Castiglioni et al. European Radiology Experimental (2021) 5:7 Euro pea Nn Ra d iO | Ogy
https://doi.org/10.1186/s41747-020-00203-z E . tal
Xperimenta

ORIGINAL ARTICLE Open Access

Machine learning applied on chest x-ray ")
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Abstract

Background: We aimed to train and test a deep learning classifier to support the diagnosis of coronavirus disease
2019 (COVID-19) using chest x-ray (CXR) on a cohort of subjects from two hospitals in Lombardy, Italy.

Methods: We used for training and validation an ensemble of ten convolutional neural networks (CNNs) with
mainly bedside CXRs of 250 COVID-19 and 250 non-COVID-19 subjects from two hospitals (Centres 1 and 2). We
then tested such system on bedside CXRs of an independent group of 110 patients (74 COVID-19, 36 non-COVID-
19) from one of the two hospitals. A retrospective reading was performed by two radiologists in the absence of any
clinical information, with the aim to differentiate COVID-19 from non-COVID-19 patients. Real-time polymerase chain
reaction served as the reference standard.

Results: At 10-fold cross-validation, our deep learning model classified COVID-19 and non-COVID-19 patients with
0.78 sensitivity (95% confidence interval [CI] 0.74-0.81), 0.82 specificity (95% Cl 0.78-0.85), and 0.89 area under the
curve (AUQ) (95% CI 0.86-0.91). For the independent dataset, deep learning showed 0.80 sensitivity (95% Cl 0.72—
0.86) (59/74), 0.81 specificity (29/36) (95% Cl 0.73-0.87), and 0.81 AUC (95% Cl 0.73-0.87). Radiologists’ reading
obtained 0.63 sensitivity (95% Cl 0.52-0.74) and 0.78 specificity (95% Cl 0.61-0.90) in Centre 1 and 0.64 sensitivity
(95% ClI 0.52-0.74) and 0.86 specificity (95% CI 0.71-0.95) in Centre 2.

Conclusions: This preliminary experience based on ten CNNs trained on a limited training dataset shows an
interesting potential of deep learning for COVID-19 diagnosis. Such tool is in training with new CXRs to further
increase its performance.

Keywords: Artificial intelligence, COVID-19, Neural networks (computer), Sensitivity and specificity, X-rays

* Correspondence: salvatore@deeptracetech.com

Tlsabella Castiglioni and Davide Ippolito contributed equally to this work.
Scuola Universitaria Superiore IUSS Pavia, Piazza della Vittoria 15, 27100
Pavia, Italy

6DeepTrace Technologies SR.L, Via Conservatorio 17, 20122 Milan, Italy
Full list of author information is available at the end of the article

. © The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
@ SPrlnger Open which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
— appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.


http://crossmark.crossref.org/dialog/?doi=10.1186/s41747-020-00203-z&domain=pdf
http://orcid.org/0000-0001-9312-4675
http://creativecommons.org/licenses/by/4.0/
mailto:salvatore@deeptracetech.com

Castiglioni et al. European Radiology Experimental (2021) 5:7

Key points

e A deep learning classifier was applied to chest x-rays
of suspected COVID-19 patients.

e This method provided a balanced diagnostic
performance with 0.80 sensitivity and 0.81 specificity.

e Training on larger multi-institutional datasets may
allow such performance to increase.

Background

According to the John Hopkins Coronavirus Resource
Centre [1], as of September 2020, the severe acute re-
spiratory syndrome coronavirus 2 (SARS-CoV-2) in-
fected almost 30 million individuals with more than 900,
000 deaths worldwide.

In this pandemic, clinicians are requesting fast diagnos-
tic tools for SARS-CoV-2 infection and coronavirus dis-
ease 2019 (COVID-19) characterised by a good balance
between sensitivity and specificity, leading to acceptable
predictive values in a context of a variable prevalence. Of
note, any tool to be applied for this aim should have a
good cost-benefit ratio for the healthcare service.

The clinical standard for detecting coronavirus infec-
tions is reverse transcriptase polymerase chain reaction
(RT-PCR) [2], even though this test can give a false nega-
tive result at an early stage of the disease and the time
needed to get its result is highly variable. At any rate, con-
sidering the most relevant clinical evolution leading to
pneumonia, chest imaging study is routinely performed in
suspected or confirmed COVID-19 cases, as suggested by
the World Health Organization guidelines [3].

When a patient presents with symptoms attributable
to COVID-19, like fever, cough, or dyspnoea, chest x-ray
(CXR) is usually the first imaging test performed, be-
cause it is cheaper and easier to do [4]. Furthermore,
CXR can also be acquired with portable instrumentation
in isolated rooms in emergency departments or at the
patient’s bedside in every other department, which
would considerably ease the required sanitisation
process [5]. CXR images have a high spatial resolution,
but they are planar images, not allowing three-
dimensional slicing as all structures visualised at CXR
are displayed on a single plane. Anyway, even for CXR,
the most common reported abnormal finding is ground-
glass opacities, with portions of the lungs appearing as a
“hazy” shade of grey instead of being black with fine
white lung markings for blood vessels [6]. As ground-
glass opacities are usually the first radiological sign of
COVID-19, it could be hypothesised to be able to im-
prove the early diagnosis of COVID-19 by means of a
smarter reading of CXRs.

Machine learning is emerging as a unique powerful
method to improve the diagnosis and prognosis of sev-
eral multifactorial diseases, including pneumonia. In
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2018, a worldwide competition on the Kaggle portal
(www.kaggle.com) was launched by the Radiological So-
ciety of North America on the complex task of automat-
ically screening pneumonia (viral and bacterial) [7]
versus non-pneumonia patients on CXRs, where leader
groups obtained excellent results training their different
machine learning systems on CXRs [8]. More recently, a
Chinese research team proved the potential of machine
learning in supporting the diagnosis of COVID-19 in the
Chinese population suspected for COVID-19 when
trained on CT images, showing excellent results, with
sensitivity and specificity higher than 90% [9]. However,
their machine learning CT-based model may not be im-
plemented in an emergency context as for the SARS-
CoV-2 pandemic. Concerning the use of machine learn-
ing on CXR images for COVID-19 detection, a number
of studies reached satisfactory diagnostic accuracy by
employing convolutional neural networks or other deep
learning methods [10-15].

Thus, the aim of our study was to test a deep learning
classifier applied to CXRs in the SARS-CoV-2 emer-
gency setting also considering the radiologists’ reading
performance. Our purpose was to develop a tool able to
support the diagnosis of COVID-19, offering a second
opinion to clinical radiologists worldwide.

Methods

Ethical approval

The local Ethics Committee (Ethics Committee of
IRCCS San Raffaele) approved this retrospective study
on 8 April 2020, and informed consent was waived due
to the retrospective nature of the study. In our retro-
spective study, we used a case-control design based on
non-consecutive patients and an artificially enriched
positive class (COVID-19).

Training and validation set
The training and validation set was composed of CXRs
from (1) the Hospital San Gerardo, Monza, Italy (Centre
1) and (2) the IRCCS Policlinico San Donato (Centre 2).
For Centre 1, non-consecutive patients suspected for
COVID-19 admitted from 1 March to 13 March 2020 (n
= 270, 135 COVID-19 and 135 non-COVID-19) were
considered. Clinical suspicion of COVID-19 was defined
upon arrival at the emergency room and based on the
referring physician judgement for patients admitted at
the emergency department, taking into consideration
onset of symptoms (the main fever, cough and dys-
pnoea) and blood tests (white blood cell count, red
blood cell count, C-reactive protein level). All these pa-
tients suspect for pneumonia underwent digital CXR in
anteroposterior projection at bedside as well as RT-PCR
assays using commercial kits (ribonucleic acid was ex-
tracted from collected samples). The classification of
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positive or negative COVID-19 cases was based on the
detection or non-detection of the pathogen: the number
of cases of negative RT-PCR followed by one or more
further negative swabs was 135. The CXR images from
Centre 1 were obtained using two different imaging sys-
tems: WDR Mobile Diagnost (Philips, Amsterdam, The
Netherlands), and DX-D100 (AGFA, Mortsel, Belgium).

Due to the higher prevalence of COVID-19 patients
with respect to non-COVID-19 in the considered period,
we were forced to “artificially” enrich the dataset in
order to balance the number of patients’ images in the
two classes because a balanced set of classes is recom-
mended to properly train a deep learning classifier [16].
In other words, in training the algorithm, the sampling
rate of the two classes of images (COVID-19 and non-
COVID-19) was not equal to their actual prevalence, but
the number of samples (images) of the class with lower
prevalence (non-COVID-19) was chosen a posteriori to
match the number of COVID-19 images in order to ob-
tain a final dataset composed equally of patients’ images
of the two classes.

For Centre 2, we included in the training and valid-
ation dataset of digital CXRs of consecutive patients sus-
pected for COVID-19 according to the same criteria
described above, admitted to the IRCCS Policlinico San
Donato (Centre 2) from 25 February 25 to 16 March
2020 and subsequently confirmed to be COVID-19 posi-
tive by RT-PCR (n = 115). Out of these CXRs, 87 were
anteroposterior projections performed at bedside and 28
posteroanterior projections acquired in upright position.
This set of data was further enriched with CXRs of non-
consecutive sex- and age-matched patients admitted to
Centre 2 approximately in the same time interval of the
previous year (n = 115, 15 February to 16 March 2019),
who underwent CXR for pneumonia symptoms, without
any mention of lung abnormalities in the radiological re-
port. Of these CXRs, 16 were anteroposterior projections
performed at bedside and 99 were posteroanterior pro-
jections acquired in upright position. No matching for
severity was performed. The CXR images of Centre 2
were obtained using two different imaging systems:
digital GM85 (Samsung, Seoul, South Korea) and digital
FDR Go PLUS (Fujifilm, Tokyo, Japan).

Independent testing set

We then retrospectively considered consecutive patients
suspected of COVID-19 admitted to the Hospital San
Gerardo, Monza, Italy (Centre 1) from 14 March to 19
March 2020, thus temporally separated from the training
and validation set coming from the same centre. Clinical
suspicion of COVID-19, digital bedside CXRs and spe-
cific RT-PCR assays were performed as previously de-
scribed (7 = 110), 74 of them resulted to be COVID-19
and 36 non-confirmed at RT-PCR assay.

Page 3 of 10

A flow diagram describing patient selection is depicted
in Fig. 1, while Table 1 summarises included patients’
provenience and COVID-19 positivity or negativity.

Image analysis by deep learning

Starting from the included CXR images (Fig. 3), we tuned,
trained, validated and tested a deep learning classifier in
the binary classification task of interest (COVID-19 versus
non-COVID-19). For tuning, training and validation, we
considered (1) all patients with positive RT-PCR from
both centres (n = 250) as COVID-19 and (2) all patients
with negative RT-PCR from Centre 1 and those admitted
to Centre 2 in the same period of the previous year with a
CXR reported as negative (n = 250) as non-COVID-19
(see Table 1). For testing the deep learning classifier, we
considered an “independent testing set” of 110 CXRs ob-
tained from Centre 1, and temporally separated from the
abovementioned set of 250 versus 250 CXRs used for the
tuning, training and validation of the deep learning classi-
fier (see the “Methods” section and the “Independent test-
ing set” section for further details).

For these purposes, we used the TRACE4®© software
platform  (http://www.deeptracetech.com/files/Techni
calSheet_ TRACE4.pdf, DeepTrace  Technologies,
Italy), which allows (i) tuning, training, validation, and
testing ensembles of a variety of convolutional neural
networks (CNNs) with different architectures and (ii)
processing medical images to easy match such CNNs’
input constraints (e.g., image size).

Among the available CNNs, we choose the ResNet-50
architecture [17], a CNN with an extremely deep archi-
tecture, composed of 50 layers of neurons able to learn a
rich feature representation of the input image classes
during training (e.g, more than a million images from
the ImageNet database, ImageNet. http://www.image-
net.org). ResNet-50 uses these feature representations to
classify new images as belonging to one of the input
classes’ layers. ResNet-50 first preprocesses the input
image by one convolutional layer (7 x 7) and one max
pooling layer (3 x 3). Then, the preprocessed image is
input to 4 blocks of layers of similar structure, including
a different number of 3 x 3 convolutional filters provid-
ing different features’ map size. Each block filters the
preprocessed image and sends forward the filtered image
to the next block of convolutional filters. Moreover,
some block skips the preprocessed image to the next
block. This operation is called “skip connection” and
represents one hallmark of ResNet architectures solving
the vanishing gradient problem that implies that classi-
fier performance gets saturated rapidly in extremely
deep architectures.

The last layers of ResNet50 consist into one aver-
age pooling layer and one fully connected layer
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Fig. 1 Flow diagram for patient selection. CXR Chest x-ray, RT-PCR Reverse transcriptase polymerase chain reaction, ER Emergency room, AUC Area

followed by a support vector machine (SVM) classi-
fier layer.

A schematic drawing for the network architecture is
presented in Fig. 2.

TRACE4 allows medical images fed directly into the
CNN s following an automatic up- or downsampling de-
pending on the different original image size. In this
study, this purpose was obtained by a downsampling of
approximately 1/5 in order for all CXR images to match
the ResNet-50 input image size (224 by 224). No specific
lung pattern was selected, and no annotations or seg-
mentation were performed by radiologists on images.

In order to increase CXR diversity among different
training phases (epochs), we provided data-
augmentation and image-manipulation techniques that
were applied to the 500 (250 + 250) CXR training image
set, as follows: (1) 500 reflections in the top-bottom dir-
ection and 500 reflections in the left-right directions ap-
plied randomly (50% probability); (2) 500 planar
rotations, with rotation angle picked randomly from a
continuous uniform distribution from -5° to +5°% (3) 500
horizontal and 500 vertical shears, with shear angle
picked randomly from a continuous uniform distribution
from -0.05° to +0.05°.

TRACE4 allowed a fine-tuning of ResNet-50 architec-
ture to specialise its two last layers to our binary classifi-
cation task (COVID-19 versus non-COVID-19).
Specifically, TRACE4 optimised during training the
maximum number of epochs to 30, with an optimal
mini-batch size of 8 (the samples of the training set were
randomised before each epoch in order to avoid issues
related to the choice of samples to include in the mini-
batches—e.g., always discarding the same samples). An
Adam optimisation was used for stochastic gradient
computation [18]. TRACE4 did not optimise the

learning rate that was maintained of le-4 constant
throughout the whole training.

A 10-fold cross-validation method was chosen for
training and validation. The division ratio between the
training set and the validation set was 9:1. For each fold
of the cross-validation, the ResNet-50 was trained on the
training set and used to classify the validation set. The
ResNet-50 was then used to obtain the classification per-
formance on both the training and the validation sets.
This resulted in 10 different ResNet-50-derived classifi-
cation models and in a set of 10 classification perfor-
mances (one for each fold). The final training and
validation performance were calculated as the mean of
the performances obtained on each of the 10 ResNet50.

Independent testing was performed using 10 ResNet-
50 classifiers trained and validated as above in an ensem-
ble strategy. Images of the independent testing set were
classified using the 10 ResNet-50 classifiers, thus obtain-
ing 10 classification outputs and 10 class-membership
probabilities for each image (one for each ensemble clas-
sifier). The final classification for each image was calcu-
lated by the mean probabilities assigned by the 10
classifiers. Testing performance was then calculated over
the entire independent testing set.

The performance obtained by such deep learning clas-
sifier for both cross-validation and independent testing
were computed in terms of accuracy, sensitivity, specifi-
city, area under the curve (AUC) at receiver operating
characteristics analysis, positive likelihood ratio (LR+),
and negative likelihood ratio (LR-), with their corre-
sponding 95% confidence interval (CI).

Image analysis by radiologists
A retrospective reading of CXRs was performed by staff
radiologists at both hospitals. They were one radiologist
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Table 1 Provenience and characteristics of the included chest x-ray exams

Timeframe CoviD-19 Negative Total
Classifier training + validation (cross-validation)
Centre 1 1 March to 13 March 2020 135 135 270
Centre 2 25 February to 16 March 2020 115 230
Mid-February to mid-March 2019 115
Total training + validation 250 250 500
Classifier and human independent testing
Centre 1 14 March to 19 March 2020 74 36 110
Total testing 74 36 110
Total training + validation + testing 324 276 610

with 15 years of experience in chest imaging at Centre 1
(Reader 1) and a general radiologist with 6 years of ex-
perience at Centre 2 (Reader 2). They were asked to
standardise the reading without any information on
medical history, clinical and biologic data, with the aim
to differentiate COVID-19 patients from non-COVID-19
patients. Both readers assessed the independent testing
cases consisting into 110 bedside CXRs of patients sus-
pected to be COVID-19 infected, all from the emergency

department of Centre 1 from 16 March to 19 March
2020, 74 of them finally resulting positive for COVID-19
at RT-PCR and 36 negative for COVID-19 at RT-PCR
(see Table 1). Readers were asked to provide an overall
judgement on whether each CXR image was positive or
negative.

Results of human reading performance (sensitivity,
specificity, LR+, and LR-) were computed and presented
as ratios with their 95% CI.
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Results

Patient population

Our training and validation set (cross-validation) com-
prised 500 patients, of whom 270 from Centre 1 with a
mean age of 62 + 14 years for COVID-19 patients, and
57 + 21 years for negative patients. Out of 270 patients,
149 were males (55%). For centre 2, among the 230 sub-
jects, the mean age was 70 + 15years for COVID-19-
positive patients, and 70 + 17 years for negative patients.
Out of those 230 patients, 150 were males (65%). The
270 patients who referred to the emergency room of
Centre 1 presented fever (87.2%), cough (56.2%) and
dyspnoea (40.3%).

Image analysis by deep learning

Accuracy for the training was 0.99 (95% CI 0.98-1.00).
For validation of CXRs (250 of COVID-19 and 250 of
non-COVID-19 subjects), our deep learning model was
able to automatically classify patients with sensitivity of
0.78 (95% CI 0.74—0.81), specificity of 0.82 (95% CI
0.78-0.85), LR+ of 4.24 (95% CI 3.24-5.55), LR- of 0.27
(95% CI 0.21-0.34), and AUC of 0.89 (95% CI 0.86—
0.91) (10-fold cross-validation). For the 110 CXRs of the
independent (temporally separated) group of suspect
COVID-19 patients, our deep learning system showed
sensitivity of 0.80 (95% CI 0.72-0.86), specificity of 0.81
(95% CI 0.73-0.87), LR+ of 4.10 (95% CI 2.09-8.05), LR-
of 0.25 (95% CI 0.16-0.41), and AUC of 0.81 (95% CI
0.73-0.87). Table 2 shows a comprehensive list of the
performance obtained by the deep learning model.

Image analysis by radiologists

For the 110 cases from Centre 1 used for the independ-
ent testing of the deep learning system, Reader 1 showed
sensitivity of 0.64 (95% CI 0.52-0.74), specificity of 0.78
(95% CI 0.61-0.90), LR+ of 2.86 (95% CI 1.51-5.39), and
LR- of 0.47 (95% CI 0.33-0.66); Reader 2 showed sensi-
tivity of 0.64 (95% CI 0.52-0.74), specificity of 0.86 (95%
CI 0.71-0.95), LR+ of 4.57 (95% CI 1.99-10.50), and LR-
of 0.42 (0.31-0.59) (see Table 2).

Discussion
COVID-19 is a viral infectious disease transmitted
through air droplets and close distance contacts caused
from infection by SARS-CoV-2. The outbreak of SARS-
CoV-2 epidemic has resulted in a global health emer-
gency, more diffuse than the coronavirus severe acute
respiratory syndrome (SARS) in 2003, both caused by vi-
ruses belonging to the Coronaviridae family [3]. As a
matter of fact, on 13 March 2020, the WHO declared
the SARS-CoV-2 outbreak a pandemic [19].

Diagnosing the disease quickly and accurately is a
clinical need, and CXR is a vital diagnostic tool for
COVID-19 in emergency. However, its performance in the
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Table 2 Results for the deep learning classifier and human

readings of study datasets

COVID-19 positive versus negative

Classifier validation (cross-validation)

Positive (n) Negative (n)
Assigned positive 195 46
Assigned negative 55 204
Sensitivity Specificity
0.78* (0.74-0.81) 0.82* (0.78-0.85)
LR+ LR-
4.24* (3.24-5.55) 0.27* (0.21-0.34)
Classifier independent testing

Positive (n) Negative (n)
Assigned positive 59 7
Assigned negative 15 29
Sensitivity Specificity
0.80% (0.72-0.86) 0.81* (0.73-0.87)
LR+ LR-
4.10% (2.09-8.05) 0.25* (0.16-041)

Human independent testing (Reader 1)
Positive (n) Negative (n)
Assigned positive 47 8
Assigned negative 27 28
Sensitivity Specificity
0.64 (0.52-0.74) 0.78 (0.61-0.90)
LR+ LR-
2.86 (1.51-5.39) 047 (0.33-0.66)

Human independent testing (Reader 2)
Assigned positive 47 5
Assigned negative 27 31
Sensitivity Specificity
0.64 (0.52-0.74) 0.86 (0.71-0.95)
LR+ LR-
4.57 (1.99-10.50) 042 (0.31-0.59)

Data are presented as value and 95% confidence interval. *p < 0.005. COVID-19
Coronavirus disease 2019, LR+ Positive likelihood ratio, LR- Negative likelihood

ratio

diagnosis of COVID-19 cases has not yet been reported by
large studies. This study collected a total of 250 COVID-19
patients who had CXR with a positive RT-PCR, enriched
with 135 patients with CXR and a negative RT-PCR test,
and other 115 non-COVID-19 patients with CXR in an
equivalent period preceding the epidemic, to train and test
a CNN-based deep learning classifier.

The main finding of our study is that the performance
of our deep learning system proved intriguing both at
10-fold cross-validation and when challenged on an in-
dependent new dataset.
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It is highly likely that a human reading completely in-
formed about history and clinical data or during boom-
ing of the epidemic with an increasing prevalence would
have been able to strongly increase the sensitivity, but a
trade-off could be paid in terms of specificity. This
phenomenon is well visible in the case of CT in the re-
cent report by Ai et al. [20] where a 97% sensitivity is
counterbalanced by a 25% specificity. The performance
of our deep learning system appears interesting for the
well balance between the two terms, with 0.80 sensitivity
and 0.81 specificity. No a priori selected lung pattern
was used to train the deep learning system, in order to
avoid human bias or limitations. Such deep learning sys-
tem includes many convolutional filters that learned a
rich feature representation from millions of images of
different classes (from low to high level of feature com-
plexity) and used this variety of feature representation
for the COVID-19 versus non-COVID-19 image classifi-
cation task.

This constitutes a promising starting point, especially
when considering the technical issue regarding bedside
CXRs that were evaluated by the deep learning system:
only one anteroposterior projection in supine position.
This means that there is room for improving CXR per-
formance in these patients. On the one side, the deep
learning classifier can be trained on thousands of cases,
applying the deep learning general principle: the more
data you use for training, a higher performance you get
[21]. On the other side, CXR using the standard ap-
proach, i.e., both the posteroanterior and lateral projec-
tions to the patient standing in upright position, could
substantially increase the quality of the radiograms and
the three-dimensional information provided. However,
this “state-of-the-art” approach is not always easy to
carry on in the epidemic context, taking into consider-
ation the possible contemporary use. Therefore, while all
suspected COVID-19 patients ought to be isolated, this
deep learning tool may help guide their clinical work-
flow, for instance sending patients to thoracic CT when
human reading is negative and deep learning classifier
reading is positive.

It is important to recognise that the role of CXR in pa-
tients’ evaluation depends on the severity of infection in
the individual patient, as well as on the COVID-19
prevalence in the community. In individuals who are
asymptomatic or have mild disease, the sensitivity of
CXR could fail if performed in the first 48 h from the
onset of symptoms. Individuals with very mild disease
may eventually have positive RT-PCR results but would
have been missed by early CXR. Conversely, CXR should
be most useful in patients who are acutely ill and symp-
tomatic in areas with relatively high prevalence, such as
Lombardy, Italy in spring 2020. In this scenario, patients
with the clinical condition and CXR findings attributable
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to COVID-19 could be considered as possibly infected
by the virus when the first RT-PCR test result is still not
available or negative.

Since the beginning of the pandemic, there have been
numerous published studies that use machine learning
or CNNs for diagnosing COVID-19 from CXR. Among
these, the majority [10-14] used transfer-learning tech-
niques for automatically classifying COVID-19, based on
different pretrained CNNs (e.g, VGG-19, SqueezeNet,
DenseNet); in some of them, some optimisations were
also performed (e.g., Bayesian optimisation by Ucar et al.
[13] or hierarchical classification by Pereira et al. [14]).

As a first point of comparison, none of the considered
published papers [10-14] used an independent testing
set (neither temporally nor spatially independent) to ob-
tain an unbiased evaluation of the performance of their
machine learning classifiers, which was made instead in
the present paper. Thus, the performance obtained by
the referenced literature may suffer from overfitting
issues.

Furthermore, the referenced works [10-14] did not
perform a comparison between the performance
obtained by the machine learning classifiers and those
obtained by expert radiologists. Our study compares the
performance of a deep learning classifier to the radiolo-
gists’ reading for COVID-19 diagnosis, thus providing
interesting information about the potential adoption of
the proposed classifier as a second reader to support de-
cision in clinical practice.

As a last point of comparison, such works [10-14]
used publicly available anonymised image sets for nor-
mal or non-COVID-19 CXRs collected by a group of
imaging centres before the COVID-19 pandemic. As
COVID-19 CXRs, instead, these studies used publicly
available anonymised image sets collected by a different
group of imaging centres during the COVID-19
pandemic.

Thus, in these published papers, the intrinsic system-
atic image differences among image sets of normal or
non-COVID-19 CXRs distinct from image sets of
COVID-19 CXRs (e.g., distinct acquisition protocols, im-
aging systems, subjects origin) may have inflated the
final classification performance of the deep learning
models.

For example, most of the published papers used non-
COVID-19 CXRs from the well-known Kaggle database
“Chest X-Ray Images (Pneumonia)” [22]. However, this
database is composed of CXRs of normal subjects and
patients  with non-COVID19 pneumonia (other
community-acquired pneumonia) obtained from retro-
spective cohorts of paediatric patients of 1 to 5 years old
(from Guangzhou Women and Children’s Medical Cen-
ter, Guangzhou). If these CXRs are classified against
nonpaediatric COVID-19 patients, this may heavily
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affect the classification performance of the deep learning
models.

This study has some limitations. First, we trained our
model on a limited number of cases, from the same geo-
graphical area. We could improve performances and
generalisability of our model by adding new images, in
particular from different geographical regions than Lom-
bardy. Second, the independent testing set was only tem-
porally separate but not geographically separate from the
training one and also relatively small. This may lead to
an algorithm well-fitted on a local scale, with an un-
known performance on distant cohorts. In this regard,
future studies should be focused on testing the algo-
rithm on CXR image sets originating from other
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populations and geographical areas, and eventually redu-
cing overfitting by including such datasets in training.
For a worldwide generalisation, the algorithm should
probably be retrained and tuned also including CXR im-
ages from noncaucasian races such as Asian and African
ones. Third, we did not include other data such as clin-
ical conditions such as symptoms and pulse oximeter
data as complementary information to be given to the
deep learning model and the human readers, a perspec-
tive to be explored in future studies. Moreover, the data-
set used to train the algorithm was designed to give a
binary decision (COVID-19 versus non-COVID-19).
However, this decision may be dependent on disease se-
verity. The dataset was enriched with x-ray chest

Fig. 3 Sample chest x-ray examinations from patients included in the study sample. Posteroanterior projection in a COVID-19-positive 75-year-old
male patient (a), bedside anteroposterior projection in a COVID-19-positive male patient (b), posteroanterior projection in a negative 42-year-old
male patient (c) and bedside anteroposterior projection in a negative 88-year-old female patient (d)
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radiographs of non-consecutive sex- and age-matched
patients but it was not matched for the severity of lung
abnormalities; thus, the algorithm is not currently able
to classify the severity of lung abnormalities but only the
presence or absence of lung abnormalities associated to
COVID-19-positive patients (Fig. 3). A further limitation
of the algorithm may be posed by the inclusion of both
anteroposterior (bedside) and posteroanterior (standard)
CXR projections in the training dataset, whereas only
bedside, anteroposterior CXRs were present in the inde-
pendent testing dataset. Indeed, concerning patient pos-
ition during CXR exams, as reported in the “Methods”
section, while patients from Centre 1 only had bedside
anteroposterior (AP) CXR exams, patients from Centre
2 had either AP or PA projections, the latter belonging
mostly to healthy controls or to healthier patients. Thus,
the deep learning system was trained on a dataset com-
posed by frontal PA or AP images. While this could have
led to a source of bias, with AP projections being linked
to patients with more severe disease, and therefore
COVID-19 cases, and PA images being linked to healthy
subjects, the good LR- seems to suggest that it was not
the case, as the algorithm was able to correctly identify a
substantial number of cases of the independent testing
set as negative. As a matter of fact, the performance of
the algorithm seemed to err towards false negative inter-
pretation, as opposed to vice versa, further suggesting
that the presence of different projections did not hinder
the performance on the testing set.

In conclusion, we preliminarily showed that a CNN-
based deep learning system applied to bedside CXR in
patients suspected to be positive COVID-19, even
though trained on a limited number of cases, allowed to
reach a 0.80 sensitivity and a 0.81 specificity in an inde-
pendent temporally separate patient group. The system
could be used as a second opinion tool in studies aimed
at assessing its usefulness for improving the final sensi-
tivity and specificity in different geographical and tem-
poral setting. Its performance could be improved by
training on larger multi-institutional and multi-
geographical datasets, and the role of the algorithm as
the second reader of CXR images could be assessed in
different instances in patients suspected for SARS-CoV-
2 infection, especially as several countries are facing re-
peated waves of the COVID-19 pandemic. This deep
learning tool may help guide the clinical workflow, for
instance sending patients to thoracic CT when human
reading is negative and results from the deep learning
classifier are positive.
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