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Abstract
We consider the quasi-likelihood analysis for a linear regression model driven by a Student-t
Lévy process with constant scale and arbitrary degrees of freedom. The model is observed
at high frequency over an extending period, under which we can quantify how the sampling
frequency affects estimation accuracy. In that setting, joint estimation of trend, scale, and
degrees of freedom is a non-trivial problem. The bottleneck is that the Student-t distribution
is not closed under convolution, making it difficult to estimate all the parameters fully based
on the high-frequency time scale. To efficiently deal with the intricate nature from both
theoretical and computational points of view,wepropose a two-step quasi-likelihood analysis:
first, we make use of the Cauchy quasi-likelihood for estimating the regression-coefficient
vector and the scale parameter; then, we construct the sequence of the unit-period cumulative
residuals to estimate the remaining degrees of freedom. In particular, using full data in the
first step causes a problem stemming from the small-time Cauchy approximation, showing
the need for data thinning.

Keywords Cauchy quasi-likelihood · High-frequency sampling · Likelihood analysis ·
Student Lévy process

1 Introduction

Suppose that we have a discrete-time sample
{(
Xt j , Yt j

)}[nTn ]
j=0

with t j = j/n from the
continuous-time (location) regression model

Yt = Xt · μ + σ Jt , t ∈ [0, Tn] , (1.1)
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where X = (Xt ) is a càdlàg stochastic covariate process in R
q satisfying some regularity

conditions, the dot denotes the inner product in Rq , and J = (Jt ) is a Lévy process such that
the unit-time distribution

L(J1) = tν := tν(0, 1),

where tν(μ, σ ) denotes the scaled Student-t distribution with the density

f (x;μ, σ, ν) := �
(

ν+1
2

)

σ
√

π�
(

ν
2

)

{

1 +
(
x − μ

σ

)2
}−(ν+1)/2

. (1.2)

Our objective is to estimate the true value θ0 = (μ0, σ0, ν0) ∈ � from
{(
Xt j , Yt j

)}[nTn ]
j=0

when Tn → ∞ for n → ∞. We will write h = hn = 1/n for the sampling step size.
All the processes are defined on an underlying filtered probability space (�,F, (Ft )t≥0, P).
The corresponding statistical model is indexed by the unknown parameter θ := (μ, σ, ν) ∈
�μ × �σ × �ν = �. Throughout, we assume that � is a bounded convex domain in Rq+2

such that its closure � ⊂ R
q × (0,∞) × (0,∞).

Since the Student-t distribution is not closed under convolution, L(Jh) for h �= 1 is
no longer Student-t-distributed. The exact likelihood function is given only through the
Fourier inversion, resulting in the rather intractable expression: the characteristic function of
L(J1) = tν is given by

ϕJ1,ν(u) := 21−ν/2

�(ν/2)
|u|ν/2Kν/2(|u|), u ∈ R, (1.3)

hence L(Jh) admits the Lebesgue density

x 	→ 1

π

∫ ∞

0
cos(ux){ϕJ1,ν(u)}hdu

= 1

π

∫ ∞

0
cos(ux)

(
21−ν/2

�(ν/2)
uν/2Kν/2(u)

)h

du

=
(
21−ν/2

�(ν/2)

)h
1

π

∫ ∞

0
cos(ux)uνh/2 (Kν/2(u)

)h
du, (1.4)

where Kν(t) denotes the modified Bessel function of the second kind (ν ∈ R, t > 0):

Kν(t) = 1

2

∫ ∞

0
sν−1 exp

{
− t

2

(
s + 1

s

)}
ds.

Numerical integration in (1.4) can be unstable for very small h and also for large |x |.
Previously, the thesis (Massing 2019) studied in detail the local asymptotic behavior

of the log-likelihood function with numerics for a sample-path generation about Student-t
Lévy process observed at high frequency. However, the degrees-of-freedom parameter ν was
supposed to be known and to be greater than 1 throughout.

In this paper, we propose the explicit two-stage estimation procedure:

1. First, in Sect. 2, we construct an estimator (μ̂n, σ̂n) of (μ, σ ) based on the Cauchy quasi-
likelihood;

2. Then, in Sect. 3, we make use of the Student-t quasi-likelihood for construction of an
estimator ν̂n of ν, through the “unit-time” residual sequence
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ε̂i := σ̂−1
n

(
Yi − Yi−1 − μ̂n · (Xi − Xi−1)

)
,

for i = 1, . . . , [Tn], which is expected to be approximately i.i.d. tν-distributed.

For both estimators, we will prove the asymptotic normality and convergence of their
moments (Theorems 2.2, 3.1, and 3.2). Also discussed is how we can weaken the regu-
larity conditions when only interested in deriving the asymptotic normality (Theorems 3.5
and 3.7). The important point is that we can asymptotically efficiently estimate (μ, σ ) with
effectively leaving ν unknown; under additional conditions, the least-squares estimator is
asymptotically normal, but the associated efficiency loss can be significant (see Remark 2.5
below). We refer to Ivanenko et al. (2015) for the details of the corresponding LAN property.
In our study, the rate of convergence of (μ̂n, σ̂n) in the first stage depends on how much data
we use through the sequence (Bn) introduced later in (2.2). Under suitable conditions, the
foregoing two-stage estimation procedure enables us to estimate ν0 as if we directly observe
the latent unit-time noise sequence (Ji − Ji−1)

[Tn ]
i=1 . Since the characteristic function and the

Lévy measure of the Student-t distribution are both intractable, we believe that using the
Student-t likelihood function based on the unit-time residuals is natural from the compu-
tational viewpoint. We will present some numerical experiments in Sect. 4. The proofs are
gathered in Sect. 5.

Note that X may be random and that in some situations X and J may be stochasti-
cally dependent on each other. Our stepwise procedure with different time scales makes the
optimization much easier than the joint estimation. The proposed estimators σ̂n and ν̂n are
asymptotically independent (Theorem 3.2) while the maximum-likelihood estimators in the
conventional i.i.d. and time-series settings are asymptotically correlated; see (Harvey 2013,
Sect. 2.2) for details.

Below, we briefly list the necessary restrictions in our approach without details.

• First, we need Tn → ∞ in the second step for estimating ν0. An asymptotically efficient
estimation of ν based on the full high-frequency sample

{(
Xt j , Yt j

)}[nTn ]
j=0

is a non-trivial

problem, and we do not know even whether or not the derived rate
√
Tn is optimal for

estimating ν0. We do not address it in this paper.
• Second, the terminal sampling time Tn should not grow so quickly if we use whole data

in [0, Tn]; otherwise, we need thinning data through the sequence (Bn) satisfying the
sampling-balance conditions (2.2) and (3.1) below. This implies that the accumulated
Cauchy-approximation error (see Lemma 5.4) for rapidly growing Tn may crush the
clean-cut asymptotic behavior of the estimator ν̂n described in Theorem 3.1 (hence also
those in Theorems 3.2, 3.5, and 3.7). We also imposed the additional sampling-design
condition (3.6) to establish the asymptotic orthogonality between the proposed estimators
of (μ0, σ0) and ν0.

We will denote by Pθ the underlying probability measure for (J , X , Y ) associated with θ ,
and by Eθ the expectation with respect to Pθ . Unless otherwise mentioned, any asymptotics
will be taken under P := Pθ0 for n → ∞. We will denote by C a universal positive constant
which is independent of n and may vary whenever it appears. The partial differentiation
with respect to the variable x will be denoted by ∂x ; we simply use ∂ without specifying a
variable if not confusing. The notation an � bn for positive sequences (an) and (bn) means
that lim supn (an/bn) < ∞. We denote by IA = I (A) the indicator function of a set A.
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2 Cauchy quasi-likelihood analysis

2.1 Construction and asymptotic results

By the expression (1.3) and the asymptotic property Kν(z) ∼ √
π/(2z)e−z for z → ∞, the

characteristic function of h−1 Jh equals for h → 0,

(
Eθ

[
exp
(
iuh−1 J1

)])h = (1 + o(1))
∣∣uν−1/2h−1

∣∣νh/2
Kν/2

(|uh−1|)h

= (1 + o(1))

(√
πh

2|u| exp
(−h−1|u|) (1 + o(1))

)h

→ exp(−|u|). (2.1)

This implies the weak convergence h−1 Jh
L−→ t1 (the standard Cauchy distribution) as

h → 0, whatever the degrees of freedom ν0 > 0 is. It is therefore natural to construct the
Cauchy quasi-(log-)likelihood which is defined as if the conditional distribution Yt j |{Yt j−1 =
y, Xt j−1 , Xt j } under Pθ equals the Cauchy distribution with location y + μ · (Xt j − Xt j−1

)

and scale hσ ; note that the conditional likelihood is misspecified unless ν0 = 1. There are
both advantages and disadvantages: on the one hand, we can make an inference for (μ, σ )

without knowing the value ν0, but on the other hand, the information of ν0 disappeared in
the small-time limit.

Using the Cauchy quasi-likelihood is not free: we have to manage the Cauchy-
approximation error for L (h−1 Jh

)
in the mode of L1(dy)-local-limit theorem. Since the

approximation error accumulates for Tn → ∞, using the whole sample
{(
Xt j , Yt j

)}[nTn ]
j=0

may introduce too much error disrupting the Cauchy approximation; this will be seen from
the proof of Theorem 2.2 below. Depending on the situation, we will need either to thin the
sample or to control the speed of Tn → ∞.

We consider the (possibly) partial observations over the part [0, Bn] of the entire period
[0, Tn], where (Bn) is a positive sequence such that

Bn ≤ Tn, nε′′ � Bn � n1−ε′
(2.2)

for some ε′, ε′′ ∈ (0, 1). We write the corresponding number of time points used as

Nn = [nBn] .

Lemma 5.4 below implies that we cannot always take the whole sample (namely Bn = Tn)
to manage the error of the local-Cauchy approximation. In other words, when one uses the
whole sample for estimating (μ, σ ), the condition (2.2) restricts the speed of Tn → ∞ as
Tn = O(n1−ε′

).
Write a = (μ, σ ), a0 = (μ0, σ0), and 
 j ξ = ξt j − ξt j−1 for any process ξ . Let

ε j (a) := 
 j Y − μ · 
 j X

hσ
.

Let φ1(y) := π−1
(
1 + y2

)−2
, the standard Cauchy density. Then, we introduce the Cauchy

quasi-(log-)likelihood conditional on X :
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H1,n(a) :=
Nn∑

j=1

log

{
1

hσ
φ1

(

 j Y − μ · 
 j X

hσ

)}

= Cn −
Nn∑

j=1

{
log σ + log

(
1 + ε j (a)2

)}
,

where the term Cn does not depend on a. We define the Cauchy quasi-maximum likelihood
estimator (CQMLE for short) by any element

ân := (μ̂n, σ̂n) ∈ argmax
a∈�μ×�σ

H1,n(a).

We introduce the following regularity conditions on X .

Assumption 2.1 For X , we can associate an (Ft )-adapted process t 	→ X ′
t in R

q having
càdlàg sample paths, for which the following conditions hold for every K > 0:

1. sup
t≥0

E
[|X ′

t |K
]

< ∞.

2. There exists a constant cX > 0 such that both

sup
n

max
j=1,...,[nTn ]

E

[∣∣∣∣
1

hcX

{
1

h

(

 j X − hX ′

t j−1

)}∣∣∣∣

K
]

< ∞

and

sup
n

max
j=1,...,[nTn ]

sup
t j−1≤t≤t j

E

[∣∣∣∣
1

hcX

(
X ′
t − X ′

t j−1

)∣∣∣∣

K
]

< ∞

hold. Moreover,

max
j=1,...,[nTn ]

E

[∣∣∣∣
√
NnE

[{
1

h

(

 j X − hX ′

t j−1

)} ∂φ1

φ1

(

 j J

h

)∣∣∣∣Ft j−1

]∣∣∣∣

K
]

= o(1).

3. There exist a constant c′
X > 0 and a probability measure π0(dx) on some q ′-dimensional

Borel space
(
R
q ′

,Bq ′)
such that, for every real-valued C1 (Rq)-function f (x) satisfying

maxk∈{0,1} |∂kx f (x)| � 1+|x |C , we can associate a measurable function ψ f (z) such that

sup
n

E

⎡

⎢
⎣

∣∣∣∣∣∣
N

c′
X

n

⎛

⎝ 1

Nn

Nn∑

j=1

f
(
X ′
t j−1

)
−
∫

ψ f (z)π0(dz)

⎞

⎠

∣∣∣∣∣∣

K
⎤

⎥
⎦ < ∞ (2.3)

for every K > 0.

4. The q×q matrix S0 :=
∫

ψ f (z)π0(dz) for f (x ′) = x ′ ⊗2 is symmetric, positive-definite,

and finite.

Assumption 2.1 is designed not only for convergence in distribution of our estimators but
also for ensuring the convergence of their moments: in the proofs, items 1 and 2 are used
for a series of moment estimates, item 3 (together with the Sobolev inequality) is required
to handle the uniform-in-parameter moment estimates and to identify the limit of the law of
large numbers under the ergodicity, and item 4 will ensure the positive definiteness of the
asymptotic covariance matrix of the estimator. It should be noted that the moment conditions
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in Assumption 2.1 can be too much to ask if one is only interested in deriving the asymptotic
normality; see Theorems 3.5 and 3.7.

The last convergence in Assumption 2.1.2 is trivial if X ′ and J are independent so that
the conditional expectation involved therein vanishes a.s. Although we did not explicitly
mention, one may think of Xt = ∫ t

0 X ′
sds and where the integrand X ′ admits a unique

invariant distribution π0 for which X ′
t

L−→ π0 as t → ∞ and S0 = ∫
f (x ′, a)π0(dx ′) (in

this case, q = q ′ and ψ f = f ); then, since
∫

f (x ′)π0(dx ′) ≤ supt≥0 E
[
f
(
X ′
t

)]
for any

continuous nonnegative f , we have
∫ |x ′|Kπ0(dx ′) < ∞ for each K > 0 hence in particular

S0 is finite. See Sect. 2.2 for more related discussions; as we will see there, the dimension
q ′ in Assumption 2.1.3 may differ from q .

Let


a,n := 1√
Nn

∂aH1,n (a0) ,

�a,0 := diag

(
1

2σ 2
0

S0,
1

2σ 2
0

)

. (2.4)

Let

ζ(y, x ′; a) := log

{
σ0

σ
φ1

(
σ0

σ

(
y − 1

σ0
(μ − μ0) · x ′

))}
− logφ1(y), (2.5)

and

f ′(x ′; a) :=
∫

ζ(y, x ′; a)φ1(y)dy,

which is smooth in a ∈ �μ × �σ . Then, under Assumption 2.1.3, for each a we can associate
measurable functionsψ f ′(z; a) andψ∂a f ′(z; a) and a probability measure π0(dz), for which

1

Nn

Nn∑

j=1

∂ka f ′ (X ′
t j−1

; a
)

p−→
∫

ψ∂ka f ′(·;a)(z; a)π0(dz), k = 0, 1.

We write

Y1(a) =
∫

ψ f ′(·;a)(z; a)π0(dz). (2.6)

The main result of this section is the following.

Theorem 2.2 Suppose that (2.2) and Assumption =2.1 hold, that a 	→ Y1(a) is C1-class with
∂aY1(a) = ∫ ψ∂a f ′(·;a)(z; a)π0(dz), and that there exists a constant c0 > 0 for which

Y1(a) ≤ −c0|a − a0|2, a ∈ �μ × �σ . (2.7)

Then, we have the asymptotic normality

ûa,n := √Nn
(
ân − a0

) = �−1
a,0
a,n + op(1)

L−→ N
(
0, �−1

a,0

)
(2.8)

and the polynomial-type tail-probability estimate:

∀L > 0, sup
r>0

sup
n

P
[|ûa,n| > r

]
r L < ∞. (2.9)
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If q ′ = q , π0 is the invariant distribution of X ′, and if Assumption 2.1.3 and 2.1.4 hold
with ψ f = f , then

Y1(a) =
∫ ∫

ζ(y, x ′; a)φ1(y)dy π0(dx
′).

In this case, the identifiability condition (2.7) is automatic. Indeed, the well-known property
of the Kullback-Leibler divergence, we have Y1(a) ≤ 0 with the equality holding if and
only if a = a0. Moreover, the above Y1(a) is smooth, ∂aY1 (a0) = 0, and −∂2aY1 (a0)
is positive definite under the present assumptions (including the positive definiteness of
S0 = ∫ x ′⊗2π0(dx ′)). These observations conclude (2.7).

It is easy to construct a consistent estimator of S0: see (3.7) in Sect. 3.2. We have the

variance-stabilizing transform for σ :
√
Nn/2

(
log σ̂n − log σ0

) L−→ N1(0, 1).

Remark 2.3 Making use of sample in over [0, Bn] ⊂ [0, Tn] is not essential. It is possible to
use, for example, only sample over

⋃
k≥1[2k − 2, 2k − 1). Also, we could consider the case

where Bn ≡ B for some fixed B > 0,meaning that for estimating (μ, σ )weonly use a sample
over the fixed period [0, B]. In that case, if X is truly random, under suitable conditions on
the underlying filtration (Ft ), the asymptotic distribution of

√
n
(
ân − a0

)
is mixed-normal

with the random asymptotic covariance depending on a sample path (Xt )t∈[0,B]. See also
Remark 3.3, Clément and Gloter (2019, 2020), and Masuda (2019) for related results.

Remark 2.4 Since high-frequency data over each fixed period is enough to consistently esti-
mate (μ, σ ), one may think of a parameter-varying (randomized parameter) setting: if μ

and σ may vary along i , say i 	→ (μi , σi ) for the i th period [i − 1, i) and if they are all
to be estimated from {(Xt j , Yt j )} j≥1: jh∈[i−1,i), then the model setup invokes the classical
Neyman-Scott problem (Neyman and Scott 1948); if {(μi , σi )}i≥1 is an unobserved i.i.d.
sequence of random vectors, then the model becomes a (partially) random-effect one. The
latter would be of interest in the context of the population approach.

Remark 2.5 (Least-squares estimator) Let ν0 > 2. We can rewrite (1.1) as

Yt = Xt · μ + σ ′Zt

with σ ′ := σ/
√

ν − 2 and the Lévy process Zt := √
ν − 2 Jt such that E[Z1] = 0 and

var[Z1] = 1. In this case, under suitable conditions, we can apply the least-squares method
for estimating (μ, σ ′) and deduce its asymptotic normality at rate

√
Tn .

Remark 2.6 The claims in Theorem 2.2 hold for any local-Cauchy J satisfying the local
limit theorem Lemma 5.4. In particular, the model (1.1) with J replaced by the generalized
hyperbolic Lévy process (except for the variance gamma one) could be handled analogously;
see (Masuda 2019, Section 2.1.2) for related information.

2.2 Covariate process

We set Assumption 2.1 without imposing a concrete structure of X . To provide a set of more
handy conditions on X and X ′, it is necessary to impose more specific structures on them.
Below, we will present such an example in detail.
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2.2.1 Setup

Let us briefly discuss how to verify Assumption 2.1 for Xt = (
X1,t , X2,t

) ∈ R
q1 × R

q2

(q = q1 + q2) of the form

t 	→ Xk,t =
∫ t

0
X ′
k,sds, k = 1, 2,

where t 	→
(
X ′
1,t , X

′
2,t

)
is Riemann-integrable process independent of the Student-t Lévy

process J . Further, we assume the following conditions.

• X ′
1 is a non-random periodic C1-function with possibly unknown period τ > 0, and

satisfies that

sup
t≥0

(|X1,t | + |∂t X1,t |
)

< ∞.

For example, X ′
1 can be the derivative of

X1,t = ( cos(τ1t), sin(τ1t), . . . , cos(τMt), sin(τMt)
)

with τ1, . . . , τM being unknown different rational numbers (q1 = 2M); we may get rid
of some of the components from the beginning, such as X1,t = (cos(5t), sin(t)).

• X ′
2 is a q2-dimensional diffusion process:

dX ′
2,t = A

(
X ′
2,t

)
dwt + B

(
X ′
2,t

)
dt, (2.10)

where w is a standard Wiener process (independent of J ). The unknown coefficients A
and B are globally Lipschitz so that (2.10) admits a unique strong solution. Moreover,
X ′
2 is exponentially ergodic in the sense that there exist some κ > 0 and an invariant

measure π0 on (Rq2 ,Bq2) for which

‖Pt (x, ·) − π0(dz)‖g
:= sup

t≥0
sup

f : | f |≤g

∣∣∣∣

∫
f (z)Pt (x, dz) −

∫
f (z)π0(dz)

∣∣∣∣ � g(x)e−κt (2.11)

for any g of at most polynomial growth.

Our model may be used for analyzing time series data observed at high frequency exhibiting
a seasonality (Proietti and Pedregal 2022). Concerned with the exponential ergodicity (2.11)
of X ′

2, we refer to Kulik (2018) and the references therein for several easy-to-verify sufficient
conditions.

With the above setup, we will verify Assumption 2.1 along with imposing additional
conditions.

2.2.2 Verification

First, for Assumption 2.1.1 and 2.1.2, we can look at X1 and X2 separately. The conditions
obviously hold for X1. As for X2 of (2.10), Assumption 2.1.1 can be verified through the
easy-to-apply Lyapunov-function criteria; we do not list them here, but just refer to Masuda
(2007, Theorem 2.2), Kulik (2009, Lemma 3.3), and also Masuda (2013, Section 5). Let
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us suppose Assumption 2.1.1 in what follows. Then, we can verify all the conditions in
Assumption 2.1.2 with cX = 1/2 as follows. Since the sequence ( j = 1, . . . , n)

1√
h

(
X ′
2,t − X ′

2,t j−1

)
= 1√

h

∫ t

t j−1

A
(
X ′
2,s

)
dws + √

h
1

h

∫ t

t j−1

B
(
X ′
2,s

)
ds

is LK (P)-bounded for any K > 0, so is

1

h
√
h

(

 j X2 − hX ′

2,t j−1

)
= 1

h

∫ t j

t j−1

1√
h

(
X ′
2,s − X ′

2,t j−1

)
ds,

followed by the first two conditions in Assumption 2.1.2 with cX = 1/2. As for the last one,
we note the decomposition

1

h

(

 j X2 − hX ′

2,t j−1

)

= A
(
X ′
2,t j−1

) 1

h

∫ t j

t j−1

(
ws − wt j−1

)
ds +

{
1

h

∫ t j

t j−1

∫ s

t j−1

B
(
X ′
2,u

)
du ds

+ 1

h

∫ t j

t j−1

∫ s

t j−1

(
A
(
X ′
2,u

)− A
(
X ′
2,t j−1

) )
dwu ds

}

=: T1,h + T2,h .

Since supy |((∂φ1)/φ1)(y)| < ∞ and E
[
((∂φ1)/φ1)

(
h−1
 j J

) |Ft j−1

] = 0 a.s., we have

∣∣∣∣
√
NnE

[{
1

h

(

 j X − hX ′

t j−1

)} ∂φ1

φ1

(

 j J

h

)∣∣∣∣Ft j−1

]∣∣∣∣

� h
√
Nn E

[
1

h

∣∣T2,h
∣∣
∣∣∣∣Ft j−1

]

+
∣∣∣∣∣

√
Nn A

(
X ′
2,t j−1

)
E

[
1

h

∫ t j

t j−1

(
ws − wt j−1

)
ds

∂φ1

φ1

(

 j J

h

)∣∣∣∣∣
Ft j−1

]∣∣∣∣∣
.

The second term in the upper bound a.s. vanishes since w and J are mutually independent.
Under the linear-growth property of the coefficients, by the standard estimates as before
the sequence “E

[
h−1|T2,h | |Ft j−1

]
” is LK (P)-bounded for any K > 0. Since h

√
Nn �

n−ε′/2 → 0 by (2.2), the last convergence in Assumption 2.1.2 follows. Thus, we have
verified Assumption 2.1.1 and 2.1.2.

Turning to Assumption 2.1.3, we take c′
X > 0 so small that N

c′
X

n � h−cX = h−1/2. To
handle the periodic nature of X ′

1, we note that (2.3) is derived by showing that

E

[∣∣∣∣N
c′
X

n

(
1

hNn

∫ hNn

0
f
(
X ′
t

)
dt −

∫
ψ f (z)π0(dz)

)∣∣∣∣

K
]

� 1

for suitable ψ f (z), since Jensen’s and Cauchy-Schwarz inequalities give

E

⎡

⎢
⎣

∣∣∣∣∣∣
N

c′
X

n

⎛

⎝ 1

hNn

∫ hNn

0
f
(
X ′
t

)
dt − 1

Nn

Nn∑

j=1

f
(
X ′
t j−1

)
⎞

⎠

∣∣∣∣∣∣

K
⎤

⎥
⎦
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≤ E

⎡

⎢
⎣

∣∣∣∣∣∣
N

c′
X

n

⎛

⎝ 1

Nn

Nn∑

j=1

1

h

∫ j/n

( j−1)/n

(
f
(
X ′
t

)− f
(
X ′
t j−1

) )
dt

⎞

⎠

∣∣∣∣∣∣

K
⎤

⎥
⎦

� 1

Nn

Nn∑

j=1

1

h

∫ j/n

( j−1)/n
E
[(

1 + |X ′
t |C + |X ′

t j−1
|C
) (

N
c′
X

n |X ′
t − X ′

t j−1
|)K
]
dt

� 1

Nn

Nn∑

j=1

1

h

∫ t j

t j−1

sup
t

E[1 + |X ′
t |C ]1/2E

[∣∣N
c′
X

n

(
X ′
t − X ′

t j−1

) ∣∣2K
]1/2

dt

� max
j=1,...,[nTn ]

sup
t j−1≤t≤t j

E
[
|h−1/2

(
X ′
t − X ′

t j−1

)
|2K
]1/2

� 1.

The last estimate is due to the already verified Assumption 2.1.2. Let mn = max{i ≥ 1 :
iτ ≤ hNn} = [hNn/τ ]. Then, mn → ∞ as mn � nε′′

by (2.2), and we have

1

hNn

∫ hNn

0
f
(
X ′
t

)
dt = 1

hNn

∫ τmn

0
f
(
X ′
t

)
dt + 1

hNn

∫ hNn

τmn

f
(
X ′
t

)
dt .

The second term on the right-hand side can be bounded by a constant multiple of
(hNn)

−1 (1 + |X ′
t |C
)

� n−ε′′ (
1 + |X ′

t |C
)
. Further letting c′

X > 0 sufficiently small so

that n−ε′′
N

c′
X

n � 1 if necessary, we only need to look at the first term in the last display, say
Vn . By the periodicity of X ′

1, we have

Vn = 1

hNn

mn∑

m=1

∫ mτ

(m−1)τ
f
(
X ′
t

)
dt

= τmn

hNn

1

mn

mn∑

m=1

1

τ

∫ τ

0
f
(
X ′
1,(m−1)τ+t , X

′
2,(m−1)τ+t

)
dt

= τmn

hNn

1

mn

mn∑

m=1

1

τ

∫ τ

0
f
(
X ′
1,t , X

′
2,(m−1)τ+t

)
dt

=: τmn

hNn

1

mn

mn∑

m=1

G f ,m, say.

Now we set

ψ f (z) = 1

τ

∫ τ

0
f
(
X ′
1,t , z

)
dt .

Then,

Vn −
∫

ψ f (z)π0(dz)

=
(

τmn

hNn
− 1

)
1

mn

mn∑

m=1

G f ,m + 1

mn

mn∑

m=1

(
G f ,m − E

[
G f ,m

])

+ 1

mn

mn∑

m=1

(
E
[
G f ,m

]−
∫

ψ f (z)π0(dz)

)

=: V 1,n + V 2,n + V 3,n, say.

123



Statistical Inference for Stochastic Processes

Fix any K ≥ 2. Since supm≥1 E
[|G f ,m |K ] < ∞, | τmn

hNn
− 1| = O

(
(hNn)

−1) = O(n−ε′′
)

and n−ε′′
N

c′
X

n � 1, we get supn E
[
|Nc′

X
n V 1,n |K

]
< ∞. We can handle the remaining two

terms by the mixing property: the condition (2.11) implies that X ′
2 is exponentially β-mixing

(see (Masuda 2007, Lemma 3.9)), hence also exponentiallyα-mixing. SinceG f ,m is σ(X ′
2,s :

s ∈ [(m − 1)τ,mτ ])-measurable, there exists a constant cl = cl(τ ) > 0 (l = 1, 2) for which

α(k) := sup
i≥1

sup
A∈σ(G f ,l : l≤i),

B∈σ(G f ,l : l≥i+k)

|P[A ∩ B] − P[A]P[B]| ≤ c2 exp (−c1k) , k ∈ N.

Then, a direct application of Yoshida (2011, Lemma 4) yields supn E
[
|Nc′

X
n V 2,n |K

]
< ∞.

The remaining V 3,n can be treated similarly to the proof of Masuda (2013, Lemma 4.3) as
follows (see how to estimate �′′

n( f ; θ) therein): letting g(z) := sup|x ′
1|≤‖X ′

1,·‖∞ | f (x ′
1, z
) |

(hence g(z) � 1 + |z|C ), we obtain from (2.11) that

∣∣∣∣E
[
G f ,m

]−
∫

ψ f (z)π0(dz)

∣∣∣∣

=
∣∣∣∣
1

τ

∫ τ

0

∫∫
f (X ′

1,t , z)
{
P(m−1)τ+t (x, dz) − π0(dz)

}
PX ′

2,0(dx)dt

∣∣∣∣

≤ 1

τ

∫ τ

0

∫ ∥∥P(m−1)τ+t (x, ·) − π0(·)
∥∥
g P

X ′
2,0(dx)dt

�
∫

g(x)PX ′
2,0(dx)

∫ τ

0
exp (−κ((m − 1)τ + t)) dt � exp (−κτm) ,

where PX ′
2,0(·) denotes the initial distribution of X ′

2. It follows that |N
c′
X

n V 3,n | � N
c′
X

n M−1
n �

n−ε′′
N

c′
X

n � 1, concluding Assumption 2.1.3 (with q ′ = q2).
Finally, it does not seem easy to give a general sufficient condition for the positive def-

initeness of S0 in Assumption 2.1.4, which is related to the positive definiteness at the true
value θ0 of the Fisher-information matrix.

3 Student quasi-likelihood analysis

Taking over the setting in Sect. 2, we now turn to the estimation of the degrees of freedom
ν from

{(
Xt j , Yt j

)}[nTn ]
j=0

. Suppose that Assumption 2.1 and (2.2) hold, so that we have (2.9)
by Theorem 2.2. Throughout this section, we assume that Nn is sufficiently large relative to
Tn :

Tn
Nn

= Tn
[nBn]

→ 0. (3.1)

3.1 Construction and asymptotics

Define the unit-time residual sequence

ε̂i := σ̂−1
n

(
Yi − Yi−1 − μ̂n · (Xi − Xi−1)

)
,
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for i = 1, . . . , [Tn]. Let

εi := Ji − Ji−1

so that ε1, ε2, · · · ∼ i.i.d. tν . We will estimate ν based on the maximum-likelihood function
as if ε̂1, . . . , ε̂[Tn ] are observed tν-i.i.d. samples: we consider the explicit Student quasi-
likelihood function

H2,n(ν) =
[Tn ]∑

i=1

ρ(ε̂i ; ν),

where, with the notation (1.2),

ρ(ε; ν) := log f (ε; 0, 1, ν) = log

(
�
(

ν+1
2

)

√
π�
(

ν
2

)
(
1 + ε2

)−(ν+1)/2

)

.

Then, we define the Student-t quasi-likelihood estimator (t-QMLE for short) of ν by any
element

ν̂n ∈ argmax
ν∈�ν

H2,n(ν).

We have

H2,n(ν) =
[Tn ]∑

i=1

(
−1

2
logπ + log�

(
ν + 1

2

)
− log�

(ν

2

)
− ν + 1

2
log
(
1 + ε̂2i

))
.

Let ψ(x) := ∂ log�(x), the digamma function, and then ψ1 := ∂ψ , the trigamma function.
By the integral representation ∂mψ(x) = (−1)m+1

∫∞
0 sme−xs

(
1 − e−s

)−1
ds for m ∈ N

(see (Abramowitz and Stegun 1992, 6.4.1)), hence ∂ψ1(x) < 0 for x > 0. From this fact and
the last expression for H2,n(ν), we obtain

− ∂2νH2,n(ν) = [Tn]
4

(
ψ1

(ν

2

)
− ψ1

(
ν + 1

2

))
> 0 (3.2)

for any ν > 0, hence −H2,n is a.s. convex on (0,∞).
Let


ν,n := 1√
Tn

[Tn ]∑

i=1

∂νρ (εi ; ν0) ,

�ν,0 := 1

4

(
ψ1

(ν0

2

)
− ψ1

(
ν0 + 1

2

))
. (3.3)

We have �ν,0 > 0 by (3.2). The next result shows that we can estimate ν0 directly as if we
observe (εi ).

Theorem 3.1 Under the assumptions in Theorem 2.2 and (3.1), we have the polynomial-type
tail-probability estimate:

∀L > 0, sup
r>0

sup
n

P
[|ûν,n | > r

]
r L < ∞, (3.4)

and the asymptotic normality:

ûν,n := √Tn(ν̂n − ν0) = �−1
ν,0
ν,n + op(1)

L−→ N
(
0, �−1

ν,0

)
. (3.5)
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The maximum-likelihood estimation of ν0 can become more unstable for a larger value of
ν0. TheFisher information�ν,0 quickly decreases to 0 as ν0 increases: the asymptotic variance
�−1

ν,0 equals about 1.22, 5.63, 13.8, 25.9, and 41.9 for ν0 = 1, 2, 3, 4, and 5, respectively.
The damping speed becomes even faster in the case of conventional parametrization. See,
for example, Harvey (2013, Section 2.2) and the references therein.

3.2 Joint asymptotic normality

Having Theorems 2.2 and 3.1 in hand, we consider the question of the joint asymptotic
normality of ân and ν̂n .

Recall that we are given the underlying filtration (Ft )t≥0. From the proofs of Theorems
2.2 and 3.1, we can write

(
ûa,n, ûν,n

) = Mn + op(1) with

Mn = 1√
Tn

[Tn ]∑

i=1

Gi = 1√
Tn

[Tn ]∑

i=1

(
Ga,i , Gν,i

)

for a martingale difference Gν,i = ∂νρ (εi ; ν0) ∈ R with respect to (Fi )i∈Z+ and

Ga,i :=
√

Tn
Nn

I (i ≤ [Bn])
∑

j∈Ai

ψa,i j ,

where Ai := {k ∈ N : (i − 1) n < k ≤ i n} and ψa,i j = ψa,i j (a0) :=
−∂a

{
log σ + log

(
1 + ε j (a)2

)} |a=a0 . It will be seen in the proof of Lemma 5.3 that

T−1/2
n

∑[Tn ]
i=1 E[Ga,i |Ft j−1 ] = op(1). Hence, Mn is a partial sum of the approximate

martingale difference array with respect to (Fi )i∈Z+ .
The Lyapunov condition holds for Mn . To deduce the first-order asymptotic behavior

of Mn , we need to look at the convergence in probability of the matrix-valued quadratic
characteristic:

[M]n := 1

Tn

[Tn ]∑

i=1

(
G⊗2

a,i Ga,i Gν,i

sym. G2
ν,i

)

,

which explicitly depends on θ0 = (a0, ν0); among others, we refer to Shiryaev (1980, Chapter
VII.8) for the related basic facts. By Theorems 2.2 and 3.1, it remains to manage the cross-
covariation part of [M]n .

To that end, we further assume

Bn

Tn
→ 0. (3.6)

By Lemmas 5.2 and 5.6 in Sect. 5.1, for any K > 0,

max
1≤i≤[Tn ]

max
1≤ j≤[nTn ]

E
[
|ψa,i j |K + |Gν,i |K

]
+ max

1≤i≤[Tn ]
E

⎡

⎢
⎣

∣∣∣∣∣∣

1√
n

∑

j∈Ai

ψa,i j

∣∣∣∣∣∣

K
⎤

⎥
⎦ = O(1).

This estimate leads to

1

Tn

[Tn ]∑

i=1

Gν,i Ga,i =
√

Bn

Tn

1

Bn

[Bn ]∑

i=1

Gν,i

√
1

n

∑

j∈Ai

ψa,i j = Op

(√
Bn

Tn

)

= op(1).
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Thus, the additional condition (3.6) approximately quantifies how much data we should
discard to make the estimators ân and ν̂n independent.

Under Assumption 2.1,

Ŝn := 1

Nn

Nn∑

j=1

(
1

h

 j X

)⊗2

= 1

Nn

Nn∑

j=1

{(
1

h

 j X − X ′

t j−1

)
+ X ′

t j−1

}⊗2

= 1

Nn

Nn∑

j=1

(
X ′
t j−1

)⊗2 + op(1)
p−→ S0, n → ∞, (3.7)

Recalling the notation (2.4) and (3.3), we introduce

�̂a,n := diag

(
1

2σ̂ 2
n
Ŝn,

1

2σ̂ 2
n

)
,

�̂ν,n := 1

4

(
ψ1

(
ν̂n

2

)
− ψ1

(
ν̂n + 1

2

))
.

Obviously we have
(
�̂a,n, �̂a,n

)
p−→ (

�a,0, �ν,0
)
, which combined with (2.8) and (3.5) leads

to the joint asymptotic normality:

Theorem 3.2 Under the assumptions in Theorem 2.2, (3.1), and (3.6), we have
(
�̂
1/2
a,n ûa,n, �̂

1/2
ν,n ûν,n

)
= diag

(
�̂
1/2
a,n , �̂

1/2
ν,n

)
Mn + op(1)

L−→ Nq+2
(
0, Iq+2

)
. (3.8)

Remark 3.3 (Asymptotic mixed normality at the first stage) We have focused on a diverging
Bn to estimate a = (μ, σ ) at the first stage (recall (2.2)). Nevertheless, we could consider a
constant Bn , say Bn ≡ B ∈ N (then (3.6) is trivial), with which the CQMLE considered in
Sect. 2 is asymptotically mixed normal (MN):

(
ûa,n, ûν,n

) L−→ MNq+1

(
0, �−1

a,0

)
⊗ N1

(
0, �−1

ν,0

)
,

now �a,0 = (
2σ 2

0

)−1
diag (S0, 1) with S0 = B−1

∫ B
0 X ′⊗2

t dt being random. Then, (3.8)
remains valid by the proof of (3.5) in Theorem 3.1. Without going into details, we give some
brief remarks. The asymptotic mixed normality is deduced as in Masuda (2019) with a slight
modification of the proof of the stable convergence in law of 
a,n (to handle the filtration-
structure issue caused by aWiener process w driving X ′

2: see (Masuda 2019, Section 6.4.2)).
Because of the stability of the convergence in law, the conclusion of Theorem 3.2 remains
valid as it is with all the “Nn” therein replaced by “nB”.

Our primary theoretical interest was to deduce the mighty convergence of
(
ûa,n, ûν,n

)
: not

only the asymptotic normality but also the tail-probability estimate. If we are only interested
in deriving the asymptotic normality, there are several possible ways to significantly weaken
Assumption 2.1. Here is a version with the essential boundedness of X ′.

Assumption 3.4 For X , we can associate an (Ft )-adapted process t 	→ X ′
t having càdlàg

sample paths, for which the following conditions hold:

123



Statistical Inference for Stochastic Processes

1. sup
t≥0

|X ′
t | < ∞ a.s.

2. The same condition as in Assumption 2.1.3 holds except that (2.3) is weakened to

1

Nn

Nn∑

j=1

f
(
X ′
t j−1

)
p−→
∫

ψ f (z)π0(dz).

3.
1

Nn

Nn∑

j=1

E

[∣∣∣∣
1

h

(

 j X − hX ′

t j−1

)∣∣∣∣

2
∣∣∣∣∣
Ft j−1

]

= op(1).

4. Assumption 2.1.4 holds.

5.
1√
Nn

Nn∑

j=1

E

[
1

h

(

 j X − hX ′

t j−1

) ∂φ1

φ1

(

 j J

h

)∣∣∣∣Ft j−1

]
= op(1)

Theorem 3.5 Let ν0 > 1. Suppose that (2.2), (3.1), (3.6), and Assumption 3.4 hold. Then, we
have the joint asymptotic normality (3.8).

3.3 Student-Lévy drivenMarkov process and Euler approximation

We can handle a class of Lévy driven stochastic differential equation for X2 in the context of
Theorem 3.5. Consider a sample (Yt j )

[nTn ]
j=0 from a solution to the Markov process (Y0 = 0)

described by the model

Yt = μ ·
∫ t

0
b (Ys) ds + σ Jt ,

where ν0 > 1 and b : R → R
q is a known measurable function. We associate Xt =∫ t

0 b (Ys) ds with X ′
t := b (Yt ). So far it is assumed that
 j X = ∫ t jt j−1

b (Ys) ds is observable,
which may seem unnatural in the present context. In this section, we will establish a variant
of the asymptotic normality (3.8) when only

(
Yt j
)[nTn ]
j=0

is observable. To this end, we assume
the following conditions, which will guarantee the ergodicity of Y :

Assumption 3.6 The function b is continuously differentiable and satisfies that

sup
y∈R
(|b(y)| ∨ |∂yb(y)|

)
< ∞ and lim sup

|y|→∞
y μ0 · b(y) = −∞.

Let b j−1 := b
(
Yt j−1

)
and introduce the following variant of H1,n(a):

H̃1,n(a) :=
Nn∑

j=1

log

{
1

hσ
φ1

(

 j Y − hμ · b j−1

hσ

)}
=:

Nn∑

j=1

log

{
1

hσ
φ1

(
ε′
j (a)

)}
.

Define ãn = (μ̃n, σ̃n) by any ãn ∈ argmax H̃1,n . We write

ε̃i = σ̃−1
(
Yi − Yi−1 − hμ̃n ·

∑

j∈Ai

b j−1

)

for i = 1, . . . , [Tn] (recall the notation Ai = {k ∈ N : (i − 1) n < k ≤ i n}). Next, we
introduce

H̃2,n(ν) :=
[Tn ]∑

i=1

ρ(ε̃i ; ν)
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and ν̃n ∈ argmax H̃2,n ; recall the definition ρ(ε; n) = log f (ε; 0, 1, ν) (Sect. 3.1). Let
ũa,n := √

Nn(ãn − a0), ũν,n := √
Tn(ν̃n − ν0), and moreover

�̃a,n := diag

(
1

2σ̃ 2
n
S̃n,

1

2σ̃ 2
n

)
, �̃ν,n := 1

4

(
ψ1

(
ν̃n

2

)
− ψ1

(
ν̃n + 1

2

))
,

where S̃n := N−1
n
∑Nn

j=1 b
⊗2
j−1.

Theorem 3.7 Let ν0 > 2 and suppose that (3.1), (3.6), and Assumption 3.6 hold. Then, Y is
ergodic and admits a unique invariant distribution π0,Y (dy). Moreover, we have

(
�̃
1/2
a,n ũa,n, �̃

1/2
ν,n ũν,n

)
= diag

(
�̃
1/2
a,n , �̃

1/2
ν,n

)
Mn + op(1)

L−→ Nq+2
(
0, Iq+2

)

provided that S0 :=
∫

b(y)⊗2π0,Y (dy) is positive definite.

We see from the proof of Theorem 3.7 that rephrasing observed variables from
(
Xt j

)
to(

X ′
t j

)
when Xt = ∫ t0 X ′

sds is possible in a more general framework.

4 Numerical experiment

In this section, we consider two deterministic and periodic regressors and the dynamics of
the model have the following form:

Yt = μ1 cos (5t) + μ2 sin (t) + σ Jt . (4.1)

Since the Student-t distribution is not closed under convolution as was stated in the intro-
duction, we adopt an approximation method based on the inversion of the characteristic
function for generating Jh with general h �= 1. More specifically, our approximation is as
follows: First, on some grid x0, . . . , xN , we calculate the value of the density function of Jh
based on the following general inversion formula:

f (x) = 1

2π

∫ +∞

−∞
e−iuxϕ (u) du,

by using a numerical integration method, for example, Fast Fourier Transformation, Fourier
Cosine expansion, and so on.Next,we approximate the cumulative distribution function using
the Left-Riemann summation computed on the grid x0, . . . , xN , therefore the cumulative
distribution function F (·) for each x j on the grid is determined as follows:

F̂
(
x j
) =

∑

xk<x j

f̂N (xk)
x,

where f̂N (xk) denotes the approximated value of f (xk). Finally, we evaluate the cumulative
distribution function at any x ∈ (

x j−1, x j
)
, by interpolating linearly its value using the

couples
(
x j−1, F̂

(
x j−1

))
and

(
x j , F̂

(
x j
))
. The random numbers can be obtained using the

inversion sampling method. Our simulation method and estimation procedure are available
in YUIMA package on R; see the companion paper (Masuda et al. 2024) for details.

For the first simulation exercise, we set Tn = 400, Bn = 20 and h = 1/200. We simulate
1000 trajectories of the model with deterministic regressors in (4.1) with μ1 = 5, μ2 = −1,
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Fig. 1 Simulated distribution of studentized parameters. In this case, we have μ1 = 5, μ2 = −1, σ0 = 3 and
ν = 1

σ0 = 3 and ν = 1. Estimating the parameters for each trajectory, we obtain the empirical
distribution of the studentized estimates. Figure1 shows the simulated distribution of studen-
tized estimates. Notably, all histograms demonstrate that the standard normal approximation
adequately captures the behavior of model parameters. Favorable results are obtained for the
regressors (μ1, μ2) and the scale coefficient σ0. However, a small upward bias appears for
the degree of freedom ν. This bias can be controlled by increasing the numerical precision
and/or considering a larger value for Tn .

In the second simulation exercise, we focus on the case of ν = 2 and all other inputs remain
unchanged. Figure2 shows the histograms of the studentized estimators. The comparison
demonstrates a favorable agreement between the simulated density functions and the standard
normal distribution for all model parameters. This comparison suggests that a larger value of
the degree of freedomν requires a smaller step-size valueh to ensure accurate approximations.

In conclusion, the analysis of estimator behavior through these simulation exercises pro-
vides valuable insights into their performancewithin the Student LévyRegressionmodel. The
results indicate satisfactory performance for most estimators, with minor biases observed for
the degree of freedom parameter. Adjustments in numerical precision and step-time intervals
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Fig. 2 Simulated distribution of studentized parameters. In this case, we have μ1 = 5, μ2 = −1, σ0 = 3 and
ν = 2

can effectively control these biases. We refer to Masuda et al. (2024) for further numerical
experiments and real data analysis.

5 Proofs

5.1 Proof of Theorem 2.2

Let

Y1,n(a) := 1

Nn

(
H1,n(a) − H1,n (a0)

)
,

�a,n := − 1

Nn
∂2aH1,n (a0) .

We will prove the following three lemmas (recall (2.6) for the definition of Y1(a)).
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Lemma 5.1 Under (2.2) and Assumption 2.1, there exist constants c0 > 0 and c2 ∈ (0, 1/2]
such that for all K > 0,

sup
n

E

[
sup
a

(
Nc2
n

∣∣Y1,n(a) − Y1(a)
∣∣ )K

]
< ∞.

Lemma 5.2 Under (2.2) and Assumption 2.1, there exist a constant c1 ∈ (0, 1/2) such that
for every K > 0,

sup
n

E
[
|
a,n |K

]
+ sup

n
E
[(
Nc1
n

∣∣�a,n − �a,0
∣∣)K
]

+ sup
n

E

[

sup
a

∣∣∣∣
1

Nn
∂3aH1,n(a)

∣∣∣∣

K
]

< ∞. (5.1)

Lemma 5.3 Under (2.2) andAssumption 2.1, we have
(

a,n, �a,n

) L−→ (
�
1/2
a,0 η, �a,0

)
, where

η ∼ Nq+1(0, Iq+1).

Theorem 2.2 follows from the above lemmas and (2.7): with Lemmas 5.1 and 5.2, we can
establish the tail-probability estimate (2.9) through (Yoshida 2011, Theorem 3(c)); moreover,
the asymptotic normality (2.8) follows from the standard likelihood-asymptotics argument
together with Lemmas 5.3. We omit the details.

By (1.4), the probability density of L (h−1 Jh
)
is given by

fh(y; ν) = 1

2π

∫
cos(uy)

{
ϕJ1,ν

(
h−1u

)}h
du

=
(
21−ν/2h−ν/2

�(ν/2)

)h
h

π

∫ ∞

0
cos(uhx)uνh/2 (Kν/2(u)

)h
du, (5.2)

the existence of which is ensured by Bertoin and Doney (1997, Proposition 1) together with

the locally Cauchy property h−1 Jh
L−→ t1. The next lemma quantifies the speed of the local

Cauchy approximation in L1(dy) and serves as a basic tool for deriving limit theorems.

Lemma 5.4 For any r > 0 and any measurable function ζ : R → R such that |ζ(y)| �
1 + {log(1 + |y|)}K for some K > 0, we have

∫
|ζ(y)| | fh(y) − φ1(y)| dy � h1−r . (5.3)

In particular, under (2.2) we have

√
Nn

∫
|ζ(y)| | fh(y) − φ1(y)| dy → 0. (5.4)

Related remarks on the estimate under the total variation distance can be found in Clément
and Gloter (2020, Remark 2.1).

5.1.1 Proof of Lemma 5.1

Let ε j = εn, j := ε j (a0), so that ε1, ε2 · · · ∼ i.i.d. L (h−1 Jh
)
, which admits the density

fh(y) defined by (5.2); this may be an abuse of notation (recall εi = Ji − Ji−1 introduced in
Sect. 3.1), but no confusion is likely to arise. We have

ε j (a) = σ0

σ
ε j − 1

σ
(μ − μ0) · X ′

t j−1
− 1

σ
(μ − μ0) · Rn, j ,
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where Rn, j := h−1
(

 j X − hX ′

t j−1

)
. Let g1(ε) := ∂εφ1(ε)/φ1(ε) and recall the definition

(2.5) of ζ(y, x ′; a). We have the decomposition Y1,n(a) = Y
∗
1,n(a) + δ11,n(a) where

Y
∗
1,n(a) = 1

Nn

Nn∑

j=1

ζ(ε j , X
′
t j−1

; a), (5.5)

δ11,n(a) := − 1

Nn

Nn∑

j=1

∫ 1

0
g1

(
σ0

σ
ε j − 1

σ
(μ − μ0) · X ′

t j−1
− s

σ
(μ − μ0) · Rn, j

)
ds

× 1

σ
(μ − μ0) · Rn, j . (5.6)

Fix any K > 2. By Assumption 2.1 and (2.2), we can pick a sufficiently small c2 ∈(
0, cX

2−ε′ ∧ 1
2

]
to obtain

max
j≤Nn

E
[
|Nc2

n Rn, j |K
]

� max
j≤Nn

E
[
|nc2(2−ε′)Rn, j |K

]
≤ max

j≤[nTn ]
E
[
|nc2(2−ε′)Rn, j |K

]
→ 0.

Since g1 is essentially bounded, we have

E

[
sup
a

|Nc2
n δ11,n(a)|K

]
� max

j≤Nn
E
[
|Nc2

n Rn, j |K
]

→ 0.

Write E j−1[·] = E[·|Ft j−1 ]. Then,

Y
∗
1,n(a) = 1√

Nn

Nn∑

j=1

1√
Nn

ζ̃ j (a) + 1

Nn

Nn∑

j=1

E j−1
[
ζ
(
ε j , X

′
t j−1

; a
)]

, (5.7)

where ζ̃ j (a) := ζ
(
ε j , X ′

t j−1
; a
)

− E j−1
[
ζ
(
ε j , X ′

t j−1
; a
)]

. Obviously,

sup
n

sup
a

⎛

⎜
⎝E

⎡

⎢
⎣

∣∣∣∣∣∣

Nn∑

j=1

1√
Nn

ζ̃ j (a)

∣∣∣∣∣∣

K
⎤

⎥
⎦+ E

⎡

⎢
⎣

∣∣∣∣∣∣

Nn∑

j=1

1√
Nn

∂a ζ̃ j (a)

∣∣∣∣∣∣

K
⎤

⎥
⎦

⎞

⎟
⎠ < ∞.

Since � is assumed to be a bounded convex domain, the Sobolev inequality (Adams and
Fournier 2003) holds:

sup
a

|F(a)|r �
∫

�μ×�σ

(|F(a)|r + |∂a F(a)|r ) da

for any C1-function F and r > dim(a) = q +1 (see Adams and Fournier (2003) for details).
Applying this and Fubini’s theorem, we conclude that

sup
n

E

⎡

⎢
⎣sup

a

∣∣∣∣∣∣

Nn∑

j=1

1√
Nn

ζ̃ j (a)

∣∣∣∣∣∣

K
⎤

⎥
⎦ < ∞,

followed by

sup
n

E

⎡

⎢
⎣sup

a

⎛

⎝Nc2
n

∣∣∣∣∣∣
Y1,n(a) − 1

Nn

Nn∑

j=1

E j−1[ζ
(
ε j , X

′
t j−1

; a
) ]
∣∣∣∣∣∣

⎞

⎠

K
⎤

⎥
⎦ < ∞.
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Observe that

1

Nn

Nn∑

j=1

E j−1[ζ
(
ε j , X

′
t j−1

; a
) ]

= 1

Nn

Nn∑

j=1

f ′ (X ′
t j−1

; a
)

+ 1

Nn

Nn∑

j=1

∫
ζ
(
y, X ′

t j−1
; a
)

( fh(y) − φ1(y)) dy

=: Y∗∗
1,n(a) + δ12,n(a). (5.8)

Note that supa |ζ
(
y, X ′

t j−1
; a
)

| � 1 + log
(
1 + |X ′

t j−1
|
)

+ log(1 + |y|) � {1 +
log
(
1 + |X ′

t j−1
|
)
}{1 + log(1 + |y|)}. Also, Nc2

n h1−c � nc2(2−ε′)nc−1 → 0 with c2, c > 0

small enough. It follows from Lemma 5.4 and Assumption 2.1 that

E

[
sup
a

|Nc2
n δ12,n(a)|K

]
� max

j≤Nn
E

[∣∣∣∣
(
1 + |X ′

t j−1
|
)C

Nc2
n h1−c

∣∣∣∣

K
]

�
(
Nc2
n h1−c)K sup

0≤t≤hNn

E

[(
1 + |X ′

t j−1
|
)C]→ 0.

Moreover, since maxk∈{0,1} supa |∂ka f ′(x ′; a)| � 1 + |x |C , Assumption 2.1.3 ensures that

max
k∈{0,1} supn

sup
a

E

[∣∣∣∣N
c′
X

n

(
∂kaY

∗∗
1,n(a) −

∫
ψ∂ka f ′(·;a)(z)π0(dz)

)∣∣∣∣

K
]

< ∞

for every K > 0.
By piecing together what we have seen with the Sobolev inequality as before, we obtain

the following estimate with a sufficiently small c2 > 0:

sup
n

E

[
sup
a

(
Nc2
n

∣∣Y1,n(a) − Y1(a)
∣∣ )K

]

� 1 + sup
n

E

[
sup
a

(
Nc2
n

∣∣Y∗∗
1,n(a) − Y1(a)

∣∣ )K
]

� 1.

5.1.2 Proof of Lemma 5.2

We will look at the three terms in (5.1) separately.
Quasi-score function

Recall that ε j = ε j (a0) ∼ i.i.d. L (h−1 Jh
)
. Direct calculations give


a,n = −σ−1
0

1√
Nn

Nn∑

j=1

((
h−1
 j X

)
g1
(
ε j
)

1 + ε j g1
(
ε j
)
)

= −σ−1
0

1√
Nn

Nn∑

j=1

(
X ′
t j−1

g1
(
ε j
)

1 + ε j g1
(
ε j
)
)

− σ−1
0

1

Nn

Nn∑

j=1

(√
NnRn, j g1

(
ε j
)

0

)
. (5.9)
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The first term in (5.9) equals

− σ−1
0

1√
Nn

Nn∑

j=1

(
X ′
t j−1

(
g1
(
ε j
)− E

[
g1
(
ε j
)])

1 + ε j g1
(
ε j
)− E

[
1 + ε j g1

(
ε j
)]
)

−σ−1
0

1

Nn

Nn∑

j=1

√
Nn

(
X ′
t j−1

(
E
[
g1
(
ε j
)]− ∫ g1(y)φ1(y)dy

)

E
[
1 + ε j g1

(
ε j
)]− ∫ (1 + y∂g1(y))φ1(y)dy

)
.

=: r ′
1,n + r ′′

1,n .

The Burkholder inequality gives the LK (P)-boundedness of
(
r ′
1,n

)

n
for any K > 0. By

Lemma 5.4, the summand in r ′′
1,n can be bounded in absolute value by a constant multiple

of
(
1 + |X ′

t j−1
|
)√

Nnh1−c �
(
1 + |X ′

t j−1
|
)
nc−ε′/2. The sequence

(
r ′′
1,n

)

n
is also LK (P)-

bounded since c > 0 can be taken arbitrarily small so that c ≤ ε′/2.
For the second term in (5.9), by the compensation and the Burkholder inequality it suffices

to show that for any K ≥ 2,

1

Nn

Nn∑

j=1

E

[∣∣∣
√
NnE

j−1 [Rn, j g1
(
ε j
)]∣∣∣

K
]

= o(1).

This is ensured by the last convergence in Assumption 2.1.2.
Quasi-observed information

The components of �a,n consists of

− 1

Nn
∂2μH1,n (a0) = −σ−2

0
1

Nn

Nn∑

j=1

(
h−1
 j X

)⊗2
∂g1

(
ε j
)
,

− 1

Nn
∂2σH1,n (a0) = −σ−2

0
1

Nn

Nn∑

j=1

(
1 + 2ε j g1

(
ε j
)+ ε2j ∂g1

(
ε j
))

,

− 1

Nn
∂μ∂σH1,n (a0) = −σ−2

0
1

Nn

Nn∑

j=1

(
h−1
 j X

) (
g1
(
ε j
)− ε j∂g1

(
ε j
))

.

To conclude that supn E
[(
Nc1
n |�a,n − �a,0|

)K ]
< ∞, we note the following three

preliminary steps (we can take c1 > 0 as small as we want):

• First, we replace h−1
 j X in the summands by Rn, j + X ′
t j−1

; this together with

Assumption 2.1 enables us to replace h−1
 j X in the summands by X ′
t j−1

;

• Second, we extract the martingale terms by replacing the parts of the form η
(
ε j
)
by

η
(
ε j
)− E

[
η
(
ε j
)]

and then apply the Burkholder inequality to the latter parts;
• Third, we apply Lemma 5.4 to the expressions E

[
η
(
ε j
)]

with the facts
− ∫ ∂g1(y)φ1(y)dy = 1/2, − ∫ (1 + 2yg1(y) + y2∂g1(y)

)
φ1(y)dy = 1/2, and∫

(g1(y) − y∂g1(y)) φ1(y)dy = 0.
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It remains to note that, as in the last paragraph in the proof of Lemma 5.1, Assumption 2.1.3
ensures that (recall that S0 = ∫ ψ f (z)π0(dz) for f (x ′) = x ′ ⊗2: Assumption 2.1.4)

sup
n

E

⎡

⎢
⎣

⎛

⎝Nc1
n

∣∣∣∣∣∣

1

Nn

Nn∑

j=1

X ′ ⊗2
t j−1

− S0

∣∣∣∣∣∣

⎞

⎠

K
⎤

⎥
⎦ < ∞.

Third-order derivatives
We have

1

Nn
sup
a

|∂3aH1,n(a)| � 1

Nn

Nn∑

j=1

(
1 + |h−1
 j X |) ,

hence supn E
[
supa |N−1

n ∂3aH1,n(a)|K ] < ∞.

5.1.3 Proof of Lemma 5.3

We have
a,n = r ′
1,n +op(1) from the arguments in Sect. 5.1.2 (with c < ε′/2). Write r ′

1,n =
∑Nn

j=1 ζn, j . Then, the (Ft j )-martingale difference array (ζn, j ) j≤[nTn ] satisfies the Lyapunov

condition

(
∑Nn

j=1 E
j−1
[|ζn, j |δ+2

] = op(1) for δ > 0

)
. Also, by using Lemma 5.4 as in

Sect. 5.1.2 together with the facts
∫
g1(y)2φ1(y)dy = ∫

(1 + yg1(y))2 φ1(y)dy = 1/2 and∫
g1(y) (1 + yg1(y)) φ1(y)dy = 0, we obtain

1

Nn

Nn∑

j=1

E j−1
[
ζ⊗2
n, j

]

= σ−2
0

1

Nn

Nn∑

j=1

( (
h−1
 j X

)⊗2
g1
(
ε j
)2 sym.

(
h−1
 j X

)
g1
(
ε j
) (
1 + ε j g1

(
ε j
)) (

1 + ε j g1
(
ε j
))2

)

+ op(1)

= σ−2
0

1

Nn

Nn∑

j=1

(
X ′⊗2
t j−1

∫
g1(y)2φ1(y)dy 0

0
∫

(1 + yg1(y))2 φ1(y)dy

)

+ op(1)

= �a,0 + op(1).

It follows that 
a,n
L−→ Nq+1(0, �a,0) by the central limit theorem for martingale difference

arrays (Shiryaev 1980, Chapter VII.8). The convergence �a,n
p−→ �a,0 is automatic by the

argument in Sect. 5.2; indeed, it holds almost surely by Borel-Cantelli lemma.

5.1.4 Proof of Lemma 5.4

As inMasuda (2019, Example 2.7), our proof is based on the explicit formof the characteristic
function (1.3). We will proceed similarly to the proof of Masuda (2019, Lemma 2.2), with
omitting some details of the calculation.

We write g(z) for the Lévy density of L(J1) and g0(z) := π−1z−2 for the Lévy density
of the standard Cauchy distribution t1. Let ρ(z) := g(z)/g0(z) − 1 so that g(z) = g0(z)(1+
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ρ(z)); the function ρ quantifies how much the L(J1) is far from t1 around the origin. Then,
by Raible (2000, Proposition 2.18) we have

ρ(z) = π

4
(1 − ν0) |z| + o(|z|), |z| → 0. (5.10)

Let ϕh(u) and ϕ0(u) denote the characteristic functions of L (h−1 Jh
)
and t1, respectively;

we have ϕ0(u) = exp
{∫

(cos(uy) − 1) g0(y)dy
} = e−|u| and already noted in (2.1) that

ϕh(u) =
(
21−ν/2

�(ν/2)

)h (|u/h|ν/2Kν/2(|u/h|))h → ϕ0(u), h → 0.

Bystraightforward computations,weobtainϕh(u) = exp
{∫

(cos(uy) − 1) h2 g(hy)dy
} =

ϕ0(u) exp {χh(u)} where

χh(u) :=
∫

(cos(uy) − 1) g0(y)ρ(hy)dy.

Pick a δ ∈ (0, 1) for which sup|y|≤δ |ρ(y)| ≤ 1/2. By Sato (1999, Theorem 25.3) we know
the equivalence

∫

|z|>1
|z|r g(z)dz < ∞ ⇐⇒ E[|J1|r ] < ∞ (r > 0).

The function ρ may be unbounded for |z| → ∞ when ν0 ∈ (0, 1). Now observe that

|χh(u)| ≤
∫

(1 − cos(uy))g0(y)|ρ(hy)|dy

=
∫

|y|≤δ/h
(1 − cos(uy))g0(y)|ρ(hy)|dy +

∫

|y|>δ/h
(1 − cos(uy))g0(y)|ρ(hy)|dy

(5.11)

≤ 1

2

∫

|y|≤δ/h
(1 − cos(uy))g0(y)dy + 2

π2

∫

|y|>δ/h
y−2|ρ(hy)|dy. (5.12)

The first term in (5.12) can be bounded by −2−1
∫
(cos(uy) − 1)g0(y)dy = |u|/2. The

integral in the second term in (5.12) equals h
∫
|y|>δ

y−2|ρ(y)|dy, which is O(h) if ρ is
bounded.When ρ is unbounded, we have ρ(y) → ∞ as |y| → ∞ hence there is a cρ > δ for
which ρ(y) ≥ 0 for |y| ≥ cρ . In this case,

∫
|y|>δ

y−2|ρ(y)|dy = ∫|y|∈[δ,cρ) y−2|ρ(y)|dy +
∫
|y|>cρ

y−2ρ(y)dy �
∫
|y|∈[δ,cρ) y

−2dy + π
∫
|y|>cρ

(g(y) − g0(y)) dy < ∞, so that the
integral in the second term in (5.12) is O(h). It follows that |χh(u)| ≤ |u|/2 + Ch. Also,
the first term in (5.11) can be bounded by a constant multiple of h

{(
1 + u2

)+ log(1/h)
}
:

this can be seen by dividing the domain of integration into {y : |y| ≤ δ/h, |y| > c} and
{y : |y| ≤ δ/h, |y| ≤ c}, and then proceeding as before with using the fact |1− cos x | � x2

for the latter subdomain.
Following the same line as in the proof of Masuda (2019, Lemma 5.1), we can conclude

that for any H > 0 and ξ ∈ (0, 1),
∫ ∞

0
|ϕh(u) − ϕ0(u)|du ≤

∫ ∞

0

(
u−ξ ∨ uH

)
|ϕh(u) − ϕ0(u)|du � h log(1/h). (5.13)

This combined with the Fourier inversion formula yields

sup
y∈R

| fh(y) − φ1(y)| � h log(1/h).
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As in the proof of Masuda (2019, Eq. (5.1)), we can derive the estimate

sup
h∈(0,1]

sup
M>0

M (1∧ν0)−κ

∫

|y|>M
|y|κ fh(y)dy < ∞

valid for any κ ∈ (0, 1 ∧ ν0), considering the cases ν0 ≥ 1 and ν0 ∈ (0, 1) (for which ρ is
unbounded) separately as before.

Let (bn) be a positive real sequence such that bn ↑ ∞ as n → ∞. To deduce
(5.3), we proceed with estimating δ′

n := ∫
|y|>bn

|ζ(y)| | fh(y) − φ1(y)| dy and δ′′
n :=

∫
|y|≤bn

|ζ(y)| | fh(y) − φ1(y)| dy separately. Since the density fh is bounded continuous uni-

formly in h ∈ (0, 1], we have suph∈(0,1] fh(y) � |y|−(1+1∧ν0)+ε0 for any |y| ≥ 1 and for
any small ε0 > 0; recall (Sato 1999, Theorem 25.3) already mentioned above. Since ζ(y) is
of at most logarithmic-power growth order, there exists a sufficiently small ε1 ∈ (0, 1 ∧ ν0)

for which

δ′
n ≤

∫

|y|>bn
|ζ(y)| fh(y)dy +

∫

|y|>bn
|ζ(y)|φ1(y)dy

� b−1∧ν0+ε1
n + b−1+ε1

n � b−1∧ν0+ε1
n . (5.14)

Turning to δ′′
n , we will show that δ′′

n � bc
′′
n h log(1/h) for arbitrarily small c′′ > 0. Let

ψh(u) := logϕh(u) and ψ0(u) := logϕ0(u). Fix c ∈ (0, 1] arbitrarily. By the exactly same
procedure as in Masuda (2019, Eq. (5.4)), we obtain

δ′′
n �

(
1 + bε2

n

) ∫

|y|≤bn
| fh(y) − φ1(y)| dy �

(
1 + bε2

n

) (
δ′′
1,n(c) + δ′′

2,n(c)
)
,

where ε2 > 0 can be taken arbitrarily small and where

δ′′
1,n(c) := bcn

∫ ∞

0
uc|ϕh(u) − ϕ0(u)||∂uψh(u)|du, (5.15)

δ′′
2,n(c) := bcn

∫ ∞

0
uc|∂uψh(u) − ∂uψ0(u)|ϕ0(u)du. (5.16)

We will take a closer look at these quantities through the specific form of ϕh(u).
Put s = ν0/2 in the sequel.Wehaveψh(u) = hCs+sh log u+sh log(1/h)+h log Ks(u/h)

for u > 0 with some constant Cs only depending on s. Since ∂z Kα(z) = −Kα−1(z) −
(α/z)Kα(z), we obtain the expression ∂uψh(u) − ∂uψ0(u) = 1 − Ks−1(u/h)/Ks(u/h) =:
ξs(u). The function x 	→ xξs(x) is smooth on (0,∞) and we can deduce that
supx>0 |xξs(x)| < ∞ as follows:

• We have |xξs(x)| � x1∧ν0 around the origin, by using the property Kr ′(x) ∼
�(|r ′|)2|r ′|−1x−|r ′| for x → 0 (r ′ �= 0);

• Moreover, xξs(x) = x
( 1
8x + O

(
x−1
)) = O(1) for x ↑ ∞ since Ks(x) ∼√

π
2x

(
1 + 4 s2−1

8x + O
(
x−2
))

for x ↑ ∞.

Thus, we have obtained |∂uψh(u) + 1| = |ξs(u/h)| � h/u and |∂uψh(u)| � 1 + h/u
(u > 0). Substituting these estimates and (5.13) into (5.15) and (5.16), we obtain δ′′

1,n(c) �
bcnh log(1/h) and δ′′

2,n(c) � bcnh. Hence it follows that δ
′′
n � bc+ε2

n h log(1/h) where we can
set c + ε2 > 0 arbitrarily small as was desired.

Combining (5.14) and the last estimate of δ′′
n now gives

∫ |ζ(y)| | fh(y) − φ1(y)| dy �
b−(1∧ν0)+ε1
n + bε2+c

n h log(1/h). This upper bound is minimized for bn = (h log(1/h))−1/χ
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with χ := 1 ∧ ν0 + c + ε2 − ε1, with which we get
∫

| fh(y) − φ1(y)| dy � (h log(1/h))
1− c+ε2

χ .

Given any small r > 0, we can take all of ε1, ε2, c > 0 small enough to conclude (5.3). Now
(5.4) is trivial under (2.2).

5.2 Proof of Theorem 3.1

5.2.1 Proof of (3.4): Tail-probability estimate

This section aims to prove (3.4) through (Yoshida 2011, Theorem 3(c)). Define

Y2,n(ν) = 1

Tn

(
H2,n(ν) − H2,n(ν0)

)
,

Y2(ν) = E [ρ (ε1; ν) − ρ (ε1; ν0)] =
∫

log

(
f (ε; ν)

f (ε; ν0)

)
f (ε; ν0) dε.

Lemma 5.5 1. There exists a positive constant c′
0 > 0 such that Y2(ν) ≤ −c′

0|ν − ν0|2 for
every ν ∈ �ν .

2. There exists a constant c′
2 ∈ (0, 1/2] such that for every K > 0,

sup
n

E

[
sup
ν

∣∣∣T
c′
2

n
(
Y2,n(ν) − Y2(ν)

)∣∣∣
K
]

< ∞.

In particular, sup
ν

∣∣Y2,n(ν) − Y2(ν)
∣∣ p−→ 0.

3. The consistency holds: ν̂n
p−→ ν0.

Proof The proof of 1 is similar to the case of Y1(a) in Sect. 2, and the consistency 3 is an
obvious consequence of 1 and 2.

To prove 2, we fix K > 0 in the rest of this proof. We will repeatedly use the following
estimate:

sup
ε

sup
ν

(
sup
k≥0

sup
l≥2

∣∣∂kε ∂ lνρ(ε; ν)
∣∣+ maxl∈{0,1}

∣∣∂ lνρ(ε; ν)
∣∣

1 + log
(
1 + ε2

)

+ sup
k≥1

max
l∈{0,1}

(
1 + |ε|k

) ∣∣∂kε ∂ lνρ(ε; ν)
∣∣
)

< ∞. (5.17)

Since ε1, . . . , ε[Tn ] are i.i.d., we have the moment estimate

sup
n

E

⎡

⎣

∣∣∣∣∣
1√
Tn

[Tn ]∑

i=1

(
∂ lνρ(εi ; ν) − E

[
∂ lνρ(ε1; ν)

])
∣∣∣∣∣

K⎤

⎦ < ∞

for any ν ∈ �ν and l ∈ Z+ through the the Sobolev-inequality argument as before. Hence it
suffices to show that there exists a constant c′

2 ∈ (0, 1/2] such that

sup
n

E

⎡

⎣sup
ν

∣∣∣∣∣
T
c′
2

n

(
1

Tn

[Tn ]∑

i=1

(
ρ(ε̂i ; ν) − ρ(εi ; ν)

)
)∣∣∣∣∣

K⎤

⎦ < ∞. (5.18)
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To manage the term “ρ(ε̂i ; ν)− ρ(εi ; ν)”, we will separately consider it on different four
events. Let

H1,i :=
{
|ε̂i − εi | ≤ 1

2
|εi |
}

, i = 1, . . . , [Tn] .

Writing ûμ,n = √
Nn
(
μ̂n − μ0

)
and ûσ,n = √

Nn
(
σ̂n − σ0

)
, we have

ε̂i − εi = −1

σ̂n
√
Nn

(
εi ûσ,n + (Xi − Xi−1) · ûμ,n

)
. (5.19)

Let (bn)n be a positive sequence tending to infinity. Then,

Hc
1,i ⊂

{
|ûσ,n ||εi | + |Xi − Xi−1||ûμ,n | ≥ C

√
Nn |εi |

}

⊂
{
(|Xi − Xi−1| + |εi |)

(|ûμ,n | + |ûσ,n |
) ≥ C

√
Nn |εi |

}

⊂ {|εi | ≤ 1} ∪
{
|εi | ≥ 1, |ûμ,n | + |ûσ,n| ≥ C

√
Nn

|εi |
|εi | + bn

}

∪ {|Xi − Xi−1| ≥ bn}

⊂ {|εi | ≤ 1} ∪
{
|ûμ,n | + |ûσ,n | ≥ C

√
Nn

bn

}
∪ {|Xi − Xi−1| ≥ bn}

=: H2,i ∪ H3,n ∪ H4,i .

First, for H1,i and H2,i , we take a closer look at the right-hand side of the expression

ρ(ε̂i ; ν) − ρ(εi ; ν) =
(∫ 1

0
∂ερ

(
εi + s

(
ε̂i − εi

) ; ν
)
ds

) (
ε̂i − εi

)
. (5.20)

On H1,i , we have

inf
s∈[0,1]

∣∣εi + s
(
ε̂i − εi

)∣∣ ≥ 1

2
|εi |.

Hence by (5.17) and (5.19),

∣∣ρ(ε̂i ; ν) − ρ(εi ; ν)
∣∣ IH1,i � 1√

Nn

(
|ûσ,n| + |Xi − Xi−1|

1 + |εi | |ûμ,n |
)

,

∣∣ρ(ε̂i ; ν) − ρ(εi ; ν)
∣∣ IH2,i � 1√

Nn

(|ûσ,n| + |Xi − Xi−1||ûμ,n |
)
.

The last two displays together with the tail-probability estimate (2.9) and (3.1) imply that

E

⎡

⎣sup
ν

∣∣∣∣∣

√
Tn

(
1

Tn

[Tn ]∑

i=1

(
ρ(ε̂i ; ν) − ρ(εi ; ν)

)
IH1,i∪H2,i

)∣∣∣∣∣

K⎤

⎦ �
(
Tn
Nn

) K
2→ 0. (5.21)

Second, we consider H3,n and H4,i . To this end, we do not use the expression (5.20) but
directly estimate the target expectation. Recalling (2.9), for any K1, K2 > 0 we obtain
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max
1≤i≤[Tn ]

P
[
H3,n ∪ H4,i

]
�
(

bn√
Nn

)K1

E
[
|ûμ,n |K1 + |ûσ,n|K1

]

+ b−K2
n E

[
|Xi − Xi−1|K2

]

�
(

bn√
Nn

)K1

+ b−K2
n .

Now we set bn = N 1/4
n . Given any K > 0, under (3.1) we can take sufficiently large

K1, K2 > 0 so that

max
1≤i≤[Tn ]

P
[
H3,n ∪ H4,i

] = o
(
T−K
n

)
. (5.22)

We will use the following (rough) estimate: there exists a constant C ′ > 0 only depending

on K and ν0 for which
{
log
(
1 + ε2

)}2K ≤ C ′ (1 + |ε|ν0/2) (ε ∈ R). With this observation
together with (5.17) and (5.19), we have

1

Tn

[Tn ]∑

i=1

E

[
sup
ν

∣∣ρ(ε̂i ; ν) − ρ(εi ; ν)
∣∣2K
]1/2

� 1 + 1

Tn

[Tn ]∑

i=1

(
E
[{
log
(
1 + ε̂2i

)}2K + {log (1 + ε2i
)}2K ])1/2

� 1 + 1

Tn

[Tn ]∑

i=1

(
E
[|ε̂i |ν0/2 + |εi |ν0/2

])1/2

� 1 + 1

Tn

[Tn ]∑

i=1

(

E

[

|εi |ν0/2 +
(

1√
Nn

(|εi ||ûσ,n| + |Xi − Xi−1||ûμ,n |
))ν0/2

])1/2

� 1. (5.23)

Combining (5.22) and (5.23), Jensen’s inequality and Cauchy-Schwarz inequality yield

E

⎡

⎣sup
ν

∣∣∣∣∣

√
Tn

(
1

Tn

[Tn ]∑

i=1

(
ρ(ε̂i ; ν) − ρ(εi ; ν)

)
IH3,n∪H4,i

)∣∣∣∣∣

K⎤

⎦

� T K/2
n E

[
1

Tn

[Tn ]∑

i=1

sup
ν

∣∣ρ(ε̂i ; ν) − ρ(εi ; ν)
∣∣K IH3,n∪H4,i

]

� T K/2
n

1

Tn

[Tn ]∑

i=1

E

[
sup
ν

∣∣ρ(ε̂i ; ν) − ρ(εi ; ν)
∣∣2K
]1/2

P
[
H3,n ∪ H4,i

]1/2

� T K/2
n max

1≤i≤[Tn ]
P
[
H3,n ∪ H4,i

]1/2 1

Tn

[Tn ]∑

i=1

E

[
sup
ν

∣∣ρ(ε̂i ; ν) − ρ(εi ; ν)
∣∣2K
]1/2

� o(1). (5.24)

The claim (5.18) with c′
2 = 1/2 follows from (5.21) and (5.24). ��

As in the proof of (2.9) in Theorem 2.2, the claim (3.4) follows on showing the next
lemma.
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Lemma 5.6 There exist a constant c′
1 ∈ (0, 1/2) such that for every K > 0,

sup
n

(
T
c′
1

n
∣∣�ν,n − �ν,0

∣∣+ sup
ν

∣∣∣∣
1

Tn
∂3νH2,n(ν)

∣∣∣∣

)
+ sup

n
E
[
|
ν,n |K

]
< ∞,

where �ν,n := −T−1
n ∂2νH2,n(ν0).

Proof By (3.2), the finiteness of the first (non-random) term is trivial for c′
1 ∈ (0, 1]. Turning

to the second term, we have


ν,n = 1√
Tn

[Tn ]∑

i=1

∂νρ (εi ; ν0) + 1√
Tn

[Tn ]∑

i=1

(
∂νρ

(
ε̂i ; ν0

)− ∂νρ (εi ; ν0)
)

(5.25)

Let K > 0. Since E [∂νρ (εi ; ν0)] = 0, the first term is obviously LK (P)-bounded. Exactly
in the same way as in the proof of (5.18) with c′

2 = 1/2, the second term converges in LK to
0. ��

5.2.2 Proof of (3.5): Asymptotic normality

To prove the asymptotic normality (3.5), we introduce the concave random function

�n(u) := H2,n

(
ν0 + u√

Tn

)
− H2,n (ν0)

defined for u ∈ {v ∈ R : ν0 + v T−1/2
n ∈ �ν}; obviously, ûν,n ∈ argmax�n . By means of

Hjørt (2011, Basic Lemma), we can conclude that

ûν,n = �−1
ν,0
ν,n + op(1)

L−→ N
(
0, �−1

ν,0

)

by showing the locally asymptotically quadratic structure: for each u ∈ R,

�n(u) = 
ν,nu − 1

2
�ν,0u

2 + op(1), (5.26)

where the random variable 
ν,n
L−→ N

(
0, �ν,0

)
. By Lemma 5.6 we are left to show the

asymptotic normality of 
ν,n . But it is trivial since ε 	→ ∂νρ(ε; ν) is smooth uniformly in a
neighborhood of ν0 so that E

[{∂νρ (ε1, ν0)}2
] = −E

[
∂2ν ρ (ε1, ν0)

] = �ν,0.

5.3 Proof of Theorem 3.5

It suffices to show (2.8) and (3.5) individually, the same arguments as in Sect. 3.2 are valid
to deduce the asymptotic orthogonality of ûa,n and ûν,n .

For the consistency of ân , it suffices to verify supa |Y1,n(a)−Y1(a)| p−→ 0. In Sect. 5.1.1,
we considered the expression

Y1,n(a) − Y1(a) = Y
∗∗
1,n(a) − Y1(a) + 1√

Nn

Nn∑

j=1

1√
Nn

ζ̃ j (a) + δ11,n(a) + δ12,n(a).

Assumption 3.4 implies that N−1
n
∑Nn

j=1 |h−1
(

 j X − hX ′

t j−1

)
|2 = op(1), hence

supa |δ11,n(a)| = op(1) from the expression (5.6). Recall (5.5) and (5.7). By the definition
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(2.5) we have

sup
a

|ζ j (a)| � 1 + log
(
1 + ε2j

)
+ log

(
1 + |X ′

t j−1
|2
)

� 1 + log
(
1 + ε2j

)
,

so that Lemma 5.4 gives supa |δ12,n(a)| = op(1). Since we also have supa |∂aζ j (a)| �
1 + |X ′

t j−1
| � 1, the Burkholder and Sobolev inequalities yield supa

∣∣∣
∑Nn

j=1 N
−1/2
n ζ̃ j (a)

∣∣∣ =
Op(1). Finally, from (5.8), we have Y∗∗

1,n(a) − Y1(a)
p−→ 0 for each a and moreover,

sup
a

|∂aY∗∗
1,n(a)| + sup

a
|∂aY1(a)| � 1

N−1
n

Nn∑

j=1

∣∣∣∣
1

h

 j X

∣∣∣∣+ 1 = Op(1).

Hence supa |Y∗∗
1,n(a) − Y1(a)| p−→ 0, followed by supa |Y1,n(a) − Y1(a)| p−→ 0. For the

asymptotic normality, we can follow the same line as in the proof of Lemma 5.3 (Sect. 5.1.3)
under Assumption 3.4 except for the following point: concerned with the second term in
(5.9) about the first-stage quasi-score 
a,n , we here do not require the moment boundedness
(the last condition in Assumption 2.1.2) but just its negligibility. Recall the notation Rn, j =
h−1

(

 j X − hX ′

t j−1

)
and g1(ε) = ∂εφ1(ε)/φ1(ε). By the compensation of Rn, j g1

(
ε j
)
and

then applying the Burkholder inequality, it is straightforward to verify the negligibility as
follows: for the martingale part M ′

n := ∑Nn
j=1 N

−1/2
n

{
Rn, j g1

(
ε j
)− E j−1

[
Rn, j g1

(
ε j
)]}

,
we can estimate its quadratic characteristic as

〈M ′〉n � 1

Nn

Nn∑

j=1

E j−1 [|Rn, j |2
] p−→ 0

by Assumption 3.4.3; and moreover, the compensation part is negligible under Assumption
3.4.5. Thus, we conclude (2.8).

To deduce (3.5) under
√
Nn
(
ân − a0

) = Op(1), we make use of what we have seen in
Sects. 5.2.1 and 5.2.2. The u-wise asymptotically quadratic structure (5.26) of �n(·) holds
since the estimate supn |�ν,n − �ν,0| + supn,ν |T−1

n ∂3νH2,n(ν)| < ∞ is valid as before. Note
that

1

Tn

[Tn ]∑

i=1

|Xi − Xi−1| = 1

nTn

[Tn ]∑

i=1

∑

j∈Ai

∣∣∣∣
1

h

 j X

∣∣∣∣

�

⎛

⎝ 1

[nTn]

[nTn ]∑

j=1

∣∣∣∣
1

h

(

 j X − hX ′

t j−1

)∣∣∣∣

2
⎞

⎠

1/2

+ 1 = Op(1).

By (5.17) and (5.19), the second term in the right-hand side of (5.25) can be bounded as
follows:

∣∣∣∣∣
1√
Tn

[Tn ]∑

i=1

(
∂νρ

(
ε̂i ; ν0

)− ∂νρ (εi ; ν0)
)
∣∣∣∣∣

=
∣∣∣∣∣
1

Tn

[Tn ]∑

i=1

∫ 1

0
∂ε∂νρ

(
εi + s

(
ε̂i − εi

) ; ν0
)
ds
√
Nn
(
ε̂i − εi

)
√

Tn
Nn

∣∣∣∣∣

�
(

|ûσ,n | 1

Tn

[Tn ]∑

i=1

|εi | + |ûμ,n | 1

Tn

[Tn ]∑

i=1

(1 + |Xi − Xi−1|)
)√

Tn
Nn
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= Op

(√
Tn
Nn

)

= op(1).

This leads to (3.5).

5.4 Proof of Theorem 3.7

First, we will verify Assumption 3.4 (except for item 4 therein) under Assumption 3.6. First,
we show items 1 and 2 partly related to the ergodic behavior of the Markov process Y . The
Lévy measure ν(dz) of J satisfies that ν({z : |z| < c) > 0 for each c > 0 (see (5.10)).
From the proof of Masuda (2013, Proposition 5.4) under Assumption 5.2(ii) therein, we see
that the Local Doeblin (LD) condition holds for Y (see Kulik (2009) for details). The LD
condition implies that, for any constant 
 > 0, every compact set is petite for the discrete-
time Markov chain (Ym
)m≥0. Moreover, the Lévy process J is centered and the function
ψ(y) = y2 belongs to the domain of the (extended) generator A of Y :

Aψ(y) := ∂ψ(y) μ0 · b(y) +
∫

(ψ(y + σ0z) − ψ(y) − ∂ψ(y)σ0z) g(z)dz

= 2yμ0 · b(y) + σ 2
0

ν0 − 2
.

By the latter condition in Assumption 3.6, we can find constants K , c > 0 such that
Aψ(y) ≤ −c for every |y| ≥ K ; as a matter of fact, it suffices that the rightmost side
is negative uniformly in |y| ≥ K , but then the condition involves the unknown σ0 and
ν0 hence inconvenient. Obviously, there exists a constant d ′ = d ′(K ) > 0 for which
Aψ(y) ≤ d for every |y| ≤ K . We get Aψ(y) ≤ −c + (c + d ′)I (|y| ≤ K ) for
y ∈ R. Hence, it follows from Masuda (2007, Theorem 2.1) that Y is ergodic, which
in particular means that there exists a unique invariant distribution π0,Y (dy) for which
Y satisfies the law of large numbers: for any continuously differentiable π0,Y -integrable
g : R → R, we have T−1

∫ T
0 g (Ys) ds → ∫

g(y)π0,Y (dy) as T → ∞. The last con-
vergence holds for the bounded process X ′ = b(Y ) as well. It is routine to show that

N−1
n
∑Nn

j=1 g ◦ b
(
Yt j−1

) p−→ ∫
g ◦ b(y)π0,Y (dy) for g being bounded and smooth enough.

Thus, items 1 and 2 hold with π0(dx ′) = π0,Y ◦ b−1(dx ′).
Turning to item 3, we will show limn N−1

n
∑Nn

j=1 Anj = 0, where

Anj := E

[∣∣∣∣
1

h

(

 j X − hX ′

t j−1

)∣∣∣∣

2
]

= E

⎡

⎣

∣∣∣∣∣
1

h

∫ t j

t j−1

(
b (Ys) − b

(
Yt j−1

))
ds

∣∣∣∣∣

2
⎤

⎦ .

Fix ε > 0 and H ∈ (0, 1 ∧ ν0) = (0, 1). Pick a δ > 0 for which |b(x) − b(y)| <
√

ε for
every x, y such that |x − y| ≤ δ. By using the boundedness of b,

Anj ≤ 1

h

∫ t j

t j−1

E
[∣∣b (Ys) − b

(
Yt j−1

)∣∣2
]
ds

� 1

h

∫ t j

t j−1

(
P
[|Ys − Yt j−1 | > δ

]+ E
[∣∣b (Ys) − b

(
Yt j−1

)∣∣2 ; |Ys − Yt j−1 | ≤ δ
])

ds

≤ 1

h

∫ t j

t j−1

P
[|Ys − Yt j−1 | > δ

]
ds + ε
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� 1

h

∫ t j

t j−1

((
s − t j−1

)H + E
[
|Js−t j−1 |H

])
ds + ε

� O
(
hH
)

+ sup
t∈[0,h]

E
[
|Jt |H

]
+ ε = O

(
hH
)

+ ε. (5.27)

In the last step, we applied (Luschgy and Pagès 2008, Theorem 2(c)) to conclude
E
[
supt∈[0,h] |Jt |H

]
� hH . Since ε > 0 was arbitrary, it follows that limn N−1

n
∑Nn

j=1 Anj =
0, hence item 3.

Finally, we verify item 5. Pick any constant δ′ ∈ (0, (1 + ε′)/2
]
for ε′ > 0 in (2.2). By

the essential boundedness of b, ∂b, and g1 and by the moment estimate

E
[|Js − Jt j−1 |

] ≤ E

[

sup
t∈[0,h]

|Jt |
]

� h log(1/h).

due to Luschgy and Pagès (2008, Theorem 3), we have
∣∣∣∣∣∣

1√
Nn

Nn∑

j=1

E j−1
[
1

h

(

 j X − hX ′

t j−1

)
g1

(

 j J

h

)]
∣∣∣∣∣∣

� 1

Nn

Nn∑

j=1

√
Nn

(
h + 1

h

∫

j
E[|Js − Jt j−1 |]ds

)

�
√
Nn
(
h + h log(1/h)

)
� h1−δ′√

Nn × hδ′
log(1/h) � h1−δ′√

Nn × hδ′/2.

Since h1−δ′√
Nn � nδ′−(1+ε′)/2 � 1, the last upper bound is Op

(
hδ′/2

)
= op(1),

concluding item 5. Thus, we have shown that Assumption 3.4 follows from Assumption
3.6.

We will complete the proof of Theorem 3.7 by showing that
√
Nn
(
ãn − ân

) = op(1) and√
Tn
(
ν̃n − ν̂n

) = op(1). Let δn(a) := H̃1,n(a) − H1,n(a). Tracing back and inspecting the
proof of Theorem 3.5 reveal that it is sufficient for concluding

√
Nn
(
ãn − ân

) = op(1) to
verify

∣∣∣∣
1√
Nn

∂aδn (a0)

∣∣∣∣+ max
k∈{0,2,3} supa

∣∣∣∣
1

Nn
∂ka δn(a)

∣∣∣∣ = op(1).

We can write δn(a) = ∑Nn
j=1

{
logφ1

(
ε′
j (a)

)
− logφ1

(
ε j (a)

)} = ∑Nn
j=1 Bj (a)(h−1


 j X − b j−1) for some essentially bounded random functions Bj (a) smooth in a. By direct
computations and Assumption 3.4.3,

max
k∈{0,2,3} supa

∣∣∣∣
1

Nn
∂ka δn(a)

∣∣∣∣ �
1

Nn

Nn∑

j=1

∣∣h−1
 j X − b j−1
∣∣ = op(1)

for each k ∈ {0, 2, 3}. In a similar way to (5.27),

∣∣∣∣
1√
Nn

∂aδn (a0)

∣∣∣∣ �
1

Nn

Nn∑

j=1

1

h

∫ t j

t j−1

√
Nn
∣∣b (Ys) − b

(
Yt j−1

)∣∣ ds

� 1

Nn

Nn∑

j=1

1

h

∫ t j

t j−1

√
Nn |Ys − Yt j−1 |ds
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� 1

Nn

Nn∑

j=1

1

h

∫ t j

t j−1

√
Nn
((
s − t j−1

)+ |Js − Jt j−1 |
)
ds. (5.28)

Therefore, by applying (Luschgy and Pagès 2008, Theorem 3) again,

E

[∣∣∣∣
1√
Nn

∂aδn (a0)

∣∣∣∣

]
� h

√
Nn + E

[
sup

t∈[0,h]
|Jt |
]

� O
(
h log(1/h)

√
Nn

)
.

The upper bound in the last display is o(1) since h
√
Nn � n−ε′/2.

To show
√
Tn
(
ν̃n − ν̂n

) = op(1), we write H̃2,n(ν) =∑[Tn ]
i=1 ρ(ε̃i ; ν). From the proof of

(3.5) (Sect. 5.2.2),

�̃n(u) := H̃2,n

(
ν0 + u√

Tn

)
− H̃2,n(ν0)

= u√
Tn

∂νH̃2,n(ν0) − 1

2
�ν,0u

2 + op(1),

Proceeding as in (5.28), we obtain (with recalling (5.17))

∣∣∣∣
1√
Tn

∂νH̃2,n(ν0) − 
ν,n

∣∣∣∣ �
1

Tn

[Tn ]∑

i=1

(∣∣
√
Tn(ε̃i − ε̂i )

∣∣+ ∣∣√Tn(ε̂i − εi )
∣∣
)

� Op

(
h log(1/h)

√
Tn
)

= Op

(
n−ε′/2(log n)

Tn
Nn

)
= op(1).

It follows that
√
Tn
(
ν̃n − ν̂n

) = op(1).
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