impose the non-
resonance conditions required in order to apply Theorem 2.10. The precise statement of
the long time existence for the QHD system is the following.

Theorem 5.13. Let ḡ ∈ G. There exists a set of zero measure B(res) ⊂ B, s.t. if β ∈
B\B(res) and g = β ḡ, then, ∀r ≥ 2 there exist sr and ∀s > sr ∃εrs, c,C with the
following property. For any initial datum (ρ0, φ0) ∈ Hs(Td

�)× Hs(Td
�) satisfying

‖ρ0‖s + ‖�⊥0 φ0‖s ≤ ε

there exists a unique solution t �→ (ρ(t), φ(t)) of the system (QHD) satisfying the bound

‖ρ(t)‖s + ‖�⊥0 φ(t)‖s ≤ Cε, ∀ |t | ≤ cε−r .

Arguing as in the proof of Corollary 5.8, one can show

Corollary 5.14. Let 0 < β1 < β2. There exists a zero measure set G(res)
β1,β2

⊆ G0(β1, β2)

(where G0(β1, β2) is defined in (5.13)) such that for any

g ∈ G0(β1, β2) \ G(res)
β1,β2

the statements of theorem 5.13 hold.

The key tool in order to prove the latter almost global existence result 5.13 is to use a
change of coordinates (the so called Madelung transformation) which allows to reduce
the system (QHD) to a semilinear Schrödinger type equation. We shall implement this
in the next sections.
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5.3.1. Madelung transform For λ ∈ R+, we define the change of variable (Madelung
transform)

ψ :=Mψ(ρ, φ) := √m + ρeiλφ, ψ̄ :=Mψ̄ (ρ, φ) := √m + ρe−iλφ. (M)

Notice that the inverse map has the form

m + ρ =M−1
ρ (ψ, ψ̄) := |ψ |2,

φ =M−1
φ (ψ, ψ̄) := 1

λ
arctan

(−i(ψ − ψ̄)

ψ + ψ̄

)

.
(5.27)

In the following lemma we state a well-posedness result for the Madelung transform.

Lemma 5.15. Define κ = (4λ2)−1 and � := λ−1 = 2
√

κ . Then the following holds.
(i) Let s > d

2 and

δ := 1

m
‖ρ‖s +

1√
κ
‖�⊥0 φ‖s, σ := �0φ.

There is C = C(s) > 1 such that, if C(s)δ ≤ 1, then the function ψ in (M) satisfies

‖ψ −√meiλσ ‖s ≤ 2
√
mδ.

(i i) Define

δ′ := inf
σ∈T ‖ψ −

√
meiσ ‖s .

There is C ′ = C ′(s) > 1 such that, if C ′(s)δ′(
√
m)−1 ≤ 1, then the functions ρ,

1

m
‖ρ‖s +

1√
κ
‖�⊥0 φ‖s ≤ 8

1√
m

δ′.

Proof. see Lemma 2.1 in [33]. ��
We now rewrite equation (QHD) in the variable (ψ, ψ̄).

Lemma 5.16. Let (ρ, φ) ∈ Hs
0 (Td) × Hs(Td) be a solution of (QHD) defined over a

time interval [0, T ], T > 0, such that

sup
t∈[0,T )

( 1

m
‖ρ(t, ·)‖s +

1√
κ
‖�⊥0 φ(t, ·)‖s

)

≤ ε

for some ε > 0 small enough. Then the function ψ defined in (M) solves
{

∂tψ = −i
(− �

2 �gψ + 1
�
p(|ψ |2)ψ)

ψ(0) = √m + ρ(0)eiφ(0).
(5.28)

Proof. See Lemma 2.2 in [33]. ��
Notice that the (5.28) is an Hamiltonian equation of the form

∂tψ = −i∂ψ̄H(ψ, ψ̄), H(ψ, ψ̄) =
∫

Td

(�

2
|∇gψ |2 +

1

�
P(|ψ |2))dx, (5.29)

where ∂ψ̄ = (∂&ψ + i∂'ψ)/2. The Poisson bracket is defined by

{H,G} := −i
∫

Td
∂ψH∂ψ̄G − ∂ψ̄H∂ψGdx . (5.30)
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5.3.2. Elimination of the zero mode We introduce the set of variables
{

ψ0 = αe−iθ α ∈ [0, +∞), θ ∈ T

ψ j = z j e−iθ j ∈ Z
d \ {0}, (5.31)

which are the polar coordinates for j = 0 and a phase translation for j �= 0. Rewriting
(5.29) in Fourier coordinates one has

i∂tψ j = ∂ψ̄ j
H(ψ, ψ̄), j ∈ Z

d ,

where H is defined in (5.29). We define also the zero mean variable

z :=
∑

j∈Zd\{0}
z j e

i j ·x . (5.32)

By (5.31) and (5.32) one has
ψ = (α + z)eiθ , (5.33)

and it is easy to prove that the quantity

m :=
∑

j∈Zd

|ψ j |2 = α2 +
∑

j∈Zd\{0}
|z j |2

is a constant of motion for (5.28). Using (5.31), one can completely recover the variable
α in terms of {z j } j∈Zd\{0} as

α =
√

m−
∑

j∈Zd\{0}
|z j |2.

Note also that the (ρ, φ) variables in (5.27) do not depend on the angular variable θ

defined above. This implies that system (QHD) is completely described by the complex
variable z. On the other hand, using

∂ψ̄ j
H(ψeiθ , ¯ψeiθ ) = ∂ψ̄ j

H(ψ, ψ̄)eiθ ,

one obtains
{

i∂tα + ∂tθα = �0
(

p(|α + z|2)(α + z)
)

i∂t z j + ∂tθ z j = ∂H
∂ψ̄ j

(α + z, α + z̄).
(5.34)

Taking the real part of the first equation in (5.34) we obtain

∂tθ = 1

α
�0

(
1

�
p(|α + z|2)&(α + z)

)

= 1

2α
∂ᾱH(α, z, z̄), (5.35)

where

H̃(α, z, z̄) := �

2

∫

Td
(−�g)z · z̄dx +

1

�

∫

Td
G(|α + z|2) dx .

By (5.35), (5.34) and using that

∂ψ̄ j
H(α + z, α + z̄) = ∂z̄ j H̃(α, z, z̄),
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one obtains

i∂t z j =∂z̄ j H̃(α, z, z̄)− z j
2α

∂αH̃(α, z, z̄) = ∂z̄ jKm(z, z̄), j �= 0, (5.36)

where
Km(z, z̄) := H̃(α, z, z̄)|α=

√

m−∑ j �=0 |z j |2
. (5.37)

We resume the above discussion in the following lemma.

Lemma 5.17. The following holds.
(i) Let s > d

2 and

δ := 1

m
‖ρ‖s +

1√
κ
‖�⊥0 φ‖s, θ := �0φ.

There is C = C(s) > 1 such that, if C(s)δ ≤ 1, then the function z in (5.32) satisfies

‖z‖s ≤ 2
√
mδ.

(i i) Define

δ′ := ‖z‖s .
There is C ′ = C ′(s) > 1 such that, if C ′(s)δ′(

√
m)−1 ≤ 1, then the functions ρ,

1

m
‖ρ‖s +

1√
κ
‖�⊥0 φ‖s ≤ 16

1√
m

δ′.

(i i i) Let (ρ, φ) ∈ Hs
0 (Td)×Hs(Td) be a solution of (QHD) defined over a time interval

[0, T ], T > 0, such that

sup
t∈[0,T )

( 1

m
‖ρ(t, ·)‖s +

1√
κ
‖�⊥0 φ(t, ·)‖s

)

≤ ε

for some ε > 0 small enough. Then the function z ∈ Hs
0 (Td) defined in (5.32) solves

(5.36).

Proof. See Lemma 2.4 in [33]. ��
Remark 5.18. Using (5.27) and (5.33) one can study the system (QHD) near the equi-
librium point (ρ, φ) = (0, 0) by studying the complex hamiltonian system

i∂t z = ∂z̄Km(z, z̄) (5.38)

near the equilibrium z = 0, where Km(z, z̄) is the Hamiltonian in (5.37). Note also that
the natural phase-space for (5.38) is the complex Sobolev space Hs

0 (Td), s ∈ R, of
complex Sobolev functions with zero mean.

By Lemma 5.17, one has that Theorem 5.13 will be deduced by the following Propo-
sition

Proposition 5.19. Let ḡ ∈ G. There exists a set of zero measure B(res) ⊂ B, s.t. if
β ∈ B\B(res) and g = β ḡ then, ∀r ≥ 2 there exist sr and ∀s > sr ∃εrs, c,C with the
following property. For any initial datum z0 ∈ Hs

0 (Td) satisfying

‖z0‖s ≤ ε

there exists a unique solution t �→ z(t) of the equation (5.36) satisfying the bound

‖z(t)‖s ≤ Cε, ∀ |t | ≤ cε−r .
The rest of this section is dedicated to the proof of the latter Proposition.
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5.3.3. Taylor expansion of the Hamiltonian In this section we shall use the notations
introduced in Sects. 2.1, 2.2. The only difference is that, since we shall restrict to the
space of zero average functions, in all the definitions given in Sects. 2.1, 2.2, one has
to replace Z

d by Z
d\{0} and Zd by Zd

0 := (Zd\{0}) × {+,−}. In order to study the
stability of z = 0 for (5.38) it is useful to expand Km at z = 0. We have

Km(z, z̄) = �

2

∫

Td
(−�g)z · z̄ dx +

1

�

∫

Td
P
(∣
∣

√

m−
∑

j �=0

|z j |2 + z
∣
∣2
)

dx

= (2π)d
P(m)

�
+ K(2)

m (z, z̄) +
N−1
∑

r=3

K(r)
m (z, z̄) + R(N )(z, z̄), (5.39)

where

K(2)
m (z, z̄) = 1

2

∫

Td

�

2
(−�g)z · z̄ dx +

p′(m)m

�

∫

Td

1

2
(z + z̄)2 dx,

for any r = 3, · · · , N − 1, K(r)
m (z, z̄) is an homogeneous multilinear Hamiltonian

function of degree r of the form

K(r)
m (z, z̄) =

∑

σ∈{−1,1}r , j∈(Zd\{0})r
∑r

i=1 σi ji=0

(K(r)
m )σ, j z

σ1
j1
· · · zσrjr , |(K(r)

m )σ, j | �r 1,

and
‖XR(N ) (z)‖s �s ‖z‖N−1

Hs , ∀ z ∈ B1(H
s
0 (Td).

This implies that K(r)
m is in the class Pr . The vector field of the Hamiltonian in (5.39)

has the form

∂t

[

z
z̄

]

=
[−i∂z̄Km

i∂zKm

]

= −i

(
��g

2 + mp′(m)
�

mp′(m)
�

−mp′(m)
�

��g
2 − mp′(m)

�

)[

z
z̄

]

+
N−1
∑

r=3

[

−i∂z̄K(r)
m

i∂zK(r)
m

]

+

[−i∂z̄ R(N )

i∂z R(N )

]

.

Let us now introduce the 2× 2 matrix of operators

C := 1√
2ω(D)A(D,m)

(

A(D,m) − 1
2mp

′(m)

− 1
2mp

′(m) A(D,m)

)

,

with

A(D,m) := ω(D) + �

2 (−�g) + 1
2mp

′(m),

and where ω(D) is the Fourier multiplier with symbol
√

�2

4
| j |4g + mp′(m)| j |2g =

�

2
ω j , j ∈ Z

d \ {0}

ω j :=
√

| jg|4 + δ| jg|2, δ := 4mp′(m)

�2 .

(5.40)
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Notice that, by using (5.25), the matrix C is bounded, invertible and symplectic, with
estimates

‖C±1‖L(Hs
0×Hs

0 , Hs
0×Hs

0 ) ≤ 1 +
√
kβ, β := mp′(m)

k
.

Consider the change of variables
[

w

w̄

]

:= C−1
[

z
z̄

]

.

then the Hamiltonian (5.39) reads

K̃m = K̃(2)
m +

N−1
∑

k=3

K̃(r)
m + R̃N

K̃(2)
m (w, w̄) := K(2)

m

(

C
[

w

w̄

] )

:= 1

2

∫

Td
ω(D)w · w̄dx,

K̃(i)
m ∈ Pi i = 3, . . . , N − 1,

‖X R̃N
(w)‖s �s ‖w‖N−1

s , ∀‖w‖s ( 1.

From the latter properties, one deduces that the perturbation

P =
N−1
∑

k=3

K̃(r)
m + R̃N ,

is in the class P of Definition 2.4.
The verification of (F.3) goes exactly as in the case of the Schrödinger equation,

since also in this case ω j = | j |2g + O(1). The asymptotic condition (F.1) is also trivially
fulfilled with β = 2. The main point is to verify the nonresonance conditions (F.2) and
(NR.1), (NR.2). This will be done in the next subsection.

5.3.4. Non-resonance conditions for (QHD) According to the Sect. 5.2 on the Beam
equation, we fix the metric ḡ ∈ G and we consider g = β ḡ, β1 ≤ β ≤ β2. We shall
verify the non-resonance conditions on the frequencies ω j in (5.40). By the property
(5.20),

ω j =
√

| j |4g + δ| j |2g =
√

β4| j |4ḡ + β2δ| j |2ḡ = β2
 j ,


 j := | j |ḡ
√

| j |2ḡ +
δ

β2 , j ∈ Z
d \ {0}.

(5.41)

Since β2 ≥ β ≥ β1 > 0,

∣
∣
∣

r
∑

i=1

σiω ji

∣
∣
∣ = β2

∣
∣
∣

r
∑

i=1

σi
 ji

∣
∣
∣ ≥ β2

1

∣
∣
∣

r
∑

i=1

σi
 ji

∣
∣
∣

one can verify non resonance conditions on 
 j . Since the map

(β1, β2)→ (ζ1, ζ2) :=
( δ

β2
2

,
δ

β2
1

)

, β �→ ζ := δ

β2 (5.42)
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is an analytic diffeomorphism, we can introduce ζ = δ/β2 as parameter in order to tune
the resonances. Hence we verify non resonance conditions on the frequencies


 j ≡ 
 j (ζ ) = | j |ḡ
√

| j |2ḡ + ζ , j ∈ Z
d \ {0}. (5.43)

Lemma 5.20. Assume that the metric ḡ ∈ G. For any K ≤ N, consider K indexes
j1, ..., jK with | j1|g < . . . < | jK |g ≤ N; and consider the determinant

D :=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣


 j1 
 j2 . . . 
 jK
∂ζ 
 j1 ∂ζ 
 j2 . . . ∂ζ 
 jK

. . . . . .

. . . . . .

∂K−1
ζ 
 j1 ∂K−1

ζ 
 j2 . . . ∂K−1
ζ 
 jK

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

One has

D ≥ C

NηK 2

for some constant η ≡ ηd > 0 large enough, depending only on the dimension d.

Proof. The dispersion relation is slightly different w.r. to the one of the Beam equation,
hence in this proof we just highlight the small differences w.r. to Lemma 5.11. For any
i = 1, . . . , K , for any n = 0, . . . , K − 1, one computes

∂nζ 
 ji (ζ ) = Cn| ji |ḡ(| ji |2ḡ + ζ )
1
2−n

for some constant Cn �= 0. This implies that

D ≥ C
K
∏

i=1

(

| ji |ḡ
√

| ji |2ḡ + ζ
)

|det(A)|

where the matrix A is defined as

A =

⎛

⎜
⎜
⎜
⎝

1 1 . . . 1
x1 x2 . . . xK
. . . . . .

. . . . . .

xK−1
1 xK−1

2 . . . xK−1
K

⎞

⎟
⎟
⎟
⎠

where

xi := 1

| ji |2ḡ + ζ
, i = 1, . . . , K .

This is a Van der Monde determinant. Thus we have

|det(A)| =
∏

1≤i<�≤K
|xi − x�| =

∏

1≤i<�≤K

∣
∣
∣

1

| ji |2ḡ + ζ
− 1

| j�|2ḡ + ζ

∣
∣
∣

≥
∏

1≤i<�≤K

|| ji |2ḡ − | j�|2ḡ|
|| ji |2ḡ + ζ ||| j�|2ḡ + ζ |

Lemma 5.10≥ CN−K 2(τ∗+4)

which implies the thesis. ��
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Exploiting this Lemma, and following step by step the proof of Lemma 12 of [2] one
gets

Lemma 5.21. Let ḡ ∈ G. Then for any r there exists τr with the following property: for
any positive γ small enough there exists a set Iγ ⊂ (ζ1, ζ2) such that ∀ζ ∈ Iγ one has
that for any N ≥ 1 and any set J1, ..., Jr with |Jl | ≤ N ∀l, one has

r
∑

l=1

σl
 jl �= 0 �⇒
∣
∣
∣
∣
∣

r
∑

l=1

σl
 jl

∣
∣
∣
∣
∣
≥ γ

N τ
.

Moreover one has ∣
∣[ζ1, ζ2] \ Iγ

∣
∣ ≤ Cγ 1/r .

By recalling the diffeomorphism (5.42), one has that the set

Iγ := {β ∈ [β1, β2] : δ/β2 ∈ Iγ }
satisfies the estimate

|(β1, β2) \ Iγ | � γ
1
r

Now, if we take β ∈ Iγ and if
∑r

i=1 σiω ji �= 0, one has that (recall (5.41))

∣
∣
∣

r
∑

i=1

σiω ji

∣
∣
∣ = β2

∣
∣
∣

r
∑

i=1

σi
 ji

∣
∣
∣

β1≤β≤β2≥ β2
1

∣
∣
∣

r
∑

i=1

σi
 ji

∣
∣
∣

≥ β2
1γ

N τ
.

By the above result, one has that, if

β ∈
⋃

γ>0

Iγ

then (NR.2) holds and furthermore
⋃

γ>0 Iγ has full measure. Hence the claimed state-

ment follows by defining B(res) := B\
(
⋃

γ>0 Iγ

)

.

5.4. Stability of Plane Waves in NLS. Consider the NLS

iψt = −�gψ + f (|ψ |2)ψ, (5.44)

with f ∈ C∞(R, R), f (0) = 0 and g = β ḡ, ḡ ∈ G and β ∈ (β1, β2) ⊂ (0, +∞). (recall
the Definition 5.1). The equation (5.44) admits solutions of the form

ψ∗,m(x, t) = aei(m·x−νt), m ∈ Z
d (5.45)

with ν = |m|2g + f (a2) and a > 0. In order to state the next stability theorem, we need
that a suitable condition between f ′(a2) and the metric g is satisfied. For this reason, we
slightly modify the definition of G0 in 5.1. We then re-define G0 in the following way:
fix K > 0, we define

G0 :=
{
(

gi j
)

i≤ j ∈ R
d(d+1)

2 : inf
x �=0

g(x, x)

|x |2 > K

}

(5.46)

The definition of the admissible set G is then the same in which one replace this new set
G0 with its hold definition. The main theorem of this section is the following.
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Theorem 5.22. Assume that 0 < β1 < β2, ḡ ∈ G, 2 f ′(a2) < β2
1 K

2, f ′(a2) �= 0
(where K > 0 is the constant appearing in (5.46)). Then there exists a set of zero
measure B(res) ⊂ B := (β1, β2), such that for β ∈ B\B(res) for g = β ḡ, then, for any
r ≥ 3, there exist sr > 0 such that the following holds. For any s > sr and any m ∈ Z

d

there exist constants εrsm, c,C such that if the initial datum ψ0 for (5.44) fulfills

‖ψ0‖L2 = a
√

|Td |g, ε := ∥∥ψ0 − ψ∗,m(., 0)
∥
∥
Hs < εsrm, (5.47)

then the corresponding solution fulfills
∥
∥ψ(t)− ψ∗,m(., t)

∥
∥
s ≤ Cε, ∀ |t | ≤ cε−r . (5.48)

Arguing as in the proof of Corollary 5.8, one can show also in this case the following

Corollary 5.23. Let 0 < β1 < β2. There exists a zero measure set G(res)
β1,β2

⊆ G0(β1, β2),

whereG0(β1, β2) :=
{

g ∈ G0 : β1 ≤ ‖g‖2 ≤ β2
}

, such that for any g ∈ G0(β1, β2)\G(res)
β1,β2

the statements of theorem 5.22 hold.

The rest of this subsection is devoted to sketch the proof of Theorem 5.22, which
follows exactly the proof of the corresponding theorem in [29] except that in the case
of nonresonant tori one has to substitute the nonresonant condition by [29] with our
nonresonance and structure conditions (see Hypotheses 2.5, 2.8).

We start by reducing the problem to a problem of stability of the origin of a system
of the form (2.14).

First it is easy to see that introducing the new variables ϕ by

ϕ(x, t) = e−im·x e−it |m|2ψ(x + 2mt, t),

then ϕ still fulfills (5.44), but ψ∗,m(x, t) is changed to ae−iνt with ν = f (a2).
The idea of [29] is to exploit that ϕ(x) = a appears as an elliptic equilibrium of the

reduced Hamiltonian system obtained applying Marsden Weinstein procedure to (5.44)
in order to reduce the Gauge symmetry. We recall that according to Marsden Weinstein
procedure (following [29]), when one has a system invariant under a one parameter
symmetry group, then there exists an integral of motion (the L2 norm in this case), and
the effective dynamics occurs in the quotient of the level surface of the integral of motion
with respect to the group action. This is the same procedure exploited in Sect. 5.3 for the
QHD system. The effective system has a Hamiltonian which is obtained by restricting
the Hamiltonian to the level surface. Such a Hamiltonian is invariant under the symmetry
group associated to the integral of motion.

More precisely, consider the zero mean variable

z(x) := 1

|Td |1/2
g

∑

j∈Zd\{0}
z j e

i j ·x

and the substitution

ϕ(x) = eiθ (

√

a2 − ∣∣Td
∣
∣
g ‖z‖2L2 + z(x)) (5.49)

where θ ∈ T is a parameter along the orbit of the Gauge group, Notice that ϕ belongs

to the level surface ‖ϕ‖L2 = a
√∣
∣Td
∣
∣
g and z(x) is the new free variable. In this case it
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also turns out that this is a canonical variable (as it can be verified by the theory of [3]).
Thus the Hamiltonian for the reduced system turns out to be

Ha(z, z̄) =
∫

Td

(

ϕ̄(−�ϕ) + F(|ϕ|2)
)

dx,

with ϕ given by (5.49). The explicit form of the Hamiltonian and its expansion were
computed in [29] who showed that all the terms of the Taylor expansion of Ha have
zero momentum and that all the nonlinear terms are bounded, so, with our language,
the nonlinear part is of class P . Considering the quadratic part, [29] showed that there
exists a linear transformation preserving Hs norms and the zero momentum condition,
such that the quadratic part takes the form (2.15) with

ω j =
√

| j |4g − f ′(a2)| j |2g . (5.50)

The system is now suitable for the application of Theorem 2.10. We do not give the
details, since the verification of the nonresonance and structural assumptions are done
exactly in the same way as in the previous cases. Indeed one can prove the nonresonance
conditions on the frequencies (5.50) reasoning as done in Sect. 5.3.4.
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A. A Technical Lemma

In this section by �2
s we mean �2

s (Z
d;C).

Lemma A.1. Let

X : �2
s × ...× �2

s
︸ ︷︷ ︸

r−times
→ �2

s ,

be a symmetric r-linear X (u(1), ..., u(r)) = (X j (u(1), ..., u(r))
)

j∈Zd with the property
that there exist σ0, σ1, ..., σr , with σl ∈ {−1, 1} such that

X j (u
(1), ..., u(r)) =

∑

j1,..., jr∈Zd

σ0 j+
∑r

l=1 σl jl=0

X j, j1,..., jr u
(1)
j1

....u(r)
jr

, (A.1)

http://creativecommons.org/licenses/by/4.0/
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and X j, j1,..., jr completely symmetric with respect to any permutation of the indexes
j, j1, ..., jr fulfilling

sup
j, j1,..., jr∈Zd

∣
∣X j, j1,..., jr

∣
∣ <∞.

Then, for any s > s0 > d/2 there exists a constant Cs,r > 0 such that one has
∥
∥
∥X (u(1), ..., u(r))

∥
∥
∥
s
≤ Cs,r sup

j, j1,..., jr∈Zd

∣
∣X j, j1,..., jr

∣
∣×

×
r
∑

l=1

‖u(1)‖s0 ....‖u(l−1)‖s0‖u(l)‖s‖u(l+1)‖s0 ...‖u(r)‖s0 .

Proof. One has

∥
∥
∥X (u(1), ..., u(r))

∥
∥
∥
s
=
∑

j

〈 j〉2s

∣
∣
∣
∣
∣
∣
∣
∣
∣

∑

j1,..., jr∈Zd

σ0 j+
∑r

l=1 σl jl=0

X j, j1,..., jr u
(1)
j1
· · · u(r)

jr

∣
∣
∣
∣
∣
∣
∣
∣
∣

2

≤ sup
j, j1,..., jr

∣
∣X j, j1,..., jr

∣
∣
2∑

j

〈 j〉2s

⎛

⎜
⎜
⎜
⎝

∑

j1,..., jr∈Zd

σ0 j+
∑r

l=1 σl jl=0

|u(1)
j1
· · · u(r)

jr
|

⎞

⎟
⎟
⎟
⎠

2

To fix ideas consider first the case σl = 1 ∀l, then the bracket is the j-th Fourier
coefficient of the function v(x) = u(1)(x) · · · u(r)(x), with

u(l)(x) =
∑

j∈Zd

1

|Td |1/2 u
(l)
j ei j ·x

for which it is well known that

‖v‖s ≤ Cs,r

r
∑

l=1

‖u(1)‖s0 ....‖u(l−1)‖s0‖u(l)‖s‖u(l+1)‖s0 ...‖u(r)‖s0 .

then the thesis immediately follows. To deal with the case of different signs every time
one has σl = −1 one simply substitutes u(l) to u(l). This concludes the proof. ��
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